1 /*
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28
f2fs_stop_checkpoint(struct f2fs_sb_info * sbi,bool end_io)29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 f2fs_build_fault_attr(sbi, 0, 0);
32 set_ckpt_flags(sbi, CP_ERROR_FLAG);
33 if (!end_io)
34 f2fs_flush_merged_writes(sbi);
35 }
36
37 /*
38 * We guarantee no failure on the returned page.
39 */
f2fs_grab_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)40 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42 struct address_space *mapping = META_MAPPING(sbi);
43 struct page *page = NULL;
44 repeat:
45 page = f2fs_grab_cache_page(mapping, index, false);
46 if (!page) {
47 cond_resched();
48 goto repeat;
49 }
50 f2fs_wait_on_page_writeback(page, META, true);
51 if (!PageUptodate(page))
52 SetPageUptodate(page);
53 return page;
54 }
55
56 /*
57 * We guarantee no failure on the returned page.
58 */
__get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index,bool is_meta)59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60 bool is_meta)
61 {
62 struct address_space *mapping = META_MAPPING(sbi);
63 struct page *page;
64 struct f2fs_io_info fio = {
65 .sbi = sbi,
66 .type = META,
67 .op = REQ_OP_READ,
68 .op_flags = REQ_META | REQ_PRIO,
69 .old_blkaddr = index,
70 .new_blkaddr = index,
71 .encrypted_page = NULL,
72 .is_meta = is_meta,
73 };
74 int err;
75
76 if (unlikely(!is_meta))
77 fio.op_flags &= ~REQ_META;
78 repeat:
79 page = f2fs_grab_cache_page(mapping, index, false);
80 if (!page) {
81 cond_resched();
82 goto repeat;
83 }
84 if (PageUptodate(page))
85 goto out;
86
87 fio.page = page;
88
89 err = f2fs_submit_page_bio(&fio);
90 if (err) {
91 f2fs_put_page(page, 1);
92 return ERR_PTR(err);
93 }
94
95 lock_page(page);
96 if (unlikely(page->mapping != mapping)) {
97 f2fs_put_page(page, 1);
98 goto repeat;
99 }
100
101 if (unlikely(!PageUptodate(page))) {
102 f2fs_put_page(page, 1);
103 return ERR_PTR(-EIO);
104 }
105 out:
106 return page;
107 }
108
f2fs_get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)109 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111 return __get_meta_page(sbi, index, true);
112 }
113
f2fs_get_meta_page_nofail(struct f2fs_sb_info * sbi,pgoff_t index)114 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index)
115 {
116 struct page *page;
117 int count = 0;
118
119 retry:
120 page = __get_meta_page(sbi, index, true);
121 if (IS_ERR(page)) {
122 if (PTR_ERR(page) == -EIO &&
123 ++count <= DEFAULT_RETRY_IO_COUNT)
124 goto retry;
125
126 f2fs_stop_checkpoint(sbi, false);
127 f2fs_bug_on(sbi, 1);
128 }
129
130 return page;
131 }
132
133 /* for POR only */
f2fs_get_tmp_page(struct f2fs_sb_info * sbi,pgoff_t index)134 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
135 {
136 return __get_meta_page(sbi, index, false);
137 }
138
f2fs_is_valid_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)139 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
140 block_t blkaddr, int type)
141 {
142 switch (type) {
143 case META_NAT:
144 break;
145 case META_SIT:
146 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
147 return false;
148 break;
149 case META_SSA:
150 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
151 blkaddr < SM_I(sbi)->ssa_blkaddr))
152 return false;
153 break;
154 case META_CP:
155 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
156 blkaddr < __start_cp_addr(sbi)))
157 return false;
158 break;
159 case META_POR:
160 case DATA_GENERIC:
161 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
162 blkaddr < MAIN_BLKADDR(sbi))) {
163 if (type == DATA_GENERIC) {
164 f2fs_msg(sbi->sb, KERN_WARNING,
165 "access invalid blkaddr:%u", blkaddr);
166 WARN_ON(1);
167 }
168 return false;
169 }
170 break;
171 case META_GENERIC:
172 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
173 blkaddr >= MAIN_BLKADDR(sbi)))
174 return false;
175 break;
176 default:
177 BUG();
178 }
179
180 return true;
181 }
182
183 /*
184 * Readahead CP/NAT/SIT/SSA pages
185 */
f2fs_ra_meta_pages(struct f2fs_sb_info * sbi,block_t start,int nrpages,int type,bool sync)186 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
187 int type, bool sync)
188 {
189 struct page *page;
190 block_t blkno = start;
191 struct f2fs_io_info fio = {
192 .sbi = sbi,
193 .type = META,
194 .op = REQ_OP_READ,
195 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
196 .encrypted_page = NULL,
197 .in_list = false,
198 .is_meta = (type != META_POR),
199 };
200 struct blk_plug plug;
201
202 if (unlikely(type == META_POR))
203 fio.op_flags &= ~REQ_META;
204
205 blk_start_plug(&plug);
206 for (; nrpages-- > 0; blkno++) {
207
208 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
209 goto out;
210
211 switch (type) {
212 case META_NAT:
213 if (unlikely(blkno >=
214 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
215 blkno = 0;
216 /* get nat block addr */
217 fio.new_blkaddr = current_nat_addr(sbi,
218 blkno * NAT_ENTRY_PER_BLOCK);
219 break;
220 case META_SIT:
221 /* get sit block addr */
222 fio.new_blkaddr = current_sit_addr(sbi,
223 blkno * SIT_ENTRY_PER_BLOCK);
224 break;
225 case META_SSA:
226 case META_CP:
227 case META_POR:
228 fio.new_blkaddr = blkno;
229 break;
230 default:
231 BUG();
232 }
233
234 page = f2fs_grab_cache_page(META_MAPPING(sbi),
235 fio.new_blkaddr, false);
236 if (!page)
237 continue;
