1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/inline.c
4 * Copyright (c) 2013, Intel Corporation
5 * Authors: Huajun Li <huajun.li@intel.com>
6 * Haicheng Li <haicheng.li@intel.com>
7 */
8
9 #include <linux/fs.h>
10 #include <linux/f2fs_fs.h>
11 #include <linux/fiemap.h>
12
13 #include "f2fs.h"
14 #include "node.h"
15 #include <trace/events/f2fs.h>
16
f2fs_may_inline_data(struct inode * inode)17 bool f2fs_may_inline_data(struct inode *inode)
18 {
19 if (f2fs_is_atomic_file(inode))
20 return false;
21
22 if (!S_ISREG(inode->i_mode) && !S_ISLNK(inode->i_mode))
23 return false;
24
25 if (i_size_read(inode) > MAX_INLINE_DATA(inode))
26 return false;
27
28 if (f2fs_post_read_required(inode))
29 return false;
30
31 return true;
32 }
33
f2fs_may_inline_dentry(struct inode * inode)34 bool f2fs_may_inline_dentry(struct inode *inode)
35 {
36 if (!test_opt(F2FS_I_SB(inode), INLINE_DENTRY))
37 return false;
38
39 if (!S_ISDIR(inode->i_mode))
40 return false;
41
42 return true;
43 }
44
f2fs_do_read_inline_data(struct page * page,struct page * ipage)45 void f2fs_do_read_inline_data(struct page *page, struct page *ipage)
46 {
47 struct inode *inode = page->mapping->host;
48 void *src_addr, *dst_addr;
49
50 if (PageUptodate(page))
51 return;
52
53 f2fs_bug_on(F2FS_P_SB(page), page->index);
54
55 zero_user_segment(page, MAX_INLINE_DATA(inode), PAGE_SIZE);
56
57 /* Copy the whole inline data block */
58 src_addr = inline_data_addr(inode, ipage);
59 dst_addr = kmap_atomic(page);
60 memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
61 flush_dcache_page(page);
62 kunmap_atomic(dst_addr);
63 if (!PageUptodate(page))
64 SetPageUptodate(page);
65 }
66
f2fs_truncate_inline_inode(struct inode * inode,struct page * ipage,u64 from)67 void f2fs_truncate_inline_inode(struct inode *inode,
68 struct page *ipage, u64 from)
69 {
70 void *addr;
71
72 if (from >= MAX_INLINE_DATA(inode))
73 return;
74
75 addr = inline_data_addr(inode, ipage);
76
77 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
78 memset(addr + from, 0, MAX_INLINE_DATA(inode) - from);
79 set_page_dirty(ipage);
80
81 if (from == 0)
82 clear_inode_flag(inode, FI_DATA_EXIST);
83 }
84
f2fs_read_inline_data(struct inode * inode,struct page * page)85 int f2fs_read_inline_data(struct inode *inode, struct page *page)
86 {
87 struct page *ipage;
88
89 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
90 if (IS_ERR(ipage)) {
91 unlock_page(page);
92 return PTR_ERR(ipage);
93 }
94
95 if (!f2fs_has_inline_data(inode)) {
96 f2fs_put_page(ipage, 1);
97 return -EAGAIN;
98 }
99
100 if (page->index)
101 zero_user_segment(page, 0, PAGE_SIZE);
102 else
103 f2fs_do_read_inline_data(page, ipage);
104
105 if (!PageUptodate(page))
106 SetPageUptodate(page);
107 f2fs_put_page(ipage, 1);
108 unlock_page(page);
109 return 0;
110 }
111
f2fs_convert_inline_page(struct dnode_of_data * dn,struct page * page)112 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
113 {
114 struct f2fs_io_info fio = {
115 .sbi = F2FS_I_SB(dn->inode),
116 .ino = dn->inode->i_ino,
117 .type = DATA,
118 .op = REQ_OP_WRITE,
119 .op_flags = REQ_SYNC | REQ_PRIO,
120 .page = page,
121 .encrypted_page = NULL,
122 .io_type = FS_DATA_IO,
123 };
124 struct node_info ni;
125 int dirty, err;
126
127 if (!f2fs_exist_data(dn->inode))
128 goto clear_out;
129
130 err = f2fs_reserve_block(dn, 0);
131 if (err)
132 return err;
133
134 err = f2fs_get_node_info(fio.sbi, dn->nid, &ni);
135 if (err) {
136 f2fs_truncate_data_blocks_range(dn, 1);
137 f2fs_put_dnode(dn);
138 return err;
139 }
140
141 fio.version = ni.version;
