1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "trace.h"
29 #include <trace/events/f2fs.h>
30
31 #define NUM_PREALLOC_POST_READ_CTXS 128
32
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37
38 #define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
39
f2fs_init_bioset(void)40 int __init f2fs_init_bioset(void)
41 {
42 if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 0, BIOSET_NEED_BVECS))
44 return -ENOMEM;
45 return 0;
46 }
47
f2fs_destroy_bioset(void)48 void f2fs_destroy_bioset(void)
49 {
50 bioset_exit(&f2fs_bioset);
51 }
52
__f2fs_bio_alloc(gfp_t gfp_mask,unsigned int nr_iovecs)53 static inline struct bio *__f2fs_bio_alloc(gfp_t gfp_mask,
54 unsigned int nr_iovecs)
55 {
56 return bio_alloc_bioset(gfp_mask, nr_iovecs, &f2fs_bioset);
57 }
58
f2fs_bio_alloc(struct f2fs_sb_info * sbi,int npages,bool noio)59 struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi, int npages, bool noio)
60 {
61 if (noio) {
62 /* No failure on bio allocation */
63 return __f2fs_bio_alloc(GFP_NOIO, npages);
64 }
65
66 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
67 f2fs_show_injection_info(sbi, FAULT_ALLOC_BIO);
68 return NULL;
69 }
70
71 return __f2fs_bio_alloc(GFP_KERNEL, npages);
72 }
73
__is_cp_guaranteed(struct page * page)74 static bool __is_cp_guaranteed(struct page *page)
75 {
76 struct address_space *mapping = page->mapping;
77 struct inode *inode;
78 struct f2fs_sb_info *sbi;
79
80 if (!mapping)
81 return false;
82
83 if (f2fs_is_compressed_page(page))
84 return false;
85
86 inode = mapping->host;
87 sbi = F2FS_I_SB(inode);
88
89 if (inode->i_ino == F2FS_META_INO(sbi) ||
90 inode->i_ino == F2FS_NODE_INO(sbi) ||
91 S_ISDIR(inode->i_mode) ||
92 (S_ISREG(inode->i_mode) &&
93 (f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
94 is_cold_data(page))
95 return true;
96 return false;
97 }
98
__read_io_type(struct page * page)99 static enum count_type __read_io_type(struct page *page)
100 {
101 struct address_space *mapping = page_file_mapping(page);
102
103 if (mapping) {
104 struct inode *inode = mapping->host;
105 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
106
107 if (inode->i_ino == F2FS_META_INO(sbi))
108 return F2FS_RD_META;
109
110 if (inode->i_ino == F2FS_NODE_INO(sbi))
111 return F2FS_RD_NODE;
112 }
113 return F2FS_RD_DATA;
114 }
115
116 /* postprocessing steps for read bios */
117 enum bio_post_read_step {
118 STEP_DECRYPT,
119 STEP_DECOMPRESS_NOWQ, /* handle normal cluster data inplace */
120 STEP_DECOMPRESS, /* handle compressed cluster data in workqueue */
121 STEP_VERITY,
122 };
123
124 struct bio_post_read_ctx {
125 struct bio *bio;
126 struct f2fs_sb_info *sbi;
127 struct work_struct work;
128 unsigned int enabled_steps;
129 };
130
__read_end_io(struct bio * bio,bool compr,bool verity)131 static void __read_end_io(struct bio *bio, bool compr, bool verity)
132 {
133 struct page *page;
134 struct bio_vec *bv;
135 struct bvec_iter_all iter_all;
136
137 bio_for_each_segment_all(bv, bio, iter_all) {
138 page = bv->bv_page;
139
140 #ifdef CONFIG_F2FS_FS_COMPRESSION
141 if (compr && f2fs_is_compressed_page(page)) {
142 f2fs_decompress_pages(bio, page, verity);
143 continue;
144 }
145 if (verity)
146 continue;
147 #endif
148
149 /* PG_error was set if any post_read step failed */
150 if (bio->bi_status || PageError(page)) {
151 ClearPageUptodate(page);
152 /* will re-read again later */
153 ClearPageError(page);
154 } else {
155 SetPageUptodate(page);
156 }
157 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
158 unlock_page(page);
159 }
160 }
161
162 static void f2fs_release_read_bio(struct bio *bio);
__f2fs_read_end_io(struct bio * bio,bool compr,bool verity)163 static void __f2fs_read_end_io(struct bio *bio, bool compr, bool verity)
164 {
165 if (!compr)
166 __read_end_io(bio, false, verity);
167 f2fs_release_read_bio(bio);
168 }
169
f2fs_decompress_bio(struct bio * bio,bool verity)170 static void f2fs_decompress_bio(struct bio *bio, bool verity)
171 {
172 __read_end_io(bio, true, verity);
173 }
174
175 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
176
f2fs_decrypt_work(struct bio_post_read_ctx * ctx)177 static void f2fs_decrypt_work(struct bio_post_read_ctx *ctx)
178 {
179 fscrypt_decrypt_bio(ctx->bio);
180 }
181
f2fs_decompress_work(struct bio_post_read_ctx * ctx)182 static void f2fs_decompress_work(struct bio_post_read_ctx *ctx)
183 {
184 f2fs_decompress_bio(ctx->bio, ctx->enabled_steps & (1 << STEP_VERITY));
185 }
186
187 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_verify_pages(struct page ** rpages,unsigned int cluster_size)188 static void f2fs_verify_pages(struct page **rpages, unsigned int cluster_size)
189 {
190 f2fs_decompress_end_io(rpages, cluster_size, false, true);
191 }
192
f2fs_verify_bio(struct bio * bio)193 static void f2fs_verify_bio(struct bio *bio)
194 {
195 struct bio_vec *bv;
196 struct bvec_iter_all iter_all;
197
198 bio_for_each_segment_all(bv, bio, iter_all) {
199 struct page *page = bv->bv_page;
200 struct decompress_io_ctx *dic;
201
202 dic = (struct decompress_io_ctx *)page_private(page);
203
204 if (dic) {
205 if (atomic_dec_return(&dic->pending_pages))
206 continue;
207 f2fs_verify_pages(dic->rpages,
208 dic->cluster_size);
209 f2fs_free_dic(dic);
210 continue;
211 }
212
213 if (bio->bi_status || PageError(page))
214 goto clear_uptodate;
215
216 if (fsverity_verify_page(page)) {
217 SetPageUptodate(page);
218 goto unlock;
219 }
220 clear_uptodate:
221 ClearPageUptodate(page);
222 ClearPageError(page);
223 unlock:
224 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
225 unlock_page(page);
226 }
227 }
228 #endif
229
f2fs_verity_work(struct work_struct * work)230 static void f2fs_verity_work(struct work_struct *work)
231 {
232 struct bio_post_read_ctx *ctx =
233 container_of(work, struct bio_post_read_ctx, work);
234 struct bio *bio = ctx->bio;
235 #ifdef CONFIG_F2FS_FS_COMPRESSION
236 unsigned int enabled_steps = ctx->enabled_steps;
237 #endif
238
239 /*
240 * fsverity_verify_bio() may call readpages() again, and while verity
241 * will be disabled for this, decryption may still be needed, resulting
242 * in another bio_post_read_ctx being allocated. So to prevent
243 * deadlocks we need to release the current ctx to the mempool first.
244 * This assumes that verity is the last post-read step.
245 */
246 mempool_free(ctx, bio_post_read_ctx_pool);
247 bio->bi_private = NULL;
248
249 #ifdef CONFIG_F2FS_FS_COMPRESSION
250 /* previous step is decompression */
251 if (enabled_steps & (1 << STEP_DECOMPRESS)) {
252 f2fs_verify_bio(bio);
253 f2fs_release_read_bio(bio);
254 return;
255 }
256 #endif
257
258 fsverity_verify_bio(bio);
259 __f2fs_read_end_io(bio, false, false);
260 }
261
f2fs_post_read_work(struct work_struct * work)262 static void f2fs_post_read_work(struct work_struct *work)
263 {
264 struct bio_post_read_ctx *ctx =
265 container_of(work, struct bio_post_read_ctx, work);
266
267 if (ctx->enabled_steps & (1 << STEP_DECRYPT))
268 f2fs_decrypt_work(ctx);
269
270 if (ctx->enabled_steps & (1 << STEP_DECOMPRESS))
271 f2fs_decompress_work(ctx);
272
273 if (ctx->enabled_steps & (1 << STEP_VERITY)) {
274 INIT_WORK(&ctx->work, f2fs_verity_work);
275 fsverity_enqueue_verify_work(&ctx->work);
276 return;
277 }
278
279 __f2fs_read_end_io(ctx->bio,
280 ctx->enabled_steps & (1 << STEP_DECOMPRESS), false);
281 }
282
f2fs_enqueue_post_read_work(struct f2fs_sb_info * sbi,struct work_struct * work)283 static void f2fs_enqueue_post_read_work(struct f2fs_sb_info *sbi,
284 struct work_struct *work)
285 {
286 queue_work(sbi->post_read_wq, work);
287 }
288
bio_post_read_processing(struct bio_post_read_ctx * ctx)289 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
290 {
291 /*
292 * We use different work queues for decryption and for verity because
293 * verity may require reading metadata pages that need decryption, and
294 * we shouldn't recurse to the same workqueue.
295 */
296
297 if (ctx->enabled_steps & (1 << STEP_DECRYPT) ||
298 ctx->enabled_steps & (1 << STEP_DECOMPRESS)) {
299 INIT_WORK(&ctx->work, f2fs_post_read_work);
300 f2fs_enqueue_post_read_work(ctx->sbi, &ctx->work);
301 return;
302 }
303
304 if (ctx->enabled_steps & (1 << STEP_VERITY)) {
305 INIT_WORK(&ctx->work, f2fs_verity_work);
306 fsverity_enqueue_verify_work(&ctx->work);
307 return;
308 }
309
310 __f2fs_read_end_io(ctx->bio, false, false);
311 }
312
f2fs_bio_post_read_required(struct bio * bio)313 static bool f2fs_bio_post_read_required(struct bio *bio)
314 {
315 return bio->bi_private;
316 }
317
f2fs_read_end_io(struct bio * bio)318 static void f2fs_read_end_io(struct bio *bio)
319 {
320 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
321
322 if (time_to_inject(sbi, FAULT_READ_IO)) {
323 f2fs_show_injection_info(sbi, FAULT_READ_IO);
324 bio->bi_status = BLK_STS_IOERR;
325 }
326
327 if (f2fs_bio_post_read_required(bio)) {
328 struct bio_post_read_ctx *ctx = bio->bi_private;
329
330 bio_post_read_processing(ctx);
331 return;
332 }
333
334 __f2fs_read_end_io(bio, false, false);
335 }
336
f2fs_write_end_io(struct bio * bio)337 static void f2fs_write_end_io(struct bio *bio)
338 {
339 struct f2fs_sb_info *sbi = bio->bi_private;
340 struct bio_vec *bvec;
341 struct bvec_iter_all iter_all;
342
343 if (time_to_inject(sbi, FAULT_WRITE_IO)) {
344 f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
345 bio->bi_status = BLK_STS_IOERR;
346 }
347
348 bio_for_each_segment_all(bvec, bio, iter_all) {
349 struct page *page = bvec->bv_page;
350 enum count_type type = WB_DATA_TYPE(page);
351
352 if (IS_DUMMY_WRITTEN_PAGE(page)) {
353 set_page_private(page, (unsigned long)NULL);
354 ClearPagePrivate(page);
355 unlock_page(page);
356 mempool_free(page, sbi->write_io_dummy);
357
358 if (unlikely(bio->bi_status))
359 f2fs_stop_checkpoint(sbi, true);
360 continue;
361 }
362
363 fscrypt_finalize_bounce_page(&page);
364
365 #ifdef CONFIG_F2FS_FS_COMPRESSION
366 if (f2fs_is_compressed_page(page)) {
367 f2fs_compress_write_end_io(bio, page);
368 continue;
369 }
370 #endif
371
372 if (unlikely(bio->bi_status)) {
373 mapping_set_error(page->mapping, -EIO);
374 if (type == F2FS_WB_CP_DATA)
375 f2fs_stop_checkpoint(sbi, true);
376 }
377
378 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
379 page->index != nid_of_node(page));
380
381 dec_page_count(sbi, type);
382 if (f2fs_in_warm_node_list(sbi, page))
383 f2fs_del_fsync_node_entry(sbi, page);
384 clear_cold_data(page);
385 end_page_writeback(page);
386 }
387 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
388 wq_has_sleeper(&sbi->cp_wait))
389 wake_up(&sbi->cp_wait);
390
391 bio_put(bio);
392 }
393
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,struct bio * bio)394 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
395 block_t blk_addr, struct bio *bio)
396 {
397 struct block_device *bdev = sbi->sb->s_bdev;
398 int i;
399
400 if (f2fs_is_multi_device(sbi)) {
401 for (i = 0; i < sbi->s_ndevs; i++) {
402 if (FDEV(i).start_blk <= blk_addr &&
403 FDEV(i).end_blk >= blk_addr) {
404 blk_addr -= FDEV(i).start_blk;
405 bdev = FDEV(i).bdev;
406 break;
407 }
408 }
409 }
410 if (bio) {
411 bio_set_dev(bio, bdev);
412 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
413 }
414 return bdev;
415 }
416
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)417 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
418 {
419 int i;
420
421 if (!f2fs_is_multi_device(sbi))
422 return 0;
423
424 for (i = 0; i < sbi->s_ndevs; i++)
425 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
426 return i;
427 return 0;
428 }
429
430 /*
431 * Return true, if pre_bio's bdev is same as its target device.
432 */
__same_bdev(struct f2fs_sb_info * sbi,block_t blk_addr,struct bio * bio)433 static bool __same_bdev(struct f2fs_sb_info *sbi,
434 block_t blk_addr, struct bio *bio)
435 {
436 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
437 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
438 }
439
__bio_alloc(struct f2fs_io_info * fio,int npages)440 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
441 {
442 struct f2fs_sb_info *sbi = fio->sbi;
443 struct bio *bio;
444
445 bio = f2fs_bio_alloc(sbi, npages, true);
446
447 f2fs_target_device(sbi, fio->new_blkaddr, bio);
448 if (is_read_io(fio->op)) {
449 bio->bi_end_io = f2fs_read_end_io;
450 bio->bi_private = NULL;
451 } else {
452 bio->bi_end_io = f2fs_write_end_io;
453 bio->bi_private = sbi;
454 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
455 fio->type, fio->temp);
456 }
457 if (fio->io_wbc)
458 wbc_init_bio(fio->io_wbc, bio);
459
460 return bio;
461 }
462
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)463 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
464 pgoff_t first_idx,
465 const struct f2fs_io_info *fio,
466 gfp_t gfp_mask)
467 {
468 /*
469 * The f2fs garbage collector sets ->encrypted_page when it wants to
470 * read/write raw data without encryption.
471 */
472 if (!fio || !fio->encrypted_page)
473 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
474 }
475
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)476 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
477 pgoff_t next_idx,
478 const struct f2fs_io_info *fio)
479 {
480 /*
481 * The f2fs garbage collector sets ->encrypted_page when it wants to
482 * read/write raw data without encryption.
483 */
484 if (fio && fio->encrypted_page)
485 return !bio_has_crypt_ctx(bio);
486
487 return fscrypt_mergeable_bio(bio, inode, next_idx);
488 }
489
__submit_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)490 static inline void __submit_bio(struct f2fs_sb_info *sbi,
491 struct bio *bio, enum page_type type)
492 {
493 if (!is_read_io(bio_op(bio))) {
494 unsigned int start;
495
496 if (type != DATA && type != NODE)
497 goto submit_io;
498
499 if (f2fs_lfs_mode(sbi) && current->plug)
500 blk_finish_plug(current->plug);
501
502 if (F2FS_IO_ALIGNED(sbi))
503 goto submit_io;
504
505 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
506 start %= F2FS_IO_SIZE(sbi);
507
508 if (start == 0)
509 goto submit_io;
510
511 /* fill dummy pages */
512 for (; start < F2FS_IO_SIZE(sbi); start++) {
513 struct page *page =
514 mempool_alloc(sbi->write_io_dummy,
515 GFP_NOIO | __GFP_NOFAIL);
516 f2fs_bug_on(sbi, !page);
517
518 zero_user_segment(page, 0, PAGE_SIZE);
519 SetPagePrivate(page);
520 set_page_private(page, DUMMY_WRITTEN_PAGE);
521 lock_page(page);
522 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
523 f2fs_bug_on(sbi, 1);
524 }
525 /*
526 * In the NODE case, we lose next block address chain. So, we
527 * need to do checkpoint in f2fs_sync_file.
