1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition)					\
35 	do {								\
36 		if (WARN_ON(condition))					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 	} while (0)
39 #endif
40 
41 enum {
42 	FAULT_KMALLOC,
43 	FAULT_KVMALLOC,
44 	FAULT_PAGE_ALLOC,
45 	FAULT_PAGE_GET,
46 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
47 	FAULT_ALLOC_NID,
48 	FAULT_ORPHAN,
49 	FAULT_BLOCK,
50 	FAULT_DIR_DEPTH,
51 	FAULT_EVICT_INODE,
52 	FAULT_TRUNCATE,
53 	FAULT_READ_IO,
54 	FAULT_CHECKPOINT,
55 	FAULT_DISCARD,
56 	FAULT_WRITE_IO,
57 	FAULT_SLAB_ALLOC,
58 	FAULT_MAX,
59 };
60 
61 #ifdef CONFIG_F2FS_FAULT_INJECTION
62 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
63 
64 struct f2fs_fault_info {
65 	atomic_t inject_ops;
66 	unsigned int inject_rate;
67 	unsigned int inject_type;
68 };
69 
70 extern const char *f2fs_fault_name[FAULT_MAX];
71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
72 #endif
73 
74 /*
75  * For mount options
76  */
77 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
78 #define F2FS_MOUNT_DISCARD		0x00000004
79 #define F2FS_MOUNT_NOHEAP		0x00000008
80 #define F2FS_MOUNT_XATTR_USER		0x00000010
81 #define F2FS_MOUNT_POSIX_ACL		0x00000020
82 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
83 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
84 #define F2FS_MOUNT_INLINE_DATA		0x00000100
85 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
86 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
87 #define F2FS_MOUNT_NOBARRIER		0x00000800
88 #define F2FS_MOUNT_FASTBOOT		0x00001000
89 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
90 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
91 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
92 #define F2FS_MOUNT_USRQUOTA		0x00080000
93 #define F2FS_MOUNT_GRPQUOTA		0x00100000
94 #define F2FS_MOUNT_PRJQUOTA		0x00200000
95 #define F2FS_MOUNT_QUOTA		0x00400000
96 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
97 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
98 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
99 #define F2FS_MOUNT_NORECOVERY		0x04000000
100 #define F2FS_MOUNT_ATGC			0x08000000
101 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
102 #define	F2FS_MOUNT_GC_MERGE		0x20000000
103 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
104 
105 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
106 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
107 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
108 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
109 
110 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
111 		typecheck(unsigned long long, b) &&			\
112 		((long long)((a) - (b)) > 0))
113 
114 typedef u32 block_t;	/*
115 			 * should not change u32, since it is the on-disk block
116 			 * address format, __le32.
117 			 */
118 typedef u32 nid_t;
119 
120 #define COMPRESS_EXT_NUM		16
121 
122 struct f2fs_mount_info {
123 	unsigned int opt;
124 	int write_io_size_bits;		/* Write IO size bits */
125 	block_t root_reserved_blocks;	/* root reserved blocks */
126 	kuid_t s_resuid;		/* reserved blocks for uid */
127 	kgid_t s_resgid;		/* reserved blocks for gid */
128 	int active_logs;		/* # of active logs */
129 	int inline_xattr_size;		/* inline xattr size */
130 #ifdef CONFIG_F2FS_FAULT_INJECTION
131 	struct f2fs_fault_info fault_info;	/* For fault injection */
132 #endif
133 #ifdef CONFIG_QUOTA
134 	/* Names of quota files with journalled quota */
135 	char *s_qf_names[MAXQUOTAS];
136 	int s_jquota_fmt;			/* Format of quota to use */
137 #endif
138 	/* For which write hints are passed down to block layer */
139 	int whint_mode;
140 	int alloc_mode;			/* segment allocation policy */
141 	int fsync_mode;			/* fsync policy */
142 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
143 	int bggc_mode;			/* bggc mode: off, on or sync */
144 	int discard_unit;		/*
145 					 * discard command's offset/size should
146 					 * be aligned to this unit: block,
147 					 * segment or section
148 					 */
149 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
150 	block_t unusable_cap_perc;	/* percentage for cap */
151 	block_t unusable_cap;		/* Amount of space allowed to be
152 					 * unusable when disabling checkpoint
153 					 */
154 
155 	/* For compression */
156 	unsigned char compress_algorithm;	/* algorithm type */
157 	unsigned char compress_log_size;	/* cluster log size */
158 	unsigned char compress_level;		/* compress level */
159 	bool compress_chksum;			/* compressed data chksum */
160 	unsigned char compress_ext_cnt;		/* extension count */
161 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
162 	int compress_mode;			/* compression mode */
163 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
164 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
165 };
166 
167 #define F2FS_FEATURE_ENCRYPT		0x0001
168 #define F2FS_FEATURE_BLKZONED		0x0002
169 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
170 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
171 #define F2FS_FEATURE_PRJQUOTA		0x0010
172 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
173 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
174 #define F2FS_FEATURE_QUOTA_INO		0x0080
175 #define F2FS_FEATURE_INODE_CRTIME	0x0100
176 #define F2FS_FEATURE_LOST_FOUND		0x0200
177 #define F2FS_FEATURE_VERITY		0x0400
178 #define F2FS_FEATURE_SB_CHKSUM		0x0800
179 #define F2FS_FEATURE_CASEFOLD		0x1000
180 #define F2FS_FEATURE_COMPRESSION	0x2000
181 #define F2FS_FEATURE_RO			0x4000
182 
183 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
184 	((raw_super->feature & cpu_to_le32(mask)) != 0)
185 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
186 #define F2FS_SET_FEATURE(sbi, mask)					\
187 	(sbi->raw_super->feature |= cpu_to_le32(mask))
188 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
189 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
190 
191 /*
192  * Default values for user and/or group using reserved blocks
193  */
194 #define	F2FS_DEF_RESUID		0
195 #define	F2FS_DEF_RESGID		0
196 
197 /*
198  * For checkpoint manager
199  */
200 enum {
201 	NAT_BITMAP,
202 	SIT_BITMAP
203 };
204 
205 #define	CP_UMOUNT	0x00000001
206 #define	CP_FASTBOOT	0x00000002
207 #define	CP_SYNC		0x00000004
208 #define	CP_RECOVERY	0x00000008
209 #define	CP_DISCARD	0x00000010
210 #define CP_TRIMMED	0x00000020
211 #define CP_PAUSE	0x00000040
212 #define CP_RESIZE 	0x00000080
213 
214 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
215 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
216 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
217 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
218 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
219 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
220 #define DEF_CP_INTERVAL			60	/* 60 secs */
221 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
222 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
223 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
224 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
225 
226 struct cp_control {
227 	int reason;
228 	__u64 trim_start;
229 	__u64 trim_end;
230 	__u64 trim_minlen;
231 };
232 
233 /*
234  * indicate meta/data type
235  */
236 enum {
237 	META_CP,
238 	META_NAT,
239 	META_SIT,
240 	META_SSA,
241 	META_MAX,
242 	META_POR,
243 	DATA_GENERIC,		/* check range only */
244 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
245 	DATA_GENERIC_ENHANCE_READ,	/*
246 					 * strong check on range and segment
247 					 * bitmap but no warning due to race
248 					 * condition of read on truncated area
249 					 * by extent_cache
250 					 */
251 	META_GENERIC,
252 };
253 
254 /* for the list of ino */
255 enum {
256 	ORPHAN_INO,		/* for orphan ino list */
257 	APPEND_INO,		/* for append ino list */
258 	UPDATE_INO,		/* for update ino list */
259 	TRANS_DIR_INO,		/* for trasactions dir ino list */
260 	FLUSH_INO,		/* for multiple device flushing */
261 	MAX_INO_ENTRY,		/* max. list */
262 };
263 
264 struct ino_entry {
265 	struct list_head list;		/* list head */
266 	nid_t ino;			/* inode number */
267 	unsigned int dirty_device;	/* dirty device bitmap */
268 };
269 
270 /* for the list of inodes to be GCed */
271 struct inode_entry {
272 	struct list_head list;	/* list head */
273 	struct inode *inode;	/* vfs inode pointer */
274 };
275 
276 struct fsync_node_entry {
277 	struct list_head list;	/* list head */
278 	struct page *page;	/* warm node page pointer */
279 	unsigned int seq_id;	/* sequence id */
280 };
281 
282 struct ckpt_req {
283 	struct completion wait;		/* completion for checkpoint done */
284 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
285 	int ret;			/* return code of checkpoint */
286 	ktime_t queue_time;		/* request queued time */
287 };
288 
289 struct ckpt_req_control {
290 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
291 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
292 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
293 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
294 	atomic_t total_ckpt;		/* # of total ckpts */
295 	atomic_t queued_ckpt;		/* # of queued ckpts */
296 	struct llist_head issue_list;	/* list for command issue */
297 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
298 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
299 	unsigned int peak_time;		/* peak wait time in msec until now */
300 };
301 
302 /* for the bitmap indicate blocks to be discarded */
303 struct discard_entry {
304 	struct list_head list;	/* list head */
305 	block_t start_blkaddr;	/* start blockaddr of current segment */
306 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
307 };
308 
309 /* default discard granularity of inner discard thread, unit: block count */
310 #define DEFAULT_DISCARD_GRANULARITY		16
311 
312 /* max discard pend list number */
313 #define MAX_PLIST_NUM		512
314 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
315 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
316 
317 enum {
318 	D_PREP,			/* initial */
319 	D_PARTIAL,		/* partially submitted */
320 	D_SUBMIT,		/* all submitted */
321 	D_DONE,			/* finished */
322 };
323 
324 struct discard_info {
325 	block_t lstart;			/* logical start address */
326 	block_t len;			/* length */
327 	block_t start;			/* actual start address in dev */
328 };
329 
330 struct discard_cmd {
331 	struct rb_node rb_node;		/* rb node located in rb-tree */
332 	union {
333 		struct {
334 			block_t lstart;	/* logical start address */
335 			block_t len;	/* length */
336 			block_t start;	/* actual start address in dev */
337 		};
338 		struct discard_info di;	/* discard info */
339 
340 	};
341 	struct list_head list;		/* command list */
342 	struct completion wait;		/* compleation */
343 	struct block_device *bdev;	/* bdev */
344 	unsigned short ref;		/* reference count */
345 	unsigned char state;		/* state */
346 	unsigned char queued;		/* queued discard */
347 	int error;			/* bio error */
348 	spinlock_t lock;		/* for state/bio_ref updating */
349 	unsigned short bio_ref;		/* bio reference count */
350 };
351 
352 enum {
353 	DPOLICY_BG,
354 	DPOLICY_FORCE,
355 	DPOLICY_FSTRIM,
356 	DPOLICY_UMOUNT,
357 	MAX_DPOLICY,
358 };
359 
360 struct discard_policy {
361 	int type;			/* type of discard */
362 	unsigned int min_interval;	/* used for candidates exist */
363 	unsigned int mid_interval;	/* used for device busy */
364 	unsigned int max_interval;	/* used for candidates not exist */
365 	unsigned int max_requests;	/* # of discards issued per round */
366 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
367 	bool io_aware;			/* issue discard in idle time */
368 	bool sync;			/* submit discard with REQ_SYNC flag */
369 	bool ordered;			/* issue discard by lba order */
370 	bool timeout;			/* discard timeout for put_super */
371 	unsigned int granularity;	/* discard granularity */
372 };
373 
374 struct discard_cmd_control {
375 	struct task_struct *f2fs_issue_discard;	/* discard thread */
376 	struct list_head entry_list;		/* 4KB discard entry list */
377 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
378 	struct list_head wait_list;		/* store on-flushing entries */
379 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
380 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
381 	unsigned int discard_wake;		/* to wake up discard thread */
382 	struct mutex cmd_lock;
383 	unsigned int nr_discards;		/* # of discards in the list */
384 	unsigned int max_discards;		/* max. discards to be issued */
385 	unsigned int discard_granularity;	/* discard granularity */
386 	unsigned int undiscard_blks;		/* # of undiscard blocks */
387 	unsigned int next_pos;			/* next discard position */
388 	atomic_t issued_discard;		/* # of issued discard */
389 	atomic_t queued_discard;		/* # of queued discard */
390 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
391 	struct rb_root_cached root;		/* root of discard rb-tree */
392 	bool rbtree_check;			/* config for consistence check */
393 };
394 
395 /* for the list of fsync inodes, used only during recovery */
396 struct fsync_inode_entry {
397 	struct list_head list;	/* list head */
398 	struct inode *inode;	/* vfs inode pointer */
399 	block_t blkaddr;	/* block address locating the last fsync */
400 	block_t last_dentry;	/* block address locating the last dentry */
401 };
402 
403 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
404 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
405 
406 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
407 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
408 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
409 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
410 
411 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
412 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
413 
update_nats_in_cursum(struct f2fs_journal * journal,int i)414 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
415 {
416 	int before = nats_in_cursum(journal);
417 
418 	journal->n_nats = cpu_to_le16(before + i);
419 	return before;
420 }
421 
update_sits_in_cursum(struct f2fs_journal * journal,int i)422 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
423 {
424 	int before = sits_in_cursum(journal);
425 
426 	journal->n_sits = cpu_to_le16(before + i);
427 	return before;
428 }
429 
__has_cursum_space(struct f2fs_journal * journal,int size,int type)430 static inline bool __has_cursum_space(struct f2fs_journal *journal,
431 							int size, int type)
432 {
433 	if (type == NAT_JOURNAL)
434 		return size <= MAX_NAT_JENTRIES(journal);
435 	return size <= MAX_SIT_JENTRIES(journal);
436 }
437 
438 /* for inline stuff */
439 #define DEF_INLINE_RESERVED_SIZE	1
440 static inline int get_extra_isize(struct inode *inode);
441 static inline int get_inline_xattr_addrs(struct inode *inode);
442 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
443 				(CUR_ADDRS_PER_INODE(inode) -		\
444 				get_inline_xattr_addrs(inode) -	\
445 				DEF_INLINE_RESERVED_SIZE))
446 
447 /* for inline dir */
448 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
449 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
450 				BITS_PER_BYTE + 1))
451 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
452 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
453 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
454 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
455 				NR_INLINE_DENTRY(inode) + \
456 				INLINE_DENTRY_BITMAP_SIZE(inode)))
457 
458 /*
459  * For INODE and NODE manager
460  */
461 /* for directory operations */
462 
463 struct f2fs_filename {
464 	/*
465 	 * The filename the user specified.  This is NULL for some
466 	 * filesystem-internal operations, e.g. converting an inline directory
467 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
468 	 */
469 	const struct qstr *usr_fname;
470 
471 	/*
472 	 * The on-disk filename.  For encrypted directories, this is encrypted.
473 	 * This may be NULL for lookups in an encrypted dir without the key.
474 	 */
475 	struct fscrypt_str disk_name;
476 
477 	/* The dirhash of this filename */
478 	f2fs_hash_t hash;
479 
480 #ifdef CONFIG_FS_ENCRYPTION
481 	/*
482 	 * For lookups in encrypted directories: either the buffer backing
483 	 * disk_name, or a buffer that holds the decoded no-key name.
484 	 */
485 	struct fscrypt_str crypto_buf;
486 #endif
487 #ifdef CONFIG_UNICODE
488 	/*
489 	 * For casefolded directories: the casefolded name, but it's left NULL
490 	 * if the original name is not valid Unicode, if the directory is both
491 	 * casefolded and encrypted and its encryption key is unavailable, or if
492 	 * the filesystem is doing an internal operation where usr_fname is also
493 	 * NULL.  In all these cases we fall back to treating the name as an
494 	 * opaque byte sequence.
495 	 */
496 	struct fscrypt_str cf_name;
497 #endif
498 };
499 
500 struct f2fs_dentry_ptr {
501 	struct inode *inode;
502 	void *bitmap;
503 	struct f2fs_dir_entry *dentry;
504 	__u8 (*filename)[F2FS_SLOT_LEN];
505 	int max;
506 	int nr_bitmap;
507 };
508 
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)509 static inline void make_dentry_ptr_block(struct inode *inode,
510 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
511 {
512 	d->inode = inode;
513 	d->max = NR_DENTRY_IN_BLOCK;
514 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
515 	d->bitmap = t->dentry_bitmap;
516 	d->dentry = t->dentry;
517 	d->filename = t->filename;
518 }
519 
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)520 static inline void make_dentry_ptr_inline(struct inode *inode,
521 					struct f2fs_dentry_ptr *d, void *t)
522 {
523 	int entry_cnt = NR_INLINE_DENTRY(inode);
524 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
525 	int reserved_size = INLINE_RESERVED_SIZE(inode);
526 
527 	d->inode = inode;
528 	d->max = entry_cnt;
529 	d->nr_bitmap = bitmap_size;
530 	d->bitmap = t;
531 	d->dentry = t + bitmap_size + reserved_size;
532 	d->filename = t + bitmap_size + reserved_size +
533 					SIZE_OF_DIR_ENTRY * entry_cnt;
534 }
535 
536 /*
537  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
538  * as its node offset to distinguish from index node blocks.