142
143 if (unlikely(dn->data_blkaddr != NEW_ADDR)) {
144 f2fs_put_dnode(dn);
145 set_sbi_flag(fio.sbi, SBI_NEED_FSCK);
146 f2fs_warn(fio.sbi, "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.",
147 __func__, dn->inode->i_ino, dn->data_blkaddr);
148 return -EFSCORRUPTED;
149 }
150
151 f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page));
152
153 f2fs_do_read_inline_data(page, dn->inode_page);
154 set_page_dirty(page);
155
156 /* clear dirty state */
157 dirty = clear_page_dirty_for_io(page);
158
159 /* write data page to try to make data consistent */
160 set_page_writeback(page);
161 ClearPageError(page);
162 fio.old_blkaddr = dn->data_blkaddr;
163 set_inode_flag(dn->inode, FI_HOT_DATA);
164 f2fs_outplace_write_data(dn, &fio);
165 f2fs_wait_on_page_writeback(page, DATA, true, true);
166 if (dirty) {
167 inode_dec_dirty_pages(dn->inode);
168 f2fs_remove_dirty_inode(dn->inode);
169 }
170
171 /* this converted inline_data should be recovered. */
172 set_inode_flag(dn->inode, FI_APPEND_WRITE);
173
174 /* clear inline data and flag after data writeback */
175 f2fs_truncate_inline_inode(dn->inode, dn->inode_page, 0);
176 clear_inline_node(dn->inode_page);
177 clear_out:
178 stat_dec_inline_inode(dn->inode);
179 clear_inode_flag(dn->inode, FI_INLINE_DATA);
180 f2fs_put_dnode(dn);
181 return 0;
182 }
183
f2fs_convert_inline_inode(struct inode * inode)184 int f2fs_convert_inline_inode(struct inode *inode)
185 {
186 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
187 struct dnode_of_data dn;
188 struct page *ipage, *page;
189 int err = 0;
190
191 if (!f2fs_has_inline_data(inode))
192 return 0;
193
194 page = f2fs_grab_cache_page(inode->i_mapping, 0, false);
195 if (!page)
196 return -ENOMEM;
197
198 f2fs_lock_op(sbi);
199
200 ipage = f2fs_get_node_page(sbi, inode->i_ino);
201 if (IS_ERR(ipage)) {
202 err = PTR_ERR(ipage);
203 goto out;
204 }
205
206 set_new_dnode(&dn, inode, ipage, ipage, 0);
207
208 if (f2fs_has_inline_data(inode))
209 err = f2fs_convert_inline_page(&dn, page);
210
211 f2fs_put_dnode(&dn);
212 out:
213 f2fs_unlock_op(sbi);
214
215 f2fs_put_page(page, 1);
216
217 f2fs_balance_fs(sbi, dn.node_changed);
218
219 return err;
220 }
221
f2fs_write_inline_data(struct inode * inode,struct page * page)222 int f2fs_write_inline_data(struct inode *inode, struct page *page)
223 {
224 void *src_addr, *dst_addr;
225 struct dnode_of_data dn;
226 int err;
227
228 set_new_dnode(&dn, inode, NULL, NULL, 0);
229 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
230 if (err)
231 return err;
232
233 if (!f2fs_has_inline_data(inode)) {
234 f2fs_put_dnode(&dn);
235 return -EAGAIN;
236 }
237
238 f2fs_bug_on(F2FS_I_SB(inode), page->index);
239
240 f2fs_wait_on_page_writeback(dn.inode_page, NODE, true, true);
241 src_addr = kmap_atomic(page);
242 dst_addr = inline_data_addr(inode, dn.inode_page);
243 memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
244 kunmap_atomic(src_addr);
245 set_page_dirty(dn.inode_page);
246
247 f2fs_clear_page_cache_dirty_tag(page);
248
249 set_inode_flag(inode, FI_APPEND_WRITE);
250 set_inode_flag(inode, FI_DATA_EXIST);
251
252 clear_inline_node(dn.inode_page);
253 f2fs_put_dnode(&dn);
254 return 0;
255 }
256
f2fs_recover_inline_data(struct inode * inode,struct page * npage)257 int f2fs_recover_inline_data(struct inode *inode, struct page *npage)
258 {
259 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
260 struct f2fs_inode *ri = NULL;
261 void *src_addr, *dst_addr;
262 struct page *ipage;
263
264 /*
265 * The inline_data recovery policy is as follows.