238 if (PageUptodate(page)) {
239 f2fs_put_page(page, 1);
240 continue;
241 }
242
243 fio.page = page;
244 f2fs_submit_page_bio(&fio);
245 f2fs_put_page(page, 0);
246 }
247 out:
248 blk_finish_plug(&plug);
249 return blkno - start;
250 }
251
f2fs_ra_meta_pages_cond(struct f2fs_sb_info * sbi,pgoff_t index)252 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
253 {
254 struct page *page;
255 bool readahead = false;
256
257 page = find_get_page(META_MAPPING(sbi), index);
258 if (!page || !PageUptodate(page))
259 readahead = true;
260 f2fs_put_page(page, 0);
261
262 if (readahead)
263 f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
264 }
265
__f2fs_write_meta_page(struct page * page,struct writeback_control * wbc,enum iostat_type io_type)266 static int __f2fs_write_meta_page(struct page *page,
267 struct writeback_control *wbc,
268 enum iostat_type io_type)
269 {
270 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
271
272 trace_f2fs_writepage(page, META);
273
274 if (unlikely(f2fs_cp_error(sbi)))
275 goto redirty_out;
276 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
277 goto redirty_out;
278 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
279 goto redirty_out;
280
281 f2fs_do_write_meta_page(sbi, page, io_type);
282 dec_page_count(sbi, F2FS_DIRTY_META);
283
284 if (wbc->for_reclaim)
285 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
286 0, page->index, META);
287
288 unlock_page(page);
289
290 if (unlikely(f2fs_cp_error(sbi)))
291 f2fs_submit_merged_write(sbi, META);
292
293 return 0;
294
295 redirty_out:
296 redirty_page_for_writepage(wbc, page);
297 return AOP_WRITEPAGE_ACTIVATE;
298 }
299
f2fs_write_meta_page(struct page * page,struct writeback_control * wbc)300 static int f2fs_write_meta_page(struct page *page,
301 struct writeback_control *wbc)
302 {
303 return __f2fs_write_meta_page(page, wbc, FS_META_IO);
304 }
305
f2fs_write_meta_pages(struct address_space * mapping,struct writeback_control * wbc)306 static int f2fs_write_meta_pages(struct address_space *mapping,
307 struct writeback_control *wbc)
308 {
309 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
310 long diff, written;
311
312 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
313 goto skip_write;
314
315 /* collect a number of dirty meta pages and write together */
316 if (wbc->for_kupdate ||
317 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
318 goto skip_write;
319
320 /* if locked failed, cp will flush dirty pages instead */
321 if (!mutex_trylock(&sbi->cp_mutex))
322 goto skip_write;
323
324 trace_f2fs_writepages(mapping->host, wbc, META);
325 diff = nr_pages_to_write(sbi, META, wbc);
326 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
327 mutex_unlock(&sbi->cp_mutex);
328 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
329 return 0;
330
331 skip_write:
332 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
333 trace_f2fs_writepages(mapping->host, wbc, META);
334 return 0;
335 }
336
f2fs_sync_meta_pages(struct f2fs_sb_info * sbi,enum page_type type,long nr_to_write,enum iostat_type io_type)337 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
338 long nr_to_write, enum iostat_type io_type)
339 {
340 struct address_space *mapping = META_MAPPING(sbi);
341 pgoff_t index = 0, prev = ULONG_MAX;
342 struct pagevec pvec;
343 long nwritten = 0;
344 int nr_pages;
345 struct writeback_control wbc = {
346 .for_reclaim = 0,
347 };
348 struct blk_plug plug;
349
350 pagevec_init(&pvec);
351
352 blk_start_plug(&plug);
353
354 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
355 PAGECACHE_TAG_DIRTY))) {
356 int i;
357
358 for (i = 0; i < nr_pages; i++) {
359 struct page *page = pvec.pages[i];
360
361 if (prev == ULONG_MAX)
362 prev = page->index - 1;
363 if (nr_to_write != LONG_MAX && page->index != prev + 1) {
364 pagevec_release(&pvec);
365 goto stop;
366 }
367
368 lock_page(page);
369
370 if (unlikely(page->mapping != mapping)) {
371 continue_unlock:
372 unlock_page(page);
373 continue;
374 }
375 if (!PageDirty(page)) {
376 /* someone wrote it for us */
377 goto continue_unlock;
378 }
379
380 f2fs_wait_on_page_writeback(page, META, true);
381
382 BUG_ON(PageWriteback(page));
383 if (!clear_page_dirty_for_io(page))
384 goto continue_unlock;
385
386 if (__f2fs_write_meta_page(page, &wbc, io_type)) {
387 unlock_page(page);
388 break;
389 }
390 nwritten++;
391 prev = page->index;
392 if (unlikely(nwritten >= nr_to_write))
393 break;
394 }
395 pagevec_release(&pvec);
396 cond_resched();
397 }
398 stop:
399 if (nwritten)
400 f2fs_submit_merged_write(sbi, type);
401
402 blk_finish_plug(&plug);
403
404 return nwritten;
405 }
406
f2fs_set_meta_page_dirty(struct page * page)407 static int f2fs_set_meta_page_dirty(struct page *page)
408 {
409 trace_f2fs_set_page_dirty(page, META);
410
411 if (!PageUptodate(page))
412 SetPageUptodate(page);
413 if (!PageDirty(page)) {
414 __set_page_dirty_nobuffers(page);
415 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
416 SetPagePrivate(page);
417 f2fs_trace_pid(page);
418 return 1;
419 }
420 return 0;
421 }
422
423 const struct address_space_operations f2fs_meta_aops = {
424 .writepage = f2fs_write_meta_page,
425 .writepages = f2fs_write_meta_pages,
426 .set_page_dirty = f2fs_set_meta_page_dirty,
427 .invalidatepage = f2fs_invalidate_page,
428 .releasepage = f2fs_release_page,
