1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
__reverse_ulong(unsigned char * str)33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35 unsigned long tmp = 0;
36 int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39 shift = 56;
40 #endif
41 while (shift >= 0) {
42 tmp |= (unsigned long)str[idx++] << shift;
43 shift -= BITS_PER_BYTE;
44 }
45 return tmp;
46 }
47
48 /*
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
51 */
__reverse_ffs(unsigned long word)52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54 int num = 0;
55
56 #if BITS_PER_LONG == 64
57 if ((word & 0xffffffff00000000UL) == 0)
58 num += 32;
59 else
60 word >>= 32;
61 #endif
62 if ((word & 0xffff0000) == 0)
63 num += 16;
64 else
65 word >>= 16;
66
67 if ((word & 0xff00) == 0)
68 num += 8;
69 else
70 word >>= 8;
71
72 if ((word & 0xf0) == 0)
73 num += 4;
74 else
75 word >>= 4;
76
77 if ((word & 0xc) == 0)
78 num += 2;
79 else
80 word >>= 2;
81
82 if ((word & 0x2) == 0)
83 num += 1;
84 return num;
85 }
86
87 /*
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
91 * Example:
92 * MSB <--> LSB
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
95 */
__find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 unsigned long size, unsigned long offset)
98 {
99 const unsigned long *p = addr + BIT_WORD(offset);
100 unsigned long result = size;
101 unsigned long tmp;
102
103 if (offset >= size)
104 return size;
105
106 size -= (offset & ~(BITS_PER_LONG - 1));
107 offset %= BITS_PER_LONG;
108
109 while (1) {
110 if (*p == 0)
111 goto pass;
112
113 tmp = __reverse_ulong((unsigned char *)p);
114
115 tmp &= ~0UL >> offset;
116 if (size < BITS_PER_LONG)
117 tmp &= (~0UL << (BITS_PER_LONG - size));
118 if (tmp)
119 goto found;
120 pass:
121 if (size <= BITS_PER_LONG)
122 break;
123 size -= BITS_PER_LONG;
124 offset = 0;
125 p++;
126 }
127 return result;
128 found:
129 return result - size + __reverse_ffs(tmp);
130 }
131
__find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 unsigned long size, unsigned long offset)
134 {
135 const unsigned long *p = addr + BIT_WORD(offset);
136 unsigned long result = size;
137 unsigned long tmp;
138
139 if (offset >= size)
140 return size;
141
142 size -= (offset & ~(BITS_PER_LONG - 1));
143 offset %= BITS_PER_LONG;
144
145 while (1) {
146 if (*p == ~0UL)
147 goto pass;
148
149 tmp = __reverse_ulong((unsigned char *)p);
150
151 if (offset)
152 tmp |= ~0UL << (BITS_PER_LONG - offset);
153 if (size < BITS_PER_LONG)
154 tmp |= ~0UL >> size;
155 if (tmp != ~0UL)
156 goto found;
157 pass:
158 if (size <= BITS_PER_LONG)
159 break;
160 size -= BITS_PER_LONG;
161 offset = 0;
162 p++;
163 }
164 return result;
165 found:
166 return result - size + __reverse_ffz(tmp);
167 }
168
f2fs_need_SSR(struct f2fs_sb_info * sbi)169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174
175 if (f2fs_lfs_mode(sbi))
176 return false;
177 if (sbi->gc_mode == GC_URGENT_HIGH)
178 return true;
179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180 return true;
181
182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185
f2fs_register_inmem_page(struct inode * inode,struct page * page)186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188 struct inmem_pages *new;
189
190 f2fs_trace_pid(page);
191
192 f2fs_set_page_private(page, ATOMIC_WRITTEN_PAGE);
193
194 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
195
196 /* add atomic page indices to the list */
197 new->page = page;
198 INIT_LIST_HEAD(&new->list);
199
200 /* increase reference count with clean state */
201 get_page(page);
202 mutex_lock(&F2FS_I(inode)->inmem_lock);
203 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
204 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
205 mutex_unlock(&F2FS_I(inode)->inmem_lock);
206
207 trace_f2fs_register_inmem_page(page, INMEM);
208 }
209
__revoke_inmem_pages(struct inode * inode,struct list_head * head,bool drop,bool recover,bool trylock)210 static int __revoke_inmem_pages(struct inode *inode,
211 struct list_head *head, bool drop, bool recover,
212 bool trylock)
213 {
214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
215 struct inmem_pages *cur, *tmp;
216 int err = 0;
217
218 list_for_each_entry_safe(cur, tmp, head, list) {
219 struct page *page = cur->page;
220
221 if (drop)
222 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
223
224 if (trylock) {
225 /*
226 * to avoid deadlock in between page lock and
227 * inmem_lock.
228 */
229 if (!trylock_page(page))
230 continue;
231 } else {
232 lock_page(page);
233 }
234
235 f2fs_wait_on_page_writeback(page, DATA, true, true);
236
237 if (recover) {
238 struct dnode_of_data dn;
239 struct node_info ni;
240
241 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
242 retry:
243 set_new_dnode(&dn, inode, NULL, NULL, 0);
244 err = f2fs_get_dnode_of_data(&dn, page->index,
245 LOOKUP_NODE);
246 if (err) {
247 if (err == -ENOMEM) {
248 congestion_wait(BLK_RW_ASYNC,
249 DEFAULT_IO_TIMEOUT);
250 cond_resched();
251 goto retry;
252 }
253 err = -EAGAIN;
254 goto next;
255 }
256
257 err = f2fs_get_node_info(sbi, dn.nid, &ni);
258 if (err) {
259 f2fs_put_dnode(&dn);
260 return err;
261 }
262
263 if (cur->old_addr == NEW_ADDR) {
264 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
265 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
266 } else
267 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
268 cur->old_addr, ni.version, true, true);
269 f2fs_put_dnode(&dn);
270 }
271 next:
272 /* we don't need to invalidate this in the sccessful status */
273 if (drop || recover) {
274 ClearPageUptodate(page);
275 clear_cold_data(page);
276 }
277 f2fs_clear_page_private(page);
278 f2fs_put_page(page, 1);
279
280 list_del(&cur->list);
281 kmem_cache_free(inmem_entry_slab, cur);
282 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
283 }
284 return err;
285 }
286
f2fs_drop_inmem_pages_all(struct f2fs_sb_info * sbi,bool gc_failure)287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
288 {
289 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
290 struct inode *inode;
291 struct f2fs_inode_info *fi;
292 unsigned int count = sbi->atomic_files;
293 unsigned int looped = 0;
294 next:
295 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
296 if (list_empty(head)) {
297 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
298 return;
299 }
300 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
301 inode = igrab(&fi->vfs_inode);
302 if (inode)
303 list_move_tail(&fi->inmem_ilist, head);
304 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
305
306 if (inode) {
307 if (gc_failure) {
308 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
309 goto skip;
310 }
311 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
312 f2fs_drop_inmem_pages(inode);
313 skip:
314 iput(inode);
315 }
316 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
317 cond_resched();
318 if (gc_failure) {
319 if (++looped >= count)
320 return;
321 }
322 goto next;
323 }
324
f2fs_drop_inmem_pages(struct inode * inode)325 void f2fs_drop_inmem_pages(struct inode *inode)
326 {
327 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
328 struct f2fs_inode_info *fi = F2FS_I(inode);
329
330 while (!list_empty(&fi->inmem_pages)) {
331 mutex_lock(&fi->inmem_lock);
332 __revoke_inmem_pages(inode, &fi->inmem_pages,
333 true, false, true);
334 mutex_unlock(&fi->inmem_lock);
335 }
336
337 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
338
339 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
340 if (!list_empty(&fi->inmem_ilist))
341 list_del_init(&fi->inmem_ilist);
342 if (f2fs_is_atomic_file(inode)) {
343 clear_inode_flag(inode, FI_ATOMIC_FILE);
344 sbi->atomic_files--;
345 }
346 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
347 }
348
f2fs_drop_inmem_page(struct inode * inode,struct page * page)349 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
350 {
351 struct f2fs_inode_info *fi = F2FS_I(inode);
352 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
353 struct list_head *head = &fi->inmem_pages;
354 struct inmem_pages *cur = NULL;
355
356 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
357
358 mutex_lock(&fi->inmem_lock);
359 list_for_each_entry(cur, head, list) {
360 if (cur->page == page)
361 break;
362 }
363
364 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
365 list_del(&cur->list);
366 mutex_unlock(&fi->inmem_lock);
367
368 dec_page_count(sbi, F2FS_INMEM_PAGES);
369 kmem_cache_free(inmem_entry_slab, cur);
370
371 ClearPageUptodate(page);
372 f2fs_clear_page_private(page);
373 f2fs_put_page(page, 0);
374
375 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
376 }
377
__f2fs_commit_inmem_pages(struct inode * inode)378 static int __f2fs_commit_inmem_pages(struct inode *inode)
379 {
380 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
381 struct f2fs_inode_info *fi = F2FS_I(inode);
382 struct inmem_pages *cur, *tmp;
383 struct f2fs_io_info fio = {
384 .sbi = sbi,
385 .ino = inode->i_ino,
386 .type = DATA,
387 .op = REQ_OP_WRITE,
388 .op_flags = REQ_SYNC | REQ_PRIO,
389 .io_type = FS_DATA_IO,
390 };
391 struct list_head revoke_list;
392 bool submit_bio = false;
393 int err = 0;
394
395 INIT_LIST_HEAD(&revoke_list);
396
397 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
398 struct page *page = cur->page;
399
400 lock_page(page);
401 if (page->mapping == inode->i_mapping) {
402 trace_f2fs_commit_inmem_page(page, INMEM);
403
404 f2fs_wait_on_page_writeback(page, DATA, true, true);
405
406 set_page_dirty(page);
407 if (clear_page_dirty_for_io(page)) {
408 inode_dec_dirty_pages(inode);
409 f2fs_remove_dirty_inode(inode);
410 }
411 retry:
412 fio.page = page;
413 fio.old_blkaddr = NULL_ADDR;
414 fio.encrypted_page = NULL;
415 fio.need_lock = LOCK_DONE;
416 err = f2fs_do_write_data_page(&fio);
417 if (err) {
418 if (err == -ENOMEM) {
419 congestion_wait(BLK_RW_ASYNC,
420 DEFAULT_IO_TIMEOUT);
421 cond_resched();
422 goto retry;
423 }
424 unlock_page(page);
425 break;
426 }
427 /* record old blkaddr for revoking */
428 cur->old_addr = fio.old_blkaddr;
429 submit_bio = true;
430 }
431 unlock_page(page);
432 list_move_tail(&cur->list, &revoke_list);
433 }
434
435 if (submit_bio)
436 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
437
438 if (err) {
439 /*
440 * try to revoke all committed pages, but still we could fail
441 * due to no memory or other reason, if that happened, EAGAIN
442 * will be returned, which means in such case, transaction is
443 * already not integrity, caller should use journal to do the
444 * recovery or rewrite & commit last transaction. For other
445 * error number, revoking was done by filesystem itself.
446 */
447 err = __revoke_inmem_pages(inode, &revoke_list,
448 false, true, false);
449
450 /* drop all uncommitted pages */
451 __revoke_inmem_pages(inode, &fi->inmem_pages,
452 true, false, false);
453 } else {
454 __revoke_inmem_pages(inode, &revoke_list,
455 false, false, false);
456 }
457
458 return err;
459 }
460
f2fs_commit_inmem_pages(struct inode * inode)461 int f2fs_commit_inmem_pages(struct inode *inode)
462 {
463 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
464 struct f2fs_inode_info *fi = F2FS_I(inode);
465 int err;
466
467 f2fs_balance_fs(sbi, true);
468
469 down_write(&fi->i_gc_rwsem[WRITE]);
470
471 f2fs_lock_op(sbi);
472 set_inode_flag(inode, FI_ATOMIC_COMMIT);
473
474 mutex_lock(&fi->inmem_lock);
475 err = __f2fs_commit_inmem_pages(inode);
476 mutex_unlock(&fi->inmem_lock);
477
478 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
479
480 f2fs_unlock_op(sbi);
481 up_write(&fi->i_gc_rwsem[WRITE]);
482
483 return err;
484 }
485
486 /*
487 * This function balances dirty node and dentry pages.
488 * In addition, it controls garbage collection.
489 */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)490 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
491 {
492 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
493 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
494 f2fs_stop_checkpoint(sbi, false);
495 }
496
497 /* balance_fs_bg is able to be pending */
498 if (need && excess_cached_nats(sbi))
499 f2fs_balance_fs_bg(sbi, false);
500
501 if (!f2fs_is_checkpoint_ready(sbi))
502 return;
503
504 /*
505 * We should do GC or end up with checkpoint, if there are so many dirty
506 * dir/node pages without enough free segments.
