1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31 * Check whether the given nid is within node id range.
32 */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 return -EFSCORRUPTED;
40 }
41 return 0;
42 }
43
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)44 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45 {
46 struct f2fs_nm_info *nm_i = NM_I(sbi);
47 struct sysinfo val;
48 unsigned long avail_ram;
49 unsigned long mem_size = 0;
50 bool res = false;
51
52 si_meminfo(&val);
53
54 /* only uses low memory */
55 avail_ram = val.totalram - val.totalhigh;
56
57 /*
58 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59 */
60 if (type == FREE_NIDS) {
61 mem_size = (nm_i->nid_cnt[FREE_NID] *
62 sizeof(struct free_nid)) >> PAGE_SHIFT;
63 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64 } else if (type == NAT_ENTRIES) {
65 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
66 PAGE_SHIFT;
67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 if (excess_cached_nats(sbi))
69 res = false;
70 } else if (type == DIRTY_DENTS) {
71 if (sbi->sb->s_bdi->wb.dirty_exceeded)
72 return false;
73 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 } else if (type == INO_ENTRIES) {
76 int i;
77
78 for (i = 0; i < MAX_INO_ENTRY; i++)
79 mem_size += sbi->im[i].ino_num *
80 sizeof(struct ino_entry);
81 mem_size >>= PAGE_SHIFT;
82 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83 } else if (type == EXTENT_CACHE) {
84 mem_size = (atomic_read(&sbi->total_ext_tree) *
85 sizeof(struct extent_tree) +
86 atomic_read(&sbi->total_ext_node) *
87 sizeof(struct extent_node)) >> PAGE_SHIFT;
88 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89 } else if (type == INMEM_PAGES) {
90 /* it allows 20% / total_ram for inmemory pages */
91 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92 res = mem_size < (val.totalram / 5);
93 } else {
94 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95 return true;
96 }
97 return res;
98 }
99
clear_node_page_dirty(struct page * page)100 static void clear_node_page_dirty(struct page *page)
101 {
102 if (PageDirty(page)) {
103 f2fs_clear_page_cache_dirty_tag(page);
104 clear_page_dirty_for_io(page);
105 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106 }
107 ClearPageUptodate(page);
108 }
109
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)110 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111 {
112 return f2fs_get_meta_page(sbi, current_nat_addr(sbi, nid));
113 }
114
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)115 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116 {
117 struct page *src_page;
118 struct page *dst_page;
119 pgoff_t dst_off;
120 void *src_addr;
121 void *dst_addr;
122 struct f2fs_nm_info *nm_i = NM_I(sbi);
123
124 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125
126 /* get current nat block page with lock */
127 src_page = get_current_nat_page(sbi, nid);
128 if (IS_ERR(src_page))
129 return src_page;
130 dst_page = f2fs_grab_meta_page(sbi, dst_off);
131 f2fs_bug_on(sbi, PageDirty(src_page));
132
133 src_addr = page_address(src_page);
134 dst_addr = page_address(dst_page);
135 memcpy(dst_addr, src_addr, PAGE_SIZE);
136 set_page_dirty(dst_page);
137 f2fs_put_page(src_page, 1);
138
139 set_to_next_nat(nm_i, nid);
140
141 return dst_page;
142 }
143
__alloc_nat_entry(nid_t nid,bool no_fail)144 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145 {
146 struct nat_entry *new;
147
148 if (no_fail)
149 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150 else
151 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 if (new) {
153 nat_set_nid(new, nid);
154 nat_reset_flag(new);
155 }
156 return new;
157 }
158
__free_nat_entry(struct nat_entry * e)159 static void __free_nat_entry(struct nat_entry *e)
160 {
161 kmem_cache_free(nat_entry_slab, e);
162 }
163
164 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)165 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167 {
168 if (no_fail)
169 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171 return NULL;
172
173 if (raw_ne)
174 node_info_from_raw_nat(&ne->ni, raw_ne);
175
176 spin_lock(&nm_i->nat_list_lock);
177 list_add_tail(&ne->list, &nm_i->nat_entries);
178 spin_unlock(&nm_i->nat_list_lock);
179
180 nm_i->nat_cnt++;
181 return ne;
182 }
183
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)184 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
185 {
186 struct nat_entry *ne;
187
188 ne = radix_tree_lookup(&nm_i->nat_root, n);
189
190 /* for recent accessed nat entry, move it to tail of lru list */
191 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
192 spin_lock(&nm_i->nat_list_lock);
193 if (!list_empty(&ne->list))
194 list_move_tail(&ne->list, &nm_i->nat_entries);
195 spin_unlock(&nm_i->nat_list_lock);
196 }
197
198 return ne;
199 }
200
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)201 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
202 nid_t start, unsigned int nr, struct nat_entry **ep)
203 {
204 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
205 }
206
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)207 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
208 {
209 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
210 nm_i->nat_cnt--;
211 __free_nat_entry(e);
212 }
213
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)214 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
215 struct nat_entry *ne)
216 {
217 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
218 struct nat_entry_set *head;
219
220 head = radix_tree_lookup(&nm_i->nat_set_root, set);
221 if (!head) {
222 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
223
224 INIT_LIST_HEAD(&head->entry_list);
225 INIT_LIST_HEAD(&head->set_list);
226 head->set = set;
227 head->entry_cnt = 0;
228 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
229 }
230 return head;
231 }
232
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)233 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
234 struct nat_entry *ne)
235 {
236 struct nat_entry_set *head;
237 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
238
239 if (!new_ne)
240 head = __grab_nat_entry_set(nm_i, ne);
241
242 /*
243 * update entry_cnt in below condition:
244 * 1. update NEW_ADDR to valid block address;
245 * 2. update old block address to new one;
246 */
247 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
248 !get_nat_flag(ne, IS_DIRTY)))
249 head->entry_cnt++;
250
251 set_nat_flag(ne, IS_PREALLOC, new_ne);
252
253 if (get_nat_flag(ne, IS_DIRTY))
254 goto refresh_list;
255
256 nm_i->dirty_nat_cnt++;
257 set_nat_flag(ne, IS_DIRTY, true);
258 refresh_list:
259 spin_lock(&nm_i->nat_list_lock);
260 if (new_ne)
261 list_del_init(&ne->list);
262 else
263 list_move_tail(&ne->list, &head->entry_list);
264 spin_unlock(&nm_i->nat_list_lock);
265 }
266
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)267 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
268 struct nat_entry_set *set, struct nat_entry *ne)
269 {
270 spin_lock(&nm_i->nat_list_lock);
271 list_move_tail(&ne->list, &nm_i->nat_entries);
272 spin_unlock(&nm_i->nat_list_lock);
273
274 set_nat_flag(ne, IS_DIRTY, false);
275 set->entry_cnt--;
276 nm_i->dirty_nat_cnt--;
277 }
278
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)279 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
280 nid_t start, unsigned int nr, struct nat_entry_set **ep)
281 {
282 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
283 start, nr);
284 }
285
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct page * page)286 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
287 {
288 return NODE_MAPPING(sbi) == page->mapping &&
289 IS_DNODE(page) && is_cold_node(page);
290 }
291
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)292 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
293 {
294 spin_lock_init(&sbi->fsync_node_lock);
295 INIT_LIST_HEAD(&sbi->fsync_node_list);
296 sbi->fsync_seg_id = 0;
297 sbi->fsync_node_num = 0;
298 }
299
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)300 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
301 struct page *page)
302 {
303 struct fsync_node_entry *fn;
304 unsigned long flags;
305 unsigned int seq_id;
306
307 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
308
309 get_page(page);
310 fn->page = page;
311 INIT_LIST_HEAD(&fn->list);
312
313 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
314 list_add_tail(&fn->list, &sbi->fsync_node_list);
315 fn->seq_id = sbi->fsync_seg_id++;
316 seq_id = fn->seq_id;
317 sbi->fsync_node_num++;
318 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
319
320 return seq_id;
321 }
322
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)323 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
324 {
325 struct fsync_node_entry *fn;
326 unsigned long flags;
327
328 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
329 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
330 if (fn->page == page) {
331 list_del(&fn->list);
332 sbi->fsync_node_num--;
333 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
334 kmem_cache_free(fsync_node_entry_slab, fn);
335 put_page(page);
336 return;
337 }
338 }
339 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
340 f2fs_bug_on(sbi, 1);
341 }
342
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)343 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
344 {
345 unsigned long flags;
346
347 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
348 sbi->fsync_seg_id = 0;
349 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
350 }
351
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)352 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
353 {
354 struct f2fs_nm_info *nm_i = NM_I(sbi);
355 struct nat_entry *e;
356 bool need = false;
357
358 down_read(&nm_i->nat_tree_lock);
359 e = __lookup_nat_cache(nm_i, nid);
360 if (e) {
361 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
362 !get_nat_flag(e, HAS_FSYNCED_INODE))
363 need = true;
364 }
365 up_read(&nm_i->nat_tree_lock);
366 return need;
367 }
368
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)369 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
370 {
371 struct f2fs_nm_info *nm_i = NM_I(sbi);
372 struct nat_entry *e;
373 bool is_cp = true;
374
375 down_read(&nm_i->nat_tree_lock);
376 e = __lookup_nat_cache(nm_i, nid);
377 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
378 is_cp = false;
379 up_read(&nm_i->nat_tree_lock);
380 return is_cp;
381 }
382
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)383 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
384 {
385 struct f2fs_nm_info *nm_i = NM_I(sbi);
386 struct nat_entry *e;
387 bool need_update = true;
388
389 down_read(&nm_i->nat_tree_lock);
390 e = __lookup_nat_cache(nm_i, ino);
391 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
392 (get_nat_flag(e, IS_CHECKPOINTED) ||
393 get_nat_flag(e, HAS_FSYNCED_INODE)))
394 need_update = false;
395 up_read(&nm_i->nat_tree_lock);
396 return need_update;
397 }
398
399 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)400 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
401 struct f2fs_nat_entry *ne)
402 {
403 struct f2fs_nm_info *nm_i = NM_I(sbi);
404 struct nat_entry *new, *e;
405
406 new = __alloc_nat_entry(nid, false);
407 if (!new)
408 return;
409
410 down_write(&nm_i->nat_tree_lock);
411 e = __lookup_nat_cache(nm_i, nid);
412 if (!e)
413 e = __init_nat_entry(nm_i, new, ne, false);
414 else
415 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
416 nat_get_blkaddr(e) !=
417 le32_to_cpu(ne->block_addr) ||
418 nat_get_version(e) != ne->version);
419 up_write(&nm_i->nat_tree_lock);
420 if (e != new)
421 __free_nat_entry(new);
422 }
423
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)424 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
425 block_t new_blkaddr, bool fsync_done)
426 {
427 struct f2fs_nm_info *nm_i = NM_I(sbi);
428 struct nat_entry *e;
429 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
430
431 down_write(&nm_i->nat_tree_lock);
432 e = __lookup_nat_cache(nm_i, ni->nid);
433 if (!e) {
434 e = __init_nat_entry(nm_i, new, NULL, true);
435 copy_node_info(&e->ni, ni);
436 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
437 } else if (new_blkaddr == NEW_ADDR) {
438 /*
439 * when nid is reallocated,
440 * previous nat entry can be remained in nat cache.
441 * So, reinitialize it with new information.
