1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/file.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/stat.h>
11 #include <linux/buffer_head.h>
12 #include <linux/writeback.h>
13 #include <linux/blkdev.h>
14 #include <linux/falloc.h>
15 #include <linux/types.h>
16 #include <linux/compat.h>
17 #include <linux/uaccess.h>
18 #include <linux/mount.h>
19 #include <linux/pagevec.h>
20 #include <linux/uio.h>
21 #include <linux/uuid.h>
22 #include <linux/file.h>
23 #include <linux/nls.h>
24 #include <linux/sched/signal.h>
25 #include <linux/fileattr.h>
26 #include <linux/fadvise.h>
27 #include <linux/iomap.h>
28
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "acl.h"
34 #include "gc.h"
35 #include "iostat.h"
36 #include <trace/events/f2fs.h>
37 #include <uapi/linux/f2fs.h>
38
f2fs_filemap_fault(struct vm_fault * vmf)39 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
40 {
41 struct inode *inode = file_inode(vmf->vma->vm_file);
42 vm_fault_t ret;
43
44 ret = filemap_fault(vmf);
45 if (!ret)
46 f2fs_update_iostat(F2FS_I_SB(inode), inode,
47 APP_MAPPED_READ_IO, F2FS_BLKSIZE);
48
49 trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
50
51 return ret;
52 }
53
f2fs_vm_page_mkwrite(struct vm_fault * vmf)54 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
55 {
56 struct page *page = vmf->page;
57 struct inode *inode = file_inode(vmf->vma->vm_file);
58 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
59 struct dnode_of_data dn;
60 bool need_alloc = true;
61 int err = 0;
62
63 if (unlikely(IS_IMMUTABLE(inode)))
64 return VM_FAULT_SIGBUS;
65
66 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
67 return VM_FAULT_SIGBUS;
68
69 if (unlikely(f2fs_cp_error(sbi))) {
70 err = -EIO;
71 goto err;
72 }
73
74 if (!f2fs_is_checkpoint_ready(sbi)) {
75 err = -ENOSPC;
76 goto err;
77 }
78
79 err = f2fs_convert_inline_inode(inode);
80 if (err)
81 goto err;
82
83 #ifdef CONFIG_F2FS_FS_COMPRESSION
84 if (f2fs_compressed_file(inode)) {
85 int ret = f2fs_is_compressed_cluster(inode, page->index);
86
87 if (ret < 0) {
88 err = ret;
89 goto err;
90 } else if (ret) {
91 need_alloc = false;
92 }
93 }
94 #endif
95 /* should do out of any locked page */
96 if (need_alloc)
97 f2fs_balance_fs(sbi, true);
98
99 sb_start_pagefault(inode->i_sb);
100
101 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
102
103 file_update_time(vmf->vma->vm_file);
104 filemap_invalidate_lock_shared(inode->i_mapping);
105 lock_page(page);
106 if (unlikely(page->mapping != inode->i_mapping ||
107 page_offset(page) > i_size_read(inode) ||
108 !PageUptodate(page))) {
109 unlock_page(page);
110 err = -EFAULT;
111 goto out_sem;
112 }
113
114 if (need_alloc) {
115 /* block allocation */
116 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
117 set_new_dnode(&dn, inode, NULL, NULL, 0);
118 err = f2fs_get_block(&dn, page->index);
119 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
120 }
121
122 #ifdef CONFIG_F2FS_FS_COMPRESSION
123 if (!need_alloc) {
124 set_new_dnode(&dn, inode, NULL, NULL, 0);
125 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
126 f2fs_put_dnode(&dn);
127 }
128 #endif
129 if (err) {
130 unlock_page(page);
131 goto out_sem;
132 }
133
134 f2fs_wait_on_page_writeback(page, DATA, false, true);
135
136 /* wait for GCed page writeback via META_MAPPING */
137 f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
138
139 /*
140 * check to see if the page is mapped already (no holes)
141 */
142 if (PageMappedToDisk(page))
143 goto out_sem;
144
145 /* page is wholly or partially inside EOF */
146 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
147 i_size_read(inode)) {
148 loff_t offset;
149
150 offset = i_size_read(inode) & ~PAGE_MASK;
151 zero_user_segment(page, offset, PAGE_SIZE);
152 }
153 set_page_dirty(page);
154 if (!PageUptodate(page))
155 SetPageUptodate(page);
156
157 f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
158 f2fs_update_time(sbi, REQ_TIME);
159
160 trace_f2fs_vm_page_mkwrite(page, DATA);
161 out_sem:
162 filemap_invalidate_unlock_shared(inode->i_mapping);
163
164 sb_end_pagefault(inode->i_sb);
165 err:
166 return block_page_mkwrite_return(err);
167 }
168
169 static const struct vm_operations_struct f2fs_file_vm_ops = {
170 .fault = f2fs_filemap_fault,
171 .map_pages = filemap_map_pages,
172 .page_mkwrite = f2fs_vm_page_mkwrite,
173 };
174
get_parent_ino(struct inode * inode,nid_t * pino)175 static int get_parent_ino(struct inode *inode, nid_t *pino)
176 {
177 struct dentry *dentry;
178
179 /*
180 * Make sure to get the non-deleted alias. The alias associated with
181 * the open file descriptor being fsync()'ed may be deleted already.
182 */
183 dentry = d_find_alias(inode);
184 if (!dentry)
185 return 0;
186
187 *pino = parent_ino(dentry);
188 dput(dentry);
189 return 1;
190 }
191
need_do_checkpoint(struct inode * inode)192 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
193 {
194 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
195 enum cp_reason_type cp_reason = CP_NO_NEEDED;
196
197 if (!S_ISREG(inode->i_mode))
198 cp_reason = CP_NON_REGULAR;
199 else if (f2fs_compressed_file(inode))
200 cp_reason = CP_COMPRESSED;
201 else if (inode->i_nlink != 1)
202 cp_reason = CP_HARDLINK;
203 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
204 cp_reason = CP_SB_NEED_CP;
205 else if (file_wrong_pino(inode))
206 cp_reason = CP_WRONG_PINO;
207 else if (!f2fs_space_for_roll_forward(sbi))
208 cp_reason = CP_NO_SPC_ROLL;
209 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
210 cp_reason = CP_NODE_NEED_CP;
211 else if (test_opt(sbi, FASTBOOT))
212 cp_reason = CP_FASTBOOT_MODE;
213 else if (F2FS_OPTION(sbi).active_logs == 2)
214 cp_reason = CP_SPEC_LOG_NUM;
215 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
216 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
217 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
218 TRANS_DIR_INO))
219 cp_reason = CP_RECOVER_DIR;
220
221 return cp_reason;
222 }
223
need_inode_page_update(struct f2fs_sb_info * sbi,nid_t ino)224 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
225 {
226 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
227 bool ret = false;
228 /* But we need to avoid that there are some inode updates */
229 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
230 ret = true;
231 f2fs_put_page(i, 0);
232 return ret;
233 }
234
try_to_fix_pino(struct inode * inode)235 static void try_to_fix_pino(struct inode *inode)
236 {
237 struct f2fs_inode_info *fi = F2FS_I(inode);
238 nid_t pino;
239
240 f2fs_down_write(&fi->i_sem);
241 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
242 get_parent_ino(inode, &pino)) {
243 f2fs_i_pino_write(inode, pino);
244 file_got_pino(inode);
245 }
246 f2fs_up_write(&fi->i_sem);
247 }
248
f2fs_do_sync_file(struct file * file,loff_t start,loff_t end,int datasync,bool atomic)249 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
250 int datasync, bool atomic)
251 {
252 struct inode *inode = file->f_mapping->host;
253 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
254 nid_t ino = inode->i_ino;
255 int ret = 0;
256 enum cp_reason_type cp_reason = 0;
257 struct writeback_control wbc = {
258 .sync_mode = WB_SYNC_ALL,
259 .nr_to_write = LONG_MAX,
260 .for_reclaim = 0,
261 };
262 unsigned int seq_id = 0;
263
264 if (unlikely(f2fs_readonly(inode->i_sb)))
265 return 0;
266
267 trace_f2fs_sync_file_enter(inode);
268
269 if (S_ISDIR(inode->i_mode))
270 goto go_write;
271
272 /* if fdatasync is triggered, let's do in-place-update */
273 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
274 set_inode_flag(inode, FI_NEED_IPU);
275 ret = file_write_and_wait_range(file, start, end);
276 clear_inode_flag(inode, FI_NEED_IPU);
277
278 if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
279 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
280 return ret;
281 }
282
283 /* if the inode is dirty, let's recover all the time */
284 if (!f2fs_skip_inode_update(inode, datasync)) {
285 f2fs_write_inode(inode, NULL);
286 goto go_write;
287 }
288
289 /*
290 * if there is no written data, don't waste time to write recovery info.
291 */
292 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
293 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
294
295 /* it may call write_inode just prior to fsync */
296 if (need_inode_page_update(sbi, ino))
297 goto go_write;
298
299 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
300 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
301 goto flush_out;
302 goto out;
303 } else {
304 /*
305 * for OPU case, during fsync(), node can be persisted before
306 * data when lower device doesn't support write barrier, result
307 * in data corruption after SPO.
308 * So for strict fsync mode, force to use atomic write sematics
309 * to keep write order in between data/node and last node to
310 * avoid potential data corruption.
311 */
312 if (F2FS_OPTION(sbi).fsync_mode ==
313 FSYNC_MODE_STRICT && !atomic)
314 atomic = true;
315 }
316 go_write:
317 /*
318 * Both of fdatasync() and fsync() are able to be recovered from
319 * sudden-power-off.
320 */
321 f2fs_down_read(&F2FS_I(inode)->i_sem);
322 cp_reason = need_do_checkpoint(inode);
323 f2fs_up_read(&F2FS_I(inode)->i_sem);
324
325 if (cp_reason) {
326 /* all the dirty node pages should be flushed for POR */
327 ret = f2fs_sync_fs(inode->i_sb, 1);
328
329 /*
330 * We've secured consistency through sync_fs. Following pino
331 * will be used only for fsynced inodes after checkpoint.
332 */
333 try_to_fix_pino(inode);
334 clear_inode_flag(inode, FI_APPEND_WRITE);
335 clear_inode_flag(inode, FI_UPDATE_WRITE);
336 goto out;
337 }
338 sync_nodes:
339 atomic_inc(&sbi->wb_sync_req[NODE]);
340 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
341 atomic_dec(&sbi->wb_sync_req[NODE]);
342 if (ret)
343 goto out;
344
345 /* if cp_error was enabled, we should avoid infinite loop */
346 if (unlikely(f2fs_cp_error(sbi))) {
347 ret = -EIO;
348 goto out;
349 }
350
351 if (f2fs_need_inode_block_update(sbi, ino)) {
352 f2fs_mark_inode_dirty_sync(inode, true);
353 f2fs_write_inode(inode, NULL);
354 goto sync_nodes;
355 }
356
357 /*
358 * If it's atomic_write, it's just fine to keep write ordering. So
359 * here we don't need to wait for node write completion, since we use
360 * node chain which serializes node blocks. If one of node writes are
361 * reordered, we can see simply broken chain, resulting in stopping
362 * roll-forward recovery. It means we'll recover all or none node blocks
363 * given fsync mark.
364 */
365 if (!atomic) {
366 ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
367 if (ret)
368 goto out;
369 }
370
371 /* once recovery info is written, don't need to tack this */
372 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
373 clear_inode_flag(inode, FI_APPEND_WRITE);
374 flush_out:
375 if ((!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER) ||
376 (atomic && !test_opt(sbi, NOBARRIER) && f2fs_sb_has_blkzoned(sbi)))
377 ret = f2fs_issue_flush(sbi, inode->i_ino);
378 if (!ret) {
379 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
380 clear_inode_flag(inode, FI_UPDATE_WRITE);
381 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
382 }
383 f2fs_update_time(sbi, REQ_TIME);
384 out:
385 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
386 return ret;
387 }
388
f2fs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)389 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
390 {
391 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
392 return -EIO;
393 return f2fs_do_sync_file(file, start, end, datasync, false);
394 }
395
__found_offset(struct address_space * mapping,block_t blkaddr,pgoff_t index,int whence)396 static bool __found_offset(struct address_space *mapping, block_t blkaddr,
397 pgoff_t index, int whence)
398 {
399 switch (whence) {
400 case SEEK_DATA:
401 if (__is_valid_data_blkaddr(blkaddr))
402 return true;
403 if (blkaddr == NEW_ADDR &&
404 xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
405 return true;
406 break;
407 case SEEK_HOLE:
408 if (blkaddr == NULL_ADDR)
409 return true;
410 break;
411 }
412 return false;
413 }
414
f2fs_seek_block(struct file * file,loff_t offset,int whence)415 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
416 {
417 struct inode *inode = file->f_mapping->host;
418 loff_t maxbytes = inode->i_sb->s_maxbytes;
419 struct dnode_of_data dn;
420 pgoff_t pgofs, end_offset;
421 loff_t data_ofs = offset;
422 loff_t isize;
423 int err = 0;
424
425 inode_lock(inode);
426
427 isize = i_size_read(inode);
428 if (offset >= isize)
429 goto fail;
430
431 /* handle inline data case */
432 if (f2fs_has_inline_data(inode)) {
433 if (whence == SEEK_HOLE) {
434 data_ofs = isize;
435 goto found;
436 } else if (whence == SEEK_DATA) {
437 data_ofs = offset;
438 goto found;
439 }
440 }
441
442 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
443
444 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
445 set_new_dnode(&dn, inode, NULL, NULL, 0);
446 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
447 if (err && err != -ENOENT) {
448 goto fail;
449 } else if (err == -ENOENT) {
450 /* direct node does not exists */
451 if (whence == SEEK_DATA) {
452 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
453 continue;
454 } else {
455 goto found;
456 }
457 }
458
459 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
460
461 /* find data/hole in dnode block */
462 for (; dn.ofs_in_node < end_offset;
463 dn.ofs_in_node++, pgofs++,
464 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
465 block_t blkaddr;
466
467 blkaddr = f2fs_data_blkaddr(&dn);
468
469 if (__is_valid_data_blkaddr(blkaddr) &&
470 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
471 blkaddr, DATA_GENERIC_ENHANCE)) {
472 f2fs_put_dnode(&dn);
473 goto fail;
474 }
475
476 if (__found_offset(file->f_mapping, blkaddr,
477 pgofs, whence)) {
478 f2fs_put_dnode(&dn);
479 goto found;
480 }
481 }
482 f2fs_put_dnode(&dn);
483 }
484
485 if (whence == SEEK_DATA)
486 goto fail;
487 found:
488 if (whence == SEEK_HOLE && data_ofs > isize)
489 data_ofs = isize;
490 inode_unlock(inode);
491 return vfs_setpos(file, data_ofs, maxbytes);
492 fail:
493 inode_unlock(inode);
494 return -ENXIO;
495 }
496
f2fs_llseek(struct file * file,loff_t offset,int whence)497 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
498 {
499 struct inode *inode = file->f_mapping->host;
500 loff_t maxbytes = inode->i_sb->s_maxbytes;
501
502 if (f2fs_compressed_file(inode))
503 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
504
505 switch (whence) {
506 case SEEK_SET:
507 case SEEK_CUR:
508 case SEEK_END:
509 return generic_file_llseek_size(file, offset, whence,
510 maxbytes, i_size_read(inode));
511 case SEEK_DATA:
512 case SEEK_HOLE:
513 if (offset < 0)
514 return -ENXIO;
515 return f2fs_seek_block(file, offset, whence);
516 }
517
518 return -EINVAL;
519 }
520
f2fs_file_mmap(struct file * file,struct vm_area_struct * vma)521 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
522 {
523 struct inode *inode = file_inode(file);
524
525 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
526 return -EIO;
527
528 if (!f2fs_is_compress_backend_ready(inode))
529 return -EOPNOTSUPP;
530
531 file_accessed(file);
532 vma->vm_ops = &f2fs_file_vm_ops;
533 set_inode_flag(inode, FI_MMAP_FILE);
534 return 0;
535 }
536
f2fs_file_open(struct inode * inode,struct file * filp)537 static int f2fs_file_open(struct inode *inode, struct file *filp)
538 {
539 int err = fscrypt_file_open(inode, filp);
540
541 if (err)
542 return err;
543
544 if (!f2fs_is_compress_backend_ready(inode))
545 return -EOPNOTSUPP;
546
547 err = fsverity_file_open(inode, filp);
548 if (err)
549 return err;
550
551 filp->f_mode |= FMODE_NOWAIT;
552
553 return dquot_file_open(inode, filp);
554 }
555
f2fs_truncate_data_blocks_range(struct dnode_of_data * dn,int count)556 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
557 {
558 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
559 struct f2fs_node *raw_node;
560 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
561 __le32 *addr;
562 int base = 0;
563 bool compressed_cluster = false;
564 int cluster_index = 0, valid_blocks = 0;
565 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
566 bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
567
568 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
569 base = get_extra_isize(dn->inode);
570
571 raw_node = F2FS_NODE(dn->node_page);
572 addr = blkaddr_in_node(raw_node) + base + ofs;
573
574 /* Assumption: truncateion starts with cluster */
575 for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
576 block_t blkaddr = le32_to_cpu(*addr);
577
578 if (f2fs_compressed_file(dn->inode) &&
579 !(cluster_index & (cluster_size - 1))) {
580 if (compressed_cluster)
581 f2fs_i_compr_blocks_update(dn->inode,
582 valid_blocks, false);
583 compressed_cluster = (blkaddr == COMPRESS_ADDR);
584 valid_blocks = 0;
585 }
586
587 if (blkaddr == NULL_ADDR)
588 continue;
589
590 dn->data_blkaddr = NULL_ADDR;
591 f2fs_set_data_blkaddr(dn);
592
593 if (__is_valid_data_blkaddr(blkaddr)) {
594 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
595 DATA_GENERIC_ENHANCE))
596 continue;
597 if (compressed_cluster)
598 valid_blocks++;
599 }
600
601 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
602 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
603
604 f2fs_invalidate_blocks(sbi, blkaddr);
605
606 if (!released || blkaddr != COMPRESS_ADDR)
607 nr_free++;
608 }
609
610 if (compressed_cluster)
611 f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
612
613 if (nr_free) {
614 pgoff_t fofs;
615 /*
616 * once we invalidate valid blkaddr in range [ofs, ofs + count],
617 * we will invalidate all blkaddr in the whole range.