528 */
529 if (type == NODE)
530 set_sbi_flag(sbi, SBI_NEED_CP);
531 }
532 submit_io:
533 if (is_read_io(bio_op(bio)))
534 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
535 else
536 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
537 submit_bio(bio);
538 }
539
f2fs_submit_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)540 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
541 struct bio *bio, enum page_type type)
542 {
543 __submit_bio(sbi, bio, type);
544 }
545
__attach_io_flag(struct f2fs_io_info * fio)546 static void __attach_io_flag(struct f2fs_io_info *fio)
547 {
548 struct f2fs_sb_info *sbi = fio->sbi;
549 unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
550 unsigned int io_flag, fua_flag, meta_flag;
551
552 if (fio->type == DATA)
553 io_flag = sbi->data_io_flag;
554 else if (fio->type == NODE)
555 io_flag = sbi->node_io_flag;
556 else
557 return;
558
559 fua_flag = io_flag & temp_mask;
560 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
561
562 /*
563 * data/node io flag bits per temp:
564 * REQ_META | REQ_FUA |
565 * 5 | 4 | 3 | 2 | 1 | 0 |
566 * Cold | Warm | Hot | Cold | Warm | Hot |
567 */
568 if ((1 << fio->temp) & meta_flag)
569 fio->op_flags |= REQ_META;
570 if ((1 << fio->temp) & fua_flag)
571 fio->op_flags |= REQ_FUA;
572 }
573
__submit_merged_bio(struct f2fs_bio_info * io)574 static void __submit_merged_bio(struct f2fs_bio_info *io)
575 {
576 struct f2fs_io_info *fio = &io->fio;
577
578 if (!io->bio)
579 return;
580
581 __attach_io_flag(fio);
582 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
583
584 if (is_read_io(fio->op))
585 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
586 else
587 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
588
589 __submit_bio(io->sbi, io->bio, fio->type);
590 io->bio = NULL;
591 }
592
__has_merged_page(struct bio * bio,struct inode * inode,struct page * page,nid_t ino)593 static bool __has_merged_page(struct bio *bio, struct inode *inode,
594 struct page *page, nid_t ino)
595 {
596 struct bio_vec *bvec;
597 struct bvec_iter_all iter_all;
598
599 if (!bio)
600 return false;
601
602 if (!inode && !page && !ino)
603 return true;
604
605 bio_for_each_segment_all(bvec, bio, iter_all) {
606 struct page *target = bvec->bv_page;
607
608 if (fscrypt_is_bounce_page(target)) {
609 target = fscrypt_pagecache_page(target);
610 if (IS_ERR(target))
611 continue;
612 }
613 if (f2fs_is_compressed_page(target)) {
614 target = f2fs_compress_control_page(target);
615 if (IS_ERR(target))
616 continue;
617 }
618
619 if (inode && inode == target->mapping->host)
620 return true;
621 if (page && page == target)
622 return true;
623 if (ino && ino == ino_of_node(target))
624 return true;
625 }
626
627 return false;
628 }
629
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)630 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
631 enum page_type type, enum temp_type temp)
632 {
633 enum page_type btype = PAGE_TYPE_OF_BIO(type);
634 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
635
636 down_write(&io->io_rwsem);
637
638 /* change META to META_FLUSH in the checkpoint procedure */
639 if (type >= META_FLUSH) {
640 io->fio.type = META_FLUSH;
641 io->fio.op = REQ_OP_WRITE;
642 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
643 if (!test_opt(sbi, NOBARRIER))
644 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
645 }
646 __submit_merged_bio(io);
647 up_write(&io->io_rwsem);
648 }
649
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)650 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
651 struct inode *inode, struct page *page,
652 nid_t ino, enum page_type type, bool force)
653 {
654 enum temp_type temp;
655 bool ret = true;
656
657 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
658 if (!force) {
659 enum page_type btype = PAGE_TYPE_OF_BIO(type);
660 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
661
662 down_read(&io->io_rwsem);
663 ret = __has_merged_page(io->bio, inode, page, ino);
664 up_read(&io->io_rwsem);
665 }
666 if (ret)
667 __f2fs_submit_merged_write(sbi, type, temp);
668
669 /* TODO: use HOT temp only for meta pages now. */
670 if (type >= META)
671 break;
672 }
673 }
674
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)675 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
676 {
677 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
678 }
679
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)680 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
681 struct inode *inode, struct page *page,
682 nid_t ino, enum page_type type)
683 {
684 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
685 }
686
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)687 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
688 {
689 f2fs_submit_merged_write(sbi, DATA);
690 f2fs_submit_merged_write(sbi, NODE);
691 f2fs_submit_merged_write(sbi, META);
692 }
693
694 /*
695 * Fill the locked page with data located in the block address.
696 * A caller needs to unlock the page on failure.
697 */
f2fs_submit_page_bio(struct f2fs_io_info * fio)698 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
699 {
700 struct bio *bio;
701 struct page *page = fio->encrypted_page ?
702 fio->encrypted_page : fio->page;
703
704 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
705 fio->is_por ? META_POR : (__is_meta_io(fio) ?
706 META_GENERIC : DATA_GENERIC_ENHANCE)))
707 return -EFSCORRUPTED;
708
709 trace_f2fs_submit_page_bio(page, fio);
710 f2fs_trace_ios(fio, 0);
711
712 /* Allocate a new bio */
713 bio = __bio_alloc(fio, 1);
714
715 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
716 fio->page->index, fio, GFP_NOIO);
717
718 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
719 bio_put(bio);
720 return -EFAULT;
721 }
722
723 if (fio->io_wbc && !is_read_io(fio->op))
724 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
725
726 __attach_io_flag(fio);
727 bio_set_op_attrs(bio, fio->op, fio->op_flags);
728
729 inc_page_count(fio->sbi, is_read_io(fio->op) ?
730 __read_io_type(page): WB_DATA_TYPE(fio->page));
731
732 __submit_bio(fio->sbi, bio, fio->type);
733 return 0;
734 }
735
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)736 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
737 block_t last_blkaddr, block_t cur_blkaddr)
738 {
739 if (last_blkaddr + 1 != cur_blkaddr)
740 return false;
741 return __same_bdev(sbi, cur_blkaddr, bio);
742 }
743
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)744 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
745 struct f2fs_io_info *fio)
746 {
747 if (io->fio.op != fio->op)
748 return false;
749 return io->fio.op_flags == fio->op_flags;
750 }
751
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)752 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
753 struct f2fs_bio_info *io,
754 struct f2fs_io_info *fio,
755 block_t last_blkaddr,
756 block_t cur_blkaddr)
757 {
758 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
759 unsigned int filled_blocks =
760 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
761 unsigned int io_size = F2FS_IO_SIZE(sbi);
762 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
763
764 /* IOs in bio is aligned and left space of vectors is not enough */
765 if (!(filled_blocks % io_size) && left_vecs < io_size)
766 return false;
767 }
768 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
769 return false;
770 return io_type_is_mergeable(io, fio);
771 }
772
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)773 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
774 struct page *page, enum temp_type temp)
775 {
776 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
777 struct bio_entry *be;
778
779 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
780 be->bio = bio;
781 bio_get(bio);
782
783 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
784 f2fs_bug_on(sbi, 1);
785
786 down_write(&io->bio_list_lock);
787 list_add_tail(&be->list, &io->bio_list);
788 up_write(&io->bio_list_lock);
789 }
790
del_bio_entry(struct bio_entry * be)791 static void del_bio_entry(struct bio_entry *be)
792 {
793 list_del(&be->list);
794 kmem_cache_free(bio_entry_slab, be);
795 }
796
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)797 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
798 struct page *page)
799 {
800 struct f2fs_sb_info *sbi = fio->sbi;
801 enum temp_type temp;
802 bool found = false;
803 int ret = -EAGAIN;
804
805 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
806 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
807 struct list_head *head = &io->bio_list;
808 struct bio_entry *be;
809
810 down_write(&io->bio_list_lock);
811 list_for_each_entry(be, head, list) {
812 if (be->bio != *bio)
813 continue;
814
815 found = true;
816
817 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
818 *fio->last_block,
819 fio->new_blkaddr));
820 if (f2fs_crypt_mergeable_bio(*bio,
821 fio->page->mapping->host,
822 fio->page->index, fio) &&
823 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
824 PAGE_SIZE) {
825 ret = 0;
826 break;
827 }
828
829 /* page can't be merged into bio; submit the bio */
830 del_bio_entry(be);
831 __submit_bio(sbi, *bio, DATA);
832 break;
833 }
834 up_write(&io->bio_list_lock);
835 }
836
837 if (ret) {
838 bio_put(*bio);
839 *bio = NULL;
840 }
841
842 return ret;
843 }
844
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct page * page)845 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
846 struct bio **bio, struct page *page)
847 {
848 enum temp_type temp;
849 bool found = false;
850 struct bio *target = bio ? *bio : NULL;
851
852 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
853 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
854 struct list_head *head = &io->bio_list;
855 struct bio_entry *be;
856
857 if (list_empty(head))
858 continue;
859
860 down_read(&io->bio_list_lock);
861 list_for_each_entry(be, head, list) {
862 if (target)
863 found = (target == be->bio);
864 else
865 found = __has_merged_page(be->bio, NULL,
866 page, 0);
867 if (found)
868 break;
869 }
870 up_read(&io->bio_list_lock);
871
872 if (!found)
873 continue;
874
875 found = false;
876
877 down_write(&io->bio_list_lock);
878 list_for_each_entry(be, head, list) {
879 if (target)
880 found = (target == be->bio);
881 else
882 found = __has_merged_page(be->bio, NULL,
883 page, 0);
884 if (found) {
885 target = be->bio;
886 del_bio_entry(be);
887 break;
888 }
889 }
890 up_write(&io->bio_list_lock);
891 }
892
893 if (found)
894 __submit_bio(sbi, target, DATA);
895 if (bio && *bio) {
896 bio_put(*bio);
897 *bio = NULL;
898 }
899 }
900
f2fs_merge_page_bio(struct f2fs_io_info * fio)901 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
902 {
903 struct bio *bio = *fio->bio;
904 struct page *page = fio->encrypted_page ?
905 fio->encrypted_page : fio->page;
906
907 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
908 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
909 return -EFSCORRUPTED;
910
911 trace_f2fs_submit_page_bio(page, fio);
912 f2fs_trace_ios(fio, 0);
913
914 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
915 fio->new_blkaddr))
916 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
917 alloc_new:
918 if (!bio) {
919 bio = __bio_alloc(fio, BIO_MAX_PAGES);
920 __attach_io_flag(fio);
921 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
922 fio->page->index, fio, GFP_NOIO);
923 bio_set_op_attrs(bio, fio->op, fio->op_flags);
924
925 add_bio_entry(fio->sbi, bio, page, fio->temp);
926 } else {
927 if (add_ipu_page(fio, &bio, page))
928 goto alloc_new;
929 }
930
931 if (fio->io_wbc)
932 wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
933
934 inc_page_count(fio->sbi, WB_DATA_TYPE(page));
935
936 *fio->last_block = fio->new_blkaddr;
937 *fio->bio = bio;
938
939 return 0;
940 }
941
f2fs_submit_page_write(struct f2fs_io_info * fio)942 void f2fs_submit_page_write(struct f2fs_io_info *fio)
943 {
944 struct f2fs_sb_info *sbi = fio->sbi;
945 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
946 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
947 struct page *bio_page;
948
949 f2fs_bug_on(sbi, is_read_io(fio->op));
950
951 down_write(&io->io_rwsem);
952 next:
953 if (fio->in_list) {
954 spin_lock(&io->io_lock);
955 if (list_empty(&io->io_list)) {
956 spin_unlock(&io->io_lock);
957 goto out;
958 }
959 fio = list_first_entry(&io->io_list,
960 struct f2fs_io_info, list);
961 list_del(&fio->list);
962 spin_unlock(&io->io_lock);
963 }
964
965 verify_fio_blkaddr(fio);
966
967 if (fio->encrypted_page)
968 bio_page = fio->encrypted_page;
969 else if (fio->compressed_page)
970 bio_page = fio->compressed_page;
971 else
972 bio_page = fio->page;
973
974 /* set submitted = true as a return value */
975 fio->submitted = true;
976
977 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
978
979 if (io->bio &&
980 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
981 fio->new_blkaddr) ||
982 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
983 bio_page->index, fio)))
984 __submit_merged_bio(io);
985 alloc_new:
986 if (io->bio == NULL) {
987 if (F2FS_IO_ALIGNED(sbi) &&
988 (fio->type == DATA || fio->type == NODE) &&
989 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
990 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
991 fio->retry = true;
992 goto skip;
993 }
994 io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
995 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
996 bio_page->index, fio, GFP_NOIO);
997 io->fio = *fio;
998 }
999
1000 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1001 __submit_merged_bio(io);
1002 goto alloc_new;
1003 }
1004
1005 if (fio->io_wbc)
1006 wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
1007
1008 io->last_block_in_bio = fio->new_blkaddr;
1009 f2fs_trace_ios(fio, 0);
1010
1011 trace_f2fs_submit_page_write(fio->page, fio);
1012 skip:
1013 if (fio->in_list)
1014 goto next;
1015 out:
1016 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1017 !f2fs_is_checkpoint_ready(sbi))
1018 __submit_merged_bio(io);
1019 up_write(&io->io_rwsem);
1020 }
1021
f2fs_need_verity(const struct inode * inode,pgoff_t idx)1022 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
1023 {
1024 return fsverity_active(inode) &&
1025 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
1026 }
1027
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,unsigned op_flag,pgoff_t first_idx,bool for_write)1028 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1029 unsigned nr_pages, unsigned op_flag,
1030 pgoff_t first_idx, bool for_write)
1031 {
1032 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1033 struct bio *bio;
1034 struct bio_post_read_ctx *ctx;
1035 unsigned int post_read_steps = 0;
1036
1037 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES),
1038 for_write);
1039 if (!bio)
1040 return ERR_PTR(-ENOMEM);
1041
1042 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1043
1044 f2fs_target_device(sbi, blkaddr, bio);
1045 bio->bi_end_io = f2fs_read_end_io;
1046 bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
1047
1048 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1049 post_read_steps |= 1 << STEP_DECRYPT;
1050 if (f2fs_compressed_file(inode))
1051 post_read_steps |= 1 << STEP_DECOMPRESS_NOWQ;
1052 if (f2fs_need_verity(inode, first_idx))
1053 post_read_steps |= 1 << STEP_VERITY;
1054
1055 if (post_read_steps) {
1056 /* Due to the mempool, this never fails. */
1057 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1058 ctx->bio = bio;
1059 ctx->sbi = sbi;
1060 ctx->enabled_steps = post_read_steps;
1061 bio->bi_private = ctx;
1062 }
1063
1064 return bio;
1065 }
1066
f2fs_release_read_bio(struct bio * bio)1067 static void f2fs_release_read_bio(struct bio *bio)
1068 {
1069 if (bio->bi_private)
1070 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
1071 bio_put(bio);
1072 }
1073
1074 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct page * page,block_t blkaddr,int op_flags,bool for_write)1075 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1076 block_t blkaddr, int op_flags, bool for_write)
1077 {
1078 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1079 struct bio *bio;
1080
1081 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1082 page->index, for_write);
1083 if (IS_ERR(bio))
1084 return PTR_ERR(bio);
1085
1086 /* wait for GCed page writeback via META_MAPPING */
1087 f2fs_wait_on_block_writeback(inode, blkaddr);
1088
1089 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1090 bio_put(bio);
1091 return -EFAULT;
1092 }
1093 ClearPageError(page);
1094 inc_page_count(sbi, F2FS_RD_DATA);
1095 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1096 __submit_bio(sbi, bio, DATA);
1097 return 0;
1098 }
1099
__set_data_blkaddr(struct dnode_of_data * dn)1100 static void __set_data_blkaddr(struct dnode_of_data *dn)
1101 {
1102 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1103 __le32 *addr_array;
1104 int base = 0;
1105
1106 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1107 base = get_extra_isize(dn->inode);
1108
1109 /* Get physical address of data block */
1110 addr_array = blkaddr_in_node(rn);
1111 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1112 }
1113
1114 /*
1115 * Lock ordering for the change of data block address:
1116 * ->data_page
1117 * ->node_page
1118 * update block addresses in the node page
1119 */
f2fs_set_data_blkaddr(struct dnode_of_data * dn)1120 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1121 {
1122 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1123 __set_data_blkaddr(dn);
1124 if (set_page_dirty(dn->node_page))
1125 dn->node_changed = true;
1126 }
1127
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1128 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1129 {
1130 dn->data_blkaddr = blkaddr;
1131 f2fs_set_data_blkaddr(dn);
1132 f2fs_update_extent_cache(dn);
1133 }
1134
1135 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1136 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1137 {
1138 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1139 int err;
1140
1141 if (!count)
1142 return 0;
1143
1144 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1145 return -EPERM;
1146 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1147 return err;
1148
1149 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1150 dn->ofs_in_node, count);
1151
1152 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1153
1154 for (; count > 0; dn->ofs_in_node++) {
1155 block_t blkaddr = f2fs_data_blkaddr(dn);
1156 if (blkaddr == NULL_ADDR) {
1157 dn->data_blkaddr = NEW_ADDR;
1158 __set_data_blkaddr(dn);
1159 count--;
1160 }
1161 }
1162
1163 if (set_page_dirty(dn->node_page))
1164 dn->node_changed = true;
1165 return 0;
1166 }
1167
1168 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1169 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1170 {
1171 unsigned int ofs_in_node = dn->ofs_in_node;
1172 int ret;
1173
1174 ret = f2fs_reserve_new_blocks(dn, 1);
1175 dn->ofs_in_node = ofs_in_node;
1176 return ret;
1177 }
1178
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1179 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1180 {
1181 bool need_put = dn->inode_page ? false : true;
1182 int err;
1183
1184 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1185 if (err)
1186 return err;
1187
1188 if (dn->data_blkaddr == NULL_ADDR)
1189 err = f2fs_reserve_new_block(dn);
1190 if (err || need_put)
1191 f2fs_put_dnode(dn);
1192 return err;
1193 }
1194
f2fs_get_block(struct dnode_of_data * dn,pgoff_t index)1195 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1196 {
1197 struct extent_info ei = {0, 0, 0};
1198 struct inode *inode = dn->inode;
1199
1200 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1201 dn->data_blkaddr = ei.blk + index - ei.fofs;
1202 return 0;
1203 }
1204
1205 return f2fs_reserve_block(dn, index);
1206 }
1207
f2fs_get_read_data_page(struct inode * inode,pgoff_t index,int op_flags,bool for_write)1208 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1209 int op_flags, bool for_write)
1210 {
1211 struct address_space *mapping = inode->i_mapping;
1212 struct dnode_of_data dn;
1213 struct page *page;
1214 struct extent_info ei = {0,0,0};
1215 int err;
1216
1217 page = f2fs_grab_cache_page(mapping, index, for_write);
1218 if (!page)
1219 return ERR_PTR(-ENOMEM);
1220
1221 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1222 dn.data_blkaddr = ei.blk + index - ei.fofs;
1223 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1224 DATA_GENERIC_ENHANCE_READ)) {
1225 err = -EFSCORRUPTED;
1226 goto put_err;
1227 }
1228 goto got_it;
1229 }
1230
1231 set_new_dnode(&dn, inode, NULL, NULL, 0);
1232 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1233 if (err)
1234 goto put_err;
1235 f2fs_put_dnode(&dn);
1236
1237 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1238 err = -ENOENT;
1239 goto put_err;
1240 }
1241 if (dn.data_blkaddr != NEW_ADDR &&
1242 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1243 dn.data_blkaddr,
1244 DATA_GENERIC_ENHANCE)) {
1245 err = -EFSCORRUPTED;
1246 goto put_err;
1247 }
1248 got_it:
1249 if (PageUptodate(page)) {
1250 unlock_page(page);
1251 return page;
1252 }
1253
1254 /*
1255 * A new dentry page is allocated but not able to be written, since its
1256 * new inode page couldn't be allocated due to -ENOSPC.