442 */
443 copy_node_info(&e->ni, ni);
444 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
445 }
446 /* let's free early to reduce memory consumption */
447 if (e != new)
448 __free_nat_entry(new);
449
450 /* sanity check */
451 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
452 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
453 new_blkaddr == NULL_ADDR);
454 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
455 new_blkaddr == NEW_ADDR);
456 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
457 new_blkaddr == NEW_ADDR);
458
459 /* increment version no as node is removed */
460 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
461 unsigned char version = nat_get_version(e);
462 nat_set_version(e, inc_node_version(version));
463 }
464
465 /* change address */
466 nat_set_blkaddr(e, new_blkaddr);
467 if (!__is_valid_data_blkaddr(new_blkaddr))
468 set_nat_flag(e, IS_CHECKPOINTED, false);
469 __set_nat_cache_dirty(nm_i, e);
470
471 /* update fsync_mark if its inode nat entry is still alive */
472 if (ni->nid != ni->ino)
473 e = __lookup_nat_cache(nm_i, ni->ino);
474 if (e) {
475 if (fsync_done && ni->nid == ni->ino)
476 set_nat_flag(e, HAS_FSYNCED_INODE, true);
477 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
478 }
479 up_write(&nm_i->nat_tree_lock);
480 }
481
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)482 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
483 {
484 struct f2fs_nm_info *nm_i = NM_I(sbi);
485 int nr = nr_shrink;
486
487 if (!down_write_trylock(&nm_i->nat_tree_lock))
488 return 0;
489
490 spin_lock(&nm_i->nat_list_lock);
491 while (nr_shrink) {
492 struct nat_entry *ne;
493
494 if (list_empty(&nm_i->nat_entries))
495 break;
496
497 ne = list_first_entry(&nm_i->nat_entries,
498 struct nat_entry, list);
499 list_del(&ne->list);
500 spin_unlock(&nm_i->nat_list_lock);
501
502 __del_from_nat_cache(nm_i, ne);
503 nr_shrink--;
504
505 spin_lock(&nm_i->nat_list_lock);
506 }
507 spin_unlock(&nm_i->nat_list_lock);
508
509 up_write(&nm_i->nat_tree_lock);
510 return nr - nr_shrink;
511 }
512
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni)513 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
514 struct node_info *ni)
515 {
516 struct f2fs_nm_info *nm_i = NM_I(sbi);
517 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
518 struct f2fs_journal *journal = curseg->journal;
519 nid_t start_nid = START_NID(nid);
520 struct f2fs_nat_block *nat_blk;
521 struct page *page = NULL;
522 struct f2fs_nat_entry ne;
523 struct nat_entry *e;
524 pgoff_t index;
525 block_t blkaddr;
526 int i;
527
528 ni->nid = nid;
529
530 /* Check nat cache */
531 down_read(&nm_i->nat_tree_lock);
532 e = __lookup_nat_cache(nm_i, nid);
533 if (e) {
534 ni->ino = nat_get_ino(e);
535 ni->blk_addr = nat_get_blkaddr(e);
536 ni->version = nat_get_version(e);
537 up_read(&nm_i->nat_tree_lock);
538 return 0;
539 }
540
541 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
542
543 /* Check current segment summary */
544 down_read(&curseg->journal_rwsem);
545 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
546 if (i >= 0) {
547 ne = nat_in_journal(journal, i);
548 node_info_from_raw_nat(ni, &ne);
549 }
550 up_read(&curseg->journal_rwsem);
551 if (i >= 0) {
552 up_read(&nm_i->nat_tree_lock);
553 goto cache;
554 }
555
556 /* Fill node_info from nat page */
557 index = current_nat_addr(sbi, nid);
558 up_read(&nm_i->nat_tree_lock);
559
560 page = f2fs_get_meta_page(sbi, index);
561 if (IS_ERR(page))
562 return PTR_ERR(page);
563
564 nat_blk = (struct f2fs_nat_block *)page_address(page);
565 ne = nat_blk->entries[nid - start_nid];
566 node_info_from_raw_nat(ni, &ne);
567 f2fs_put_page(page, 1);
568 cache:
569 blkaddr = le32_to_cpu(ne.block_addr);
570 if (__is_valid_data_blkaddr(blkaddr) &&
571 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
572 return -EFAULT;
573
574 /* cache nat entry */
575 cache_nat_entry(sbi, nid, &ne);
576 return 0;
577 }
578
579 /*
580 * readahead MAX_RA_NODE number of node pages.
581 */
f2fs_ra_node_pages(struct page * parent,int start,int n)582 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
583 {
584 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
585 struct blk_plug plug;
586 int i, end;
587 nid_t nid;
588
589 blk_start_plug(&plug);
590
591 /* Then, try readahead for siblings of the desired node */
592 end = start + n;
593 end = min(end, NIDS_PER_BLOCK);
594 for (i = start; i < end; i++) {
595 nid = get_nid(parent, i, false);
596 f2fs_ra_node_page(sbi, nid);
597 }
598
599 blk_finish_plug(&plug);
600 }
601
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)602 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
603 {
604 const long direct_index = ADDRS_PER_INODE(dn->inode);
605 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
606 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
607 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
608 int cur_level = dn->cur_level;
609 int max_level = dn->max_level;
610 pgoff_t base = 0;
611
612 if (!dn->max_level)
613 return pgofs + 1;
614
615 while (max_level-- > cur_level)
616 skipped_unit *= NIDS_PER_BLOCK;
617
618 switch (dn->max_level) {
619 case 3:
620 base += 2 * indirect_blks;
621 fallthrough;
622 case 2:
623 base += 2 * direct_blks;
624 fallthrough;
625 case 1:
626 base += direct_index;
627 break;
628 default:
629 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
630 }
631
632 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
633 }
634
635 /*
636 * The maximum depth is four.
637 * Offset[0] will have raw inode offset.
638 */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])639 static int get_node_path(struct inode *inode, long block,
640 int offset[4], unsigned int noffset[4])
641 {
642 const long direct_index = ADDRS_PER_INODE(inode);
643 const long direct_blks = ADDRS_PER_BLOCK(inode);
644 const long dptrs_per_blk = NIDS_PER_BLOCK;
645 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
646 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
647 int n = 0;
648 int level = 0;
649
650 noffset[0] = 0;
651
652 if (block < direct_index) {
653 offset[n] = block;
654 goto got;
655 }
656 block -= direct_index;
657 if (block < direct_blks) {
658 offset[n++] = NODE_DIR1_BLOCK;
659 noffset[n] = 1;
660 offset[n] = block;
661 level = 1;
662 goto got;
663 }
664 block -= direct_blks;
665 if (block < direct_blks) {
666 offset[n++] = NODE_DIR2_BLOCK;
667 noffset[n] = 2;
668 offset[n] = block;
669 level = 1;
670 goto got;
671 }
672 block -= direct_blks;
673 if (block < indirect_blks) {
674 offset[n++] = NODE_IND1_BLOCK;
675 noffset[n] = 3;
676 offset[n++] = block / direct_blks;
677 noffset[n] = 4 + offset[n - 1];
678 offset[n] = block % direct_blks;
679 level = 2;
680 goto got;
681 }
682 block -= indirect_blks;
683 if (block < indirect_blks) {
684 offset[n++] = NODE_IND2_BLOCK;
685 noffset[n] = 4 + dptrs_per_blk;
686 offset[n++] = block / direct_blks;
687 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
688 offset[n] = block % direct_blks;
689 level = 2;
690 goto got;
691 }
692 block -= indirect_blks;
693 if (block < dindirect_blks) {
694 offset[n++] = NODE_DIND_BLOCK;
695 noffset[n] = 5 + (dptrs_per_blk * 2);
696 offset[n++] = block / indirect_blks;
697 noffset[n] = 6 + (dptrs_per_blk * 2) +
698 offset[n - 1] * (dptrs_per_blk + 1);
699 offset[n++] = (block / direct_blks) % dptrs_per_blk;
700 noffset[n] = 7 + (dptrs_per_blk * 2) +
701 offset[n - 2] * (dptrs_per_blk + 1) +
702 offset[n - 1];
703 offset[n] = block % direct_blks;
704 level = 3;
705 goto got;
706 } else {
707 return -E2BIG;
708 }
709 got:
710 return level;
711 }
712
713 /*
714 * Caller should call f2fs_put_dnode(dn).
715 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
716 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
717 */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)718 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
719 {
720 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
721 struct page *npage[4];
722 struct page *parent = NULL;
723 int offset[4];
724 unsigned int noffset[4];
725 nid_t nids[4];
726 int level, i = 0;
727 int err = 0;
728
729 level = get_node_path(dn->inode, index, offset, noffset);
730 if (level < 0)
731 return level;
732
733 nids[0] = dn->inode->i_ino;
734 npage[0] = dn->inode_page;
735
736 if (!npage[0]) {
737 npage[0] = f2fs_get_node_page(sbi, nids[0]);
738 if (IS_ERR(npage[0]))
739 return PTR_ERR(npage[0]);
740 }
741
742 /* if inline_data is set, should not report any block indices */
743 if (f2fs_has_inline_data(dn->inode) && index) {
744 err = -ENOENT;
745 f2fs_put_page(npage[0], 1);
746 goto release_out;
747 }
748
749 parent = npage[0];
750 if (level != 0)
751 nids[1] = get_nid(parent, offset[0], true);
752 dn->inode_page = npage[0];
753 dn->inode_page_locked = true;
754
755 /* get indirect or direct nodes */
756 for (i = 1; i <= level; i++) {
757 bool done = false;
758
759 if (!nids[i] && mode == ALLOC_NODE) {
760 /* alloc new node */
761 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
762 err = -ENOSPC;
763 goto release_pages;
764 }
765
766 dn->nid = nids[i];
767 npage[i] = f2fs_new_node_page(dn, noffset[i]);
768 if (IS_ERR(npage[i])) {
769 f2fs_alloc_nid_failed(sbi, nids[i]);
770 err = PTR_ERR(npage[i]);
771 goto release_pages;
772 }
773
774 set_nid(parent, offset[i - 1], nids[i], i == 1);
775 f2fs_alloc_nid_done(sbi, nids[i]);
776 done = true;
777 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
778 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
779 if (IS_ERR(npage[i])) {
780 err = PTR_ERR(npage[i]);
781 goto release_pages;
782 }
783 done = true;
784 }
785 if (i == 1) {
786 dn->inode_page_locked = false;
787 unlock_page(parent);
788 } else {
789 f2fs_put_page(parent, 1);
790 }
791
792 if (!done) {
793 npage[i] = f2fs_get_node_page(sbi, nids[i]);
794 if (IS_ERR(npage[i])) {
795 err = PTR_ERR(npage[i]);
796 f2fs_put_page(npage[0], 0);
797 goto release_out;
798 }
799 }
800 if (i < level) {
801 parent = npage[i];
802 nids[i + 1] = get_nid(parent, offset[i], false);
803 }
804 }
805 dn->nid = nids[level];
806 dn->ofs_in_node = offset[level];
807 dn->node_page = npage[level];
808 dn->data_blkaddr = f2fs_data_blkaddr(dn);
809 return 0;
810
811 release_pages:
812 f2fs_put_page(parent, 1);
813 if (i > 1)
814 f2fs_put_page(npage[0], 0);
815 release_out:
816 dn->inode_page = NULL;
817 dn->node_page = NULL;
818 if (err == -ENOENT) {
819 dn->cur_level = i;
820 dn->max_level = level;
821 dn->ofs_in_node = offset[level];
822 }
823 return err;
824 }
825
truncate_node(struct dnode_of_data * dn)826 static int truncate_node(struct dnode_of_data *dn)
827 {
828 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
829 struct node_info ni;
830 int err;
831 pgoff_t index;
832
833 err = f2fs_get_node_info(sbi, dn->nid, &ni);
834 if (err)
835 return err;
836
837 /* Deallocate node address */
838 f2fs_invalidate_blocks(sbi, ni.blk_addr);
839 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
840 set_node_addr(sbi, &ni, NULL_ADDR, false);
841
842 if (dn->nid == dn->inode->i_ino) {
843 f2fs_remove_orphan_inode(sbi, dn->nid);
844 dec_valid_inode_count(sbi);
845 f2fs_inode_synced(dn->inode);