429 #ifdef CONFIG_MIGRATION
430 .migratepage = f2fs_migrate_page,
431 #endif
432 };
433
__add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)434 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
435 unsigned int devidx, int type)
436 {
437 struct inode_management *im = &sbi->im[type];
438 struct ino_entry *e, *tmp;
439
440 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
441
442 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
443
444 spin_lock(&im->ino_lock);
445 e = radix_tree_lookup(&im->ino_root, ino);
446 if (!e) {
447 e = tmp;
448 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
449 f2fs_bug_on(sbi, 1);
450
451 memset(e, 0, sizeof(struct ino_entry));
452 e->ino = ino;
453
454 list_add_tail(&e->list, &im->ino_list);
455 if (type != ORPHAN_INO)
456 im->ino_num++;
457 }
458
459 if (type == FLUSH_INO)
460 f2fs_set_bit(devidx, (char *)&e->dirty_device);
461
462 spin_unlock(&im->ino_lock);
463 radix_tree_preload_end();
464
465 if (e != tmp)
466 kmem_cache_free(ino_entry_slab, tmp);
467 }
468
__remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)469 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
470 {
471 struct inode_management *im = &sbi->im[type];
472 struct ino_entry *e;
473
474 spin_lock(&im->ino_lock);
475 e = radix_tree_lookup(&im->ino_root, ino);
476 if (e) {
477 list_del(&e->list);
478 radix_tree_delete(&im->ino_root, ino);
479 im->ino_num--;
480 spin_unlock(&im->ino_lock);
481 kmem_cache_free(ino_entry_slab, e);
482 return;
483 }
484 spin_unlock(&im->ino_lock);
485 }
486
f2fs_add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)487 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
488 {
489 /* add new dirty ino entry into list */
490 __add_ino_entry(sbi, ino, 0, type);
491 }
492
f2fs_remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)493 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
494 {
495 /* remove dirty ino entry from list */
496 __remove_ino_entry(sbi, ino, type);
497 }
498
499 /* mode should be APPEND_INO or UPDATE_INO */
f2fs_exist_written_data(struct f2fs_sb_info * sbi,nid_t ino,int mode)500 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
501 {
502 struct inode_management *im = &sbi->im[mode];
503 struct ino_entry *e;
504
505 spin_lock(&im->ino_lock);
506 e = radix_tree_lookup(&im->ino_root, ino);
507 spin_unlock(&im->ino_lock);
508 return e ? true : false;
509 }
510
f2fs_release_ino_entry(struct f2fs_sb_info * sbi,bool all)511 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
512 {
513 struct ino_entry *e, *tmp;
514 int i;
515
516 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
517 struct inode_management *im = &sbi->im[i];
518
519 spin_lock(&im->ino_lock);
520 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
521 list_del(&e->list);
522 radix_tree_delete(&im->ino_root, e->ino);
523 kmem_cache_free(ino_entry_slab, e);
524 im->ino_num--;
525 }
526 spin_unlock(&im->ino_lock);
527 }
528 }
529
f2fs_set_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)530 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
531 unsigned int devidx, int type)
532 {
533 __add_ino_entry(sbi, ino, devidx, type);
534 }
535
f2fs_is_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)536 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
537 unsigned int devidx, int type)
538 {
539 struct inode_management *im = &sbi->im[type];
540 struct ino_entry *e;
541 bool is_dirty = false;
542
543 spin_lock(&im->ino_lock);
544 e = radix_tree_lookup(&im->ino_root, ino);
545 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
546 is_dirty = true;
547 spin_unlock(&im->ino_lock);
548 return is_dirty;
549 }
550
f2fs_acquire_orphan_inode(struct f2fs_sb_info * sbi)551 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
552 {
553 struct inode_management *im = &sbi->im[ORPHAN_INO];
554 int err = 0;
555
556 spin_lock(&im->ino_lock);
557
558 if (time_to_inject(sbi, FAULT_ORPHAN)) {
559 spin_unlock(&im->ino_lock);
560 f2fs_show_injection_info(FAULT_ORPHAN);
561 return -ENOSPC;
562 }
563
564 if (unlikely(im->ino_num >= sbi->max_orphans))
565 err = -ENOSPC;
566 else
567 im->ino_num++;
568 spin_unlock(&im->ino_lock);
569
570 return err;
571 }
572
f2fs_release_orphan_inode(struct f2fs_sb_info * sbi)573 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
574 {
575 struct inode_management *im = &sbi->im[ORPHAN_INO];
576
577 spin_lock(&im->ino_lock);
578 f2fs_bug_on(sbi, im->ino_num == 0);
579 im->ino_num--;
580 spin_unlock(&im->ino_lock);
581 }
582
f2fs_add_orphan_inode(struct inode * inode)583 void f2fs_add_orphan_inode(struct inode *inode)
584 {
585 /* add new orphan ino entry into list */
586 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
587 f2fs_update_inode_page(inode);
588 }
589
f2fs_remove_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)590 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
591 {
592 /* remove orphan entry from orphan list */
593 __remove_ino_entry(sbi, ino, ORPHAN_INO);
594 }
595
recover_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)596 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
597 {
598 struct inode *inode;
599 struct node_info ni;
600 int err;
601
602 inode = f2fs_iget_retry(sbi->sb, ino);
603 if (IS_ERR(inode)) {
604 /*
605 * there should be a bug that we can't find the entry
606 * to orphan inode.