266 * [prev.] [next] of inline_data flag
267 * o o -> recover inline_data
268 * o x -> remove inline_data, and then recover data blocks
269 * x o -> remove inline_data, and then recover inline_data
270 * x x -> recover data blocks
271 */
272 if (IS_INODE(npage))
273 ri = F2FS_INODE(npage);
274
275 if (f2fs_has_inline_data(inode) &&
276 ri && (ri->i_inline & F2FS_INLINE_DATA)) {
277 process_inline:
278 ipage = f2fs_get_node_page(sbi, inode->i_ino);
279 if (IS_ERR(ipage))
280 return PTR_ERR(ipage);
281
282 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
283
284 src_addr = inline_data_addr(inode, npage);
285 dst_addr = inline_data_addr(inode, ipage);
286 memcpy(dst_addr, src_addr, MAX_INLINE_DATA(inode));
287
288 set_inode_flag(inode, FI_INLINE_DATA);
289 set_inode_flag(inode, FI_DATA_EXIST);
290
291 set_page_dirty(ipage);
292 f2fs_put_page(ipage, 1);
293 return 1;
294 }
295
296 if (f2fs_has_inline_data(inode)) {
297 ipage = f2fs_get_node_page(sbi, inode->i_ino);
298 if (IS_ERR(ipage))
299 return PTR_ERR(ipage);
300 f2fs_truncate_inline_inode(inode, ipage, 0);
301 clear_inode_flag(inode, FI_INLINE_DATA);
302 f2fs_put_page(ipage, 1);
303 } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
304 int ret;
305
306 ret = f2fs_truncate_blocks(inode, 0, false);
307 if (ret)
308 return ret;
309 goto process_inline;
310 }
311 return 0;
312 }
313
f2fs_find_in_inline_dir(struct inode * dir,const struct f2fs_filename * fname,struct page ** res_page)314 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
315 const struct f2fs_filename *fname,
316 struct page **res_page)
317 {
318 struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
319 struct f2fs_dir_entry *de;
320 struct f2fs_dentry_ptr d;
321 struct page *ipage;
322 void *inline_dentry;
323
324 ipage = f2fs_get_node_page(sbi, dir->i_ino);
325 if (IS_ERR(ipage)) {
326 *res_page = ipage;
327 return NULL;
328 }
329
330 inline_dentry = inline_data_addr(dir, ipage);
331
332 make_dentry_ptr_inline(dir, &d, inline_dentry);
333 de = f2fs_find_target_dentry(&d, fname, NULL);
334 unlock_page(ipage);
335 if (de)
336 *res_page = ipage;
337 else
338 f2fs_put_page(ipage, 0);
339
340 return de;
341 }
342
f2fs_make_empty_inline_dir(struct inode * inode,struct inode * parent,struct page * ipage)343 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
344 struct page *ipage)
345 {
346 struct f2fs_dentry_ptr d;
347 void *inline_dentry;
348
349 inline_dentry = inline_data_addr(inode, ipage);
350
351 make_dentry_ptr_inline(inode, &d, inline_dentry);
352 f2fs_do_make_empty_dir(inode, parent, &d);
353
354 set_page_dirty(ipage);
355
356 /* update i_size to MAX_INLINE_DATA */
357 if (i_size_read(inode) < MAX_INLINE_DATA(inode))
358 f2fs_i_size_write(inode, MAX_INLINE_DATA(inode));
359 return 0;
360 }
361
362 /*
363 * NOTE: ipage is grabbed by caller, but if any error occurs, we should
364 * release ipage in this function.