846 }
847
848 clear_node_page_dirty(dn->node_page);
849 set_sbi_flag(sbi, SBI_IS_DIRTY);
850
851 index = dn->node_page->index;
852 f2fs_put_page(dn->node_page, 1);
853
854 invalidate_mapping_pages(NODE_MAPPING(sbi),
855 index, index);
856
857 dn->node_page = NULL;
858 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
859
860 return 0;
861 }
862
truncate_dnode(struct dnode_of_data * dn)863 static int truncate_dnode(struct dnode_of_data *dn)
864 {
865 struct page *page;
866 int err;
867
868 if (dn->nid == 0)
869 return 1;
870
871 /* get direct node */
872 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
873 if (PTR_ERR(page) == -ENOENT)
874 return 1;
875 else if (IS_ERR(page))
876 return PTR_ERR(page);
877
878 /* Make dnode_of_data for parameter */
879 dn->node_page = page;
880 dn->ofs_in_node = 0;
881 f2fs_truncate_data_blocks(dn);
882 err = truncate_node(dn);
883 if (err)
884 return err;
885
886 return 1;
887 }
888
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)889 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
890 int ofs, int depth)
891 {
892 struct dnode_of_data rdn = *dn;
893 struct page *page;
894 struct f2fs_node *rn;
895 nid_t child_nid;
896 unsigned int child_nofs;
897 int freed = 0;
898 int i, ret;
899
900 if (dn->nid == 0)
901 return NIDS_PER_BLOCK + 1;
902
903 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
904
905 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
906 if (IS_ERR(page)) {
907 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
908 return PTR_ERR(page);
909 }
910
911 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
912
913 rn = F2FS_NODE(page);
914 if (depth < 3) {
915 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
916 child_nid = le32_to_cpu(rn->in.nid[i]);
917 if (child_nid == 0)
918 continue;
919 rdn.nid = child_nid;
920 ret = truncate_dnode(&rdn);
921 if (ret < 0)
922 goto out_err;
923 if (set_nid(page, i, 0, false))
924 dn->node_changed = true;
925 }
926 } else {
927 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
928 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
929 child_nid = le32_to_cpu(rn->in.nid[i]);
930 if (child_nid == 0) {
931 child_nofs += NIDS_PER_BLOCK + 1;
932 continue;
933 }
934 rdn.nid = child_nid;
935 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
936 if (ret == (NIDS_PER_BLOCK + 1)) {
937 if (set_nid(page, i, 0, false))
938 dn->node_changed = true;
939 child_nofs += ret;
940 } else if (ret < 0 && ret != -ENOENT) {
941 goto out_err;
942 }
943 }
944 freed = child_nofs;
945 }
946
947 if (!ofs) {
948 /* remove current indirect node */
949 dn->node_page = page;
950 ret = truncate_node(dn);
951 if (ret)
952 goto out_err;
953 freed++;
954 } else {
955 f2fs_put_page(page, 1);
956 }
957 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
958 return freed;
959
960 out_err:
961 f2fs_put_page(page, 1);
962 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
963 return ret;
964 }
965
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)966 static int truncate_partial_nodes(struct dnode_of_data *dn,
967 struct f2fs_inode *ri, int *offset, int depth)
968 {
969 struct page *pages[2];
970 nid_t nid[3];
971 nid_t child_nid;
972 int err = 0;
973 int i;
974 int idx = depth - 2;
975
976 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
977 if (!nid[0])
978 return 0;
979
980 /* get indirect nodes in the path */
981 for (i = 0; i < idx + 1; i++) {
982 /* reference count'll be increased */
983 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
984 if (IS_ERR(pages[i])) {
985 err = PTR_ERR(pages[i]);
986 idx = i - 1;
987 goto fail;
988 }
989 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
990 }
991
992 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
993
994 /* free direct nodes linked to a partial indirect node */
995 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
996 child_nid = get_nid(pages[idx], i, false);
997 if (!child_nid)
998 continue;
999 dn->nid = child_nid;
1000 err = truncate_dnode(dn);
1001 if (err < 0)
1002 goto fail;
1003 if (set_nid(pages[idx], i, 0, false))
1004 dn->node_changed = true;
1005 }
1006
1007 if (offset[idx + 1] == 0) {
1008 dn->node_page = pages[idx];
1009 dn->nid = nid[idx];
1010 err = truncate_node(dn);
1011 if (err)
1012 goto fail;
1013 } else {
1014 f2fs_put_page(pages[idx], 1);
1015 }
1016 offset[idx]++;
1017 offset[idx + 1] = 0;
1018 idx--;
1019 fail:
1020 for (i = idx; i >= 0; i--)
1021 f2fs_put_page(pages[i], 1);
1022
1023 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1024
1025 return err;
1026 }
1027
1028 /*
1029 * All the block addresses of data and nodes should be nullified.
1030 */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1031 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1032 {
1033 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1034 int err = 0, cont = 1;
1035 int level, offset[4], noffset[4];
1036 unsigned int nofs = 0;
1037 struct f2fs_inode *ri;
1038 struct dnode_of_data dn;
1039 struct page *page;
1040
1041 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1042
1043 level = get_node_path(inode, from, offset, noffset);
1044 if (level < 0) {
1045 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1046 return level;
1047 }
1048
1049 page = f2fs_get_node_page(sbi, inode->i_ino);
1050 if (IS_ERR(page)) {
1051 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1052 return PTR_ERR(page);
1053 }
1054
1055 set_new_dnode(&dn, inode, page, NULL, 0);
1056 unlock_page(page);
1057
1058 ri = F2FS_INODE(page);
1059 switch (level) {
1060 case 0:
1061 case 1:
1062 nofs = noffset[1];
1063 break;
1064 case 2:
1065 nofs = noffset[1];
1066 if (!offset[level - 1])
1067 goto skip_partial;
1068 err = truncate_partial_nodes(&dn, ri, offset, level);
1069 if (err < 0 && err != -ENOENT)
1070 goto fail;
1071 nofs += 1 + NIDS_PER_BLOCK;
1072 break;
1073 case 3:
1074 nofs = 5 + 2 * NIDS_PER_BLOCK;
1075 if (!offset[level - 1])
1076 goto skip_partial;
1077 err = truncate_partial_nodes(&dn, ri, offset, level);
1078 if (err < 0 && err != -ENOENT)
1079 goto fail;
1080 break;
1081 default:
1082 BUG();
1083 }
1084
1085 skip_partial:
1086 while (cont) {
1087 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1088 switch (offset[0]) {
1089 case NODE_DIR1_BLOCK:
1090 case NODE_DIR2_BLOCK:
1091 err = truncate_dnode(&dn);
1092 break;
1093
1094 case NODE_IND1_BLOCK:
1095 case NODE_IND2_BLOCK:
1096 err = truncate_nodes(&dn, nofs, offset[1], 2);
1097 break;
1098
1099 case NODE_DIND_BLOCK:
1100 err = truncate_nodes(&dn, nofs, offset[1], 3);
1101 cont = 0;
1102 break;
1103
1104 default:
1105 BUG();
1106 }
1107 if (err < 0 && err != -ENOENT)
1108 goto fail;
1109 if (offset[1] == 0 &&
1110 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1111 lock_page(page);
1112 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1113 f2fs_wait_on_page_writeback(page, NODE, true, true);
1114 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1115 set_page_dirty(page);
1116 unlock_page(page);
1117 }
1118 offset[1] = 0;
1119 offset[0]++;
1120 nofs += err;
1121 }
1122 fail:
1123 f2fs_put_page(page, 0);
1124 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1125 return err > 0 ? 0 : err;
1126 }
1127
1128 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1129 int f2fs_truncate_xattr_node(struct inode *inode)
1130 {
1131 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1132 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1133 struct dnode_of_data dn;
1134 struct page *npage;
1135 int err;
1136
1137 if (!nid)
1138 return 0;
1139
1140 npage = f2fs_get_node_page(sbi, nid);
1141 if (IS_ERR(npage))
1142 return PTR_ERR(npage);
1143
1144 set_new_dnode(&dn, inode, NULL, npage, nid);
1145 err = truncate_node(&dn);
1146 if (err) {
1147 f2fs_put_page(npage, 1);
1148 return err;
1149 }
1150
1151 f2fs_i_xnid_write(inode, 0);
1152
1153 return 0;
1154 }
1155
1156 /*
1157 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1158 * f2fs_unlock_op().
1159 */
f2fs_remove_inode_page(struct inode * inode)1160 int f2fs_remove_inode_page(struct inode *inode)
1161 {
1162 struct dnode_of_data dn;
1163 int err;
1164
1165 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1166 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1167 if (err)
1168 return err;
1169
1170 err = f2fs_truncate_xattr_node(inode);
1171 if (err) {
1172 f2fs_put_dnode(&dn);
1173 return err;
1174 }
1175
1176 /* remove potential inline_data blocks */
1177 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1178 S_ISLNK(inode->i_mode))
1179 f2fs_truncate_data_blocks_range(&dn, 1);
1180
1181 /* 0 is possible, after f2fs_new_inode() has failed */
1182 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1183 f2fs_put_dnode(&dn);
1184 return -EIO;
1185 }
1186
1187 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1188 f2fs_warn(F2FS_I_SB(inode),
1189 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1190 inode->i_ino, (unsigned long long)inode->i_blocks);
1191 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1192 }
1193
1194 /* will put inode & node pages */
1195 err = truncate_node(&dn);
1196 if (err) {
1197 f2fs_put_dnode(&dn);
1198 return err;
1199 }
1200 return 0;
1201 }
1202
f2fs_new_inode_page(struct inode * inode)1203 struct page *f2fs_new_inode_page(struct inode *inode)
1204 {
1205 struct dnode_of_data dn;
1206
1207 /* allocate inode page for new inode */
1208 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1209
1210 /* caller should f2fs_put_page(page, 1); */
1211 return f2fs_new_node_page(&dn, 0);
1212 }
1213
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1214 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1215 {
1216 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1217 struct node_info new_ni;
1218 struct page *page;
1219 int err;
1220
1221 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1222 return ERR_PTR(-EPERM);
1223
1224 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1225 if (!page)
1226 return ERR_PTR(-ENOMEM);
1227
1228 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1229 goto fail;
1230
1231 #ifdef CONFIG_F2FS_CHECK_FS
1232 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1233 if (err) {
1234 dec_valid_node_count(sbi, dn->inode, !ofs);
1235 goto fail;
1236 }
1237 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1238 #endif
1239 new_ni.nid = dn->nid;
1240 new_ni.ino = dn->inode->i_ino;
1241 new_ni.blk_addr = NULL_ADDR;
1242 new_ni.flag = 0;
1243 new_ni.version = 0;
1244 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1245
1246 f2fs_wait_on_page_writeback(page, NODE, true, true);
1247 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1248 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1249 if (!PageUptodate(page))
1250 SetPageUptodate(page);
1251 if (set_page_dirty(page))
1252 dn->node_changed = true;
1253
1254 if (f2fs_has_xattr_block(ofs))
1255 f2fs_i_xnid_write(dn->inode, dn->nid);
1256
1257 if (ofs == 0)
1258 inc_valid_inode_count(sbi);
1259 return page;
1260
1261 fail:
1262 clear_node_page_dirty(page);
1263 f2fs_put_page(page, 1);
1264 return ERR_PTR(err);
1265 }
1266
1267 /*
1268 * Caller should do after getting the following values.