607 */
608 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
609 return PTR_ERR(inode);
610 }
611
612 err = dquot_initialize(inode);
613 if (err) {
614 iput(inode);
615 goto err_out;
616 }
617
618 clear_nlink(inode);
619
620 /* truncate all the data during iput */
621 iput(inode);
622
623 err = f2fs_get_node_info(sbi, ino, &ni);
624 if (err)
625 goto err_out;
626
627 /* ENOMEM was fully retried in f2fs_evict_inode. */
628 if (ni.blk_addr != NULL_ADDR) {
629 err = -EIO;
630 goto err_out;
631 }
632 return 0;
633
634 err_out:
635 set_sbi_flag(sbi, SBI_NEED_FSCK);
636 f2fs_msg(sbi->sb, KERN_WARNING,
637 "%s: orphan failed (ino=%x), run fsck to fix.",
638 __func__, ino);
639 return err;
640 }
641
f2fs_recover_orphan_inodes(struct f2fs_sb_info * sbi)642 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
643 {
644 block_t start_blk, orphan_blocks, i, j;
645 unsigned int s_flags = sbi->sb->s_flags;
646 int err = 0;
647 #ifdef CONFIG_QUOTA
648 int quota_enabled;
649 #endif
650
651 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
652 return 0;
653
654 if (s_flags & SB_RDONLY) {
655 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
656 sbi->sb->s_flags &= ~SB_RDONLY;
657 }
658
659 #ifdef CONFIG_QUOTA
660 /* Needed for iput() to work correctly and not trash data */
661 sbi->sb->s_flags |= SB_ACTIVE;
662
663 /*
664 * Turn on quotas which were not enabled for read-only mounts if
665 * filesystem has quota feature, so that they are updated correctly.
666 */
667 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
668 #endif
669
670 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
671 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
672
673 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
674
675 for (i = 0; i < orphan_blocks; i++) {
676 struct page *page;
677 struct f2fs_orphan_block *orphan_blk;
678
679 page = f2fs_get_meta_page(sbi, start_blk + i);
680 if (IS_ERR(page)) {
681 err = PTR_ERR(page);
682 goto out;
683 }
684
685 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
686 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
687 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
688 err = recover_orphan_inode(sbi, ino);
689 if (err) {
690 f2fs_put_page(page, 1);
691 goto out;
692 }
693 }
694 f2fs_put_page(page, 1);
695 }
696 /* clear Orphan Flag */
697 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
698 out:
699 #ifdef CONFIG_QUOTA
700 /* Turn quotas off */
701 if (quota_enabled)
702 f2fs_quota_off_umount(sbi->sb);
703 #endif
704 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
705
706 return err;
707 }
708
write_orphan_inodes(struct f2fs_sb_info * sbi,block_t start_blk)709 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
710 {
711 struct list_head *head;
712 struct f2fs_orphan_block *orphan_blk = NULL;
713 unsigned int nentries = 0;
714 unsigned short index = 1;
715 unsigned short orphan_blocks;
716 struct page *page = NULL;
717 struct ino_entry *orphan = NULL;
718 struct inode_management *im = &sbi->im[ORPHAN_INO];
719
720 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
721
722 /*
723 * we don't need to do spin_lock(&im->ino_lock) here, since all the
724 * orphan inode operations are covered under f2fs_lock_op().
725 * And, spin_lock should be avoided due to page operations below.
726 */
727 head = &im->ino_list;
728
729 /* loop for each orphan inode entry and write them in Jornal block */
730 list_for_each_entry(orphan, head, list) {
731 if (!page) {
732 page = f2fs_grab_meta_page(sbi, start_blk++);
733 orphan_blk =
734 (struct f2fs_orphan_block *)page_address(page);
735 memset(orphan_blk, 0, sizeof(*orphan_blk));
736 }
737
738 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
739
740 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
741 /*
742 * an orphan block is full of 1020 entries,
743 * then we need to flush current orphan blocks
744 * and bring another one in memory
745 */
746 orphan_blk->blk_addr = cpu_to_le16(index);
747 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
748 orphan_blk->entry_count = cpu_to_le32(nentries);
749 set_page_dirty(page);
750 f2fs_put_page(page, 1);
751 index++;
752 nentries = 0;
753 page = NULL;
754 }
755 }
756
757 if (page) {
758 orphan_blk->blk_addr = cpu_to_le16(index);
759 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
760 orphan_blk->entry_count = cpu_to_le32(nentries);
761 set_page_dirty(page);
762 f2fs_put_page(page, 1);
763 }
764 }
765
get_checkpoint_version(struct f2fs_sb_info * sbi,block_t cp_addr,struct f2fs_checkpoint ** cp_block,struct page ** cp_page,unsigned long long * version)766 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
767 struct f2fs_checkpoint **cp_block, struct page **cp_page,
768 unsigned long long *version)
769 {
770 unsigned long blk_size = sbi->blocksize;
771 size_t crc_offset = 0;
772 __u32 crc = 0;
773
774 *cp_page = f2fs_get_meta_page(sbi, cp_addr);
775 if (IS_ERR(*cp_page))
776 return PTR_ERR(*cp_page);
777
778 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
779
780 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
781 if (crc_offset > (blk_size - sizeof(__le32))) {
782 f2fs_put_page(*cp_page, 1);
783 f2fs_msg(sbi->sb, KERN_WARNING,
784 "invalid crc_offset: %zu", crc_offset);
785 return -EINVAL;
786 }
787
788 crc = cur_cp_crc(*cp_block);
789 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
790 f2fs_put_page(*cp_page, 1);
791 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
792 return -EINVAL;
793 }
794
795 *version = cur_cp_version(*cp_block);
796 return 0;
797 }
798
validate_checkpoint(struct f2fs_sb_info * sbi,block_t cp_addr,unsigned long long * version)799 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
800 block_t cp_addr, unsigned long long *version)
801 {
802 struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