507 */
508 if (has_not_enough_free_secs(sbi, 0, 0)) {
509 down_write(&sbi->gc_lock);
510 f2fs_gc(sbi, false, false, NULL_SEGNO);
511 }
512 }
513
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi,bool from_bg)514 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
515 {
516 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
517 return;
518
519 /* try to shrink extent cache when there is no enough memory */
520 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
521 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
522
523 /* check the # of cached NAT entries */
524 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
525 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
526
527 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
528 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
529 else
530 f2fs_build_free_nids(sbi, false, false);
531
532 if (!is_idle(sbi, REQ_TIME) &&
533 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
534 return;
535
536 /* checkpoint is the only way to shrink partial cached entries */
537 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
538 !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
539 excess_prefree_segs(sbi) ||
540 excess_dirty_nats(sbi) ||
541 excess_dirty_nodes(sbi) ||
542 f2fs_time_over(sbi, CP_TIME)) {
543 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
544 struct blk_plug plug;
545
546 mutex_lock(&sbi->flush_lock);
547
548 blk_start_plug(&plug);
549 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
550 blk_finish_plug(&plug);
551
552 mutex_unlock(&sbi->flush_lock);
553 }
554 f2fs_sync_fs(sbi->sb, true);
555 stat_inc_bg_cp_count(sbi->stat_info);
556 }
557 }
558
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)559 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
560 struct block_device *bdev)
561 {
562 struct bio *bio;
563 int ret;
564
565 bio = f2fs_bio_alloc(sbi, 0, false);
566 if (!bio)
567 return -ENOMEM;
568
569 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
570 bio_set_dev(bio, bdev);
571 ret = submit_bio_wait(bio);
572 bio_put(bio);
573
574 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
575 test_opt(sbi, FLUSH_MERGE), ret);
576 return ret;
577 }
578
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)579 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
580 {
581 int ret = 0;
582 int i;
583
584 if (!f2fs_is_multi_device(sbi))
585 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
586
587 for (i = 0; i < sbi->s_ndevs; i++) {
588 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
589 continue;
590 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
591 if (ret)
592 break;
593 }
594 return ret;
595 }
596
issue_flush_thread(void * data)597 static int issue_flush_thread(void *data)
598 {
599 struct f2fs_sb_info *sbi = data;
600 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
601 wait_queue_head_t *q = &fcc->flush_wait_queue;
602 repeat:
603 if (kthread_should_stop())
604 return 0;
605
606 sb_start_intwrite(sbi->sb);
607
608 if (!llist_empty(&fcc->issue_list)) {
609 struct flush_cmd *cmd, *next;
610 int ret;
611
612 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
613 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
614
615 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
616
617 ret = submit_flush_wait(sbi, cmd->ino);
618 atomic_inc(&fcc->issued_flush);
619
620 llist_for_each_entry_safe(cmd, next,
621 fcc->dispatch_list, llnode) {
622 cmd->ret = ret;
623 complete(&cmd->wait);
624 }
625 fcc->dispatch_list = NULL;
626 }
627
628 sb_end_intwrite(sbi->sb);
629
630 wait_event_interruptible(*q,
631 kthread_should_stop() || !llist_empty(&fcc->issue_list));
632 goto repeat;
633 }
634
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)635 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
636 {
637 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
638 struct flush_cmd cmd;
639 int ret;
640
641 if (test_opt(sbi, NOBARRIER))
642 return 0;
643
644 if (!test_opt(sbi, FLUSH_MERGE)) {
645 atomic_inc(&fcc->queued_flush);
646 ret = submit_flush_wait(sbi, ino);
647 atomic_dec(&fcc->queued_flush);
648 atomic_inc(&fcc->issued_flush);
649 return ret;
650 }
651
652 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
653 f2fs_is_multi_device(sbi)) {
654 ret = submit_flush_wait(sbi, ino);
655 atomic_dec(&fcc->queued_flush);
656
657 atomic_inc(&fcc->issued_flush);
658 return ret;
659 }
660
661 cmd.ino = ino;
662 init_completion(&cmd.wait);
663
664 llist_add(&cmd.llnode, &fcc->issue_list);
665
666 /* update issue_list before we wake up issue_flush thread */
667 smp_mb();
668
669 if (waitqueue_active(&fcc->flush_wait_queue))
670 wake_up(&fcc->flush_wait_queue);
671
672 if (fcc->f2fs_issue_flush) {
673 wait_for_completion(&cmd.wait);
674 atomic_dec(&fcc->queued_flush);
675 } else {
676 struct llist_node *list;
677
678 list = llist_del_all(&fcc->issue_list);
679 if (!list) {
680 wait_for_completion(&cmd.wait);
681 atomic_dec(&fcc->queued_flush);
682 } else {
683 struct flush_cmd *tmp, *next;
684
685 ret = submit_flush_wait(sbi, ino);
686
687 llist_for_each_entry_safe(tmp, next, list, llnode) {
688 if (tmp == &cmd) {
689 cmd.ret = ret;
690 atomic_dec(&fcc->queued_flush);
691 continue;
692 }
693 tmp->ret = ret;
694 complete(&tmp->wait);
695 }
696 }
697 }
698
699 return cmd.ret;
700 }
701
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)702 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
703 {
704 dev_t dev = sbi->sb->s_bdev->bd_dev;
705 struct flush_cmd_control *fcc;
706 int err = 0;
707
708 if (SM_I(sbi)->fcc_info) {
709 fcc = SM_I(sbi)->fcc_info;
710 if (fcc->f2fs_issue_flush)
711 return err;
712 goto init_thread;
713 }
714
715 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
716 if (!fcc)
717 return -ENOMEM;
718 atomic_set(&fcc->issued_flush, 0);
719 atomic_set(&fcc->queued_flush, 0);
720 init_waitqueue_head(&fcc->flush_wait_queue);
721 init_llist_head(&fcc->issue_list);
722 SM_I(sbi)->fcc_info = fcc;
723 if (!test_opt(sbi, FLUSH_MERGE))
724 return err;
725
726 init_thread:
727 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
728 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
729 if (IS_ERR(fcc->f2fs_issue_flush)) {
730 err = PTR_ERR(fcc->f2fs_issue_flush);
731 kfree(fcc);
732 SM_I(sbi)->fcc_info = NULL;
733 return err;
734 }
735
736 return err;
737 }
738
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)739 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
740 {
741 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
742
743 if (fcc && fcc->f2fs_issue_flush) {
744 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
745
746 fcc->f2fs_issue_flush = NULL;
747 kthread_stop(flush_thread);
748 }
749 if (free) {
750 kfree(fcc);
751 SM_I(sbi)->fcc_info = NULL;
752 }
753 }
754
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)755 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
756 {
757 int ret = 0, i;
758
759 if (!f2fs_is_multi_device(sbi))
760 return 0;
761
762 if (test_opt(sbi, NOBARRIER))
763 return 0;
764
765 for (i = 1; i < sbi->s_ndevs; i++) {
766 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
767 continue;
768 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
769 if (ret)
770 break;
771
772 spin_lock(&sbi->dev_lock);
773 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
774 spin_unlock(&sbi->dev_lock);
775 }
776
777 return ret;
778 }
779
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)780 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
781 enum dirty_type dirty_type)
782 {
783 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
784
785 /* need not be added */
786 if (IS_CURSEG(sbi, segno))
787 return;
788
789 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
790 dirty_i->nr_dirty[dirty_type]++;
791
792 if (dirty_type == DIRTY) {
793 struct seg_entry *sentry = get_seg_entry(sbi, segno);
794 enum dirty_type t = sentry->type;
795
796 if (unlikely(t >= DIRTY)) {
797 f2fs_bug_on(sbi, 1);
798 return;
799 }
800 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
801 dirty_i->nr_dirty[t]++;
802
803 if (__is_large_section(sbi)) {
804 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
805 block_t valid_blocks =
806 get_valid_blocks(sbi, segno, true);
807
808 f2fs_bug_on(sbi, unlikely(!valid_blocks ||
809 valid_blocks == BLKS_PER_SEC(sbi)));
810
811 if (!IS_CURSEC(sbi, secno))
812 set_bit(secno, dirty_i->dirty_secmap);
813 }
814 }
815 }
816
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)817 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
818 enum dirty_type dirty_type)
819 {
820 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
821 block_t valid_blocks;
822
823 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
824 dirty_i->nr_dirty[dirty_type]--;
825
826 if (dirty_type == DIRTY) {
827 struct seg_entry *sentry = get_seg_entry(sbi, segno);
828 enum dirty_type t = sentry->type;
829
830 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
831 dirty_i->nr_dirty[t]--;
832
833 valid_blocks = get_valid_blocks(sbi, segno, true);
834 if (valid_blocks == 0) {
835 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
836 dirty_i->victim_secmap);
837 #ifdef CONFIG_F2FS_CHECK_FS
838 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
839 #endif
840 }
841 if (__is_large_section(sbi)) {
842 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
843
844 if (!valid_blocks ||
845 valid_blocks == BLKS_PER_SEC(sbi)) {
846 clear_bit(secno, dirty_i->dirty_secmap);
847 return;
848 }
849
850 if (!IS_CURSEC(sbi, secno))
851 set_bit(secno, dirty_i->dirty_secmap);
852 }
853 }
854 }
855
856 /*
857 * Should not occur error such as -ENOMEM.
858 * Adding dirty entry into seglist is not critical operation.
859 * If a given segment is one of current working segments, it won't be added.
860 */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)861 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
862 {
863 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
864 unsigned short valid_blocks, ckpt_valid_blocks;
865 unsigned int usable_blocks;
866
867 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
868 return;
869
870 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
871 mutex_lock(&dirty_i->seglist_lock);
872
873 valid_blocks = get_valid_blocks(sbi, segno, false);
874 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
875
876 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
877 ckpt_valid_blocks == usable_blocks)) {
878 __locate_dirty_segment(sbi, segno, PRE);
879 __remove_dirty_segment(sbi, segno, DIRTY);
880 } else if (valid_blocks < usable_blocks) {
881 __locate_dirty_segment(sbi, segno, DIRTY);
882 } else {
883 /* Recovery routine with SSR needs this */
884 __remove_dirty_segment(sbi, segno, DIRTY);
885 }
886
887 mutex_unlock(&dirty_i->seglist_lock);
888 }
889
890 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)891 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
892 {
893 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
894 unsigned int segno;
895
896 mutex_lock(&dirty_i->seglist_lock);
897 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
898 if (get_valid_blocks(sbi, segno, false))
899 continue;
900 if (IS_CURSEG(sbi, segno))
901 continue;
902 __locate_dirty_segment(sbi, segno, PRE);
903 __remove_dirty_segment(sbi, segno, DIRTY);
904 }
905 mutex_unlock(&dirty_i->seglist_lock);
906 }
907
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)908 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
909 {
910 int ovp_hole_segs =
911 (overprovision_segments(sbi) - reserved_segments(sbi));
912 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
913 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
914 block_t holes[2] = {0, 0}; /* DATA and NODE */
915 block_t unusable;
916 struct seg_entry *se;
917 unsigned int segno;
918
919 mutex_lock(&dirty_i->seglist_lock);
920 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
921 se = get_seg_entry(sbi, segno);
922 if (IS_NODESEG(se->type))
923 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
924 se->valid_blocks;
925 else
926 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
927 se->valid_blocks;
928 }
929 mutex_unlock(&dirty_i->seglist_lock);
930
931 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
932 if (unusable > ovp_holes)
933 return unusable - ovp_holes;
934 return 0;
935 }
936
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)937 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
938 {
939 int ovp_hole_segs =
940 (overprovision_segments(sbi) - reserved_segments(sbi));
941 if (unusable > F2FS_OPTION(sbi).unusable_cap)
942 return -EAGAIN;
943 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
944 dirty_segments(sbi) > ovp_hole_segs)
945 return -EAGAIN;
946 return 0;
947 }
948
949 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)950 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
951 {
952 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
953 unsigned int segno = 0;
954
955 mutex_lock(&dirty_i->seglist_lock);
956 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
957 if (get_valid_blocks(sbi, segno, false))
958 continue;
959 if (get_ckpt_valid_blocks(sbi, segno))
960 continue;
961 mutex_unlock(&dirty_i->seglist_lock);
962 return segno;
963 }
964 mutex_unlock(&dirty_i->seglist_lock);
965 return NULL_SEGNO;
966 }
967
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)968 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
969 struct block_device *bdev, block_t lstart,
970 block_t start, block_t len)
971 {
972 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
973 struct list_head *pend_list;
974 struct discard_cmd *dc;
975
976 f2fs_bug_on(sbi, !len);
977
978 pend_list = &dcc->pend_list[plist_idx(len)];
979
980 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
981 INIT_LIST_HEAD(&dc->list);
982 dc->bdev = bdev;
983 dc->lstart = lstart;
984 dc->start = start;
985 dc->len = len;
986 dc->ref = 0;
987 dc->state = D_PREP;
988 dc->queued = 0;
989 dc->error = 0;
990 init_completion(&dc->wait);
991 list_add_tail(&dc->list, pend_list);
992 spin_lock_init(&dc->lock);
993 dc->bio_ref = 0;
994 atomic_inc(&dcc->discard_cmd_cnt);
995 dcc->undiscard_blks += len;
996
997 return dc;
998 }
999
__attach_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node * parent,struct rb_node ** p,bool leftmost)1000 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1001 struct block_device *bdev, block_t lstart,
1002 block_t start, block_t len,
1003 struct rb_node *parent, struct rb_node **p,
1004 bool leftmost)
1005 {
1006 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1007 struct discard_cmd *dc;
1008
1009 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1010
1011 rb_link_node(&dc->rb_node, parent, p);
1012 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1013
1014 return dc;
1015 }
1016
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1017 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1018 struct discard_cmd *dc)
1019 {
1020 if (dc->state == D_DONE)
1021 atomic_sub(dc->queued, &dcc->queued_discard);
1022
1023 list_del(&dc->list);
1024 rb_erase_cached(&dc->rb_node, &dcc->root);
1025 dcc->undiscard_blks -= dc->len;
1026
1027 kmem_cache_free(discard_cmd_slab, dc);
1028
1029 atomic_dec(&dcc->discard_cmd_cnt);
1030 }
1031
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1032 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1033 struct discard_cmd *dc)
1034 {
1035 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1036 unsigned long flags;
1037
1038 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1039
1040 spin_lock_irqsave(&dc->lock, flags);
1041 if (dc->bio_ref) {
1042 spin_unlock_irqrestore(&dc->lock, flags);
1043 return;
1044 }
1045 spin_unlock_irqrestore(&dc->lock, flags);
1046
1047 f2fs_bug_on(sbi, dc->ref);
1048
1049 if (dc->error == -EOPNOTSUPP)
1050 dc->error = 0;
1051
1052 if (dc->error)
1053 printk_ratelimited(
1054 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1055 KERN_INFO, sbi->sb->s_id,
1056 dc->lstart, dc->start, dc->len, dc->error);