1269 * 0: f2fs_put_page(page, 0)
1270 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1271 */
read_node_page(struct page * page,int op_flags)1272 static int read_node_page(struct page *page, int op_flags)
1273 {
1274 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1275 struct node_info ni;
1276 struct f2fs_io_info fio = {
1277 .sbi = sbi,
1278 .type = NODE,
1279 .op = REQ_OP_READ,
1280 .op_flags = op_flags,
1281 .page = page,
1282 .encrypted_page = NULL,
1283 };
1284 int err;
1285
1286 if (PageUptodate(page)) {
1287 if (!f2fs_inode_chksum_verify(sbi, page)) {
1288 ClearPageUptodate(page);
1289 return -EFSBADCRC;
1290 }
1291 return LOCKED_PAGE;
1292 }
1293
1294 err = f2fs_get_node_info(sbi, page->index, &ni);
1295 if (err)
1296 return err;
1297
1298 if (unlikely(ni.blk_addr == NULL_ADDR) ||
1299 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1300 ClearPageUptodate(page);
1301 return -ENOENT;
1302 }
1303
1304 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1305
1306 err = f2fs_submit_page_bio(&fio);
1307
1308 if (!err)
1309 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1310
1311 return err;
1312 }
1313
1314 /*
1315 * Readahead a node page
1316 */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1317 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1318 {
1319 struct page *apage;
1320 int err;
1321
1322 if (!nid)
1323 return;
1324 if (f2fs_check_nid_range(sbi, nid))
1325 return;
1326
1327 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1328 if (apage)
1329 return;
1330
1331 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1332 if (!apage)
1333 return;
1334
1335 err = read_node_page(apage, REQ_RAHEAD);
1336 f2fs_put_page(apage, err ? 1 : 0);
1337 }
1338
__get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start)1339 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1340 struct page *parent, int start)
1341 {
1342 struct page *page;
1343 int err;
1344
1345 if (!nid)
1346 return ERR_PTR(-ENOENT);
1347 if (f2fs_check_nid_range(sbi, nid))
1348 return ERR_PTR(-EINVAL);
1349 repeat:
1350 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1351 if (!page)
1352 return ERR_PTR(-ENOMEM);
1353
1354 err = read_node_page(page, 0);
1355 if (err < 0) {
1356 f2fs_put_page(page, 1);
1357 return ERR_PTR(err);
1358 } else if (err == LOCKED_PAGE) {
1359 err = 0;
1360 goto page_hit;
1361 }
1362
1363 if (parent)
1364 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1365
1366 lock_page(page);
1367
1368 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1369 f2fs_put_page(page, 1);
1370 goto repeat;
1371 }
1372
1373 if (unlikely(!PageUptodate(page))) {
1374 err = -EIO;
1375 goto out_err;
1376 }
1377
1378 if (!f2fs_inode_chksum_verify(sbi, page)) {
1379 err = -EFSBADCRC;
1380 goto out_err;
1381 }
1382 page_hit:
1383 if(unlikely(nid != nid_of_node(page))) {
1384 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1385 nid, nid_of_node(page), ino_of_node(page),
1386 ofs_of_node(page), cpver_of_node(page),
1387 next_blkaddr_of_node(page));
1388 err = -EINVAL;
1389 out_err:
1390 ClearPageUptodate(page);
1391 f2fs_put_page(page, 1);
1392 return ERR_PTR(err);
1393 }
1394 return page;
1395 }
1396
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1397 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1398 {
1399 return __get_node_page(sbi, nid, NULL, 0);
1400 }
1401
f2fs_get_node_page_ra(struct page * parent,int start)1402 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1403 {
1404 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1405 nid_t nid = get_nid(parent, start, false);
1406
1407 return __get_node_page(sbi, nid, parent, start);
1408 }
1409
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1410 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1411 {
1412 struct inode *inode;
1413 struct page *page;
1414 int ret;
1415
1416 /* should flush inline_data before evict_inode */
1417 inode = ilookup(sbi->sb, ino);
1418 if (!inode)
1419 return;
1420
1421 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1422 FGP_LOCK|FGP_NOWAIT, 0);
1423 if (!page)
1424 goto iput_out;
1425
1426 if (!PageUptodate(page))
1427 goto page_out;
1428
1429 if (!PageDirty(page))
1430 goto page_out;
1431
1432 if (!clear_page_dirty_for_io(page))
1433 goto page_out;
1434
1435 ret = f2fs_write_inline_data(inode, page);
1436 inode_dec_dirty_pages(inode);
1437 f2fs_remove_dirty_inode(inode);
1438 if (ret)
1439 set_page_dirty(page);
1440 page_out:
1441 f2fs_put_page(page, 1);
1442 iput_out:
1443 iput(inode);
1444 }
1445
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1446 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1447 {
1448 pgoff_t index;
1449 struct pagevec pvec;
1450 struct page *last_page = NULL;
1451 int nr_pages;
1452
1453 pagevec_init(&pvec);
1454 index = 0;
1455
1456 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1457 PAGECACHE_TAG_DIRTY))) {
1458 int i;
1459
1460 for (i = 0; i < nr_pages; i++) {
1461 struct page *page = pvec.pages[i];
1462
1463 if (unlikely(f2fs_cp_error(sbi))) {
1464 f2fs_put_page(last_page, 0);
1465 pagevec_release(&pvec);
1466 return ERR_PTR(-EIO);
1467 }
1468
1469 if (!IS_DNODE(page) || !is_cold_node(page))
1470 continue;
1471 if (ino_of_node(page) != ino)
1472 continue;
1473
1474 lock_page(page);
1475
1476 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1477 continue_unlock:
1478 unlock_page(page);
1479 continue;
1480 }
1481 if (ino_of_node(page) != ino)
1482 goto continue_unlock;
1483
1484 if (!PageDirty(page)) {
1485 /* someone wrote it for us */
1486 goto continue_unlock;
1487 }
1488
1489 if (last_page)
1490 f2fs_put_page(last_page, 0);
1491
1492 get_page(page);
1493 last_page = page;
1494 unlock_page(page);
1495 }
1496 pagevec_release(&pvec);
1497 cond_resched();
1498 }
1499 return last_page;
1500 }
1501
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1502 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1503 struct writeback_control *wbc, bool do_balance,
1504 enum iostat_type io_type, unsigned int *seq_id)
1505 {
1506 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1507 nid_t nid;
1508 struct node_info ni;
1509 struct f2fs_io_info fio = {
1510 .sbi = sbi,
1511 .ino = ino_of_node(page),
1512 .type = NODE,
1513 .op = REQ_OP_WRITE,
1514 .op_flags = wbc_to_write_flags(wbc),
1515 .page = page,
1516 .encrypted_page = NULL,
1517 .submitted = false,
1518 .io_type = io_type,
1519 .io_wbc = wbc,
1520 };
1521 unsigned int seq;
1522
1523 trace_f2fs_writepage(page, NODE);
1524
1525 if (unlikely(f2fs_cp_error(sbi))) {
1526 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1527 ClearPageUptodate(page);
1528 dec_page_count(sbi, F2FS_DIRTY_NODES);
1529 unlock_page(page);
1530 return 0;
1531 }
1532 goto redirty_out;
1533 }
1534
1535 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1536 goto redirty_out;
1537
1538 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1539 wbc->sync_mode == WB_SYNC_NONE &&
1540 IS_DNODE(page) && is_cold_node(page))
1541 goto redirty_out;
1542
1543 /* get old block addr of this node page */
1544 nid = nid_of_node(page);
1545 f2fs_bug_on(sbi, page->index != nid);
1546
1547 if (f2fs_get_node_info(sbi, nid, &ni))
1548 goto redirty_out;
1549
1550 if (wbc->for_reclaim) {
1551 if (!down_read_trylock(&sbi->node_write))
1552 goto redirty_out;
1553 } else {
1554 down_read(&sbi->node_write);
1555 }
1556
1557 /* This page is already truncated */
1558 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1559 ClearPageUptodate(page);
1560 dec_page_count(sbi, F2FS_DIRTY_NODES);
1561 up_read(&sbi->node_write);
1562 unlock_page(page);
1563 return 0;
1564 }
1565
1566 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1567 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1568 DATA_GENERIC_ENHANCE)) {
1569 up_read(&sbi->node_write);
1570 goto redirty_out;
1571 }
1572
1573 if (atomic && !test_opt(sbi, NOBARRIER))
1574 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1575
1576 /* should add to global list before clearing PAGECACHE status */
1577 if (f2fs_in_warm_node_list(sbi, page)) {
1578 seq = f2fs_add_fsync_node_entry(sbi, page);
1579 if (seq_id)
1580 *seq_id = seq;
1581 }
1582
1583 set_page_writeback(page);
1584 ClearPageError(page);
1585
1586 fio.old_blkaddr = ni.blk_addr;
1587 f2fs_do_write_node_page(nid, &fio);
1588 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1589 dec_page_count(sbi, F2FS_DIRTY_NODES);
1590 up_read(&sbi->node_write);
1591
1592 if (wbc->for_reclaim) {
1593 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1594 submitted = NULL;
1595 }
1596
1597 unlock_page(page);
1598
1599 if (unlikely(f2fs_cp_error(sbi))) {
1600 f2fs_submit_merged_write(sbi, NODE);
1601 submitted = NULL;
1602 }
1603 if (submitted)
1604 *submitted = fio.submitted;
1605
1606 if (do_balance)
1607 f2fs_balance_fs(sbi, false);
1608 return 0;
1609
1610 redirty_out:
1611 redirty_page_for_writepage(wbc, page);
1612 return AOP_WRITEPAGE_ACTIVATE;
1613 }
1614
f2fs_move_node_page(struct page * node_page,int gc_type)1615 int f2fs_move_node_page(struct page *node_page, int gc_type)
1616 {
1617 int err = 0;
1618
1619 if (gc_type == FG_GC) {
1620 struct writeback_control wbc = {
1621 .sync_mode = WB_SYNC_ALL,
1622 .nr_to_write = 1,
1623 .for_reclaim = 0,
1624 };
1625
1626 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1627
1628 set_page_dirty(node_page);
1629
1630 if (!clear_page_dirty_for_io(node_page)) {
1631 err = -EAGAIN;
1632 goto out_page;
1633 }
1634
1635 if (__write_node_page(node_page, false, NULL,
1636 &wbc, false, FS_GC_NODE_IO, NULL)) {
1637 err = -EAGAIN;
1638 unlock_page(node_page);
1639 }
1640 goto release_page;
1641 } else {
1642 /* set page dirty and write it */
1643 if (!PageWriteback(node_page))
1644 set_page_dirty(node_page);
1645 }
1646 out_page:
1647 unlock_page(node_page);
1648 release_page:
1649 f2fs_put_page(node_page, 0);
1650 return err;
1651 }
1652
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1653 static int f2fs_write_node_page(struct page *page,
1654 struct writeback_control *wbc)
1655 {
1656 return __write_node_page(page, false, NULL, wbc, false,
1657 FS_NODE_IO, NULL);
1658 }
1659
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1660 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1661 struct writeback_control *wbc, bool atomic,
1662 unsigned int *seq_id)
1663 {
1664 pgoff_t index;
1665 struct pagevec pvec;
1666 int ret = 0;
1667 struct page *last_page = NULL;
1668 bool marked = false;
1669 nid_t ino = inode->i_ino;
1670 int nr_pages;
1671 int nwritten = 0;
1672
1673 if (atomic) {
1674 last_page = last_fsync_dnode(sbi, ino);
1675 if (IS_ERR_OR_NULL(last_page))
1676 return PTR_ERR_OR_ZERO(last_page);
1677 }
1678 retry:
1679 pagevec_init(&pvec);
1680 index = 0;
1681
1682 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1683 PAGECACHE_TAG_DIRTY))) {
1684 int i;
1685
1686 for (i = 0; i < nr_pages; i++) {
1687 struct page *page = pvec.pages[i];
1688 bool submitted = false;
1689
1690 if (unlikely(f2fs_cp_error(sbi))) {
1691 f2fs_put_page(last_page, 0);
1692 pagevec_release(&pvec);
1693 ret = -EIO;
1694 goto out;
1695 }
1696
1697 if (!IS_DNODE(page) || !is_cold_node(page))