803 struct f2fs_checkpoint *cp_block = NULL;
804 unsigned long long cur_version = 0, pre_version = 0;
805 int err;
806
807 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
808 &cp_page_1, version);
809 if (err)
810 return NULL;
811
812 if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
813 sbi->blocks_per_seg) {
814 f2fs_msg(sbi->sb, KERN_WARNING,
815 "invalid cp_pack_total_block_count:%u",
816 le32_to_cpu(cp_block->cp_pack_total_block_count));
817 goto invalid_cp;
818 }
819 pre_version = *version;
820
821 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
822 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
823 &cp_page_2, version);
824 if (err)
825 goto invalid_cp;
826 cur_version = *version;
827
828 if (cur_version == pre_version) {
829 *version = cur_version;
830 f2fs_put_page(cp_page_2, 1);
831 return cp_page_1;
832 }
833 f2fs_put_page(cp_page_2, 1);
834 invalid_cp:
835 f2fs_put_page(cp_page_1, 1);
836 return NULL;
837 }
838
f2fs_get_valid_checkpoint(struct f2fs_sb_info * sbi)839 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
840 {
841 struct f2fs_checkpoint *cp_block;
842 struct f2fs_super_block *fsb = sbi->raw_super;
843 struct page *cp1, *cp2, *cur_page;
844 unsigned long blk_size = sbi->blocksize;
845 unsigned long long cp1_version = 0, cp2_version = 0;
846 unsigned long long cp_start_blk_no;
847 unsigned int cp_blks = 1 + __cp_payload(sbi);
848 block_t cp_blk_no;
849 int i;
850
851 sbi->ckpt = f2fs_kzalloc(sbi, array_size(blk_size, cp_blks),
852 GFP_KERNEL);
853 if (!sbi->ckpt)
854 return -ENOMEM;
855 /*
856 * Finding out valid cp block involves read both
857 * sets( cp pack1 and cp pack 2)
858 */
859 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
860 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
861
862 /* The second checkpoint pack should start at the next segment */
863 cp_start_blk_no += ((unsigned long long)1) <<
864 le32_to_cpu(fsb->log_blocks_per_seg);
865 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
866
867 if (cp1 && cp2) {
868 if (ver_after(cp2_version, cp1_version))
869 cur_page = cp2;
870 else
871 cur_page = cp1;
872 } else if (cp1) {
873 cur_page = cp1;
874 } else if (cp2) {
875 cur_page = cp2;
876 } else {
877 goto fail_no_cp;
878 }
879
880 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
881 memcpy(sbi->ckpt, cp_block, blk_size);
882
883 if (cur_page == cp1)
884 sbi->cur_cp_pack = 1;
885 else
886 sbi->cur_cp_pack = 2;
887
888 /* Sanity checking of checkpoint */
889 if (f2fs_sanity_check_ckpt(sbi))
890 goto free_fail_no_cp;
891
892 if (cp_blks <= 1)
893 goto done;
894
895 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
896 if (cur_page == cp2)
897 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
898
899 for (i = 1; i < cp_blks; i++) {
900 void *sit_bitmap_ptr;
901 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
902
903 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
904 if (IS_ERR(cur_page))
905 goto free_fail_no_cp;
906 sit_bitmap_ptr = page_address(cur_page);
907 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
908 f2fs_put_page(cur_page, 1);
909 }
910 done:
911 f2fs_put_page(cp1, 1);
912 f2fs_put_page(cp2, 1);
913 return 0;
914
915 free_fail_no_cp:
916 f2fs_put_page(cp1, 1);
917 f2fs_put_page(cp2, 1);
918 fail_no_cp:
919 kfree(sbi->ckpt);
920 return -EINVAL;
921 }
922
__add_dirty_inode(struct inode * inode,enum inode_type type)923 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
924 {
925 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
926 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
927
928 if (is_inode_flag_set(inode, flag))
929 return;
930
931 set_inode_flag(inode, flag);
932 if (!f2fs_is_volatile_file(inode))
933 list_add_tail(&F2FS_I(inode)->dirty_list,
934 &sbi->inode_list[type]);
935 stat_inc_dirty_inode(sbi, type);
936 }
937
__remove_dirty_inode(struct inode * inode,enum inode_type type)938 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
939 {
940 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
941
942 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
943 return;
944
945 list_del_init(&F2FS_I(inode)->dirty_list);
946 clear_inode_flag(inode, flag);
947 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
948 }
949
f2fs_update_dirty_page(struct inode * inode,struct page * page)950 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
951 {
952 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
953 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
954
955 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
956 !S_ISLNK(inode->i_mode))
957 return;
958
959 spin_lock(&sbi->inode_lock[type]);
960 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
961 __add_dirty_inode(inode, type);
962 inode_inc_dirty_pages(inode);
963 spin_unlock(&sbi->inode_lock[type]);
964
965 SetPagePrivate(page);
966 f2fs_trace_pid(page);
967 }
968
f2fs_remove_dirty_inode(struct inode * inode)969 void f2fs_remove_dirty_inode(struct inode *inode)
970 {
971 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
972 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
973
974 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
975 !S_ISLNK(inode->i_mode))
976 return;
977
978 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
979 return;
980
981 spin_lock(&sbi->inode_lock[type]);
982 __remove_dirty_inode(inode, type);
983 spin_unlock(&sbi->inode_lock[type]);
984 }
985
f2fs_sync_dirty_inodes(struct f2fs_sb_info * sbi,enum inode_type type)986 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
987 {
988 struct list_head *head;
989 struct inode *inode;
990 struct f2fs_inode_info *fi;
991 bool is_dir = (type == DIR_INODE);
992 unsigned long ino = 0;
993
994 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
995 get_pages(sbi, is_dir ?