1257 * In such the case, its blkaddr can be remained as NEW_ADDR.
1258 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1259 * f2fs_init_inode_metadata.
1260 */
1261 if (dn.data_blkaddr == NEW_ADDR) {
1262 zero_user_segment(page, 0, PAGE_SIZE);
1263 if (!PageUptodate(page))
1264 SetPageUptodate(page);
1265 unlock_page(page);
1266 return page;
1267 }
1268
1269 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1270 op_flags, for_write);
1271 if (err)
1272 goto put_err;
1273 return page;
1274
1275 put_err:
1276 f2fs_put_page(page, 1);
1277 return ERR_PTR(err);
1278 }
1279
f2fs_find_data_page(struct inode * inode,pgoff_t index)1280 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1281 {
1282 struct address_space *mapping = inode->i_mapping;
1283 struct page *page;
1284
1285 page = find_get_page(mapping, index);
1286 if (page && PageUptodate(page))
1287 return page;
1288 f2fs_put_page(page, 0);
1289
1290 page = f2fs_get_read_data_page(inode, index, 0, false);
1291 if (IS_ERR(page))
1292 return page;
1293
1294 if (PageUptodate(page))
1295 return page;
1296
1297 wait_on_page_locked(page);
1298 if (unlikely(!PageUptodate(page))) {
1299 f2fs_put_page(page, 0);
1300 return ERR_PTR(-EIO);
1301 }
1302 return page;
1303 }
1304
1305 /*
1306 * If it tries to access a hole, return an error.
1307 * Because, the callers, functions in dir.c and GC, should be able to know
1308 * whether this page exists or not.
1309 */
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)1310 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1311 bool for_write)
1312 {
1313 struct address_space *mapping = inode->i_mapping;
1314 struct page *page;
1315 repeat:
1316 page = f2fs_get_read_data_page(inode, index, 0, for_write);
1317 if (IS_ERR(page))
1318 return page;
1319
1320 /* wait for read completion */
1321 lock_page(page);
1322 if (unlikely(page->mapping != mapping)) {
1323 f2fs_put_page(page, 1);
1324 goto repeat;
1325 }
1326 if (unlikely(!PageUptodate(page))) {
1327 f2fs_put_page(page, 1);
1328 return ERR_PTR(-EIO);
1329 }
1330 return page;
1331 }
1332
1333 /*
1334 * Caller ensures that this data page is never allocated.
1335 * A new zero-filled data page is allocated in the page cache.
1336 *
1337 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1338 * f2fs_unlock_op().
1339 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1340 * ipage should be released by this function.
1341 */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)1342 struct page *f2fs_get_new_data_page(struct inode *inode,
1343 struct page *ipage, pgoff_t index, bool new_i_size)
1344 {
1345 struct address_space *mapping = inode->i_mapping;
1346 struct page *page;
1347 struct dnode_of_data dn;
1348 int err;
1349
1350 page = f2fs_grab_cache_page(mapping, index, true);
1351 if (!page) {
1352 /*
1353 * before exiting, we should make sure ipage will be released
1354 * if any error occur.
1355 */
1356 f2fs_put_page(ipage, 1);
1357 return ERR_PTR(-ENOMEM);
1358 }
1359
1360 set_new_dnode(&dn, inode, ipage, NULL, 0);
1361 err = f2fs_reserve_block(&dn, index);
1362 if (err) {
1363 f2fs_put_page(page, 1);
1364 return ERR_PTR(err);
1365 }
1366 if (!ipage)
1367 f2fs_put_dnode(&dn);
1368
1369 if (PageUptodate(page))
1370 goto got_it;
1371
1372 if (dn.data_blkaddr == NEW_ADDR) {
1373 zero_user_segment(page, 0, PAGE_SIZE);
1374 if (!PageUptodate(page))
1375 SetPageUptodate(page);
1376 } else {
1377 f2fs_put_page(page, 1);
1378
1379 /* if ipage exists, blkaddr should be NEW_ADDR */
1380 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1381 page = f2fs_get_lock_data_page(inode, index, true);
1382 if (IS_ERR(page))
1383 return page;
1384 }
1385 got_it:
1386 if (new_i_size && i_size_read(inode) <
1387 ((loff_t)(index + 1) << PAGE_SHIFT))
1388 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1389 return page;
1390 }
1391
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1392 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1393 {
1394 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1395 struct f2fs_summary sum;
1396 struct node_info ni;
1397 block_t old_blkaddr;
1398 blkcnt_t count = 1;
1399 int err;
1400
1401 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1402 return -EPERM;
1403
1404 err = f2fs_get_node_info(sbi, dn->nid, &ni);
1405 if (err)
1406 return err;
1407
1408 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1409 if (dn->data_blkaddr != NULL_ADDR)
1410 goto alloc;
1411
1412 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1413 return err;
1414
1415 alloc:
1416 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1417 old_blkaddr = dn->data_blkaddr;
1418 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1419 &sum, seg_type, NULL);
1420 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1421 invalidate_mapping_pages(META_MAPPING(sbi),
1422 old_blkaddr, old_blkaddr);
1423 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1424
1425 /*
1426 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1427 * data from unwritten block via dio_read.
1428 */
1429 return 0;
1430 }
1431
f2fs_preallocate_blocks(struct kiocb * iocb,struct iov_iter * from)1432 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1433 {
1434 struct inode *inode = file_inode(iocb->ki_filp);
1435 struct f2fs_map_blocks map;
1436 int flag;
1437 int err = 0;
1438 bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1439
1440 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1441 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1442 if (map.m_len > map.m_lblk)
1443 map.m_len -= map.m_lblk;
1444 else
1445 map.m_len = 0;
1446
1447 map.m_next_pgofs = NULL;
1448 map.m_next_extent = NULL;
1449 map.m_seg_type = NO_CHECK_TYPE;
1450 map.m_may_create = true;
1451
1452 if (direct_io) {
1453 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1454 flag = f2fs_force_buffered_io(inode, iocb, from) ?
1455 F2FS_GET_BLOCK_PRE_AIO :
1456 F2FS_GET_BLOCK_PRE_DIO;
1457 goto map_blocks;
1458 }
1459 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1460 err = f2fs_convert_inline_inode(inode);
1461 if (err)
1462 return err;
1463 }
1464 if (f2fs_has_inline_data(inode))
1465 return err;
1466
1467 flag = F2FS_GET_BLOCK_PRE_AIO;
1468
1469 map_blocks:
1470 err = f2fs_map_blocks(inode, &map, 1, flag);
1471 if (map.m_len > 0 && err == -ENOSPC) {
1472 if (!direct_io)
1473 set_inode_flag(inode, FI_NO_PREALLOC);
1474 err = 0;
1475 }
1476 return err;
1477 }
1478
f2fs_do_map_lock(struct f2fs_sb_info * sbi,int flag,bool lock)1479 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1480 {
1481 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1482 if (lock)
1483 down_read(&sbi->node_change);
1484 else
1485 up_read(&sbi->node_change);
1486 } else {
1487 if (lock)
1488 f2fs_lock_op(sbi);
1489 else
1490 f2fs_unlock_op(sbi);
1491 }
1492 }
1493
1494 /*
1495 * f2fs_map_blocks() tries to find or build mapping relationship which
1496 * maps continuous logical blocks to physical blocks, and return such
1497 * info via f2fs_map_blocks structure.