1698 continue;
1699 if (ino_of_node(page) != ino)
1700 continue;
1701
1702 lock_page(page);
1703
1704 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1705 continue_unlock:
1706 unlock_page(page);
1707 continue;
1708 }
1709 if (ino_of_node(page) != ino)
1710 goto continue_unlock;
1711
1712 if (!PageDirty(page) && page != last_page) {
1713 /* someone wrote it for us */
1714 goto continue_unlock;
1715 }
1716
1717 f2fs_wait_on_page_writeback(page, NODE, true, true);
1718
1719 set_fsync_mark(page, 0);
1720 set_dentry_mark(page, 0);
1721
1722 if (!atomic || page == last_page) {
1723 set_fsync_mark(page, 1);
1724 if (IS_INODE(page)) {
1725 if (is_inode_flag_set(inode,
1726 FI_DIRTY_INODE))
1727 f2fs_update_inode(inode, page);
1728 set_dentry_mark(page,
1729 f2fs_need_dentry_mark(sbi, ino));
1730 }
1731 /* may be written by other thread */
1732 if (!PageDirty(page))
1733 set_page_dirty(page);
1734 }
1735
1736 if (!clear_page_dirty_for_io(page))
1737 goto continue_unlock;
1738
1739 ret = __write_node_page(page, atomic &&
1740 page == last_page,
1741 &submitted, wbc, true,
1742 FS_NODE_IO, seq_id);
1743 if (ret) {
1744 unlock_page(page);
1745 f2fs_put_page(last_page, 0);
1746 break;
1747 } else if (submitted) {
1748 nwritten++;
1749 }
1750
1751 if (page == last_page) {
1752 f2fs_put_page(page, 0);
1753 marked = true;
1754 break;
1755 }
1756 }
1757 pagevec_release(&pvec);
1758 cond_resched();
1759
1760 if (ret || marked)
1761 break;
1762 }
1763 if (!ret && atomic && !marked) {
1764 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1765 ino, last_page->index);
1766 lock_page(last_page);
1767 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1768 set_page_dirty(last_page);
1769 unlock_page(last_page);
1770 goto retry;
1771 }
1772 out:
1773 if (nwritten)
1774 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1775 return ret ? -EIO: 0;
1776 }
1777
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1778 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1779 {
1780 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1781 bool clean;
1782
1783 if (inode->i_ino != ino)
1784 return 0;
1785
1786 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1787 return 0;
1788
1789 spin_lock(&sbi->inode_lock[DIRTY_META]);
1790 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1791 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1792
1793 if (clean)
1794 return 0;
1795
1796 inode = igrab(inode);
1797 if (!inode)
1798 return 0;
1799 return 1;
1800 }
1801
flush_dirty_inode(struct page * page)1802 static bool flush_dirty_inode(struct page *page)
1803 {
1804 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1805 struct inode *inode;
1806 nid_t ino = ino_of_node(page);
1807
1808 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1809 if (!inode)
1810 return false;
1811
1812 f2fs_update_inode(inode, page);
1813 unlock_page(page);
1814
1815 iput(inode);
1816 return true;
1817 }
1818
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1819 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1820 {
1821 pgoff_t index = 0;
1822 struct pagevec pvec;
1823 int nr_pages;
1824
1825 pagevec_init(&pvec);
1826
1827 while ((nr_pages = pagevec_lookup_tag(&pvec,
1828 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1829 int i;
1830
1831 for (i = 0; i < nr_pages; i++) {
1832 struct page *page = pvec.pages[i];
1833
1834 if (!IS_DNODE(page))
1835 continue;
1836
1837 lock_page(page);
1838
1839 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1840 continue_unlock:
1841 unlock_page(page);
1842 continue;
1843 }
1844
1845 if (!PageDirty(page)) {
1846 /* someone wrote it for us */
1847 goto continue_unlock;
1848 }
1849
1850 /* flush inline_data, if it's async context. */
1851 if (is_inline_node(page)) {
1852 clear_inline_node(page);
1853 unlock_page(page);
1854 flush_inline_data(sbi, ino_of_node(page));
1855 continue;
1856 }
1857 unlock_page(page);
1858 }
1859 pagevec_release(&pvec);
1860 cond_resched();
1861 }
1862 }
1863
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1864 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1865 struct writeback_control *wbc,
1866 bool do_balance, enum iostat_type io_type)
1867 {
1868 pgoff_t index;
1869 struct pagevec pvec;
1870 int step = 0;
1871 int nwritten = 0;
1872 int ret = 0;
1873 int nr_pages, done = 0;
1874
1875 pagevec_init(&pvec);
1876
1877 next_step:
1878 index = 0;
1879
1880 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1881 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1882 int i;
1883
1884 for (i = 0; i < nr_pages; i++) {
1885 struct page *page = pvec.pages[i];
1886 bool submitted = false;
1887 bool may_dirty = true;
1888
1889 /* give a priority to WB_SYNC threads */
1890 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1891 wbc->sync_mode == WB_SYNC_NONE) {
1892 done = 1;
1893 break;
1894 }
1895
1896 /*
1897 * flushing sequence with step:
1898 * 0. indirect nodes
1899 * 1. dentry dnodes
1900 * 2. file dnodes
1901 */
1902 if (step == 0 && IS_DNODE(page))
1903 continue;
1904 if (step == 1 && (!IS_DNODE(page) ||
1905 is_cold_node(page)))
1906 continue;
1907 if (step == 2 && (!IS_DNODE(page) ||
1908 !is_cold_node(page)))
1909 continue;
1910 lock_node:
1911 if (wbc->sync_mode == WB_SYNC_ALL)
1912 lock_page(page);
1913 else if (!trylock_page(page))
1914 continue;
1915
1916 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1917 continue_unlock:
1918 unlock_page(page);
1919 continue;
1920 }
1921
1922 if (!PageDirty(page)) {
1923 /* someone wrote it for us */
1924 goto continue_unlock;
1925 }
1926
1927 /* flush inline_data/inode, if it's async context. */
1928 if (!do_balance)
1929 goto write_node;
1930
1931 /* flush inline_data */
1932 if (is_inline_node(page)) {
1933 clear_inline_node(page);
1934 unlock_page(page);
1935 flush_inline_data(sbi, ino_of_node(page));
1936 goto lock_node;
1937 }
1938
1939 /* flush dirty inode */
1940 if (IS_INODE(page) && may_dirty) {
1941 may_dirty = false;
1942 if (flush_dirty_inode(page))
1943 goto lock_node;
1944 }
1945 write_node:
1946 f2fs_wait_on_page_writeback(page, NODE, true, true);
1947
1948 if (!clear_page_dirty_for_io(page))
1949 goto continue_unlock;
1950
1951 set_fsync_mark(page, 0);
1952 set_dentry_mark(page, 0);
1953
1954 ret = __write_node_page(page, false, &submitted,
1955 wbc, do_balance, io_type, NULL);
1956 if (ret)
1957 unlock_page(page);
1958 else if (submitted)
1959 nwritten++;
1960
1961 if (--wbc->nr_to_write == 0)
1962 break;
1963 }
1964 pagevec_release(&pvec);
1965 cond_resched();
1966
1967 if (wbc->nr_to_write == 0) {
1968 step = 2;
1969 break;
1970 }
1971 }
1972
1973 if (step < 2) {
1974 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1975 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1976 goto out;
1977 step++;
1978 goto next_step;
1979 }
1980 out:
1981 if (nwritten)
1982 f2fs_submit_merged_write(sbi, NODE);
1983
1984 if (unlikely(f2fs_cp_error(sbi)))
1985 return -EIO;
1986 return ret;
1987 }
1988
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)1989 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1990 unsigned int seq_id)
1991 {
1992 struct fsync_node_entry *fn;
1993 struct page *page;
1994 struct list_head *head = &sbi->fsync_node_list;
1995 unsigned long flags;
1996 unsigned int cur_seq_id = 0;
1997 int ret2, ret = 0;
1998
1999 while (seq_id && cur_seq_id < seq_id) {
2000 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2001 if (list_empty(head)) {
2002 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2003 break;
2004 }
2005 fn = list_first_entry(head, struct fsync_node_entry, list);
2006 if (fn->seq_id > seq_id) {
2007 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2008 break;
2009 }
2010 cur_seq_id = fn->seq_id;
2011 page = fn->page;
2012 get_page(page);
2013 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2014
2015 f2fs_wait_on_page_writeback(page, NODE, true, false);
2016 if (TestClearPageError(page))
2017 ret = -EIO;
2018
2019 put_page(page);
2020
2021 if (ret)
2022 break;
2023 }
2024
2025 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2026 if (!ret)
2027 ret = ret2;
2028
2029 return ret;
2030 }
2031
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2032 static int f2fs_write_node_pages(struct address_space *mapping,
2033 struct writeback_control *wbc)
2034 {
2035 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2036 struct blk_plug plug;
2037 long diff;
2038
2039 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2040 goto skip_write;
2041
2042 /* balancing f2fs's metadata in background */
2043 f2fs_balance_fs_bg(sbi, true);
2044
2045 /* collect a number of dirty node pages and write together */
2046 if (wbc->sync_mode != WB_SYNC_ALL &&
2047 get_pages(sbi, F2FS_DIRTY_NODES) <
2048 nr_pages_to_skip(sbi, NODE))
2049 goto skip_write;
2050
2051 if (wbc->sync_mode == WB_SYNC_ALL)
2052 atomic_inc(&sbi->wb_sync_req[NODE]);
2053 else if (atomic_read(&sbi->wb_sync_req[NODE]))
2054 goto skip_write;
2055
2056 trace_f2fs_writepages(mapping->host, wbc, NODE);
2057
2058 diff = nr_pages_to_write(sbi, NODE, wbc);
2059 blk_start_plug(&plug);
2060 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2061 blk_finish_plug(&plug);
2062 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2063
2064 if (wbc->sync_mode == WB_SYNC_ALL)
2065 atomic_dec(&sbi->wb_sync_req[NODE]);
2066 return 0;
2067
2068 skip_write:
2069 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2070 trace_f2fs_writepages(mapping->host, wbc, NODE);
2071 return 0;
2072 }
2073
f2fs_set_node_page_dirty(struct page * page)2074 static int f2fs_set_node_page_dirty(struct page *page)
2075 {
2076 trace_f2fs_set_page_dirty(page, NODE);
2077
2078 if (!PageUptodate(page))
2079 SetPageUptodate(page);
2080 #ifdef CONFIG_F2FS_CHECK_FS
2081 if (IS_INODE(page))
2082 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2083 #endif
2084 if (!PageDirty(page)) {
2085 __set_page_dirty_nobuffers(page);
2086 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2087 f2fs_set_page_private(page, 0);
2088 f2fs_trace_pid(page);
2089 return 1;
2090 }
2091 return 0;
2092 }
2093
2094 /*
2095 * Structure of the f2fs node operations
2096 */
2097 const struct address_space_operations f2fs_node_aops = {
2098 .writepage = f2fs_write_node_page,
2099 .writepages = f2fs_write_node_pages,
2100 .set_page_dirty = f2fs_set_node_page_dirty,
2101 .invalidatepage = f2fs_invalidate_page,
2102 .releasepage = f2fs_release_page,
2103 #ifdef CONFIG_MIGRATION
2104 .migratepage = f2fs_migrate_page,
2105 #endif
2106 };
2107
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2108 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2109 nid_t n)
2110 {
2111 return radix_tree_lookup(&nm_i->free_nid_root, n);
2112 }
2113
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2114 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2115 struct free_nid *i)
2116 {
2117 struct f2fs_nm_info *nm_i = NM_I(sbi);
2118
2119 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2120 if (err)
2121 return err;
2122
2123 nm_i->nid_cnt[FREE_NID]++;
2124 list_add_tail(&i->list, &nm_i->free_nid_list);
2125 return 0;
2126 }
2127