996 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
997 retry:
998 if (unlikely(f2fs_cp_error(sbi)))
999 return -EIO;
1000
1001 spin_lock(&sbi->inode_lock[type]);
1002
1003 head = &sbi->inode_list[type];
1004 if (list_empty(head)) {
1005 spin_unlock(&sbi->inode_lock[type]);
1006 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1007 get_pages(sbi, is_dir ?
1008 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1009 return 0;
1010 }
1011 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1012 inode = igrab(&fi->vfs_inode);
1013 spin_unlock(&sbi->inode_lock[type]);
1014 if (inode) {
1015 unsigned long cur_ino = inode->i_ino;
1016
1017 if (is_dir)
1018 F2FS_I(inode)->cp_task = current;
1019
1020 filemap_fdatawrite(inode->i_mapping);
1021
1022 if (is_dir)
1023 F2FS_I(inode)->cp_task = NULL;
1024
1025 iput(inode);
1026 /* We need to give cpu to another writers. */
1027 if (ino == cur_ino)
1028 cond_resched();
1029 else
1030 ino = cur_ino;
1031 } else {
1032 /*
1033 * We should submit bio, since it exists several
1034 * wribacking dentry pages in the freeing inode.
1035 */
1036 f2fs_submit_merged_write(sbi, DATA);
1037 cond_resched();
1038 }
1039 goto retry;
1040 }
1041
f2fs_sync_inode_meta(struct f2fs_sb_info * sbi)1042 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1043 {
1044 struct list_head *head = &sbi->inode_list[DIRTY_META];
1045 struct inode *inode;
1046 struct f2fs_inode_info *fi;
1047 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1048
1049 while (total--) {
1050 if (unlikely(f2fs_cp_error(sbi)))
1051 return -EIO;
1052
1053 spin_lock(&sbi->inode_lock[DIRTY_META]);
1054 if (list_empty(head)) {
1055 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1056 return 0;
1057 }
1058 fi = list_first_entry(head, struct f2fs_inode_info,
1059 gdirty_list);
1060 inode = igrab(&fi->vfs_inode);
1061 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1062 if (inode) {
1063 sync_inode_metadata(inode, 0);
1064
1065 /* it's on eviction */
1066 if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1067 f2fs_update_inode_page(inode);
1068 iput(inode);
1069 }
1070 }
1071 return 0;
1072 }
1073
__prepare_cp_block(struct f2fs_sb_info * sbi)1074 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1075 {
1076 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1077 struct f2fs_nm_info *nm_i = NM_I(sbi);
1078 nid_t last_nid = nm_i->next_scan_nid;
1079
1080 next_free_nid(sbi, &last_nid);
1081 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1082 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1083 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1084 ckpt->next_free_nid = cpu_to_le32(last_nid);
1085 }
1086
1087 /*
1088 * Freeze all the FS-operations for checkpoint.
1089 */
block_operations(struct f2fs_sb_info * sbi)1090 static int block_operations(struct f2fs_sb_info *sbi)
1091 {
1092 struct writeback_control wbc = {
1093 .sync_mode = WB_SYNC_ALL,
1094 .nr_to_write = LONG_MAX,
1095 .for_reclaim = 0,
1096 };
1097 struct blk_plug plug;
1098 int err = 0;
1099
1100 blk_start_plug(&plug);
1101
1102 retry_flush_dents:
1103 f2fs_lock_all(sbi);
1104 /* write all the dirty dentry pages */
1105 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1106 f2fs_unlock_all(sbi);
1107 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1108 if (err)
1109 goto out;
1110 cond_resched();
1111 goto retry_flush_dents;
1112 }
1113
1114 /*
1115 * POR: we should ensure that there are no dirty node pages
1116 * until finishing nat/sit flush. inode->i_blocks can be updated.
1117 */
1118 down_write(&sbi->node_change);
1119
1120 if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1121 up_write(&sbi->node_change);
1122 f2fs_unlock_all(sbi);
1123 err = f2fs_sync_inode_meta(sbi);
1124 if (err)
1125 goto out;
1126 cond_resched();
1127 goto retry_flush_dents;
1128 }
1129
1130 retry_flush_nodes:
1131 down_write(&sbi->node_write);
1132
1133 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1134 up_write(&sbi->node_write);
1135 atomic_inc(&sbi->wb_sync_req[NODE]);
1136 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1137 atomic_dec(&sbi->wb_sync_req[NODE]);
1138 if (err) {
1139 up_write(&sbi->node_change);
1140 f2fs_unlock_all(sbi);
1141 goto out;
1142 }
1143 cond_resched();
1144 goto retry_flush_nodes;
1145 }
1146
1147 /*
1148 * sbi->node_change is used only for AIO write_begin path which produces
1149 * dirty node blocks and some checkpoint values by block allocation.