1498 */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int create,int flag)1499 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1500 int create, int flag)
1501 {
1502 unsigned int maxblocks = map->m_len;
1503 struct dnode_of_data dn;
1504 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1505 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1506 pgoff_t pgofs, end_offset, end;
1507 int err = 0, ofs = 1;
1508 unsigned int ofs_in_node, last_ofs_in_node;
1509 blkcnt_t prealloc;
1510 struct extent_info ei = {0,0,0};
1511 block_t blkaddr;
1512 unsigned int start_pgofs;
1513
1514 if (!maxblocks)
1515 return 0;
1516
1517 map->m_len = 0;
1518 map->m_flags = 0;
1519
1520 /* it only supports block size == page size */
1521 pgofs = (pgoff_t)map->m_lblk;
1522 end = pgofs + maxblocks;
1523
1524 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1525 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1526 map->m_may_create)
1527 goto next_dnode;
1528
1529 map->m_pblk = ei.blk + pgofs - ei.fofs;
1530 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1531 map->m_flags = F2FS_MAP_MAPPED;
1532 if (map->m_next_extent)
1533 *map->m_next_extent = pgofs + map->m_len;
1534
1535 /* for hardware encryption, but to avoid potential issue in future */
1536 if (flag == F2FS_GET_BLOCK_DIO)
1537 f2fs_wait_on_block_writeback_range(inode,
1538 map->m_pblk, map->m_len);
1539 goto out;
1540 }
1541
1542 next_dnode:
1543 if (map->m_may_create)
1544 f2fs_do_map_lock(sbi, flag, true);
1545
1546 /* When reading holes, we need its node page */
1547 set_new_dnode(&dn, inode, NULL, NULL, 0);
1548 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1549 if (err) {
1550 if (flag == F2FS_GET_BLOCK_BMAP)
1551 map->m_pblk = 0;
1552 if (err == -ENOENT) {
1553 err = 0;
1554 if (map->m_next_pgofs)
1555 *map->m_next_pgofs =
1556 f2fs_get_next_page_offset(&dn, pgofs);
1557 if (map->m_next_extent)
1558 *map->m_next_extent =
1559 f2fs_get_next_page_offset(&dn, pgofs);
1560 }
1561 goto unlock_out;
1562 }
1563
1564 start_pgofs = pgofs;
1565 prealloc = 0;
1566 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1567 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1568
1569 next_block:
1570 blkaddr = f2fs_data_blkaddr(&dn);
1571
1572 if (__is_valid_data_blkaddr(blkaddr) &&
1573 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1574 err = -EFSCORRUPTED;
1575 goto sync_out;
1576 }
1577
1578 if (__is_valid_data_blkaddr(blkaddr)) {
1579 /* use out-place-update for driect IO under LFS mode */
1580 if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1581 map->m_may_create) {
1582 err = __allocate_data_block(&dn, map->m_seg_type);
1583 if (err)
1584 goto sync_out;
1585 blkaddr = dn.data_blkaddr;
1586 set_inode_flag(inode, FI_APPEND_WRITE);
1587 }
1588 } else {
1589 if (create) {
1590 if (unlikely(f2fs_cp_error(sbi))) {
1591 err = -EIO;
1592 goto sync_out;
1593 }
1594 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1595 if (blkaddr == NULL_ADDR) {
1596 prealloc++;
1597 last_ofs_in_node = dn.ofs_in_node;
1598 }
1599 } else {
1600 WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1601 flag != F2FS_GET_BLOCK_DIO);
1602 err = __allocate_data_block(&dn,
1603 map->m_seg_type);
1604 if (!err)
1605 set_inode_flag(inode, FI_APPEND_WRITE);
1606 }
1607 if (err)
1608 goto sync_out;
1609 map->m_flags |= F2FS_MAP_NEW;
1610 blkaddr = dn.data_blkaddr;
1611 } else {
1612 if (flag == F2FS_GET_BLOCK_BMAP) {
1613 map->m_pblk = 0;
1614 goto sync_out;
1615 }
1616 if (flag == F2FS_GET_BLOCK_PRECACHE)
1617 goto sync_out;
1618 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1619 blkaddr == NULL_ADDR) {
1620 if (map->m_next_pgofs)
1621 *map->m_next_pgofs = pgofs + 1;
1622 goto sync_out;
1623 }
1624 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1625 /* for defragment case */
1626 if (map->m_next_pgofs)
1627 *map->m_next_pgofs = pgofs + 1;
1628 goto sync_out;
1629 }
1630 }
1631 }
1632
1633 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1634 goto skip;
1635
1636 if (map->m_len == 0) {
1637 /* preallocated unwritten block should be mapped for fiemap. */
1638 if (blkaddr == NEW_ADDR)
1639 map->m_flags |= F2FS_MAP_UNWRITTEN;
1640 map->m_flags |= F2FS_MAP_MAPPED;
1641
1642 map->m_pblk = blkaddr;
1643 map->m_len = 1;
1644 } else if ((map->m_pblk != NEW_ADDR &&
1645 blkaddr == (map->m_pblk + ofs)) ||
1646 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1647 flag == F2FS_GET_BLOCK_PRE_DIO) {
1648 ofs++;
1649 map->m_len++;
1650 } else {
1651 goto sync_out;
1652 }
1653
1654 skip:
1655 dn.ofs_in_node++;
1656 pgofs++;
1657
1658 /* preallocate blocks in batch for one dnode page */
1659 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1660 (pgofs == end || dn.ofs_in_node == end_offset)) {
1661
1662 dn.ofs_in_node = ofs_in_node;
1663 err = f2fs_reserve_new_blocks(&dn, prealloc);
1664 if (err)
1665 goto sync_out;
1666
1667 map->m_len += dn.ofs_in_node - ofs_in_node;
1668 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1669 err = -ENOSPC;
1670 goto sync_out;
1671 }
1672 dn.ofs_in_node = end_offset;
1673 }
1674
1675 if (pgofs >= end)
1676 goto sync_out;
1677 else if (dn.ofs_in_node < end_offset)
1678 goto next_block;
1679
1680 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1681 if (map->m_flags & F2FS_MAP_MAPPED) {
1682 unsigned int ofs = start_pgofs - map->m_lblk;
1683
1684 f2fs_update_extent_cache_range(&dn,
1685 start_pgofs, map->m_pblk + ofs,
1686 map->m_len - ofs);
1687 }
1688 }
1689
1690 f2fs_put_dnode(&dn);
1691
1692 if (map->m_may_create) {
1693 f2fs_do_map_lock(sbi, flag, false);
1694 f2fs_balance_fs(sbi, dn.node_changed);
1695 }
1696 goto next_dnode;
1697
1698 sync_out:
1699
1700 /* for hardware encryption, but to avoid potential issue in future */
1701 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1702 f2fs_wait_on_block_writeback_range(inode,
1703 map->m_pblk, map->m_len);
1704
1705 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1706 if (map->m_flags & F2FS_MAP_MAPPED) {
1707 unsigned int ofs = start_pgofs - map->m_lblk;
1708
1709 f2fs_update_extent_cache_range(&dn,
1710 start_pgofs, map->m_pblk + ofs,
1711 map->m_len - ofs);
1712 }
1713 if (map->m_next_extent)
1714 *map->m_next_extent = pgofs + 1;
1715 }
1716 f2fs_put_dnode(&dn);
1717 unlock_out:
1718 if (map->m_may_create) {
1719 f2fs_do_map_lock(sbi, flag, false);
1720 f2fs_balance_fs(sbi, dn.node_changed);
1721 }
1722 out:
1723 trace_f2fs_map_blocks(inode, map, err);
1724 return err;
1725 }
1726
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1727 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1728 {
1729 struct f2fs_map_blocks map;
1730 block_t last_lblk;
1731 int err;
1732
1733 if (pos + len > i_size_read(inode))
1734 return false;
1735
1736 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1737 map.m_next_pgofs = NULL;
1738 map.m_next_extent = NULL;
1739 map.m_seg_type = NO_CHECK_TYPE;
1740 map.m_may_create = false;
1741 last_lblk = F2FS_BLK_ALIGN(pos + len);
1742
1743 while (map.m_lblk < last_lblk) {
1744 map.m_len = last_lblk - map.m_lblk;
1745 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1746 if (err || map.m_len == 0)
1747 return false;
1748 map.m_lblk += map.m_len;
1749 }
1750 return true;
1751 }
1752
__get_data_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create,int flag,pgoff_t * next_pgofs,int seg_type,bool may_write)1753 static int __get_data_block(struct inode *inode, sector_t iblock,
1754 struct buffer_head *bh, int create, int flag,
1755 pgoff_t *next_pgofs, int seg_type, bool may_write)
1756 {
1757 struct f2fs_map_blocks map;
1758 int err;
1759
1760 map.m_lblk = iblock;
1761 map.m_len = bh->b_size >> inode->i_blkbits;
1762 map.m_next_pgofs = next_pgofs;
1763 map.m_next_extent = NULL;
1764 map.m_seg_type = seg_type;
1765 map.m_may_create = may_write;
1766
1767 err = f2fs_map_blocks(inode, &map, create, flag);
1768 if (!err) {
1769 map_bh(bh, inode->i_sb, map.m_pblk);
1770 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1771 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1772 }
1773 return err;
1774 }
1775
get_data_block(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create,int flag,pgoff_t * next_pgofs)1776 static int get_data_block(struct inode *inode, sector_t iblock,
1777 struct buffer_head *bh_result, int create, int flag,
1778 pgoff_t *next_pgofs)
1779 {
1780 return __get_data_block(inode, iblock, bh_result, create,
1781 flag, next_pgofs,
1782 NO_CHECK_TYPE, create);
1783 }
1784
get_data_block_dio_write(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1785 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1786 struct buffer_head *bh_result, int create)
1787 {
1788 return __get_data_block(inode, iblock, bh_result, create,
1789 F2FS_GET_BLOCK_DIO, NULL,
1790 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1791 IS_SWAPFILE(inode) ? false : true);
1792 }
1793
get_data_block_dio(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1794 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1795 struct buffer_head *bh_result, int create)
1796 {
1797 return __get_data_block(inode, iblock, bh_result, create,
1798 F2FS_GET_BLOCK_DIO, NULL,
1799 f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1800 false);
1801 }
1802
get_data_block_bmap(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1803 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1804 struct buffer_head *bh_result, int create)
1805 {
1806 return __get_data_block(inode, iblock, bh_result, create,
1807 F2FS_GET_BLOCK_BMAP, NULL,
1808 NO_CHECK_TYPE, create);
1809 }
1810
logical_to_blk(struct inode * inode,loff_t offset)1811 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1812 {
1813 return (offset >> inode->i_blkbits);
1814 }
1815
blk_to_logical(struct inode * inode,sector_t blk)1816 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1817 {
1818 return (blk << inode->i_blkbits);
1819 }
1820
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1821 static int f2fs_xattr_fiemap(struct inode *inode,
1822 struct fiemap_extent_info *fieinfo)
1823 {
1824 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1825 struct page *page;
1826 struct node_info ni;
1827 __u64 phys = 0, len;
1828 __u32 flags;
1829 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1830 int err = 0;
1831
1832 if (f2fs_has_inline_xattr(inode)) {
1833 int offset;
1834
1835 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1836 inode->i_ino, false);
1837 if (!page)
1838 return -ENOMEM;
1839
1840 err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1841 if (err) {
1842 f2fs_put_page(page, 1);
1843 return err;
1844 }
1845
1846 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1847 offset = offsetof(struct f2fs_inode, i_addr) +
1848 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1849 get_inline_xattr_addrs(inode));
1850
1851 phys += offset;
1852 len = inline_xattr_size(inode);
1853
1854 f2fs_put_page(page, 1);
1855
1856 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1857
1858 if (!xnid)
1859 flags |= FIEMAP_EXTENT_LAST;
1860
1861 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1862 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1863 if (err || err == 1)
1864 return err;
1865 }
1866
1867 if (xnid) {
1868 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1869 if (!page)
1870 return -ENOMEM;
1871
1872 err = f2fs_get_node_info(sbi, xnid, &ni);
1873 if (err) {
1874 f2fs_put_page(page, 1);
1875 return err;
1876 }
1877
1878 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1879 len = inode->i_sb->s_blocksize;
1880
1881 f2fs_put_page(page, 1);
1882
1883 flags = FIEMAP_EXTENT_LAST;
1884 }
1885
1886 if (phys) {
1887 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1888 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1889 }
1890
1891 return (err < 0 ? err : 0);
1892 }
1893
max_inode_blocks(struct inode * inode)1894 static loff_t max_inode_blocks(struct inode *inode)
1895 {
1896 loff_t result = ADDRS_PER_INODE(inode);
1897 loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1898
1899 /* two direct node blocks */
1900 result += (leaf_count * 2);
1901
1902 /* two indirect node blocks */
1903 leaf_count *= NIDS_PER_BLOCK;
1904 result += (leaf_count * 2);
1905
1906 /* one double indirect node block */
1907 leaf_count *= NIDS_PER_BLOCK;
1908 result += leaf_count;
1909
1910 return result;
1911 }
1912
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1913 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1914 u64 start, u64 len)
1915 {
1916 struct buffer_head map_bh;
1917 sector_t start_blk, last_blk;
1918 pgoff_t next_pgofs;
1919 u64 logical = 0, phys = 0, size = 0;
1920 u32 flags = 0;
1921 int ret = 0;
1922 bool compr_cluster = false;
1923 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1924
1925 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1926 ret = f2fs_precache_extents(inode);
1927 if (ret)
1928 return ret;
1929 }
1930
1931 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1932 if (ret)
1933 return ret;
1934
1935 inode_lock(inode);
1936
1937 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1938 ret = f2fs_xattr_fiemap(inode, fieinfo);
1939 goto out;
1940 }
1941
1942 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1943 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1944 if (ret != -EAGAIN)
1945 goto out;
1946 }
1947
1948 if (logical_to_blk(inode, len) == 0)
1949 len = blk_to_logical(inode, 1);
1950
1951 start_blk = logical_to_blk(inode, start);
1952 last_blk = logical_to_blk(inode, start + len - 1);
1953
1954 next:
1955 memset(&map_bh, 0, sizeof(struct buffer_head));
1956 map_bh.b_size = len;
1957
1958 if (compr_cluster)
1959 map_bh.b_size = blk_to_logical(inode, cluster_size - 1);
1960
1961 ret = get_data_block(inode, start_blk, &map_bh, 0,
1962 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1963 if (ret)
1964 goto out;
1965
1966 /* HOLE */
1967 if (!buffer_mapped(&map_bh)) {
1968 start_blk = next_pgofs;
1969
1970 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1971 max_inode_blocks(inode)))
1972 goto prep_next;
1973
1974 flags |= FIEMAP_EXTENT_LAST;
1975 }
1976
1977 if (size) {
1978 if (IS_ENCRYPTED(inode))
1979 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1980
1981 ret = fiemap_fill_next_extent(fieinfo, logical,
1982 phys, size, flags);
1983 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1984 if (ret)
1985 goto out;
1986 size = 0;
1987 }
1988
1989 if (start_blk > last_blk)
1990 goto out;
1991
1992 if (compr_cluster) {
1993 compr_cluster = false;
1994
1995
1996 logical = blk_to_logical(inode, start_blk - 1);
1997 phys = blk_to_logical(inode, map_bh.b_blocknr);
1998 size = blk_to_logical(inode, cluster_size);
1999
2000 flags |= FIEMAP_EXTENT_ENCODED;
2001
2002 start_blk += cluster_size - 1;
2003
2004 if (start_blk > last_blk)
2005 goto out;
2006
2007 goto prep_next;
2008 }
2009
2010 if (map_bh.b_blocknr == COMPRESS_ADDR) {
2011 compr_cluster = true;
2012 start_blk++;
2013 goto prep_next;
2014 }
2015
2016 logical = blk_to_logical(inode, start_blk);
2017 phys = blk_to_logical(inode, map_bh.b_blocknr);
2018 size = map_bh.b_size;
2019 flags = 0;
2020 if (buffer_unwritten(&map_bh))
2021 flags = FIEMAP_EXTENT_UNWRITTEN;
2022
2023 start_blk += logical_to_blk(inode, size);
2024
2025 prep_next:
2026 cond_resched();
2027 if (fatal_signal_pending(current))
2028 ret = -EINTR;
2029 else
2030 goto next;
2031 out:
2032 if (ret == 1)
2033 ret = 0;
2034
2035 inode_unlock(inode);
2036 return ret;
2037 }
2038
f2fs_readpage_limit(struct inode * inode)2039 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2040 {
2041 if (IS_ENABLED(CONFIG_FS_VERITY) &&
2042 (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2043 return inode->i_sb->s_maxbytes;
2044
2045 return i_size_read(inode);
2046 }
2047
f2fs_read_single_page(struct inode * inode,struct page * page,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,bool is_readahead)2048 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2049 unsigned nr_pages,
2050 struct f2fs_map_blocks *map,
2051 struct bio **bio_ret,
2052 sector_t *last_block_in_bio,
2053 bool is_readahead)
2054 {
2055 struct bio *bio = *bio_ret;
2056 const unsigned blkbits = inode->i_blkbits;
2057 const unsigned blocksize = 1 << blkbits;
2058 sector_t block_in_file;
2059 sector_t last_block;
2060 sector_t last_block_in_file;
2061 sector_t block_nr;
2062 int ret = 0;
2063
2064 block_in_file = (sector_t)page_index(page);
2065 last_block = block_in_file + nr_pages;
2066 last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >>
2067 blkbits;
2068 if (last_block > last_block_in_file)
2069 last_block = last_block_in_file;
2070
2071 /* just zeroing out page which is beyond EOF */
2072 if (block_in_file >= last_block)
2073 goto zero_out;
2074 /*
2075 * Map blocks using the previous result first.
2076 */
2077 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2078 block_in_file > map->m_lblk &&
2079 block_in_file < (map->m_lblk + map->m_len))
2080 goto got_it;
2081
2082 /*
2083 * Then do more f2fs_map_blocks() calls until we are
2084 * done with this page.
2085 */
2086 map->m_lblk = block_in_file;
2087 map->m_len = last_block - block_in_file;
2088
2089 ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2090 if (ret)
2091 goto out;
2092 got_it:
2093 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2094 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2095 SetPageMappedToDisk(page);
2096
2097 if (!PageUptodate(page) && (!PageSwapCache(page) &&
2098 !cleancache_get_page(page))) {
2099 SetPageUptodate(page);
2100 goto confused;
2101 }
2102
2103 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2104 DATA_GENERIC_ENHANCE_READ)) {
2105 ret = -EFSCORRUPTED;
2106 goto out;
2107 }
2108 } else {
2109 zero_out:
2110 zero_user_segment(page, 0, PAGE_SIZE);
2111 if (f2fs_need_verity(inode, page->index) &&
2112 !fsverity_verify_page(page)) {
2113 ret = -EIO;
2114 goto out;
2115 }
2116 if (!PageUptodate(page))
2117 SetPageUptodate(page);
2118 unlock_page(page);
2119 goto out;
2120 }
2121
2122 /*
2123 * This page will go to BIO. Do we need to send this
2124 * BIO off first?
2125 */
2126 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2127 *last_block_in_bio, block_nr) ||
2128 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2129 submit_and_realloc:
2130 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2131 bio = NULL;
2132 }
2133 if (bio == NULL) {
2134 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2135 is_readahead ? REQ_RAHEAD : 0, page->index,
2136 false);
2137 if (IS_ERR(bio)) {
2138 ret = PTR_ERR(bio);
2139 bio = NULL;
2140 goto out;
2141 }
2142 }
2143
2144 /*
2145 * If the page is under writeback, we need to wait for
2146 * its completion to see the correct decrypted data.