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2128 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2129 struct free_nid *i, enum nid_state state)
2130 {
2131 struct f2fs_nm_info *nm_i = NM_I(sbi);
2132
2133 f2fs_bug_on(sbi, state != i->state);
2134 nm_i->nid_cnt[state]--;
2135 if (state == FREE_NID)
2136 list_del(&i->list);
2137 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2138 }
2139
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2140 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2141 enum nid_state org_state, enum nid_state dst_state)
2142 {
2143 struct f2fs_nm_info *nm_i = NM_I(sbi);
2144
2145 f2fs_bug_on(sbi, org_state != i->state);
2146 i->state = dst_state;
2147 nm_i->nid_cnt[org_state]--;
2148 nm_i->nid_cnt[dst_state]++;
2149
2150 switch (dst_state) {
2151 case PREALLOC_NID:
2152 list_del(&i->list);
2153 break;
2154 case FREE_NID:
2155 list_add_tail(&i->list, &nm_i->free_nid_list);
2156 break;
2157 default:
2158 BUG_ON(1);
2159 }
2160 }
2161
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2162 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2163 bool set, bool build)
2164 {
2165 struct f2fs_nm_info *nm_i = NM_I(sbi);
2166 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2167 unsigned int nid_ofs = nid - START_NID(nid);
2168
2169 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2170 return;
2171
2172 if (set) {
2173 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2174 return;
2175 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2176 nm_i->free_nid_count[nat_ofs]++;
2177 } else {
2178 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2179 return;
2180 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2181 if (!build)
2182 nm_i->free_nid_count[nat_ofs]--;
2183 }
2184 }
2185
2186 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2187 static bool add_free_nid(struct f2fs_sb_info *sbi,
2188 nid_t nid, bool build, bool update)
2189 {
2190 struct f2fs_nm_info *nm_i = NM_I(sbi);
2191 struct free_nid *i, *e;
2192 struct nat_entry *ne;
2193 int err = -EINVAL;
2194 bool ret = false;
2195
2196 /* 0 nid should not be used */
2197 if (unlikely(nid == 0))
2198 return false;
2199
2200 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2201 return false;
2202
2203 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2204 i->nid = nid;
2205 i->state = FREE_NID;
2206
2207 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2208
2209 spin_lock(&nm_i->nid_list_lock);
2210
2211 if (build) {
2212 /*
2213 * Thread A Thread B
2214 * - f2fs_create
2215 * - f2fs_new_inode
2216 * - f2fs_alloc_nid
2217 * - __insert_nid_to_list(PREALLOC_NID)
2218 * - f2fs_balance_fs_bg
2219 * - f2fs_build_free_nids
2220 * - __f2fs_build_free_nids
2221 * - scan_nat_page
2222 * - add_free_nid
2223 * - __lookup_nat_cache
2224 * - f2fs_add_link
2225 * - f2fs_init_inode_metadata
2226 * - f2fs_new_inode_page
2227 * - f2fs_new_node_page
2228 * - set_node_addr
2229 * - f2fs_alloc_nid_done
2230 * - __remove_nid_from_list(PREALLOC_NID)
2231 * - __insert_nid_to_list(FREE_NID)
2232 */
2233 ne = __lookup_nat_cache(nm_i, nid);
2234 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2235 nat_get_blkaddr(ne) != NULL_ADDR))
2236 goto err_out;
2237
2238 e = __lookup_free_nid_list(nm_i, nid);
2239 if (e) {
2240 if (e->state == FREE_NID)
2241 ret = true;
2242 goto err_out;
2243 }
2244 }
2245 ret = true;
2246 err = __insert_free_nid(sbi, i);
2247 err_out:
2248 if (update) {
2249 update_free_nid_bitmap(sbi, nid, ret, build);
2250 if (!build)
2251 nm_i->available_nids++;
2252 }
2253 spin_unlock(&nm_i->nid_list_lock);
2254 radix_tree_preload_end();
2255
2256 if (err)
2257 kmem_cache_free(free_nid_slab, i);
2258 return ret;
2259 }
2260
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2261 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2262 {
2263 struct f2fs_nm_info *nm_i = NM_I(sbi);
2264 struct free_nid *i;
2265 bool need_free = false;
2266
2267 spin_lock(&nm_i->nid_list_lock);
2268 i = __lookup_free_nid_list(nm_i, nid);
2269 if (i && i->state == FREE_NID) {
2270 __remove_free_nid(sbi, i, FREE_NID);
2271 need_free = true;
2272 }
2273 spin_unlock(&nm_i->nid_list_lock);
2274
2275 if (need_free)
2276 kmem_cache_free(free_nid_slab, i);
2277 }
2278
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2279 static int scan_nat_page(struct f2fs_sb_info *sbi,
2280 struct page *nat_page, nid_t start_nid)
2281 {
2282 struct f2fs_nm_info *nm_i = NM_I(sbi);
2283 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2284 block_t blk_addr;
2285 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2286 int i;
2287
2288 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2289
2290 i = start_nid % NAT_ENTRY_PER_BLOCK;
2291
2292 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2293 if (unlikely(start_nid >= nm_i->max_nid))
2294 break;
2295
2296 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2297
2298 if (blk_addr == NEW_ADDR)
2299 return -EINVAL;
2300
2301 if (blk_addr == NULL_ADDR) {
2302 add_free_nid(sbi, start_nid, true, true);
2303 } else {
2304 spin_lock(&NM_I(sbi)->nid_list_lock);
2305 update_free_nid_bitmap(sbi, start_nid, false, true);
2306 spin_unlock(&NM_I(sbi)->nid_list_lock);
2307 }
2308 }
2309
2310 return 0;
2311 }
2312
scan_curseg_cache(struct f2fs_sb_info * sbi)2313 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2314 {
2315 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2316 struct f2fs_journal *journal = curseg->journal;
2317 int i;
2318
2319 down_read(&curseg->journal_rwsem);
2320 for (i = 0; i < nats_in_cursum(journal); i++) {
2321 block_t addr;
2322 nid_t nid;
2323
2324 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2325 nid = le32_to_cpu(nid_in_journal(journal, i));
2326 if (addr == NULL_ADDR)
2327 add_free_nid(sbi, nid, true, false);
2328 else
2329 remove_free_nid(sbi, nid);
2330 }
2331 up_read(&curseg->journal_rwsem);
2332 }
2333
scan_free_nid_bits(struct f2fs_sb_info * sbi)2334 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2335 {
2336 struct f2fs_nm_info *nm_i = NM_I(sbi);
2337 unsigned int i, idx;
2338 nid_t nid;
2339
2340 down_read(&nm_i->nat_tree_lock);
2341
2342 for (i = 0; i < nm_i->nat_blocks; i++) {
2343 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2344 continue;
2345 if (!nm_i->free_nid_count[i])
2346 continue;
2347 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2348 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2349 NAT_ENTRY_PER_BLOCK, idx);
2350 if (idx >= NAT_ENTRY_PER_BLOCK)
2351 break;
2352
2353 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2354 add_free_nid(sbi, nid, true, false);
2355
2356 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2357 goto out;
2358 }
2359 }
2360 out:
2361 scan_curseg_cache(sbi);
2362
2363 up_read(&nm_i->nat_tree_lock);
2364 }
2365
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2366 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2367 bool sync, bool mount)
2368 {
2369 struct f2fs_nm_info *nm_i = NM_I(sbi);
2370 int i = 0, ret;
2371 nid_t nid = nm_i->next_scan_nid;
2372
2373 if (unlikely(nid >= nm_i->max_nid))
2374 nid = 0;
2375
2376 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2377 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2378
2379 /* Enough entries */
2380 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2381 return 0;
2382
2383 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2384 return 0;
2385
2386 if (!mount) {
2387 /* try to find free nids in free_nid_bitmap */
2388 scan_free_nid_bits(sbi);
2389
2390 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2391 return 0;
2392 }
2393
2394 /* readahead nat pages to be scanned */
2395 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2396 META_NAT, true);
2397
2398 down_read(&nm_i->nat_tree_lock);
2399
2400 while (1) {
2401 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2402 nm_i->nat_block_bitmap)) {
2403 struct page *page = get_current_nat_page(sbi, nid);
2404
2405 if (IS_ERR(page)) {
2406 ret = PTR_ERR(page);
2407 } else {
2408 ret = scan_nat_page(sbi, page, nid);
2409 f2fs_put_page(page, 1);
2410 }
2411
2412 if (ret) {
2413 up_read(&nm_i->nat_tree_lock);
2414 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2415 return ret;
2416 }
2417 }
2418
2419 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2420 if (unlikely(nid >= nm_i->max_nid))
2421 nid = 0;
2422
2423 if (++i >= FREE_NID_PAGES)
2424 break;
2425 }
2426
2427 /* go to the next free nat pages to find free nids abundantly */
2428 nm_i->next_scan_nid = nid;
2429
2430 /* find free nids from current sum_pages */
2431 scan_curseg_cache(sbi);
2432
2433 up_read(&nm_i->nat_tree_lock);
2434
2435 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2436 nm_i->ra_nid_pages, META_NAT, false);
2437
2438 return 0;
2439 }
2440
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2441 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2442 {
2443 int ret;
2444
2445 mutex_lock(&NM_I(sbi)->build_lock);
2446 ret = __f2fs_build_free_nids(sbi, sync, mount);
2447 mutex_unlock(&NM_I(sbi)->build_lock);
2448
2449 return ret;
2450 }
2451
2452 /*
2453 * If this function returns success, caller can obtain a new nid
2454 * from second parameter of this function.
2455 * The returned nid could be used ino as well as nid when inode is created.
2456 */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2457 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2458 {
2459 struct f2fs_nm_info *nm_i = NM_I(sbi);
2460 struct free_nid *i = NULL;
2461 retry:
2462 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2463 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2464 return false;
2465 }
2466
2467 spin_lock(&nm_i->nid_list_lock);
2468
2469 if (unlikely(nm_i->available_nids == 0)) {
2470 spin_unlock(&nm_i->nid_list_lock);
2471 return false;
2472 }
2473
2474 /* We should not use stale free nids created by f2fs_build_free_nids */
2475 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2476 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2477 i = list_first_entry(&nm_i->free_nid_list,
2478 struct free_nid, list);
2479 *nid = i->nid;
2480
2481 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2482 nm_i->available_nids--;
2483
2484 update_free_nid_bitmap(sbi, *nid, false, false);
2485
2486 spin_unlock(&nm_i->nid_list_lock);
2487 return true;
2488 }
2489 spin_unlock(&nm_i->nid_list_lock);
2490
2491 /* Let's scan nat pages and its caches to get free nids */
2492 if (!f2fs_build_free_nids(sbi, true, false))
2493 goto retry;
2494 return false;
2495 }
2496
2497 /*
2498 * f2fs_alloc_nid() should be called prior to this function.
2499 */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2500 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2501 {
2502 struct f2fs_nm_info *nm_i = NM_I(sbi);
2503 struct free_nid *i;
2504
2505 spin_lock(&nm_i->nid_list_lock);
2506 i = __lookup_free_nid_list(nm_i, nid);
2507 f2fs_bug_on(sbi, !i);
2508 __remove_free_nid(sbi, i, PREALLOC_NID);
2509 spin_unlock(&nm_i->nid_list_lock);
2510
2511 kmem_cache_free(free_nid_slab, i);
2512 }
2513
2514 /*
2515 * f2fs_alloc_nid() should be called prior to this function.