1057 __detach_discard_cmd(dcc, dc);
1058 }
1059
f2fs_submit_discard_endio(struct bio * bio)1060 static void f2fs_submit_discard_endio(struct bio *bio)
1061 {
1062 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1063 unsigned long flags;
1064
1065 spin_lock_irqsave(&dc->lock, flags);
1066 if (!dc->error)
1067 dc->error = blk_status_to_errno(bio->bi_status);
1068 dc->bio_ref--;
1069 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1070 dc->state = D_DONE;
1071 complete_all(&dc->wait);
1072 }
1073 spin_unlock_irqrestore(&dc->lock, flags);
1074 bio_put(bio);
1075 }
1076
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1077 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1078 block_t start, block_t end)
1079 {
1080 #ifdef CONFIG_F2FS_CHECK_FS
1081 struct seg_entry *sentry;
1082 unsigned int segno;
1083 block_t blk = start;
1084 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1085 unsigned long *map;
1086
1087 while (blk < end) {
1088 segno = GET_SEGNO(sbi, blk);
1089 sentry = get_seg_entry(sbi, segno);
1090 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1091
1092 if (end < START_BLOCK(sbi, segno + 1))
1093 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1094 else
1095 size = max_blocks;
1096 map = (unsigned long *)(sentry->cur_valid_map);
1097 offset = __find_rev_next_bit(map, size, offset);
1098 f2fs_bug_on(sbi, offset != size);
1099 blk = START_BLOCK(sbi, segno + 1);
1100 }
1101 #endif
1102 }
1103
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int discard_type,unsigned int granularity)1104 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1105 struct discard_policy *dpolicy,
1106 int discard_type, unsigned int granularity)
1107 {
1108 /* common policy */
1109 dpolicy->type = discard_type;
1110 dpolicy->sync = true;
1111 dpolicy->ordered = false;
1112 dpolicy->granularity = granularity;
1113
1114 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1115 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1116 dpolicy->timeout = false;
1117
1118 if (discard_type == DPOLICY_BG) {
1119 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1120 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1121 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1122 dpolicy->io_aware = true;
1123 dpolicy->sync = false;
1124 dpolicy->ordered = true;
1125 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1126 dpolicy->granularity = 1;
1127 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1128 }
1129 } else if (discard_type == DPOLICY_FORCE) {
1130 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1131 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1132 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1133 dpolicy->io_aware = false;
1134 } else if (discard_type == DPOLICY_FSTRIM) {
1135 dpolicy->io_aware = false;
1136 } else if (discard_type == DPOLICY_UMOUNT) {
1137 dpolicy->io_aware = false;
1138 /* we need to issue all to keep CP_TRIMMED_FLAG */
1139 dpolicy->granularity = 1;
1140 dpolicy->timeout = true;
1141 }
1142 }
1143
1144 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1145 struct block_device *bdev, block_t lstart,
1146 block_t start, block_t len);
1147 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,struct discard_cmd * dc,unsigned int * issued)1148 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1149 struct discard_policy *dpolicy,
1150 struct discard_cmd *dc,
1151 unsigned int *issued)
1152 {
1153 struct block_device *bdev = dc->bdev;
1154 struct request_queue *q = bdev_get_queue(bdev);
1155 unsigned int max_discard_blocks =
1156 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1157 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1158 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1159 &(dcc->fstrim_list) : &(dcc->wait_list);
1160 int flag = dpolicy->sync ? REQ_SYNC : 0;
1161 block_t lstart, start, len, total_len;
1162 int err = 0;
1163
1164 if (dc->state != D_PREP)
1165 return 0;
1166
1167 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1168 return 0;
1169
1170 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1171
1172 lstart = dc->lstart;
1173 start = dc->start;
1174 len = dc->len;
1175 total_len = len;
1176
1177 dc->len = 0;
1178
1179 while (total_len && *issued < dpolicy->max_requests && !err) {
1180 struct bio *bio = NULL;
1181 unsigned long flags;
1182 bool last = true;
1183
1184 if (len > max_discard_blocks) {
1185 len = max_discard_blocks;
1186 last = false;
1187 }
1188
1189 (*issued)++;
1190 if (*issued == dpolicy->max_requests)
1191 last = true;
1192
1193 dc->len += len;
1194
1195 if (time_to_inject(sbi, FAULT_DISCARD)) {
1196 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1197 err = -EIO;
1198 goto submit;
1199 }
1200 err = __blkdev_issue_discard(bdev,
1201 SECTOR_FROM_BLOCK(start),
1202 SECTOR_FROM_BLOCK(len),
1203 GFP_NOFS, 0, &bio);
1204 submit:
1205 if (err) {
1206 spin_lock_irqsave(&dc->lock, flags);
1207 if (dc->state == D_PARTIAL)
1208 dc->state = D_SUBMIT;
1209 spin_unlock_irqrestore(&dc->lock, flags);
1210
1211 break;
1212 }
1213
1214 f2fs_bug_on(sbi, !bio);
1215
1216 /*
1217 * should keep before submission to avoid D_DONE
1218 * right away
1219 */
1220 spin_lock_irqsave(&dc->lock, flags);
1221 if (last)
1222 dc->state = D_SUBMIT;
1223 else
1224 dc->state = D_PARTIAL;
1225 dc->bio_ref++;
1226 spin_unlock_irqrestore(&dc->lock, flags);
1227
1228 atomic_inc(&dcc->queued_discard);
1229 dc->queued++;
1230 list_move_tail(&dc->list, wait_list);
1231
1232 /* sanity check on discard range */
1233 __check_sit_bitmap(sbi, lstart, lstart + len);
1234
1235 bio->bi_private = dc;
1236 bio->bi_end_io = f2fs_submit_discard_endio;
1237 bio->bi_opf |= flag;
1238 submit_bio(bio);
1239
1240 atomic_inc(&dcc->issued_discard);
1241
1242 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1243
1244 lstart += len;
1245 start += len;
1246 total_len -= len;
1247 len = total_len;
1248 }
1249
1250 if (!err && len) {
1251 dcc->undiscard_blks -= len;
1252 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1253 }
1254 return err;
1255 }
1256
__insert_discard_tree(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node ** insert_p,struct rb_node * insert_parent)1257 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1258 struct block_device *bdev, block_t lstart,
1259 block_t start, block_t len,
1260 struct rb_node **insert_p,
1261 struct rb_node *insert_parent)
1262 {
1263 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1264 struct rb_node **p;
1265 struct rb_node *parent = NULL;
1266 bool leftmost = true;
1267
1268 if (insert_p && insert_parent) {
1269 parent = insert_parent;
1270 p = insert_p;
1271 goto do_insert;
1272 }
1273
1274 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1275 lstart, &leftmost);
1276 do_insert:
1277 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1278 p, leftmost);
1279 }
1280
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1281 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1282 struct discard_cmd *dc)
1283 {
1284 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1285 }
1286
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1287 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1288 struct discard_cmd *dc, block_t blkaddr)
1289 {
1290 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1291 struct discard_info di = dc->di;
1292 bool modified = false;
1293
1294 if (dc->state == D_DONE || dc->len == 1) {
1295 __remove_discard_cmd(sbi, dc);
1296 return;
1297 }
1298
1299 dcc->undiscard_blks -= di.len;
1300
1301 if (blkaddr > di.lstart) {
1302 dc->len = blkaddr - dc->lstart;
1303 dcc->undiscard_blks += dc->len;
1304 __relocate_discard_cmd(dcc, dc);
1305 modified = true;
1306 }
1307
1308 if (blkaddr < di.lstart + di.len - 1) {
1309 if (modified) {
1310 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1311 di.start + blkaddr + 1 - di.lstart,
1312 di.lstart + di.len - 1 - blkaddr,
1313 NULL, NULL);
1314 } else {
1315 dc->lstart++;
1316 dc->len--;
1317 dc->start++;
1318 dcc->undiscard_blks += dc->len;
1319 __relocate_discard_cmd(dcc, dc);
1320 }
1321 }
1322 }
1323
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1324 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1325 struct block_device *bdev, block_t lstart,
1326 block_t start, block_t len)
1327 {
1328 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1329 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1330 struct discard_cmd *dc;
1331 struct discard_info di = {0};
1332 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1333 struct request_queue *q = bdev_get_queue(bdev);
1334 unsigned int max_discard_blocks =
1335 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1336 block_t end = lstart + len;
1337
1338 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1339 NULL, lstart,
1340 (struct rb_entry **)&prev_dc,
1341 (struct rb_entry **)&next_dc,
1342 &insert_p, &insert_parent, true, NULL);
1343 if (dc)
1344 prev_dc = dc;
1345
1346 if (!prev_dc) {
1347 di.lstart = lstart;
1348 di.len = next_dc ? next_dc->lstart - lstart : len;
1349 di.len = min(di.len, len);
1350 di.start = start;
1351 }
1352
1353 while (1) {
1354 struct rb_node *node;
1355 bool merged = false;
1356 struct discard_cmd *tdc = NULL;
1357
1358 if (prev_dc) {
1359 di.lstart = prev_dc->lstart + prev_dc->len;
1360 if (di.lstart < lstart)
1361 di.lstart = lstart;
1362 if (di.lstart >= end)
1363 break;
1364
1365 if (!next_dc || next_dc->lstart > end)
1366 di.len = end - di.lstart;
1367 else
1368 di.len = next_dc->lstart - di.lstart;
1369 di.start = start + di.lstart - lstart;
1370 }
1371
1372 if (!di.len)
1373 goto next;
1374
1375 if (prev_dc && prev_dc->state == D_PREP &&
1376 prev_dc->bdev == bdev &&
1377 __is_discard_back_mergeable(&di, &prev_dc->di,
1378 max_discard_blocks)) {
1379 prev_dc->di.len += di.len;
1380 dcc->undiscard_blks += di.len;
1381 __relocate_discard_cmd(dcc, prev_dc);
1382 di = prev_dc->di;
1383 tdc = prev_dc;
1384 merged = true;
1385 }
1386
1387 if (next_dc && next_dc->state == D_PREP &&
1388 next_dc->bdev == bdev &&
1389 __is_discard_front_mergeable(&di, &next_dc->di,
1390 max_discard_blocks)) {
1391 next_dc->di.lstart = di.lstart;
1392 next_dc->di.len += di.len;
1393 next_dc->di.start = di.start;
1394 dcc->undiscard_blks += di.len;
1395 __relocate_discard_cmd(dcc, next_dc);
1396 if (tdc)
1397 __remove_discard_cmd(sbi, tdc);
1398 merged = true;
1399 }
1400
1401 if (!merged) {
1402 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1403 di.len, NULL, NULL);
1404 }
1405 next:
1406 prev_dc = next_dc;
1407 if (!prev_dc)
1408 break;
1409
1410 node = rb_next(&prev_dc->rb_node);
1411 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1412 }
1413 }
1414
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1415 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1416 struct block_device *bdev, block_t blkstart, block_t blklen)
1417 {
1418 block_t lblkstart = blkstart;
1419
1420 if (!f2fs_bdev_support_discard(bdev))
1421 return 0;
1422
1423 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1424
1425 if (f2fs_is_multi_device(sbi)) {
1426 int devi = f2fs_target_device_index(sbi, blkstart);
1427
1428 blkstart -= FDEV(devi).start_blk;
1429 }
1430 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1431 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1432 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1433 return 0;
1434 }
1435
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1436 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1437 struct discard_policy *dpolicy)
1438 {
1439 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1440 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1441 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1442 struct discard_cmd *dc;
1443 struct blk_plug plug;
1444 unsigned int pos = dcc->next_pos;
1445 unsigned int issued = 0;
1446 bool io_interrupted = false;
1447
1448 mutex_lock(&dcc->cmd_lock);
1449 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1450 NULL, pos,
1451 (struct rb_entry **)&prev_dc,
1452 (struct rb_entry **)&next_dc,
1453 &insert_p, &insert_parent, true, NULL);
1454 if (!dc)
1455 dc = next_dc;
1456
1457 blk_start_plug(&plug);
1458
1459 while (dc) {
1460 struct rb_node *node;
1461 int err = 0;
1462
1463 if (dc->state != D_PREP)
1464 goto next;
1465
1466 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1467 io_interrupted = true;
1468 break;
1469 }
1470
1471 dcc->next_pos = dc->lstart + dc->len;
1472 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1473
1474 if (issued >= dpolicy->max_requests)
1475 break;
1476 next:
1477 node = rb_next(&dc->rb_node);
1478 if (err)
1479 __remove_discard_cmd(sbi, dc);
1480 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1481 }
1482
1483 blk_finish_plug(&plug);
1484
1485 if (!dc)
1486 dcc->next_pos = 0;
1487
1488 mutex_unlock(&dcc->cmd_lock);
1489
1490 if (!issued && io_interrupted)
1491 issued = -1;
1492
1493 return issued;
1494 }
1495 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1496 struct discard_policy *dpolicy);
1497
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1498 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1499 struct discard_policy *dpolicy)
1500 {
1501 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1502 struct list_head *pend_list;
1503 struct discard_cmd *dc, *tmp;
1504 struct blk_plug plug;
1505 int i, issued;
1506 bool io_interrupted = false;
1507
1508 if (dpolicy->timeout)
1509 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1510
1511 retry:
1512 issued = 0;
1513 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1514 if (dpolicy->timeout &&
1515 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1516 break;
1517
1518 if (i + 1 < dpolicy->granularity)
1519 break;
1520
1521 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1522 return __issue_discard_cmd_orderly(sbi, dpolicy);
1523
1524 pend_list = &dcc->pend_list[i];
1525
1526 mutex_lock(&dcc->cmd_lock);
1527 if (list_empty(pend_list))
1528 goto next;
1529 if (unlikely(dcc->rbtree_check))
1530 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1531 &dcc->root, false));
1532 blk_start_plug(&plug);
1533 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1534 f2fs_bug_on(sbi, dc->state != D_PREP);
1535
1536 if (dpolicy->timeout &&
1537 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1538 break;
1539
1540 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1541 !is_idle(sbi, DISCARD_TIME)) {
1542 io_interrupted = true;
1543 break;
1544 }
1545
1546 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1547
1548 if (issued >= dpolicy->max_requests)
1549 break;
1550 }
1551 blk_finish_plug(&plug);
1552 next:
1553 mutex_unlock(&dcc->cmd_lock);
1554
1555 if (issued >= dpolicy->max_requests || io_interrupted)
1556 break;
1557 }
1558
1559 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1560 __wait_all_discard_cmd(sbi, dpolicy);
1561 goto retry;
1562 }
1563
1564 if (!issued && io_interrupted)
1565 issued = -1;
1566
1567 return issued;
1568 }
1569
__drop_discard_cmd(struct f2fs_sb_info * sbi)1570 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1571 {
1572 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1573 struct list_head *pend_list;
1574 struct discard_cmd *dc, *tmp;
1575 int i;
1576 bool dropped = false;
1577
1578 mutex_lock(&dcc->cmd_lock);
1579 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1580 pend_list = &dcc->pend_list[i];
1581 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1582 f2fs_bug_on(sbi, dc->state != D_PREP);
1583 __remove_discard_cmd(sbi, dc);
1584 dropped = true;
1585 }
1586 }
1587 mutex_unlock(&dcc->cmd_lock);
1588
1589 return dropped;
1590 }
1591
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1592 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1593 {
1594 __drop_discard_cmd(sbi);
1595 }
1596
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1597 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1598 struct discard_cmd *dc)
1599 {
1600 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1601 unsigned int len = 0;
1602
1603 wait_for_completion_io(&dc->wait);