365 */
f2fs_move_inline_dirents(struct inode * dir,struct page * ipage,void * inline_dentry)366 static int f2fs_move_inline_dirents(struct inode *dir, struct page *ipage,
367 void *inline_dentry)
368 {
369 struct page *page;
370 struct dnode_of_data dn;
371 struct f2fs_dentry_block *dentry_blk;
372 struct f2fs_dentry_ptr src, dst;
373 int err;
374
375 page = f2fs_grab_cache_page(dir->i_mapping, 0, true);
376 if (!page) {
377 f2fs_put_page(ipage, 1);
378 return -ENOMEM;
379 }
380
381 set_new_dnode(&dn, dir, ipage, NULL, 0);
382 err = f2fs_reserve_block(&dn, 0);
383 if (err)
384 goto out;
385
386 if (unlikely(dn.data_blkaddr != NEW_ADDR)) {
387 f2fs_put_dnode(&dn);
388 set_sbi_flag(F2FS_P_SB(page), SBI_NEED_FSCK);
389 f2fs_warn(F2FS_P_SB(page), "%s: corrupted inline inode ino=%lx, i_addr[0]:0x%x, run fsck to fix.",
390 __func__, dir->i_ino, dn.data_blkaddr);
391 err = -EFSCORRUPTED;
392 goto out;
393 }
394
395 f2fs_wait_on_page_writeback(page, DATA, true, true);
396
397 dentry_blk = page_address(page);
398
399 make_dentry_ptr_inline(dir, &src, inline_dentry);
400 make_dentry_ptr_block(dir, &dst, dentry_blk);
401
402 /* copy data from inline dentry block to new dentry block */
403 memcpy(dst.bitmap, src.bitmap, src.nr_bitmap);
404 memset(dst.bitmap + src.nr_bitmap, 0, dst.nr_bitmap - src.nr_bitmap);
405 /*
406 * we do not need to zero out remainder part of dentry and filename
407 * field, since we have used bitmap for marking the usage status of
408 * them, besides, we can also ignore copying/zeroing reserved space
409 * of dentry block, because them haven't been used so far.
410 */
411 memcpy(dst.dentry, src.dentry, SIZE_OF_DIR_ENTRY * src.max);
412 memcpy(dst.filename, src.filename, src.max * F2FS_SLOT_LEN);
413
414 if (!PageUptodate(page))
415 SetPageUptodate(page);
416 set_page_dirty(page);
417
418 /* clear inline dir and flag after data writeback */
419 f2fs_truncate_inline_inode(dir, ipage, 0);
420
421 stat_dec_inline_dir(dir);
422 clear_inode_flag(dir, FI_INLINE_DENTRY);
423
424 /*
425 * should retrieve reserved space which was used to keep
426 * inline_dentry's structure for backward compatibility.
427 */
428 if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) &&
429 !f2fs_has_inline_xattr(dir))
430 F2FS_I(dir)->i_inline_xattr_size = 0;
431
432 f2fs_i_depth_write(dir, 1);
433 if (i_size_read(dir) < PAGE_SIZE)
434 f2fs_i_size_write(dir, PAGE_SIZE);
435 out:
436 f2fs_put_page(page, 1);
437 return err;
438 }
439
f2fs_add_inline_entries(struct inode * dir,void * inline_dentry)440 static int f2fs_add_inline_entries(struct inode *dir, void *inline_dentry)
441 {
442 struct f2fs_dentry_ptr d;
443 unsigned long bit_pos = 0;
444 int err = 0;
445
446 make_dentry_ptr_inline(dir, &d, inline_dentry);
447
448 while (bit_pos < d.max) {
449 struct f2fs_dir_entry *de;
450 struct f2fs_filename fname;
451 nid_t ino;
452 umode_t fake_mode;
453
454 if (!test_bit_le(bit_pos, d.bitmap)) {
455 bit_pos++;
456 continue;
457 }
458
459 de = &d.dentry[bit_pos];
460
461 if (unlikely(!de->name_len)) {
462 bit_pos++;
463 continue;
464 }
465
466 /*
467 * We only need the disk_name and hash to move the dentry.