539  * But some bits are used to mark the node block.
540  */
541 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
542 				>> OFFSET_BIT_SHIFT)
543 enum {
544 	ALLOC_NODE,			/* allocate a new node page if needed */
545 	LOOKUP_NODE,			/* look up a node without readahead */
546 	LOOKUP_NODE_RA,			/*
547 					 * look up a node with readahead called
548 					 * by get_data_block.
549 					 */
550 };
551 
552 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
553 
554 /* congestion wait timeout value, default: 20ms */
555 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
556 
557 /* maximum retry quota flush count */
558 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
559 
560 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
561 
562 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
563 
564 /* for in-memory extent cache entry */
565 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
566 
567 /* number of extent info in extent cache we try to shrink */
568 #define EXTENT_CACHE_SHRINK_NUMBER	128
569 
570 struct rb_entry {
571 	struct rb_node rb_node;		/* rb node located in rb-tree */
572 	union {
573 		struct {
574 			unsigned int ofs;	/* start offset of the entry */
575 			unsigned int len;	/* length of the entry */
576 		};
577 		unsigned long long key;		/* 64-bits key */
578 	} __packed;
579 };
580 
581 struct extent_info {
582 	unsigned int fofs;		/* start offset in a file */
583 	unsigned int len;		/* length of the extent */
584 	u32 blk;			/* start block address of the extent */
585 #ifdef CONFIG_F2FS_FS_COMPRESSION
586 	unsigned int c_len;		/* physical extent length of compressed blocks */
587 #endif
588 };
589 
590 struct extent_node {
591 	struct rb_node rb_node;		/* rb node located in rb-tree */
592 	struct extent_info ei;		/* extent info */
593 	struct list_head list;		/* node in global extent list of sbi */
594 	struct extent_tree *et;		/* extent tree pointer */
595 };
596 
597 struct extent_tree {
598 	nid_t ino;			/* inode number */
599 	struct rb_root_cached root;	/* root of extent info rb-tree */
600 	struct extent_node *cached_en;	/* recently accessed extent node */
601 	struct extent_info largest;	/* largested extent info */
602 	struct list_head list;		/* to be used by sbi->zombie_list */
603 	rwlock_t lock;			/* protect extent info rb-tree */
604 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
605 	bool largest_updated;		/* largest extent updated */
606 };
607 
608 /*
609  * This structure is taken from ext4_map_blocks.
610  *
611  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
612  */
613 #define F2FS_MAP_NEW		(1 << BH_New)
614 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
615 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
616 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
617 				F2FS_MAP_UNWRITTEN)
618 
619 struct f2fs_map_blocks {
620 	block_t m_pblk;
621 	block_t m_lblk;
622 	unsigned int m_len;
623 	unsigned int m_flags;
624 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
625 	pgoff_t *m_next_extent;		/* point to next possible extent */
626 	int m_seg_type;
627 	bool m_may_create;		/* indicate it is from write path */
628 };
629 
630 /* for flag in get_data_block */
631 enum {
632 	F2FS_GET_BLOCK_DEFAULT,
633 	F2FS_GET_BLOCK_FIEMAP,
634 	F2FS_GET_BLOCK_BMAP,
635 	F2FS_GET_BLOCK_DIO,
636 	F2FS_GET_BLOCK_PRE_DIO,
637 	F2FS_GET_BLOCK_PRE_AIO,
638 	F2FS_GET_BLOCK_PRECACHE,
639 };
640 
641 /*
642  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
643  */
644 #define FADVISE_COLD_BIT	0x01
645 #define FADVISE_LOST_PINO_BIT	0x02
646 #define FADVISE_ENCRYPT_BIT	0x04
647 #define FADVISE_ENC_NAME_BIT	0x08
648 #define FADVISE_KEEP_SIZE_BIT	0x10
649 #define FADVISE_HOT_BIT		0x20
650 #define FADVISE_VERITY_BIT	0x40
651 
652 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
653 
654 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
655 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
656 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
657 
658 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
659 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
660 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
661 
662 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
663 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
664 
665 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
666 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
667 
668 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
669 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
670 
671 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
672 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
673 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
674 
675 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
676 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
677 
678 #define DEF_DIR_LEVEL		0
679 
680 enum {
681 	GC_FAILURE_PIN,
682 	GC_FAILURE_ATOMIC,
683 	MAX_GC_FAILURE
684 };
685 
686 /* used for f2fs_inode_info->flags */
687 enum {
688 	FI_NEW_INODE,		/* indicate newly allocated inode */
689 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
690 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
691 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
692 	FI_INC_LINK,		/* need to increment i_nlink */
693 	FI_ACL_MODE,		/* indicate acl mode */
694 	FI_NO_ALLOC,		/* should not allocate any blocks */
695 	FI_FREE_NID,		/* free allocated nide */
696 	FI_NO_EXTENT,		/* not to use the extent cache */
697 	FI_INLINE_XATTR,	/* used for inline xattr */
698 	FI_INLINE_DATA,		/* used for inline data*/
699 	FI_INLINE_DENTRY,	/* used for inline dentry */
700 	FI_APPEND_WRITE,	/* inode has appended data */
701 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
702 	FI_NEED_IPU,		/* used for ipu per file */
703 	FI_ATOMIC_FILE,		/* indicate atomic file */
704 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
705 	FI_VOLATILE_FILE,	/* indicate volatile file */
706 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
707 	FI_DROP_CACHE,		/* drop dirty page cache */
708 	FI_DATA_EXIST,		/* indicate data exists */
709 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
710 	FI_DO_DEFRAG,		/* indicate defragment is running */
711 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
712 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
713 	FI_HOT_DATA,		/* indicate file is hot */
714 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
715 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
716 	FI_PIN_FILE,		/* indicate file should not be gced */
717 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
718 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
719 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
720 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
721 	FI_MMAP_FILE,		/* indicate file was mmapped */
722 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
723 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
724 	FI_ALIGNED_WRITE,	/* enable aligned write */
725 	FI_MAX,			/* max flag, never be used */
726 };
727 
728 struct f2fs_inode_info {
729 	struct inode vfs_inode;		/* serve a vfs inode */
730 	unsigned long i_flags;		/* keep an inode flags for ioctl */
731 	unsigned char i_advise;		/* use to give file attribute hints */
732 	unsigned char i_dir_level;	/* use for dentry level for large dir */
733 	unsigned int i_current_depth;	/* only for directory depth */
734 	/* for gc failure statistic */
735 	unsigned int i_gc_failures[MAX_GC_FAILURE];
736 	unsigned int i_pino;		/* parent inode number */
737 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
738 
739 	/* Use below internally in f2fs*/
740 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
741 	struct rw_semaphore i_sem;	/* protect fi info */
742 	atomic_t dirty_pages;		/* # of dirty pages */
743 	f2fs_hash_t chash;		/* hash value of given file name */
744 	unsigned int clevel;		/* maximum level of given file name */
745 	struct task_struct *task;	/* lookup and create consistency */
746 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
747 	nid_t i_xattr_nid;		/* node id that contains xattrs */
748 	loff_t	last_disk_size;		/* lastly written file size */
749 	spinlock_t i_size_lock;		/* protect last_disk_size */
750 
751 #ifdef CONFIG_QUOTA
752 	struct dquot *i_dquot[MAXQUOTAS];
753 
754 	/* quota space reservation, managed internally by quota code */
755 	qsize_t i_reserved_quota;
756 #endif
757 	struct list_head dirty_list;	/* dirty list for dirs and files */
758 	struct list_head gdirty_list;	/* linked in global dirty list */
759 	struct list_head inmem_ilist;	/* list for inmem inodes */
760 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
761 	struct task_struct *inmem_task;	/* store inmemory task */
762 	struct mutex inmem_lock;	/* lock for inmemory pages */
763 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
764 
765 	/* avoid racing between foreground op and gc */
766 	struct rw_semaphore i_gc_rwsem[2];
767 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
768 
769 	int i_extra_isize;		/* size of extra space located in i_addr */
770 	kprojid_t i_projid;		/* id for project quota */
771 	int i_inline_xattr_size;	/* inline xattr size */
772 	struct timespec64 i_crtime;	/* inode creation time */
773 	struct timespec64 i_disk_time[4];/* inode disk times */
774 
775 	/* for file compress */
776 	atomic_t i_compr_blocks;		/* # of compressed blocks */
777 	unsigned char i_compress_algorithm;	/* algorithm type */
778 	unsigned char i_log_cluster_size;	/* log of cluster size */
779 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
780 	unsigned short i_compress_flag;		/* compress flag */
781 	unsigned int i_cluster_size;		/* cluster size */
782 };
783 
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)784 static inline void get_extent_info(struct extent_info *ext,
785 					struct f2fs_extent *i_ext)
786 {
787 	ext->fofs = le32_to_cpu(i_ext->fofs);
788 	ext->blk = le32_to_cpu(i_ext->blk);
789 	ext->len = le32_to_cpu(i_ext->len);
790 }
791 
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)792 static inline void set_raw_extent(struct extent_info *ext,
793 					struct f2fs_extent *i_ext)
794 {
795 	i_ext->fofs = cpu_to_le32(ext->fofs);
796 	i_ext->blk = cpu_to_le32(ext->blk);
797 	i_ext->len = cpu_to_le32(ext->len);
798 }
799 
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)800 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
801 						u32 blk, unsigned int len)
802 {
803 	ei->fofs = fofs;
804 	ei->blk = blk;
805 	ei->len = len;
806 #ifdef CONFIG_F2FS_FS_COMPRESSION
807 	ei->c_len = 0;
808 #endif
809 }
810 
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)811 static inline bool __is_discard_mergeable(struct discard_info *back,
812 			struct discard_info *front, unsigned int max_len)
813 {
814 	return (back->lstart + back->len == front->lstart) &&
815 		(back->len + front->len <= max_len);
816 }
817 
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)818 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
819 			struct discard_info *back, unsigned int max_len)
820 {
821 	return __is_discard_mergeable(back, cur, max_len);
822 }
823 
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)824 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
825 			struct discard_info *front, unsigned int max_len)
826 {
827 	return __is_discard_mergeable(cur, front, max_len);
828 }
829 
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)830 static inline bool __is_extent_mergeable(struct extent_info *back,
831 						struct extent_info *front)
832 {
833 #ifdef CONFIG_F2FS_FS_COMPRESSION
834 	if (back->c_len && back->len != back->c_len)
835 		return false;
836 	if (front->c_len && front->len != front->c_len)
837 		return false;
838 #endif
839 	return (back->fofs + back->len == front->fofs &&
840 			back->blk + back->len == front->blk);
841 }
842 
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)843 static inline bool __is_back_mergeable(struct extent_info *cur,
844 						struct extent_info *back)
845 {
846 	return __is_extent_mergeable(back, cur);
847 }
848 
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)849 static inline bool __is_front_mergeable(struct extent_info *cur,
850 						struct extent_info *front)
851 {
852 	return __is_extent_mergeable(cur, front);
853 }
854 
855 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)856 static inline void __try_update_largest_extent(struct extent_tree *et,
857 						struct extent_node *en)
858 {
859 	if (en->ei.len > et->largest.len) {
860 		et->largest = en->ei;
861 		et->largest_updated = true;
862 	}
863 }
864 
865 /*
866  * For free nid management
867  */
868 enum nid_state {
869 	FREE_NID,		/* newly added to free nid list */
870 	PREALLOC_NID,		/* it is preallocated */
871 	MAX_NID_STATE,
872 };
873 
874 enum nat_state {
875 	TOTAL_NAT,
876 	DIRTY_NAT,
877 	RECLAIMABLE_NAT,
878 	MAX_NAT_STATE,
879 };
880 
881 struct f2fs_nm_info {
882 	block_t nat_blkaddr;		/* base disk address of NAT */
883 	nid_t max_nid;			/* maximum possible node ids */
884 	nid_t available_nids;		/* # of available node ids */
885 	nid_t next_scan_nid;		/* the next nid to be scanned */
886 	unsigned int ram_thresh;	/* control the memory footprint */
887 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
888 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
889 
890 	/* NAT cache management */
891 	struct radix_tree_root nat_root;/* root of the nat entry cache */
892 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
893 	struct rw_semaphore nat_tree_lock;	/* protect nat entry tree */
894 	struct list_head nat_entries;	/* cached nat entry list (clean) */
895 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
896 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
897 	unsigned int nat_blocks;	/* # of nat blocks */
898 
899 	/* free node ids management */
900 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
901 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
902 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
903 	spinlock_t nid_list_lock;	/* protect nid lists ops */
904 	struct mutex build_lock;	/* lock for build free nids */
905 	unsigned char **free_nid_bitmap;
906 	unsigned char *nat_block_bitmap;
907 	unsigned short *free_nid_count;	/* free nid count of NAT block */
908 
909 	/* for checkpoint */
910 	char *nat_bitmap;		/* NAT bitmap pointer */
911 
912 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
913 	unsigned char *nat_bits;	/* NAT bits blocks */
914 	unsigned char *full_nat_bits;	/* full NAT pages */
915 	unsigned char *empty_nat_bits;	/* empty NAT pages */
916 #ifdef CONFIG_F2FS_CHECK_FS
917 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
918 #endif
919 	int bitmap_size;		/* bitmap size */
920 };
921 
922 /*
923  * this structure is used as one of function parameters.
924  * all the information are dedicated to a given direct node block determined
925  * by the data offset in a file.
926  */
927 struct dnode_of_data {
928 	struct inode *inode;		/* vfs inode pointer */
929 	struct page *inode_page;	/* its inode page, NULL is possible */
930 	struct page *node_page;		/* cached direct node page */
931 	nid_t nid;			/* node id of the direct node block */
932 	unsigned int ofs_in_node;	/* data offset in the node page */
933 	bool inode_page_locked;		/* inode page is locked or not */
934 	bool node_changed;		/* is node block changed */
935 	char cur_level;			/* level of hole node page */
936 	char max_level;			/* level of current page located */
937 	block_t	data_blkaddr;		/* block address of the node block */
938 };
939 
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)940 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
941 		struct page *ipage, struct page *npage, nid_t nid)
942 {
943 	memset(dn, 0, sizeof(*dn));
944 	dn->inode = inode;
945 	dn->inode_page = ipage;
946 	dn->node_page = npage;
947 	dn->nid = nid;
948 }
949 
950 /*
951  * For SIT manager
952  *
953  * By default, there are 6 active log areas across the whole main area.
954  * When considering hot and cold data separation to reduce cleaning overhead,
955  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
956  * respectively.
957  * In the current design, you should not change the numbers intentionally.
958  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
959  * logs individually according to the underlying devices. (default: 6)
960  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
961  * data and 8 for node logs.
962  */
963 #define	NR_CURSEG_DATA_TYPE	(3)
964 #define NR_CURSEG_NODE_TYPE	(3)
965 #define NR_CURSEG_INMEM_TYPE	(2)
966 #define NR_CURSEG_RO_TYPE	(2)
967 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
968 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
969 
970 enum {
971 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
972 	CURSEG_WARM_DATA,	/* data blocks */
973 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
974 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
975 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
976 	CURSEG_COLD_NODE,	/* indirect node blocks */
977 	NR_PERSISTENT_LOG,	/* number of persistent log */
978 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
979 				/* pinned file that needs consecutive block address */
980 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
981 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
982 };
983 
984 struct flush_cmd {
985 	struct completion wait;
986 	struct llist_node llnode;
987 	nid_t ino;
988 	int ret;
989 };
990 
991 struct flush_cmd_control {
992 	struct task_struct *f2fs_issue_flush;	/* flush thread */
993 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
994 	atomic_t issued_flush;			/* # of issued flushes */
995 	atomic_t queued_flush;			/* # of queued flushes */
996 	struct llist_head issue_list;		/* list for command issue */
997 	struct llist_node *dispatch_list;	/* list for command dispatch */
998 };
999 
1000 struct f2fs_sm_info {
1001 	struct sit_info *sit_info;		/* whole segment information */
1002 	struct free_segmap_info *free_info;	/* free segment information */
1003 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1004 	struct curseg_info *curseg_array;	/* active segment information */
1005 
1006 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
1007 
1008 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1009 	block_t main_blkaddr;		/* start block address of main area */
1010 	block_t ssa_blkaddr;		/* start block address of SSA area */
1011 
1012 	unsigned int segment_count;	/* total # of segments */
1013 	unsigned int main_segments;	/* # of segments in main area */
1014 	unsigned int reserved_segments;	/* # of reserved segments */
1015 	unsigned int ovp_segments;	/* # of overprovision segments */
1016 
1017 	/* a threshold to reclaim prefree segments */
1018 	unsigned int rec_prefree_segments;
1019 
1020 	/* for batched trimming */
1021 	unsigned int trim_sections;		/* # of sections to trim */
1022 
1023 	struct list_head sit_entry_set;	/* sit entry set list */
1024 
1025 	unsigned int ipu_policy;	/* in-place-update policy */
1026 	unsigned int min_ipu_util;	/* in-place-update threshold */
1027 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1028 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1029 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1030 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1031 
1032 	/* for flush command control */
1033 	struct flush_cmd_control *fcc_info;
1034 
1035 	/* for discard command control */
1036 	struct discard_cmd_control *dcc_info;
1037 };
1038 
1039 /*
1040  * For superblock
1041  */
1042 /*
1043  * COUNT_TYPE for monitoring
1044  *
1045  * f2fs monitors the number of several block types such as on-writeback,
1046  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1047  */
1048 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1049 enum count_type {
1050 	F2FS_DIRTY_DENTS,
1051 	F2FS_DIRTY_DATA,
1052 	F2FS_DIRTY_QDATA,
1053 	F2FS_DIRTY_NODES,
1054 	F2FS_DIRTY_META,
1055 	F2FS_INMEM_PAGES,
1056 	F2FS_DIRTY_IMETA,
1057 	F2FS_WB_CP_DATA,
1058 	F2FS_WB_DATA,
1059 	F2FS_RD_DATA,
1060 	F2FS_RD_NODE,
1061 	F2FS_RD_META,
1062 	F2FS_DIO_WRITE,
1063 	F2FS_DIO_READ,
1064 	NR_COUNT_TYPE,
1065 };
1066 
1067 /*
1068  * The below are the page types of bios used in submit_bio().