2516 */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2517 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2518 {
2519 struct f2fs_nm_info *nm_i = NM_I(sbi);
2520 struct free_nid *i;
2521 bool need_free = false;
2522
2523 if (!nid)
2524 return;
2525
2526 spin_lock(&nm_i->nid_list_lock);
2527 i = __lookup_free_nid_list(nm_i, nid);
2528 f2fs_bug_on(sbi, !i);
2529
2530 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2531 __remove_free_nid(sbi, i, PREALLOC_NID);
2532 need_free = true;
2533 } else {
2534 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2535 }
2536
2537 nm_i->available_nids++;
2538
2539 update_free_nid_bitmap(sbi, nid, true, false);
2540
2541 spin_unlock(&nm_i->nid_list_lock);
2542
2543 if (need_free)
2544 kmem_cache_free(free_nid_slab, i);
2545 }
2546
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2547 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2548 {
2549 struct f2fs_nm_info *nm_i = NM_I(sbi);
2550 int nr = nr_shrink;
2551
2552 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2553 return 0;
2554
2555 if (!mutex_trylock(&nm_i->build_lock))
2556 return 0;
2557
2558 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2559 struct free_nid *i, *next;
2560 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2561
2562 spin_lock(&nm_i->nid_list_lock);
2563 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2564 if (!nr_shrink || !batch ||
2565 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2566 break;
2567 __remove_free_nid(sbi, i, FREE_NID);
2568 kmem_cache_free(free_nid_slab, i);
2569 nr_shrink--;
2570 batch--;
2571 }
2572 spin_unlock(&nm_i->nid_list_lock);
2573 }
2574
2575 mutex_unlock(&nm_i->build_lock);
2576
2577 return nr - nr_shrink;
2578 }
2579
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2580 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2581 {
2582 void *src_addr, *dst_addr;
2583 size_t inline_size;
2584 struct page *ipage;
2585 struct f2fs_inode *ri;
2586
2587 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2588 if (IS_ERR(ipage))
2589 return PTR_ERR(ipage);
2590
2591 ri = F2FS_INODE(page);
2592 if (ri->i_inline & F2FS_INLINE_XATTR) {
2593 set_inode_flag(inode, FI_INLINE_XATTR);
2594 } else {
2595 clear_inode_flag(inode, FI_INLINE_XATTR);
2596 goto update_inode;
2597 }
2598
2599 dst_addr = inline_xattr_addr(inode, ipage);
2600 src_addr = inline_xattr_addr(inode, page);
2601 inline_size = inline_xattr_size(inode);
2602
2603 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2604 memcpy(dst_addr, src_addr, inline_size);
2605 update_inode:
2606 f2fs_update_inode(inode, ipage);
2607 f2fs_put_page(ipage, 1);
2608 return 0;
2609 }
2610
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2611 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2612 {
2613 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2614 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2615 nid_t new_xnid;
2616 struct dnode_of_data dn;
2617 struct node_info ni;
2618 struct page *xpage;
2619 int err;
2620
2621 if (!prev_xnid)
2622 goto recover_xnid;
2623
2624 /* 1: invalidate the previous xattr nid */
2625 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2626 if (err)
2627 return err;
2628
2629 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2630 dec_valid_node_count(sbi, inode, false);
2631 set_node_addr(sbi, &ni, NULL_ADDR, false);
2632
2633 recover_xnid:
2634 /* 2: update xattr nid in inode */
2635 if (!f2fs_alloc_nid(sbi, &new_xnid))
2636 return -ENOSPC;
2637
2638 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2639 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2640 if (IS_ERR(xpage)) {
2641 f2fs_alloc_nid_failed(sbi, new_xnid);
2642 return PTR_ERR(xpage);
2643 }
2644
2645 f2fs_alloc_nid_done(sbi, new_xnid);
2646 f2fs_update_inode_page(inode);
2647
2648 /* 3: update and set xattr node page dirty */
2649 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2650
2651 set_page_dirty(xpage);
2652 f2fs_put_page(xpage, 1);
2653
2654 return 0;
2655 }
2656
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2657 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2658 {
2659 struct f2fs_inode *src, *dst;
2660 nid_t ino = ino_of_node(page);
2661 struct node_info old_ni, new_ni;
2662 struct page *ipage;
2663 int err;
2664
2665 err = f2fs_get_node_info(sbi, ino, &old_ni);
2666 if (err)
2667 return err;
2668
2669 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2670 return -EINVAL;
2671 retry:
2672 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2673 if (!ipage) {
2674 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2675 goto retry;
2676 }
2677
2678 /* Should not use this inode from free nid list */
2679 remove_free_nid(sbi, ino);
2680
2681 if (!PageUptodate(ipage))
2682 SetPageUptodate(ipage);
2683 fill_node_footer(ipage, ino, ino, 0, true);
2684 set_cold_node(ipage, false);
2685
2686 src = F2FS_INODE(page);
2687 dst = F2FS_INODE(ipage);
2688
2689 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2690 dst->i_size = 0;
2691 dst->i_blocks = cpu_to_le64(1);
2692 dst->i_links = cpu_to_le32(1);
2693 dst->i_xattr_nid = 0;
2694 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2695 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2696 dst->i_extra_isize = src->i_extra_isize;
2697
2698 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2699 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2700 i_inline_xattr_size))
2701 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2702
2703 if (f2fs_sb_has_project_quota(sbi) &&
2704 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2705 i_projid))
2706 dst->i_projid = src->i_projid;
2707
2708 if (f2fs_sb_has_inode_crtime(sbi) &&
2709 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2710 i_crtime_nsec)) {
2711 dst->i_crtime = src->i_crtime;
2712 dst->i_crtime_nsec = src->i_crtime_nsec;
2713 }
2714 }
2715
2716 new_ni = old_ni;
2717 new_ni.ino = ino;
2718
2719 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2720 WARN_ON(1);
2721 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2722 inc_valid_inode_count(sbi);
2723 set_page_dirty(ipage);
2724 f2fs_put_page(ipage, 1);
2725 return 0;
2726 }
2727
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2728 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2729 unsigned int segno, struct f2fs_summary_block *sum)
2730 {
2731 struct f2fs_node *rn;
2732 struct f2fs_summary *sum_entry;
2733 block_t addr;
2734 int i, idx, last_offset, nrpages;
2735
2736 /* scan the node segment */
2737 last_offset = sbi->blocks_per_seg;
2738 addr = START_BLOCK(sbi, segno);
2739 sum_entry = &sum->entries[0];
2740
2741 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2742 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2743
2744 /* readahead node pages */
2745 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2746
2747 for (idx = addr; idx < addr + nrpages; idx++) {
2748 struct page *page = f2fs_get_tmp_page(sbi, idx);
2749
2750 if (IS_ERR(page))
2751 return PTR_ERR(page);
2752
2753 rn = F2FS_NODE(page);
2754 sum_entry->nid = rn->footer.nid;
2755 sum_entry->version = 0;
2756 sum_entry->ofs_in_node = 0;
2757 sum_entry++;
2758 f2fs_put_page(page, 1);
2759 }
2760
2761 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2762 addr + nrpages);
2763 }
2764 return 0;
2765 }
2766
remove_nats_in_journal(struct f2fs_sb_info * sbi)2767 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2768 {
2769 struct f2fs_nm_info *nm_i = NM_I(sbi);
2770 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2771 struct f2fs_journal *journal = curseg->journal;
2772 int i;
2773
2774 down_write(&curseg->journal_rwsem);
2775 for (i = 0; i < nats_in_cursum(journal); i++) {
2776 struct nat_entry *ne;
2777 struct f2fs_nat_entry raw_ne;
2778 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2779
2780 raw_ne = nat_in_journal(journal, i);
2781
2782 ne = __lookup_nat_cache(nm_i, nid);
2783 if (!ne) {
2784 ne = __alloc_nat_entry(nid, true);
2785 __init_nat_entry(nm_i, ne, &raw_ne, true);
2786 }
2787
2788 /*
2789 * if a free nat in journal has not been used after last
2790 * checkpoint, we should remove it from available nids,
2791 * since later we will add it again.
2792 */
2793 if (!get_nat_flag(ne, IS_DIRTY) &&
2794 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2795 spin_lock(&nm_i->nid_list_lock);
2796 nm_i->available_nids--;
2797 spin_unlock(&nm_i->nid_list_lock);
2798 }
2799
2800 __set_nat_cache_dirty(nm_i, ne);
2801 }
2802 update_nats_in_cursum(journal, -i);
2803 up_write(&curseg->journal_rwsem);
2804 }
2805
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2806 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2807 struct list_head *head, int max)
2808 {
2809 struct nat_entry_set *cur;
2810
2811 if (nes->entry_cnt >= max)
2812 goto add_out;
2813
2814 list_for_each_entry(cur, head, set_list) {
2815 if (cur->entry_cnt >= nes->entry_cnt) {
2816 list_add(&nes->set_list, cur->set_list.prev);
2817 return;
2818 }
2819 }
2820 add_out:
2821 list_add_tail(&nes->set_list, head);
2822 }
2823
__update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2824 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2825 struct page *page)
2826 {
2827 struct f2fs_nm_info *nm_i = NM_I(sbi);
2828 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2829 struct f2fs_nat_block *nat_blk = page_address(page);
2830 int valid = 0;
2831 int i = 0;
2832
2833 if (!enabled_nat_bits(sbi, NULL))
2834 return;
2835
2836 if (nat_index == 0) {
2837 valid = 1;
2838 i = 1;
2839 }
2840 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2841 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2842 valid++;
2843 }
2844 if (valid == 0) {
2845 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2846 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2847 return;
2848 }
2849
2850 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2851 if (valid == NAT_ENTRY_PER_BLOCK)
2852 __set_bit_le(nat_index, nm_i->full_nat_bits);
2853 else
2854 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2855 }
2856
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)2857 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2858 struct nat_entry_set *set, struct cp_control *cpc)
2859 {
2860 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2861 struct f2fs_journal *journal = curseg->journal;
2862 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2863 bool to_journal = true;
2864 struct f2fs_nat_block *nat_blk;
2865 struct nat_entry *ne, *cur;
2866 struct page *page = NULL;
2867
2868 /*
2869 * there are two steps to flush nat entries:
2870 * #1, flush nat entries to journal in current hot data summary block.
2871 * #2, flush nat entries to nat page.
2872 */
2873 if (enabled_nat_bits(sbi, cpc) ||
2874 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2875 to_journal = false;
2876
2877 if (to_journal) {
2878 down_write(&curseg->journal_rwsem);
2879 } else {
2880 page = get_next_nat_page(sbi, start_nid);
2881 if (IS_ERR(page))
2882 return PTR_ERR(page);
2883
2884 nat_blk = page_address(page);
2885 f2fs_bug_on(sbi, !nat_blk);
2886 }
2887
2888 /* flush dirty nats in nat entry set */
2889 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2890 struct f2fs_nat_entry *raw_ne;
2891 nid_t nid = nat_get_nid(ne);
2892 int offset;
2893
2894 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2895
2896 if (to_journal) {
2897 offset = f2fs_lookup_journal_in_cursum(journal,
2898 NAT_JOURNAL, nid, 1);
2899 f2fs_bug_on(sbi, offset < 0);
2900 raw_ne = &nat_in_journal(journal, offset);
2901 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2902 } else {
2903 raw_ne = &nat_blk->entries[nid - start_nid];
2904 }
2905 raw_nat_from_node_info(raw_ne, &ne->ni);
2906 nat_reset_flag(ne);
2907 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2908 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2909 add_free_nid(sbi, nid, false, true);
2910 } else {
2911 spin_lock(&NM_I(sbi)->nid_list_lock);
2912 update_free_nid_bitmap(sbi, nid, false, false);
2913 spin_unlock(&NM_I(sbi)->nid_list_lock);
2914 }
2915 }
2916
2917 if (to_journal) {
2918 up_write(&curseg->journal_rwsem);
2919 } else {
2920 __update_nat_bits(sbi, start_nid, page);
2921 f2fs_put_page(page, 1);
2922 }
2923
2924 /* Allow dirty nats by node block allocation in write_begin */
2925 if (!set->entry_cnt) {
2926 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2927 kmem_cache_free(nat_entry_set_slab, set);
2928 }
2929 return 0;
2930 }
2931
2932 /*
2933 * This function is called during the checkpointing process.