618 */
619 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
620 dn->inode) + ofs;
621 f2fs_update_extent_cache_range(dn, fofs, 0, len);
622 dec_valid_block_count(sbi, dn->inode, nr_free);
623 }
624 dn->ofs_in_node = ofs;
625
626 f2fs_update_time(sbi, REQ_TIME);
627 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
628 dn->ofs_in_node, nr_free);
629 }
630
f2fs_truncate_data_blocks(struct dnode_of_data * dn)631 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
632 {
633 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
634 }
635
truncate_partial_data_page(struct inode * inode,u64 from,bool cache_only)636 static int truncate_partial_data_page(struct inode *inode, u64 from,
637 bool cache_only)
638 {
639 loff_t offset = from & (PAGE_SIZE - 1);
640 pgoff_t index = from >> PAGE_SHIFT;
641 struct address_space *mapping = inode->i_mapping;
642 struct page *page;
643
644 if (!offset && !cache_only)
645 return 0;
646
647 if (cache_only) {
648 page = find_lock_page(mapping, index);
649 if (page && PageUptodate(page))
650 goto truncate_out;
651 f2fs_put_page(page, 1);
652 return 0;
653 }
654
655 page = f2fs_get_lock_data_page(inode, index, true);
656 if (IS_ERR(page))
657 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
658 truncate_out:
659 f2fs_wait_on_page_writeback(page, DATA, true, true);
660 zero_user(page, offset, PAGE_SIZE - offset);
661
662 /* An encrypted inode should have a key and truncate the last page. */
663 f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
664 if (!cache_only)
665 set_page_dirty(page);
666 f2fs_put_page(page, 1);
667 return 0;
668 }
669
f2fs_do_truncate_blocks(struct inode * inode,u64 from,bool lock)670 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
671 {
672 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
673 struct dnode_of_data dn;
674 pgoff_t free_from;
675 int count = 0, err = 0;
676 struct page *ipage;
677 bool truncate_page = false;
678
679 trace_f2fs_truncate_blocks_enter(inode, from);
680
681 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
682
683 if (free_from >= max_file_blocks(inode))
684 goto free_partial;
685
686 if (lock)
687 f2fs_lock_op(sbi);
688
689 ipage = f2fs_get_node_page(sbi, inode->i_ino);
690 if (IS_ERR(ipage)) {
691 err = PTR_ERR(ipage);
692 goto out;
693 }
694
695 if (f2fs_has_inline_data(inode)) {
696 f2fs_truncate_inline_inode(inode, ipage, from);
697 f2fs_put_page(ipage, 1);
698 truncate_page = true;
699 goto out;
700 }
701
702 set_new_dnode(&dn, inode, ipage, NULL, 0);
703 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
704 if (err) {
705 if (err == -ENOENT)
706 goto free_next;
707 goto out;
708 }
709
710 count = ADDRS_PER_PAGE(dn.node_page, inode);
711
712 count -= dn.ofs_in_node;
713 f2fs_bug_on(sbi, count < 0);
714
715 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
716 f2fs_truncate_data_blocks_range(&dn, count);
717 free_from += count;
718 }
719
720 f2fs_put_dnode(&dn);
721 free_next:
722 err = f2fs_truncate_inode_blocks(inode, free_from);
723 out:
724 if (lock)
725 f2fs_unlock_op(sbi);
726 free_partial:
727 /* lastly zero out the first data page */
728 if (!err)
729 err = truncate_partial_data_page(inode, from, truncate_page);
730
731 trace_f2fs_truncate_blocks_exit(inode, err);
732 return err;
733 }
734
f2fs_truncate_blocks(struct inode * inode,u64 from,bool lock)735 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
736 {
737 u64 free_from = from;
738 int err;
739
740 #ifdef CONFIG_F2FS_FS_COMPRESSION
741 /*
742 * for compressed file, only support cluster size
743 * aligned truncation.
744 */
745 if (f2fs_compressed_file(inode))
746 free_from = round_up(from,
747 F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
748 #endif
749
750 err = f2fs_do_truncate_blocks(inode, free_from, lock);
751 if (err)
752 return err;
753
754 #ifdef CONFIG_F2FS_FS_COMPRESSION
755 /*
756 * For compressed file, after release compress blocks, don't allow write
757 * direct, but we should allow write direct after truncate to zero.
758 */
759 if (f2fs_compressed_file(inode) && !free_from
760 && is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
761 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
762
763 if (from != free_from) {
764 err = f2fs_truncate_partial_cluster(inode, from, lock);
765 if (err)
766 return err;
767 }
768 #endif
769
770 return 0;
771 }
772
f2fs_truncate(struct inode * inode)773 int f2fs_truncate(struct inode *inode)
774 {
775 int err;
776
777 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
778 return -EIO;
779
780 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
781 S_ISLNK(inode->i_mode)))
782 return 0;
783
784 trace_f2fs_truncate(inode);
785
786 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
787 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_TRUNCATE);
788 return -EIO;
789 }
790
791 err = f2fs_dquot_initialize(inode);
792 if (err)
793 return err;
794
795 /* we should check inline_data size */
796 if (!f2fs_may_inline_data(inode)) {
797 err = f2fs_convert_inline_inode(inode);
798 if (err)
799 return err;
800 }
801
802 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
803 if (err)
804 return err;
805
806 inode->i_mtime = inode->i_ctime = current_time(inode);
807 f2fs_mark_inode_dirty_sync(inode, false);
808 return 0;
809 }
810
f2fs_force_buffered_io(struct inode * inode,int rw)811 static bool f2fs_force_buffered_io(struct inode *inode, int rw)
812 {
813 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
814
815 if (!fscrypt_dio_supported(inode))
816 return true;
817 if (fsverity_active(inode))
818 return true;
819 if (f2fs_compressed_file(inode))
820 return true;
821
822 /* disallow direct IO if any of devices has unaligned blksize */
823 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
824 return true;
825 /*
826 * for blkzoned device, fallback direct IO to buffered IO, so
827 * all IOs can be serialized by log-structured write.
828 */
829 if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE))
830 return true;
831 if (f2fs_lfs_mode(sbi) && rw == WRITE && F2FS_IO_ALIGNED(sbi))
832 return true;
833 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
834 return true;
835
836 return false;
837 }
838
f2fs_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)839 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
840 struct kstat *stat, u32 request_mask, unsigned int query_flags)
841 {
842 struct inode *inode = d_inode(path->dentry);
843 struct f2fs_inode_info *fi = F2FS_I(inode);
844 struct f2fs_inode *ri = NULL;
845 unsigned int flags;
846
847 if (f2fs_has_extra_attr(inode) &&
848 f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
849 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
850 stat->result_mask |= STATX_BTIME;
851 stat->btime.tv_sec = fi->i_crtime.tv_sec;
852 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
853 }
854
855 /*
856 * Return the DIO alignment restrictions if requested. We only return
857 * this information when requested, since on encrypted files it might
858 * take a fair bit of work to get if the file wasn't opened recently.
859 *
860 * f2fs sometimes supports DIO reads but not DIO writes. STATX_DIOALIGN
861 * cannot represent that, so in that case we report no DIO support.
862 */
863 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
864 unsigned int bsize = i_blocksize(inode);
865
866 stat->result_mask |= STATX_DIOALIGN;
867 if (!f2fs_force_buffered_io(inode, WRITE)) {
868 stat->dio_mem_align = bsize;
869 stat->dio_offset_align = bsize;
870 }
871 }
872
873 flags = fi->i_flags;
874 if (flags & F2FS_COMPR_FL)
875 stat->attributes |= STATX_ATTR_COMPRESSED;
876 if (flags & F2FS_APPEND_FL)
877 stat->attributes |= STATX_ATTR_APPEND;
878 if (IS_ENCRYPTED(inode))
879 stat->attributes |= STATX_ATTR_ENCRYPTED;
880 if (flags & F2FS_IMMUTABLE_FL)
881 stat->attributes |= STATX_ATTR_IMMUTABLE;
882 if (flags & F2FS_NODUMP_FL)
883 stat->attributes |= STATX_ATTR_NODUMP;
884 if (IS_VERITY(inode))
885 stat->attributes |= STATX_ATTR_VERITY;
886
887 stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
888 STATX_ATTR_APPEND |
889 STATX_ATTR_ENCRYPTED |
890 STATX_ATTR_IMMUTABLE |
891 STATX_ATTR_NODUMP |
892 STATX_ATTR_VERITY);
893
894 generic_fillattr(mnt_userns, inode, stat);
895
896 /* we need to show initial sectors used for inline_data/dentries */
897 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
898 f2fs_has_inline_dentry(inode))
899 stat->blocks += (stat->size + 511) >> 9;
900
901 return 0;
902 }
903
904 #ifdef CONFIG_F2FS_FS_POSIX_ACL
__setattr_copy(struct user_namespace * mnt_userns,struct inode * inode,const struct iattr * attr)905 static void __setattr_copy(struct user_namespace *mnt_userns,
906 struct inode *inode, const struct iattr *attr)
907 {
908 unsigned int ia_valid = attr->ia_valid;
909
910 i_uid_update(mnt_userns, attr, inode);
911 i_gid_update(mnt_userns, attr, inode);
912 if (ia_valid & ATTR_ATIME)
913 inode->i_atime = attr->ia_atime;
914 if (ia_valid & ATTR_MTIME)
915 inode->i_mtime = attr->ia_mtime;
916 if (ia_valid & ATTR_CTIME)
917 inode->i_ctime = attr->ia_ctime;
918 if (ia_valid & ATTR_MODE) {
919 umode_t mode = attr->ia_mode;
920 vfsgid_t vfsgid = i_gid_into_vfsgid(mnt_userns, inode);
921
922 if (!vfsgid_in_group_p(vfsgid) &&
923 !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
924 mode &= ~S_ISGID;
925 set_acl_inode(inode, mode);
926 }
927 }
928 #else
929 #define __setattr_copy setattr_copy
930 #endif
931
f2fs_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)932 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
933 struct iattr *attr)
934 {
935 struct inode *inode = d_inode(dentry);
936 int err;
937
938 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
939 return -EIO;
940
941 if (unlikely(IS_IMMUTABLE(inode)))
942 return -EPERM;
943
944 if (unlikely(IS_APPEND(inode) &&
945 (attr->ia_valid & (ATTR_MODE | ATTR_UID |
946 ATTR_GID | ATTR_TIMES_SET))))
947 return -EPERM;
948
949 if ((attr->ia_valid & ATTR_SIZE) &&
950 !f2fs_is_compress_backend_ready(inode))
951 return -EOPNOTSUPP;
952
953 err = setattr_prepare(mnt_userns, dentry, attr);
954 if (err)
955 return err;
956
957 err = fscrypt_prepare_setattr(dentry, attr);
958 if (err)
959 return err;
960
961 err = fsverity_prepare_setattr(dentry, attr);
962 if (err)
963 return err;
964
965 if (is_quota_modification(mnt_userns, inode, attr)) {
966 err = f2fs_dquot_initialize(inode);
967 if (err)
968 return err;
969 }
970 if (i_uid_needs_update(mnt_userns, attr, inode) ||
971 i_gid_needs_update(mnt_userns, attr, inode)) {
972 f2fs_lock_op(F2FS_I_SB(inode));
973 err = dquot_transfer(mnt_userns, inode, attr);
974 if (err) {
975 set_sbi_flag(F2FS_I_SB(inode),
976 SBI_QUOTA_NEED_REPAIR);
977 f2fs_unlock_op(F2FS_I_SB(inode));
978 return err;
979 }
980 /*
981 * update uid/gid under lock_op(), so that dquot and inode can
982 * be updated atomically.
983 */
984 i_uid_update(mnt_userns, attr, inode);
985 i_gid_update(mnt_userns, attr, inode);
986 f2fs_mark_inode_dirty_sync(inode, true);
987 f2fs_unlock_op(F2FS_I_SB(inode));
988 }
989
990 if (attr->ia_valid & ATTR_SIZE) {
991 loff_t old_size = i_size_read(inode);
992
993 if (attr->ia_size > MAX_INLINE_DATA(inode)) {
994 /*
995 * should convert inline inode before i_size_write to
996 * keep smaller than inline_data size with inline flag.
997 */
998 err = f2fs_convert_inline_inode(inode);
999 if (err)
1000 return err;
1001 }
1002
1003 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1004 filemap_invalidate_lock(inode->i_mapping);
1005
1006 truncate_setsize(inode, attr->ia_size);
1007
1008 if (attr->ia_size <= old_size)
1009 err = f2fs_truncate(inode);
1010 /*
1011 * do not trim all blocks after i_size if target size is
1012 * larger than i_size.
1013 */
1014 filemap_invalidate_unlock(inode->i_mapping);
1015 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1016 if (err)
1017 return err;
1018
1019 spin_lock(&F2FS_I(inode)->i_size_lock);
1020 inode->i_mtime = inode->i_ctime = current_time(inode);
1021 F2FS_I(inode)->last_disk_size = i_size_read(inode);
1022 spin_unlock(&F2FS_I(inode)->i_size_lock);
1023 }
1024
1025 __setattr_copy(mnt_userns, inode, attr);
1026
1027 if (attr->ia_valid & ATTR_MODE) {
1028 err = posix_acl_chmod(mnt_userns, inode, f2fs_get_inode_mode(inode));
1029
1030 if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1031 if (!err)
1032 inode->i_mode = F2FS_I(inode)->i_acl_mode;
1033 clear_inode_flag(inode, FI_ACL_MODE);
1034 }
1035 }
1036
1037 /* file size may changed here */
1038 f2fs_mark_inode_dirty_sync(inode, true);
1039
1040 /* inode change will produce dirty node pages flushed by checkpoint */
1041 f2fs_balance_fs(F2FS_I_SB(inode), true);
1042
1043 return err;
1044 }
1045
1046 const struct inode_operations f2fs_file_inode_operations = {
1047 .getattr = f2fs_getattr,
1048 .setattr = f2fs_setattr,
1049 .get_acl = f2fs_get_acl,
1050 .set_acl = f2fs_set_acl,
1051 .listxattr = f2fs_listxattr,
1052 .fiemap = f2fs_fiemap,
1053 .fileattr_get = f2fs_fileattr_get,
1054 .fileattr_set = f2fs_fileattr_set,
1055 };
1056
fill_zero(struct inode * inode,pgoff_t index,loff_t start,loff_t len)1057 static int fill_zero(struct inode *inode, pgoff_t index,
1058 loff_t start, loff_t len)
1059 {
1060 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1061 struct page *page;
1062
1063 if (!len)
1064 return 0;
1065
1066 f2fs_balance_fs(sbi, true);
1067
1068 f2fs_lock_op(sbi);
1069 page = f2fs_get_new_data_page(inode, NULL, index, false);
1070 f2fs_unlock_op(sbi);
1071
1072 if (IS_ERR(page))
1073 return PTR_ERR(page);
1074
1075 f2fs_wait_on_page_writeback(page, DATA, true, true);
1076 zero_user(page, start, len);
1077 set_page_dirty(page);
1078 f2fs_put_page(page, 1);
1079 return 0;
1080 }
1081
f2fs_truncate_hole(struct inode * inode,pgoff_t pg_start,pgoff_t pg_end)1082 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1083 {
1084 int err;
1085
1086 while (pg_start < pg_end) {
1087 struct dnode_of_data dn;
1088 pgoff_t end_offset, count;
1089
1090 set_new_dnode(&dn, inode, NULL, NULL, 0);
1091 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1092 if (err) {
1093 if (err == -ENOENT) {
1094 pg_start = f2fs_get_next_page_offset(&dn,
1095 pg_start);
1096 continue;
1097 }
1098 return err;
1099 }
1100
1101 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1102 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1103
1104 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1105
1106 f2fs_truncate_data_blocks_range(&dn, count);
1107 f2fs_put_dnode(&dn);
1108
1109 pg_start += count;
1110 }
1111 return 0;
1112 }
1113
punch_hole(struct inode * inode,loff_t offset,loff_t len)1114 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
1115 {
1116 pgoff_t pg_start, pg_end;
1117 loff_t off_start, off_end;
1118 int ret;
1119
1120 ret = f2fs_convert_inline_inode(inode);
1121 if (ret)
1122 return ret;
1123
1124 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1125 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1126
1127 off_start = offset & (PAGE_SIZE - 1);
1128 off_end = (offset + len) & (PAGE_SIZE - 1);
1129
1130 if (pg_start == pg_end) {
1131 ret = fill_zero(inode, pg_start, off_start,
1132 off_end - off_start);
1133 if (ret)
1134 return ret;
1135 } else {
1136 if (off_start) {
1137 ret = fill_zero(inode, pg_start++, off_start,
1138 PAGE_SIZE - off_start);
1139 if (ret)
1140 return ret;
1141 }
1142 if (off_end) {
1143 ret = fill_zero(inode, pg_end, 0, off_end);
1144 if (ret)
1145 return ret;
1146 }
1147
1148 if (pg_start < pg_end) {
1149 loff_t blk_start, blk_end;
1150 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1151
1152 f2fs_balance_fs(sbi, true);
1153
1154 blk_start = (loff_t)pg_start << PAGE_SHIFT;
1155 blk_end = (loff_t)pg_end << PAGE_SHIFT;
1156
1157 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1158 filemap_invalidate_lock(inode->i_mapping);
1159
1160 truncate_pagecache_range(inode, blk_start, blk_end - 1);
1161
1162 f2fs_lock_op(sbi);
1163 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1164 f2fs_unlock_op(sbi);
1165
1166 filemap_invalidate_unlock(inode->i_mapping);
1167 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1168 }
1169 }
1170
1171 return ret;
1172 }
1173
__read_out_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,pgoff_t len)1174 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1175 int *do_replace, pgoff_t off, pgoff_t len)
1176 {
1177 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1178 struct dnode_of_data dn;
1179 int ret, done, i;
1180
1181 next_dnode:
1182 set_new_dnode(&dn, inode, NULL, NULL, 0);
1183 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1184 if (ret && ret != -ENOENT) {
1185 return ret;
1186 } else if (ret == -ENOENT) {
1187 if (dn.max_level == 0)
1188 return -ENOENT;
1189 done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1190 dn.ofs_in_node, len);
1191 blkaddr += done;
1192 do_replace += done;
1193 goto next;
1194 }
1195
1196 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1197 dn.ofs_in_node, len);
1198 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1199 *blkaddr = f2fs_data_blkaddr(&dn);
1200
1201 if (__is_valid_data_blkaddr(*blkaddr) &&
1202 !f2fs_is_valid_blkaddr(sbi, *blkaddr,
1203 DATA_GENERIC_ENHANCE)) {
1204 f2fs_put_dnode(&dn);
1205 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1206 return -EFSCORRUPTED;
1207 }
1208
1209 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1210
1211 if (f2fs_lfs_mode(sbi)) {
1212 f2fs_put_dnode(&dn);
1213 return -EOPNOTSUPP;
1214 }
1215
1216 /* do not invalidate this block address */
1217 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1218 *do_replace = 1;
1219 }
1220 }
1221 f2fs_put_dnode(&dn);
1222 next:
1223 len -= done;
1224 off += done;
1225 if (len)
1226 goto next_dnode;
1227 return 0;
1228 }
1229
__roll_back_blkaddrs(struct inode * inode,block_t * blkaddr,int * do_replace,pgoff_t off,int len)1230 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1231 int *do_replace, pgoff_t off, int len)
1232 {
1233 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1234 struct dnode_of_data dn;