1604 mutex_lock(&dcc->cmd_lock);
1605 f2fs_bug_on(sbi, dc->state != D_DONE);
1606 dc->ref--;
1607 if (!dc->ref) {
1608 if (!dc->error)
1609 len = dc->len;
1610 __remove_discard_cmd(sbi, dc);
1611 }
1612 mutex_unlock(&dcc->cmd_lock);
1613
1614 return len;
1615 }
1616
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1617 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1618 struct discard_policy *dpolicy,
1619 block_t start, block_t end)
1620 {
1621 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1622 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1623 &(dcc->fstrim_list) : &(dcc->wait_list);
1624 struct discard_cmd *dc, *tmp;
1625 bool need_wait;
1626 unsigned int trimmed = 0;
1627
1628 next:
1629 need_wait = false;
1630
1631 mutex_lock(&dcc->cmd_lock);
1632 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1633 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1634 continue;
1635 if (dc->len < dpolicy->granularity)
1636 continue;
1637 if (dc->state == D_DONE && !dc->ref) {
1638 wait_for_completion_io(&dc->wait);
1639 if (!dc->error)
1640 trimmed += dc->len;
1641 __remove_discard_cmd(sbi, dc);
1642 } else {
1643 dc->ref++;
1644 need_wait = true;
1645 break;
1646 }
1647 }
1648 mutex_unlock(&dcc->cmd_lock);
1649
1650 if (need_wait) {
1651 trimmed += __wait_one_discard_bio(sbi, dc);
1652 goto next;
1653 }
1654
1655 return trimmed;
1656 }
1657
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1658 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1659 struct discard_policy *dpolicy)
1660 {
1661 struct discard_policy dp;
1662 unsigned int discard_blks;
1663
1664 if (dpolicy)
1665 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1666
1667 /* wait all */
1668 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1669 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1670 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1671 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1672
1673 return discard_blks;
1674 }
1675
1676 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1677 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1678 {
1679 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1680 struct discard_cmd *dc;
1681 bool need_wait = false;
1682
1683 mutex_lock(&dcc->cmd_lock);
1684 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1685 NULL, blkaddr);
1686 if (dc) {
1687 if (dc->state == D_PREP) {
1688 __punch_discard_cmd(sbi, dc, blkaddr);
1689 } else {
1690 dc->ref++;
1691 need_wait = true;
1692 }
1693 }
1694 mutex_unlock(&dcc->cmd_lock);
1695
1696 if (need_wait)
1697 __wait_one_discard_bio(sbi, dc);
1698 }
1699
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1700 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1701 {
1702 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1703
1704 if (dcc && dcc->f2fs_issue_discard) {
1705 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1706
1707 dcc->f2fs_issue_discard = NULL;
1708 kthread_stop(discard_thread);
1709 }
1710 }
1711
1712 /* This comes from f2fs_put_super */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1713 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1714 {
1715 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1716 struct discard_policy dpolicy;
1717 bool dropped;
1718
1719 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1720 dcc->discard_granularity);
1721 __issue_discard_cmd(sbi, &dpolicy);
1722 dropped = __drop_discard_cmd(sbi);
1723
1724 /* just to make sure there is no pending discard commands */
1725 __wait_all_discard_cmd(sbi, NULL);
1726
1727 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1728 return dropped;
1729 }
1730
issue_discard_thread(void * data)1731 static int issue_discard_thread(void *data)
1732 {
1733 struct f2fs_sb_info *sbi = data;
1734 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1735 wait_queue_head_t *q = &dcc->discard_wait_queue;
1736 struct discard_policy dpolicy;
1737 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1738 int issued;
1739
1740 set_freezable();
1741
1742 do {
1743 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1744 dcc->discard_granularity);
1745
1746 wait_event_interruptible_timeout(*q,
1747 kthread_should_stop() || freezing(current) ||
1748 dcc->discard_wake,
1749 msecs_to_jiffies(wait_ms));
1750
1751 if (dcc->discard_wake)
1752 dcc->discard_wake = 0;
1753
1754 /* clean up pending candidates before going to sleep */
1755 if (atomic_read(&dcc->queued_discard))
1756 __wait_all_discard_cmd(sbi, NULL);
1757
1758 if (try_to_freeze())
1759 continue;
1760 if (f2fs_readonly(sbi->sb))
1761 continue;
1762 if (kthread_should_stop())
1763 return 0;
1764 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1765 wait_ms = dpolicy.max_interval;
1766 continue;
1767 }
1768
1769 if (sbi->gc_mode == GC_URGENT_HIGH)
1770 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1771
1772 sb_start_intwrite(sbi->sb);
1773
1774 issued = __issue_discard_cmd(sbi, &dpolicy);
1775 if (issued > 0) {
1776 __wait_all_discard_cmd(sbi, &dpolicy);
1777 wait_ms = dpolicy.min_interval;
1778 } else if (issued == -1){
1779 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1780 if (!wait_ms)
1781 wait_ms = dpolicy.mid_interval;
1782 } else {
1783 wait_ms = dpolicy.max_interval;
1784 }
1785
1786 sb_end_intwrite(sbi->sb);
1787
1788 } while (!kthread_should_stop());
1789 return 0;
1790 }
1791
1792 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1793 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1794 struct block_device *bdev, block_t blkstart, block_t blklen)
1795 {
1796 sector_t sector, nr_sects;
1797 block_t lblkstart = blkstart;
1798 int devi = 0;
1799
1800 if (f2fs_is_multi_device(sbi)) {
1801 devi = f2fs_target_device_index(sbi, blkstart);
1802 if (blkstart < FDEV(devi).start_blk ||
1803 blkstart > FDEV(devi).end_blk) {
1804 f2fs_err(sbi, "Invalid block %x", blkstart);
1805 return -EIO;
1806 }
1807 blkstart -= FDEV(devi).start_blk;
1808 }
1809
1810 /* For sequential zones, reset the zone write pointer */
1811 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1812 sector = SECTOR_FROM_BLOCK(blkstart);
1813 nr_sects = SECTOR_FROM_BLOCK(blklen);
1814
1815 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1816 nr_sects != bdev_zone_sectors(bdev)) {
1817 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1818 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1819 blkstart, blklen);
1820 return -EIO;
1821 }
1822 trace_f2fs_issue_reset_zone(bdev, blkstart);
1823 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1824 sector, nr_sects, GFP_NOFS);
1825 }
1826
1827 /* For conventional zones, use regular discard if supported */
1828 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1829 }
1830 #endif
1831
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1832 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1833 struct block_device *bdev, block_t blkstart, block_t blklen)
1834 {
1835 #ifdef CONFIG_BLK_DEV_ZONED
1836 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1837 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1838 #endif
1839 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1840 }
1841
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)1842 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1843 block_t blkstart, block_t blklen)
1844 {
1845 sector_t start = blkstart, len = 0;
1846 struct block_device *bdev;
1847 struct seg_entry *se;
1848 unsigned int offset;
1849 block_t i;
1850 int err = 0;
1851
1852 bdev = f2fs_target_device(sbi, blkstart, NULL);
1853
1854 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1855 if (i != start) {
1856 struct block_device *bdev2 =
1857 f2fs_target_device(sbi, i, NULL);
1858
1859 if (bdev2 != bdev) {
1860 err = __issue_discard_async(sbi, bdev,
1861 start, len);
1862 if (err)
1863 return err;
1864 bdev = bdev2;
1865 start = i;
1866 len = 0;
1867 }
1868 }
1869
1870 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1871 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1872
1873 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1874 sbi->discard_blks--;
1875 }
1876
1877 if (len)
1878 err = __issue_discard_async(sbi, bdev, start, len);
1879 return err;
1880 }
1881
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)1882 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1883 bool check_only)
1884 {
1885 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1886 int max_blocks = sbi->blocks_per_seg;
1887 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1888 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1889 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1890 unsigned long *discard_map = (unsigned long *)se->discard_map;
1891 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1892 unsigned int start = 0, end = -1;
1893 bool force = (cpc->reason & CP_DISCARD);
1894 struct discard_entry *de = NULL;
1895 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1896 int i;
1897
1898 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1899 return false;
1900
1901 if (!force) {
1902 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1903 SM_I(sbi)->dcc_info->nr_discards >=
1904 SM_I(sbi)->dcc_info->max_discards)
1905 return false;
1906 }
1907
1908 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1909 for (i = 0; i < entries; i++)
1910 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1911 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1912
1913 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1914 SM_I(sbi)->dcc_info->max_discards) {
1915 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1916 if (start >= max_blocks)
1917 break;
1918
1919 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1920 if (force && start && end != max_blocks
1921 && (end - start) < cpc->trim_minlen)
1922 continue;
1923
1924 if (check_only)
1925 return true;
1926
1927 if (!de) {
1928 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1929 GFP_F2FS_ZERO);
1930 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1931 list_add_tail(&de->list, head);
1932 }
1933
1934 for (i = start; i < end; i++)
1935 __set_bit_le(i, (void *)de->discard_map);
1936
1937 SM_I(sbi)->dcc_info->nr_discards += end - start;
1938 }
1939 return false;
1940 }
1941
release_discard_addr(struct discard_entry * entry)1942 static void release_discard_addr(struct discard_entry *entry)
1943 {
1944 list_del(&entry->list);
1945 kmem_cache_free(discard_entry_slab, entry);
1946 }
1947
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)1948 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1949 {
1950 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1951 struct discard_entry *entry, *this;
1952
1953 /* drop caches */
1954 list_for_each_entry_safe(entry, this, head, list)
1955 release_discard_addr(entry);
1956 }
1957
1958 /*
1959 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1960 */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)1961 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1962 {
1963 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1964 unsigned int segno;
1965
1966 mutex_lock(&dirty_i->seglist_lock);
1967 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1968 __set_test_and_free(sbi, segno, false);
1969 mutex_unlock(&dirty_i->seglist_lock);
1970 }
1971
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)1972 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1973 struct cp_control *cpc)
1974 {
1975 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1976 struct list_head *head = &dcc->entry_list;
1977 struct discard_entry *entry, *this;
1978 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1979 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1980 unsigned int start = 0, end = -1;
1981 unsigned int secno, start_segno;
1982 bool force = (cpc->reason & CP_DISCARD);
1983 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
1984
1985 mutex_lock(&dirty_i->seglist_lock);
1986
1987 while (1) {
1988 int i;
1989
1990 if (need_align && end != -1)
1991 end--;
1992 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1993 if (start >= MAIN_SEGS(sbi))
1994 break;
1995 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1996 start + 1);
1997
1998 if (need_align) {
1999 start = rounddown(start, sbi->segs_per_sec);
2000 end = roundup(end, sbi->segs_per_sec);
2001 }
2002
2003 for (i = start; i < end; i++) {
2004 if (test_and_clear_bit(i, prefree_map))
2005 dirty_i->nr_dirty[PRE]--;
2006 }
2007
2008 if (!f2fs_realtime_discard_enable(sbi))
2009 continue;
2010
2011 if (force && start >= cpc->trim_start &&
2012 (end - 1) <= cpc->trim_end)
2013 continue;
2014
2015 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2016 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2017 (end - start) << sbi->log_blocks_per_seg);
2018 continue;
2019 }
2020 next:
2021 secno = GET_SEC_FROM_SEG(sbi, start);
2022 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2023 if (!IS_CURSEC(sbi, secno) &&
2024 !get_valid_blocks(sbi, start, true))
2025 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2026 sbi->segs_per_sec << sbi->log_blocks_per_seg);
2027
2028 start = start_segno + sbi->segs_per_sec;
2029 if (start < end)
2030 goto next;
2031 else
2032 end = start - 1;
2033 }
2034 mutex_unlock(&dirty_i->seglist_lock);
2035
2036 /* send small discards */
2037 list_for_each_entry_safe(entry, this, head, list) {
2038 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2039 bool is_valid = test_bit_le(0, entry->discard_map);
2040
2041 find_next:
2042 if (is_valid) {
2043 next_pos = find_next_zero_bit_le(entry->discard_map,
2044 sbi->blocks_per_seg, cur_pos);
2045 len = next_pos - cur_pos;
2046
2047 if (f2fs_sb_has_blkzoned(sbi) ||
2048 (force && len < cpc->trim_minlen))
2049 goto skip;
2050
2051 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2052 len);
2053 total_len += len;
2054 } else {
2055 next_pos = find_next_bit_le(entry->discard_map,
2056 sbi->blocks_per_seg, cur_pos);
2057 }
2058 skip:
2059 cur_pos = next_pos;
2060 is_valid = !is_valid;
2061
2062 if (cur_pos < sbi->blocks_per_seg)
2063 goto find_next;
2064
2065 release_discard_addr(entry);
2066 dcc->nr_discards -= total_len;
2067 }
2068
2069 wake_up_discard_thread(sbi, false);
2070 }
2071
create_discard_cmd_control(struct f2fs_sb_info * sbi)2072 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2073 {
2074 dev_t dev = sbi->sb->s_bdev->bd_dev;
2075 struct discard_cmd_control *dcc;
2076 int err = 0, i;
2077
2078 if (SM_I(sbi)->dcc_info) {
2079 dcc = SM_I(sbi)->dcc_info;
2080 goto init_thread;
2081 }
2082
2083 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2084 if (!dcc)
2085 return -ENOMEM;
2086
2087 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2088 INIT_LIST_HEAD(&dcc->entry_list);
2089 for (i = 0; i < MAX_PLIST_NUM; i++)
2090 INIT_LIST_HEAD(&dcc->pend_list[i]);
2091 INIT_LIST_HEAD(&dcc->wait_list);
2092 INIT_LIST_HEAD(&dcc->fstrim_list);
2093 mutex_init(&dcc->cmd_lock);
2094 atomic_set(&dcc->issued_discard, 0);
2095 atomic_set(&dcc->queued_discard, 0);
2096 atomic_set(&dcc->discard_cmd_cnt, 0);
2097 dcc->nr_discards = 0;
2098 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2099 dcc->undiscard_blks = 0;
2100 dcc->next_pos = 0;
2101 dcc->root = RB_ROOT_CACHED;
2102 dcc->rbtree_check = false;
2103
2104 init_waitqueue_head(&dcc->discard_wait_queue);
2105 SM_I(sbi)->dcc_info = dcc;
2106 init_thread:
2107 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2108 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2109 if (IS_ERR(dcc->f2fs_issue_discard)) {
2110 err = PTR_ERR(dcc->f2fs_issue_discard);
2111 kfree(dcc);
2112 SM_I(sbi)->dcc_info = NULL;
2113 return err;
2114 }
2115
2116 return err;
2117 }
2118
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2119 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2120 {
2121 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2122
2123 if (!dcc)
2124 return;
2125
2126 f2fs_stop_discard_thread(sbi);
2127
2128 /*
2129 * Recovery can cache discard commands, so in error path of
2130 * fill_super(), it needs to give a chance to handle them.