2934 */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)2935 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2936 {
2937 struct f2fs_nm_info *nm_i = NM_I(sbi);
2938 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2939 struct f2fs_journal *journal = curseg->journal;
2940 struct nat_entry_set *setvec[SETVEC_SIZE];
2941 struct nat_entry_set *set, *tmp;
2942 unsigned int found;
2943 nid_t set_idx = 0;
2944 LIST_HEAD(sets);
2945 int err = 0;
2946
2947 /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2948 if (enabled_nat_bits(sbi, cpc)) {
2949 down_write(&nm_i->nat_tree_lock);
2950 remove_nats_in_journal(sbi);
2951 up_write(&nm_i->nat_tree_lock);
2952 }
2953
2954 if (!nm_i->dirty_nat_cnt)
2955 return 0;
2956
2957 down_write(&nm_i->nat_tree_lock);
2958
2959 /*
2960 * if there are no enough space in journal to store dirty nat
2961 * entries, remove all entries from journal and merge them
2962 * into nat entry set.
2963 */
2964 if (enabled_nat_bits(sbi, cpc) ||
2965 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2966 remove_nats_in_journal(sbi);
2967
2968 while ((found = __gang_lookup_nat_set(nm_i,
2969 set_idx, SETVEC_SIZE, setvec))) {
2970 unsigned idx;
2971 set_idx = setvec[found - 1]->set + 1;
2972 for (idx = 0; idx < found; idx++)
2973 __adjust_nat_entry_set(setvec[idx], &sets,
2974 MAX_NAT_JENTRIES(journal));
2975 }
2976
2977 /* flush dirty nats in nat entry set */
2978 list_for_each_entry_safe(set, tmp, &sets, set_list) {
2979 err = __flush_nat_entry_set(sbi, set, cpc);
2980 if (err)
2981 break;
2982 }
2983
2984 up_write(&nm_i->nat_tree_lock);
2985 /* Allow dirty nats by node block allocation in write_begin */
2986
2987 return err;
2988 }
2989
__get_nat_bitmaps(struct f2fs_sb_info * sbi)2990 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2991 {
2992 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2993 struct f2fs_nm_info *nm_i = NM_I(sbi);
2994 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2995 unsigned int i;
2996 __u64 cp_ver = cur_cp_version(ckpt);
2997 block_t nat_bits_addr;
2998
2999 if (!enabled_nat_bits(sbi, NULL))
3000 return 0;
3001
3002 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3003 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3004 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3005 if (!nm_i->nat_bits)
3006 return -ENOMEM;
3007
3008 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3009 nm_i->nat_bits_blocks;
3010 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3011 struct page *page;
3012
3013 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3014 if (IS_ERR(page))
3015 return PTR_ERR(page);
3016
3017 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3018 page_address(page), F2FS_BLKSIZE);
3019 f2fs_put_page(page, 1);
3020 }
3021
3022 cp_ver |= (cur_cp_crc(ckpt) << 32);
3023 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3024 disable_nat_bits(sbi, true);
3025 return 0;
3026 }
3027
3028 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3029 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3030
3031 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3032 return 0;
3033 }
3034
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3035 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3036 {
3037 struct f2fs_nm_info *nm_i = NM_I(sbi);
3038 unsigned int i = 0;
3039 nid_t nid, last_nid;
3040
3041 if (!enabled_nat_bits(sbi, NULL))
3042 return;
3043
3044 for (i = 0; i < nm_i->nat_blocks; i++) {
3045 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3046 if (i >= nm_i->nat_blocks)
3047 break;
3048
3049 __set_bit_le(i, nm_i->nat_block_bitmap);
3050
3051 nid = i * NAT_ENTRY_PER_BLOCK;
3052 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3053
3054 spin_lock(&NM_I(sbi)->nid_list_lock);
3055 for (; nid < last_nid; nid++)
3056 update_free_nid_bitmap(sbi, nid, true, true);
3057 spin_unlock(&NM_I(sbi)->nid_list_lock);
3058 }
3059
3060 for (i = 0; i < nm_i->nat_blocks; i++) {
3061 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3062 if (i >= nm_i->nat_blocks)
3063 break;
3064
3065 __set_bit_le(i, nm_i->nat_block_bitmap);
3066 }
3067 }
3068
init_node_manager(struct f2fs_sb_info * sbi)3069 static int init_node_manager(struct f2fs_sb_info *sbi)
3070 {
3071 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3072 struct f2fs_nm_info *nm_i = NM_I(sbi);
3073 unsigned char *version_bitmap;
3074 unsigned int nat_segs;
3075 int err;
3076
3077 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3078
3079 /* segment_count_nat includes pair segment so divide to 2. */
3080 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3081 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3082 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3083
3084 /* not used nids: 0, node, meta, (and root counted as valid node) */
3085 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3086 F2FS_RESERVED_NODE_NUM;
3087 nm_i->nid_cnt[FREE_NID] = 0;
3088 nm_i->nid_cnt[PREALLOC_NID] = 0;
3089 nm_i->nat_cnt = 0;
3090 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3091 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3092 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3093
3094 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3095 INIT_LIST_HEAD(&nm_i->free_nid_list);
3096 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3097 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3098 INIT_LIST_HEAD(&nm_i->nat_entries);
3099 spin_lock_init(&nm_i->nat_list_lock);
3100
3101 mutex_init(&nm_i->build_lock);
3102 spin_lock_init(&nm_i->nid_list_lock);
3103 init_rwsem(&nm_i->nat_tree_lock);
3104
3105 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3106 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3107 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3108 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3109 GFP_KERNEL);
3110 if (!nm_i->nat_bitmap)
3111 return -ENOMEM;
3112
3113 err = __get_nat_bitmaps(sbi);
3114 if (err)
3115 return err;
3116
3117 #ifdef CONFIG_F2FS_CHECK_FS
3118 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3119 GFP_KERNEL);
3120 if (!nm_i->nat_bitmap_mir)
3121 return -ENOMEM;
3122 #endif
3123
3124 return 0;
3125 }
3126
init_free_nid_cache(struct f2fs_sb_info * sbi)3127 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3128 {
3129 struct f2fs_nm_info *nm_i = NM_I(sbi);
3130 int i;
3131
3132 nm_i->free_nid_bitmap =
3133 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3134 nm_i->nat_blocks),
3135 GFP_KERNEL);
3136 if (!nm_i->free_nid_bitmap)
3137 return -ENOMEM;
3138
3139 for (i = 0; i < nm_i->nat_blocks; i++) {
3140 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3141 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3142 if (!nm_i->free_nid_bitmap[i])
3143 return -ENOMEM;
3144 }
3145
3146 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3147 GFP_KERNEL);
3148 if (!nm_i->nat_block_bitmap)
3149 return -ENOMEM;
3150
3151 nm_i->free_nid_count =
3152 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3153 nm_i->nat_blocks),
3154 GFP_KERNEL);
3155 if (!nm_i->free_nid_count)
3156 return -ENOMEM;
3157 return 0;
3158 }
3159
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3160 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3161 {
3162 int err;
3163
3164 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3165 GFP_KERNEL);
3166 if (!sbi->nm_info)
3167 return -ENOMEM;
3168
3169 err = init_node_manager(sbi);
3170 if (err)
3171 return err;
3172
3173 err = init_free_nid_cache(sbi);
3174 if (err)
3175 return err;
3176
3177 /* load free nid status from nat_bits table */
3178 load_free_nid_bitmap(sbi);
3179
3180 return f2fs_build_free_nids(sbi, true, true);
3181 }
3182
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3183 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3184 {
3185 struct f2fs_nm_info *nm_i = NM_I(sbi);
3186 struct free_nid *i, *next_i;
3187 struct nat_entry *natvec[NATVEC_SIZE];
3188 struct nat_entry_set *setvec[SETVEC_SIZE];
3189 nid_t nid = 0;
3190 unsigned int found;
3191
3192 if (!nm_i)
3193 return;
3194
3195 /* destroy free nid list */
3196 spin_lock(&nm_i->nid_list_lock);
3197 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3198 __remove_free_nid(sbi, i, FREE_NID);
3199 spin_unlock(&nm_i->nid_list_lock);
3200 kmem_cache_free(free_nid_slab, i);
3201 spin_lock(&nm_i->nid_list_lock);
3202 }
3203 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3204 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3205 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3206 spin_unlock(&nm_i->nid_list_lock);
3207
3208 /* destroy nat cache */
3209 down_write(&nm_i->nat_tree_lock);
3210 while ((found = __gang_lookup_nat_cache(nm_i,
3211 nid, NATVEC_SIZE, natvec))) {
3212 unsigned idx;
3213
3214 nid = nat_get_nid(natvec[found - 1]) + 1;
3215 for (idx = 0; idx < found; idx++) {
3216 spin_lock(&nm_i->nat_list_lock);
3217 list_del(&natvec[idx]->list);
3218 spin_unlock(&nm_i->nat_list_lock);
3219
3220 __del_from_nat_cache(nm_i, natvec[idx]);
3221 }
3222 }
3223 f2fs_bug_on(sbi, nm_i->nat_cnt);
3224
3225 /* destroy nat set cache */
3226 nid = 0;
3227 while ((found = __gang_lookup_nat_set(nm_i,
3228 nid, SETVEC_SIZE, setvec))) {
3229 unsigned idx;
3230
3231 nid = setvec[found - 1]->set + 1;
3232 for (idx = 0; idx < found; idx++) {
3233 /* entry_cnt is not zero, when cp_error was occurred */
3234 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3235 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3236 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3237 }
3238 }
3239 up_write(&nm_i->nat_tree_lock);
3240
3241 kvfree(nm_i->nat_block_bitmap);
3242 if (nm_i->free_nid_bitmap) {
3243 int i;
3244
3245 for (i = 0; i < nm_i->nat_blocks; i++)
3246 kvfree(nm_i->free_nid_bitmap[i]);
3247 kvfree(nm_i->free_nid_bitmap);
3248 }
3249 kvfree(nm_i->free_nid_count);
3250
3251 kvfree(nm_i->nat_bitmap);
3252 kvfree(nm_i->nat_bits);
3253 #ifdef CONFIG_F2FS_CHECK_FS
3254 kvfree(nm_i->nat_bitmap_mir);
3255 #endif
3256 sbi->nm_info = NULL;
3257 kfree(nm_i);
3258 }
3259
f2fs_create_node_manager_caches(void)3260 int __init f2fs_create_node_manager_caches(void)
3261 {
3262 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3263 sizeof(struct nat_entry));
3264 if (!nat_entry_slab)
3265 goto fail;
3266
3267 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3268 sizeof(struct free_nid));
3269 if (!free_nid_slab)
3270 goto destroy_nat_entry;
3271
3272 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3273 sizeof(struct nat_entry_set));
3274 if (!nat_entry_set_slab)
3275 goto destroy_free_nid;
3276
3277 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3278 sizeof(struct fsync_node_entry));
3279 if (!fsync_node_entry_slab)
3280 goto destroy_nat_entry_set;
3281 return 0;
3282
3283 destroy_nat_entry_set:
3284 kmem_cache_destroy(nat_entry_set_slab);
3285 destroy_free_nid:
3286 kmem_cache_destroy(free_nid_slab);
3287 destroy_nat_entry:
3288 kmem_cache_destroy(nat_entry_slab);
3289 fail:
3290 return -ENOMEM;
3291 }
3292
f2fs_destroy_node_manager_caches(void)3293 void f2fs_destroy_node_manager_caches(void)
3294 {
3295 kmem_cache_destroy(fsync_node_entry_slab);
3296 kmem_cache_destroy(nat_entry_set_slab);
3297 kmem_cache_destroy(free_nid_slab);
3298 kmem_cache_destroy(nat_entry_slab);
3299 }
3300