1235 int ret, i;
1236
1237 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1238 if (*do_replace == 0)
1239 continue;
1240
1241 set_new_dnode(&dn, inode, NULL, NULL, 0);
1242 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1243 if (ret) {
1244 dec_valid_block_count(sbi, inode, 1);
1245 f2fs_invalidate_blocks(sbi, *blkaddr);
1246 } else {
1247 f2fs_update_data_blkaddr(&dn, *blkaddr);
1248 }
1249 f2fs_put_dnode(&dn);
1250 }
1251 return 0;
1252 }
1253
__clone_blkaddrs(struct inode * src_inode,struct inode * dst_inode,block_t * blkaddr,int * do_replace,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1254 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1255 block_t *blkaddr, int *do_replace,
1256 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1257 {
1258 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1259 pgoff_t i = 0;
1260 int ret;
1261
1262 while (i < len) {
1263 if (blkaddr[i] == NULL_ADDR && !full) {
1264 i++;
1265 continue;
1266 }
1267
1268 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1269 struct dnode_of_data dn;
1270 struct node_info ni;
1271 size_t new_size;
1272 pgoff_t ilen;
1273
1274 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1275 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1276 if (ret)
1277 return ret;
1278
1279 ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1280 if (ret) {
1281 f2fs_put_dnode(&dn);
1282 return ret;
1283 }
1284
1285 ilen = min((pgoff_t)
1286 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1287 dn.ofs_in_node, len - i);
1288 do {
1289 dn.data_blkaddr = f2fs_data_blkaddr(&dn);
1290 f2fs_truncate_data_blocks_range(&dn, 1);
1291
1292 if (do_replace[i]) {
1293 f2fs_i_blocks_write(src_inode,
1294 1, false, false);
1295 f2fs_i_blocks_write(dst_inode,
1296 1, true, false);
1297 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1298 blkaddr[i], ni.version, true, false);
1299
1300 do_replace[i] = 0;
1301 }
1302 dn.ofs_in_node++;
1303 i++;
1304 new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1305 if (dst_inode->i_size < new_size)
1306 f2fs_i_size_write(dst_inode, new_size);
1307 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1308
1309 f2fs_put_dnode(&dn);
1310 } else {
1311 struct page *psrc, *pdst;
1312
1313 psrc = f2fs_get_lock_data_page(src_inode,
1314 src + i, true);
1315 if (IS_ERR(psrc))
1316 return PTR_ERR(psrc);
1317 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1318 true);
1319 if (IS_ERR(pdst)) {
1320 f2fs_put_page(psrc, 1);
1321 return PTR_ERR(pdst);
1322 }
1323 memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1324 set_page_dirty(pdst);
1325 f2fs_put_page(pdst, 1);
1326 f2fs_put_page(psrc, 1);
1327
1328 ret = f2fs_truncate_hole(src_inode,
1329 src + i, src + i + 1);
1330 if (ret)
1331 return ret;
1332 i++;
1333 }
1334 }
1335 return 0;
1336 }
1337
__exchange_data_block(struct inode * src_inode,struct inode * dst_inode,pgoff_t src,pgoff_t dst,pgoff_t len,bool full)1338 static int __exchange_data_block(struct inode *src_inode,
1339 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1340 pgoff_t len, bool full)
1341 {
1342 block_t *src_blkaddr;
1343 int *do_replace;
1344 pgoff_t olen;
1345 int ret;
1346
1347 while (len) {
1348 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1349
1350 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1351 array_size(olen, sizeof(block_t)),
1352 GFP_NOFS);
1353 if (!src_blkaddr)
1354 return -ENOMEM;
1355
1356 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1357 array_size(olen, sizeof(int)),
1358 GFP_NOFS);
1359 if (!do_replace) {
1360 kvfree(src_blkaddr);
1361 return -ENOMEM;
1362 }
1363
1364 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1365 do_replace, src, olen);
1366 if (ret)
1367 goto roll_back;
1368
1369 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1370 do_replace, src, dst, olen, full);
1371 if (ret)
1372 goto roll_back;
1373
1374 src += olen;
1375 dst += olen;
1376 len -= olen;
1377
1378 kvfree(src_blkaddr);
1379 kvfree(do_replace);
1380 }
1381 return 0;
1382
1383 roll_back:
1384 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1385 kvfree(src_blkaddr);
1386 kvfree(do_replace);
1387 return ret;
1388 }
1389
f2fs_do_collapse(struct inode * inode,loff_t offset,loff_t len)1390 static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1391 {
1392 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1393 pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1394 pgoff_t start = offset >> PAGE_SHIFT;
1395 pgoff_t end = (offset + len) >> PAGE_SHIFT;
1396 int ret;
1397
1398 f2fs_balance_fs(sbi, true);
1399
1400 /* avoid gc operation during block exchange */
1401 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1402 filemap_invalidate_lock(inode->i_mapping);
1403
1404 f2fs_lock_op(sbi);
1405 f2fs_drop_extent_tree(inode);
1406 truncate_pagecache(inode, offset);
1407 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1408 f2fs_unlock_op(sbi);
1409
1410 filemap_invalidate_unlock(inode->i_mapping);
1411 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1412 return ret;
1413 }
1414
f2fs_collapse_range(struct inode * inode,loff_t offset,loff_t len)1415 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1416 {
1417 loff_t new_size;
1418 int ret;
1419
1420 if (offset + len >= i_size_read(inode))
1421 return -EINVAL;
1422
1423 /* collapse range should be aligned to block size of f2fs. */
1424 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1425 return -EINVAL;
1426
1427 ret = f2fs_convert_inline_inode(inode);
1428 if (ret)
1429 return ret;
1430
1431 /* write out all dirty pages from offset */
1432 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1433 if (ret)
1434 return ret;
1435
1436 ret = f2fs_do_collapse(inode, offset, len);
1437 if (ret)
1438 return ret;
1439
1440 /* write out all moved pages, if possible */
1441 filemap_invalidate_lock(inode->i_mapping);
1442 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1443 truncate_pagecache(inode, offset);
1444
1445 new_size = i_size_read(inode) - len;
1446 ret = f2fs_truncate_blocks(inode, new_size, true);
1447 filemap_invalidate_unlock(inode->i_mapping);
1448 if (!ret)
1449 f2fs_i_size_write(inode, new_size);
1450 return ret;
1451 }
1452
f2fs_do_zero_range(struct dnode_of_data * dn,pgoff_t start,pgoff_t end)1453 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1454 pgoff_t end)
1455 {
1456 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1457 pgoff_t index = start;
1458 unsigned int ofs_in_node = dn->ofs_in_node;
1459 blkcnt_t count = 0;
1460 int ret;
1461
1462 for (; index < end; index++, dn->ofs_in_node++) {
1463 if (f2fs_data_blkaddr(dn) == NULL_ADDR)
1464 count++;
1465 }
1466
1467 dn->ofs_in_node = ofs_in_node;
1468 ret = f2fs_reserve_new_blocks(dn, count);
1469 if (ret)
1470 return ret;
1471
1472 dn->ofs_in_node = ofs_in_node;
1473 for (index = start; index < end; index++, dn->ofs_in_node++) {
1474 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1475 /*
1476 * f2fs_reserve_new_blocks will not guarantee entire block
1477 * allocation.
1478 */
1479 if (dn->data_blkaddr == NULL_ADDR) {
1480 ret = -ENOSPC;
1481 break;
1482 }
1483
1484 if (dn->data_blkaddr == NEW_ADDR)
1485 continue;
1486
1487 if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1488 DATA_GENERIC_ENHANCE)) {
1489 ret = -EFSCORRUPTED;
1490 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1491 break;
1492 }
1493
1494 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1495 dn->data_blkaddr = NEW_ADDR;
1496 f2fs_set_data_blkaddr(dn);
1497 }
1498
1499 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1500
1501 return ret;
1502 }
1503
f2fs_zero_range(struct inode * inode,loff_t offset,loff_t len,int mode)1504 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1505 int mode)
1506 {
1507 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1508 struct address_space *mapping = inode->i_mapping;
1509 pgoff_t index, pg_start, pg_end;
1510 loff_t new_size = i_size_read(inode);
1511 loff_t off_start, off_end;
1512 int ret = 0;
1513
1514 ret = inode_newsize_ok(inode, (len + offset));
1515 if (ret)
1516 return ret;
1517
1518 ret = f2fs_convert_inline_inode(inode);
1519 if (ret)
1520 return ret;
1521
1522 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1523 if (ret)
1524 return ret;
1525
1526 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1527 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1528
1529 off_start = offset & (PAGE_SIZE - 1);
1530 off_end = (offset + len) & (PAGE_SIZE - 1);
1531
1532 if (pg_start == pg_end) {
1533 ret = fill_zero(inode, pg_start, off_start,
1534 off_end - off_start);
1535 if (ret)
1536 return ret;
1537
1538 new_size = max_t(loff_t, new_size, offset + len);
1539 } else {
1540 if (off_start) {
1541 ret = fill_zero(inode, pg_start++, off_start,
1542 PAGE_SIZE - off_start);
1543 if (ret)
1544 return ret;
1545
1546 new_size = max_t(loff_t, new_size,
1547 (loff_t)pg_start << PAGE_SHIFT);
1548 }
1549
1550 for (index = pg_start; index < pg_end;) {
1551 struct dnode_of_data dn;
1552 unsigned int end_offset;
1553 pgoff_t end;
1554
1555 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1556 filemap_invalidate_lock(mapping);
1557
1558 truncate_pagecache_range(inode,
1559 (loff_t)index << PAGE_SHIFT,
1560 ((loff_t)pg_end << PAGE_SHIFT) - 1);
1561
1562 f2fs_lock_op(sbi);
1563
1564 set_new_dnode(&dn, inode, NULL, NULL, 0);
1565 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1566 if (ret) {
1567 f2fs_unlock_op(sbi);
1568 filemap_invalidate_unlock(mapping);
1569 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1570 goto out;
1571 }
1572
1573 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1574 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1575
1576 ret = f2fs_do_zero_range(&dn, index, end);
1577 f2fs_put_dnode(&dn);
1578
1579 f2fs_unlock_op(sbi);
1580 filemap_invalidate_unlock(mapping);
1581 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1582
1583 f2fs_balance_fs(sbi, dn.node_changed);
1584
1585 if (ret)
1586 goto out;
1587
1588 index = end;
1589 new_size = max_t(loff_t, new_size,
1590 (loff_t)index << PAGE_SHIFT);
1591 }
1592
1593 if (off_end) {
1594 ret = fill_zero(inode, pg_end, 0, off_end);
1595 if (ret)
1596 goto out;
1597
1598 new_size = max_t(loff_t, new_size, offset + len);
1599 }
1600 }
1601
1602 out:
1603 if (new_size > i_size_read(inode)) {
1604 if (mode & FALLOC_FL_KEEP_SIZE)
1605 file_set_keep_isize(inode);
1606 else
1607 f2fs_i_size_write(inode, new_size);
1608 }
1609 return ret;
1610 }
1611
f2fs_insert_range(struct inode * inode,loff_t offset,loff_t len)1612 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1613 {
1614 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1615 struct address_space *mapping = inode->i_mapping;
1616 pgoff_t nr, pg_start, pg_end, delta, idx;
1617 loff_t new_size;
1618 int ret = 0;
1619
1620 new_size = i_size_read(inode) + len;
1621 ret = inode_newsize_ok(inode, new_size);
1622 if (ret)
1623 return ret;
1624
1625 if (offset >= i_size_read(inode))
1626 return -EINVAL;
1627
1628 /* insert range should be aligned to block size of f2fs. */
1629 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1630 return -EINVAL;
1631
1632 ret = f2fs_convert_inline_inode(inode);
1633 if (ret)
1634 return ret;
1635
1636 f2fs_balance_fs(sbi, true);
1637
1638 filemap_invalidate_lock(mapping);
1639 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1640 filemap_invalidate_unlock(mapping);
1641 if (ret)
1642 return ret;
1643
1644 /* write out all dirty pages from offset */
1645 ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1646 if (ret)
1647 return ret;
1648
1649 pg_start = offset >> PAGE_SHIFT;
1650 pg_end = (offset + len) >> PAGE_SHIFT;
1651 delta = pg_end - pg_start;
1652 idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1653
1654 /* avoid gc operation during block exchange */
1655 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1656 filemap_invalidate_lock(mapping);
1657 truncate_pagecache(inode, offset);
1658
1659 while (!ret && idx > pg_start) {
1660 nr = idx - pg_start;
1661 if (nr > delta)
1662 nr = delta;
1663 idx -= nr;
1664
1665 f2fs_lock_op(sbi);
1666 f2fs_drop_extent_tree(inode);
1667
1668 ret = __exchange_data_block(inode, inode, idx,
1669 idx + delta, nr, false);
1670 f2fs_unlock_op(sbi);
1671 }
1672 filemap_invalidate_unlock(mapping);
1673 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1674
1675 /* write out all moved pages, if possible */
1676 filemap_invalidate_lock(mapping);
1677 filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1678 truncate_pagecache(inode, offset);
1679 filemap_invalidate_unlock(mapping);
1680
1681 if (!ret)
1682 f2fs_i_size_write(inode, new_size);
1683 return ret;
1684 }
1685
expand_inode_data(struct inode * inode,loff_t offset,loff_t len,int mode)1686 static int expand_inode_data(struct inode *inode, loff_t offset,
1687 loff_t len, int mode)
1688 {
1689 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1690 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1691 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1692 .m_may_create = true };
1693 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1694 .init_gc_type = FG_GC,
1695 .should_migrate_blocks = false,
1696 .err_gc_skipped = true,
1697 .nr_free_secs = 0 };
1698 pgoff_t pg_start, pg_end;
1699 loff_t new_size = i_size_read(inode);
1700 loff_t off_end;
1701 block_t expanded = 0;
1702 int err;
1703
1704 err = inode_newsize_ok(inode, (len + offset));
1705 if (err)
1706 return err;
1707
1708 err = f2fs_convert_inline_inode(inode);
1709 if (err)
1710 return err;
1711
1712 f2fs_balance_fs(sbi, true);
1713
1714 pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1715 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1716 off_end = (offset + len) & (PAGE_SIZE - 1);
1717
1718 map.m_lblk = pg_start;
1719 map.m_len = pg_end - pg_start;
1720 if (off_end)
1721 map.m_len++;
1722
1723 if (!map.m_len)
1724 return 0;
1725
1726 if (f2fs_is_pinned_file(inode)) {
1727 block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1728 block_t sec_len = roundup(map.m_len, sec_blks);
1729
1730 map.m_len = sec_blks;
1731 next_alloc:
1732 if (has_not_enough_free_secs(sbi, 0,
1733 GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1734 f2fs_down_write(&sbi->gc_lock);
1735 err = f2fs_gc(sbi, &gc_control);
1736 if (err && err != -ENODATA)
1737 goto out_err;
1738 }
1739
1740 f2fs_down_write(&sbi->pin_sem);
1741
1742 f2fs_lock_op(sbi);
1743 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
1744 f2fs_unlock_op(sbi);
1745
1746 map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1747 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
1748 file_dont_truncate(inode);
1749
1750 f2fs_up_write(&sbi->pin_sem);
1751
1752 expanded += map.m_len;
1753 sec_len -= map.m_len;
1754 map.m_lblk += map.m_len;
1755 if (!err && sec_len)
1756 goto next_alloc;
1757
1758 map.m_len = expanded;
1759 } else {
1760 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1761 expanded = map.m_len;
1762 }
1763 out_err:
1764 if (err) {
1765 pgoff_t last_off;
1766
1767 if (!expanded)
1768 return err;
1769
1770 last_off = pg_start + expanded - 1;
1771
1772 /* update new size to the failed position */
1773 new_size = (last_off == pg_end) ? offset + len :
1774 (loff_t)(last_off + 1) << PAGE_SHIFT;
1775 } else {
1776 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1777 }
1778
1779 if (new_size > i_size_read(inode)) {
1780 if (mode & FALLOC_FL_KEEP_SIZE)
1781 file_set_keep_isize(inode);
1782 else
1783 f2fs_i_size_write(inode, new_size);
1784 }
1785
1786 return err;
1787 }
1788
f2fs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1789 static long f2fs_fallocate(struct file *file, int mode,
1790 loff_t offset, loff_t len)
1791 {
1792 struct inode *inode = file_inode(file);
1793 long ret = 0;
1794
1795 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1796 return -EIO;
1797 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1798 return -ENOSPC;
1799 if (!f2fs_is_compress_backend_ready(inode))
1800 return -EOPNOTSUPP;
1801
1802 /* f2fs only support ->fallocate for regular file */
1803 if (!S_ISREG(inode->i_mode))
1804 return -EINVAL;
1805
1806 if (IS_ENCRYPTED(inode) &&
1807 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1808 return -EOPNOTSUPP;
1809
1810 /*
1811 * Pinned file should not support partial trucation since the block
1812 * can be used by applications.
1813 */
1814 if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1815 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1816 FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE)))
1817 return -EOPNOTSUPP;
1818
1819 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1820 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1821 FALLOC_FL_INSERT_RANGE))
1822 return -EOPNOTSUPP;
1823
1824 inode_lock(inode);
1825
1826 ret = file_modified(file);
1827 if (ret)
1828 goto out;
1829
1830 if (mode & FALLOC_FL_PUNCH_HOLE) {
1831 if (offset >= inode->i_size)
1832 goto out;
1833
1834 ret = punch_hole(inode, offset, len);
1835 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1836 ret = f2fs_collapse_range(inode, offset, len);
1837 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1838 ret = f2fs_zero_range(inode, offset, len, mode);
1839 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1840 ret = f2fs_insert_range(inode, offset, len);
1841 } else {
1842 ret = expand_inode_data(inode, offset, len, mode);
1843 }
1844
1845 if (!ret) {
1846 inode->i_mtime = inode->i_ctime = current_time(inode);
1847 f2fs_mark_inode_dirty_sync(inode, false);
1848 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1849 }
1850
1851 out:
1852 inode_unlock(inode);
1853
1854 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1855 return ret;
1856 }
1857
f2fs_release_file(struct inode * inode,struct file * filp)1858 static int f2fs_release_file(struct inode *inode, struct file *filp)
1859 {
1860 /*
1861 * f2fs_relase_file is called at every close calls. So we should
1862 * not drop any inmemory pages by close called by other process.