2131 */
2132 if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2133 f2fs_issue_discard_timeout(sbi);
2134
2135 kfree(dcc);
2136 SM_I(sbi)->dcc_info = NULL;
2137 }
2138
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2139 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2140 {
2141 struct sit_info *sit_i = SIT_I(sbi);
2142
2143 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2144 sit_i->dirty_sentries++;
2145 return false;
2146 }
2147
2148 return true;
2149 }
2150
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2151 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2152 unsigned int segno, int modified)
2153 {
2154 struct seg_entry *se = get_seg_entry(sbi, segno);
2155 se->type = type;
2156 if (modified)
2157 __mark_sit_entry_dirty(sbi, segno);
2158 }
2159
get_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr)2160 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2161 block_t blkaddr)
2162 {
2163 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2164
2165 if (segno == NULL_SEGNO)
2166 return 0;
2167 return get_seg_entry(sbi, segno)->mtime;
2168 }
2169
update_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned long long old_mtime)2170 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2171 unsigned long long old_mtime)
2172 {
2173 struct seg_entry *se;
2174 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2175 unsigned long long ctime = get_mtime(sbi, false);
2176 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2177
2178 if (segno == NULL_SEGNO)
2179 return;
2180
2181 se = get_seg_entry(sbi, segno);
2182
2183 if (!se->mtime)
2184 se->mtime = mtime;
2185 else
2186 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2187 se->valid_blocks + 1);
2188
2189 if (ctime > SIT_I(sbi)->max_mtime)
2190 SIT_I(sbi)->max_mtime = ctime;
2191 }
2192
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2193 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2194 {
2195 struct seg_entry *se;
2196 unsigned int segno, offset;
2197 long int new_vblocks;
2198 bool exist;
2199 #ifdef CONFIG_F2FS_CHECK_FS
2200 bool mir_exist;
2201 #endif
2202
2203 segno = GET_SEGNO(sbi, blkaddr);
2204
2205 se = get_seg_entry(sbi, segno);
2206 new_vblocks = se->valid_blocks + del;
2207 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2208
2209 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2210 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2211
2212 se->valid_blocks = new_vblocks;
2213
2214 /* Update valid block bitmap */
2215 if (del > 0) {
2216 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2217 #ifdef CONFIG_F2FS_CHECK_FS
2218 mir_exist = f2fs_test_and_set_bit(offset,
2219 se->cur_valid_map_mir);
2220 if (unlikely(exist != mir_exist)) {
2221 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2222 blkaddr, exist);
2223 f2fs_bug_on(sbi, 1);
2224 }
2225 #endif
2226 if (unlikely(exist)) {
2227 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2228 blkaddr);
2229 f2fs_bug_on(sbi, 1);
2230 se->valid_blocks--;
2231 del = 0;
2232 }
2233
2234 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2235 sbi->discard_blks--;
2236
2237 /*
2238 * SSR should never reuse block which is checkpointed
2239 * or newly invalidated.
2240 */
2241 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2242 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2243 se->ckpt_valid_blocks++;
2244 }
2245 } else {
2246 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2247 #ifdef CONFIG_F2FS_CHECK_FS
2248 mir_exist = f2fs_test_and_clear_bit(offset,
2249 se->cur_valid_map_mir);
2250 if (unlikely(exist != mir_exist)) {
2251 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2252 blkaddr, exist);
2253 f2fs_bug_on(sbi, 1);
2254 }
2255 #endif
2256 if (unlikely(!exist)) {
2257 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2258 blkaddr);
2259 f2fs_bug_on(sbi, 1);
2260 se->valid_blocks++;
2261 del = 0;
2262 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2263 /*
2264 * If checkpoints are off, we must not reuse data that
2265 * was used in the previous checkpoint. If it was used
2266 * before, we must track that to know how much space we
2267 * really have.
2268 */
2269 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2270 spin_lock(&sbi->stat_lock);
2271 sbi->unusable_block_count++;
2272 spin_unlock(&sbi->stat_lock);
2273 }
2274 }
2275
2276 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2277 sbi->discard_blks++;
2278 }
2279 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2280 se->ckpt_valid_blocks += del;
2281
2282 __mark_sit_entry_dirty(sbi, segno);
2283
2284 /* update total number of valid blocks to be written in ckpt area */
2285 SIT_I(sbi)->written_valid_blocks += del;
2286
2287 if (__is_large_section(sbi))
2288 get_sec_entry(sbi, segno)->valid_blocks += del;
2289 }
2290
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr)2291 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2292 {
2293 unsigned int segno = GET_SEGNO(sbi, addr);
2294 struct sit_info *sit_i = SIT_I(sbi);
2295
2296 f2fs_bug_on(sbi, addr == NULL_ADDR);
2297 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2298 return;
2299
2300 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2301
2302 /* add it into sit main buffer */
2303 down_write(&sit_i->sentry_lock);
2304
2305 update_segment_mtime(sbi, addr, 0);
2306 update_sit_entry(sbi, addr, -1);
2307
2308 /* add it into dirty seglist */
2309 locate_dirty_segment(sbi, segno);
2310
2311 up_write(&sit_i->sentry_lock);
2312 }
2313
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2314 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2315 {
2316 struct sit_info *sit_i = SIT_I(sbi);
2317 unsigned int segno, offset;
2318 struct seg_entry *se;
2319 bool is_cp = false;
2320
2321 if (!__is_valid_data_blkaddr(blkaddr))
2322 return true;
2323
2324 down_read(&sit_i->sentry_lock);
2325
2326 segno = GET_SEGNO(sbi, blkaddr);
2327 se = get_seg_entry(sbi, segno);
2328 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2329
2330 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2331 is_cp = true;
2332
2333 up_read(&sit_i->sentry_lock);
2334
2335 return is_cp;
2336 }
2337
2338 /*
2339 * This function should be resided under the curseg_mutex lock
2340 */
__add_sum_entry(struct f2fs_sb_info * sbi,int type,struct f2fs_summary * sum)2341 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2342 struct f2fs_summary *sum)
2343 {
2344 struct curseg_info *curseg = CURSEG_I(sbi, type);
2345 void *addr = curseg->sum_blk;
2346 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2347 memcpy(addr, sum, sizeof(struct f2fs_summary));
2348 }
2349
2350 /*
2351 * Calculate the number of current summary pages for writing
2352 */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2353 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2354 {
2355 int valid_sum_count = 0;
2356 int i, sum_in_page;
2357
2358 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2359 if (sbi->ckpt->alloc_type[i] == SSR)
2360 valid_sum_count += sbi->blocks_per_seg;
2361 else {
2362 if (for_ra)
2363 valid_sum_count += le16_to_cpu(
2364 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2365 else
2366 valid_sum_count += curseg_blkoff(sbi, i);
2367 }
2368 }
2369
2370 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2371 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2372 if (valid_sum_count <= sum_in_page)
2373 return 1;
2374 else if ((valid_sum_count - sum_in_page) <=
2375 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2376 return 2;
2377 return 3;
2378 }
2379
2380 /*
2381 * Caller should put this summary page
2382 */
f2fs_get_sum_page(struct f2fs_sb_info * sbi,unsigned int segno)2383 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2384 {
2385 if (unlikely(f2fs_cp_error(sbi)))
2386 return ERR_PTR(-EIO);
2387 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2388 }
2389
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2390 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2391 void *src, block_t blk_addr)
2392 {
2393 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2394
2395 memcpy(page_address(page), src, PAGE_SIZE);
2396 set_page_dirty(page);
2397 f2fs_put_page(page, 1);
2398 }
2399
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2400 static void write_sum_page(struct f2fs_sb_info *sbi,
2401 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2402 {
2403 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2404 }
2405
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2406 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2407 int type, block_t blk_addr)
2408 {
2409 struct curseg_info *curseg = CURSEG_I(sbi, type);
2410 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2411 struct f2fs_summary_block *src = curseg->sum_blk;
2412 struct f2fs_summary_block *dst;
2413
2414 dst = (struct f2fs_summary_block *)page_address(page);
2415 memset(dst, 0, PAGE_SIZE);
2416
2417 mutex_lock(&curseg->curseg_mutex);
2418
2419 down_read(&curseg->journal_rwsem);
2420 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2421 up_read(&curseg->journal_rwsem);
2422
2423 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2424 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2425
2426 mutex_unlock(&curseg->curseg_mutex);
2427
2428 set_page_dirty(page);
2429 f2fs_put_page(page, 1);
2430 }
2431
is_next_segment_free(struct f2fs_sb_info * sbi,struct curseg_info * curseg,int type)2432 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2433 struct curseg_info *curseg, int type)
2434 {
2435 unsigned int segno = curseg->segno + 1;
2436 struct free_segmap_info *free_i = FREE_I(sbi);
2437
2438 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2439 return !test_bit(segno, free_i->free_segmap);
2440 return 0;
2441 }
2442
2443 /*
2444 * Find a new segment from the free segments bitmap to right order
2445 * This function should be returned with success, otherwise BUG
2446 */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,int dir)2447 static void get_new_segment(struct f2fs_sb_info *sbi,
2448 unsigned int *newseg, bool new_sec, int dir)
2449 {
2450 struct free_segmap_info *free_i = FREE_I(sbi);
2451 unsigned int segno, secno, zoneno;
2452 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2453 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2454 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2455 unsigned int left_start = hint;
2456 bool init = true;
2457 int go_left = 0;
2458 int i;
2459
2460 spin_lock(&free_i->segmap_lock);
2461
2462 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2463 segno = find_next_zero_bit(free_i->free_segmap,
2464 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2465 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2466 goto got_it;
2467 }
2468 find_other_zone:
2469 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2470 if (secno >= MAIN_SECS(sbi)) {
2471 if (dir == ALLOC_RIGHT) {
2472 secno = find_next_zero_bit(free_i->free_secmap,
2473 MAIN_SECS(sbi), 0);
2474 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2475 } else {
2476 go_left = 1;
2477 left_start = hint - 1;
2478 }
2479 }
2480 if (go_left == 0)
2481 goto skip_left;
2482
2483 while (test_bit(left_start, free_i->free_secmap)) {
2484 if (left_start > 0) {
2485 left_start--;
2486 continue;
2487 }
2488 left_start = find_next_zero_bit(free_i->free_secmap,
2489 MAIN_SECS(sbi), 0);
2490 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2491 break;
2492 }
2493 secno = left_start;
2494 skip_left:
2495 segno = GET_SEG_FROM_SEC(sbi, secno);
2496 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2497
2498 /* give up on finding another zone */
2499 if (!init)
2500 goto got_it;
2501 if (sbi->secs_per_zone == 1)
2502 goto got_it;
2503 if (zoneno == old_zoneno)
2504 goto got_it;
2505 if (dir == ALLOC_LEFT) {
2506 if (!go_left && zoneno + 1 >= total_zones)
2507 goto got_it;
2508 if (go_left && zoneno == 0)
2509 goto got_it;
2510 }
2511 for (i = 0; i < NR_CURSEG_TYPE; i++)
2512 if (CURSEG_I(sbi, i)->zone == zoneno)
2513 break;
2514
2515 if (i < NR_CURSEG_TYPE) {
2516 /* zone is in user, try another */
2517 if (go_left)
2518 hint = zoneno * sbi->secs_per_zone - 1;
2519 else if (zoneno + 1 >= total_zones)
2520 hint = 0;
2521 else
2522 hint = (zoneno + 1) * sbi->secs_per_zone;
2523 init = false;
2524 goto find_other_zone;
2525 }
2526 got_it:
2527 /* set it as dirty segment in free segmap */
2528 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2529 __set_inuse(sbi, segno);
2530 *newseg = segno;
2531 spin_unlock(&free_i->segmap_lock);
2532 }
2533
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2534 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2535 {
2536 struct curseg_info *curseg = CURSEG_I(sbi, type);
2537 struct summary_footer *sum_footer;
2538 unsigned short seg_type = curseg->seg_type;
2539
2540 curseg->inited = true;
2541 curseg->segno = curseg->next_segno;
2542 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2543 curseg->next_blkoff = 0;
2544 curseg->next_segno = NULL_SEGNO;
2545
2546 sum_footer = &(curseg->sum_blk->footer);
2547 memset(sum_footer, 0, sizeof(struct summary_footer));
2548
2549 sanity_check_seg_type(sbi, seg_type);
2550
2551 if (IS_DATASEG(seg_type))
2552 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2553 if (IS_NODESEG(seg_type))
2554 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2555 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2556 }
2557
__get_next_segno(struct f2fs_sb_info * sbi,int type)2558 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2559 {
2560 struct curseg_info *curseg = CURSEG_I(sbi, type);
2561 unsigned short seg_type = curseg->seg_type;
2562
2563 sanity_check_seg_type(sbi, seg_type);
2564
2565 /* if segs_per_sec is large than 1, we need to keep original policy. */
2566 if (__is_large_section(sbi))
2567 return curseg->segno;
2568
2569 /* inmem log may not locate on any segment after mount */
2570 if (!curseg->inited)
2571 return 0;
2572
2573 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2574 return 0;
2575
2576 if (test_opt(sbi, NOHEAP) &&
2577 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2578 return 0;
2579
2580 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2581 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2582
2583 /* find segments from 0 to reuse freed segments */
2584 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2585 return 0;
2586
2587 return curseg->segno;
2588 }
2589
2590 /*
2591 * Allocate a current working segment.
2592 * This function always allocates a free segment in LFS manner.