1069  * The available types are:
1070  * DATA			User data pages. It operates as async mode.
1071  * NODE			Node pages. It operates as async mode.
1072  * META			FS metadata pages such as SIT, NAT, CP.
1073  * NR_PAGE_TYPE		The number of page types.
1074  * META_FLUSH		Make sure the previous pages are written
1075  *			with waiting the bio's completion
1076  * ...			Only can be used with META.
1077  */
1078 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1079 enum page_type {
1080 	DATA,
1081 	NODE,
1082 	META,
1083 	NR_PAGE_TYPE,
1084 	META_FLUSH,
1085 	INMEM,		/* the below types are used by tracepoints only. */
1086 	INMEM_DROP,
1087 	INMEM_INVALIDATE,
1088 	INMEM_REVOKE,
1089 	IPU,
1090 	OPU,
1091 };
1092 
1093 enum temp_type {
1094 	HOT = 0,	/* must be zero for meta bio */
1095 	WARM,
1096 	COLD,
1097 	NR_TEMP_TYPE,
1098 };
1099 
1100 enum need_lock_type {
1101 	LOCK_REQ = 0,
1102 	LOCK_DONE,
1103 	LOCK_RETRY,
1104 };
1105 
1106 enum cp_reason_type {
1107 	CP_NO_NEEDED,
1108 	CP_NON_REGULAR,
1109 	CP_COMPRESSED,
1110 	CP_HARDLINK,
1111 	CP_SB_NEED_CP,
1112 	CP_WRONG_PINO,
1113 	CP_NO_SPC_ROLL,
1114 	CP_NODE_NEED_CP,
1115 	CP_FASTBOOT_MODE,
1116 	CP_SPEC_LOG_NUM,
1117 	CP_RECOVER_DIR,
1118 };
1119 
1120 enum iostat_type {
1121 	/* WRITE IO */
1122 	APP_DIRECT_IO,			/* app direct write IOs */
1123 	APP_BUFFERED_IO,		/* app buffered write IOs */
1124 	APP_WRITE_IO,			/* app write IOs */
1125 	APP_MAPPED_IO,			/* app mapped IOs */
1126 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1127 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1128 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1129 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1130 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1131 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1132 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1133 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1134 
1135 	/* READ IO */
1136 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1137 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1138 	APP_READ_IO,			/* app read IOs */
1139 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1140 	FS_DATA_READ_IO,		/* data read IOs */
1141 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1142 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1143 	FS_NODE_READ_IO,		/* node read IOs */
1144 	FS_META_READ_IO,		/* meta read IOs */
1145 
1146 	/* other */
1147 	FS_DISCARD,			/* discard */
1148 	NR_IO_TYPE,
1149 };
1150 
1151 struct f2fs_io_info {
1152 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1153 	nid_t ino;		/* inode number */
1154 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1155 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1156 	int op;			/* contains REQ_OP_ */
1157 	int op_flags;		/* req_flag_bits */
1158 	block_t new_blkaddr;	/* new block address to be written */
1159 	block_t old_blkaddr;	/* old block address before Cow */
1160 	struct page *page;	/* page to be written */
1161 	struct page *encrypted_page;	/* encrypted page */
1162 	struct page *compressed_page;	/* compressed page */
1163 	struct list_head list;		/* serialize IOs */
1164 	bool submitted;		/* indicate IO submission */
1165 	int need_lock;		/* indicate we need to lock cp_rwsem */
1166 	bool in_list;		/* indicate fio is in io_list */
1167 	bool is_por;		/* indicate IO is from recovery or not */
1168 	bool retry;		/* need to reallocate block address */
1169 	int compr_blocks;	/* # of compressed block addresses */
1170 	bool encrypted;		/* indicate file is encrypted */
1171 	enum iostat_type io_type;	/* io type */
1172 	struct writeback_control *io_wbc; /* writeback control */
1173 	struct bio **bio;		/* bio for ipu */
1174 	sector_t *last_block;		/* last block number in bio */
1175 	unsigned char version;		/* version of the node */
1176 };
1177 
1178 struct bio_entry {
1179 	struct bio *bio;
1180 	struct list_head list;
1181 };
1182 
1183 #define is_read_io(rw) ((rw) == READ)
1184 struct f2fs_bio_info {
1185 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1186 	struct bio *bio;		/* bios to merge */
1187 	sector_t last_block_in_bio;	/* last block number */
1188 	struct f2fs_io_info fio;	/* store buffered io info. */
1189 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1190 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1191 	struct list_head io_list;	/* track fios */
1192 	struct list_head bio_list;	/* bio entry list head */
1193 	struct rw_semaphore bio_list_lock;	/* lock to protect bio entry list */
1194 };
1195 
1196 #define FDEV(i)				(sbi->devs[i])
1197 #define RDEV(i)				(raw_super->devs[i])
1198 struct f2fs_dev_info {
1199 	struct block_device *bdev;
1200 	char path[MAX_PATH_LEN];
1201 	unsigned int total_segments;
1202 	block_t start_blk;
1203 	block_t end_blk;
1204 #ifdef CONFIG_BLK_DEV_ZONED
1205 	unsigned int nr_blkz;		/* Total number of zones */
1206 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1207 	block_t *zone_capacity_blocks;  /* Array of zone capacity in blks */
1208 #endif
1209 };
1210 
1211 enum inode_type {
1212 	DIR_INODE,			/* for dirty dir inode */
1213 	FILE_INODE,			/* for dirty regular/symlink inode */
1214 	DIRTY_META,			/* for all dirtied inode metadata */
1215 	ATOMIC_FILE,			/* for all atomic files */
1216 	NR_INODE_TYPE,
1217 };
1218 
1219 /* for inner inode cache management */
1220 struct inode_management {
1221 	struct radix_tree_root ino_root;	/* ino entry array */
1222 	spinlock_t ino_lock;			/* for ino entry lock */
1223 	struct list_head ino_list;		/* inode list head */
1224 	unsigned long ino_num;			/* number of entries */
1225 };
1226 
1227 /* for GC_AT */
1228 struct atgc_management {
1229 	bool atgc_enabled;			/* ATGC is enabled or not */
1230 	struct rb_root_cached root;		/* root of victim rb-tree */
1231 	struct list_head victim_list;		/* linked with all victim entries */
1232 	unsigned int victim_count;		/* victim count in rb-tree */
1233 	unsigned int candidate_ratio;		/* candidate ratio */
1234 	unsigned int max_candidate_count;	/* max candidate count */
1235 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1236 	unsigned long long age_threshold;	/* age threshold */
1237 };
1238 
1239 /* For s_flag in struct f2fs_sb_info */
1240 enum {
1241 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1242 	SBI_IS_CLOSE,				/* specify unmounting */
1243 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1244 	SBI_POR_DOING,				/* recovery is doing or not */
1245 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1246 	SBI_NEED_CP,				/* need to checkpoint */
1247 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1248 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1249 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1250 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1251 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1252 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1253 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1254 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1255 };
1256 
1257 enum {
1258 	CP_TIME,
1259 	REQ_TIME,
1260 	DISCARD_TIME,
1261 	GC_TIME,
1262 	DISABLE_TIME,
1263 	UMOUNT_DISCARD_TIMEOUT,
1264 	MAX_TIME,
1265 };
1266 
1267 enum {
1268 	GC_NORMAL,
1269 	GC_IDLE_CB,
1270 	GC_IDLE_GREEDY,
1271 	GC_IDLE_AT,
1272 	GC_URGENT_HIGH,
1273 	GC_URGENT_LOW,
1274 	MAX_GC_MODE,
1275 };
1276 
1277 enum {
1278 	BGGC_MODE_ON,		/* background gc is on */
1279 	BGGC_MODE_OFF,		/* background gc is off */
1280 	BGGC_MODE_SYNC,		/*
1281 				 * background gc is on, migrating blocks
1282 				 * like foreground gc
1283 				 */
1284 };
1285 
1286 enum {
1287 	FS_MODE_ADAPTIVE,	/* use both lfs/ssr allocation */
1288 	FS_MODE_LFS,		/* use lfs allocation only */
1289 };
1290 
1291 enum {
1292 	WHINT_MODE_OFF,		/* not pass down write hints */
1293 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1294 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1295 };
1296 
1297 enum {
1298 	ALLOC_MODE_DEFAULT,	/* stay default */
1299 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1300 };
1301 
1302 enum fsync_mode {
1303 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1304 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1305 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1306 };
1307 
1308 enum {
1309 	COMPR_MODE_FS,		/*
1310 				 * automatically compress compression
1311 				 * enabled files
1312 				 */
1313 	COMPR_MODE_USER,	/*
1314 				 * automatical compression is disabled.
1315 				 * user can control the file compression
1316 				 * using ioctls
1317 				 */
1318 };
1319 
1320 enum {
1321 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1322 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1323 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1324 };
1325 
1326 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1327 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1328 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1329 
1330 /*
1331  * Layout of f2fs page.private:
1332  *
1333  * Layout A: lowest bit should be 1
1334  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1335  * bit 0	PAGE_PRIVATE_NOT_POINTER
1336  * bit 1	PAGE_PRIVATE_ATOMIC_WRITE
1337  * bit 2	PAGE_PRIVATE_DUMMY_WRITE
1338  * bit 3	PAGE_PRIVATE_ONGOING_MIGRATION
1339  * bit 4	PAGE_PRIVATE_INLINE_INODE
1340  * bit 5	PAGE_PRIVATE_REF_RESOURCE
1341  * bit 6-	f2fs private data
1342  *
1343  * Layout B: lowest bit should be 0
1344  * page.private is a wrapped pointer.
1345  */
1346 enum {
1347 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1348 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1349 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1350 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1351 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1352 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1353 	PAGE_PRIVATE_MAX
1354 };
1355 
1356 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1357 static inline bool page_private_##name(struct page *page) \
1358 { \
1359 	return PagePrivate(page) && \
1360 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1361 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1362 }
1363 
1364 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1365 static inline void set_page_private_##name(struct page *page) \
1366 { \
1367 	if (!PagePrivate(page)) { \
1368 		get_page(page); \
1369 		SetPagePrivate(page); \
1370 		set_page_private(page, 0); \
1371 	} \
1372 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1373 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1374 }
1375 
1376 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1377 static inline void clear_page_private_##name(struct page *page) \
1378 { \
1379 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1380 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1381 		set_page_private(page, 0); \
1382 		if (PagePrivate(page)) { \
1383 			ClearPagePrivate(page); \
1384 			put_page(page); \
1385 		}\
1386 	} \
1387 }
1388 
1389 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1390 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1391 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1392 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1393 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1394 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1395 
1396 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1397 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1398 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1399 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1400 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1401 
1402 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1403 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1404 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1405 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1406 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1407 
get_page_private_data(struct page * page)1408 static inline unsigned long get_page_private_data(struct page *page)
1409 {
1410 	unsigned long data = page_private(page);
1411 
1412 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1413 		return 0;
1414 	return data >> PAGE_PRIVATE_MAX;
1415 }
1416 
set_page_private_data(struct page * page,unsigned long data)1417 static inline void set_page_private_data(struct page *page, unsigned long data)
1418 {
1419 	if (!PagePrivate(page)) {
1420 		get_page(page);
1421 		SetPagePrivate(page);
1422 		set_page_private(page, 0);
1423 	}
1424 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1425 	page_private(page) |= data << PAGE_PRIVATE_MAX;
1426 }
1427 
clear_page_private_data(struct page * page)1428 static inline void clear_page_private_data(struct page *page)
1429 {
1430 	page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1431 	if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1432 		set_page_private(page, 0);
1433 		if (PagePrivate(page)) {
1434 			ClearPagePrivate(page);
1435 			put_page(page);
1436 		}
1437 	}
1438 }
1439 
1440 /* For compression */
1441 enum compress_algorithm_type {
1442 	COMPRESS_LZO,
1443 	COMPRESS_LZ4,
1444 	COMPRESS_ZSTD,
1445 	COMPRESS_LZORLE,
1446 	COMPRESS_MAX,
1447 };
1448 
1449 enum compress_flag {
1450 	COMPRESS_CHKSUM,
1451 	COMPRESS_MAX_FLAG,
1452 };
1453 
1454 #define	COMPRESS_WATERMARK			20
1455 #define	COMPRESS_PERCENT			20
1456 
1457 #define COMPRESS_DATA_RESERVED_SIZE		4
1458 struct compress_data {
1459 	__le32 clen;			/* compressed data size */
1460 	__le32 chksum;			/* compressed data chksum */
1461 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1462 	u8 cdata[];			/* compressed data */
1463 };
1464 
1465 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1466 
1467 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1468 
1469 #define	COMPRESS_LEVEL_OFFSET	8
1470 
1471 /* compress context */
1472 struct compress_ctx {
1473 	struct inode *inode;		/* inode the context belong to */
1474 	pgoff_t cluster_idx;		/* cluster index number */
1475 	unsigned int cluster_size;	/* page count in cluster */
1476 	unsigned int log_cluster_size;	/* log of cluster size */
1477 	struct page **rpages;		/* pages store raw data in cluster */
1478 	unsigned int nr_rpages;		/* total page number in rpages */
1479 	struct page **cpages;		/* pages store compressed data in cluster */
1480 	unsigned int nr_cpages;		/* total page number in cpages */
1481 	void *rbuf;			/* virtual mapped address on rpages */
1482 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1483 	size_t rlen;			/* valid data length in rbuf */
1484 	size_t clen;			/* valid data length in cbuf */
1485 	void *private;			/* payload buffer for specified compression algorithm */
1486 	void *private2;			/* extra payload buffer */
1487 };
1488 
1489 /* compress context for write IO path */
1490 struct compress_io_ctx {
1491 	u32 magic;			/* magic number to indicate page is compressed */
1492 	struct inode *inode;		/* inode the context belong to */
1493 	struct page **rpages;		/* pages store raw data in cluster */
1494 	unsigned int nr_rpages;		/* total page number in rpages */
1495 	atomic_t pending_pages;		/* in-flight compressed page count */
1496 };
1497 
1498 /* Context for decompressing one cluster on the read IO path */
1499 struct decompress_io_ctx {
1500 	u32 magic;			/* magic number to indicate page is compressed */
1501 	struct inode *inode;		/* inode the context belong to */
1502 	pgoff_t cluster_idx;		/* cluster index number */
1503 	unsigned int cluster_size;	/* page count in cluster */
1504 	unsigned int log_cluster_size;	/* log of cluster size */
1505 	struct page **rpages;		/* pages store raw data in cluster */
1506 	unsigned int nr_rpages;		/* total page number in rpages */
1507 	struct page **cpages;		/* pages store compressed data in cluster */
1508 	unsigned int nr_cpages;		/* total page number in cpages */
1509 	struct page **tpages;		/* temp pages to pad holes in cluster */
1510 	void *rbuf;			/* virtual mapped address on rpages */
1511 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1512 	size_t rlen;			/* valid data length in rbuf */
1513 	size_t clen;			/* valid data length in cbuf */
1514 
1515 	/*
1516 	 * The number of compressed pages remaining to be read in this cluster.
1517 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1518 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1519 	 * is decompressed (or an error is reported).