1863 */
1864 if (!(filp->f_mode & FMODE_WRITE) ||
1865 atomic_read(&inode->i_writecount) != 1)
1866 return 0;
1867
1868 f2fs_abort_atomic_write(inode, true);
1869 return 0;
1870 }
1871
f2fs_file_flush(struct file * file,fl_owner_t id)1872 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1873 {
1874 struct inode *inode = file_inode(file);
1875
1876 /*
1877 * If the process doing a transaction is crashed, we should do
1878 * roll-back. Otherwise, other reader/write can see corrupted database
1879 * until all the writers close its file. Since this should be done
1880 * before dropping file lock, it needs to do in ->flush.
1881 */
1882 if (F2FS_I(inode)->atomic_write_task == current)
1883 f2fs_abort_atomic_write(inode, true);
1884 return 0;
1885 }
1886
f2fs_setflags_common(struct inode * inode,u32 iflags,u32 mask)1887 static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1888 {
1889 struct f2fs_inode_info *fi = F2FS_I(inode);
1890 u32 masked_flags = fi->i_flags & mask;
1891
1892 /* mask can be shrunk by flags_valid selector */
1893 iflags &= mask;
1894
1895 /* Is it quota file? Do not allow user to mess with it */
1896 if (IS_NOQUOTA(inode))
1897 return -EPERM;
1898
1899 if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
1900 if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1901 return -EOPNOTSUPP;
1902 if (!f2fs_empty_dir(inode))
1903 return -ENOTEMPTY;
1904 }
1905
1906 if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
1907 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
1908 return -EOPNOTSUPP;
1909 if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
1910 return -EINVAL;
1911 }
1912
1913 if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
1914 if (masked_flags & F2FS_COMPR_FL) {
1915 if (!f2fs_disable_compressed_file(inode))
1916 return -EINVAL;
1917 } else {
1918 if (!f2fs_may_compress(inode))
1919 return -EINVAL;
1920 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
1921 return -EINVAL;
1922 if (set_compress_context(inode))
1923 return -EOPNOTSUPP;
1924 }
1925 }
1926
1927 fi->i_flags = iflags | (fi->i_flags & ~mask);
1928 f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
1929 (fi->i_flags & F2FS_NOCOMP_FL));
1930
1931 if (fi->i_flags & F2FS_PROJINHERIT_FL)
1932 set_inode_flag(inode, FI_PROJ_INHERIT);
1933 else
1934 clear_inode_flag(inode, FI_PROJ_INHERIT);
1935
1936 inode->i_ctime = current_time(inode);
1937 f2fs_set_inode_flags(inode);
1938 f2fs_mark_inode_dirty_sync(inode, true);
1939 return 0;
1940 }
1941
1942 /* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
1943
1944 /*
1945 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1946 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1947 * F2FS_GETTABLE_FS_FL. To also make it settable via FS_IOC_SETFLAGS, also add
1948 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1949 *
1950 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
1951 * FS_IOC_FSSETXATTR is done by the VFS.
1952 */
1953
1954 static const struct {
1955 u32 iflag;
1956 u32 fsflag;
1957 } f2fs_fsflags_map[] = {
1958 { F2FS_COMPR_FL, FS_COMPR_FL },
1959 { F2FS_SYNC_FL, FS_SYNC_FL },
1960 { F2FS_IMMUTABLE_FL, FS_IMMUTABLE_FL },
1961 { F2FS_APPEND_FL, FS_APPEND_FL },
1962 { F2FS_NODUMP_FL, FS_NODUMP_FL },
1963 { F2FS_NOATIME_FL, FS_NOATIME_FL },
1964 { F2FS_NOCOMP_FL, FS_NOCOMP_FL },
1965 { F2FS_INDEX_FL, FS_INDEX_FL },
1966 { F2FS_DIRSYNC_FL, FS_DIRSYNC_FL },
1967 { F2FS_PROJINHERIT_FL, FS_PROJINHERIT_FL },
1968 { F2FS_CASEFOLD_FL, FS_CASEFOLD_FL },
1969 };
1970
1971 #define F2FS_GETTABLE_FS_FL ( \
1972 FS_COMPR_FL | \
1973 FS_SYNC_FL | \
1974 FS_IMMUTABLE_FL | \
1975 FS_APPEND_FL | \
1976 FS_NODUMP_FL | \
1977 FS_NOATIME_FL | \
1978 FS_NOCOMP_FL | \
1979 FS_INDEX_FL | \
1980 FS_DIRSYNC_FL | \
1981 FS_PROJINHERIT_FL | \
1982 FS_ENCRYPT_FL | \
1983 FS_INLINE_DATA_FL | \
1984 FS_NOCOW_FL | \
1985 FS_VERITY_FL | \
1986 FS_CASEFOLD_FL)
1987
1988 #define F2FS_SETTABLE_FS_FL ( \
1989 FS_COMPR_FL | \
1990 FS_SYNC_FL | \
1991 FS_IMMUTABLE_FL | \
1992 FS_APPEND_FL | \
1993 FS_NODUMP_FL | \
1994 FS_NOATIME_FL | \
1995 FS_NOCOMP_FL | \
1996 FS_DIRSYNC_FL | \
1997 FS_PROJINHERIT_FL | \
1998 FS_CASEFOLD_FL)
1999
2000 /* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
f2fs_iflags_to_fsflags(u32 iflags)2001 static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2002 {
2003 u32 fsflags = 0;
2004 int i;
2005
2006 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2007 if (iflags & f2fs_fsflags_map[i].iflag)
2008 fsflags |= f2fs_fsflags_map[i].fsflag;
2009
2010 return fsflags;
2011 }
2012
2013 /* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
f2fs_fsflags_to_iflags(u32 fsflags)2014 static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2015 {
2016 u32 iflags = 0;
2017 int i;
2018
2019 for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2020 if (fsflags & f2fs_fsflags_map[i].fsflag)
2021 iflags |= f2fs_fsflags_map[i].iflag;
2022
2023 return iflags;
2024 }
2025
f2fs_ioc_getversion(struct file * filp,unsigned long arg)2026 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2027 {
2028 struct inode *inode = file_inode(filp);
2029
2030 return put_user(inode->i_generation, (int __user *)arg);
2031 }
2032
f2fs_ioc_start_atomic_write(struct file * filp)2033 static int f2fs_ioc_start_atomic_write(struct file *filp)
2034 {
2035 struct inode *inode = file_inode(filp);
2036 struct user_namespace *mnt_userns = file_mnt_user_ns(filp);
2037 struct f2fs_inode_info *fi = F2FS_I(inode);
2038 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2039 struct inode *pinode;
2040 int ret;
2041
2042 if (!inode_owner_or_capable(mnt_userns, inode))
2043 return -EACCES;
2044
2045 if (!S_ISREG(inode->i_mode))
2046 return -EINVAL;
2047
2048 if (filp->f_flags & O_DIRECT)
2049 return -EINVAL;
2050
2051 ret = mnt_want_write_file(filp);
2052 if (ret)
2053 return ret;
2054
2055 inode_lock(inode);
2056
2057 if (!f2fs_disable_compressed_file(inode)) {
2058 ret = -EINVAL;
2059 goto out;
2060 }
2061
2062 if (f2fs_is_atomic_file(inode))
2063 goto out;
2064
2065 ret = f2fs_convert_inline_inode(inode);
2066 if (ret)
2067 goto out;
2068
2069 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2070
2071 /*
2072 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2073 * f2fs_is_atomic_file.
2074 */
2075 if (get_dirty_pages(inode))
2076 f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2077 inode->i_ino, get_dirty_pages(inode));
2078 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2079 if (ret) {
2080 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2081 goto out;
2082 }
2083
2084 /* Create a COW inode for atomic write */
2085 pinode = f2fs_iget(inode->i_sb, fi->i_pino);
2086 if (IS_ERR(pinode)) {
2087 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2088 ret = PTR_ERR(pinode);
2089 goto out;
2090 }
2091
2092 ret = f2fs_get_tmpfile(mnt_userns, pinode, &fi->cow_inode);
2093 iput(pinode);
2094 if (ret) {
2095 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2096 goto out;
2097 }
2098 f2fs_i_size_write(fi->cow_inode, i_size_read(inode));
2099
2100 stat_inc_atomic_inode(inode);
2101
2102 set_inode_flag(inode, FI_ATOMIC_FILE);
2103 set_inode_flag(fi->cow_inode, FI_COW_FILE);
2104 clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
2105 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
2106
2107 f2fs_update_time(sbi, REQ_TIME);
2108 fi->atomic_write_task = current;
2109 stat_update_max_atomic_write(inode);
2110 fi->atomic_write_cnt = 0;
2111 out:
2112 inode_unlock(inode);
2113 mnt_drop_write_file(filp);
2114 return ret;
2115 }
2116
f2fs_ioc_commit_atomic_write(struct file * filp)2117 static int f2fs_ioc_commit_atomic_write(struct file *filp)
2118 {
2119 struct inode *inode = file_inode(filp);
2120 struct user_namespace *mnt_userns = file_mnt_user_ns(filp);
2121 int ret;
2122
2123 if (!inode_owner_or_capable(mnt_userns, inode))
2124 return -EACCES;
2125
2126 ret = mnt_want_write_file(filp);
2127 if (ret)
2128 return ret;
2129
2130 f2fs_balance_fs(F2FS_I_SB(inode), true);
2131
2132 inode_lock(inode);
2133
2134 if (f2fs_is_atomic_file(inode)) {
2135 ret = f2fs_commit_atomic_write(inode);
2136 if (ret)
2137 goto unlock_out;
2138
2139 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2140 if (!ret)
2141 f2fs_abort_atomic_write(inode, false);
2142 } else {
2143 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2144 }
2145 unlock_out:
2146 inode_unlock(inode);
2147 mnt_drop_write_file(filp);
2148 return ret;
2149 }
2150
f2fs_ioc_abort_atomic_write(struct file * filp)2151 static int f2fs_ioc_abort_atomic_write(struct file *filp)
2152 {
2153 struct inode *inode = file_inode(filp);
2154 struct user_namespace *mnt_userns = file_mnt_user_ns(filp);
2155 int ret;
2156
2157 if (!inode_owner_or_capable(mnt_userns, inode))
2158 return -EACCES;
2159
2160 ret = mnt_want_write_file(filp);
2161 if (ret)
2162 return ret;
2163
2164 inode_lock(inode);
2165
2166 f2fs_abort_atomic_write(inode, true);
2167
2168 inode_unlock(inode);
2169
2170 mnt_drop_write_file(filp);
2171 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2172 return ret;
2173 }
2174
f2fs_ioc_shutdown(struct file * filp,unsigned long arg)2175 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2176 {
2177 struct inode *inode = file_inode(filp);
2178 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2179 struct super_block *sb = sbi->sb;
2180 __u32 in;
2181 int ret = 0;
2182
2183 if (!capable(CAP_SYS_ADMIN))
2184 return -EPERM;
2185
2186 if (get_user(in, (__u32 __user *)arg))
2187 return -EFAULT;
2188
2189 if (in != F2FS_GOING_DOWN_FULLSYNC) {
2190 ret = mnt_want_write_file(filp);
2191 if (ret) {
2192 if (ret == -EROFS) {
2193 ret = 0;
2194 f2fs_stop_checkpoint(sbi, false,
2195 STOP_CP_REASON_SHUTDOWN);
2196 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2197 trace_f2fs_shutdown(sbi, in, ret);
2198 }
2199 return ret;
2200 }
2201 }
2202
2203 switch (in) {
2204 case F2FS_GOING_DOWN_FULLSYNC:
2205 ret = freeze_bdev(sb->s_bdev);
2206 if (ret)
2207 goto out;
2208 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2209 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2210 thaw_bdev(sb->s_bdev);
2211 break;
2212 case F2FS_GOING_DOWN_METASYNC:
2213 /* do checkpoint only */
2214 ret = f2fs_sync_fs(sb, 1);
2215 if (ret)
2216 goto out;
2217 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2218 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2219 break;
2220 case F2FS_GOING_DOWN_NOSYNC:
2221 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2222 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2223 break;
2224 case F2FS_GOING_DOWN_METAFLUSH:
2225 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2226 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2227 set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2228 break;
2229 case F2FS_GOING_DOWN_NEED_FSCK:
2230 set_sbi_flag(sbi, SBI_NEED_FSCK);
2231 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2232 set_sbi_flag(sbi, SBI_IS_DIRTY);
2233 /* do checkpoint only */
2234 ret = f2fs_sync_fs(sb, 1);
2235 goto out;
2236 default:
2237 ret = -EINVAL;
2238 goto out;
2239 }
2240
2241 f2fs_stop_gc_thread(sbi);
2242 f2fs_stop_discard_thread(sbi);
2243
2244 f2fs_drop_discard_cmd(sbi);
2245 clear_opt(sbi, DISCARD);
2246
2247 f2fs_update_time(sbi, REQ_TIME);
2248 out:
2249 if (in != F2FS_GOING_DOWN_FULLSYNC)
2250 mnt_drop_write_file(filp);
2251
2252 trace_f2fs_shutdown(sbi, in, ret);
2253
2254 return ret;
2255 }
2256
f2fs_ioc_fitrim(struct file * filp,unsigned long arg)2257 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2258 {
2259 struct inode *inode = file_inode(filp);
2260 struct super_block *sb = inode->i_sb;
2261 struct fstrim_range range;
2262 int ret;
2263
2264 if (!capable(CAP_SYS_ADMIN))
2265 return -EPERM;
2266
2267 if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2268 return -EOPNOTSUPP;
2269
2270 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2271 sizeof(range)))
2272 return -EFAULT;
2273
2274 ret = mnt_want_write_file(filp);
2275 if (ret)
2276 return ret;
2277
2278 range.minlen = max((unsigned int)range.minlen,
2279 bdev_discard_granularity(sb->s_bdev));
2280 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2281 mnt_drop_write_file(filp);
2282 if (ret < 0)
2283 return ret;
2284
2285 if (copy_to_user((struct fstrim_range __user *)arg, &range,
2286 sizeof(range)))
2287 return -EFAULT;
2288 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2289 return 0;
2290 }
2291
uuid_is_nonzero(__u8 u[16])2292 static bool uuid_is_nonzero(__u8 u[16])
2293 {
2294 int i;
2295
2296 for (i = 0; i < 16; i++)
2297 if (u[i])
2298 return true;
2299 return false;
2300 }
2301
f2fs_ioc_set_encryption_policy(struct file * filp,unsigned long arg)2302 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2303 {
2304 struct inode *inode = file_inode(filp);
2305
2306 if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2307 return -EOPNOTSUPP;
2308
2309 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2310
2311 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2312 }
2313
f2fs_ioc_get_encryption_policy(struct file * filp,unsigned long arg)2314 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2315 {
2316 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2317 return -EOPNOTSUPP;
2318 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2319 }
2320
f2fs_ioc_get_encryption_pwsalt(struct file * filp,unsigned long arg)2321 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2322 {
2323 struct inode *inode = file_inode(filp);
2324 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2325 int err;
2326
2327 if (!f2fs_sb_has_encrypt(sbi))
2328 return -EOPNOTSUPP;
2329
2330 err = mnt_want_write_file(filp);
2331 if (err)
2332 return err;
2333
2334 f2fs_down_write(&sbi->sb_lock);
2335
2336 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2337 goto got_it;
2338
2339 /* update superblock with uuid */
2340 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2341
2342 err = f2fs_commit_super(sbi, false);
2343 if (err) {
2344 /* undo new data */
2345 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2346 goto out_err;
2347 }
2348 got_it:
2349 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2350 16))
2351 err = -EFAULT;
2352 out_err:
2353 f2fs_up_write(&sbi->sb_lock);
2354 mnt_drop_write_file(filp);
2355 return err;
2356 }
2357
f2fs_ioc_get_encryption_policy_ex(struct file * filp,unsigned long arg)2358 static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2359 unsigned long arg)
2360 {
2361 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2362 return -EOPNOTSUPP;
2363
2364 return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2365 }
2366
f2fs_ioc_add_encryption_key(struct file * filp,unsigned long arg)2367 static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2368 {
2369 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2370 return -EOPNOTSUPP;
2371
2372 return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2373 }
2374
f2fs_ioc_remove_encryption_key(struct file * filp,unsigned long arg)2375 static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2376 {
2377 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2378 return -EOPNOTSUPP;
2379
2380 return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2381 }
2382
f2fs_ioc_remove_encryption_key_all_users(struct file * filp,unsigned long arg)2383 static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2384 unsigned long arg)
2385 {
2386 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2387 return -EOPNOTSUPP;
2388
2389 return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2390 }
2391
f2fs_ioc_get_encryption_key_status(struct file * filp,unsigned long arg)2392 static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2393 unsigned long arg)
2394 {
2395 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2396 return -EOPNOTSUPP;
2397
2398 return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2399 }
2400
f2fs_ioc_get_encryption_nonce(struct file * filp,unsigned long arg)2401 static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2402 {
2403 if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2404 return -EOPNOTSUPP;
2405
2406 return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2407 }
2408
f2fs_ioc_gc(struct file * filp,unsigned long arg)2409 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2410 {
2411 struct inode *inode = file_inode(filp);
2412 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2413 struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2414 .no_bg_gc = false,
2415 .should_migrate_blocks = false,
2416 .nr_free_secs = 0 };
2417 __u32 sync;
2418 int ret;
2419
2420 if (!capable(CAP_SYS_ADMIN))
2421 return -EPERM;
2422
2423 if (get_user(sync, (__u32 __user *)arg))
2424 return -EFAULT;
2425
2426 if (f2fs_readonly(sbi->sb))
2427 return -EROFS;
2428
2429 ret = mnt_want_write_file(filp);
2430 if (ret)
2431 return ret;
2432
2433 if (!sync) {
2434 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2435 ret = -EBUSY;
2436 goto out;
2437 }
2438 } else {
2439 f2fs_down_write(&sbi->gc_lock);
2440 }
2441
2442 gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2443 gc_control.err_gc_skipped = sync;
2444 ret = f2fs_gc(sbi, &gc_control);
2445 out:
2446 mnt_drop_write_file(filp);
2447 return ret;
2448 }
2449
__f2fs_ioc_gc_range(struct file * filp,struct f2fs_gc_range * range)2450 static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2451 {
2452 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2453 struct f2fs_gc_control gc_control = {
2454 .init_gc_type = range->sync ? FG_GC : BG_GC,
2455 .no_bg_gc = false,
2456 .should_migrate_blocks = false,
2457 .err_gc_skipped = range->sync,
2458 .nr_free_secs = 0 };
2459 u64 end;
2460 int ret;
2461
2462 if (!capable(CAP_SYS_ADMIN))
2463 return -EPERM;
2464 if (f2fs_readonly(sbi->sb))
2465 return -EROFS;
2466
2467 end = range->start + range->len;
2468 if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2469 end >= MAX_BLKADDR(sbi))
2470 return -EINVAL;
2471
2472 ret = mnt_want_write_file(filp);
2473 if (ret)
2474 return ret;
2475
2476 do_more:
2477 if (!range->sync) {
2478 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2479 ret = -EBUSY;
2480 goto out;
2481 }
2482 } else {
2483 f2fs_down_write(&sbi->gc_lock);
2484 }
2485
2486 gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2487 ret = f2fs_gc(sbi, &gc_control);
2488 if (ret) {
2489 if (ret == -EBUSY)
2490 ret = -EAGAIN;
2491 goto out;
2492 }
2493 range->start += CAP_BLKS_PER_SEC(sbi);
2494 if (range->start <= end)
2495 goto do_more;
2496 out:
2497 mnt_drop_write_file(filp);
2498 return ret;
2499 }
2500
f2fs_ioc_gc_range(struct file * filp,unsigned long arg)2501 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2502 {
2503 struct f2fs_gc_range range;
2504
2505 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2506 sizeof(range)))
2507 return -EFAULT;
2508 return __f2fs_ioc_gc_range(filp, &range);
2509 }
2510
f2fs_ioc_write_checkpoint(struct file * filp,unsigned long arg)2511 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2512 {
2513 struct inode *inode = file_inode(filp);
2514 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2515 int ret;
2516
2517 if (!capable(CAP_SYS_ADMIN))
2518 return -EPERM;
2519
2520 if (f2fs_readonly(sbi->sb))
2521 return -EROFS;
2522
2523 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2524 f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2525 return -EINVAL;
2526 }
2527
2528 ret = mnt_want_write_file(filp);
2529 if (ret)
2530 return ret;
2531
2532 ret = f2fs_sync_fs(sbi->sb, 1);
2533
2534 mnt_drop_write_file(filp);
2535 return ret;
2536 }
2537
f2fs_defragment_range(struct f2fs_sb_info * sbi,struct file * filp,struct f2fs_defragment * range)2538 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2539 struct file *filp,
2540 struct f2fs_defragment *range)
2541 {
2542 struct inode *inode = file_inode(filp);
2543 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2544 .m_seg_type = NO_CHECK_TYPE,
2545 .m_may_create = false };
2546 struct extent_info ei = {0, 0, 0};
2547 pgoff_t pg_start, pg_end, next_pgofs;
2548 unsigned int blk_per_seg = sbi->blocks_per_seg;
2549 unsigned int total = 0, sec_num;
2550 block_t blk_end = 0;
2551 bool fragmented = false;
2552 int err;
2553
2554 pg_start = range->start >> PAGE_SHIFT;
2555 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2556
2557 f2fs_balance_fs(sbi, true);
2558
2559 inode_lock(inode);
2560
2561 /* if in-place-update policy is enabled, don't waste time here */
2562 set_inode_flag(inode, FI_OPU_WRITE);
2563 if (f2fs_should_update_inplace(inode, NULL)) {
2564 err = -EINVAL;
2565 goto out;
2566 }
2567
2568 /* writeback all dirty pages in the range */
2569 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2570 range->start + range->len - 1);
2571 if (err)
2572 goto out;
2573
2574 /*
2575 * lookup mapping info in extent cache, skip defragmenting if physical
2576 * block addresses are continuous.