2593 */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2594 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2595 {
2596 struct curseg_info *curseg = CURSEG_I(sbi, type);
2597 unsigned short seg_type = curseg->seg_type;
2598 unsigned int segno = curseg->segno;
2599 int dir = ALLOC_LEFT;
2600
2601 if (curseg->inited)
2602 write_sum_page(sbi, curseg->sum_blk,
2603 GET_SUM_BLOCK(sbi, segno));
2604 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2605 dir = ALLOC_RIGHT;
2606
2607 if (test_opt(sbi, NOHEAP))
2608 dir = ALLOC_RIGHT;
2609
2610 segno = __get_next_segno(sbi, type);
2611 get_new_segment(sbi, &segno, new_sec, dir);
2612 curseg->next_segno = segno;
2613 reset_curseg(sbi, type, 1);
2614 curseg->alloc_type = LFS;
2615 }
2616
__next_free_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg,block_t start)2617 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2618 struct curseg_info *seg, block_t start)
2619 {
2620 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2621 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2622 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2623 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2624 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2625 int i, pos;
2626
2627 for (i = 0; i < entries; i++)
2628 target_map[i] = ckpt_map[i] | cur_map[i];
2629
2630 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2631
2632 seg->next_blkoff = pos;
2633 }
2634
2635 /*
2636 * If a segment is written by LFS manner, next block offset is just obtained
2637 * by increasing the current block offset. However, if a segment is written by
2638 * SSR manner, next block offset obtained by calling __next_free_blkoff
2639 */
__refresh_next_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg)2640 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2641 struct curseg_info *seg)
2642 {
2643 if (seg->alloc_type == SSR)
2644 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2645 else
2646 seg->next_blkoff++;
2647 }
2648
2649 /*
2650 * This function always allocates a used segment(from dirty seglist) by SSR
2651 * manner, so it should recover the existing segment information of valid blocks
2652 */
change_curseg(struct f2fs_sb_info * sbi,int type,bool flush)2653 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2654 {
2655 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2656 struct curseg_info *curseg = CURSEG_I(sbi, type);
2657 unsigned int new_segno = curseg->next_segno;
2658 struct f2fs_summary_block *sum_node;
2659 struct page *sum_page;
2660
2661 if (flush)
2662 write_sum_page(sbi, curseg->sum_blk,
2663 GET_SUM_BLOCK(sbi, curseg->segno));
2664
2665 __set_test_and_inuse(sbi, new_segno);
2666
2667 mutex_lock(&dirty_i->seglist_lock);
2668 __remove_dirty_segment(sbi, new_segno, PRE);
2669 __remove_dirty_segment(sbi, new_segno, DIRTY);
2670 mutex_unlock(&dirty_i->seglist_lock);
2671
2672 reset_curseg(sbi, type, 1);
2673 curseg->alloc_type = SSR;
2674 __next_free_blkoff(sbi, curseg, 0);
2675
2676 sum_page = f2fs_get_sum_page(sbi, new_segno);
2677 if (IS_ERR(sum_page)) {
2678 /* GC won't be able to use stale summary pages by cp_error */
2679 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2680 return;
2681 }
2682 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2683 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2684 f2fs_put_page(sum_page, 1);
2685 }
2686
2687 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2688 int alloc_mode, unsigned long long age);
2689
get_atssr_segment(struct f2fs_sb_info * sbi,int type,int target_type,int alloc_mode,unsigned long long age)2690 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2691 int target_type, int alloc_mode,
2692 unsigned long long age)
2693 {
2694 struct curseg_info *curseg = CURSEG_I(sbi, type);
2695
2696 curseg->seg_type = target_type;
2697
2698 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2699 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2700
2701 curseg->seg_type = se->type;
2702 change_curseg(sbi, type, true);
2703 } else {
2704 /* allocate cold segment by default */
2705 curseg->seg_type = CURSEG_COLD_DATA;
2706 new_curseg(sbi, type, true);
2707 }
2708 stat_inc_seg_type(sbi, curseg);
2709 }
2710
__f2fs_init_atgc_curseg(struct f2fs_sb_info * sbi)2711 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2712 {
2713 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2714
2715 if (!sbi->am.atgc_enabled)
2716 return;
2717
2718 down_read(&SM_I(sbi)->curseg_lock);
2719
2720 mutex_lock(&curseg->curseg_mutex);
2721 down_write(&SIT_I(sbi)->sentry_lock);
2722
2723 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2724
2725 up_write(&SIT_I(sbi)->sentry_lock);
2726 mutex_unlock(&curseg->curseg_mutex);
2727
2728 up_read(&SM_I(sbi)->curseg_lock);
2729
2730 }
f2fs_init_inmem_curseg(struct f2fs_sb_info * sbi)2731 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2732 {
2733 __f2fs_init_atgc_curseg(sbi);
2734 }
2735
__f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi,int type)2736 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2737 {
2738 struct curseg_info *curseg = CURSEG_I(sbi, type);
2739
2740 mutex_lock(&curseg->curseg_mutex);
2741 if (!curseg->inited)
2742 goto out;
2743
2744 if (get_valid_blocks(sbi, curseg->segno, false)) {
2745 write_sum_page(sbi, curseg->sum_blk,
2746 GET_SUM_BLOCK(sbi, curseg->segno));
2747 } else {
2748 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2749 __set_test_and_free(sbi, curseg->segno, true);
2750 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2751 }
2752 out:
2753 mutex_unlock(&curseg->curseg_mutex);
2754 }
2755
f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi)2756 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2757 {
2758 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2759
2760 if (sbi->am.atgc_enabled)
2761 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2762 }
2763
__f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi,int type)2764 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2765 {
2766 struct curseg_info *curseg = CURSEG_I(sbi, type);
2767
2768 mutex_lock(&curseg->curseg_mutex);
2769 if (!curseg->inited)
2770 goto out;
2771 if (get_valid_blocks(sbi, curseg->segno, false))
2772 goto out;
2773
2774 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2775 __set_test_and_inuse(sbi, curseg->segno);
2776 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2777 out:
2778 mutex_unlock(&curseg->curseg_mutex);
2779 }
2780
f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi)2781 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2782 {
2783 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2784
2785 if (sbi->am.atgc_enabled)
2786 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2787 }
2788
get_ssr_segment(struct f2fs_sb_info * sbi,int type,int alloc_mode,unsigned long long age)2789 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2790 int alloc_mode, unsigned long long age)
2791 {
2792 struct curseg_info *curseg = CURSEG_I(sbi, type);
2793 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2794 unsigned segno = NULL_SEGNO;
2795 unsigned short seg_type = curseg->seg_type;
2796 int i, cnt;
2797 bool reversed = false;
2798
2799 sanity_check_seg_type(sbi, seg_type);
2800
2801 /* f2fs_need_SSR() already forces to do this */
2802 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2803 curseg->next_segno = segno;
2804 return 1;
2805 }
2806
2807 /* For node segments, let's do SSR more intensively */
2808 if (IS_NODESEG(seg_type)) {
2809 if (seg_type >= CURSEG_WARM_NODE) {
2810 reversed = true;
2811 i = CURSEG_COLD_NODE;
2812 } else {
2813 i = CURSEG_HOT_NODE;
2814 }
2815 cnt = NR_CURSEG_NODE_TYPE;
2816 } else {
2817 if (seg_type >= CURSEG_WARM_DATA) {
2818 reversed = true;
2819 i = CURSEG_COLD_DATA;
2820 } else {
2821 i = CURSEG_HOT_DATA;
2822 }
2823 cnt = NR_CURSEG_DATA_TYPE;
2824 }
2825
2826 for (; cnt-- > 0; reversed ? i-- : i++) {
2827 if (i == seg_type)
2828 continue;
2829 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2830 curseg->next_segno = segno;
2831 return 1;
2832 }
2833 }
2834
2835 /* find valid_blocks=0 in dirty list */
2836 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2837 segno = get_free_segment(sbi);
2838 if (segno != NULL_SEGNO) {
2839 curseg->next_segno = segno;
2840 return 1;
2841 }
2842 }
2843 return 0;
2844 }
2845
2846 /*
2847 * flush out current segment and replace it with new segment
2848 * This function should be returned with success, otherwise BUG
2849 */
allocate_segment_by_default(struct f2fs_sb_info * sbi,int type,bool force)2850 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2851 int type, bool force)
2852 {
2853 struct curseg_info *curseg = CURSEG_I(sbi, type);
2854
2855 if (force)
2856 new_curseg(sbi, type, true);
2857 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2858 curseg->seg_type == CURSEG_WARM_NODE)
2859 new_curseg(sbi, type, false);
2860 else if (curseg->alloc_type == LFS &&
2861 is_next_segment_free(sbi, curseg, type) &&
2862 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2863 new_curseg(sbi, type, false);
2864 else if (f2fs_need_SSR(sbi) &&
2865 get_ssr_segment(sbi, type, SSR, 0))
2866 change_curseg(sbi, type, true);
2867 else
2868 new_curseg(sbi, type, false);
2869
2870 stat_inc_seg_type(sbi, curseg);
2871 }
2872
f2fs_allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)2873 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2874 unsigned int start, unsigned int end)
2875 {
2876 struct curseg_info *curseg = CURSEG_I(sbi, type);
2877 unsigned int segno;
2878
2879 down_read(&SM_I(sbi)->curseg_lock);
2880 mutex_lock(&curseg->curseg_mutex);
2881 down_write(&SIT_I(sbi)->sentry_lock);
2882
2883 segno = CURSEG_I(sbi, type)->segno;
2884 if (segno < start || segno > end)
2885 goto unlock;
2886
2887 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2888 change_curseg(sbi, type, true);
2889 else
2890 new_curseg(sbi, type, true);
2891
2892 stat_inc_seg_type(sbi, curseg);
2893
2894 locate_dirty_segment(sbi, segno);
2895 unlock:
2896 up_write(&SIT_I(sbi)->sentry_lock);
2897
2898 if (segno != curseg->segno)
2899 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2900 type, segno, curseg->segno);
2901
2902 mutex_unlock(&curseg->curseg_mutex);
2903 up_read(&SM_I(sbi)->curseg_lock);
2904 }
2905
__allocate_new_segment(struct f2fs_sb_info * sbi,int type)2906 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type)
2907 {
2908 struct curseg_info *curseg = CURSEG_I(sbi, type);
2909 unsigned int old_segno;
2910
2911 if (!curseg->inited)
2912 goto alloc;
2913
2914 if (!curseg->next_blkoff &&
2915 !get_valid_blocks(sbi, curseg->segno, false) &&
2916 !get_ckpt_valid_blocks(sbi, curseg->segno))
2917 return;
2918
2919 alloc:
2920 old_segno = curseg->segno;
2921 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2922 locate_dirty_segment(sbi, old_segno);
2923 }
2924
f2fs_allocate_new_segment(struct f2fs_sb_info * sbi,int type)2925 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type)
2926 {
2927 down_write(&SIT_I(sbi)->sentry_lock);
2928 __allocate_new_segment(sbi, type);
2929 up_write(&SIT_I(sbi)->sentry_lock);
2930 }
2931
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)2932 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2933 {
2934 int i;
2935
2936 down_write(&SIT_I(sbi)->sentry_lock);
2937 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2938 __allocate_new_segment(sbi, i);
2939 up_write(&SIT_I(sbi)->sentry_lock);
2940 }
2941
2942 static const struct segment_allocation default_salloc_ops = {
2943 .allocate_segment = allocate_segment_by_default,
2944 };
2945
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)2946 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2947 struct cp_control *cpc)
2948 {
2949 __u64 trim_start = cpc->trim_start;
2950 bool has_candidate = false;
2951
2952 down_write(&SIT_I(sbi)->sentry_lock);
2953 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2954 if (add_discard_addrs(sbi, cpc, true)) {
2955 has_candidate = true;
2956 break;
2957 }
2958 }
2959 up_write(&SIT_I(sbi)->sentry_lock);
2960
2961 cpc->trim_start = trim_start;
2962 return has_candidate;
2963 }
2964
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)2965 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2966 struct discard_policy *dpolicy,
2967 unsigned int start, unsigned int end)
2968 {
2969 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2970 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2971 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2972 struct discard_cmd *dc;
2973 struct blk_plug plug;
2974 int issued;
2975 unsigned int trimmed = 0;
2976
2977 next:
2978 issued = 0;
2979
2980 mutex_lock(&dcc->cmd_lock);
2981 if (unlikely(dcc->rbtree_check))
2982 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2983 &dcc->root, false));
2984
2985 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2986 NULL, start,
2987 (struct rb_entry **)&prev_dc,
2988 (struct rb_entry **)&next_dc,
2989 &insert_p, &insert_parent, true, NULL);
2990 if (!dc)
2991 dc = next_dc;
2992
2993 blk_start_plug(&plug);
2994
2995 while (dc && dc->lstart <= end) {
2996 struct rb_node *node;
2997 int err = 0;
2998
2999 if (dc->len < dpolicy->granularity)
3000 goto skip;
3001
3002 if (dc->state != D_PREP) {
3003 list_move_tail(&dc->list, &dcc->fstrim_list);
3004 goto skip;
3005 }
3006
3007 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3008
3009 if (issued >= dpolicy->max_requests) {
3010 start = dc->lstart + dc->len;
3011
3012 if (err)
3013 __remove_discard_cmd(sbi, dc);
3014
3015 blk_finish_plug(&plug);
3016 mutex_unlock(&dcc->cmd_lock);
3017 trimmed += __wait_all_discard_cmd(sbi, NULL);
3018 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3019 goto next;
3020 }
3021 skip:
3022 node = rb_next(&dc->rb_node);
3023 if (err)
3024 __remove_discard_cmd(sbi, dc);
3025 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3026
3027 if (fatal_signal_pending(current))
3028 break;
3029 }
3030
3031 blk_finish_plug(&plug);
3032 mutex_unlock(&dcc->cmd_lock);
3033
3034 return trimmed;
3035 }
3036
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)3037 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3038 {
3039 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3040 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3041 unsigned int start_segno, end_segno;
3042 block_t start_block, end_block;
3043 struct cp_control cpc;
3044 struct discard_policy dpolicy;
3045 unsigned long long trimmed = 0;
3046 int err = 0;
3047 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3048
3049 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3050 return -EINVAL;
3051
3052 if (end < MAIN_BLKADDR(sbi))
3053 goto out;
3054
3055 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3056 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3057 return -EFSCORRUPTED;
3058 }
3059
3060 /* start/end segment number in main_area */
3061 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3062 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3063 GET_SEGNO(sbi, end);
3064 if (need_align) {
3065 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3066 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3067 }
3068
3069 cpc.reason = CP_DISCARD;
3070 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3071 cpc.trim_start = start_segno;
3072 cpc.trim_end = end_segno;
3073
3074 if (sbi->discard_blks == 0)
3075 goto out;
3076
3077 down_write(&sbi->gc_lock);
3078 err = f2fs_write_checkpoint(sbi, &cpc);
3079 up_write(&sbi->gc_lock);
3080 if (err)
3081 goto out;
3082
3083 /*
3084 * We filed discard candidates, but actually we don't need to wait for
3085 * all of them, since they'll be issued in idle time along with runtime
3086 * discard option. User configuration looks like using runtime discard
3087 * or periodic fstrim instead of it.