1520 	 *
1521 	 * If an error occurs before all the pages have been submitted for I/O,
1522 	 * then this will never reach 0.  In this case the I/O submitter is
1523 	 * responsible for calling f2fs_decompress_end_io() instead.
1524 	 */
1525 	atomic_t remaining_pages;
1526 
1527 	/*
1528 	 * Number of references to this decompress_io_ctx.
1529 	 *
1530 	 * One reference is held for I/O completion.  This reference is dropped
1531 	 * after the pagecache pages are updated and unlocked -- either after
1532 	 * decompression (and verity if enabled), or after an error.
1533 	 *
1534 	 * In addition, each compressed page holds a reference while it is in a
1535 	 * bio.  These references are necessary prevent compressed pages from
1536 	 * being freed while they are still in a bio.
1537 	 */
1538 	refcount_t refcnt;
1539 
1540 	bool failed;			/* IO error occurred before decompression? */
1541 	bool need_verity;		/* need fs-verity verification after decompression? */
1542 	void *private;			/* payload buffer for specified decompression algorithm */
1543 	void *private2;			/* extra payload buffer */
1544 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1545 };
1546 
1547 #define NULL_CLUSTER			((unsigned int)(~0))
1548 #define MIN_COMPRESS_LOG_SIZE		2
1549 #define MAX_COMPRESS_LOG_SIZE		8
1550 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1551 
1552 struct f2fs_sb_info {
1553 	struct super_block *sb;			/* pointer to VFS super block */
1554 	struct proc_dir_entry *s_proc;		/* proc entry */
1555 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1556 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1557 	int valid_super_block;			/* valid super block no */
1558 	unsigned long s_flag;				/* flags for sbi */
1559 	struct mutex writepages;		/* mutex for writepages() */
1560 
1561 #ifdef CONFIG_BLK_DEV_ZONED
1562 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1563 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1564 #endif
1565 
1566 	/* for node-related operations */
1567 	struct f2fs_nm_info *nm_info;		/* node manager */
1568 	struct inode *node_inode;		/* cache node blocks */
1569 
1570 	/* for segment-related operations */
1571 	struct f2fs_sm_info *sm_info;		/* segment manager */
1572 
1573 	/* for bio operations */
1574 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1575 	/* keep migration IO order for LFS mode */
1576 	struct rw_semaphore io_order_lock;
1577 	mempool_t *write_io_dummy;		/* Dummy pages */
1578 
1579 	/* for checkpoint */
1580 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1581 	int cur_cp_pack;			/* remain current cp pack */
1582 	spinlock_t cp_lock;			/* for flag in ckpt */
1583 	struct inode *meta_inode;		/* cache meta blocks */
1584 	struct rw_semaphore cp_global_sem;	/* checkpoint procedure lock */
1585 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1586 	struct rw_semaphore node_write;		/* locking node writes */
1587 	struct rw_semaphore node_change;	/* locking node change */
1588 	wait_queue_head_t cp_wait;
1589 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1590 	long interval_time[MAX_TIME];		/* to store thresholds */
1591 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1592 
1593 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1594 
1595 	spinlock_t fsync_node_lock;		/* for node entry lock */
1596 	struct list_head fsync_node_list;	/* node list head */
1597 	unsigned int fsync_seg_id;		/* sequence id */
1598 	unsigned int fsync_node_num;		/* number of node entries */
1599 
1600 	/* for orphan inode, use 0'th array */
1601 	unsigned int max_orphans;		/* max orphan inodes */
1602 
1603 	/* for inode management */
1604 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1605 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1606 	struct mutex flush_lock;		/* for flush exclusion */
1607 
1608 	/* for extent tree cache */
1609 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1610 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1611 	struct list_head extent_list;		/* lru list for shrinker */
1612 	spinlock_t extent_lock;			/* locking extent lru list */
1613 	atomic_t total_ext_tree;		/* extent tree count */
1614 	struct list_head zombie_list;		/* extent zombie tree list */
1615 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1616 	atomic_t total_ext_node;		/* extent info count */
1617 
1618 	/* basic filesystem units */
1619 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1620 	unsigned int log_blocksize;		/* log2 block size */
1621 	unsigned int blocksize;			/* block size */
1622 	unsigned int root_ino_num;		/* root inode number*/
1623 	unsigned int node_ino_num;		/* node inode number*/
1624 	unsigned int meta_ino_num;		/* meta inode number*/
1625 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1626 	unsigned int blocks_per_seg;		/* blocks per segment */
1627 	unsigned int segs_per_sec;		/* segments per section */
1628 	unsigned int secs_per_zone;		/* sections per zone */
1629 	unsigned int total_sections;		/* total section count */
1630 	unsigned int total_node_count;		/* total node block count */
1631 	unsigned int total_valid_node_count;	/* valid node block count */
1632 	int dir_level;				/* directory level */
1633 	int readdir_ra;				/* readahead inode in readdir */
1634 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1635 
1636 	block_t user_block_count;		/* # of user blocks */
1637 	block_t total_valid_block_count;	/* # of valid blocks */
1638 	block_t discard_blks;			/* discard command candidats */
1639 	block_t last_valid_block_count;		/* for recovery */
1640 	block_t reserved_blocks;		/* configurable reserved blocks */
1641 	block_t current_reserved_blocks;	/* current reserved blocks */
1642 
1643 	/* Additional tracking for no checkpoint mode */
1644 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1645 
1646 	unsigned int nquota_files;		/* # of quota sysfile */
1647 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1648 
1649 	/* # of pages, see count_type */
1650 	atomic_t nr_pages[NR_COUNT_TYPE];
1651 	/* # of allocated blocks */
1652 	struct percpu_counter alloc_valid_block_count;
1653 
1654 	/* writeback control */
1655 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1656 
1657 	/* valid inode count */
1658 	struct percpu_counter total_valid_inode_count;
1659 
1660 	struct f2fs_mount_info mount_opt;	/* mount options */
1661 
1662 	/* for cleaning operations */
1663 	struct rw_semaphore gc_lock;		/*
1664 						 * semaphore for GC, avoid
1665 						 * race between GC and GC or CP
1666 						 */
1667 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1668 	struct atgc_management am;		/* atgc management */
1669 	unsigned int cur_victim_sec;		/* current victim section num */
1670 	unsigned int gc_mode;			/* current GC state */
1671 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1672 
1673 	/* for skip statistic */
1674 	unsigned int atomic_files;		/* # of opened atomic file */
1675 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1676 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1677 
1678 	/* threshold for gc trials on pinned files */
1679 	u64 gc_pin_file_threshold;
1680 	struct rw_semaphore pin_sem;
1681 
1682 	/* maximum # of trials to find a victim segment for SSR and GC */
1683 	unsigned int max_victim_search;
1684 	/* migration granularity of garbage collection, unit: segment */
1685 	unsigned int migration_granularity;
1686 
1687 	/*
1688 	 * for stat information.
1689 	 * one is for the LFS mode, and the other is for the SSR mode.
1690 	 */
1691 #ifdef CONFIG_F2FS_STAT_FS
1692 	struct f2fs_stat_info *stat_info;	/* FS status information */
1693 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1694 	unsigned int segment_count[2];		/* # of allocated segments */
1695 	unsigned int block_count[2];		/* # of allocated blocks */
1696 	atomic_t inplace_count;		/* # of inplace update */
1697 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1698 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1699 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1700 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1701 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1702 	atomic_t inline_inode;			/* # of inline_data inodes */
1703 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1704 	atomic_t compr_inode;			/* # of compressed inodes */
1705 	atomic64_t compr_blocks;		/* # of compressed blocks */
1706 	atomic_t vw_cnt;			/* # of volatile writes */
1707 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1708 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1709 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1710 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1711 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1712 #endif
1713 	spinlock_t stat_lock;			/* lock for stat operations */
1714 
1715 	/* to attach REQ_META|REQ_FUA flags */
1716 	unsigned int data_io_flag;
1717 	unsigned int node_io_flag;
1718 
1719 	/* For sysfs suppport */
1720 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1721 	struct completion s_kobj_unregister;
1722 
1723 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1724 	struct completion s_stat_kobj_unregister;
1725 
1726 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1727 	struct completion s_feature_list_kobj_unregister;
1728 
1729 	/* For shrinker support */
1730 	struct list_head s_list;
1731 	int s_ndevs;				/* number of devices */
1732 	struct f2fs_dev_info *devs;		/* for device list */
1733 	unsigned int dirty_device;		/* for checkpoint data flush */
1734 	spinlock_t dev_lock;			/* protect dirty_device */
1735 	struct mutex umount_mutex;
1736 	unsigned int shrinker_run_no;
1737 
1738 	/* For write statistics */
1739 	u64 sectors_written_start;
1740 	u64 kbytes_written;
1741 
1742 	/* Reference to checksum algorithm driver via cryptoapi */
1743 	struct crypto_shash *s_chksum_driver;
1744 
1745 	/* Precomputed FS UUID checksum for seeding other checksums */
1746 	__u32 s_chksum_seed;
1747 
1748 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1749 
1750 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1751 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1752 
1753 	/* For reclaimed segs statistics per each GC mode */
1754 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1755 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1756 
1757 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1758 
1759 #ifdef CONFIG_F2FS_FS_COMPRESSION
1760 	struct kmem_cache *page_array_slab;	/* page array entry */
1761 	unsigned int page_array_slab_size;	/* default page array slab size */
1762 
1763 	/* For runtime compression statistics */
1764 	u64 compr_written_block;
1765 	u64 compr_saved_block;
1766 	u32 compr_new_inode;
1767 
1768 	/* For compressed block cache */
1769 	struct inode *compress_inode;		/* cache compressed blocks */
1770 	unsigned int compress_percent;		/* cache page percentage */
1771 	unsigned int compress_watermark;	/* cache page watermark */
1772 	atomic_t compress_page_hit;		/* cache hit count */
1773 #endif
1774 
1775 #ifdef CONFIG_F2FS_IOSTAT
1776 	/* For app/fs IO statistics */
1777 	spinlock_t iostat_lock;
1778 	unsigned long long rw_iostat[NR_IO_TYPE];
1779 	unsigned long long prev_rw_iostat[NR_IO_TYPE];
1780 	bool iostat_enable;
1781 	unsigned long iostat_next_period;
1782 	unsigned int iostat_period_ms;
1783 
1784 	/* For io latency related statistics info in one iostat period */
1785 	spinlock_t iostat_lat_lock;
1786 	struct iostat_lat_info *iostat_io_lat;
1787 #endif
1788 };
1789 
1790 struct f2fs_private_dio {
1791 	struct inode *inode;
1792 	void *orig_private;
1793 	bio_end_io_t *orig_end_io;
1794 	bool write;
1795 };
1796 
1797 #ifdef CONFIG_F2FS_FAULT_INJECTION
1798 #define f2fs_show_injection_info(sbi, type)					\
1799 	printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",	\
1800 		KERN_INFO, sbi->sb->s_id,				\
1801 		f2fs_fault_name[type],					\
1802 		__func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1803 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1804 {
1805 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1806 
1807 	if (!ffi->inject_rate)
1808 		return false;
1809 
1810 	if (!IS_FAULT_SET(ffi, type))
1811 		return false;
1812 
1813 	atomic_inc(&ffi->inject_ops);
1814 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1815 		atomic_set(&ffi->inject_ops, 0);
1816 		return true;
1817 	}
1818 	return false;
1819 }
1820 #else
1821 #define f2fs_show_injection_info(sbi, type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1822 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1823 {
1824 	return false;
1825 }
1826 #endif
1827 
1828 /*
1829  * Test if the mounted volume is a multi-device volume.
1830  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1831  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1832  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1833  */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1834 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1835 {
1836 	return sbi->s_ndevs > 1;
1837 }
1838 
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1839 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1840 {
1841 	unsigned long now = jiffies;
1842 
1843 	sbi->last_time[type] = now;
1844 
1845 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1846 	if (type == REQ_TIME) {
1847 		sbi->last_time[DISCARD_TIME] = now;
1848 		sbi->last_time[GC_TIME] = now;
1849 	}
1850 }
1851 
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1852 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1853 {
1854 	unsigned long interval = sbi->interval_time[type] * HZ;
1855 
1856 	return time_after(jiffies, sbi->last_time[type] + interval);
1857 }
1858 
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1859 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1860 						int type)
1861 {
1862 	unsigned long interval = sbi->interval_time[type] * HZ;
1863 	unsigned int wait_ms = 0;
1864 	long delta;
1865 
1866 	delta = (sbi->last_time[type] + interval) - jiffies;
1867 	if (delta > 0)
1868 		wait_ms = jiffies_to_msecs(delta);
1869 
1870 	return wait_ms;
1871 }
1872 
1873 /*
1874  * Inline functions
1875  */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1876 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1877 			      const void *address, unsigned int length)
1878 {
1879 	struct {
1880 		struct shash_desc shash;
1881 		char ctx[4];
1882 	} desc;
1883 	int err;
1884 
1885 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1886 
1887 	desc.shash.tfm = sbi->s_chksum_driver;
1888 	*(u32 *)desc.ctx = crc;
1889 
1890 	err = crypto_shash_update(&desc.shash, address, length);
1891 	BUG_ON(err);
1892 
1893 	return *(u32 *)desc.ctx;
1894 }
1895 
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1896 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1897 			   unsigned int length)
1898 {
1899 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1900 }
1901 
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1902 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1903 				  void *buf, size_t buf_size)
1904 {
1905 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1906 }
1907 
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1908 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1909 			      const void *address, unsigned int length)
1910 {
1911 	return __f2fs_crc32(sbi, crc, address, length);
1912 }
1913 
F2FS_I(struct inode * inode)1914 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1915 {
1916 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1917 }
1918 
F2FS_SB(struct super_block * sb)1919 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1920 {
1921 	return sb->s_fs_info;
1922 }
1923 
F2FS_I_SB(struct inode * inode)1924 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1925 {
1926 	return F2FS_SB(inode->i_sb);
1927 }
1928 
F2FS_M_SB(struct address_space * mapping)1929 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1930 {
1931 	return F2FS_I_SB(mapping->host);
1932 }
1933 
F2FS_P_SB(struct page * page)1934 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1935 {
1936 	return F2FS_M_SB(page_file_mapping(page));
1937 }
1938 
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1939 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1940 {
1941 	return (struct f2fs_super_block *)(sbi->raw_super);
1942 }
1943 
F2FS_CKPT(struct f2fs_sb_info * sbi)1944 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1945 {
1946 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1947 }
1948 
F2FS_NODE(struct page * page)1949 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1950 {
1951 	return (struct f2fs_node *)page_address(page);
1952 }
1953 
F2FS_INODE(struct page * page)1954 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1955 {
1956 	return &((struct f2fs_node *)page_address(page))->i;
1957 }
1958 
NM_I(struct f2fs_sb_info * sbi)1959 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1960 {
1961 	return (struct f2fs_nm_info *)(sbi->nm_info);
1962 }
1963 
SM_I(struct f2fs_sb_info * sbi)1964 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1965 {
1966 	return (struct f2fs_sm_info *)(sbi->sm_info);
1967 }
1968 
SIT_I(struct f2fs_sb_info * sbi)1969 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1970 {
1971 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1972 }
1973 
FREE_I(struct f2fs_sb_info * sbi)1974 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1975 {
1976 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1977 }
1978 
DIRTY_I(struct f2fs_sb_info * sbi)1979 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1980 {
1981 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1982 }
1983 
META_MAPPING(struct f2fs_sb_info * sbi)1984 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1985 {
1986 	return sbi->meta_inode->i_mapping;
1987 }
1988 
NODE_MAPPING(struct f2fs_sb_info * sbi)1989 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1990 {
1991 	return sbi->node_inode->i_mapping;
1992 }
1993 
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1994 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1995 {
1996 	return test_bit(type, &sbi->s_flag);
1997 }
1998 
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1999 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2000 {
2001 	set_bit(type, &sbi->s_flag);
2002 }
2003 
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2004 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2005 {
2006 	clear_bit(type, &sbi->s_flag);
2007 }
2008 
cur_cp_version(struct f2fs_checkpoint * cp)2009 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2010 {
2011 	return le64_to_cpu(cp->checkpoint_ver);
2012 }
2013 
f2fs_qf_ino(struct super_block * sb,int type)2014 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2015 {
2016 	if (type < F2FS_MAX_QUOTAS)
2017 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2018 	return 0;
2019 }
2020 
cur_cp_crc(struct f2fs_checkpoint * cp)2021 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2022 {
2023 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2024 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2025 }
2026 
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2027 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2028 {