2147 */
2148 f2fs_wait_on_block_writeback(inode, block_nr);
2149
2150 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2151 goto submit_and_realloc;
2152
2153 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2154 f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2155 ClearPageError(page);
2156 *last_block_in_bio = block_nr;
2157 goto out;
2158 confused:
2159 if (bio) {
2160 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2161 bio = NULL;
2162 }
2163 unlock_page(page);
2164 out:
2165 *bio_ret = bio;
2166 return ret;
2167 }
2168
2169 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,bool is_readahead,bool for_write)2170 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2171 unsigned nr_pages, sector_t *last_block_in_bio,
2172 bool is_readahead, bool for_write)
2173 {
2174 struct dnode_of_data dn;
2175 struct inode *inode = cc->inode;
2176 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2177 struct bio *bio = *bio_ret;
2178 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2179 sector_t last_block_in_file;
2180 const unsigned blkbits = inode->i_blkbits;
2181 const unsigned blocksize = 1 << blkbits;
2182 struct decompress_io_ctx *dic = NULL;
2183 int i;
2184 int ret = 0;
2185
2186 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2187
2188 last_block_in_file = (f2fs_readpage_limit(inode) +
2189 blocksize - 1) >> blkbits;
2190
2191 /* get rid of pages beyond EOF */
2192 for (i = 0; i < cc->cluster_size; i++) {
2193 struct page *page = cc->rpages[i];
2194
2195 if (!page)
2196 continue;
2197 if ((sector_t)page->index >= last_block_in_file) {
2198 zero_user_segment(page, 0, PAGE_SIZE);
2199 if (!PageUptodate(page))
2200 SetPageUptodate(page);
2201 } else if (!PageUptodate(page)) {
2202 continue;
2203 }
2204 unlock_page(page);
2205 cc->rpages[i] = NULL;
2206 cc->nr_rpages--;
2207 }
2208
2209 /* we are done since all pages are beyond EOF */
2210 if (f2fs_cluster_is_empty(cc))
2211 goto out;
2212
2213 set_new_dnode(&dn, inode, NULL, NULL, 0);
2214 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2215 if (ret)
2216 goto out;
2217
2218 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2219
2220 for (i = 1; i < cc->cluster_size; i++) {
2221 block_t blkaddr;
2222
2223 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2224 dn.ofs_in_node + i);
2225
2226 if (!__is_valid_data_blkaddr(blkaddr))
2227 break;
2228
2229 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2230 ret = -EFAULT;
2231 goto out_put_dnode;
2232 }
2233 cc->nr_cpages++;
2234 }
2235
2236 /* nothing to decompress */
2237 if (cc->nr_cpages == 0) {
2238 ret = 0;
2239 goto out_put_dnode;
2240 }
2241
2242 dic = f2fs_alloc_dic(cc);
2243 if (IS_ERR(dic)) {
2244 ret = PTR_ERR(dic);
2245 goto out_put_dnode;
2246 }
2247
2248 for (i = 0; i < dic->nr_cpages; i++) {
2249 struct page *page = dic->cpages[i];
2250 block_t blkaddr;
2251 struct bio_post_read_ctx *ctx;
2252
2253 blkaddr = data_blkaddr(dn.inode, dn.node_page,
2254 dn.ofs_in_node + i + 1);
2255
2256 if (bio && (!page_is_mergeable(sbi, bio,
2257 *last_block_in_bio, blkaddr) ||
2258 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2259 submit_and_realloc:
2260 __submit_bio(sbi, bio, DATA);
2261 bio = NULL;
2262 }
2263
2264 if (!bio) {
2265 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2266 is_readahead ? REQ_RAHEAD : 0,
2267 page->index, for_write);
2268 if (IS_ERR(bio)) {
2269 ret = PTR_ERR(bio);
2270 dic->failed = true;
2271 if (!atomic_sub_return(dic->nr_cpages - i,
2272 &dic->pending_pages)) {
2273 f2fs_decompress_end_io(dic->rpages,
2274 cc->cluster_size, true,
2275 false);
2276 f2fs_free_dic(dic);
2277 }
2278 f2fs_put_dnode(&dn);
2279 *bio_ret = NULL;
2280 return ret;
2281 }
2282 }
2283
2284 f2fs_wait_on_block_writeback(inode, blkaddr);
2285
2286 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2287 goto submit_and_realloc;
2288
2289 /* tag STEP_DECOMPRESS to handle IO in wq */
2290 ctx = bio->bi_private;
2291 if (!(ctx->enabled_steps & (1 << STEP_DECOMPRESS)))
2292 ctx->enabled_steps |= 1 << STEP_DECOMPRESS;
2293
2294 inc_page_count(sbi, F2FS_RD_DATA);
2295 f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2296 f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2297 ClearPageError(page);
2298 *last_block_in_bio = blkaddr;
2299 }
2300
2301 f2fs_put_dnode(&dn);
2302
2303 *bio_ret = bio;
2304 return 0;
2305
2306 out_put_dnode:
2307 f2fs_put_dnode(&dn);
2308 out:
2309 f2fs_decompress_end_io(cc->rpages, cc->cluster_size, true, false);
2310 *bio_ret = bio;
2311 return ret;
2312 }
2313 #endif
2314
2315 /*
2316 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2317 * Major change was from block_size == page_size in f2fs by default.
2318 *
2319 * Note that the aops->readpages() function is ONLY used for read-ahead. If
2320 * this function ever deviates from doing just read-ahead, it should either
2321 * use ->readpage() or do the necessary surgery to decouple ->readpages()
2322 * from read-ahead.
2323 */
f2fs_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct page * page)2324 static int f2fs_mpage_readpages(struct inode *inode,
2325 struct readahead_control *rac, struct page *page)
2326 {
2327 struct bio *bio = NULL;
2328 sector_t last_block_in_bio = 0;
2329 struct f2fs_map_blocks map;
2330 #ifdef CONFIG_F2FS_FS_COMPRESSION
2331 struct compress_ctx cc = {
2332 .inode = inode,
2333 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2334 .cluster_size = F2FS_I(inode)->i_cluster_size,
2335 .cluster_idx = NULL_CLUSTER,
2336 .rpages = NULL,
2337 .cpages = NULL,
2338 .nr_rpages = 0,
2339 .nr_cpages = 0,
2340 };
2341 #endif
2342 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2343 unsigned max_nr_pages = nr_pages;
2344 int ret = 0;
2345 bool drop_ra = false;
2346
2347 map.m_pblk = 0;
2348 map.m_lblk = 0;
2349 map.m_len = 0;
2350 map.m_flags = 0;
2351 map.m_next_pgofs = NULL;
2352 map.m_next_extent = NULL;
2353 map.m_seg_type = NO_CHECK_TYPE;
2354 map.m_may_create = false;
2355
2356 /*
2357 * Two readahead threads for same address range can cause race condition
2358 * which fragments sequential read IOs. So let's avoid each other.
2359 */
2360 if (rac && readahead_count(rac)) {
2361 if (READ_ONCE(F2FS_I(inode)->ra_offset) == readahead_index(rac))
2362 drop_ra = true;
2363 else
2364 WRITE_ONCE(F2FS_I(inode)->ra_offset,
2365 readahead_index(rac));
2366 }
2367
2368 for (; nr_pages; nr_pages--) {
2369 if (rac) {
2370 page = readahead_page(rac);
2371 prefetchw(&page->flags);
2372 if (drop_ra) {
2373 f2fs_put_page(page, 1);
2374 continue;
2375 }
2376 }
2377
2378 #ifdef CONFIG_F2FS_FS_COMPRESSION
2379 if (f2fs_compressed_file(inode)) {
2380 /* there are remained comressed pages, submit them */
2381 if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2382 ret = f2fs_read_multi_pages(&cc, &bio,
2383 max_nr_pages,
2384 &last_block_in_bio,
2385 rac != NULL, false);
2386 f2fs_destroy_compress_ctx(&cc);
2387 if (ret)
2388 goto set_error_page;
2389 }
2390 ret = f2fs_is_compressed_cluster(inode, page->index);
2391 if (ret < 0)
2392 goto set_error_page;
2393 else if (!ret)
2394 goto read_single_page;
2395
2396 ret = f2fs_init_compress_ctx(&cc);
2397 if (ret)
2398 goto set_error_page;
2399
2400 f2fs_compress_ctx_add_page(&cc, page);
2401
2402 goto next_page;
2403 }
2404 read_single_page:
2405 #endif
2406
2407 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2408 &bio, &last_block_in_bio, rac);
2409 if (ret) {
2410 #ifdef CONFIG_F2FS_FS_COMPRESSION
2411 set_error_page:
2412 #endif
2413 SetPageError(page);
2414 zero_user_segment(page, 0, PAGE_SIZE);
2415 unlock_page(page);
2416 }
2417 #ifdef CONFIG_F2FS_FS_COMPRESSION
2418 next_page:
2419 #endif
2420 if (rac)
2421 put_page(page);
2422
2423 #ifdef CONFIG_F2FS_FS_COMPRESSION
2424 if (f2fs_compressed_file(inode)) {
2425 /* last page */
2426 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2427 ret = f2fs_read_multi_pages(&cc, &bio,
2428 max_nr_pages,
2429 &last_block_in_bio,
2430 rac != NULL, false);
2431 f2fs_destroy_compress_ctx(&cc);
2432 }
2433 }
2434 #endif
2435 }
2436 if (bio)
2437 __submit_bio(F2FS_I_SB(inode), bio, DATA);
2438
2439 if (rac && readahead_count(rac) && !drop_ra)
2440 WRITE_ONCE(F2FS_I(inode)->ra_offset, -1);
2441 return ret;
2442 }
2443
f2fs_read_data_page(struct file * file,struct page * page)2444 static int f2fs_read_data_page(struct file *file, struct page *page)
2445 {
2446 struct inode *inode = page_file_mapping(page)->host;
2447 int ret = -EAGAIN;
2448
2449 trace_f2fs_readpage(page, DATA);
2450
2451 if (!f2fs_is_compress_backend_ready(inode)) {
2452 unlock_page(page);
2453 return -EOPNOTSUPP;
2454 }
2455
2456 /* If the file has inline data, try to read it directly */
2457 if (f2fs_has_inline_data(inode))
2458 ret = f2fs_read_inline_data(inode, page);
2459 if (ret == -EAGAIN)
2460 ret = f2fs_mpage_readpages(inode, NULL, page);
2461 return ret;
2462 }
2463
f2fs_readahead(struct readahead_control * rac)2464 static void f2fs_readahead(struct readahead_control *rac)
2465 {
2466 struct inode *inode = rac->mapping->host;
2467
2468 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2469
2470 if (!f2fs_is_compress_backend_ready(inode))
2471 return;
2472
2473 /* If the file has inline data, skip readpages */
2474 if (f2fs_has_inline_data(inode))
2475 return;
2476
2477 f2fs_mpage_readpages(inode, rac, NULL);
2478 }
2479
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2480 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2481 {
2482 struct inode *inode = fio->page->mapping->host;
2483 struct page *mpage, *page;
2484 gfp_t gfp_flags = GFP_NOFS;
2485
2486 if (!f2fs_encrypted_file(inode))
2487 return 0;
2488
2489 page = fio->compressed_page ? fio->compressed_page : fio->page;
2490
2491 /* wait for GCed page writeback via META_MAPPING */
2492 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2493
2494 if (fscrypt_inode_uses_inline_crypto(inode))
2495 return 0;
2496
2497 retry_encrypt:
2498 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2499 PAGE_SIZE, 0, gfp_flags);
2500 if (IS_ERR(fio->encrypted_page)) {
2501 /* flush pending IOs and wait for a while in the ENOMEM case */
2502 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2503 f2fs_flush_merged_writes(fio->sbi);
2504 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2505 gfp_flags |= __GFP_NOFAIL;
2506 goto retry_encrypt;
2507 }
2508 return PTR_ERR(fio->encrypted_page);
2509 }
2510
2511 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2512 if (mpage) {
2513 if (PageUptodate(mpage))
2514 memcpy(page_address(mpage),
2515 page_address(fio->encrypted_page), PAGE_SIZE);
2516 f2fs_put_page(mpage, 1);
2517 }
2518 return 0;
2519 }
2520
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2521 static inline bool check_inplace_update_policy(struct inode *inode,
2522 struct f2fs_io_info *fio)
2523 {
2524 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2525 unsigned int policy = SM_I(sbi)->ipu_policy;
2526
2527 if (policy & (0x1 << F2FS_IPU_FORCE))
2528 return true;
2529 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2530 return true;
2531 if (policy & (0x1 << F2FS_IPU_UTIL) &&
2532 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2533 return true;
2534 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2535 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2536 return true;
2537
2538 /*
2539 * IPU for rewrite async pages
2540 */
2541 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2542 fio && fio->op == REQ_OP_WRITE &&
2543 !(fio->op_flags & REQ_SYNC) &&
2544 !IS_ENCRYPTED(inode))
2545 return true;
2546
2547 /* this is only set during fdatasync */
2548 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2549 is_inode_flag_set(inode, FI_NEED_IPU))
2550 return true;
2551
2552 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2553 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2554 return true;
2555
2556 return false;
2557 }
2558
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2559 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2560 {
2561 if (f2fs_is_pinned_file(inode))
2562 return true;
2563
2564 /* if this is cold file, we should overwrite to avoid fragmentation */
2565 if (file_is_cold(inode))
2566 return true;
2567
2568 return check_inplace_update_policy(inode, fio);
2569 }
2570
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2571 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2572 {
2573 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2574
2575 if (f2fs_lfs_mode(sbi))
2576 return true;
2577 if (S_ISDIR(inode->i_mode))
2578 return true;
2579 if (IS_NOQUOTA(inode))
2580 return true;
2581 if (f2fs_is_atomic_file(inode))
2582 return true;
2583 if (fio) {
2584 if (is_cold_data(fio->page))
2585 return true;
2586 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
2587 return true;
2588 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2589 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2590 return true;
2591 }
2592 return false;
2593 }
2594
need_inplace_update(struct f2fs_io_info * fio)2595 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2596 {
2597 struct inode *inode = fio->page->mapping->host;
2598
2599 if (f2fs_should_update_outplace(inode, fio))
2600 return false;
2601
2602 return f2fs_should_update_inplace(inode, fio);
2603 }
2604
f2fs_do_write_data_page(struct f2fs_io_info * fio)2605 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2606 {
2607 struct page *page = fio->page;
2608 struct inode *inode = page->mapping->host;
2609 struct dnode_of_data dn;
2610 struct extent_info ei = {0,0,0};
2611 struct node_info ni;
2612 bool ipu_force = false;
2613 int err = 0;
2614
2615 set_new_dnode(&dn, inode, NULL, NULL, 0);
2616 if (need_inplace_update(fio) &&
2617 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
2618 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2619
2620 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2621 DATA_GENERIC_ENHANCE))
2622 return -EFSCORRUPTED;
2623
2624 ipu_force = true;
2625 fio->need_lock = LOCK_DONE;
2626 goto got_it;
2627 }
2628
2629 /* Deadlock due to between page->lock and f2fs_lock_op */
2630 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2631 return -EAGAIN;
2632
2633 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2634 if (err)
2635 goto out;
2636
2637 fio->old_blkaddr = dn.data_blkaddr;
2638
2639 /* This page is already truncated */
2640 if (fio->old_blkaddr == NULL_ADDR) {
2641 ClearPageUptodate(page);
2642 clear_cold_data(page);
2643 goto out_writepage;
2644 }
2645 got_it:
2646 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2647 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2648 DATA_GENERIC_ENHANCE)) {
2649 err = -EFSCORRUPTED;
2650 goto out_writepage;
2651 }
2652 /*
2653 * If current allocation needs SSR,
2654 * it had better in-place writes for updated data.