2577 */
2578 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2579 if (ei.fofs + ei.len >= pg_end)
2580 goto out;
2581 }
2582
2583 map.m_lblk = pg_start;
2584 map.m_next_pgofs = &next_pgofs;
2585
2586 /*
2587 * lookup mapping info in dnode page cache, skip defragmenting if all
2588 * physical block addresses are continuous even if there are hole(s)
2589 * in logical blocks.
2590 */
2591 while (map.m_lblk < pg_end) {
2592 map.m_len = pg_end - map.m_lblk;
2593 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2594 if (err)
2595 goto out;
2596
2597 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2598 map.m_lblk = next_pgofs;
2599 continue;
2600 }
2601
2602 if (blk_end && blk_end != map.m_pblk)
2603 fragmented = true;
2604
2605 /* record total count of block that we're going to move */
2606 total += map.m_len;
2607
2608 blk_end = map.m_pblk + map.m_len;
2609
2610 map.m_lblk += map.m_len;
2611 }
2612
2613 if (!fragmented) {
2614 total = 0;
2615 goto out;
2616 }
2617
2618 sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2619
2620 /*
2621 * make sure there are enough free section for LFS allocation, this can
2622 * avoid defragment running in SSR mode when free section are allocated
2623 * intensively
2624 */
2625 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2626 err = -EAGAIN;
2627 goto out;
2628 }
2629
2630 map.m_lblk = pg_start;
2631 map.m_len = pg_end - pg_start;
2632 total = 0;
2633
2634 while (map.m_lblk < pg_end) {
2635 pgoff_t idx;
2636 int cnt = 0;
2637
2638 do_map:
2639 map.m_len = pg_end - map.m_lblk;
2640 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2641 if (err)
2642 goto clear_out;
2643
2644 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2645 map.m_lblk = next_pgofs;
2646 goto check;
2647 }
2648
2649 set_inode_flag(inode, FI_SKIP_WRITES);
2650
2651 idx = map.m_lblk;
2652 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2653 struct page *page;
2654
2655 page = f2fs_get_lock_data_page(inode, idx, true);
2656 if (IS_ERR(page)) {
2657 err = PTR_ERR(page);
2658 goto clear_out;
2659 }
2660
2661 set_page_dirty(page);
2662 set_page_private_gcing(page);
2663 f2fs_put_page(page, 1);
2664
2665 idx++;
2666 cnt++;
2667 total++;
2668 }
2669
2670 map.m_lblk = idx;
2671 check:
2672 if (map.m_lblk < pg_end && cnt < blk_per_seg)
2673 goto do_map;
2674
2675 clear_inode_flag(inode, FI_SKIP_WRITES);
2676
2677 err = filemap_fdatawrite(inode->i_mapping);
2678 if (err)
2679 goto out;
2680 }
2681 clear_out:
2682 clear_inode_flag(inode, FI_SKIP_WRITES);
2683 out:
2684 clear_inode_flag(inode, FI_OPU_WRITE);
2685 inode_unlock(inode);
2686 if (!err)
2687 range->len = (u64)total << PAGE_SHIFT;
2688 return err;
2689 }
2690
f2fs_ioc_defragment(struct file * filp,unsigned long arg)2691 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2692 {
2693 struct inode *inode = file_inode(filp);
2694 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2695 struct f2fs_defragment range;
2696 int err;
2697
2698 if (!capable(CAP_SYS_ADMIN))
2699 return -EPERM;
2700
2701 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2702 return -EINVAL;
2703
2704 if (f2fs_readonly(sbi->sb))
2705 return -EROFS;
2706
2707 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2708 sizeof(range)))
2709 return -EFAULT;
2710
2711 /* verify alignment of offset & size */
2712 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2713 return -EINVAL;
2714
2715 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2716 max_file_blocks(inode)))
2717 return -EINVAL;
2718
2719 err = mnt_want_write_file(filp);
2720 if (err)
2721 return err;
2722
2723 err = f2fs_defragment_range(sbi, filp, &range);
2724 mnt_drop_write_file(filp);
2725
2726 f2fs_update_time(sbi, REQ_TIME);
2727 if (err < 0)
2728 return err;
2729
2730 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2731 sizeof(range)))
2732 return -EFAULT;
2733
2734 return 0;
2735 }
2736
f2fs_move_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len)2737 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2738 struct file *file_out, loff_t pos_out, size_t len)
2739 {
2740 struct inode *src = file_inode(file_in);
2741 struct inode *dst = file_inode(file_out);
2742 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2743 size_t olen = len, dst_max_i_size = 0;
2744 size_t dst_osize;
2745 int ret;
2746
2747 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2748 src->i_sb != dst->i_sb)
2749 return -EXDEV;
2750
2751 if (unlikely(f2fs_readonly(src->i_sb)))
2752 return -EROFS;
2753
2754 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2755 return -EINVAL;
2756
2757 if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2758 return -EOPNOTSUPP;
2759
2760 if (pos_out < 0 || pos_in < 0)
2761 return -EINVAL;
2762
2763 if (src == dst) {
2764 if (pos_in == pos_out)
2765 return 0;
2766 if (pos_out > pos_in && pos_out < pos_in + len)
2767 return -EINVAL;
2768 }
2769
2770 inode_lock(src);
2771 if (src != dst) {
2772 ret = -EBUSY;
2773 if (!inode_trylock(dst))
2774 goto out;
2775 }
2776
2777 ret = -EINVAL;
2778 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2779 goto out_unlock;
2780 if (len == 0)
2781 olen = len = src->i_size - pos_in;
2782 if (pos_in + len == src->i_size)
2783 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2784 if (len == 0) {
2785 ret = 0;
2786 goto out_unlock;
2787 }
2788
2789 dst_osize = dst->i_size;
2790 if (pos_out + olen > dst->i_size)
2791 dst_max_i_size = pos_out + olen;
2792
2793 /* verify the end result is block aligned */
2794 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2795 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2796 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2797 goto out_unlock;
2798
2799 ret = f2fs_convert_inline_inode(src);
2800 if (ret)
2801 goto out_unlock;
2802
2803 ret = f2fs_convert_inline_inode(dst);
2804 if (ret)
2805 goto out_unlock;
2806
2807 /* write out all dirty pages from offset */
2808 ret = filemap_write_and_wait_range(src->i_mapping,
2809 pos_in, pos_in + len);
2810 if (ret)
2811 goto out_unlock;
2812
2813 ret = filemap_write_and_wait_range(dst->i_mapping,
2814 pos_out, pos_out + len);
2815 if (ret)
2816 goto out_unlock;
2817
2818 f2fs_balance_fs(sbi, true);
2819
2820 f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2821 if (src != dst) {
2822 ret = -EBUSY;
2823 if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2824 goto out_src;
2825 }
2826
2827 f2fs_lock_op(sbi);
2828 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2829 pos_out >> F2FS_BLKSIZE_BITS,
2830 len >> F2FS_BLKSIZE_BITS, false);
2831
2832 if (!ret) {
2833 if (dst_max_i_size)
2834 f2fs_i_size_write(dst, dst_max_i_size);
2835 else if (dst_osize != dst->i_size)
2836 f2fs_i_size_write(dst, dst_osize);
2837 }
2838 f2fs_unlock_op(sbi);
2839
2840 if (src != dst)
2841 f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2842 out_src:
2843 f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2844 out_unlock:
2845 if (src != dst)
2846 inode_unlock(dst);
2847 out:
2848 inode_unlock(src);
2849 return ret;
2850 }
2851
__f2fs_ioc_move_range(struct file * filp,struct f2fs_move_range * range)2852 static int __f2fs_ioc_move_range(struct file *filp,
2853 struct f2fs_move_range *range)
2854 {
2855 struct fd dst;
2856 int err;
2857
2858 if (!(filp->f_mode & FMODE_READ) ||
2859 !(filp->f_mode & FMODE_WRITE))
2860 return -EBADF;
2861
2862 dst = fdget(range->dst_fd);
2863 if (!dst.file)
2864 return -EBADF;
2865
2866 if (!(dst.file->f_mode & FMODE_WRITE)) {
2867 err = -EBADF;
2868 goto err_out;
2869 }
2870
2871 err = mnt_want_write_file(filp);
2872 if (err)
2873 goto err_out;
2874
2875 err = f2fs_move_file_range(filp, range->pos_in, dst.file,
2876 range->pos_out, range->len);
2877
2878 mnt_drop_write_file(filp);
2879 err_out:
2880 fdput(dst);
2881 return err;
2882 }
2883
f2fs_ioc_move_range(struct file * filp,unsigned long arg)2884 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2885 {
2886 struct f2fs_move_range range;
2887
2888 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2889 sizeof(range)))
2890 return -EFAULT;
2891 return __f2fs_ioc_move_range(filp, &range);
2892 }
2893
f2fs_ioc_flush_device(struct file * filp,unsigned long arg)2894 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2895 {
2896 struct inode *inode = file_inode(filp);
2897 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2898 struct sit_info *sm = SIT_I(sbi);
2899 unsigned int start_segno = 0, end_segno = 0;
2900 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2901 struct f2fs_flush_device range;
2902 struct f2fs_gc_control gc_control = {
2903 .init_gc_type = FG_GC,
2904 .should_migrate_blocks = true,
2905 .err_gc_skipped = true,
2906 .nr_free_secs = 0 };
2907 int ret;
2908
2909 if (!capable(CAP_SYS_ADMIN))
2910 return -EPERM;
2911
2912 if (f2fs_readonly(sbi->sb))
2913 return -EROFS;
2914
2915 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2916 return -EINVAL;
2917
2918 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2919 sizeof(range)))
2920 return -EFAULT;
2921
2922 if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2923 __is_large_section(sbi)) {
2924 f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2925 range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2926 return -EINVAL;
2927 }
2928
2929 ret = mnt_want_write_file(filp);
2930 if (ret)
2931 return ret;
2932
2933 if (range.dev_num != 0)
2934 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2935 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2936
2937 start_segno = sm->last_victim[FLUSH_DEVICE];
2938 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2939 start_segno = dev_start_segno;
2940 end_segno = min(start_segno + range.segments, dev_end_segno);
2941
2942 while (start_segno < end_segno) {
2943 if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2944 ret = -EBUSY;
2945 goto out;
2946 }
2947 sm->last_victim[GC_CB] = end_segno + 1;
2948 sm->last_victim[GC_GREEDY] = end_segno + 1;
2949 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2950
2951 gc_control.victim_segno = start_segno;
2952 ret = f2fs_gc(sbi, &gc_control);
2953 if (ret == -EAGAIN)
2954 ret = 0;
2955 else if (ret < 0)
2956 break;
2957 start_segno++;
2958 }
2959 out:
2960 mnt_drop_write_file(filp);
2961 return ret;
2962 }
2963
f2fs_ioc_get_features(struct file * filp,unsigned long arg)2964 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2965 {
2966 struct inode *inode = file_inode(filp);
2967 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2968
2969 /* Must validate to set it with SQLite behavior in Android. */
2970 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2971
2972 return put_user(sb_feature, (u32 __user *)arg);
2973 }
2974
2975 #ifdef CONFIG_QUOTA
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)2976 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2977 {
2978 struct dquot *transfer_to[MAXQUOTAS] = {};
2979 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2980 struct super_block *sb = sbi->sb;
2981 int err = 0;
2982
2983 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2984 if (!IS_ERR(transfer_to[PRJQUOTA])) {
2985 err = __dquot_transfer(inode, transfer_to);
2986 if (err)
2987 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2988 dqput(transfer_to[PRJQUOTA]);
2989 }
2990 return err;
2991 }
2992
f2fs_ioc_setproject(struct inode * inode,__u32 projid)2993 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
2994 {
2995 struct f2fs_inode_info *fi = F2FS_I(inode);
2996 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2997 struct f2fs_inode *ri = NULL;
2998 kprojid_t kprojid;
2999 int err;
3000
3001 if (!f2fs_sb_has_project_quota(sbi)) {
3002 if (projid != F2FS_DEF_PROJID)
3003 return -EOPNOTSUPP;
3004 else
3005 return 0;
3006 }
3007
3008 if (!f2fs_has_extra_attr(inode))
3009 return -EOPNOTSUPP;
3010
3011 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3012
3013 if (projid_eq(kprojid, fi->i_projid))
3014 return 0;
3015
3016 err = -EPERM;
3017 /* Is it quota file? Do not allow user to mess with it */
3018 if (IS_NOQUOTA(inode))
3019 return err;
3020
3021 if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3022 return -EOVERFLOW;
3023
3024 err = f2fs_dquot_initialize(inode);
3025 if (err)
3026 return err;
3027
3028 f2fs_lock_op(sbi);
3029 err = f2fs_transfer_project_quota(inode, kprojid);
3030 if (err)
3031 goto out_unlock;
3032
3033 fi->i_projid = kprojid;
3034 inode->i_ctime = current_time(inode);
3035 f2fs_mark_inode_dirty_sync(inode, true);
3036 out_unlock:
3037 f2fs_unlock_op(sbi);
3038 return err;
3039 }
3040 #else
f2fs_transfer_project_quota(struct inode * inode,kprojid_t kprojid)3041 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3042 {
3043 return 0;
3044 }
3045
f2fs_ioc_setproject(struct inode * inode,__u32 projid)3046 static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3047 {
3048 if (projid != F2FS_DEF_PROJID)
3049 return -EOPNOTSUPP;
3050 return 0;
3051 }
3052 #endif
3053
f2fs_fileattr_get(struct dentry * dentry,struct fileattr * fa)3054 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3055 {
3056 struct inode *inode = d_inode(dentry);
3057 struct f2fs_inode_info *fi = F2FS_I(inode);
3058 u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3059
3060 if (IS_ENCRYPTED(inode))
3061 fsflags |= FS_ENCRYPT_FL;
3062 if (IS_VERITY(inode))
3063 fsflags |= FS_VERITY_FL;
3064 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3065 fsflags |= FS_INLINE_DATA_FL;
3066 if (is_inode_flag_set(inode, FI_PIN_FILE))
3067 fsflags |= FS_NOCOW_FL;
3068
3069 fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
3070
3071 if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3072 fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
3073
3074 return 0;
3075 }
3076
f2fs_fileattr_set(struct user_namespace * mnt_userns,struct dentry * dentry,struct fileattr * fa)3077 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3078 struct dentry *dentry, struct fileattr *fa)
3079 {
3080 struct inode *inode = d_inode(dentry);
3081 u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3082 u32 iflags;
3083 int err;
3084
3085 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3086 return -EIO;
3087 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3088 return -ENOSPC;
3089 if (fsflags & ~F2FS_GETTABLE_FS_FL)
3090 return -EOPNOTSUPP;
3091 fsflags &= F2FS_SETTABLE_FS_FL;
3092 if (!fa->flags_valid)
3093 mask &= FS_COMMON_FL;
3094
3095 iflags = f2fs_fsflags_to_iflags(fsflags);
3096 if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3097 return -EOPNOTSUPP;
3098
3099 err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3100 if (!err)
3101 err = f2fs_ioc_setproject(inode, fa->fsx_projid);
3102
3103 return err;
3104 }
3105
f2fs_pin_file_control(struct inode * inode,bool inc)3106 int f2fs_pin_file_control(struct inode *inode, bool inc)
3107 {
3108 struct f2fs_inode_info *fi = F2FS_I(inode);
3109 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3110
3111 /* Use i_gc_failures for normal file as a risk signal. */
3112 if (inc)
3113 f2fs_i_gc_failures_write(inode,
3114 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3115
3116 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3117 f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3118 __func__, inode->i_ino,
3119 fi->i_gc_failures[GC_FAILURE_PIN]);
3120 clear_inode_flag(inode, FI_PIN_FILE);
3121 return -EAGAIN;
3122 }
3123 return 0;
3124 }
3125
f2fs_ioc_set_pin_file(struct file * filp,unsigned long arg)3126 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3127 {
3128 struct inode *inode = file_inode(filp);
3129 __u32 pin;
3130 int ret = 0;
3131
3132 if (get_user(pin, (__u32 __user *)arg))
3133 return -EFAULT;
3134
3135 if (!S_ISREG(inode->i_mode))
3136 return -EINVAL;
3137
3138 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3139 return -EROFS;
3140
3141 ret = mnt_want_write_file(filp);
3142 if (ret)
3143 return ret;
3144
3145 inode_lock(inode);
3146
3147 if (!pin) {
3148 clear_inode_flag(inode, FI_PIN_FILE);
3149 f2fs_i_gc_failures_write(inode, 0);
3150 goto done;
3151 }
3152
3153 if (f2fs_should_update_outplace(inode, NULL)) {
3154 ret = -EINVAL;
3155 goto out;
3156 }
3157
3158 if (f2fs_pin_file_control(inode, false)) {
3159 ret = -EAGAIN;
3160 goto out;
3161 }
3162
3163 ret = f2fs_convert_inline_inode(inode);
3164 if (ret)
3165 goto out;
3166
3167 if (!f2fs_disable_compressed_file(inode)) {
3168 ret = -EOPNOTSUPP;
3169 goto out;
3170 }
3171
3172 set_inode_flag(inode, FI_PIN_FILE);
3173 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3174 done:
3175 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3176 out:
3177 inode_unlock(inode);
3178 mnt_drop_write_file(filp);
3179 return ret;
3180 }
3181
f2fs_ioc_get_pin_file(struct file * filp,unsigned long arg)3182 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3183 {
3184 struct inode *inode = file_inode(filp);
3185 __u32 pin = 0;
3186
3187 if (is_inode_flag_set(inode, FI_PIN_FILE))
3188 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3189 return put_user(pin, (u32 __user *)arg);
3190 }
3191
f2fs_precache_extents(struct inode * inode)3192 int f2fs_precache_extents(struct inode *inode)
3193 {
3194 struct f2fs_inode_info *fi = F2FS_I(inode);
3195 struct f2fs_map_blocks map;
3196 pgoff_t m_next_extent;
3197 loff_t end;
3198 int err;
3199
3200 if (is_inode_flag_set(inode, FI_NO_EXTENT))
3201 return -EOPNOTSUPP;
3202
3203 map.m_lblk = 0;
3204 map.m_next_pgofs = NULL;
3205 map.m_next_extent = &m_next_extent;
3206 map.m_seg_type = NO_CHECK_TYPE;
3207 map.m_may_create = false;
3208 end = max_file_blocks(inode);
3209
3210 while (map.m_lblk < end) {
3211 map.m_len = end - map.m_lblk;
3212
3213 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3214 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3215 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3216 if (err)
3217 return err;
3218
3219 map.m_lblk = m_next_extent;
3220 }
3221
3222 return 0;
3223 }
3224
f2fs_ioc_precache_extents(struct file * filp,unsigned long arg)3225 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3226 {
3227 return f2fs_precache_extents(file_inode(filp));
3228 }
3229
f2fs_ioc_resize_fs(struct file * filp,unsigned long arg)3230 static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3231 {
3232 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3233 __u64 block_count;
3234
3235 if (!capable(CAP_SYS_ADMIN))
3236 return -EPERM;
3237
3238 if (f2fs_readonly(sbi->sb))
3239 return -EROFS;
3240
3241 if (copy_from_user(&block_count, (void __user *)arg,
3242 sizeof(block_count)))
3243 return -EFAULT;
3244
3245 return f2fs_resize_fs(sbi, block_count);
3246 }
3247
f2fs_ioc_enable_verity(struct file * filp,unsigned long arg)3248 static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3249 {
3250 struct inode *inode = file_inode(filp);
3251
3252 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3253
3254 if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3255 f2fs_warn(F2FS_I_SB(inode),
3256 "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3257 inode->i_ino);
3258 return -EOPNOTSUPP;
3259 }
3260
3261 return fsverity_ioctl_enable(filp, (const void __user *)arg);
3262 }
3263
f2fs_ioc_measure_verity(struct file * filp,unsigned long arg)3264 static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3265 {
3266 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3267 return -EOPNOTSUPP;
3268
3269 return fsverity_ioctl_measure(filp, (void __user *)arg);
3270 }
3271
f2fs_ioc_read_verity_metadata(struct file * filp,unsigned long arg)3272 static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3273 {
3274 if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3275 return -EOPNOTSUPP;
3276
3277 return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3278 }
3279
f2fs_ioc_getfslabel(struct file * filp,unsigned long arg)3280 static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3281 {
3282 struct inode *inode = file_inode(filp);
3283 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3284 char *vbuf;
3285 int count;
3286 int err = 0;
3287
3288 vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3289 if (!vbuf)
3290 return -ENOMEM;
3291
3292 f2fs_down_read(&sbi->sb_lock);
3293 count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3294 ARRAY_SIZE(sbi->raw_super->volume_name),
3295 UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3296 f2fs_up_read(&sbi->sb_lock);
3297
3298 if (copy_to_user((char __user *)arg, vbuf,
3299 min(FSLABEL_MAX, count)))
3300 err = -EFAULT;
3301
3302 kfree(vbuf);
3303 return err;
3304 }
3305
f2fs_ioc_setfslabel(struct file * filp,unsigned long arg)3306 static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3307 {
3308 struct inode *inode = file_inode(filp);
3309 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3310 char *vbuf;
3311 int err = 0;
3312
3313 if (!capable(CAP_SYS_ADMIN))
3314 return -EPERM;
3315
3316 vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3317 if (IS_ERR(vbuf))
3318 return PTR_ERR(vbuf);
3319
3320 err = mnt_want_write_file(filp);
3321 if (err)
3322 goto out;
3323
3324 f2fs_down_write(&sbi->sb_lock);
3325
3326 memset(sbi->raw_super->volume_name, 0,
3327 sizeof(sbi->raw_super->volume_name));
3328 utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3329 sbi->raw_super->volume_name,
3330 ARRAY_SIZE(sbi->raw_super->volume_name));
3331
3332 err = f2fs_commit_super(sbi, false);
3333
3334 f2fs_up_write(&sbi->sb_lock);
3335
3336 mnt_drop_write_file(filp);
3337 out:
3338 kfree(vbuf);
3339 return err;
3340 }
3341
f2fs_get_compress_blocks(struct file * filp,unsigned long arg)3342 static int f2fs_get_compress_blocks(struct file *filp, unsigned long arg)
3343 {
3344 struct inode *inode = file_inode(filp);
3345 __u64 blocks;
3346
3347 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3348 return -EOPNOTSUPP;
3349
3350 if (!f2fs_compressed_file(inode))
3351 return -EINVAL;
3352
3353 blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3354 return put_user(blocks, (u64 __user *)arg);
3355 }
3356
release_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3357 static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3358 {
3359 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3360 unsigned int released_blocks = 0;
3361 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3362 block_t blkaddr;
3363 int i;
3364
3365 for (i = 0; i < count; i++) {
3366 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3367 dn->ofs_in_node + i);
3368
3369 if (!__is_valid_data_blkaddr(blkaddr))
3370 continue;
3371 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3372 DATA_GENERIC_ENHANCE))) {
3373 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3374 return -EFSCORRUPTED;
3375 }
3376 }
3377
3378 while (count) {
3379 int compr_blocks = 0;
3380
3381 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3382 blkaddr = f2fs_data_blkaddr(dn);
3383
3384 if (i == 0) {
3385 if (blkaddr == COMPRESS_ADDR)
3386 continue;
3387 dn->ofs_in_node += cluster_size;
3388 goto next;
3389 }
3390
3391 if (__is_valid_data_blkaddr(blkaddr))
3392 compr_blocks++;
3393
3394 if (blkaddr != NEW_ADDR)
3395 continue;
3396
3397 dn->data_blkaddr = NULL_ADDR;
3398 f2fs_set_data_blkaddr(dn);
3399 }
3400
3401 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3402 dec_valid_block_count(sbi, dn->inode,
3403 cluster_size - compr_blocks);
3404
3405 released_blocks += cluster_size - compr_blocks;
3406 next:
3407 count -= cluster_size;
3408 }
3409
3410 return released_blocks;
3411 }
3412
f2fs_release_compress_blocks(struct file * filp,unsigned long arg)3413 static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3414 {
3415 struct inode *inode = file_inode(filp);
3416 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3417 pgoff_t page_idx = 0, last_idx;
3418 unsigned int released_blocks = 0;
3419 int ret;
3420 int writecount;
3421
3422 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3423 return -EOPNOTSUPP;
3424
3425 if (!f2fs_compressed_file(inode))
3426 return -EINVAL;
3427
3428 if (f2fs_readonly(sbi->sb))
3429 return -EROFS;
3430
3431 ret = mnt_want_write_file(filp);
3432 if (ret)
3433 return ret;
3434
3435 f2fs_balance_fs(F2FS_I_SB(inode), true);
3436
3437 inode_lock(inode);
3438
3439 writecount = atomic_read(&inode->i_writecount);
3440 if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3441 (!(filp->f_mode & FMODE_WRITE) && writecount)) {
3442 ret = -EBUSY;
3443 goto out;
3444 }
3445
3446 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3447 ret = -EINVAL;
3448 goto out;
3449 }
3450
3451 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3452 if (ret)
3453 goto out;
3454
3455 set_inode_flag(inode, FI_COMPRESS_RELEASED);
3456 inode->i_ctime = current_time(inode);
3457 f2fs_mark_inode_dirty_sync(inode, true);
3458
3459 if (!atomic_read(&F2FS_I(inode)->i_compr_blocks))
3460 goto out;
3461
3462 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3463 filemap_invalidate_lock(inode->i_mapping);
3464
3465 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3466
3467 while (page_idx < last_idx) {
3468 struct dnode_of_data dn;
3469 pgoff_t end_offset, count;
3470
3471 set_new_dnode(&dn, inode, NULL, NULL, 0);
3472 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3473 if (ret) {
3474 if (ret == -ENOENT) {
3475 page_idx = f2fs_get_next_page_offset(&dn,
3476 page_idx);
3477 ret = 0;
3478 continue;
3479 }
3480 break;
3481 }
3482
3483 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3484 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3485 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3486
3487 ret = release_compress_blocks(&dn, count);
3488
3489 f2fs_put_dnode(&dn);
3490
3491 if (ret < 0)
3492 break;
3493
3494 page_idx += count;
3495 released_blocks += ret;
3496 }
3497
3498 filemap_invalidate_unlock(inode->i_mapping);
3499 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3500 out:
3501 inode_unlock(inode);
3502
3503 mnt_drop_write_file(filp);
3504
3505 if (ret >= 0) {
3506 ret = put_user(released_blocks, (u64 __user *)arg);
3507 } else if (released_blocks &&
3508 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3509 set_sbi_flag(sbi, SBI_NEED_FSCK);
3510 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3511 "iblocks=%llu, released=%u, compr_blocks=%u, "
3512 "run fsck to fix.",
3513 __func__, inode->i_ino, inode->i_blocks,
3514 released_blocks,
3515 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3516 }
3517
3518 return ret;
3519 }
3520
reserve_compress_blocks(struct dnode_of_data * dn,pgoff_t count)3521 static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3522 {
3523 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3524 unsigned int reserved_blocks = 0;
3525 int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3526 block_t blkaddr;
3527 int i;
3528
3529 for (i = 0; i < count; i++) {
3530 blkaddr = data_blkaddr(dn->inode, dn->node_page,
3531 dn->ofs_in_node + i);
3532
3533 if (!__is_valid_data_blkaddr(blkaddr))
3534 continue;
3535 if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3536 DATA_GENERIC_ENHANCE))) {
3537 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3538 return -EFSCORRUPTED;
3539 }
3540 }
3541
3542 while (count) {
3543 int compr_blocks = 0;
3544 blkcnt_t reserved;
3545 int ret;
3546
3547 for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3548 blkaddr = f2fs_data_blkaddr(dn);
3549
3550 if (i == 0) {
3551 if (blkaddr == COMPRESS_ADDR)
3552 continue;
3553 dn->ofs_in_node += cluster_size;
3554 goto next;
3555 }
3556
3557 if (__is_valid_data_blkaddr(blkaddr)) {
3558 compr_blocks++;
3559 continue;
3560 }
3561
3562 dn->data_blkaddr = NEW_ADDR;
3563 f2fs_set_data_blkaddr(dn);
3564 }
3565
3566 reserved = cluster_size - compr_blocks;
3567 ret = inc_valid_block_count(sbi, dn->inode, &reserved);
3568 if (ret)
3569 return ret;
3570
3571 if (reserved != cluster_size - compr_blocks)
3572 return -ENOSPC;
3573
3574 f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3575
3576 reserved_blocks += reserved;
3577 next:
3578 count -= cluster_size;
3579 }
3580
3581 return reserved_blocks;
3582 }
3583
f2fs_reserve_compress_blocks(struct file * filp,unsigned long arg)3584 static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3585 {
3586 struct inode *inode = file_inode(filp);
3587 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3588 pgoff_t page_idx = 0, last_idx;
3589 unsigned int reserved_blocks = 0;
3590 int ret;
3591
3592 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3593 return -EOPNOTSUPP;
3594
3595 if (!f2fs_compressed_file(inode))
3596 return -EINVAL;
3597
3598 if (f2fs_readonly(sbi->sb))
3599 return -EROFS;
3600
3601 ret = mnt_want_write_file(filp);
3602 if (ret)
3603 return ret;
3604
3605 if (atomic_read(&F2FS_I(inode)->i_compr_blocks))
3606 goto out;
3607
3608 f2fs_balance_fs(F2FS_I_SB(inode), true);
3609
3610 inode_lock(inode);
3611
3612 if (!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3613 ret = -EINVAL;
3614 goto unlock_inode;
3615 }
3616
3617 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3618 filemap_invalidate_lock(inode->i_mapping);
3619
3620 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3621
3622 while (page_idx < last_idx) {
3623 struct dnode_of_data dn;
3624 pgoff_t end_offset, count;
3625
3626 set_new_dnode(&dn, inode, NULL, NULL, 0);
3627 ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3628 if (ret) {
3629 if (ret == -ENOENT) {
3630 page_idx = f2fs_get_next_page_offset(&dn,
3631 page_idx);
3632 ret = 0;
3633 continue;
3634 }
3635 break;
3636 }
3637
3638 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3639 count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3640 count = round_up(count, F2FS_I(inode)->i_cluster_size);
3641
3642 ret = reserve_compress_blocks(&dn, count);
3643
3644 f2fs_put_dnode(&dn);
3645
3646 if (ret < 0)
3647 break;
3648
3649 page_idx += count;
3650 reserved_blocks += ret;
3651 }
3652
3653 filemap_invalidate_unlock(inode->i_mapping);
3654 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3655
3656 if (ret >= 0) {
3657 clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3658 inode->i_ctime = current_time(inode);
3659 f2fs_mark_inode_dirty_sync(inode, true);
3660 }
3661 unlock_inode:
3662 inode_unlock(inode);
3663 out:
3664 mnt_drop_write_file(filp);
3665
3666 if (ret >= 0) {
3667 ret = put_user(reserved_blocks, (u64 __user *)arg);
3668 } else if (reserved_blocks &&
3669 atomic_read(&F2FS_I(inode)->i_compr_blocks)) {
3670 set_sbi_flag(sbi, SBI_NEED_FSCK);
3671 f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3672 "iblocks=%llu, reserved=%u, compr_blocks=%u, "
3673 "run fsck to fix.",
3674 __func__, inode->i_ino, inode->i_blocks,
3675 reserved_blocks,
3676 atomic_read(&F2FS_I(inode)->i_compr_blocks));
3677 }
3678
3679 return ret;
3680 }
3681
f2fs_secure_erase(struct block_device * bdev,struct inode * inode,pgoff_t off,block_t block,block_t len,u32 flags)3682 static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3683 pgoff_t off, block_t block, block_t len, u32 flags)
3684 {
3685 sector_t sector = SECTOR_FROM_BLOCK(block);
3686 sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3687 int ret = 0;
3688
3689 if (flags & F2FS_TRIM_FILE_DISCARD) {
3690 if (bdev_max_secure_erase_sectors(bdev))
3691 ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3692 GFP_NOFS);
3693 else
3694 ret = blkdev_issue_discard(bdev, sector, nr_sects,
3695 GFP_NOFS);
3696 }
3697
3698 if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3699 if (IS_ENCRYPTED(inode))
3700 ret = fscrypt_zeroout_range(inode, off, block, len);
3701 else
3702 ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3703 GFP_NOFS, 0);
3704 }
3705
3706 return ret;
3707 }
3708
f2fs_sec_trim_file(struct file * filp,unsigned long arg)3709 static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3710 {
3711 struct inode *inode = file_inode(filp);
3712 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3713 struct address_space *mapping = inode->i_mapping;
3714 struct block_device *prev_bdev = NULL;
3715 struct f2fs_sectrim_range range;
3716 pgoff_t index, pg_end, prev_index = 0;
3717 block_t prev_block = 0, len = 0;
3718 loff_t end_addr;
3719 bool to_end = false;
3720 int ret = 0;
3721
3722 if (!(filp->f_mode & FMODE_WRITE))
3723 return -EBADF;
3724
3725 if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
3726 sizeof(range)))
3727 return -EFAULT;
3728
3729 if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
3730 !S_ISREG(inode->i_mode))
3731 return -EINVAL;
3732
3733 if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
3734 !f2fs_hw_support_discard(sbi)) ||
3735 ((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
3736 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
3737 return -EOPNOTSUPP;
3738
3739 file_start_write(filp);
3740 inode_lock(inode);
3741
3742 if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
3743 range.start >= inode->i_size) {
3744 ret = -EINVAL;
3745 goto err;
3746 }
3747
3748 if (range.len == 0)
3749 goto err;
3750
3751 if (inode->i_size - range.start > range.len) {
3752 end_addr = range.start + range.len;
3753 } else {
3754 end_addr = range.len == (u64)-1 ?