2029 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2030 
2031 	return ckpt_flags & f;
2032 }
2033 
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2034 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2035 {
2036 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2037 }
2038 
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2039 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2040 {
2041 	unsigned int ckpt_flags;
2042 
2043 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2044 	ckpt_flags |= f;
2045 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2046 }
2047 
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2048 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2049 {
2050 	unsigned long flags;
2051 
2052 	spin_lock_irqsave(&sbi->cp_lock, flags);
2053 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2054 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2055 }
2056 
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2057 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2058 {
2059 	unsigned int ckpt_flags;
2060 
2061 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2062 	ckpt_flags &= (~f);
2063 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2064 }
2065 
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2066 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2067 {
2068 	unsigned long flags;
2069 
2070 	spin_lock_irqsave(&sbi->cp_lock, flags);
2071 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2072 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2073 }
2074 
f2fs_lock_op(struct f2fs_sb_info * sbi)2075 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2076 {
2077 	down_read(&sbi->cp_rwsem);
2078 }
2079 
f2fs_trylock_op(struct f2fs_sb_info * sbi)2080 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2081 {
2082 	return down_read_trylock(&sbi->cp_rwsem);
2083 }
2084 
f2fs_unlock_op(struct f2fs_sb_info * sbi)2085 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2086 {
2087 	up_read(&sbi->cp_rwsem);
2088 }
2089 
f2fs_lock_all(struct f2fs_sb_info * sbi)2090 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2091 {
2092 	down_write(&sbi->cp_rwsem);
2093 }
2094 
f2fs_unlock_all(struct f2fs_sb_info * sbi)2095 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2096 {
2097 	up_write(&sbi->cp_rwsem);
2098 }
2099 
__get_cp_reason(struct f2fs_sb_info * sbi)2100 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2101 {
2102 	int reason = CP_SYNC;
2103 
2104 	if (test_opt(sbi, FASTBOOT))
2105 		reason = CP_FASTBOOT;
2106 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2107 		reason = CP_UMOUNT;
2108 	return reason;
2109 }
2110 
__remain_node_summaries(int reason)2111 static inline bool __remain_node_summaries(int reason)
2112 {
2113 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2114 }
2115 
__exist_node_summaries(struct f2fs_sb_info * sbi)2116 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2117 {
2118 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2119 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2120 }
2121 
2122 /*
2123  * Check whether the inode has blocks or not
2124  */
F2FS_HAS_BLOCKS(struct inode * inode)2125 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2126 {
2127 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2128 
2129 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2130 }
2131 
f2fs_has_xattr_block(unsigned int ofs)2132 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2133 {
2134 	return ofs == XATTR_NODE_OFFSET;
2135 }
2136 
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2137 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2138 					struct inode *inode, bool cap)
2139 {
2140 	if (!inode)
2141 		return true;
2142 	if (!test_opt(sbi, RESERVE_ROOT))
2143 		return false;
2144 	if (IS_NOQUOTA(inode))
2145 		return true;
2146 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2147 		return true;
2148 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2149 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2150 		return true;
2151 	if (cap && capable(CAP_SYS_RESOURCE))
2152 		return true;
2153 	return false;
2154 }
2155 
2156 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)2157 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2158 				 struct inode *inode, blkcnt_t *count)
2159 {
2160 	blkcnt_t diff = 0, release = 0;
2161 	block_t avail_user_block_count;
2162 	int ret;
2163 
2164 	ret = dquot_reserve_block(inode, *count);
2165 	if (ret)
2166 		return ret;
2167 
2168 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2169 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2170 		release = *count;
2171 		goto release_quota;
2172 	}
2173 
2174 	/*
2175 	 * let's increase this in prior to actual block count change in order
2176 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2177 	 */
2178 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2179 
2180 	spin_lock(&sbi->stat_lock);
2181 	sbi->total_valid_block_count += (block_t)(*count);
2182 	avail_user_block_count = sbi->user_block_count -
2183 					sbi->current_reserved_blocks;
2184 
2185 	if (!__allow_reserved_blocks(sbi, inode, true))
2186 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2187 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2188 		if (avail_user_block_count > sbi->unusable_block_count)
2189 			avail_user_block_count -= sbi->unusable_block_count;
2190 		else
2191 			avail_user_block_count = 0;
2192 	}
2193 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2194 		diff = sbi->total_valid_block_count - avail_user_block_count;
2195 		if (diff > *count)
2196 			diff = *count;
2197 		*count -= diff;
2198 		release = diff;
2199 		sbi->total_valid_block_count -= diff;
2200 		if (!*count) {
2201 			spin_unlock(&sbi->stat_lock);
2202 			goto enospc;
2203 		}
2204 	}
2205 	spin_unlock(&sbi->stat_lock);
2206 
2207 	if (unlikely(release)) {
2208 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2209 		dquot_release_reservation_block(inode, release);
2210 	}
2211 	f2fs_i_blocks_write(inode, *count, true, true);
2212 	return 0;
2213 
2214 enospc:
2215 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2216 release_quota:
2217 	dquot_release_reservation_block(inode, release);
2218 	return -ENOSPC;
2219 }
2220 
2221 __printf(2, 3)
2222 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2223 
2224 #define f2fs_err(sbi, fmt, ...)						\
2225 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2226 #define f2fs_warn(sbi, fmt, ...)					\
2227 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2228 #define f2fs_notice(sbi, fmt, ...)					\
2229 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2230 #define f2fs_info(sbi, fmt, ...)					\
2231 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2232 #define f2fs_debug(sbi, fmt, ...)					\
2233 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2234 
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2235 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2236 						struct inode *inode,
2237 						block_t count)
2238 {
2239 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2240 
2241 	spin_lock(&sbi->stat_lock);
2242 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2243 	sbi->total_valid_block_count -= (block_t)count;
2244 	if (sbi->reserved_blocks &&
2245 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2246 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2247 					sbi->current_reserved_blocks + count);
2248 	spin_unlock(&sbi->stat_lock);
2249 	if (unlikely(inode->i_blocks < sectors)) {
2250 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2251 			  inode->i_ino,
2252 			  (unsigned long long)inode->i_blocks,
2253 			  (unsigned long long)sectors);
2254 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2255 		return;
2256 	}
2257 	f2fs_i_blocks_write(inode, count, false, true);
2258 }
2259 
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2260 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2261 {
2262 	atomic_inc(&sbi->nr_pages[count_type]);
2263 
2264 	if (count_type == F2FS_DIRTY_DENTS ||
2265 			count_type == F2FS_DIRTY_NODES ||
2266 			count_type == F2FS_DIRTY_META ||
2267 			count_type == F2FS_DIRTY_QDATA ||
2268 			count_type == F2FS_DIRTY_IMETA)
2269 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2270 }
2271 
inode_inc_dirty_pages(struct inode * inode)2272 static inline void inode_inc_dirty_pages(struct inode *inode)
2273 {
2274 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2275 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2276 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2277 	if (IS_NOQUOTA(inode))
2278 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2279 }
2280 
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2281 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2282 {
2283 	atomic_dec(&sbi->nr_pages[count_type]);
2284 }
2285 
inode_dec_dirty_pages(struct inode * inode)2286 static inline void inode_dec_dirty_pages(struct inode *inode)
2287 {
2288 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2289 			!S_ISLNK(inode->i_mode))
2290 		return;
2291 
2292 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2293 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2294 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2295 	if (IS_NOQUOTA(inode))
2296 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2297 }
2298 
get_pages(struct f2fs_sb_info * sbi,int count_type)2299 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2300 {
2301 	return atomic_read(&sbi->nr_pages[count_type]);
2302 }
2303 
get_dirty_pages(struct inode * inode)2304 static inline int get_dirty_pages(struct inode *inode)
2305 {
2306 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2307 }
2308 
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2309 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2310 {
2311 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2312 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2313 						sbi->log_blocks_per_seg;
2314 
2315 	return segs / sbi->segs_per_sec;
2316 }
2317 
valid_user_blocks(struct f2fs_sb_info * sbi)2318 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2319 {
2320 	return sbi->total_valid_block_count;
2321 }
2322 
discard_blocks(struct f2fs_sb_info * sbi)2323 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2324 {
2325 	return sbi->discard_blks;
2326 }
2327 
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2328 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2329 {
2330 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2331 
2332 	/* return NAT or SIT bitmap */
2333 	if (flag == NAT_BITMAP)
2334 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2335 	else if (flag == SIT_BITMAP)
2336 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2337 
2338 	return 0;
2339 }
2340 
__cp_payload(struct f2fs_sb_info * sbi)2341 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2342 {
2343 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2344 }
2345 
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2346 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2347 {
2348 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2349 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2350 	int offset;
2351 
2352 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2353 		offset = (flag == SIT_BITMAP) ?
2354 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2355 		/*
2356 		 * if large_nat_bitmap feature is enabled, leave checksum
2357 		 * protection for all nat/sit bitmaps.
2358 		 */
2359 		return tmp_ptr + offset + sizeof(__le32);
2360 	}
2361 
2362 	if (__cp_payload(sbi) > 0) {
2363 		if (flag == NAT_BITMAP)
2364 			return &ckpt->sit_nat_version_bitmap;
2365 		else
2366 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2367 	} else {
2368 		offset = (flag == NAT_BITMAP) ?
2369 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2370 		return tmp_ptr + offset;
2371 	}
2372 }
2373 
__start_cp_addr(struct f2fs_sb_info * sbi)2374 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2375 {
2376 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2377 
2378 	if (sbi->cur_cp_pack == 2)
2379 		start_addr += sbi->blocks_per_seg;
2380 	return start_addr;
2381 }
2382 
__start_cp_next_addr(struct f2fs_sb_info * sbi)2383 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2384 {
2385 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2386 
2387 	if (sbi->cur_cp_pack == 1)
2388 		start_addr += sbi->blocks_per_seg;
2389 	return start_addr;
2390 }
2391 
__set_cp_next_pack(struct f2fs_sb_info * sbi)2392 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2393 {
2394 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2395 }
2396 
__start_sum_addr(struct f2fs_sb_info * sbi)2397 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2398 {
2399 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2400 }
2401 
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2402 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2403 					struct inode *inode, bool is_inode)
2404 {
2405 	block_t	valid_block_count;
2406 	unsigned int valid_node_count, user_block_count;
2407 	int err;
2408 
2409 	if (is_inode) {
2410 		if (inode) {
2411 			err = dquot_alloc_inode(inode);
2412 			if (err)
2413 				return err;
2414 		}
2415 	} else {
2416 		err = dquot_reserve_block(inode, 1);
2417 		if (err)
2418 			return err;
2419 	}
2420 
2421 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2422 		f2fs_show_injection_info(sbi, FAULT_BLOCK);
2423 		goto enospc;
2424 	}
2425 
2426 	spin_lock(&sbi->stat_lock);
2427 
2428 	valid_block_count = sbi->total_valid_block_count +
2429 					sbi->current_reserved_blocks + 1;
2430 
2431 	if (!__allow_reserved_blocks(sbi, inode, false))
2432 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2433 	user_block_count = sbi->user_block_count;
2434 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2435 		user_block_count -= sbi->unusable_block_count;
2436 
2437 	if (unlikely(valid_block_count > user_block_count)) {
2438 		spin_unlock(&sbi->stat_lock);
2439 		goto enospc;
2440 	}
2441 
2442 	valid_node_count = sbi->total_valid_node_count + 1;
2443 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2444 		spin_unlock(&sbi->stat_lock);
2445 		goto enospc;
2446 	}
2447 
2448 	sbi->total_valid_node_count++;
2449 	sbi->total_valid_block_count++;
2450 	spin_unlock(&sbi->stat_lock);
2451 
2452 	if (inode) {
2453 		if (is_inode)
2454 			f2fs_mark_inode_dirty_sync(inode, true);
2455 		else
2456 			f2fs_i_blocks_write(inode, 1, true, true);
2457 	}
2458 
2459 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2460 	return 0;
2461 
2462 enospc:
2463 	if (is_inode) {
2464 		if (inode)
2465 			dquot_free_inode(inode);
2466 	} else {
2467 		dquot_release_reservation_block(inode, 1);
2468 	}
2469 	return -ENOSPC;
2470 }
2471 
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2472 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2473 					struct inode *inode, bool is_inode)
2474 {
2475 	spin_lock(&sbi->stat_lock);
2476 
2477 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2478 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2479 
2480 	sbi->total_valid_node_count--;
2481 	sbi->total_valid_block_count--;
2482 	if (sbi->reserved_blocks &&
2483 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2484 		sbi->current_reserved_blocks++;
2485 
2486 	spin_unlock(&sbi->stat_lock);
2487 
2488 	if (is_inode) {
2489 		dquot_free_inode(inode);
2490 	} else {
2491 		if (unlikely(inode->i_blocks == 0)) {
2492 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2493 				  inode->i_ino,
2494 				  (unsigned long long)inode->i_blocks);
2495 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2496 			return;
2497 		}
2498 		f2fs_i_blocks_write(inode, 1, false, true);
2499 	}
2500 }
2501 
valid_node_count(struct f2fs_sb_info * sbi)2502 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2503 {
2504 	return sbi->total_valid_node_count;
2505 }
2506 
inc_valid_inode_count(struct f2fs_sb_info * sbi)2507 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2508 {
2509 	percpu_counter_inc(&sbi->total_valid_inode_count);
2510 }
2511 
dec_valid_inode_count(struct f2fs_sb_info * sbi)2512 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2513 {
2514 	percpu_counter_dec(&sbi->total_valid_inode_count);
2515 }
2516 
valid_inode_count(struct f2fs_sb_info * sbi)2517 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2518 {
2519 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2520 }
2521 
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2522 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2523 						pgoff_t index, bool for_write)
2524 {
2525 	struct page *page;
2526 
2527 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2528 		if (!for_write)
2529 			page = find_get_page_flags(mapping, index,
2530 							FGP_LOCK | FGP_ACCESSED);
2531 		else
2532 			page = find_lock_page(mapping, index);
2533 		if (page)
2534 			return page;
2535 
2536 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2537 			f2fs_show_injection_info(F2FS_M_SB(mapping),
2538 							FAULT_PAGE_ALLOC);
2539 			return NULL;
2540 		}
2541 	}
2542 
2543 	if (!for_write)
2544 		return grab_cache_page(mapping, index);
2545 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2546 }
2547 
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2548 static inline struct page *f2fs_pagecache_get_page(
2549 				struct address_space *mapping, pgoff_t index,
2550 				int fgp_flags, gfp_t gfp_mask)
2551 {
2552 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2553 		f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2554 		return NULL;
2555 	}
2556 
2557 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2558 }
2559 
f2fs_copy_page(struct page * src,struct page * dst)2560 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2561 {
2562 	char *src_kaddr = kmap(src);
2563 	char *dst_kaddr = kmap(dst);
2564 
2565 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2566 	kunmap(dst);
2567 	kunmap(src);
2568 }
2569 
f2fs_put_page(struct page * page,int unlock)2570 static inline void f2fs_put_page(struct page *page, int unlock)
2571 {
2572 	if (!page)
2573 		return;
2574 
2575 	if (unlock) {
2576 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2577 		unlock_page(page);
2578 	}
2579 	put_page(page);
2580 }
2581 
f2fs_put_dnode(struct dnode_of_data * dn)2582 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2583 {
2584 	if (dn->node_page)
2585 		f2fs_put_page(dn->node_page, 1);
2586 	if (dn->inode_page && dn->node_page != dn->inode_page)
2587 		f2fs_put_page(dn->inode_page, 0);
2588 	dn->node_page = NULL;
2589 	dn->inode_page = NULL;
2590 }
2591 
f2fs_kmem_cache_create(const char * name,size_t size)2592 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2593 					size_t size)
2594 {
2595 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2596 }
2597 
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2598 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2599 						gfp_t flags)
2600 {
2601 	void *entry;
2602 
2603 	entry = kmem_cache_alloc(cachep, flags);
2604 	if (!entry)
2605 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2606 	return entry;
2607 }
2608 