1150 */
1151 __prepare_cp_block(sbi);
1152 up_write(&sbi->node_change);
1153 out:
1154 blk_finish_plug(&plug);
1155 return err;
1156 }
1157
unblock_operations(struct f2fs_sb_info * sbi)1158 static void unblock_operations(struct f2fs_sb_info *sbi)
1159 {
1160 up_write(&sbi->node_write);
1161 f2fs_unlock_all(sbi);
1162 }
1163
f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info * sbi)1164 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1165 {
1166 DEFINE_WAIT(wait);
1167
1168 for (;;) {
1169 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1170
1171 if (!get_pages(sbi, F2FS_WB_CP_DATA))
1172 break;
1173
1174 if (unlikely(f2fs_cp_error(sbi)))
1175 break;
1176
1177 io_schedule_timeout(5*HZ);
1178 }
1179 finish_wait(&sbi->cp_wait, &wait);
1180 }
1181
update_ckpt_flags(struct f2fs_sb_info * sbi,struct cp_control * cpc)1182 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1183 {
1184 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1185 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1186 unsigned long flags;
1187
1188 spin_lock_irqsave(&sbi->cp_lock, flags);
1189
1190 if ((cpc->reason & CP_UMOUNT) &&
1191 le32_to_cpu(ckpt->cp_pack_total_block_count) >
1192 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1193 disable_nat_bits(sbi, false);
1194
1195 if (cpc->reason & CP_TRIMMED)
1196 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1197 else
1198 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1199
1200 if (cpc->reason & CP_UMOUNT)
1201 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1202 else
1203 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1204
1205 if (cpc->reason & CP_FASTBOOT)
1206 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1207 else
1208 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1209
1210 if (orphan_num)
1211 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1212 else
1213 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1214
1215 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1216 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1217
1218 /* set this flag to activate crc|cp_ver for recovery */
1219 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1220 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1221
1222 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1223 }
1224
commit_checkpoint(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)1225 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1226 void *src, block_t blk_addr)
1227 {
1228 struct writeback_control wbc = {
1229 .for_reclaim = 0,
1230 };
1231
1232 /*
1233 * pagevec_lookup_tag and lock_page again will take
1234 * some extra time. Therefore, f2fs_update_meta_pages and
1235 * f2fs_sync_meta_pages are combined in this function.
1236 */
1237 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1238 int err;
1239
1240 memcpy(page_address(page), src, PAGE_SIZE);
1241 set_page_dirty(page);
1242
1243 f2fs_wait_on_page_writeback(page, META, true);
1244 f2fs_bug_on(sbi, PageWriteback(page));
1245 if (unlikely(!clear_page_dirty_for_io(page)))
1246 f2fs_bug_on(sbi, 1);
1247
1248 /* writeout cp pack 2 page */
1249 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1250 if (unlikely(err && f2fs_cp_error(sbi))) {
1251 f2fs_put_page(page, 1);
1252 return;
1253 }
1254
1255 f2fs_bug_on(sbi, err);
1256 f2fs_put_page(page, 0);
1257
1258 /* submit checkpoint (with barrier if NOBARRIER is not set) */
1259 f2fs_submit_merged_write(sbi, META_FLUSH);
1260 }
1261
do_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1262 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1263 {
1264 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1265 struct f2fs_nm_info *nm_i = NM_I(sbi);
1266 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1267 block_t start_blk;
1268 unsigned int data_sum_blocks, orphan_blocks;
1269 __u32 crc32 = 0;
1270 int i;
1271 int cp_payload_blks = __cp_payload(sbi);
1272 struct super_block *sb = sbi->sb;
1273 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1274 u64 kbytes_written;
1275 int err;
1276
1277 /* Flush all the NAT/SIT pages */
1278 while (get_pages(sbi, F2FS_DIRTY_META)) {
1279 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1280 if (unlikely(f2fs_cp_error(sbi)))
1281 break;
1282 }
1283
1284 /*
1285 * modify checkpoint
1286 * version number is already updated
1287 */
1288 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1289 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1290 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1291 ckpt->cur_node_segno[i] =
1292 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1293 ckpt->cur_node_blkoff[i] =
1294 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1295 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1296 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1297 }
1298 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1299 ckpt->cur_data_segno[i] =
1300 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1301 ckpt->cur_data_blkoff[i] =
1302 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1303 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1304 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1305 }
1306
1307 /* 2 cp + n data seg summary + orphan inode blocks */
1308 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1309 spin_lock_irqsave(&sbi->cp_lock, flags);
1310 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1311 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1312 else
1313 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1314 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1315
1316 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1317 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1318 orphan_blocks);
1319
1320 if (__remain_node_summaries(cpc->reason))
1321 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1322 cp_payload_blks + data_sum_blocks +
1323 orphan_blocks + NR_CURSEG_NODE_TYPE);
1324 else
1325 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1326 cp_payload_blks + data_sum_blocks +
1327 orphan_blocks);
1328
1329 /* update ckpt flag for checkpoint */
1330 update_ckpt_flags(sbi, cpc);
1331
1332 /* update SIT/NAT bitmap */
1333 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1334 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1335
1336 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1337 *((__le32 *)((unsigned char *)ckpt +
1338 le32_to_cpu(ckpt->checksum_offset)))
1339 = cpu_to_le32(crc32);
1340
1341 start_blk = __start_cp_next_addr(sbi);
1342
1343 /* write nat bits */
1344 if (enabled_nat_bits(sbi, cpc)) {
1345 __u64 cp_ver = cur_cp_version(ckpt);
1346 block_t blk;
1347
1348 cp_ver |= ((__u64)crc32 << 32);
1349 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1350
1351 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1352 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1353 f2fs_update_meta_page(sbi, nm_i->nat_bits +
1354 (i << F2FS_BLKSIZE_BITS), blk + i);
1355
1356 /* Flush all the NAT BITS pages */
1357 while (get_pages(sbi, F2FS_DIRTY_META)) {
1358 f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1359 FS_CP_META_IO);
1360 if (unlikely(f2fs_cp_error(sbi)))
1361 break;
1362 }
1363 }
1364
1365 /* write out checkpoint buffer at block 0 */
1366 f2fs_update_meta_page(sbi, ckpt, start_blk++);
1367
1368 for (i = 1; i < 1 + cp_payload_blks; i++)
1369 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1370 start_blk++);
1371
1372 if (orphan_num) {
1373 write_orphan_inodes(sbi, start_blk);
1374 start_blk += orphan_blocks;
1375 }
1376
1377 f2fs_write_data_summaries(sbi, start_blk);
1378 start_blk += data_sum_blocks;
1379
1380 /* Record write statistics in the hot node summary */
1381 kbytes_written = sbi->kbytes_written;
1382 if (sb->s_bdev->bd_part)
1383 kbytes_written += BD_PART_WRITTEN(sbi);
1384
1385 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1386
1387 if (__remain_node_summaries(cpc->reason)) {
1388 f2fs_write_node_summaries(sbi, start_blk);
1389 start_blk += NR_CURSEG_NODE_TYPE;
1390 }
1391
1392 /* update user_block_counts */
1393 sbi->last_valid_block_count = sbi->total_valid_block_count;
1394 percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1395
1396 /* Here, we have one bio having CP pack except cp pack 2 page */
1397 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1398
1399 /* wait for previous submitted meta pages writeback */
1400 f2fs_wait_on_all_pages_writeback(sbi);
1401
1402 /* flush all device cache */
1403 err = f2fs_flush_device_cache(sbi);
1404 if (err)
1405 return err;
1406
1407 /* barrier and flush checkpoint cp pack 2 page if it can */
1408 commit_checkpoint(sbi, ckpt, start_blk);
1409 f2fs_wait_on_all_pages_writeback(sbi);
1410
1411 /*
1412 * invalidate intermediate page cache borrowed from meta inode
1413 * which are used for migration of encrypted inode's blocks.