2655 */
2656 if (ipu_force ||
2657 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2658 need_inplace_update(fio))) {
2659 err = f2fs_encrypt_one_page(fio);
2660 if (err)
2661 goto out_writepage;
2662
2663 set_page_writeback(page);
2664 ClearPageError(page);
2665 f2fs_put_dnode(&dn);
2666 if (fio->need_lock == LOCK_REQ)
2667 f2fs_unlock_op(fio->sbi);
2668 err = f2fs_inplace_write_data(fio);
2669 if (err) {
2670 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2671 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2672 if (PageWriteback(page))
2673 end_page_writeback(page);
2674 } else {
2675 set_inode_flag(inode, FI_UPDATE_WRITE);
2676 }
2677 trace_f2fs_do_write_data_page(fio->page, IPU);
2678 return err;
2679 }
2680
2681 if (fio->need_lock == LOCK_RETRY) {
2682 if (!f2fs_trylock_op(fio->sbi)) {
2683 err = -EAGAIN;
2684 goto out_writepage;
2685 }
2686 fio->need_lock = LOCK_REQ;
2687 }
2688
2689 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2690 if (err)
2691 goto out_writepage;
2692
2693 fio->version = ni.version;
2694
2695 err = f2fs_encrypt_one_page(fio);
2696 if (err)
2697 goto out_writepage;
2698
2699 set_page_writeback(page);
2700 ClearPageError(page);
2701
2702 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2703 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2704
2705 /* LFS mode write path */
2706 f2fs_outplace_write_data(&dn, fio);
2707 trace_f2fs_do_write_data_page(page, OPU);
2708 set_inode_flag(inode, FI_APPEND_WRITE);
2709 if (page->index == 0)
2710 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2711 out_writepage:
2712 f2fs_put_dnode(&dn);
2713 out:
2714 if (fio->need_lock == LOCK_REQ)
2715 f2fs_unlock_op(fio->sbi);
2716 return err;
2717 }
2718
f2fs_write_single_data_page(struct page * page,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks)2719 int f2fs_write_single_data_page(struct page *page, int *submitted,
2720 struct bio **bio,
2721 sector_t *last_block,
2722 struct writeback_control *wbc,
2723 enum iostat_type io_type,
2724 int compr_blocks)
2725 {
2726 struct inode *inode = page->mapping->host;
2727 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2728 loff_t i_size = i_size_read(inode);
2729 const pgoff_t end_index = ((unsigned long long)i_size)
2730 >> PAGE_SHIFT;
2731 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2732 unsigned offset = 0;
2733 bool need_balance_fs = false;
2734 int err = 0;
2735 struct f2fs_io_info fio = {
2736 .sbi = sbi,
2737 .ino = inode->i_ino,
2738 .type = DATA,
2739 .op = REQ_OP_WRITE,
2740 .op_flags = wbc_to_write_flags(wbc),
2741 .old_blkaddr = NULL_ADDR,
2742 .page = page,
2743 .encrypted_page = NULL,
2744 .submitted = false,
2745 .compr_blocks = compr_blocks,
2746 .need_lock = LOCK_RETRY,
2747 .io_type = io_type,
2748 .io_wbc = wbc,
2749 .bio = bio,
2750 .last_block = last_block,
2751 };
2752
2753 trace_f2fs_writepage(page, DATA);
2754
2755 /* we should bypass data pages to proceed the kworkder jobs */
2756 if (unlikely(f2fs_cp_error(sbi))) {
2757 mapping_set_error(page->mapping, -EIO);
2758 /*
2759 * don't drop any dirty dentry pages for keeping lastest
2760 * directory structure.
2761 */
2762 if (S_ISDIR(inode->i_mode))
2763 goto redirty_out;
2764 goto out;
2765 }
2766
2767 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2768 goto redirty_out;
2769
2770 if (page->index < end_index ||
2771 f2fs_verity_in_progress(inode) ||
2772 compr_blocks)
2773 goto write;
2774
2775 /*
2776 * If the offset is out-of-range of file size,
2777 * this page does not have to be written to disk.
2778 */
2779 offset = i_size & (PAGE_SIZE - 1);
2780 if ((page->index >= end_index + 1) || !offset)
2781 goto out;
2782
2783 zero_user_segment(page, offset, PAGE_SIZE);
2784 write:
2785 if (f2fs_is_drop_cache(inode))
2786 goto out;
2787 /* we should not write 0'th page having journal header */
2788 if (f2fs_is_volatile_file(inode) && (!page->index ||
2789 (!wbc->for_reclaim &&
2790 f2fs_available_free_memory(sbi, BASE_CHECK))))
2791 goto redirty_out;
2792
2793 /* Dentry/quota blocks are controlled by checkpoint */
2794 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2795 /*
2796 * We need to wait for node_write to avoid block allocation during
2797 * checkpoint. This can only happen to quota writes which can cause
2798 * the below discard race condition.
2799 */
2800 if (IS_NOQUOTA(inode))
2801 down_read(&sbi->node_write);
2802
2803 fio.need_lock = LOCK_DONE;
2804 err = f2fs_do_write_data_page(&fio);
2805
2806 if (IS_NOQUOTA(inode))
2807 up_read(&sbi->node_write);
2808
2809 goto done;
2810 }
2811
2812 if (!wbc->for_reclaim)
2813 need_balance_fs = true;
2814 else if (has_not_enough_free_secs(sbi, 0, 0))
2815 goto redirty_out;
2816 else
2817 set_inode_flag(inode, FI_HOT_DATA);
2818
2819 err = -EAGAIN;
2820 if (f2fs_has_inline_data(inode)) {
2821 err = f2fs_write_inline_data(inode, page);
2822 if (!err)
2823 goto out;
2824 }
2825
2826 if (err == -EAGAIN) {
2827 err = f2fs_do_write_data_page(&fio);
2828 if (err == -EAGAIN) {
2829 fio.need_lock = LOCK_REQ;
2830 err = f2fs_do_write_data_page(&fio);
2831 }
2832 }
2833
2834 if (err) {
2835 file_set_keep_isize(inode);
2836 } else {
2837 spin_lock(&F2FS_I(inode)->i_size_lock);
2838 if (F2FS_I(inode)->last_disk_size < psize)
2839 F2FS_I(inode)->last_disk_size = psize;
2840 spin_unlock(&F2FS_I(inode)->i_size_lock);
2841 }
2842
2843 done:
2844 if (err && err != -ENOENT)
2845 goto redirty_out;
2846
2847 out:
2848 inode_dec_dirty_pages(inode);
2849 if (err) {
2850 ClearPageUptodate(page);
2851 clear_cold_data(page);
2852 }
2853
2854 if (wbc->for_reclaim) {
2855 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2856 clear_inode_flag(inode, FI_HOT_DATA);
2857 f2fs_remove_dirty_inode(inode);
2858 submitted = NULL;
2859 }
2860 unlock_page(page);
2861 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2862 !F2FS_I(inode)->cp_task)
2863 f2fs_balance_fs(sbi, need_balance_fs);
2864
2865 if (unlikely(f2fs_cp_error(sbi))) {
2866 f2fs_submit_merged_write(sbi, DATA);
2867 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2868 submitted = NULL;
2869 }
2870
2871 if (submitted)
2872 *submitted = fio.submitted ? 1 : 0;
2873
2874 return 0;
2875
2876 redirty_out:
2877 redirty_page_for_writepage(wbc, page);
2878 /*
2879 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2880 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2881 * file_write_and_wait_range() will see EIO error, which is critical
2882 * to return value of fsync() followed by atomic_write failure to user.
2883 */
2884 if (!err || wbc->for_reclaim)
2885 return AOP_WRITEPAGE_ACTIVATE;
2886 unlock_page(page);
2887 return err;
2888 }
2889
f2fs_write_data_page(struct page * page,struct writeback_control * wbc)2890 static int f2fs_write_data_page(struct page *page,
2891 struct writeback_control *wbc)
2892 {
2893 #ifdef CONFIG_F2FS_FS_COMPRESSION
2894 struct inode *inode = page->mapping->host;
2895
2896 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2897 goto out;
2898
2899 if (f2fs_compressed_file(inode)) {
2900 if (f2fs_is_compressed_cluster(inode, page->index)) {
2901 redirty_page_for_writepage(wbc, page);
2902 return AOP_WRITEPAGE_ACTIVATE;
2903 }
2904 }
2905 out:
2906 #endif
2907
2908 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2909 wbc, FS_DATA_IO, 0);
2910 }
2911
2912 /*
2913 * This function was copied from write_cche_pages from mm/page-writeback.c.
2914 * The major change is making write step of cold data page separately from
2915 * warm/hot data page.
2916 */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2917 static int f2fs_write_cache_pages(struct address_space *mapping,
2918 struct writeback_control *wbc,
2919 enum iostat_type io_type)
2920 {
2921 int ret = 0;
2922 int done = 0, retry = 0;
2923 struct pagevec pvec;
2924 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2925 struct bio *bio = NULL;
2926 sector_t last_block;
2927 #ifdef CONFIG_F2FS_FS_COMPRESSION
2928 struct inode *inode = mapping->host;
2929 struct compress_ctx cc = {
2930 .inode = inode,
2931 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2932 .cluster_size = F2FS_I(inode)->i_cluster_size,
2933 .cluster_idx = NULL_CLUSTER,
2934 .rpages = NULL,
2935 .nr_rpages = 0,
2936 .cpages = NULL,
2937 .rbuf = NULL,
2938 .cbuf = NULL,
2939 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2940 .private = NULL,
2941 };
2942 #endif
2943 int nr_pages;
2944 pgoff_t index;
2945 pgoff_t end; /* Inclusive */
2946 pgoff_t done_index;
2947 int range_whole = 0;
2948 xa_mark_t tag;
2949 int nwritten = 0;
2950 int submitted = 0;
2951 int i;
2952
2953 pagevec_init(&pvec);
2954
2955 if (get_dirty_pages(mapping->host) <=
2956 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2957 set_inode_flag(mapping->host, FI_HOT_DATA);
2958 else
2959 clear_inode_flag(mapping->host, FI_HOT_DATA);
2960
2961 if (wbc->range_cyclic) {
2962 index = mapping->writeback_index; /* prev offset */
2963 end = -1;
2964 } else {
2965 index = wbc->range_start >> PAGE_SHIFT;
2966 end = wbc->range_end >> PAGE_SHIFT;
2967 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2968 range_whole = 1;
2969 }
2970 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2971 tag = PAGECACHE_TAG_TOWRITE;
2972 else
2973 tag = PAGECACHE_TAG_DIRTY;
2974 retry:
2975 retry = 0;
2976 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2977 tag_pages_for_writeback(mapping, index, end);
2978 done_index = index;
2979 while (!done && !retry && (index <= end)) {
2980 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2981 tag);
2982 if (nr_pages == 0)
2983 break;
2984
2985 for (i = 0; i < nr_pages; i++) {
2986 struct page *page = pvec.pages[i];
2987 bool need_readd;
2988 readd:
2989 need_readd = false;
2990 #ifdef CONFIG_F2FS_FS_COMPRESSION
2991 if (f2fs_compressed_file(inode)) {
2992 ret = f2fs_init_compress_ctx(&cc);
2993 if (ret) {
2994 done = 1;
2995 break;
2996 }
2997
2998 if (!f2fs_cluster_can_merge_page(&cc,
2999 page->index)) {
3000 ret = f2fs_write_multi_pages(&cc,
3001 &submitted, wbc, io_type);
3002 if (!ret)
3003 need_readd = true;
3004 goto result;
3005 }
3006
3007 if (unlikely(f2fs_cp_error(sbi)))
3008 goto lock_page;
3009
3010 if (f2fs_cluster_is_empty(&cc)) {
3011 void *fsdata = NULL;
3012 struct page *pagep;
3013 int ret2;
3014
3015 ret2 = f2fs_prepare_compress_overwrite(
3016 inode, &pagep,
3017 page->index, &fsdata);
3018 if (ret2 < 0) {
3019 ret = ret2;
3020 done = 1;
3021 break;
3022 } else if (ret2 &&
3023 !f2fs_compress_write_end(inode,
3024 fsdata, page->index,
3025 1)) {
3026 retry = 1;
3027 break;
3028 }
3029 } else {
3030 goto lock_page;
3031 }
3032 }
3033 #endif
3034 /* give a priority to WB_SYNC threads */
3035 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3036 wbc->sync_mode == WB_SYNC_NONE) {
3037 done = 1;
3038 break;
3039 }
3040 #ifdef CONFIG_F2FS_FS_COMPRESSION
3041 lock_page:
3042 #endif
3043 done_index = page->index;
3044 retry_write:
3045 lock_page(page);
3046
3047 if (unlikely(page->mapping != mapping)) {
3048 continue_unlock:
3049 unlock_page(page);
3050 continue;
3051 }
3052
3053 if (!PageDirty(page)) {
3054 /* someone wrote it for us */
3055 goto continue_unlock;
3056 }
3057
3058 if (PageWriteback(page)) {
3059 if (wbc->sync_mode != WB_SYNC_NONE)
3060 f2fs_wait_on_page_writeback(page,
3061 DATA, true, true);
3062 else
3063 goto continue_unlock;
3064 }
3065
3066 if (!clear_page_dirty_for_io(page))
3067 goto continue_unlock;
3068
3069 #ifdef CONFIG_F2FS_FS_COMPRESSION
3070 if (f2fs_compressed_file(inode)) {
3071 get_page(page);
3072 f2fs_compress_ctx_add_page(&cc, page);
3073 continue;
3074 }
3075 #endif
3076 ret = f2fs_write_single_data_page(page, &submitted,
3077 &bio, &last_block, wbc, io_type, 0);
3078 if (ret == AOP_WRITEPAGE_ACTIVATE)
3079 unlock_page(page);
3080 #ifdef CONFIG_F2FS_FS_COMPRESSION
3081 result:
3082 #endif
3083 nwritten += submitted;
3084 wbc->nr_to_write -= submitted;
3085
3086 if (unlikely(ret)) {
3087 /*
3088 * keep nr_to_write, since vfs uses this to
3089 * get # of written pages.
3090 */
3091 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3092 ret = 0;
3093 goto next;
3094 } else if (ret == -EAGAIN) {
3095 ret = 0;
3096 if (wbc->sync_mode == WB_SYNC_ALL) {
3097 cond_resched();
3098 congestion_wait(BLK_RW_ASYNC,
3099 DEFAULT_IO_TIMEOUT);
3100 goto retry_write;
3101 }
3102 goto next;
3103 }
3104 done_index = page->index + 1;
3105 done = 1;
3106 break;
3107 }
3108
3109 if (wbc->nr_to_write <= 0 &&
3110 wbc->sync_mode == WB_SYNC_NONE) {
3111 done = 1;
3112 break;
3113 }
3114 next:
3115 if (need_readd)
3116 goto readd;
3117 }
3118 pagevec_release(&pvec);
3119 cond_resched();
3120 }
3121 #ifdef CONFIG_F2FS_FS_COMPRESSION
3122 /* flush remained pages in compress cluster */
3123 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3124 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3125 nwritten += submitted;
3126 wbc->nr_to_write -= submitted;
3127 if (ret) {
3128 done = 1;
3129 retry = 0;
3130 }
3131 }
3132 if (f2fs_compressed_file(inode))
3133 f2fs_destroy_compress_ctx(&cc);
3134 #endif
3135 if (retry) {
3136 index = 0;
3137 end = -1;
3138 goto retry;
3139 }
3140 if (wbc->range_cyclic && !done)
3141 done_index = 0;
3142 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3143 mapping->writeback_index = done_index;
3144
3145 if (nwritten)
3146 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3147 NULL, 0, DATA);
3148 /* submit cached bio of IPU write */
3149 if (bio)
3150 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3151
3152 return ret;
3153 }
3154
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3155 static inline bool __should_serialize_io(struct inode *inode,
3156 struct writeback_control *wbc)
3157 {
3158 /* to avoid deadlock in path of data flush */
3159 if (F2FS_I(inode)->cp_task)
3160 return false;
3161
3162 if (!S_ISREG(inode->i_mode))
3163 return false;
3164 if (IS_NOQUOTA(inode))
3165 return false;
3166
3167 if (f2fs_compressed_file(inode))
3168 return true;
3169 if (wbc->sync_mode != WB_SYNC_ALL)
3170 return true;
3171 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3172 return true;
3173 return false;
3174 }
3175
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3176 static int __f2fs_write_data_pages(struct address_space *mapping,
3177 struct writeback_control *wbc,
3178 enum iostat_type io_type)
3179 {
3180 struct inode *inode = mapping->host;
3181 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3182 struct blk_plug plug;
3183 int ret;
3184 bool locked = false;
3185
3186 /* deal with chardevs and other special file */
3187 if (!mapping->a_ops->writepage)
3188 return 0;
3189
3190 /* skip writing if there is no dirty page in this inode */
3191 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3192 return 0;
3193
3194 /* during POR, we don't need to trigger writepage at all. */
3195 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3196 goto skip_write;
3197
3198 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3199 wbc->sync_mode == WB_SYNC_NONE &&
3200 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3201 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3202 goto skip_write;
3203
3204 /* skip writing during file defragment */
3205 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
3206 goto skip_write;
3207
3208 trace_f2fs_writepages(mapping->host, wbc, DATA);
3209
3210 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3211 if (wbc->sync_mode == WB_SYNC_ALL)
3212 atomic_inc(&sbi->wb_sync_req[DATA]);
3213 else if (atomic_read(&sbi->wb_sync_req[DATA]))
3214 goto skip_write;
3215
3216 if (__should_serialize_io(inode, wbc)) {
3217 mutex_lock(&sbi->writepages);
3218 locked = true;
3219 }
3220
3221 blk_start_plug(&plug);
3222 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3223 blk_finish_plug(&plug);
3224
3225 if (locked)
3226 mutex_unlock(&sbi->writepages);
3227
3228 if (wbc->sync_mode == WB_SYNC_ALL)
3229 atomic_dec(&sbi->wb_sync_req[DATA]);
3230 /*
3231 * if some pages were truncated, we cannot guarantee its mapping->host
3232 * to detect pending bios.