3088 */
3089 if (f2fs_realtime_discard_enable(sbi))
3090 goto out;
3091
3092 start_block = START_BLOCK(sbi, start_segno);
3093 end_block = START_BLOCK(sbi, end_segno + 1);
3094
3095 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3096 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3097 start_block, end_block);
3098
3099 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3100 start_block, end_block);
3101 out:
3102 if (!err)
3103 range->len = F2FS_BLK_TO_BYTES(trimmed);
3104 return err;
3105 }
3106
__has_curseg_space(struct f2fs_sb_info * sbi,struct curseg_info * curseg)3107 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3108 struct curseg_info *curseg)
3109 {
3110 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3111 curseg->segno);
3112 }
3113
f2fs_rw_hint_to_seg_type(enum rw_hint hint)3114 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3115 {
3116 switch (hint) {
3117 case WRITE_LIFE_SHORT:
3118 return CURSEG_HOT_DATA;
3119 case WRITE_LIFE_EXTREME:
3120 return CURSEG_COLD_DATA;
3121 default:
3122 return CURSEG_WARM_DATA;
3123 }
3124 }
3125
3126 /* This returns write hints for each segment type. This hints will be
3127 * passed down to block layer. There are mapping tables which depend on
3128 * the mount option 'whint_mode'.
3129 *
3130 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3131 *
3132 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3133 *
3134 * User F2FS Block
3135 * ---- ---- -----
3136 * META WRITE_LIFE_NOT_SET
3137 * HOT_NODE "
3138 * WARM_NODE "
3139 * COLD_NODE "
3140 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3141 * extension list " "
3142 *
3143 * -- buffered io
3144 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3145 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3146 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3147 * WRITE_LIFE_NONE " "
3148 * WRITE_LIFE_MEDIUM " "
3149 * WRITE_LIFE_LONG " "
3150 *
3151 * -- direct io
3152 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3153 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3154 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3155 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3156 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3157 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3158 *
3159 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3160 *
3161 * User F2FS Block
3162 * ---- ---- -----
3163 * META WRITE_LIFE_MEDIUM;
3164 * HOT_NODE WRITE_LIFE_NOT_SET
3165 * WARM_NODE "
3166 * COLD_NODE WRITE_LIFE_NONE
3167 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3168 * extension list " "
3169 *
3170 * -- buffered io
3171 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3172 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3173 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
3174 * WRITE_LIFE_NONE " "
3175 * WRITE_LIFE_MEDIUM " "
3176 * WRITE_LIFE_LONG " "
3177 *
3178 * -- direct io
3179 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3180 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3181 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3182 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3183 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3184 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3185 */
3186
f2fs_io_type_to_rw_hint(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)3187 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3188 enum page_type type, enum temp_type temp)
3189 {
3190 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3191 if (type == DATA) {
3192 if (temp == WARM)
3193 return WRITE_LIFE_NOT_SET;
3194 else if (temp == HOT)
3195 return WRITE_LIFE_SHORT;
3196 else if (temp == COLD)
3197 return WRITE_LIFE_EXTREME;
3198 } else {
3199 return WRITE_LIFE_NOT_SET;
3200 }
3201 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3202 if (type == DATA) {
3203 if (temp == WARM)
3204 return WRITE_LIFE_LONG;
3205 else if (temp == HOT)
3206 return WRITE_LIFE_SHORT;
3207 else if (temp == COLD)
3208 return WRITE_LIFE_EXTREME;
3209 } else if (type == NODE) {
3210 if (temp == WARM || temp == HOT)
3211 return WRITE_LIFE_NOT_SET;
3212 else if (temp == COLD)
3213 return WRITE_LIFE_NONE;
3214 } else if (type == META) {
3215 return WRITE_LIFE_MEDIUM;
3216 }
3217 }
3218 return WRITE_LIFE_NOT_SET;
3219 }
3220
__get_segment_type_2(struct f2fs_io_info * fio)3221 static int __get_segment_type_2(struct f2fs_io_info *fio)
3222 {
3223 if (fio->type == DATA)
3224 return CURSEG_HOT_DATA;
3225 else
3226 return CURSEG_HOT_NODE;
3227 }
3228
__get_segment_type_4(struct f2fs_io_info * fio)3229 static int __get_segment_type_4(struct f2fs_io_info *fio)
3230 {
3231 if (fio->type == DATA) {
3232 struct inode *inode = fio->page->mapping->host;
3233
3234 if (S_ISDIR(inode->i_mode))
3235 return CURSEG_HOT_DATA;
3236 else
3237 return CURSEG_COLD_DATA;
3238 } else {
3239 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3240 return CURSEG_WARM_NODE;
3241 else
3242 return CURSEG_COLD_NODE;
3243 }
3244 }
3245
__get_segment_type_6(struct f2fs_io_info * fio)3246 static int __get_segment_type_6(struct f2fs_io_info *fio)
3247 {
3248 if (fio->type == DATA) {
3249 struct inode *inode = fio->page->mapping->host;
3250
3251 if (is_cold_data(fio->page)) {
3252 if (fio->sbi->am.atgc_enabled)
3253 return CURSEG_ALL_DATA_ATGC;
3254 else
3255 return CURSEG_COLD_DATA;
3256 }
3257 if (file_is_cold(inode) || f2fs_compressed_file(inode))
3258 return CURSEG_COLD_DATA;
3259 if (file_is_hot(inode) ||
3260 is_inode_flag_set(inode, FI_HOT_DATA) ||
3261 f2fs_is_atomic_file(inode) ||
3262 f2fs_is_volatile_file(inode))
3263 return CURSEG_HOT_DATA;
3264 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3265 } else {
3266 if (IS_DNODE(fio->page))
3267 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3268 CURSEG_HOT_NODE;
3269 return CURSEG_COLD_NODE;
3270 }
3271 }
3272
__get_segment_type(struct f2fs_io_info * fio)3273 static int __get_segment_type(struct f2fs_io_info *fio)
3274 {
3275 int type = 0;
3276
3277 switch (F2FS_OPTION(fio->sbi).active_logs) {
3278 case 2:
3279 type = __get_segment_type_2(fio);
3280 break;
3281 case 4:
3282 type = __get_segment_type_4(fio);
3283 break;
3284 case 6:
3285 type = __get_segment_type_6(fio);
3286 break;
3287 default:
3288 f2fs_bug_on(fio->sbi, true);
3289 }
3290
3291 if (IS_HOT(type))
3292 fio->temp = HOT;
3293 else if (IS_WARM(type))
3294 fio->temp = WARM;
3295 else
3296 fio->temp = COLD;
3297 return type;
3298 }
3299
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio)3300 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3301 block_t old_blkaddr, block_t *new_blkaddr,
3302 struct f2fs_summary *sum, int type,
3303 struct f2fs_io_info *fio)
3304 {
3305 struct sit_info *sit_i = SIT_I(sbi);
3306 struct curseg_info *curseg = CURSEG_I(sbi, type);
3307 unsigned long long old_mtime;
3308 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3309 struct seg_entry *se = NULL;
3310
3311 down_read(&SM_I(sbi)->curseg_lock);
3312
3313 mutex_lock(&curseg->curseg_mutex);
3314 down_write(&sit_i->sentry_lock);
3315
3316 if (from_gc) {
3317 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3318 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3319 sanity_check_seg_type(sbi, se->type);
3320 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3321 }
3322 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3323
3324 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3325
3326 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3327
3328 /*
3329 * __add_sum_entry should be resided under the curseg_mutex
3330 * because, this function updates a summary entry in the
3331 * current summary block.
3332 */
3333 __add_sum_entry(sbi, type, sum);
3334
3335 __refresh_next_blkoff(sbi, curseg);
3336
3337 stat_inc_block_count(sbi, curseg);
3338
3339 if (from_gc) {
3340 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3341 } else {
3342 update_segment_mtime(sbi, old_blkaddr, 0);
3343 old_mtime = 0;
3344 }
3345 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3346
3347 /*
3348 * SIT information should be updated before segment allocation,
3349 * since SSR needs latest valid block information.
3350 */
3351 update_sit_entry(sbi, *new_blkaddr, 1);
3352 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3353 update_sit_entry(sbi, old_blkaddr, -1);
3354
3355 if (!__has_curseg_space(sbi, curseg)) {
3356 if (from_gc)
3357 get_atssr_segment(sbi, type, se->type,
3358 AT_SSR, se->mtime);
3359 else
3360 sit_i->s_ops->allocate_segment(sbi, type, false);
3361 }
3362 /*
3363 * segment dirty status should be updated after segment allocation,
3364 * so we just need to update status only one time after previous
3365 * segment being closed.
3366 */
3367 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3368 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3369
3370 up_write(&sit_i->sentry_lock);
3371
3372 if (page && IS_NODESEG(type)) {
3373 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3374
3375 f2fs_inode_chksum_set(sbi, page);
3376 }
3377
3378 if (F2FS_IO_ALIGNED(sbi))
3379 fio->retry = false;
3380
3381 if (fio) {
3382 struct f2fs_bio_info *io;
3383
3384 INIT_LIST_HEAD(&fio->list);
3385 fio->in_list = true;
3386 io = sbi->write_io[fio->type] + fio->temp;
3387 spin_lock(&io->io_lock);
3388 list_add_tail(&fio->list, &io->io_list);
3389 spin_unlock(&io->io_lock);
3390 }
3391
3392 mutex_unlock(&curseg->curseg_mutex);
3393
3394 up_read(&SM_I(sbi)->curseg_lock);
3395 }
3396
update_device_state(struct f2fs_io_info * fio)3397 static void update_device_state(struct f2fs_io_info *fio)
3398 {
3399 struct f2fs_sb_info *sbi = fio->sbi;
3400 unsigned int devidx;
3401
3402 if (!f2fs_is_multi_device(sbi))
3403 return;
3404
3405 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3406
3407 /* update device state for fsync */
3408 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3409
3410 /* update device state for checkpoint */
3411 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3412 spin_lock(&sbi->dev_lock);
3413 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3414 spin_unlock(&sbi->dev_lock);
3415 }
3416 }
3417
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3418 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3419 {
3420 int type = __get_segment_type(fio);
3421 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3422
3423 if (keep_order)
3424 down_read(&fio->sbi->io_order_lock);
3425 reallocate:
3426 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3427 &fio->new_blkaddr, sum, type, fio);
3428 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3429 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3430 fio->old_blkaddr, fio->old_blkaddr);
3431
3432 /* writeout dirty page into bdev */
3433 f2fs_submit_page_write(fio);
3434 if (fio->retry) {
3435 fio->old_blkaddr = fio->new_blkaddr;
3436 goto reallocate;
3437 }
3438
3439 update_device_state(fio);
3440
3441 if (keep_order)
3442 up_read(&fio->sbi->io_order_lock);
3443 }
3444
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct page * page,enum iostat_type io_type)3445 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3446 enum iostat_type io_type)
3447 {
3448 struct f2fs_io_info fio = {
3449 .sbi = sbi,
3450 .type = META,
3451 .temp = HOT,
3452 .op = REQ_OP_WRITE,
3453 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3454 .old_blkaddr = page->index,
3455 .new_blkaddr = page->index,
3456 .page = page,
3457 .encrypted_page = NULL,
3458 .in_list = false,
3459 };
3460
3461 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3462 fio.op_flags &= ~REQ_META;
3463
3464 set_page_writeback(page);
3465 ClearPageError(page);
3466 f2fs_submit_page_write(&fio);
3467
3468 stat_inc_meta_count(sbi, page->index);
3469 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3470 }
3471
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)3472 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3473 {
3474 struct f2fs_summary sum;
3475
3476 set_summary(&sum, nid, 0, 0);
3477 do_write_page(&sum, fio);
3478
3479 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3480 }
3481
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)3482 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3483 struct f2fs_io_info *fio)
3484 {
3485 struct f2fs_sb_info *sbi = fio->sbi;
3486 struct f2fs_summary sum;
3487
3488 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3489 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3490 do_write_page(&sum, fio);
3491 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3492
3493 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3494 }
3495
f2fs_inplace_write_data(struct f2fs_io_info * fio)3496 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3497 {
3498 int err;
3499 struct f2fs_sb_info *sbi = fio->sbi;
3500 unsigned int segno;
3501
3502 fio->new_blkaddr = fio->old_blkaddr;
3503 /* i/o temperature is needed for passing down write hints */
3504 __get_segment_type(fio);
3505
3506 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3507
3508 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3509 set_sbi_flag(sbi, SBI_NEED_FSCK);
3510 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3511 __func__, segno);
3512 return -EFSCORRUPTED;
3513 }
3514
3515 stat_inc_inplace_blocks(fio->sbi);
3516
3517 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3518 err = f2fs_merge_page_bio(fio);
3519 else
3520 err = f2fs_submit_page_bio(fio);
3521 if (!err) {
3522 update_device_state(fio);
3523 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3524 }
3525
3526 return err;
3527 }
3528
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)3529 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3530 unsigned int segno)
3531 {
3532 int i;
3533
3534 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3535 if (CURSEG_I(sbi, i)->segno == segno)
3536 break;
3537 }
3538 return i;
3539 }
3540
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr,bool from_gc)3541 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3542 block_t old_blkaddr, block_t new_blkaddr,
3543 bool recover_curseg, bool recover_newaddr,
3544 bool from_gc)
3545 {
3546 struct sit_info *sit_i = SIT_I(sbi);
3547 struct curseg_info *curseg;
3548 unsigned int segno, old_cursegno;
3549 struct seg_entry *se;
3550 int type;
3551 unsigned short old_blkoff;
3552
3553 segno = GET_SEGNO(sbi, new_blkaddr);
3554 se = get_seg_entry(sbi, segno);
3555 type = se->type;
3556
3557 down_write(&SM_I(sbi)->curseg_lock);
3558
3559 if (!recover_curseg) {
3560 /* for recovery flow */
3561 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3562 if (old_blkaddr == NULL_ADDR)
3563 type = CURSEG_COLD_DATA;
3564 else
3565 type = CURSEG_WARM_DATA;