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2609 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2610 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2611 {
2612 	if (nofail)
2613 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2614 
2615 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2616 		f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2617 		return NULL;
2618 	}
2619 
2620 	return kmem_cache_alloc(cachep, flags);
2621 }
2622 
is_inflight_io(struct f2fs_sb_info * sbi,int type)2623 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2624 {
2625 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2626 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2627 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2628 		get_pages(sbi, F2FS_DIO_READ) ||
2629 		get_pages(sbi, F2FS_DIO_WRITE))
2630 		return true;
2631 
2632 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2633 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2634 		return true;
2635 
2636 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2637 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2638 		return true;
2639 	return false;
2640 }
2641 
is_idle(struct f2fs_sb_info * sbi,int type)2642 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2643 {
2644 	if (sbi->gc_mode == GC_URGENT_HIGH)
2645 		return true;
2646 
2647 	if (is_inflight_io(sbi, type))
2648 		return false;
2649 
2650 	if (sbi->gc_mode == GC_URGENT_LOW &&
2651 			(type == DISCARD_TIME || type == GC_TIME))
2652 		return true;
2653 
2654 	return f2fs_time_over(sbi, type);
2655 }
2656 
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2657 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2658 				unsigned long index, void *item)
2659 {
2660 	while (radix_tree_insert(root, index, item))
2661 		cond_resched();
2662 }
2663 
2664 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2665 
IS_INODE(struct page * page)2666 static inline bool IS_INODE(struct page *page)
2667 {
2668 	struct f2fs_node *p = F2FS_NODE(page);
2669 
2670 	return RAW_IS_INODE(p);
2671 }
2672 
offset_in_addr(struct f2fs_inode * i)2673 static inline int offset_in_addr(struct f2fs_inode *i)
2674 {
2675 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2676 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2677 }
2678 
blkaddr_in_node(struct f2fs_node * node)2679 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2680 {
2681 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2682 }
2683 
2684 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2685 static inline block_t data_blkaddr(struct inode *inode,
2686 			struct page *node_page, unsigned int offset)
2687 {
2688 	struct f2fs_node *raw_node;
2689 	__le32 *addr_array;
2690 	int base = 0;
2691 	bool is_inode = IS_INODE(node_page);
2692 
2693 	raw_node = F2FS_NODE(node_page);
2694 
2695 	if (is_inode) {
2696 		if (!inode)
2697 			/* from GC path only */
2698 			base = offset_in_addr(&raw_node->i);
2699 		else if (f2fs_has_extra_attr(inode))
2700 			base = get_extra_isize(inode);
2701 	}
2702 
2703 	addr_array = blkaddr_in_node(raw_node);
2704 	return le32_to_cpu(addr_array[base + offset]);
2705 }
2706 
f2fs_data_blkaddr(struct dnode_of_data * dn)2707 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2708 {
2709 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2710 }
2711 
f2fs_test_bit(unsigned int nr,char * addr)2712 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2713 {
2714 	int mask;
2715 
2716 	addr += (nr >> 3);
2717 	mask = 1 << (7 - (nr & 0x07));
2718 	return mask & *addr;
2719 }
2720 
f2fs_set_bit(unsigned int nr,char * addr)2721 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2722 {
2723 	int mask;
2724 
2725 	addr += (nr >> 3);
2726 	mask = 1 << (7 - (nr & 0x07));
2727 	*addr |= mask;
2728 }
2729 
f2fs_clear_bit(unsigned int nr,char * addr)2730 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2731 {
2732 	int mask;
2733 
2734 	addr += (nr >> 3);
2735 	mask = 1 << (7 - (nr & 0x07));
2736 	*addr &= ~mask;
2737 }
2738 
f2fs_test_and_set_bit(unsigned int nr,char * addr)2739 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2740 {
2741 	int mask;
2742 	int ret;
2743 
2744 	addr += (nr >> 3);
2745 	mask = 1 << (7 - (nr & 0x07));
2746 	ret = mask & *addr;
2747 	*addr |= mask;
2748 	return ret;
2749 }
2750 
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2751 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2752 {
2753 	int mask;
2754 	int ret;
2755 
2756 	addr += (nr >> 3);
2757 	mask = 1 << (7 - (nr & 0x07));
2758 	ret = mask & *addr;
2759 	*addr &= ~mask;
2760 	return ret;
2761 }
2762 
f2fs_change_bit(unsigned int nr,char * addr)2763 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2764 {
2765 	int mask;
2766 
2767 	addr += (nr >> 3);
2768 	mask = 1 << (7 - (nr & 0x07));
2769 	*addr ^= mask;
2770 }
2771 
2772 /*
2773  * On-disk inode flags (f2fs_inode::i_flags)
2774  */
2775 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2776 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2777 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2778 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2779 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2780 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2781 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2782 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2783 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2784 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2785 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2786 
2787 /* Flags that should be inherited by new inodes from their parent. */
2788 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2789 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2790 			   F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2791 
2792 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2793 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2794 				F2FS_CASEFOLD_FL))
2795 
2796 /* Flags that are appropriate for non-directories/regular files. */
2797 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2798 
f2fs_mask_flags(umode_t mode,__u32 flags)2799 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2800 {
2801 	if (S_ISDIR(mode))
2802 		return flags;
2803 	else if (S_ISREG(mode))
2804 		return flags & F2FS_REG_FLMASK;
2805 	else
2806 		return flags & F2FS_OTHER_FLMASK;
2807 }
2808 
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2809 static inline void __mark_inode_dirty_flag(struct inode *inode,
2810 						int flag, bool set)
2811 {
2812 	switch (flag) {
2813 	case FI_INLINE_XATTR:
2814 	case FI_INLINE_DATA:
2815 	case FI_INLINE_DENTRY:
2816 	case FI_NEW_INODE:
2817 		if (set)
2818 			return;
2819 		fallthrough;
2820 	case FI_DATA_EXIST:
2821 	case FI_INLINE_DOTS:
2822 	case FI_PIN_FILE:
2823 	case FI_COMPRESS_RELEASED:
2824 		f2fs_mark_inode_dirty_sync(inode, true);
2825 	}
2826 }
2827 
set_inode_flag(struct inode * inode,int flag)2828 static inline void set_inode_flag(struct inode *inode, int flag)
2829 {
2830 	set_bit(flag, F2FS_I(inode)->flags);
2831 	__mark_inode_dirty_flag(inode, flag, true);
2832 }
2833 
is_inode_flag_set(struct inode * inode,int flag)2834 static inline int is_inode_flag_set(struct inode *inode, int flag)
2835 {
2836 	return test_bit(flag, F2FS_I(inode)->flags);
2837 }
2838 
clear_inode_flag(struct inode * inode,int flag)2839 static inline void clear_inode_flag(struct inode *inode, int flag)
2840 {
2841 	clear_bit(flag, F2FS_I(inode)->flags);
2842 	__mark_inode_dirty_flag(inode, flag, false);
2843 }
2844 
f2fs_verity_in_progress(struct inode * inode)2845 static inline bool f2fs_verity_in_progress(struct inode *inode)
2846 {
2847 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2848 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2849 }
2850 
set_acl_inode(struct inode * inode,umode_t mode)2851 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2852 {
2853 	F2FS_I(inode)->i_acl_mode = mode;
2854 	set_inode_flag(inode, FI_ACL_MODE);
2855 	f2fs_mark_inode_dirty_sync(inode, false);
2856 }
2857 
f2fs_i_links_write(struct inode * inode,bool inc)2858 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2859 {
2860 	if (inc)
2861 		inc_nlink(inode);
2862 	else
2863 		drop_nlink(inode);
2864 	f2fs_mark_inode_dirty_sync(inode, true);
2865 }
2866 
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2867 static inline void f2fs_i_blocks_write(struct inode *inode,
2868 					block_t diff, bool add, bool claim)
2869 {
2870 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2871 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2872 
2873 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2874 	if (add) {
2875 		if (claim)
2876 			dquot_claim_block(inode, diff);
2877 		else
2878 			dquot_alloc_block_nofail(inode, diff);
2879 	} else {
2880 		dquot_free_block(inode, diff);
2881 	}
2882 
2883 	f2fs_mark_inode_dirty_sync(inode, true);
2884 	if (clean || recover)
2885 		set_inode_flag(inode, FI_AUTO_RECOVER);
2886 }
2887 
f2fs_i_size_write(struct inode * inode,loff_t i_size)2888 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2889 {
2890 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2891 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2892 
2893 	if (i_size_read(inode) == i_size)
2894 		return;
2895 
2896 	i_size_write(inode, i_size);
2897 	f2fs_mark_inode_dirty_sync(inode, true);
2898 	if (clean || recover)
2899 		set_inode_flag(inode, FI_AUTO_RECOVER);
2900 }
2901 
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2902 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2903 {
2904 	F2FS_I(inode)->i_current_depth = depth;
2905 	f2fs_mark_inode_dirty_sync(inode, true);
2906 }
2907 
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)2908 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2909 					unsigned int count)
2910 {
2911 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2912 	f2fs_mark_inode_dirty_sync(inode, true);
2913 }
2914 
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2915 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2916 {
2917 	F2FS_I(inode)->i_xattr_nid = xnid;
2918 	f2fs_mark_inode_dirty_sync(inode, true);
2919 }
2920 
f2fs_i_pino_write(struct inode * inode,nid_t pino)2921 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2922 {
2923 	F2FS_I(inode)->i_pino = pino;
2924 	f2fs_mark_inode_dirty_sync(inode, true);
2925 }
2926 
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2927 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2928 {
2929 	struct f2fs_inode_info *fi = F2FS_I(inode);
2930 
2931 	if (ri->i_inline & F2FS_INLINE_XATTR)
2932 		set_bit(FI_INLINE_XATTR, fi->flags);
2933 	if (ri->i_inline & F2FS_INLINE_DATA)
2934 		set_bit(FI_INLINE_DATA, fi->flags);
2935 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2936 		set_bit(FI_INLINE_DENTRY, fi->flags);
2937 	if (ri->i_inline & F2FS_DATA_EXIST)
2938 		set_bit(FI_DATA_EXIST, fi->flags);
2939 	if (ri->i_inline & F2FS_INLINE_DOTS)
2940 		set_bit(FI_INLINE_DOTS, fi->flags);
2941 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2942 		set_bit(FI_EXTRA_ATTR, fi->flags);
2943 	if (ri->i_inline & F2FS_PIN_FILE)
2944 		set_bit(FI_PIN_FILE, fi->flags);
2945 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
2946 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
2947 }
2948 
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2949 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2950 {
2951 	ri->i_inline = 0;
2952 
2953 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2954 		ri->i_inline |= F2FS_INLINE_XATTR;
2955 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2956 		ri->i_inline |= F2FS_INLINE_DATA;
2957 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2958 		ri->i_inline |= F2FS_INLINE_DENTRY;
2959 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2960 		ri->i_inline |= F2FS_DATA_EXIST;
2961 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2962 		ri->i_inline |= F2FS_INLINE_DOTS;
2963 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2964 		ri->i_inline |= F2FS_EXTRA_ATTR;
2965 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2966 		ri->i_inline |= F2FS_PIN_FILE;
2967 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
2968 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
2969 }
2970 
f2fs_has_extra_attr(struct inode * inode)2971 static inline int f2fs_has_extra_attr(struct inode *inode)
2972 {
2973 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2974 }
2975 
f2fs_has_inline_xattr(struct inode * inode)2976 static inline int f2fs_has_inline_xattr(struct inode *inode)
2977 {
2978 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2979 }
2980 
f2fs_compressed_file(struct inode * inode)2981 static inline int f2fs_compressed_file(struct inode *inode)
2982 {
2983 	return S_ISREG(inode->i_mode) &&
2984 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
2985 }
2986 
f2fs_need_compress_data(struct inode * inode)2987 static inline bool f2fs_need_compress_data(struct inode *inode)
2988 {
2989 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
2990 
2991 	if (!f2fs_compressed_file(inode))
2992 		return false;
2993 
2994 	if (compress_mode == COMPR_MODE_FS)
2995 		return true;
2996 	else if (compress_mode == COMPR_MODE_USER &&
2997 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
2998 		return true;
2999 
3000 	return false;
3001 }
3002 
addrs_per_inode(struct inode * inode)3003 static inline unsigned int addrs_per_inode(struct inode *inode)
3004 {
3005 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3006 				get_inline_xattr_addrs(inode);
3007 
3008 	if (!f2fs_compressed_file(inode))
3009 		return addrs;
3010 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3011 }
3012 
addrs_per_block(struct inode * inode)3013 static inline unsigned int addrs_per_block(struct inode *inode)
3014 {
3015 	if (!f2fs_compressed_file(inode))
3016 		return DEF_ADDRS_PER_BLOCK;
3017 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3018 }
3019 
inline_xattr_addr(struct inode * inode,struct page * page)3020 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3021 {
3022 	struct f2fs_inode *ri = F2FS_INODE(page);
3023 
3024 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3025 					get_inline_xattr_addrs(inode)]);
3026 }
3027 
inline_xattr_size(struct inode * inode)3028 static inline int inline_xattr_size(struct inode *inode)
3029 {
3030 	if (f2fs_has_inline_xattr(inode))
3031 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3032 	return 0;
3033 }
3034 
f2fs_has_inline_data(struct inode * inode)3035 static inline int f2fs_has_inline_data(struct inode *inode)
3036 {
3037 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3038 }
3039 
f2fs_exist_data(struct inode * inode)3040 static inline int f2fs_exist_data(struct inode *inode)
3041 {
3042 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3043 }
3044 
f2fs_has_inline_dots(struct inode * inode)3045 static inline int f2fs_has_inline_dots(struct inode *inode)
3046 {
3047 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3048 }
3049 
f2fs_is_mmap_file(struct inode * inode)3050 static inline int f2fs_is_mmap_file(struct inode *inode)
3051 {
3052 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3053 }
3054 
f2fs_is_pinned_file(struct inode * inode)3055 static inline bool f2fs_is_pinned_file(struct inode *inode)
3056 {
3057 	return is_inode_flag_set(inode, FI_PIN_FILE);
3058 }
3059 
f2fs_is_atomic_file(struct inode * inode)3060 static inline bool f2fs_is_atomic_file(struct inode *inode)
3061 {
3062 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3063 }
3064 
f2fs_is_commit_atomic_write(struct inode * inode)3065 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
3066 {
3067 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
3068 }
3069 
f2fs_is_volatile_file(struct inode * inode)3070 static inline bool f2fs_is_volatile_file(struct inode *inode)
3071 {
3072 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
3073 }
3074 
f2fs_is_first_block_written(struct inode * inode)3075 static inline bool f2fs_is_first_block_written(struct inode *inode)
3076 {
3077 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3078 }
3079 
f2fs_is_drop_cache(struct inode * inode)3080 static inline bool f2fs_is_drop_cache(struct inode *inode)
3081 {
3082 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3083 }
3084 
inline_data_addr(struct inode * inode,struct page * page)3085 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3086 {
3087 	struct f2fs_inode *ri = F2FS_INODE(page);
3088 	int extra_size = get_extra_isize(inode);
3089 
3090 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3091 }
3092 
f2fs_has_inline_dentry(struct inode * inode)3093 static inline int f2fs_has_inline_dentry(struct inode *inode)
3094 {
3095 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3096 }
3097 
is_file(struct inode * inode,int type)3098 static inline int is_file(struct inode *inode, int type)
3099 {
3100 	return F2FS_I(inode)->i_advise & type;
3101 }
3102 
set_file(struct inode * inode,int type)3103 static inline void set_file(struct inode *inode, int type)
3104 {
3105 	F2FS_I(inode)->i_advise |= type;
3106 	f2fs_mark_inode_dirty_sync(inode, true);
3107 }
3108 
clear_file(struct inode * inode,int type)3109 static inline void clear_file(struct inode *inode, int type)
3110 {
3111 	F2FS_I(inode)->i_advise &= ~type;
3112 	f2fs_mark_inode_dirty_sync(inode, true);
3113 }
3114 
f2fs_is_time_consistent(struct inode * inode)3115 static inline bool f2fs_is_time_consistent(struct inode *inode)
3116 {
3117 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3118 		return false;
3119 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3120 		return false;
3121 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3122 		return false;
3123 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3124 						&F2FS_I(inode)->i_crtime))
3125 		return false;
3126 	return true;
3127 }
3128 
f2fs_skip_inode_update(struct inode * inode,int dsync)3129 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3130 {
3131 	bool ret;
3132 
3133 	if (dsync) {
3134 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3135 
3136 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3137 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3138 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3139 		return ret;
3140 	}
3141 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3142 			file_keep_isize(inode) ||
3143 			i_size_read(inode) & ~PAGE_MASK)
3144 		return false;
3145 
3146 	if (!f2fs_is_time_consistent(inode))
3147 		return false;
3148 
3149 	spin_lock(&F2FS_I(inode)->i_size_lock);
3150 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3151 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3152 
3153 	return ret;
3154 }
3155 
f2fs_readonly(struct super_block * sb)3156 static inline bool f2fs_readonly(struct super_block *sb)
3157 {
3158 	return sb_rdonly(sb);
3159 }
3160 
f2fs_cp_error(struct f2fs_sb_info * sbi)3161 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3162 {
3163 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3164 }
3165 
is_dot_dotdot(const u8 * name,size_t len)3166 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3167 {
3168 	if (len == 1 && name[0] == '.')
3169 		return true;
3170 
3171 	if (len == 2 && name[0] == '.' && name[1] == '.')