3233 */
3234
3235 f2fs_remove_dirty_inode(inode);
3236 return ret;
3237
3238 skip_write:
3239 wbc->pages_skipped += get_dirty_pages(inode);
3240 trace_f2fs_writepages(mapping->host, wbc, DATA);
3241 return 0;
3242 }
3243
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3244 static int f2fs_write_data_pages(struct address_space *mapping,
3245 struct writeback_control *wbc)
3246 {
3247 struct inode *inode = mapping->host;
3248
3249 return __f2fs_write_data_pages(mapping, wbc,
3250 F2FS_I(inode)->cp_task == current ?
3251 FS_CP_DATA_IO : FS_DATA_IO);
3252 }
3253
f2fs_write_failed(struct address_space * mapping,loff_t to)3254 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3255 {
3256 struct inode *inode = mapping->host;
3257 loff_t i_size = i_size_read(inode);
3258
3259 if (IS_NOQUOTA(inode))
3260 return;
3261
3262 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3263 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3264 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3265 down_write(&F2FS_I(inode)->i_mmap_sem);
3266
3267 truncate_pagecache(inode, i_size);
3268 f2fs_truncate_blocks(inode, i_size, true);
3269
3270 up_write(&F2FS_I(inode)->i_mmap_sem);
3271 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3272 }
3273 }
3274
prepare_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned len,block_t * blk_addr,bool * node_changed)3275 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3276 struct page *page, loff_t pos, unsigned len,
3277 block_t *blk_addr, bool *node_changed)
3278 {
3279 struct inode *inode = page->mapping->host;
3280 pgoff_t index = page->index;
3281 struct dnode_of_data dn;
3282 struct page *ipage;
3283 bool locked = false;
3284 struct extent_info ei = {0,0,0};
3285 int err = 0;
3286 int flag;
3287
3288 /*
3289 * we already allocated all the blocks, so we don't need to get
3290 * the block addresses when there is no need to fill the page.
3291 */
3292 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3293 !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3294 !f2fs_verity_in_progress(inode))
3295 return 0;
3296
3297 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3298 if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3299 flag = F2FS_GET_BLOCK_DEFAULT;
3300 else
3301 flag = F2FS_GET_BLOCK_PRE_AIO;
3302
3303 if (f2fs_has_inline_data(inode) ||
3304 (pos & PAGE_MASK) >= i_size_read(inode)) {
3305 f2fs_do_map_lock(sbi, flag, true);
3306 locked = true;
3307 }
3308
3309 restart:
3310 /* check inline_data */
3311 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3312 if (IS_ERR(ipage)) {
3313 err = PTR_ERR(ipage);
3314 goto unlock_out;
3315 }
3316
3317 set_new_dnode(&dn, inode, ipage, ipage, 0);
3318
3319 if (f2fs_has_inline_data(inode)) {
3320 if (pos + len <= MAX_INLINE_DATA(inode)) {
3321 f2fs_do_read_inline_data(page, ipage);
3322 set_inode_flag(inode, FI_DATA_EXIST);
3323 if (inode->i_nlink)
3324 set_inline_node(ipage);
3325 } else {
3326 err = f2fs_convert_inline_page(&dn, page);
3327 if (err)
3328 goto out;
3329 if (dn.data_blkaddr == NULL_ADDR)
3330 err = f2fs_get_block(&dn, index);
3331 }
3332 } else if (locked) {
3333 err = f2fs_get_block(&dn, index);
3334 } else {
3335 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
3336 dn.data_blkaddr = ei.blk + index - ei.fofs;
3337 } else {
3338 /* hole case */
3339 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3340 if (err || dn.data_blkaddr == NULL_ADDR) {
3341 f2fs_put_dnode(&dn);
3342 f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3343 true);
3344 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3345 locked = true;
3346 goto restart;
3347 }
3348 }
3349 }
3350
3351 /* convert_inline_page can make node_changed */
3352 *blk_addr = dn.data_blkaddr;
3353 *node_changed = dn.node_changed;
3354 out:
3355 f2fs_put_dnode(&dn);
3356 unlock_out:
3357 if (locked)
3358 f2fs_do_map_lock(sbi, flag, false);
3359 return err;
3360 }
3361
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)3362 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3363 loff_t pos, unsigned len, unsigned flags,
3364 struct page **pagep, void **fsdata)
3365 {
3366 struct inode *inode = mapping->host;
3367 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3368 struct page *page = NULL;
3369 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3370 bool need_balance = false, drop_atomic = false;
3371 block_t blkaddr = NULL_ADDR;
3372 int err = 0;
3373
3374 trace_f2fs_write_begin(inode, pos, len, flags);
3375
3376 if (!f2fs_is_checkpoint_ready(sbi)) {
3377 err = -ENOSPC;
3378 goto fail;
3379 }
3380
3381 if ((f2fs_is_atomic_file(inode) &&
3382 !f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3383 is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3384 err = -ENOMEM;
3385 drop_atomic = true;
3386 goto fail;
3387 }
3388
3389 /*
3390 * We should check this at this moment to avoid deadlock on inode page
3391 * and #0 page. The locking rule for inline_data conversion should be:
3392 * lock_page(page #0) -> lock_page(inode_page)
3393 */
3394 if (index != 0) {
3395 err = f2fs_convert_inline_inode(inode);
3396 if (err)
3397 goto fail;
3398 }
3399
3400 #ifdef CONFIG_F2FS_FS_COMPRESSION
3401 if (f2fs_compressed_file(inode)) {
3402 int ret;
3403
3404 *fsdata = NULL;
3405
3406 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3407 index, fsdata);
3408 if (ret < 0) {
3409 err = ret;
3410 goto fail;
3411 } else if (ret) {
3412 return 0;
3413 }
3414 }
3415 #endif
3416
3417 repeat:
3418 /*
3419 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3420 * wait_for_stable_page. Will wait that below with our IO control.
3421 */
3422 page = f2fs_pagecache_get_page(mapping, index,
3423 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3424 if (!page) {
3425 err = -ENOMEM;
3426 goto fail;
3427 }
3428
3429 /* TODO: cluster can be compressed due to race with .writepage */
3430
3431 *pagep = page;
3432
3433 err = prepare_write_begin(sbi, page, pos, len,
3434 &blkaddr, &need_balance);
3435 if (err)
3436 goto fail;
3437
3438 if (need_balance && !IS_NOQUOTA(inode) &&
3439 has_not_enough_free_secs(sbi, 0, 0)) {
3440 unlock_page(page);
3441 f2fs_balance_fs(sbi, true);
3442 lock_page(page);
3443 if (page->mapping != mapping) {
3444 /* The page got truncated from under us */
3445 f2fs_put_page(page, 1);
3446 goto repeat;
3447 }
3448 }
3449
3450 f2fs_wait_on_page_writeback(page, DATA, false, true);
3451
3452 if (len == PAGE_SIZE || PageUptodate(page))
3453 return 0;
3454
3455 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3456 !f2fs_verity_in_progress(inode)) {
3457 zero_user_segment(page, len, PAGE_SIZE);
3458 return 0;
3459 }
3460
3461 if (blkaddr == NEW_ADDR) {
3462 zero_user_segment(page, 0, PAGE_SIZE);
3463 SetPageUptodate(page);
3464 } else {
3465 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3466 DATA_GENERIC_ENHANCE_READ)) {
3467 err = -EFSCORRUPTED;
3468 goto fail;
3469 }
3470 err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3471 if (err)
3472 goto fail;
3473
3474 lock_page(page);
3475 if (unlikely(page->mapping != mapping)) {
3476 f2fs_put_page(page, 1);
3477 goto repeat;
3478 }
3479 if (unlikely(!PageUptodate(page))) {
3480 err = -EIO;
3481 goto fail;
3482 }
3483 }
3484 return 0;
3485
3486 fail:
3487 f2fs_put_page(page, 1);
3488 f2fs_write_failed(mapping, pos + len);
3489 if (drop_atomic)
3490 f2fs_drop_inmem_pages_all(sbi, false);
3491 return err;
3492 }
3493
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3494 static int f2fs_write_end(struct file *file,
3495 struct address_space *mapping,
3496 loff_t pos, unsigned len, unsigned copied,
3497 struct page *page, void *fsdata)
3498 {
3499 struct inode *inode = page->mapping->host;
3500
3501 trace_f2fs_write_end(inode, pos, len, copied);
3502
3503 /*
3504 * This should be come from len == PAGE_SIZE, and we expect copied
3505 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3506 * let generic_perform_write() try to copy data again through copied=0.
3507 */
3508 if (!PageUptodate(page)) {
3509 if (unlikely(copied != len))
3510 copied = 0;
3511 else
3512 SetPageUptodate(page);
3513 }
3514
3515 #ifdef CONFIG_F2FS_FS_COMPRESSION
3516 /* overwrite compressed file */
3517 if (f2fs_compressed_file(inode) && fsdata) {
3518 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3519 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3520
3521 if (pos + copied > i_size_read(inode) &&
3522 !f2fs_verity_in_progress(inode))
3523 f2fs_i_size_write(inode, pos + copied);
3524 return copied;
3525 }
3526 #endif
3527
3528 if (!copied)
3529 goto unlock_out;
3530
3531 set_page_dirty(page);
3532
3533 if (pos + copied > i_size_read(inode) &&
3534 !f2fs_verity_in_progress(inode))
3535 f2fs_i_size_write(inode, pos + copied);
3536 unlock_out:
3537 f2fs_put_page(page, 1);
3538 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3539 return copied;
3540 }
3541
check_direct_IO(struct inode * inode,struct iov_iter * iter,loff_t offset)3542 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3543 loff_t offset)
3544 {
3545 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3546 unsigned blkbits = i_blkbits;
3547 unsigned blocksize_mask = (1 << blkbits) - 1;
3548 unsigned long align = offset | iov_iter_alignment(iter);
3549 struct block_device *bdev = inode->i_sb->s_bdev;
3550
3551 if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
3552 return 1;
3553
3554 if (align & blocksize_mask) {
3555 if (bdev)
3556 blkbits = blksize_bits(bdev_logical_block_size(bdev));
3557 blocksize_mask = (1 << blkbits) - 1;
3558 if (align & blocksize_mask)
3559 return -EINVAL;
3560 return 1;
3561 }
3562 return 0;
3563 }
3564
f2fs_dio_end_io(struct bio * bio)3565 static void f2fs_dio_end_io(struct bio *bio)
3566 {
3567 struct f2fs_private_dio *dio = bio->bi_private;
3568
3569 dec_page_count(F2FS_I_SB(dio->inode),
3570 dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3571
3572 bio->bi_private = dio->orig_private;
3573 bio->bi_end_io = dio->orig_end_io;
3574
3575 kfree(dio);
3576
3577 bio_endio(bio);
3578 }
3579
f2fs_dio_submit_bio(struct bio * bio,struct inode * inode,loff_t file_offset)3580 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3581 loff_t file_offset)
3582 {
3583 struct f2fs_private_dio *dio;
3584 bool write = (bio_op(bio) == REQ_OP_WRITE);
3585
3586 dio = f2fs_kzalloc(F2FS_I_SB(inode),
3587 sizeof(struct f2fs_private_dio), GFP_NOFS);
3588 if (!dio)
3589 goto out;
3590
3591 dio->inode = inode;
3592 dio->orig_end_io = bio->bi_end_io;
3593 dio->orig_private = bio->bi_private;
3594 dio->write = write;
3595
3596 bio->bi_end_io = f2fs_dio_end_io;
3597 bio->bi_private = dio;
3598
3599 inc_page_count(F2FS_I_SB(inode),
3600 write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3601
3602 submit_bio(bio);
3603 return;
3604 out:
3605 bio->bi_status = BLK_STS_IOERR;
3606 bio_endio(bio);
3607 }
3608
f2fs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)3609 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3610 {
3611 struct address_space *mapping = iocb->ki_filp->f_mapping;
3612 struct inode *inode = mapping->host;
3613 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3614 struct f2fs_inode_info *fi = F2FS_I(inode);
3615 size_t count = iov_iter_count(iter);
3616 loff_t offset = iocb->ki_pos;
3617 int rw = iov_iter_rw(iter);
3618 int err;
3619 enum rw_hint hint = iocb->ki_hint;
3620 int whint_mode = F2FS_OPTION(sbi).whint_mode;
3621 bool do_opu;
3622
3623 err = check_direct_IO(inode, iter, offset);
3624 if (err)
3625 return err < 0 ? err : 0;
3626
3627 if (f2fs_force_buffered_io(inode, iocb, iter))
3628 return 0;
3629
3630 do_opu = allow_outplace_dio(inode, iocb, iter);
3631
3632 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3633
3634 if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3635 iocb->ki_hint = WRITE_LIFE_NOT_SET;
3636
3637 if (iocb->ki_flags & IOCB_NOWAIT) {
3638 if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
3639 iocb->ki_hint = hint;
3640 err = -EAGAIN;
3641 goto out;
3642 }
3643 if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
3644 up_read(&fi->i_gc_rwsem[rw]);
3645 iocb->ki_hint = hint;
3646 err = -EAGAIN;
3647 goto out;
3648 }
3649 } else {
3650 down_read(&fi->i_gc_rwsem[rw]);
3651 if (do_opu)
3652 down_read(&fi->i_gc_rwsem[READ]);
3653 }
3654
3655 err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3656 iter, rw == WRITE ? get_data_block_dio_write :
3657 get_data_block_dio, NULL, f2fs_dio_submit_bio,
3658 rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3659 DIO_SKIP_HOLES);
3660
3661 if (do_opu)
3662 up_read(&fi->i_gc_rwsem[READ]);
3663
3664 up_read(&fi->i_gc_rwsem[rw]);
3665
3666 if (rw == WRITE) {
3667 if (whint_mode == WHINT_MODE_OFF)
3668 iocb->ki_hint = hint;
3669 if (err > 0) {
3670 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3671 err);
3672 if (!do_opu)
3673 set_inode_flag(inode, FI_UPDATE_WRITE);
3674 } else if (err == -EIOCBQUEUED) {
3675 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3676 count - iov_iter_count(iter));
3677 } else if (err < 0) {
3678 f2fs_write_failed(mapping, offset + count);
3679 }
3680 } else {
3681 if (err > 0)
3682 f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3683 else if (err == -EIOCBQUEUED)
3684 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO,
3685 count - iov_iter_count(iter));
3686 }
3687
3688 out:
3689 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3690
3691 return err;
3692 }
3693
f2fs_invalidate_page(struct page * page,unsigned int offset,unsigned int length)3694 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3695 unsigned int length)
3696 {
3697 struct inode *inode = page->mapping->host;
3698 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3699
3700 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3701 (offset % PAGE_SIZE || length != PAGE_SIZE))
3702 return;
3703
3704 if (PageDirty(page)) {
3705 if (inode->i_ino == F2FS_META_INO(sbi)) {
3706 dec_page_count(sbi, F2FS_DIRTY_META);
3707 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3708 dec_page_count(sbi, F2FS_DIRTY_NODES);
3709 } else {
3710 inode_dec_dirty_pages(inode);
3711 f2fs_remove_dirty_inode(inode);
3712 }
3713 }
3714
3715 clear_cold_data(page);
3716
3717 if (IS_ATOMIC_WRITTEN_PAGE(page))
3718 return f2fs_drop_inmem_page(inode, page);
3719
3720 f2fs_clear_page_private(page);
3721 }
3722
f2fs_release_page(struct page * page,gfp_t wait)3723 int f2fs_release_page(struct page *page, gfp_t wait)
3724 {
3725 /* If this is dirty page, keep PagePrivate */
3726 if (PageDirty(page))
3727 return 0;
3728
3729 /* This is atomic written page, keep Private */
3730 if (IS_ATOMIC_WRITTEN_PAGE(page))
3731 return 0;
3732
3733 clear_cold_data(page);
3734 f2fs_clear_page_private(page);
3735 return 1;
3736 }
3737
f2fs_set_data_page_dirty(struct page * page)3738 static int f2fs_set_data_page_dirty(struct page *page)
3739 {
3740 struct inode *inode = page_file_mapping(page)->host;
3741
3742 trace_f2fs_set_page_dirty(page, DATA);
3743
3744 if (!PageUptodate(page))
3745 SetPageUptodate(page);
3746 if (PageSwapCache(page))
3747 return __set_page_dirty_nobuffers(page);
3748
3749 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3750 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
3751 f2fs_register_inmem_page(inode, page);
3752 return 1;
3753 }
3754 /*
3755 * Previously, this page has been registered, we just
3756 * return here.