3755 sbi->sb->s_maxbytes : inode->i_size;
3756 to_end = true;
3757 }
3758
3759 if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
3760 (!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
3761 ret = -EINVAL;
3762 goto err;
3763 }
3764
3765 index = F2FS_BYTES_TO_BLK(range.start);
3766 pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
3767
3768 ret = f2fs_convert_inline_inode(inode);
3769 if (ret)
3770 goto err;
3771
3772 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3773 filemap_invalidate_lock(mapping);
3774
3775 ret = filemap_write_and_wait_range(mapping, range.start,
3776 to_end ? LLONG_MAX : end_addr - 1);
3777 if (ret)
3778 goto out;
3779
3780 truncate_inode_pages_range(mapping, range.start,
3781 to_end ? -1 : end_addr - 1);
3782
3783 while (index < pg_end) {
3784 struct dnode_of_data dn;
3785 pgoff_t end_offset, count;
3786 int i;
3787
3788 set_new_dnode(&dn, inode, NULL, NULL, 0);
3789 ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3790 if (ret) {
3791 if (ret == -ENOENT) {
3792 index = f2fs_get_next_page_offset(&dn, index);
3793 continue;
3794 }
3795 goto out;
3796 }
3797
3798 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3799 count = min(end_offset - dn.ofs_in_node, pg_end - index);
3800 for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
3801 struct block_device *cur_bdev;
3802 block_t blkaddr = f2fs_data_blkaddr(&dn);
3803
3804 if (!__is_valid_data_blkaddr(blkaddr))
3805 continue;
3806
3807 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3808 DATA_GENERIC_ENHANCE)) {
3809 ret = -EFSCORRUPTED;
3810 f2fs_put_dnode(&dn);
3811 f2fs_handle_error(sbi,
3812 ERROR_INVALID_BLKADDR);
3813 goto out;
3814 }
3815
3816 cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
3817 if (f2fs_is_multi_device(sbi)) {
3818 int di = f2fs_target_device_index(sbi, blkaddr);
3819
3820 blkaddr -= FDEV(di).start_blk;
3821 }
3822
3823 if (len) {
3824 if (prev_bdev == cur_bdev &&
3825 index == prev_index + len &&
3826 blkaddr == prev_block + len) {
3827 len++;
3828 } else {
3829 ret = f2fs_secure_erase(prev_bdev,
3830 inode, prev_index, prev_block,
3831 len, range.flags);
3832 if (ret) {
3833 f2fs_put_dnode(&dn);
3834 goto out;
3835 }
3836
3837 len = 0;
3838 }
3839 }
3840
3841 if (!len) {
3842 prev_bdev = cur_bdev;
3843 prev_index = index;
3844 prev_block = blkaddr;
3845 len = 1;
3846 }
3847 }
3848
3849 f2fs_put_dnode(&dn);
3850
3851 if (fatal_signal_pending(current)) {
3852 ret = -EINTR;
3853 goto out;
3854 }
3855 cond_resched();
3856 }
3857
3858 if (len)
3859 ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
3860 prev_block, len, range.flags);
3861 out:
3862 filemap_invalidate_unlock(mapping);
3863 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3864 err:
3865 inode_unlock(inode);
3866 file_end_write(filp);
3867
3868 return ret;
3869 }
3870
f2fs_ioc_get_compress_option(struct file * filp,unsigned long arg)3871 static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
3872 {
3873 struct inode *inode = file_inode(filp);
3874 struct f2fs_comp_option option;
3875
3876 if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3877 return -EOPNOTSUPP;
3878
3879 inode_lock_shared(inode);
3880
3881 if (!f2fs_compressed_file(inode)) {
3882 inode_unlock_shared(inode);
3883 return -ENODATA;
3884 }
3885
3886 option.algorithm = F2FS_I(inode)->i_compress_algorithm;
3887 option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
3888
3889 inode_unlock_shared(inode);
3890
3891 if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
3892 sizeof(option)))
3893 return -EFAULT;
3894
3895 return 0;
3896 }
3897
f2fs_ioc_set_compress_option(struct file * filp,unsigned long arg)3898 static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
3899 {
3900 struct inode *inode = file_inode(filp);
3901 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3902 struct f2fs_comp_option option;
3903 int ret = 0;
3904
3905 if (!f2fs_sb_has_compression(sbi))
3906 return -EOPNOTSUPP;
3907
3908 if (!(filp->f_mode & FMODE_WRITE))
3909 return -EBADF;
3910
3911 if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
3912 sizeof(option)))
3913 return -EFAULT;
3914
3915 if (!f2fs_compressed_file(inode) ||
3916 option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
3917 option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
3918 option.algorithm >= COMPRESS_MAX)
3919 return -EINVAL;
3920
3921 file_start_write(filp);
3922 inode_lock(inode);
3923
3924 if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
3925 ret = -EBUSY;
3926 goto out;
3927 }
3928
3929 if (inode->i_size != 0) {
3930 ret = -EFBIG;
3931 goto out;
3932 }
3933
3934 F2FS_I(inode)->i_compress_algorithm = option.algorithm;
3935 F2FS_I(inode)->i_log_cluster_size = option.log_cluster_size;
3936 F2FS_I(inode)->i_cluster_size = 1 << option.log_cluster_size;
3937 f2fs_mark_inode_dirty_sync(inode, true);
3938
3939 if (!f2fs_is_compress_backend_ready(inode))
3940 f2fs_warn(sbi, "compression algorithm is successfully set, "
3941 "but current kernel doesn't support this algorithm.");
3942 out:
3943 inode_unlock(inode);
3944 file_end_write(filp);
3945
3946 return ret;
3947 }
3948
redirty_blocks(struct inode * inode,pgoff_t page_idx,int len)3949 static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
3950 {
3951 DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
3952 struct address_space *mapping = inode->i_mapping;
3953 struct page *page;
3954 pgoff_t redirty_idx = page_idx;
3955 int i, page_len = 0, ret = 0;
3956
3957 page_cache_ra_unbounded(&ractl, len, 0);
3958
3959 for (i = 0; i < len; i++, page_idx++) {
3960 page = read_cache_page(mapping, page_idx, NULL, NULL);
3961 if (IS_ERR(page)) {
3962 ret = PTR_ERR(page);
3963 break;
3964 }
3965 page_len++;
3966 }
3967
3968 for (i = 0; i < page_len; i++, redirty_idx++) {
3969 page = find_lock_page(mapping, redirty_idx);
3970
3971 /* It will never fail, when page has pinned above */
3972 f2fs_bug_on(F2FS_I_SB(inode), !page);
3973
3974 set_page_dirty(page);
3975 f2fs_put_page(page, 1);
3976 f2fs_put_page(page, 0);
3977 }
3978
3979 return ret;
3980 }
3981
f2fs_ioc_decompress_file(struct file * filp,unsigned long arg)3982 static int f2fs_ioc_decompress_file(struct file *filp, unsigned long arg)
3983 {
3984 struct inode *inode = file_inode(filp);
3985 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3986 struct f2fs_inode_info *fi = F2FS_I(inode);
3987 pgoff_t page_idx = 0, last_idx;
3988 unsigned int blk_per_seg = sbi->blocks_per_seg;
3989 int cluster_size = fi->i_cluster_size;
3990 int count, ret;
3991
3992 if (!f2fs_sb_has_compression(sbi) ||
3993 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
3994 return -EOPNOTSUPP;
3995
3996 if (!(filp->f_mode & FMODE_WRITE))
3997 return -EBADF;
3998
3999 if (!f2fs_compressed_file(inode))
4000 return -EINVAL;
4001
4002 f2fs_balance_fs(F2FS_I_SB(inode), true);
4003
4004 file_start_write(filp);
4005 inode_lock(inode);
4006
4007 if (!f2fs_is_compress_backend_ready(inode)) {
4008 ret = -EOPNOTSUPP;
4009 goto out;
4010 }
4011
4012 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4013 ret = -EINVAL;
4014 goto out;
4015 }
4016
4017 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4018 if (ret)
4019 goto out;
4020
4021 if (!atomic_read(&fi->i_compr_blocks))
4022 goto out;
4023
4024 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4025
4026 count = last_idx - page_idx;
4027 while (count) {
4028 int len = min(cluster_size, count);
4029
4030 ret = redirty_blocks(inode, page_idx, len);
4031 if (ret < 0)
4032 break;
4033
4034 if (get_dirty_pages(inode) >= blk_per_seg)
4035 filemap_fdatawrite(inode->i_mapping);
4036
4037 count -= len;
4038 page_idx += len;
4039 }
4040
4041 if (!ret)
4042 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4043 LLONG_MAX);
4044
4045 if (ret)
4046 f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4047 __func__, ret);
4048 out:
4049 inode_unlock(inode);
4050 file_end_write(filp);
4051
4052 return ret;
4053 }
4054
f2fs_ioc_compress_file(struct file * filp,unsigned long arg)4055 static int f2fs_ioc_compress_file(struct file *filp, unsigned long arg)
4056 {
4057 struct inode *inode = file_inode(filp);
4058 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4059 pgoff_t page_idx = 0, last_idx;
4060 unsigned int blk_per_seg = sbi->blocks_per_seg;
4061 int cluster_size = F2FS_I(inode)->i_cluster_size;
4062 int count, ret;
4063
4064 if (!f2fs_sb_has_compression(sbi) ||
4065 F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4066 return -EOPNOTSUPP;
4067
4068 if (!(filp->f_mode & FMODE_WRITE))
4069 return -EBADF;
4070
4071 if (!f2fs_compressed_file(inode))
4072 return -EINVAL;
4073
4074 f2fs_balance_fs(F2FS_I_SB(inode), true);
4075
4076 file_start_write(filp);
4077 inode_lock(inode);
4078
4079 if (!f2fs_is_compress_backend_ready(inode)) {
4080 ret = -EOPNOTSUPP;
4081 goto out;
4082 }
4083
4084 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4085 ret = -EINVAL;
4086 goto out;
4087 }
4088
4089 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4090 if (ret)
4091 goto out;
4092
4093 set_inode_flag(inode, FI_ENABLE_COMPRESS);
4094
4095 last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4096
4097 count = last_idx - page_idx;
4098 while (count) {
4099 int len = min(cluster_size, count);
4100
4101 ret = redirty_blocks(inode, page_idx, len);
4102 if (ret < 0)
4103 break;
4104
4105 if (get_dirty_pages(inode) >= blk_per_seg)
4106 filemap_fdatawrite(inode->i_mapping);
4107
4108 count -= len;
4109 page_idx += len;
4110 }
4111
4112 if (!ret)
4113 ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4114 LLONG_MAX);
4115
4116 clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4117
4118 if (ret)
4119 f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4120 __func__, ret);
4121 out:
4122 inode_unlock(inode);
4123 file_end_write(filp);
4124
4125 return ret;
4126 }
4127
__f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4128 static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4129 {
4130 switch (cmd) {
4131 case FS_IOC_GETVERSION:
4132 return f2fs_ioc_getversion(filp, arg);
4133 case F2FS_IOC_START_ATOMIC_WRITE:
4134 return f2fs_ioc_start_atomic_write(filp);
4135 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4136 return f2fs_ioc_commit_atomic_write(filp);
4137 case F2FS_IOC_ABORT_ATOMIC_WRITE:
4138 return f2fs_ioc_abort_atomic_write(filp);
4139 case F2FS_IOC_START_VOLATILE_WRITE:
4140 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4141 return -EOPNOTSUPP;
4142 case F2FS_IOC_SHUTDOWN:
4143 return f2fs_ioc_shutdown(filp, arg);
4144 case FITRIM:
4145 return f2fs_ioc_fitrim(filp, arg);
4146 case FS_IOC_SET_ENCRYPTION_POLICY:
4147 return f2fs_ioc_set_encryption_policy(filp, arg);
4148 case FS_IOC_GET_ENCRYPTION_POLICY:
4149 return f2fs_ioc_get_encryption_policy(filp, arg);
4150 case FS_IOC_GET_ENCRYPTION_PWSALT:
4151 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4152 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4153 return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4154 case FS_IOC_ADD_ENCRYPTION_KEY:
4155 return f2fs_ioc_add_encryption_key(filp, arg);
4156 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4157 return f2fs_ioc_remove_encryption_key(filp, arg);
4158 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4159 return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4160 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4161 return f2fs_ioc_get_encryption_key_status(filp, arg);
4162 case FS_IOC_GET_ENCRYPTION_NONCE:
4163 return f2fs_ioc_get_encryption_nonce(filp, arg);
4164 case F2FS_IOC_GARBAGE_COLLECT:
4165 return f2fs_ioc_gc(filp, arg);
4166 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4167 return f2fs_ioc_gc_range(filp, arg);
4168 case F2FS_IOC_WRITE_CHECKPOINT:
4169 return f2fs_ioc_write_checkpoint(filp, arg);
4170 case F2FS_IOC_DEFRAGMENT:
4171 return f2fs_ioc_defragment(filp, arg);
4172 case F2FS_IOC_MOVE_RANGE:
4173 return f2fs_ioc_move_range(filp, arg);
4174 case F2FS_IOC_FLUSH_DEVICE:
4175 return f2fs_ioc_flush_device(filp, arg);
4176 case F2FS_IOC_GET_FEATURES:
4177 return f2fs_ioc_get_features(filp, arg);
4178 case F2FS_IOC_GET_PIN_FILE:
4179 return f2fs_ioc_get_pin_file(filp, arg);
4180 case F2FS_IOC_SET_PIN_FILE:
4181 return f2fs_ioc_set_pin_file(filp, arg);
4182 case F2FS_IOC_PRECACHE_EXTENTS:
4183 return f2fs_ioc_precache_extents(filp, arg);
4184 case F2FS_IOC_RESIZE_FS:
4185 return f2fs_ioc_resize_fs(filp, arg);
4186 case FS_IOC_ENABLE_VERITY:
4187 return f2fs_ioc_enable_verity(filp, arg);
4188 case FS_IOC_MEASURE_VERITY:
4189 return f2fs_ioc_measure_verity(filp, arg);
4190 case FS_IOC_READ_VERITY_METADATA:
4191 return f2fs_ioc_read_verity_metadata(filp, arg);
4192 case FS_IOC_GETFSLABEL:
4193 return f2fs_ioc_getfslabel(filp, arg);
4194 case FS_IOC_SETFSLABEL:
4195 return f2fs_ioc_setfslabel(filp, arg);
4196 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4197 return f2fs_get_compress_blocks(filp, arg);
4198 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4199 return f2fs_release_compress_blocks(filp, arg);
4200 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4201 return f2fs_reserve_compress_blocks(filp, arg);
4202 case F2FS_IOC_SEC_TRIM_FILE:
4203 return f2fs_sec_trim_file(filp, arg);
4204 case F2FS_IOC_GET_COMPRESS_OPTION:
4205 return f2fs_ioc_get_compress_option(filp, arg);
4206 case F2FS_IOC_SET_COMPRESS_OPTION:
4207 return f2fs_ioc_set_compress_option(filp, arg);
4208 case F2FS_IOC_DECOMPRESS_FILE:
4209 return f2fs_ioc_decompress_file(filp, arg);
4210 case F2FS_IOC_COMPRESS_FILE:
4211 return f2fs_ioc_compress_file(filp, arg);
4212 default:
4213 return -ENOTTY;
4214 }
4215 }
4216
f2fs_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)4217 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4218 {
4219 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4220 return -EIO;
4221 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4222 return -ENOSPC;
4223
4224 return __f2fs_ioctl(filp, cmd, arg);
4225 }
4226
4227 /*
4228 * Return %true if the given read or write request should use direct I/O, or
4229 * %false if it should use buffered I/O.
4230 */
f2fs_should_use_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4231 static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4232 struct iov_iter *iter)
4233 {
4234 unsigned int align;
4235
4236 if (!(iocb->ki_flags & IOCB_DIRECT))
4237 return false;
4238
4239 if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4240 return false;
4241
4242 /*
4243 * Direct I/O not aligned to the disk's logical_block_size will be
4244 * attempted, but will fail with -EINVAL.
4245 *
4246 * f2fs additionally requires that direct I/O be aligned to the
4247 * filesystem block size, which is often a stricter requirement.
4248 * However, f2fs traditionally falls back to buffered I/O on requests
4249 * that are logical_block_size-aligned but not fs-block aligned.
4250 *
4251 * The below logic implements this behavior.
4252 */
4253 align = iocb->ki_pos | iov_iter_alignment(iter);
4254 if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4255 IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4256 return false;
4257
4258 return true;
4259 }
4260
f2fs_dio_read_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)4261 static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4262 unsigned int flags)
4263 {
4264 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4265
4266 dec_page_count(sbi, F2FS_DIO_READ);
4267 if (error)
4268 return error;
4269 f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4270 return 0;
4271 }
4272
4273 static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4274 .end_io = f2fs_dio_read_end_io,
4275 };
4276
f2fs_dio_read_iter(struct kiocb * iocb,struct iov_iter * to)4277 static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4278 {
4279 struct file *file = iocb->ki_filp;
4280 struct inode *inode = file_inode(file);
4281 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4282 struct f2fs_inode_info *fi = F2FS_I(inode);
4283 const loff_t pos = iocb->ki_pos;
4284 const size_t count = iov_iter_count(to);
4285 struct iomap_dio *dio;
4286 ssize_t ret;
4287
4288 if (count == 0)
4289 return 0; /* skip atime update */
4290
4291 trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4292
4293 if (iocb->ki_flags & IOCB_NOWAIT) {
4294 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4295 ret = -EAGAIN;
4296 goto out;
4297 }
4298 } else {
4299 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4300 }
4301
4302 /*
4303 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4304 * the higher-level function iomap_dio_rw() in order to ensure that the
4305 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4306 */
4307 inc_page_count(sbi, F2FS_DIO_READ);
4308 dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4309 &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4310 if (IS_ERR_OR_NULL(dio)) {
4311 ret = PTR_ERR_OR_ZERO(dio);
4312 if (ret != -EIOCBQUEUED)
4313 dec_page_count(sbi, F2FS_DIO_READ);
4314 } else {
4315 ret = iomap_dio_complete(dio);
4316 }
4317
4318 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4319
4320 file_accessed(file);
4321 out:
4322 trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4323 return ret;
4324 }
4325
f2fs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)4326 static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4327 {
4328 struct inode *inode = file_inode(iocb->ki_filp);
4329 const loff_t pos = iocb->ki_pos;
4330 ssize_t ret;
4331
4332 if (!f2fs_is_compress_backend_ready(inode))
4333 return -EOPNOTSUPP;
4334
4335 if (trace_f2fs_dataread_start_enabled()) {
4336 char *p = f2fs_kmalloc(F2FS_I_SB(inode), PATH_MAX, GFP_KERNEL);
4337 char *path;
4338
4339 if (!p)
4340 goto skip_read_trace;
4341
4342 path = dentry_path_raw(file_dentry(iocb->ki_filp), p, PATH_MAX);
4343 if (IS_ERR(path)) {
4344 kfree(p);
4345 goto skip_read_trace;
4346 }
4347
4348 trace_f2fs_dataread_start(inode, pos, iov_iter_count(to),
4349 current->pid, path, current->comm);
4350 kfree(p);
4351 }
4352 skip_read_trace:
4353 if (f2fs_should_use_dio(inode, iocb, to)) {
4354 ret = f2fs_dio_read_iter(iocb, to);
4355 } else {
4356 ret = filemap_read(iocb, to, 0);
4357 if (ret > 0)
4358 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4359 APP_BUFFERED_READ_IO, ret);
4360 }
4361 if (trace_f2fs_dataread_end_enabled())
4362 trace_f2fs_dataread_end(inode, pos, ret);
4363 return ret;
4364 }
4365
f2fs_write_checks(struct kiocb * iocb,struct iov_iter * from)4366 static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4367 {
4368 struct file *file = iocb->ki_filp;
4369 struct inode *inode = file_inode(file);
4370 ssize_t count;
4371 int err;
4372
4373 if (IS_IMMUTABLE(inode))
4374 return -EPERM;
4375
4376 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4377 return -EPERM;
4378
4379 count = generic_write_checks(iocb, from);
4380 if (count <= 0)
4381 return count;
4382
4383 err = file_modified(file);
4384 if (err)
4385 return err;
4386 return count;
4387 }
4388
4389 /*
4390 * Preallocate blocks for a write request, if it is possible and helpful to do
4391 * so. Returns a positive number if blocks may have been preallocated, 0 if no
4392 * blocks were preallocated, or a negative errno value if something went
4393 * seriously wrong. Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4394 * requested blocks (not just some of them) have been allocated.