3172 		return true;
3173 
3174 	return false;
3175 }
3176 
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3177 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3178 					size_t size, gfp_t flags)
3179 {
3180 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
3181 		f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3182 		return NULL;
3183 	}
3184 
3185 	return kmalloc(size, flags);
3186 }
3187 
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3188 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3189 					size_t size, gfp_t flags)
3190 {
3191 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3192 }
3193 
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3194 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3195 					size_t size, gfp_t flags)
3196 {
3197 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3198 		f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3199 		return NULL;
3200 	}
3201 
3202 	return kvmalloc(size, flags);
3203 }
3204 
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3205 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3206 					size_t size, gfp_t flags)
3207 {
3208 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3209 }
3210 
get_extra_isize(struct inode * inode)3211 static inline int get_extra_isize(struct inode *inode)
3212 {
3213 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3214 }
3215 
get_inline_xattr_addrs(struct inode * inode)3216 static inline int get_inline_xattr_addrs(struct inode *inode)
3217 {
3218 	return F2FS_I(inode)->i_inline_xattr_size;
3219 }
3220 
3221 #define f2fs_get_inode_mode(i) \
3222 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3223 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3224 
3225 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3226 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3227 	offsetof(struct f2fs_inode, i_extra_isize))	\
3228 
3229 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3230 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3231 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3232 		sizeof((f2fs_inode)->field))			\
3233 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3234 
3235 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3236 
3237 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3238 
3239 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3240 					block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3241 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3242 					block_t blkaddr, int type)
3243 {
3244 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3245 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3246 			 blkaddr, type);
3247 		f2fs_bug_on(sbi, 1);
3248 	}
3249 }
3250 
__is_valid_data_blkaddr(block_t blkaddr)3251 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3252 {
3253 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3254 			blkaddr == COMPRESS_ADDR)
3255 		return false;
3256 	return true;
3257 }
3258 
3259 /*
3260  * file.c
3261  */
3262 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3263 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3264 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3265 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3266 int f2fs_truncate(struct inode *inode);
3267 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3268 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3269 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3270 		 struct iattr *attr);
3271 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3272 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3273 int f2fs_precache_extents(struct inode *inode);
3274 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3275 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3276 		      struct dentry *dentry, struct fileattr *fa);
3277 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3278 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3279 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3280 int f2fs_pin_file_control(struct inode *inode, bool inc);
3281 
3282 /*
3283  * inode.c
3284  */
3285 void f2fs_set_inode_flags(struct inode *inode);
3286 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3287 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3288 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3289 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3290 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3291 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3292 void f2fs_update_inode_page(struct inode *inode);
3293 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3294 void f2fs_evict_inode(struct inode *inode);
3295 void f2fs_handle_failed_inode(struct inode *inode);
3296 
3297 /*
3298  * namei.c
3299  */
3300 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3301 							bool hot, bool set);
3302 struct dentry *f2fs_get_parent(struct dentry *child);
3303 
3304 /*
3305  * dir.c
3306  */
3307 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3308 int f2fs_init_casefolded_name(const struct inode *dir,
3309 			      struct f2fs_filename *fname);
3310 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3311 			int lookup, struct f2fs_filename *fname);
3312 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3313 			struct f2fs_filename *fname);
3314 void f2fs_free_filename(struct f2fs_filename *fname);
3315 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3316 			const struct f2fs_filename *fname, int *max_slots);
3317 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3318 			unsigned int start_pos, struct fscrypt_str *fstr);
3319 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3320 			struct f2fs_dentry_ptr *d);
3321 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3322 			const struct f2fs_filename *fname, struct page *dpage);
3323 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3324 			unsigned int current_depth);
3325 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3326 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3327 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3328 					 const struct f2fs_filename *fname,
3329 					 struct page **res_page);
3330 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3331 			const struct qstr *child, struct page **res_page);
3332 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3333 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3334 			struct page **page);
3335 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3336 			struct page *page, struct inode *inode);
3337 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3338 			  const struct f2fs_filename *fname);
3339 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3340 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3341 			unsigned int bit_pos);
3342 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3343 			struct inode *inode, nid_t ino, umode_t mode);
3344 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3345 			struct inode *inode, nid_t ino, umode_t mode);
3346 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3347 			struct inode *inode, nid_t ino, umode_t mode);
3348 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3349 			struct inode *dir, struct inode *inode);
3350 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3351 bool f2fs_empty_dir(struct inode *dir);
3352 
f2fs_add_link(struct dentry * dentry,struct inode * inode)3353 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3354 {
3355 	if (fscrypt_is_nokey_name(dentry))
3356 		return -ENOKEY;
3357 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3358 				inode, inode->i_ino, inode->i_mode);
3359 }
3360 
3361 /*
3362  * super.c
3363  */
3364 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3365 void f2fs_inode_synced(struct inode *inode);
3366 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3367 int f2fs_quota_sync(struct super_block *sb, int type);
3368 loff_t max_file_blocks(struct inode *inode);
3369 void f2fs_quota_off_umount(struct super_block *sb);
3370 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3371 int f2fs_sync_fs(struct super_block *sb, int sync);
3372 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3373 
3374 /*
3375  * hash.c
3376  */
3377 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3378 
3379 /*
3380  * node.c
3381  */
3382 struct node_info;
3383 
3384 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3385 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3386 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3387 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3388 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3389 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3390 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3391 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3392 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3393 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3394 						struct node_info *ni);
3395 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3396 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3397 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3398 int f2fs_truncate_xattr_node(struct inode *inode);
3399 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3400 					unsigned int seq_id);
3401 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3402 int f2fs_remove_inode_page(struct inode *inode);
3403 struct page *f2fs_new_inode_page(struct inode *inode);
3404 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3405 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3406 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3407 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3408 int f2fs_move_node_page(struct page *node_page, int gc_type);
3409 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3410 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3411 			struct writeback_control *wbc, bool atomic,
3412 			unsigned int *seq_id);
3413 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3414 			struct writeback_control *wbc,
3415 			bool do_balance, enum iostat_type io_type);
3416 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3417 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3418 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3419 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3420 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3421 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3422 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3423 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3424 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3425 			unsigned int segno, struct f2fs_summary_block *sum);
3426 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3427 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3428 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3429 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3430 int __init f2fs_create_node_manager_caches(void);
3431 void f2fs_destroy_node_manager_caches(void);
3432 
3433 /*
3434  * segment.c
3435  */
3436 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3437 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3438 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3439 void f2fs_drop_inmem_pages(struct inode *inode);
3440 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3441 int f2fs_commit_inmem_pages(struct inode *inode);
3442 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3443 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3444 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3445 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3446 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3447 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3448 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3449 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3450 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3451 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3452 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3453 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3454 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3455 					struct cp_control *cpc);
3456 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3457 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3458 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3459 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3460 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3461 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3462 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3463 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3464 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3465 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3466 			unsigned int *newseg, bool new_sec, int dir);
3467 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3468 					unsigned int start, unsigned int end);
3469 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3470 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3471 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3472 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3473 					struct cp_control *cpc);
3474 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3475 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3476 					block_t blk_addr);
3477 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3478 						enum iostat_type io_type);
3479 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3480 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3481 			struct f2fs_io_info *fio);
3482 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3483 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3484 			block_t old_blkaddr, block_t new_blkaddr,
3485 			bool recover_curseg, bool recover_newaddr,
3486 			bool from_gc);
3487 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3488 			block_t old_addr, block_t new_addr,
3489 			unsigned char version, bool recover_curseg,
3490 			bool recover_newaddr);
3491 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3492 			block_t old_blkaddr, block_t *new_blkaddr,
3493 			struct f2fs_summary *sum, int type,
3494 			struct f2fs_io_info *fio);
3495 void f2fs_wait_on_page_writeback(struct page *page,
3496 			enum page_type type, bool ordered, bool locked);
3497 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3498 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3499 								block_t len);
3500 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3501 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3502 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3503 			unsigned int val, int alloc);
3504 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3505 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3506 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3507 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3508 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3509 int __init f2fs_create_segment_manager_caches(void);
3510 void f2fs_destroy_segment_manager_caches(void);
3511 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3512 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3513 			enum page_type type, enum temp_type temp);
3514 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3515 			unsigned int segno);
3516 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3517 			unsigned int segno);
3518 
3519 /*
3520  * checkpoint.c
3521  */
3522 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3523 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3524 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3525 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3526 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3527 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3528 					block_t blkaddr, int type);
3529 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3530 			int type, bool sync);
3531 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3532 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3533 			long nr_to_write, enum iostat_type io_type);
3534 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3535 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3536 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3537 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3538 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3539 					unsigned int devidx, int type);
3540 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3541 					unsigned int devidx, int type);
3542 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3543 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3544 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3545 void f2fs_add_orphan_inode(struct inode *inode);
3546 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3547 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3548 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3549 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3550 void f2fs_remove_dirty_inode(struct inode *inode);
3551 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3552 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3553 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3554 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3555 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3556 int __init f2fs_create_checkpoint_caches(void);
3557 void f2fs_destroy_checkpoint_caches(void);
3558 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3559 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3560 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3561 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3562 
3563 /*
3564  * data.c
3565  */
3566 int __init f2fs_init_bioset(void);
3567 void f2fs_destroy_bioset(void);
3568 int f2fs_init_bio_entry_cache(void);
3569 void f2fs_destroy_bio_entry_cache(void);
3570 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3571 				struct bio *bio, enum page_type type);
3572 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3573 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3574 				struct inode *inode, struct page *page,
3575 				nid_t ino, enum page_type type);
3576 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3577 					struct bio **bio, struct page *page);
3578 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3579 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3580 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3581 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3582 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3583 			block_t blk_addr, struct bio *bio);
3584 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3585 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3586 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3587 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3588 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3589 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3590 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3591 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3592 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3593 			int op_flags, bool for_write);
3594 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3595 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3596 			bool for_write);
3597 struct page *f2fs_get_new_data_page(struct inode *inode,
3598 			struct page *ipage, pgoff_t index, bool new_i_size);
3599 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3600 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3601 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3602 			int create, int flag);
3603 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3604 			u64 start, u64 len);
3605 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3606 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3607 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3608 int f2fs_write_single_data_page(struct page *page, int *submitted,
3609 				struct bio **bio, sector_t *last_block,
3610 				struct writeback_control *wbc,
3611 				enum iostat_type io_type,
3612 				int compr_blocks, bool allow_balance);
3613 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3614 			unsigned int length);
3615 int f2fs_release_page(struct page *page, gfp_t wait);
3616 #ifdef CONFIG_MIGRATION
3617 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3618 			struct page *page, enum migrate_mode mode);
3619 #endif
3620 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3621 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3622 int f2fs_init_post_read_processing(void);
3623 void f2fs_destroy_post_read_processing(void);
3624 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3625 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3626 
3627 /*
3628  * gc.c
3629  */
3630 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3631 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3632 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3633 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3634 			unsigned int segno);
3635 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3636 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3637 int __init f2fs_create_garbage_collection_cache(void);
3638 void f2fs_destroy_garbage_collection_cache(void);
3639 
3640 /*
3641  * recovery.c
3642  */
3643 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3644 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3645 int __init f2fs_create_recovery_cache(void);
3646 void f2fs_destroy_recovery_cache(void);
3647 
3648 /*
3649  * debug.c
3650  */
3651 #ifdef CONFIG_F2FS_STAT_FS
3652 struct f2fs_stat_info {
3653 	struct list_head stat_list;
3654 	struct f2fs_sb_info *sbi;
3655 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3656 	int main_area_segs, main_area_sections, main_area_zones;
3657 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3658 	unsigned long long hit_total, total_ext;
3659 	int ext_tree, zombie_tree, ext_node;
3660 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3661 	int ndirty_data, ndirty_qdata;
3662 	int inmem_pages;
3663 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3664 	int nats, dirty_nats, sits, dirty_sits;
3665 	int free_nids, avail_nids, alloc_nids;
3666 	int total_count, utilization;
3667 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3668 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3669 	int nr_dio_read, nr_dio_write;
3670 	unsigned int io_skip_bggc, other_skip_bggc;
3671 	int nr_flushing, nr_flushed, flush_list_empty;
3672 	int nr_discarding, nr_discarded;
3673 	int nr_discard_cmd;
3674 	unsigned int undiscard_blks;
3675 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3676 	unsigned int cur_ckpt_time, peak_ckpt_time;
3677 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3678 	int compr_inode;
3679 	unsigned long long compr_blocks;
3680 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3681 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3682 	unsigned int bimodal, avg_vblocks;
3683 	int util_free, util_valid, util_invalid;
3684 	int rsvd_segs, overp_segs;
3685 	int dirty_count, node_pages, meta_pages, compress_pages;
3686 	int compress_page_hit;
3687 	int prefree_count, call_count, cp_count, bg_cp_count;
3688 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3689 	int bg_node_segs, bg_data_segs;
3690 	int tot_blks, data_blks, node_blks;
3691 	int bg_data_blks, bg_node_blks;
3692 	unsigned long long skipped_atomic_files[2];
3693 	int curseg[NR_CURSEG_TYPE];
3694 	int cursec[NR_CURSEG_TYPE];
3695 	int curzone[NR_CURSEG_TYPE];
3696 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3697 	unsigned int full_seg[NR_CURSEG_TYPE];
3698 	unsigned int valid_blks[NR_CURSEG_TYPE];
3699 
3700 	unsigned int meta_count[META_MAX];
3701 	unsigned int segment_count[2];
3702 	unsigned int block_count[2];
3703 	unsigned int inplace_count;
3704 	unsigned long long base_mem, cache_mem, page_mem;
3705 };
3706 
F2FS_STAT(struct f2fs_sb_info * sbi)3707 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3708 {
3709 	return (struct f2fs_stat_info *)sbi->stat_info;
3710 }
3711 
3712 #define stat_inc_cp_count(si)		((si)->cp_count++)
3713 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3714 #define stat_inc_call_count(si)		((si)->call_count++)
3715 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3716 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3717 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3718 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3719 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3720 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3721 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3722 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3723 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3724 #define stat_inc_inline_xattr(inode)					\
3725 	do {								\
3726 		if (f2fs_has_inline_xattr(inode))			\
3727 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3728 	} while (0)
3729 #define stat_dec_inline_xattr(inode)					\
3730 	do {								\
3731 		if (f2fs_has_inline_xattr(inode))			\
3732 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3733 	} while (0)
3734 #define stat_inc_inline_inode(inode)					\
3735 	do {								\
3736 		if (f2fs_has_inline_data(inode))			\
3737 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3738 	} while (0)
3739 #define stat_dec_inline_inode(inode)					\
3740 	do {								\
3741 		if (f2fs_has_inline_data(inode))			\
3742 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3743 	} while (0)
3744 #define stat_inc_inline_dir(inode)					\
3745 	do {								\
3746 		if (f2fs_has_inline_dentry(inode))			\