3757 */
3758 return 0;
3759 }
3760
3761 if (!PageDirty(page)) {
3762 __set_page_dirty_nobuffers(page);
3763 f2fs_update_dirty_page(inode, page);
3764 return 1;
3765 }
3766 return 0;
3767 }
3768
3769
f2fs_bmap_compress(struct inode * inode,sector_t block)3770 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3771 {
3772 #ifdef CONFIG_F2FS_FS_COMPRESSION
3773 struct dnode_of_data dn;
3774 sector_t start_idx, blknr = 0;
3775 int ret;
3776
3777 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3778
3779 set_new_dnode(&dn, inode, NULL, NULL, 0);
3780 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3781 if (ret)
3782 return 0;
3783
3784 if (dn.data_blkaddr != COMPRESS_ADDR) {
3785 dn.ofs_in_node += block - start_idx;
3786 blknr = f2fs_data_blkaddr(&dn);
3787 if (!__is_valid_data_blkaddr(blknr))
3788 blknr = 0;
3789 }
3790
3791 f2fs_put_dnode(&dn);
3792 return blknr;
3793 #else
3794 return 0;
3795 #endif
3796 }
3797
3798
f2fs_bmap(struct address_space * mapping,sector_t block)3799 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3800 {
3801 struct inode *inode = mapping->host;
3802 struct buffer_head tmp = {
3803 .b_size = i_blocksize(inode),
3804 };
3805 sector_t blknr = 0;
3806
3807 if (f2fs_has_inline_data(inode))
3808 goto out;
3809
3810 /* make sure allocating whole blocks */
3811 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3812 filemap_write_and_wait(mapping);
3813
3814 /* Block number less than F2FS MAX BLOCKS */
3815 if (unlikely(block >= F2FS_I_SB(inode)->max_file_blocks))
3816 goto out;
3817
3818 if (f2fs_compressed_file(inode)) {
3819 blknr = f2fs_bmap_compress(inode, block);
3820 } else {
3821 if (!get_data_block_bmap(inode, block, &tmp, 0))
3822 blknr = tmp.b_blocknr;
3823 }
3824 out:
3825 trace_f2fs_bmap(inode, block, blknr);
3826 return blknr;
3827 }
3828
3829 #ifdef CONFIG_MIGRATION
3830 #include <linux/migrate.h>
3831
f2fs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)3832 int f2fs_migrate_page(struct address_space *mapping,
3833 struct page *newpage, struct page *page, enum migrate_mode mode)
3834 {
3835 int rc, extra_count;
3836 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3837 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
3838
3839 BUG_ON(PageWriteback(page));
3840
3841 /* migrating an atomic written page is safe with the inmem_lock hold */
3842 if (atomic_written) {
3843 if (mode != MIGRATE_SYNC)
3844 return -EBUSY;
3845 if (!mutex_trylock(&fi->inmem_lock))
3846 return -EAGAIN;
3847 }
3848
3849 /* one extra reference was held for atomic_write page */
3850 extra_count = atomic_written ? 1 : 0;
3851 rc = migrate_page_move_mapping(mapping, newpage,
3852 page, extra_count);
3853 if (rc != MIGRATEPAGE_SUCCESS) {
3854 if (atomic_written)
3855 mutex_unlock(&fi->inmem_lock);
3856 return rc;
3857 }
3858
3859 if (atomic_written) {
3860 struct inmem_pages *cur;
3861 list_for_each_entry(cur, &fi->inmem_pages, list)
3862 if (cur->page == page) {
3863 cur->page = newpage;
3864 break;
3865 }
3866 mutex_unlock(&fi->inmem_lock);
3867 put_page(page);
3868 get_page(newpage);
3869 }
3870
3871 if (PagePrivate(page)) {
3872 f2fs_set_page_private(newpage, page_private(page));
3873 f2fs_clear_page_private(page);
3874 }
3875
3876 if (mode != MIGRATE_SYNC_NO_COPY)
3877 migrate_page_copy(newpage, page);
3878 else
3879 migrate_page_states(newpage, page);
3880
3881 return MIGRATEPAGE_SUCCESS;
3882 }
3883 #endif
3884
3885 #ifdef CONFIG_SWAP
check_swap_activate_fast(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)3886 static int check_swap_activate_fast(struct swap_info_struct *sis,
3887 struct file *swap_file, sector_t *span)
3888 {
3889 struct address_space *mapping = swap_file->f_mapping;
3890 struct inode *inode = mapping->host;
3891 sector_t cur_lblock;
3892 sector_t last_lblock;
3893 sector_t pblock;
3894 sector_t lowest_pblock = -1;
3895 sector_t highest_pblock = 0;
3896 int nr_extents = 0;
3897 unsigned long nr_pblocks;
3898 unsigned long len;
3899 int ret;
3900
3901 /*
3902 * Map all the blocks into the extent list. This code doesn't try
3903 * to be very smart.
3904 */
3905 cur_lblock = 0;
3906 last_lblock = logical_to_blk(inode, i_size_read(inode));
3907 len = i_size_read(inode);
3908
3909 while (cur_lblock <= last_lblock && cur_lblock < sis->max) {
3910 struct buffer_head map_bh;
3911 pgoff_t next_pgofs;
3912
3913 cond_resched();
3914
3915 memset(&map_bh, 0, sizeof(struct buffer_head));
3916 map_bh.b_size = len - cur_lblock;
3917
3918 ret = get_data_block(inode, cur_lblock, &map_bh, 0,
3919 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
3920 if (ret)
3921 goto err_out;
3922
3923 /* hole */
3924 if (!buffer_mapped(&map_bh))
3925 goto err_out;
3926
3927 pblock = map_bh.b_blocknr;
3928 nr_pblocks = logical_to_blk(inode, map_bh.b_size);
3929
3930 if (cur_lblock + nr_pblocks >= sis->max)
3931 nr_pblocks = sis->max - cur_lblock;
3932
3933 if (cur_lblock) { /* exclude the header page */
3934 if (pblock < lowest_pblock)
3935 lowest_pblock = pblock;
3936 if (pblock + nr_pblocks - 1 > highest_pblock)
3937 highest_pblock = pblock + nr_pblocks - 1;
3938 }
3939
3940 /*
3941 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3942 */
3943 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3944 if (ret < 0)
3945 goto out;
3946 nr_extents += ret;
3947 cur_lblock += nr_pblocks;
3948 }
3949 ret = nr_extents;
3950 *span = 1 + highest_pblock - lowest_pblock;
3951 if (cur_lblock == 0)
3952 cur_lblock = 1; /* force Empty message */
3953 sis->max = cur_lblock;
3954 sis->pages = cur_lblock - 1;
3955 sis->highest_bit = cur_lblock - 1;
3956 out:
3957 return ret;
3958 err_out:
3959 pr_err("swapon: swapfile has holes\n");
3960 return -EINVAL;
3961 }
3962
3963 /* Copied from generic_swapfile_activate() to check any holes */
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)3964 static int check_swap_activate(struct swap_info_struct *sis,
3965 struct file *swap_file, sector_t *span)
3966 {
3967 struct address_space *mapping = swap_file->f_mapping;
3968 struct inode *inode = mapping->host;
3969 unsigned blocks_per_page;
3970 unsigned long page_no;
3971 unsigned blkbits;
3972 sector_t probe_block;
3973 sector_t last_block;
3974 sector_t lowest_block = -1;
3975 sector_t highest_block = 0;
3976 int nr_extents = 0;
3977 int ret;
3978
3979 if (PAGE_SIZE == F2FS_BLKSIZE)
3980 return check_swap_activate_fast(sis, swap_file, span);
3981
3982 blkbits = inode->i_blkbits;
3983 blocks_per_page = PAGE_SIZE >> blkbits;
3984
3985 /*
3986 * Map all the blocks into the extent list. This code doesn't try
3987 * to be very smart.
3988 */
3989 probe_block = 0;
3990 page_no = 0;
3991 last_block = i_size_read(inode) >> blkbits;
3992 while ((probe_block + blocks_per_page) <= last_block &&
3993 page_no < sis->max) {
3994 unsigned block_in_page;
3995 sector_t first_block;
3996 sector_t block = 0;
3997 int err = 0;
3998
3999 cond_resched();
4000
4001 block = probe_block;
4002 err = bmap(inode, &block);
4003 if (err || !block)
4004 goto bad_bmap;
4005 first_block = block;
4006
4007 /*
4008 * It must be PAGE_SIZE aligned on-disk
4009 */
4010 if (first_block & (blocks_per_page - 1)) {
4011 probe_block++;
4012 goto reprobe;
4013 }
4014
4015 for (block_in_page = 1; block_in_page < blocks_per_page;
4016 block_in_page++) {
4017
4018 block = probe_block + block_in_page;
4019 err = bmap(inode, &block);
4020
4021 if (err || !block)
4022 goto bad_bmap;
4023
4024 if (block != first_block + block_in_page) {
4025 /* Discontiguity */
4026 probe_block++;
4027 goto reprobe;
4028 }
4029 }
4030
4031 first_block >>= (PAGE_SHIFT - blkbits);
4032 if (page_no) { /* exclude the header page */
4033 if (first_block < lowest_block)
4034 lowest_block = first_block;
4035 if (first_block > highest_block)
4036 highest_block = first_block;
4037 }
4038
4039 /*
4040 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4041 */
4042 ret = add_swap_extent(sis, page_no, 1, first_block);
4043 if (ret < 0)
4044 goto out;
4045 nr_extents += ret;
4046 page_no++;
4047 probe_block += blocks_per_page;
4048 reprobe:
4049 continue;
4050 }
4051 ret = nr_extents;
4052 *span = 1 + highest_block - lowest_block;
4053 if (page_no == 0)
4054 page_no = 1; /* force Empty message */
4055 sis->max = page_no;
4056 sis->pages = page_no - 1;
4057 sis->highest_bit = page_no - 1;
4058 out:
4059 return ret;
4060 bad_bmap:
4061 pr_err("swapon: swapfile has holes\n");
4062 return -EINVAL;
4063 }
4064
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4065 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4066 sector_t *span)
4067 {
4068 struct inode *inode = file_inode(file);
4069 int ret;
4070
4071 if (!S_ISREG(inode->i_mode))
4072 return -EINVAL;
4073
4074 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4075 return -EROFS;
4076
4077 ret = f2fs_convert_inline_inode(inode);
4078 if (ret)
4079 return ret;
4080
4081 if (!f2fs_disable_compressed_file(inode))
4082 return -EINVAL;
4083
4084 ret = check_swap_activate(sis, file, span);
4085 if (ret < 0)
4086 return ret;
4087
4088 set_inode_flag(inode, FI_PIN_FILE);
4089 f2fs_precache_extents(inode);
4090 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4091 return ret;
4092 }
4093
f2fs_swap_deactivate(struct file * file)4094 static void f2fs_swap_deactivate(struct file *file)
4095 {
4096 struct inode *inode = file_inode(file);
4097
4098 clear_inode_flag(inode, FI_PIN_FILE);
4099 }
4100 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4101 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4102 sector_t *span)
4103 {
4104 return -EOPNOTSUPP;
4105 }
4106
f2fs_swap_deactivate(struct file * file)4107 static void f2fs_swap_deactivate(struct file *file)
4108 {
4109 }
4110 #endif
4111
4112 const struct address_space_operations f2fs_dblock_aops = {
4113 .readpage = f2fs_read_data_page,
4114 .readahead = f2fs_readahead,
4115 .writepage = f2fs_write_data_page,
4116 .writepages = f2fs_write_data_pages,
4117 .write_begin = f2fs_write_begin,
4118 .write_end = f2fs_write_end,
4119 .set_page_dirty = f2fs_set_data_page_dirty,
4120 .invalidatepage = f2fs_invalidate_page,
4121 .releasepage = f2fs_release_page,
4122 .direct_IO = f2fs_direct_IO,
4123 .bmap = f2fs_bmap,
4124 .swap_activate = f2fs_swap_activate,
4125 .swap_deactivate = f2fs_swap_deactivate,
4126 #ifdef CONFIG_MIGRATION
4127 .migratepage = f2fs_migrate_page,
4128 #endif
4129 };
4130
f2fs_clear_page_cache_dirty_tag(struct page * page)4131 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4132 {
4133 struct address_space *mapping = page_mapping(page);
4134 unsigned long flags;
4135
4136 xa_lock_irqsave(&mapping->i_pages, flags);
4137 __xa_clear_mark(&mapping->i_pages, page_index(page),
4138 PAGECACHE_TAG_DIRTY);
4139 xa_unlock_irqrestore(&mapping->i_pages, flags);
4140 }
4141
f2fs_init_post_read_processing(void)4142 int __init f2fs_init_post_read_processing(void)
4143 {
4144 bio_post_read_ctx_cache =
4145 kmem_cache_create("f2fs_bio_post_read_ctx",
4146 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4147 if (!bio_post_read_ctx_cache)
4148 goto fail;
4149 bio_post_read_ctx_pool =
4150 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4151 bio_post_read_ctx_cache);
4152 if (!bio_post_read_ctx_pool)
4153 goto fail_free_cache;
4154 return 0;
4155
4156 fail_free_cache:
4157 kmem_cache_destroy(bio_post_read_ctx_cache);
4158 fail:
4159 return -ENOMEM;
4160 }
4161
f2fs_destroy_post_read_processing(void)4162 void f2fs_destroy_post_read_processing(void)
4163 {
4164 mempool_destroy(bio_post_read_ctx_pool);
4165 kmem_cache_destroy(bio_post_read_ctx_cache);
4166 }
4167
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4168 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4169 {
4170 if (!f2fs_sb_has_encrypt(sbi) &&
4171 !f2fs_sb_has_verity(sbi) &&
4172 !f2fs_sb_has_compression(sbi))
4173 return 0;
4174
4175 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4176 WQ_UNBOUND | WQ_HIGHPRI,
4177 num_online_cpus());
4178 if (!sbi->post_read_wq)
4179 return -ENOMEM;
4180 return 0;
4181 }
4182
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4183 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4184 {
4185 if (sbi->post_read_wq)
4186 destroy_workqueue(sbi->post_read_wq);
4187 }
4188
f2fs_init_bio_entry_cache(void)4189 int __init f2fs_init_bio_entry_cache(void)
4190 {
4191 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4192 sizeof(struct bio_entry));
4193 if (!bio_entry_slab)
4194 return -ENOMEM;
4195 return 0;
4196 }
4197
f2fs_destroy_bio_entry_cache(void)4198 void f2fs_destroy_bio_entry_cache(void)
4199 {
4200 kmem_cache_destroy(bio_entry_slab);
4201 }
4202