468 * We don't need the original or casefolded filenames.
469 */
470 memset(&fname, 0, sizeof(fname));
471 fname.disk_name.name = d.filename[bit_pos];
472 fname.disk_name.len = le16_to_cpu(de->name_len);
473 fname.hash = de->hash_code;
474
475 ino = le32_to_cpu(de->ino);
476 fake_mode = f2fs_get_de_type(de) << S_SHIFT;
477
478 err = f2fs_add_regular_entry(dir, &fname, NULL, ino, fake_mode);
479 if (err)
480 goto punch_dentry_pages;
481
482 bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
483 }
484 return 0;
485 punch_dentry_pages:
486 truncate_inode_pages(&dir->i_data, 0);
487 f2fs_truncate_blocks(dir, 0, false);
488 f2fs_remove_dirty_inode(dir);
489 return err;
490 }
491
f2fs_move_rehashed_dirents(struct inode * dir,struct page * ipage,void * inline_dentry)492 static int f2fs_move_rehashed_dirents(struct inode *dir, struct page *ipage,
493 void *inline_dentry)
494 {
495 void *backup_dentry;
496 int err;
497
498 backup_dentry = f2fs_kmalloc(F2FS_I_SB(dir),
499 MAX_INLINE_DATA(dir), GFP_F2FS_ZERO);
500 if (!backup_dentry) {
501 f2fs_put_page(ipage, 1);
502 return -ENOMEM;
503 }
504
505 memcpy(backup_dentry, inline_dentry, MAX_INLINE_DATA(dir));
506 f2fs_truncate_inline_inode(dir, ipage, 0);
507
508 unlock_page(ipage);
509
510 err = f2fs_add_inline_entries(dir, backup_dentry);
511 if (err)
512 goto recover;
513
514 lock_page(ipage);
515
516 stat_dec_inline_dir(dir);
517 clear_inode_flag(dir, FI_INLINE_DENTRY);
518
519 /*
520 * should retrieve reserved space which was used to keep
521 * inline_dentry's structure for backward compatibility.
522 */
523 if (!f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(dir)) &&
524 !f2fs_has_inline_xattr(dir))
525 F2FS_I(dir)->i_inline_xattr_size = 0;
526
527 kfree(backup_dentry);
528 return 0;
529 recover:
530 lock_page(ipage);
531 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
532 memcpy(inline_dentry, backup_dentry, MAX_INLINE_DATA(dir));
533 f2fs_i_depth_write(dir, 0);
534 f2fs_i_size_write(dir, MAX_INLINE_DATA(dir));
535 set_page_dirty(ipage);
536 f2fs_put_page(ipage, 1);
537
538 kfree(backup_dentry);
539 return err;
540 }
541
do_convert_inline_dir(struct inode * dir,struct page * ipage,void * inline_dentry)542 static int do_convert_inline_dir(struct inode *dir, struct page *ipage,
543 void *inline_dentry)
544 {
545 if (!F2FS_I(dir)->i_dir_level)
546 return f2fs_move_inline_dirents(dir, ipage, inline_dentry);
547 else
548 return f2fs_move_rehashed_dirents(dir, ipage, inline_dentry);
549 }
550
f2fs_try_convert_inline_dir(struct inode * dir,struct dentry * dentry)551 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry)
552 {
553 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
554 struct page *ipage;
555 struct f2fs_filename fname;
556 void *inline_dentry = NULL;
557 int err = 0;
558
559 if (!f2fs_has_inline_dentry(dir))
560 return 0;
561
562 f2fs_lock_op(sbi);
563
564 err = f2fs_setup_filename(dir, &dentry->d_name, 0, &fname);
565 if (err)
566 goto out;
567
568 ipage = f2fs_get_node_page(sbi, dir->i_ino);
569 if (IS_ERR(ipage)) {