3747 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3748 	} while (0)
3749 #define stat_dec_inline_dir(inode)					\
3750 	do {								\
3751 		if (f2fs_has_inline_dentry(inode))			\
3752 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3753 	} while (0)
3754 #define stat_inc_compr_inode(inode)					\
3755 	do {								\
3756 		if (f2fs_compressed_file(inode))			\
3757 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3758 	} while (0)
3759 #define stat_dec_compr_inode(inode)					\
3760 	do {								\
3761 		if (f2fs_compressed_file(inode))			\
3762 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3763 	} while (0)
3764 #define stat_add_compr_blocks(inode, blocks)				\
3765 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3766 #define stat_sub_compr_blocks(inode, blocks)				\
3767 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3768 #define stat_inc_meta_count(sbi, blkaddr)				\
3769 	do {								\
3770 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3771 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3772 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3773 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3774 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3775 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3776 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3777 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3778 	} while (0)
3779 #define stat_inc_seg_type(sbi, curseg)					\
3780 		((sbi)->segment_count[(curseg)->alloc_type]++)
3781 #define stat_inc_block_count(sbi, curseg)				\
3782 		((sbi)->block_count[(curseg)->alloc_type]++)
3783 #define stat_inc_inplace_blocks(sbi)					\
3784 		(atomic_inc(&(sbi)->inplace_count))
3785 #define stat_update_max_atomic_write(inode)				\
3786 	do {								\
3787 		int cur = F2FS_I_SB(inode)->atomic_files;	\
3788 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3789 		if (cur > max)						\
3790 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3791 	} while (0)
3792 #define stat_inc_volatile_write(inode)					\
3793 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3794 #define stat_dec_volatile_write(inode)					\
3795 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3796 #define stat_update_max_volatile_write(inode)				\
3797 	do {								\
3798 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3799 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3800 		if (cur > max)						\
3801 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3802 	} while (0)
3803 #define stat_inc_seg_count(sbi, type, gc_type)				\
3804 	do {								\
3805 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3806 		si->tot_segs++;						\
3807 		if ((type) == SUM_TYPE_DATA) {				\
3808 			si->data_segs++;				\
3809 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3810 		} else {						\
3811 			si->node_segs++;				\
3812 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3813 		}							\
3814 	} while (0)
3815 
3816 #define stat_inc_tot_blk_count(si, blks)				\
3817 	((si)->tot_blks += (blks))
3818 
3819 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3820 	do {								\
3821 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3822 		stat_inc_tot_blk_count(si, blks);			\
3823 		si->data_blks += (blks);				\
3824 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3825 	} while (0)
3826 
3827 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3828 	do {								\
3829 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3830 		stat_inc_tot_blk_count(si, blks);			\
3831 		si->node_blks += (blks);				\
3832 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3833 	} while (0)
3834 
3835 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3836 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3837 void __init f2fs_create_root_stats(void);
3838 void f2fs_destroy_root_stats(void);
3839 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
3840 #else
3841 #define stat_inc_cp_count(si)				do { } while (0)
3842 #define stat_inc_bg_cp_count(si)			do { } while (0)
3843 #define stat_inc_call_count(si)				do { } while (0)
3844 #define stat_inc_bggc_count(si)				do { } while (0)
3845 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3846 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3847 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3848 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3849 #define stat_inc_total_hit(sbi)				do { } while (0)
3850 #define stat_inc_rbtree_node_hit(sbi)			do { } while (0)
3851 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3852 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3853 #define stat_inc_inline_xattr(inode)			do { } while (0)
3854 #define stat_dec_inline_xattr(inode)			do { } while (0)
3855 #define stat_inc_inline_inode(inode)			do { } while (0)
3856 #define stat_dec_inline_inode(inode)			do { } while (0)
3857 #define stat_inc_inline_dir(inode)			do { } while (0)
3858 #define stat_dec_inline_dir(inode)			do { } while (0)
3859 #define stat_inc_compr_inode(inode)			do { } while (0)
3860 #define stat_dec_compr_inode(inode)			do { } while (0)
3861 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
3862 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
3863 #define stat_update_max_atomic_write(inode)		do { } while (0)
3864 #define stat_inc_volatile_write(inode)			do { } while (0)
3865 #define stat_dec_volatile_write(inode)			do { } while (0)
3866 #define stat_update_max_volatile_write(inode)		do { } while (0)
3867 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3868 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3869 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3870 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3871 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3872 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3873 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3874 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3875 
f2fs_build_stats(struct f2fs_sb_info * sbi)3876 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3877 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3878 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)3879 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)3880 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
3881 #endif
3882 
3883 extern const struct file_operations f2fs_dir_operations;
3884 extern const struct file_operations f2fs_file_operations;
3885 extern const struct inode_operations f2fs_file_inode_operations;
3886 extern const struct address_space_operations f2fs_dblock_aops;
3887 extern const struct address_space_operations f2fs_node_aops;
3888 extern const struct address_space_operations f2fs_meta_aops;
3889 extern const struct inode_operations f2fs_dir_inode_operations;
3890 extern const struct inode_operations f2fs_symlink_inode_operations;
3891 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3892 extern const struct inode_operations f2fs_special_inode_operations;
3893 extern struct kmem_cache *f2fs_inode_entry_slab;
3894 
3895 /*
3896  * inline.c
3897  */
3898 bool f2fs_may_inline_data(struct inode *inode);
3899 bool f2fs_may_inline_dentry(struct inode *inode);
3900 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3901 void f2fs_truncate_inline_inode(struct inode *inode,
3902 						struct page *ipage, u64 from);
3903 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3904 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3905 int f2fs_convert_inline_inode(struct inode *inode);
3906 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
3907 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3908 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3909 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3910 					const struct f2fs_filename *fname,
3911 					struct page **res_page);
3912 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3913 			struct page *ipage);
3914 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
3915 			struct inode *inode, nid_t ino, umode_t mode);
3916 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3917 				struct page *page, struct inode *dir,
3918 				struct inode *inode);
3919 bool f2fs_empty_inline_dir(struct inode *dir);
3920 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3921 			struct fscrypt_str *fstr);
3922 int f2fs_inline_data_fiemap(struct inode *inode,
3923 			struct fiemap_extent_info *fieinfo,
3924 			__u64 start, __u64 len);
3925 
3926 /*
3927  * shrinker.c
3928  */
3929 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3930 			struct shrink_control *sc);
3931 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3932 			struct shrink_control *sc);
3933 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3934 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3935 
3936 /*
3937  * extent_cache.c
3938  */
3939 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3940 				struct rb_entry *cached_re, unsigned int ofs);
3941 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
3942 				struct rb_root_cached *root,
3943 				struct rb_node **parent,
3944 				unsigned long long key, bool *left_most);
3945 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3946 				struct rb_root_cached *root,
3947 				struct rb_node **parent,
3948 				unsigned int ofs, bool *leftmost);
3949 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3950 		struct rb_entry *cached_re, unsigned int ofs,
3951 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3952 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3953 		bool force, bool *leftmost);
3954 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3955 				struct rb_root_cached *root, bool check_key);
3956 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3957 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
3958 void f2fs_drop_extent_tree(struct inode *inode);
3959 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3960 void f2fs_destroy_extent_tree(struct inode *inode);
3961 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3962 			struct extent_info *ei);
3963 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3964 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3965 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3966 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3967 int __init f2fs_create_extent_cache(void);
3968 void f2fs_destroy_extent_cache(void);
3969 
3970 /*
3971  * sysfs.c
3972  */
3973 #define MIN_RA_MUL	2
3974 #define MAX_RA_MUL	256
3975 
3976 int __init f2fs_init_sysfs(void);
3977 void f2fs_exit_sysfs(void);
3978 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3979 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3980 
3981 /* verity.c */
3982 extern const struct fsverity_operations f2fs_verityops;
3983 
3984 /*
3985  * crypto support
3986  */
f2fs_encrypted_file(struct inode * inode)3987 static inline bool f2fs_encrypted_file(struct inode *inode)
3988 {
3989 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3990 }
3991 
f2fs_set_encrypted_inode(struct inode * inode)3992 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3993 {
3994 #ifdef CONFIG_FS_ENCRYPTION
3995 	file_set_encrypt(inode);
3996 	f2fs_set_inode_flags(inode);
3997 #endif
3998 }
3999 
4000 /*
4001  * Returns true if the reads of the inode's data need to undergo some
4002  * postprocessing step, like decryption or authenticity verification.
4003  */
f2fs_post_read_required(struct inode * inode)4004 static inline bool f2fs_post_read_required(struct inode *inode)
4005 {
4006 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4007 		f2fs_compressed_file(inode);
4008 }
4009 
4010 /*
4011  * compress.c
4012  */
4013 #ifdef CONFIG_F2FS_FS_COMPRESSION
4014 bool f2fs_is_compressed_page(struct page *page);
4015 struct page *f2fs_compress_control_page(struct page *page);
4016 int f2fs_prepare_compress_overwrite(struct inode *inode,
4017 			struct page **pagep, pgoff_t index, void **fsdata);
4018 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4019 					pgoff_t index, unsigned copied);
4020 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4021 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4022 bool f2fs_is_compress_backend_ready(struct inode *inode);
4023 int f2fs_init_compress_mempool(void);
4024 void f2fs_destroy_compress_mempool(void);
4025 void f2fs_decompress_cluster(struct decompress_io_ctx *dic);
4026 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4027 							block_t blkaddr);
4028 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4029 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4030 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4031 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4032 int f2fs_write_multi_pages(struct compress_ctx *cc,
4033 						int *submitted,
4034 						struct writeback_control *wbc,
4035 						enum iostat_type io_type);
4036 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4037 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4038 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4039 				unsigned int c_len);
4040 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4041 				unsigned nr_pages, sector_t *last_block_in_bio,
4042 				bool is_readahead, bool for_write);
4043 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4044 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed);
4045 void f2fs_put_page_dic(struct page *page);
4046 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4047 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4048 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4049 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4050 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4051 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4052 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4053 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4054 int __init f2fs_init_compress_cache(void);
4055 void f2fs_destroy_compress_cache(void);
4056 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4057 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4058 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4059 						nid_t ino, block_t blkaddr);
4060 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4061 								block_t blkaddr);
4062 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4063 #define inc_compr_inode_stat(inode)					\
4064 	do {								\
4065 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4066 		sbi->compr_new_inode++;					\
4067 	} while (0)
4068 #define add_compr_block_stat(inode, blocks)				\
4069 	do {								\
4070 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4071 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4072 		sbi->compr_written_block += blocks;			\
4073 		sbi->compr_saved_block += diff;				\
4074 	} while (0)
4075 #else
f2fs_is_compressed_page(struct page * page)4076 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4077 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4078 {
4079 	if (!f2fs_compressed_file(inode))
4080 		return true;
4081 	/* not support compression */
4082 	return false;
4083 }
f2fs_compress_control_page(struct page * page)4084 static inline struct page *f2fs_compress_control_page(struct page *page)
4085 {
4086 	WARN_ON_ONCE(1);
4087 	return ERR_PTR(-EINVAL);
4088 }
f2fs_init_compress_mempool(void)4089 static inline int f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4090 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic)4091 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr)4092 static inline void f2fs_end_read_compressed_page(struct page *page,
4093 						bool failed, block_t blkaddr)
4094 {
4095 	WARN_ON_ONCE(1);
4096 }
f2fs_put_page_dic(struct page * page)4097 static inline void f2fs_put_page_dic(struct page *page)
4098 {
4099 	WARN_ON_ONCE(1);
4100 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)4101 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4102 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4103 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4104 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4105 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4106 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4107 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4108 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)4109 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4110 				block_t blkaddr) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4111 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4112 				struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4113 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4114 				struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4115 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4116 							nid_t ino) { }
4117 #define inc_compr_inode_stat(inode)		do { } while (0)
f2fs_update_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4118 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4119 				pgoff_t fofs, block_t blkaddr, unsigned int llen,
4120 				unsigned int c_len) { }
4121 #endif
4122 
set_compress_context(struct inode * inode)4123 static inline void set_compress_context(struct inode *inode)
4124 {
4125 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4126 
4127 	F2FS_I(inode)->i_compress_algorithm =
4128 			F2FS_OPTION(sbi).compress_algorithm;
4129 	F2FS_I(inode)->i_log_cluster_size =
4130 			F2FS_OPTION(sbi).compress_log_size;
4131 	F2FS_I(inode)->i_compress_flag =
4132 			F2FS_OPTION(sbi).compress_chksum ?
4133 				1 << COMPRESS_CHKSUM : 0;
4134 	F2FS_I(inode)->i_cluster_size =
4135 			1 << F2FS_I(inode)->i_log_cluster_size;
4136 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4137 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4138 			F2FS_OPTION(sbi).compress_level)
4139 		F2FS_I(inode)->i_compress_flag |=
4140 				F2FS_OPTION(sbi).compress_level <<
4141 				COMPRESS_LEVEL_OFFSET;
4142 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4143 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4144 	stat_inc_compr_inode(inode);
4145 	inc_compr_inode_stat(inode);
4146 	f2fs_mark_inode_dirty_sync(inode, true);
4147 }
4148 
f2fs_disable_compressed_file(struct inode * inode)4149 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4150 {
4151 	struct f2fs_inode_info *fi = F2FS_I(inode);
4152 
4153 	if (!f2fs_compressed_file(inode))
4154 		return true;
4155 	if (S_ISREG(inode->i_mode) &&
4156 		(get_dirty_pages(inode) || atomic_read(&fi->i_compr_blocks)))
4157 		return false;
4158 
4159 	fi->i_flags &= ~F2FS_COMPR_FL;
4160 	stat_dec_compr_inode(inode);
4161 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4162 	f2fs_mark_inode_dirty_sync(inode, true);
4163 	return true;
4164 }
4165 
4166 #define F2FS_FEATURE_FUNCS(name, flagname) \
4167 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4168 { \
4169 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4170 }
4171 
4172 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4173 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4174 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4175 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4176 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4177 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4178 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4179 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4180 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4181 F2FS_FEATURE_FUNCS(verity, VERITY);
4182 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4183 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4184 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4185 F2FS_FEATURE_FUNCS(readonly, RO);
4186 
f2fs_may_extent_tree(struct inode * inode)4187 static inline bool f2fs_may_extent_tree(struct inode *inode)
4188 {
4189 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4190 
4191 	if (!test_opt(sbi, EXTENT_CACHE) ||
4192 			is_inode_flag_set(inode, FI_NO_EXTENT) ||
4193 			(is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4194 			 !f2fs_sb_has_readonly(sbi)))
4195 		return false;
4196 
4197 	/*
4198 	 * for recovered files during mount do not create extents
4199 	 * if shrinker is not registered.
4200 	 */
4201 	if (list_empty(&sbi->s_list))
4202 		return false;
4203 
4204 	return S_ISREG(inode->i_mode);
4205 }
4206 
4207 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4208 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4209 				    block_t blkaddr)
4210 {
4211 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4212 
4213 	return test_bit(zno, FDEV(devi).blkz_seq);
4214 }
4215 #endif
4216 
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4217 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4218 {
4219 	return f2fs_sb_has_blkzoned(sbi);
4220 }
4221 
f2fs_bdev_support_discard(struct block_device * bdev)4222 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4223 {
4224 	return blk_queue_discard(bdev_get_queue(bdev)) ||
4225 	       bdev_is_zoned(bdev);
4226 }
4227 
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4228 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4229 {
4230 	int i;
4231 
4232 	if (!f2fs_is_multi_device(sbi))
4233 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4234 
4235 	for (i = 0; i < sbi->s_ndevs; i++)
4236 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4237 			return true;
4238 	return false;
4239 }
4240 
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4241 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4242 {
4243 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4244 					f2fs_hw_should_discard(sbi);
4245 }
4246 
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4247 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4248 {
4249 	int i;
4250 
4251 	if (!f2fs_is_multi_device(sbi))
4252 		return bdev_read_only(sbi->sb->s_bdev);
4253 
4254 	for (i = 0; i < sbi->s_ndevs; i++)
4255 		if (bdev_read_only(FDEV(i).bdev))
4256 			return true;
4257 	return false;
4258 }
4259 
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4260 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4261 {
4262 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4263 }
4264 
f2fs_may_compress(struct inode * inode)4265 static inline bool f2fs_may_compress(struct inode *inode)
4266 {
4267 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4268 				f2fs_is_atomic_file(inode) ||
4269 				f2fs_is_volatile_file(inode))
4270 		return false;
4271 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4272 }
4273 
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4274 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4275 						u64 blocks, bool add)
4276 {
4277 	int diff = F2FS_I(inode)->i_cluster_size - blocks;
4278 	struct f2fs_inode_info *fi = F2FS_I(inode);
4279 
4280 	/* don't update i_compr_blocks if saved blocks were released */
4281 	if (!add && !atomic_read(&fi->i_compr_blocks))
4282 		return;
4283 
4284 	if (add) {
4285 		atomic_add(diff, &fi->i_compr_blocks);
4286 		stat_add_compr_blocks(inode, diff);
4287 	} else {
4288 		atomic_sub(diff, &fi->i_compr_blocks);
4289 		stat_sub_compr_blocks(inode, diff);
4290 	}
4291 	f2fs_mark_inode_dirty_sync(inode, true);
4292 }
4293 
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4294 static inline int block_unaligned_IO(struct inode *inode,
4295 				struct kiocb *iocb, struct iov_iter *iter)
4296 {
4297 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4298 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4299 	loff_t offset = iocb->ki_pos;
4300 	unsigned long align = offset | iov_iter_alignment(iter);
4301 
4302 	return align & blocksize_mask;
4303 }
4304 
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4305 static inline bool f2fs_force_buffered_io(struct inode *inode,
4306 				struct kiocb *iocb, struct iov_iter *iter)
4307 {
4308 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4309 	int rw = iov_iter_rw(iter);
4310 
4311 	if (f2fs_post_read_required(inode))
4312 		return true;
4313 	if (f2fs_is_multi_device(sbi))
4314 		return true;
4315 	/*
4316 	 * for blkzoned device, fallback direct IO to buffered IO, so
4317 	 * all IOs can be serialized by log-structured write.
4318 	 */
4319 	if (f2fs_sb_has_blkzoned(sbi))
4320 		return true;
4321 	if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4322 		if (block_unaligned_IO(inode, iocb, iter))
4323 			return true;
4324 		if (F2FS_IO_ALIGNED(sbi))
4325 			return true;
4326 	}
4327 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4328 		return true;
4329 
4330 	return false;
4331 }
4332 
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4333 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4334 {
4335 	return fsverity_active(inode) &&
4336 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4337 }
4338 
4339 #ifdef CONFIG_F2FS_FAULT_INJECTION
4340 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4341 							unsigned int type);
4342 #else
4343 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4344 #endif
4345 
is_journalled_quota(struct f2fs_sb_info * sbi)4346 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4347 {
4348 #ifdef CONFIG_QUOTA
4349 	if (f2fs_sb_has_quota_ino(sbi))
4350 		return true;
4351 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4352 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4353 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4354 		return true;
4355 #endif
4356 	return false;
4357 }
4358 
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4359 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4360 {
4361 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4362 }
4363 
4364 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4365 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4366 
4367 #endif /* _LINUX_F2FS_H */
4368