4395 */
f2fs_preallocate_blocks(struct kiocb * iocb,struct iov_iter * iter,bool dio)4396 static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4397 bool dio)
4398 {
4399 struct inode *inode = file_inode(iocb->ki_filp);
4400 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4401 const loff_t pos = iocb->ki_pos;
4402 const size_t count = iov_iter_count(iter);
4403 struct f2fs_map_blocks map = {};
4404 int flag;
4405 int ret;
4406
4407 /* If it will be an out-of-place direct write, don't bother. */
4408 if (dio && f2fs_lfs_mode(sbi))
4409 return 0;
4410 /*
4411 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4412 * buffered IO, if DIO meets any holes.
4413 */
4414 if (dio && i_size_read(inode) &&
4415 (F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4416 return 0;
4417
4418 /* No-wait I/O can't allocate blocks. */
4419 if (iocb->ki_flags & IOCB_NOWAIT)
4420 return 0;
4421
4422 /* If it will be a short write, don't bother. */
4423 if (fault_in_iov_iter_readable(iter, count))
4424 return 0;
4425
4426 if (f2fs_has_inline_data(inode)) {
4427 /* If the data will fit inline, don't bother. */
4428 if (pos + count <= MAX_INLINE_DATA(inode))
4429 return 0;
4430 ret = f2fs_convert_inline_inode(inode);
4431 if (ret)
4432 return ret;
4433 }
4434
4435 /* Do not preallocate blocks that will be written partially in 4KB. */
4436 map.m_lblk = F2FS_BLK_ALIGN(pos);
4437 map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4438 if (map.m_len > map.m_lblk)
4439 map.m_len -= map.m_lblk;
4440 else
4441 map.m_len = 0;
4442 map.m_may_create = true;
4443 if (dio) {
4444 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4445 flag = F2FS_GET_BLOCK_PRE_DIO;
4446 } else {
4447 map.m_seg_type = NO_CHECK_TYPE;
4448 flag = F2FS_GET_BLOCK_PRE_AIO;
4449 }
4450
4451 ret = f2fs_map_blocks(inode, &map, 1, flag);
4452 /* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4453 if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4454 return ret;
4455 if (ret == 0)
4456 set_inode_flag(inode, FI_PREALLOCATED_ALL);
4457 return map.m_len;
4458 }
4459
f2fs_buffered_write_iter(struct kiocb * iocb,struct iov_iter * from)4460 static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4461 struct iov_iter *from)
4462 {
4463 struct file *file = iocb->ki_filp;
4464 struct inode *inode = file_inode(file);
4465 ssize_t ret;
4466
4467 if (iocb->ki_flags & IOCB_NOWAIT)
4468 return -EOPNOTSUPP;
4469
4470 current->backing_dev_info = inode_to_bdi(inode);
4471 ret = generic_perform_write(iocb, from);
4472 current->backing_dev_info = NULL;
4473
4474 if (ret > 0) {
4475 iocb->ki_pos += ret;
4476 f2fs_update_iostat(F2FS_I_SB(inode), inode,
4477 APP_BUFFERED_IO, ret);
4478 }
4479 return ret;
4480 }
4481
f2fs_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)4482 static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4483 unsigned int flags)
4484 {
4485 struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4486
4487 dec_page_count(sbi, F2FS_DIO_WRITE);
4488 if (error)
4489 return error;
4490 f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4491 return 0;
4492 }
4493
4494 static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4495 .end_io = f2fs_dio_write_end_io,
4496 };
4497
f2fs_dio_write_iter(struct kiocb * iocb,struct iov_iter * from,bool * may_need_sync)4498 static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4499 bool *may_need_sync)
4500 {
4501 struct file *file = iocb->ki_filp;
4502 struct inode *inode = file_inode(file);
4503 struct f2fs_inode_info *fi = F2FS_I(inode);
4504 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4505 const bool do_opu = f2fs_lfs_mode(sbi);
4506 const loff_t pos = iocb->ki_pos;
4507 const ssize_t count = iov_iter_count(from);
4508 unsigned int dio_flags;
4509 struct iomap_dio *dio;
4510 ssize_t ret;
4511
4512 trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4513
4514 if (iocb->ki_flags & IOCB_NOWAIT) {
4515 /* f2fs_convert_inline_inode() and block allocation can block */
4516 if (f2fs_has_inline_data(inode) ||
4517 !f2fs_overwrite_io(inode, pos, count)) {
4518 ret = -EAGAIN;
4519 goto out;
4520 }
4521
4522 if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4523 ret = -EAGAIN;
4524 goto out;
4525 }
4526 if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4527 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4528 ret = -EAGAIN;
4529 goto out;
4530 }
4531 } else {
4532 ret = f2fs_convert_inline_inode(inode);
4533 if (ret)
4534 goto out;
4535
4536 f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4537 if (do_opu)
4538 f2fs_down_read(&fi->i_gc_rwsem[READ]);
4539 }
4540
4541 /*
4542 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4543 * the higher-level function iomap_dio_rw() in order to ensure that the
4544 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4545 */
4546 inc_page_count(sbi, F2FS_DIO_WRITE);
4547 dio_flags = 0;
4548 if (pos + count > inode->i_size)
4549 dio_flags |= IOMAP_DIO_FORCE_WAIT;
4550 dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4551 &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4552 if (IS_ERR_OR_NULL(dio)) {
4553 ret = PTR_ERR_OR_ZERO(dio);
4554 if (ret == -ENOTBLK)
4555 ret = 0;
4556 if (ret != -EIOCBQUEUED)
4557 dec_page_count(sbi, F2FS_DIO_WRITE);
4558 } else {
4559 ret = iomap_dio_complete(dio);
4560 }
4561
4562 if (do_opu)
4563 f2fs_up_read(&fi->i_gc_rwsem[READ]);
4564 f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4565
4566 if (ret < 0)
4567 goto out;
4568 if (pos + ret > inode->i_size)
4569 f2fs_i_size_write(inode, pos + ret);
4570 if (!do_opu)
4571 set_inode_flag(inode, FI_UPDATE_WRITE);
4572
4573 if (iov_iter_count(from)) {
4574 ssize_t ret2;
4575 loff_t bufio_start_pos = iocb->ki_pos;
4576
4577 /*
4578 * The direct write was partial, so we need to fall back to a
4579 * buffered write for the remainder.
4580 */
4581
4582 ret2 = f2fs_buffered_write_iter(iocb, from);
4583 if (iov_iter_count(from))
4584 f2fs_write_failed(inode, iocb->ki_pos);
4585 if (ret2 < 0)
4586 goto out;
4587
4588 /*
4589 * Ensure that the pagecache pages are written to disk and
4590 * invalidated to preserve the expected O_DIRECT semantics.
4591 */
4592 if (ret2 > 0) {
4593 loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4594
4595 ret += ret2;
4596
4597 ret2 = filemap_write_and_wait_range(file->f_mapping,
4598 bufio_start_pos,
4599 bufio_end_pos);
4600 if (ret2 < 0)
4601 goto out;
4602 invalidate_mapping_pages(file->f_mapping,
4603 bufio_start_pos >> PAGE_SHIFT,
4604 bufio_end_pos >> PAGE_SHIFT);
4605 }
4606 } else {
4607 /* iomap_dio_rw() already handled the generic_write_sync(). */
4608 *may_need_sync = false;
4609 }
4610 out:
4611 trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4612 return ret;
4613 }
4614
f2fs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)4615 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4616 {
4617 struct inode *inode = file_inode(iocb->ki_filp);
4618 const loff_t orig_pos = iocb->ki_pos;
4619 const size_t orig_count = iov_iter_count(from);
4620 loff_t target_size;
4621 bool dio;
4622 bool may_need_sync = true;
4623 int preallocated;
4624 ssize_t ret;
4625
4626 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
4627 ret = -EIO;
4628 goto out;
4629 }
4630
4631 if (!f2fs_is_compress_backend_ready(inode)) {
4632 ret = -EOPNOTSUPP;
4633 goto out;
4634 }
4635
4636 if (iocb->ki_flags & IOCB_NOWAIT) {
4637 if (!inode_trylock(inode)) {
4638 ret = -EAGAIN;
4639 goto out;
4640 }
4641 } else {
4642 inode_lock(inode);
4643 }
4644
4645 ret = f2fs_write_checks(iocb, from);
4646 if (ret <= 0)
4647 goto out_unlock;
4648
4649 /* Determine whether we will do a direct write or a buffered write. */
4650 dio = f2fs_should_use_dio(inode, iocb, from);
4651
4652 /* Possibly preallocate the blocks for the write. */
4653 target_size = iocb->ki_pos + iov_iter_count(from);
4654 preallocated = f2fs_preallocate_blocks(iocb, from, dio);
4655 if (preallocated < 0) {
4656 ret = preallocated;
4657 } else {
4658 if (trace_f2fs_datawrite_start_enabled()) {
4659 char *p = f2fs_kmalloc(F2FS_I_SB(inode),
4660 PATH_MAX, GFP_KERNEL);
4661 char *path;
4662
4663 if (!p)
4664 goto skip_write_trace;
4665 path = dentry_path_raw(file_dentry(iocb->ki_filp),
4666 p, PATH_MAX);
4667 if (IS_ERR(path)) {
4668 kfree(p);
4669 goto skip_write_trace;
4670 }
4671 trace_f2fs_datawrite_start(inode, orig_pos, orig_count,
4672 current->pid, path, current->comm);
4673 kfree(p);
4674 }
4675 skip_write_trace:
4676 /* Do the actual write. */
4677 ret = dio ?
4678 f2fs_dio_write_iter(iocb, from, &may_need_sync) :
4679 f2fs_buffered_write_iter(iocb, from);
4680
4681 if (trace_f2fs_datawrite_end_enabled())
4682 trace_f2fs_datawrite_end(inode, orig_pos, ret);
4683 }
4684
4685 /* Don't leave any preallocated blocks around past i_size. */
4686 if (preallocated && i_size_read(inode) < target_size) {
4687 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4688 filemap_invalidate_lock(inode->i_mapping);
4689 if (!f2fs_truncate(inode))
4690 file_dont_truncate(inode);
4691 filemap_invalidate_unlock(inode->i_mapping);
4692 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4693 } else {
4694 file_dont_truncate(inode);
4695 }
4696
4697 clear_inode_flag(inode, FI_PREALLOCATED_ALL);
4698 out_unlock:
4699 inode_unlock(inode);
4700 out:
4701 trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
4702 if (ret > 0 && may_need_sync)
4703 ret = generic_write_sync(iocb, ret);
4704 return ret;
4705 }
4706
f2fs_file_fadvise(struct file * filp,loff_t offset,loff_t len,int advice)4707 static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
4708 int advice)
4709 {
4710 struct address_space *mapping;
4711 struct backing_dev_info *bdi;
4712 struct inode *inode = file_inode(filp);
4713 int err;
4714
4715 if (advice == POSIX_FADV_SEQUENTIAL) {
4716 if (S_ISFIFO(inode->i_mode))
4717 return -ESPIPE;
4718
4719 mapping = filp->f_mapping;
4720 if (!mapping || len < 0)
4721 return -EINVAL;
4722
4723 bdi = inode_to_bdi(mapping->host);
4724 filp->f_ra.ra_pages = bdi->ra_pages *
4725 F2FS_I_SB(inode)->seq_file_ra_mul;
4726 spin_lock(&filp->f_lock);
4727 filp->f_mode &= ~FMODE_RANDOM;
4728 spin_unlock(&filp->f_lock);
4729 return 0;
4730 }
4731
4732 err = generic_fadvise(filp, offset, len, advice);
4733 if (!err && advice == POSIX_FADV_DONTNEED &&
4734 test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
4735 f2fs_compressed_file(inode))
4736 f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
4737
4738 return err;
4739 }
4740
4741 #ifdef CONFIG_COMPAT
4742 struct compat_f2fs_gc_range {
4743 u32 sync;
4744 compat_u64 start;
4745 compat_u64 len;
4746 };
4747 #define F2FS_IOC32_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11,\
4748 struct compat_f2fs_gc_range)
4749
f2fs_compat_ioc_gc_range(struct file * file,unsigned long arg)4750 static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
4751 {
4752 struct compat_f2fs_gc_range __user *urange;
4753 struct f2fs_gc_range range;
4754 int err;
4755
4756 urange = compat_ptr(arg);
4757 err = get_user(range.sync, &urange->sync);
4758 err |= get_user(range.start, &urange->start);
4759 err |= get_user(range.len, &urange->len);
4760 if (err)
4761 return -EFAULT;
4762
4763 return __f2fs_ioc_gc_range(file, &range);
4764 }
4765
4766 struct compat_f2fs_move_range {
4767 u32 dst_fd;
4768 compat_u64 pos_in;
4769 compat_u64 pos_out;
4770 compat_u64 len;
4771 };
4772 #define F2FS_IOC32_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
4773 struct compat_f2fs_move_range)
4774
f2fs_compat_ioc_move_range(struct file * file,unsigned long arg)4775 static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
4776 {
4777 struct compat_f2fs_move_range __user *urange;
4778 struct f2fs_move_range range;
4779 int err;
4780
4781 urange = compat_ptr(arg);
4782 err = get_user(range.dst_fd, &urange->dst_fd);
4783 err |= get_user(range.pos_in, &urange->pos_in);
4784 err |= get_user(range.pos_out, &urange->pos_out);
4785 err |= get_user(range.len, &urange->len);
4786 if (err)
4787 return -EFAULT;
4788
4789 return __f2fs_ioc_move_range(file, &range);
4790 }
4791
f2fs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4792 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4793 {
4794 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
4795 return -EIO;
4796 if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
4797 return -ENOSPC;
4798
4799 switch (cmd) {
4800 case FS_IOC32_GETVERSION:
4801 cmd = FS_IOC_GETVERSION;
4802 break;
4803 case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
4804 return f2fs_compat_ioc_gc_range(file, arg);
4805 case F2FS_IOC32_MOVE_RANGE:
4806 return f2fs_compat_ioc_move_range(file, arg);
4807 case F2FS_IOC_START_ATOMIC_WRITE:
4808 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4809 case F2FS_IOC_START_VOLATILE_WRITE:
4810 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4811 case F2FS_IOC_ABORT_ATOMIC_WRITE:
4812 case F2FS_IOC_SHUTDOWN:
4813 case FITRIM:
4814 case FS_IOC_SET_ENCRYPTION_POLICY:
4815 case FS_IOC_GET_ENCRYPTION_PWSALT:
4816 case FS_IOC_GET_ENCRYPTION_POLICY:
4817 case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4818 case FS_IOC_ADD_ENCRYPTION_KEY:
4819 case FS_IOC_REMOVE_ENCRYPTION_KEY:
4820 case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4821 case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4822 case FS_IOC_GET_ENCRYPTION_NONCE:
4823 case F2FS_IOC_GARBAGE_COLLECT:
4824 case F2FS_IOC_WRITE_CHECKPOINT:
4825 case F2FS_IOC_DEFRAGMENT:
4826 case F2FS_IOC_FLUSH_DEVICE:
4827 case F2FS_IOC_GET_FEATURES:
4828 case F2FS_IOC_GET_PIN_FILE:
4829 case F2FS_IOC_SET_PIN_FILE:
4830 case F2FS_IOC_PRECACHE_EXTENTS:
4831 case F2FS_IOC_RESIZE_FS:
4832 case FS_IOC_ENABLE_VERITY:
4833 case FS_IOC_MEASURE_VERITY:
4834 case FS_IOC_READ_VERITY_METADATA:
4835 case FS_IOC_GETFSLABEL:
4836 case FS_IOC_SETFSLABEL:
4837 case F2FS_IOC_GET_COMPRESS_BLOCKS:
4838 case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4839 case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4840 case F2FS_IOC_SEC_TRIM_FILE:
4841 case F2FS_IOC_GET_COMPRESS_OPTION:
4842 case F2FS_IOC_SET_COMPRESS_OPTION:
4843 case F2FS_IOC_DECOMPRESS_FILE:
4844 case F2FS_IOC_COMPRESS_FILE:
4845 break;
4846 default:
4847 return -ENOIOCTLCMD;
4848 }
4849 return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4850 }
4851 #endif
4852
4853 const struct file_operations f2fs_file_operations = {
4854 .llseek = f2fs_llseek,
4855 .read_iter = f2fs_file_read_iter,
4856 .write_iter = f2fs_file_write_iter,
4857 .open = f2fs_file_open,
4858 .release = f2fs_release_file,
4859 .mmap = f2fs_file_mmap,
4860 .flush = f2fs_file_flush,
4861 .fsync = f2fs_sync_file,
4862 .fallocate = f2fs_fallocate,
4863 .unlocked_ioctl = f2fs_ioctl,
4864 #ifdef CONFIG_COMPAT
4865 .compat_ioctl = f2fs_compat_ioctl,
4866 #endif
4867 .splice_read = generic_file_splice_read,
4868 .splice_write = iter_file_splice_write,
4869 .fadvise = f2fs_file_fadvise,
4870 };
4871