570 err = PTR_ERR(ipage);
571 goto out_fname;
572 }
573
574 if (f2fs_has_enough_room(dir, ipage, &fname)) {
575 f2fs_put_page(ipage, 1);
576 goto out_fname;
577 }
578
579 inline_dentry = inline_data_addr(dir, ipage);
580
581 err = do_convert_inline_dir(dir, ipage, inline_dentry);
582 if (!err)
583 f2fs_put_page(ipage, 1);
584 out_fname:
585 f2fs_free_filename(&fname);
586 out:
587 f2fs_unlock_op(sbi);
588 return err;
589 }
590
f2fs_add_inline_entry(struct inode * dir,const struct f2fs_filename * fname,struct inode * inode,nid_t ino,umode_t mode)591 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
592 struct inode *inode, nid_t ino, umode_t mode)
593 {
594 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
595 struct page *ipage;
596 unsigned int bit_pos;
597 void *inline_dentry = NULL;
598 struct f2fs_dentry_ptr d;
599 int slots = GET_DENTRY_SLOTS(fname->disk_name.len);
600 struct page *page = NULL;
601 int err = 0;
602
603 ipage = f2fs_get_node_page(sbi, dir->i_ino);
604 if (IS_ERR(ipage))
605 return PTR_ERR(ipage);
606
607 inline_dentry = inline_data_addr(dir, ipage);
608 make_dentry_ptr_inline(dir, &d, inline_dentry);
609
610 bit_pos = f2fs_room_for_filename(d.bitmap, slots, d.max);
611 if (bit_pos >= d.max) {
612 err = do_convert_inline_dir(dir, ipage, inline_dentry);
613 if (err)
614 return err;
615 err = -EAGAIN;
616 goto out;
617 }
618
619 if (inode) {
620 down_write(&F2FS_I(inode)->i_sem);
621 page = f2fs_init_inode_metadata(inode, dir, fname, ipage);
622 if (IS_ERR(page)) {
623 err = PTR_ERR(page);
624 goto fail;
625 }
626 }
627
628 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
629
630 f2fs_update_dentry(ino, mode, &d, &fname->disk_name, fname->hash,
631 bit_pos);
632
633 set_page_dirty(ipage);
634
635 /* we don't need to mark_inode_dirty now */
636 if (inode) {
637 f2fs_i_pino_write(inode, dir->i_ino);
638
639 /* synchronize inode page's data from inode cache */
640 if (is_inode_flag_set(inode, FI_NEW_INODE))
641 f2fs_update_inode(inode, page);
642
643 f2fs_put_page(page, 1);
644 }
645
646 f2fs_update_parent_metadata(dir, inode, 0);
647 fail:
648 if (inode)
649 up_write(&F2FS_I(inode)->i_sem);
650 out:
651 f2fs_put_page(ipage, 1);
652 return err;
653 }
654
f2fs_delete_inline_entry(struct f2fs_dir_entry * dentry,struct page * page,struct inode * dir,struct inode * inode)655 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
656 struct inode *dir, struct inode *inode)
657 {
658 struct f2fs_dentry_ptr d;
659 void *inline_dentry;
660 int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
661 unsigned int bit_pos;
662 int i;
663
664 lock_page(page);
665 f2fs_wait_on_page_writeback(page, NODE, true, true);
666
667 inline_dentry = inline_data_addr(dir, page);
668 make_dentry_ptr_inline(dir, &d, inline_dentry);
669
670 bit_pos = dentry - d.dentry;
671 for (i = 0; i < slots; i++)
672 __clear_bit_le(bit_pos + i, d.bitmap);
673
674 set_page_dirty(page);
675 f2fs_put_page(page, 1);
676
677 dir->i_ctime = dir->i_mtime = current_time(dir);
678 f2fs_mark_inode_dirty_sync(dir, false);
679