1414 */
1415 if (f2fs_sb_has_encrypt(sbi->sb))
1416 invalidate_mapping_pages(META_MAPPING(sbi),
1417 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1418
1419 f2fs_release_ino_entry(sbi, false);
1420
1421 f2fs_reset_fsync_node_info(sbi);
1422
1423 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1424 clear_sbi_flag(sbi, SBI_NEED_CP);
1425 __set_cp_next_pack(sbi);
1426
1427 /*
1428 * redirty superblock if metadata like node page or inode cache is
1429 * updated during writing checkpoint.
1430 */
1431 if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1432 get_pages(sbi, F2FS_DIRTY_IMETA))
1433 set_sbi_flag(sbi, SBI_IS_DIRTY);
1434
1435 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1436
1437 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1438 }
1439
1440 /*
1441 * We guarantee that this checkpoint procedure will not fail.
1442 */
f2fs_write_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1443 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1444 {
1445 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1446 unsigned long long ckpt_ver;
1447 int err = 0;
1448
1449 mutex_lock(&sbi->cp_mutex);
1450
1451 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1452 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1453 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1454 goto out;
1455 if (unlikely(f2fs_cp_error(sbi))) {
1456 err = -EIO;
1457 goto out;
1458 }
1459 if (f2fs_readonly(sbi->sb)) {
1460 err = -EROFS;
1461 goto out;
1462 }
1463
1464 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1465
1466 err = block_operations(sbi);
1467 if (err)
1468 goto out;
1469
1470 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1471
1472 f2fs_flush_merged_writes(sbi);
1473
1474 /* this is the case of multiple fstrims without any changes */
1475 if (cpc->reason & CP_DISCARD) {
1476 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1477 unblock_operations(sbi);
1478 goto out;
1479 }
1480
1481 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1482 SIT_I(sbi)->dirty_sentries == 0 &&
1483 prefree_segments(sbi) == 0) {
1484 f2fs_flush_sit_entries(sbi, cpc);
1485 f2fs_clear_prefree_segments(sbi, cpc);
1486 unblock_operations(sbi);
1487 goto out;
1488 }
1489 }
1490
1491 /*
1492 * update checkpoint pack index
1493 * Increase the version number so that
1494 * SIT entries and seg summaries are written at correct place
1495 */
1496 ckpt_ver = cur_cp_version(ckpt);
1497 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1498
1499 /* write cached NAT/SIT entries to NAT/SIT area */
1500 f2fs_flush_nat_entries(sbi, cpc);
1501 f2fs_flush_sit_entries(sbi, cpc);
1502
1503 /* unlock all the fs_lock[] in do_checkpoint() */
1504 err = do_checkpoint(sbi, cpc);
1505 if (err)
1506 f2fs_release_discard_addrs(sbi);
1507 else
1508 f2fs_clear_prefree_segments(sbi, cpc);
1509
1510 unblock_operations(sbi);
1511 stat_inc_cp_count(sbi->stat_info);
1512
1513 if (cpc->reason & CP_RECOVERY)
1514 f2fs_msg(sbi->sb, KERN_NOTICE,
1515 "checkpoint: version = %llx", ckpt_ver);
1516
1517 /* do checkpoint periodically */
1518 f2fs_update_time(sbi, CP_TIME);
1519 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1520 out:
1521 mutex_unlock(&sbi->cp_mutex);
1522 return err;
1523 }
1524
f2fs_init_ino_entry_info(struct f2fs_sb_info * sbi)1525 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1526 {
1527 int i;
1528
1529 for (i = 0; i < MAX_INO_ENTRY; i++) {
1530 struct inode_management *im = &sbi->im[i];
1531
1532 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1533 spin_lock_init(&im->ino_lock);
1534 INIT_LIST_HEAD(&im->ino_list);
1535 im->ino_num = 0;
1536 }
1537
1538 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1539 NR_CURSEG_TYPE - __cp_payload(sbi)) *
1540 F2FS_ORPHANS_PER_BLOCK;
1541 }
1542
f2fs_create_checkpoint_caches(void)1543 int __init f2fs_create_checkpoint_caches(void)
1544 {
1545 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1546 sizeof(struct ino_entry));
1547 if (!ino_entry_slab)
1548 return -ENOMEM;
1549 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1550 sizeof(struct inode_entry));
1551 if (!f2fs_inode_entry_slab) {
1552 kmem_cache_destroy(ino_entry_slab);
1553 return -ENOMEM;
1554 }
1555 return 0;
1556 }
1557
f2fs_destroy_checkpoint_caches(void)1558 void f2fs_destroy_checkpoint_caches(void)
1559 {
1560 kmem_cache_destroy(ino_entry_slab);
1561 kmem_cache_destroy(f2fs_inode_entry_slab);
1562 }
1563