680 if (inode)
681 f2fs_drop_nlink(dir, inode);
682 }
683
f2fs_empty_inline_dir(struct inode * dir)684 bool f2fs_empty_inline_dir(struct inode *dir)
685 {
686 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
687 struct page *ipage;
688 unsigned int bit_pos = 2;
689 void *inline_dentry;
690 struct f2fs_dentry_ptr d;
691
692 ipage = f2fs_get_node_page(sbi, dir->i_ino);
693 if (IS_ERR(ipage))
694 return false;
695
696 inline_dentry = inline_data_addr(dir, ipage);
697 make_dentry_ptr_inline(dir, &d, inline_dentry);
698
699 bit_pos = find_next_bit_le(d.bitmap, d.max, bit_pos);
700
701 f2fs_put_page(ipage, 1);
702
703 if (bit_pos < d.max)
704 return false;
705
706 return true;
707 }
708
f2fs_read_inline_dir(struct file * file,struct dir_context * ctx,struct fscrypt_str * fstr)709 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
710 struct fscrypt_str *fstr)
711 {
712 struct inode *inode = file_inode(file);
713 struct page *ipage = NULL;
714 struct f2fs_dentry_ptr d;
715 void *inline_dentry = NULL;
716 int err;
717
718 make_dentry_ptr_inline(inode, &d, inline_dentry);
719
720 if (ctx->pos == d.max)
721 return 0;
722
723 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
724 if (IS_ERR(ipage))
725 return PTR_ERR(ipage);
726
727 /*
728 * f2fs_readdir was protected by inode.i_rwsem, it is safe to access
729 * ipage without page's lock held.
730 */
731 unlock_page(ipage);
732
733 inline_dentry = inline_data_addr(inode, ipage);
734
735 make_dentry_ptr_inline(inode, &d, inline_dentry);
736
737 err = f2fs_fill_dentries(ctx, &d, 0, fstr);
738 if (!err)
739 ctx->pos = d.max;
740
741 f2fs_put_page(ipage, 0);
742 return err < 0 ? err : 0;
743 }
744
f2fs_inline_data_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)745 int f2fs_inline_data_fiemap(struct inode *inode,
746 struct fiemap_extent_info *fieinfo, __u64 start, __u64 len)
747 {
748 __u64 byteaddr, ilen;
749 __u32 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED |
750 FIEMAP_EXTENT_LAST;
751 struct node_info ni;
752 struct page *ipage;
753 int err = 0;
754
755 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
756 if (IS_ERR(ipage))
757 return PTR_ERR(ipage);
758
759 if ((S_ISREG(inode->i_mode) || S_ISLNK(inode->i_mode)) &&
760 !f2fs_has_inline_data(inode)) {
761 err = -EAGAIN;
762 goto out;
763 }
764
765 if (S_ISDIR(inode->i_mode) && !f2fs_has_inline_dentry(inode)) {
766 err = -EAGAIN;
767 goto out;
768 }
769
770 ilen = min_t(size_t, MAX_INLINE_DATA(inode), i_size_read(inode));
771 if (start >= ilen)
772 goto out;
773 if (start + len < ilen)
774 ilen = start + len;
775 ilen -= start;
776
777 err = f2fs_get_node_info(F2FS_I_SB(inode), inode->i_ino, &ni);
778 if (err)
779 goto out;
780
781 byteaddr = (__u64)ni.blk_addr << inode->i_sb->s_blocksize_bits;
782 byteaddr += (char *)inline_data_addr(inode, ipage) -
783 (char *)F2FS_INODE(ipage);
784 err = fiemap_fill_next_extent(fieinfo, start, byteaddr, ilen, flags);
785 trace_f2fs_fiemap(inode, start, byteaddr, ilen, flags, err);
786 out:
787 f2fs_put_page(ipage, 1);
788 return err;
789 }
790