3566 }
3567 } else {
3568 if (IS_CURSEG(sbi, segno)) {
3569 /* se->type is volatile as SSR allocation */
3570 type = __f2fs_get_curseg(sbi, segno);
3571 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3572 } else {
3573 type = CURSEG_WARM_DATA;
3574 }
3575 }
3576
3577 f2fs_bug_on(sbi, !IS_DATASEG(type));
3578 curseg = CURSEG_I(sbi, type);
3579
3580 mutex_lock(&curseg->curseg_mutex);
3581 down_write(&sit_i->sentry_lock);
3582
3583 old_cursegno = curseg->segno;
3584 old_blkoff = curseg->next_blkoff;
3585
3586 /* change the current segment */
3587 if (segno != curseg->segno) {
3588 curseg->next_segno = segno;
3589 change_curseg(sbi, type, true);
3590 }
3591
3592 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3593 __add_sum_entry(sbi, type, sum);
3594
3595 if (!recover_curseg || recover_newaddr) {
3596 if (!from_gc)
3597 update_segment_mtime(sbi, new_blkaddr, 0);
3598 update_sit_entry(sbi, new_blkaddr, 1);
3599 }
3600 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3601 invalidate_mapping_pages(META_MAPPING(sbi),
3602 old_blkaddr, old_blkaddr);
3603 if (!from_gc)
3604 update_segment_mtime(sbi, old_blkaddr, 0);
3605 update_sit_entry(sbi, old_blkaddr, -1);
3606 }
3607
3608 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3609 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3610
3611 locate_dirty_segment(sbi, old_cursegno);
3612
3613 if (recover_curseg) {
3614 if (old_cursegno != curseg->segno) {
3615 curseg->next_segno = old_cursegno;
3616 change_curseg(sbi, type, true);
3617 }
3618 curseg->next_blkoff = old_blkoff;
3619 }
3620
3621 up_write(&sit_i->sentry_lock);
3622 mutex_unlock(&curseg->curseg_mutex);
3623 up_write(&SM_I(sbi)->curseg_lock);
3624 }
3625
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)3626 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3627 block_t old_addr, block_t new_addr,
3628 unsigned char version, bool recover_curseg,
3629 bool recover_newaddr)
3630 {
3631 struct f2fs_summary sum;
3632
3633 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3634
3635 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3636 recover_curseg, recover_newaddr, false);
3637
3638 f2fs_update_data_blkaddr(dn, new_addr);
3639 }
3640
f2fs_wait_on_page_writeback(struct page * page,enum page_type type,bool ordered,bool locked)3641 void f2fs_wait_on_page_writeback(struct page *page,
3642 enum page_type type, bool ordered, bool locked)
3643 {
3644 if (PageWriteback(page)) {
3645 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3646
3647 /* submit cached LFS IO */
3648 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3649 /* sbumit cached IPU IO */
3650 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3651 if (ordered) {
3652 wait_on_page_writeback(page);
3653 f2fs_bug_on(sbi, locked && PageWriteback(page));
3654 } else {
3655 wait_for_stable_page(page);
3656 }
3657 }
3658 }
3659
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)3660 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3661 {
3662 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3663 struct page *cpage;
3664
3665 if (!f2fs_post_read_required(inode))
3666 return;
3667
3668 if (!__is_valid_data_blkaddr(blkaddr))
3669 return;
3670
3671 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3672 if (cpage) {
3673 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3674 f2fs_put_page(cpage, 1);
3675 }
3676 }
3677
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)3678 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3679 block_t len)
3680 {
3681 block_t i;
3682
3683 for (i = 0; i < len; i++)
3684 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3685 }
3686
read_compacted_summaries(struct f2fs_sb_info * sbi)3687 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3688 {
3689 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3690 struct curseg_info *seg_i;
3691 unsigned char *kaddr;
3692 struct page *page;
3693 block_t start;
3694 int i, j, offset;
3695
3696 start = start_sum_block(sbi);
3697
3698 page = f2fs_get_meta_page(sbi, start++);
3699 if (IS_ERR(page))
3700 return PTR_ERR(page);
3701 kaddr = (unsigned char *)page_address(page);
3702
3703 /* Step 1: restore nat cache */
3704 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3705 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3706
3707 /* Step 2: restore sit cache */
3708 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3709 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3710 offset = 2 * SUM_JOURNAL_SIZE;
3711
3712 /* Step 3: restore summary entries */
3713 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3714 unsigned short blk_off;
3715 unsigned int segno;
3716
3717 seg_i = CURSEG_I(sbi, i);
3718 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3719 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3720 seg_i->next_segno = segno;
3721 reset_curseg(sbi, i, 0);
3722 seg_i->alloc_type = ckpt->alloc_type[i];
3723 seg_i->next_blkoff = blk_off;
3724
3725 if (seg_i->alloc_type == SSR)
3726 blk_off = sbi->blocks_per_seg;
3727
3728 for (j = 0; j < blk_off; j++) {
3729 struct f2fs_summary *s;
3730 s = (struct f2fs_summary *)(kaddr + offset);
3731 seg_i->sum_blk->entries[j] = *s;
3732 offset += SUMMARY_SIZE;
3733 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3734 SUM_FOOTER_SIZE)
3735 continue;
3736
3737 f2fs_put_page(page, 1);
3738 page = NULL;
3739
3740 page = f2fs_get_meta_page(sbi, start++);
3741 if (IS_ERR(page))
3742 return PTR_ERR(page);
3743 kaddr = (unsigned char *)page_address(page);
3744 offset = 0;
3745 }
3746 }
3747 f2fs_put_page(page, 1);
3748 return 0;
3749 }
3750
read_normal_summaries(struct f2fs_sb_info * sbi,int type)3751 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3752 {
3753 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3754 struct f2fs_summary_block *sum;
3755 struct curseg_info *curseg;
3756 struct page *new;
3757 unsigned short blk_off;
3758 unsigned int segno = 0;
3759 block_t blk_addr = 0;
3760 int err = 0;
3761
3762 /* get segment number and block addr */
3763 if (IS_DATASEG(type)) {
3764 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3765 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3766 CURSEG_HOT_DATA]);
3767 if (__exist_node_summaries(sbi))
3768 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3769 else
3770 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3771 } else {
3772 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3773 CURSEG_HOT_NODE]);
3774 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3775 CURSEG_HOT_NODE]);
3776 if (__exist_node_summaries(sbi))
3777 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3778 type - CURSEG_HOT_NODE);
3779 else
3780 blk_addr = GET_SUM_BLOCK(sbi, segno);
3781 }
3782
3783 new = f2fs_get_meta_page(sbi, blk_addr);
3784 if (IS_ERR(new))
3785 return PTR_ERR(new);
3786 sum = (struct f2fs_summary_block *)page_address(new);
3787
3788 if (IS_NODESEG(type)) {
3789 if (__exist_node_summaries(sbi)) {
3790 struct f2fs_summary *ns = &sum->entries[0];
3791 int i;
3792 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3793 ns->version = 0;
3794 ns->ofs_in_node = 0;
3795 }
3796 } else {
3797 err = f2fs_restore_node_summary(sbi, segno, sum);
3798 if (err)
3799 goto out;
3800 }
3801 }
3802
3803 /* set uncompleted segment to curseg */
3804 curseg = CURSEG_I(sbi, type);
3805 mutex_lock(&curseg->curseg_mutex);
3806
3807 /* update journal info */
3808 down_write(&curseg->journal_rwsem);
3809 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3810 up_write(&curseg->journal_rwsem);
3811
3812 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3813 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3814 curseg->next_segno = segno;
3815 reset_curseg(sbi, type, 0);
3816 curseg->alloc_type = ckpt->alloc_type[type];
3817 curseg->next_blkoff = blk_off;
3818 mutex_unlock(&curseg->curseg_mutex);
3819 out:
3820 f2fs_put_page(new, 1);
3821 return err;
3822 }
3823
restore_curseg_summaries(struct f2fs_sb_info * sbi)3824 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3825 {
3826 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3827 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3828 int type = CURSEG_HOT_DATA;
3829 int err;
3830
3831 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3832 int npages = f2fs_npages_for_summary_flush(sbi, true);
3833
3834 if (npages >= 2)
3835 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3836 META_CP, true);
3837
3838 /* restore for compacted data summary */
3839 err = read_compacted_summaries(sbi);
3840 if (err)
3841 return err;
3842 type = CURSEG_HOT_NODE;
3843 }
3844
3845 if (__exist_node_summaries(sbi))
3846 f2fs_ra_meta_pages(sbi,
3847 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3848 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3849
3850 for (; type <= CURSEG_COLD_NODE; type++) {
3851 err = read_normal_summaries(sbi, type);
3852 if (err)
3853 return err;
3854 }
3855
3856 /* sanity check for summary blocks */
3857 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3858 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3859 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3860 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3861 return -EINVAL;
3862 }
3863
3864 return 0;
3865 }
3866
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)3867 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3868 {
3869 struct page *page;
3870 unsigned char *kaddr;
3871 struct f2fs_summary *summary;
3872 struct curseg_info *seg_i;
3873 int written_size = 0;
3874 int i, j;
3875
3876 page = f2fs_grab_meta_page(sbi, blkaddr++);
3877 kaddr = (unsigned char *)page_address(page);
3878 memset(kaddr, 0, PAGE_SIZE);
3879
3880 /* Step 1: write nat cache */
3881 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3882 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3883 written_size += SUM_JOURNAL_SIZE;
3884
3885 /* Step 2: write sit cache */
3886 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3887 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3888 written_size += SUM_JOURNAL_SIZE;
3889
3890 /* Step 3: write summary entries */
3891 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3892 unsigned short blkoff;
3893 seg_i = CURSEG_I(sbi, i);
3894 if (sbi->ckpt->alloc_type[i] == SSR)
3895 blkoff = sbi->blocks_per_seg;
3896 else
3897 blkoff = curseg_blkoff(sbi, i);
3898
3899 for (j = 0; j < blkoff; j++) {
3900 if (!page) {
3901 page = f2fs_grab_meta_page(sbi, blkaddr++);
3902 kaddr = (unsigned char *)page_address(page);
3903 memset(kaddr, 0, PAGE_SIZE);
3904 written_size = 0;
3905 }
3906 summary = (struct f2fs_summary *)(kaddr + written_size);
3907 *summary = seg_i->sum_blk->entries[j];
3908 written_size += SUMMARY_SIZE;
3909
3910 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3911 SUM_FOOTER_SIZE)
3912 continue;
3913
3914 set_page_dirty(page);
3915 f2fs_put_page(page, 1);
3916 page = NULL;
3917 }
3918 }
3919 if (page) {
3920 set_page_dirty(page);
3921 f2fs_put_page(page, 1);
3922 }
3923 }
3924
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3925 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3926 block_t blkaddr, int type)
3927 {
3928 int i, end;
3929 if (IS_DATASEG(type))
3930 end = type + NR_CURSEG_DATA_TYPE;
3931 else
3932 end = type + NR_CURSEG_NODE_TYPE;
3933
3934 for (i = type; i < end; i++)
3935 write_current_sum_page(sbi, i, blkaddr + (i - type));
3936 }
3937
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)3938 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3939 {
3940 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3941 write_compacted_summaries(sbi, start_blk);
3942 else
3943 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3944 }
3945
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)3946 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3947 {
3948 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3949 }
3950
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)3951 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3952 unsigned int val, int alloc)
3953 {
3954 int i;
3955
3956 if (type == NAT_JOURNAL) {
3957 for (i = 0; i < nats_in_cursum(journal); i++) {
3958 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3959 return i;
3960 }
3961 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3962 return update_nats_in_cursum(journal, 1);
3963 } else if (type == SIT_JOURNAL) {
3964 for (i = 0; i < sits_in_cursum(journal); i++)
3965 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3966 return i;
3967 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3968 return update_sits_in_cursum(journal, 1);
3969 }
3970 return -1;
3971 }
3972
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)3973 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3974 unsigned int segno)
3975 {
3976 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3977 }
3978
get_next_sit_page(struct f2fs_sb_info * sbi,unsigned int start)3979 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3980 unsigned int start)
3981 {
3982 struct sit_info *sit_i = SIT_I(sbi);
3983 struct page *page;
3984 pgoff_t src_off, dst_off;
3985
3986 src_off = current_sit_addr(sbi, start);
3987 dst_off = next_sit_addr(sbi, src_off);
3988
3989 page = f2fs_grab_meta_page(sbi, dst_off);
3990 seg_info_to_sit_page(sbi, page, start);
3991
3992 set_page_dirty(page);
3993 set_to_next_sit(sit_i, start);
3994
3995 return page;
3996 }
3997
grab_sit_entry_set(void)3998 static struct sit_entry_set *grab_sit_entry_set(void)
3999 {
4000 struct sit_entry_set *ses =
4001 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
4002
4003 ses->entry_cnt = 0;
4004 INIT_LIST_HEAD(&ses->set_list);
4005 return ses;
4006 }
4007
release_sit_entry_set(struct sit_entry_set * ses)4008 static void release_sit_entry_set(struct sit_entry_set *ses)
4009 {
4010 list_del(&ses->set_list);
4011 kmem_cache_free(sit_entry_set_slab, ses);
4012 }
4013
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)4014 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4015 struct list_head *head)
4016 {
4017 struct sit_entry_set *next = ses;
4018
4019 if (list_is_last(&ses->set_list, head))
4020 return;
4021
4022 list_for_each_entry_continue(next, head, set_list)
4023 if (ses->entry_cnt <= next->entry_cnt)
4024 break;
4025
4026 list_move_tail(&ses->set_list, &next->set_list);
4027 }
4028
add_sit_entry(unsigned int segno,struct list_head * head)4029 static void add_sit_entry(unsigned int segno, struct list_head *head)
4030 {
4031 struct sit_entry_set *ses;
4032 unsigned int start_segno = START_SEGNO(segno);
4033
4034 list_for_each_entry(ses, head, set_list) {
4035 if (ses->start_segno == start_segno) {
4036 ses->entry_cnt++;
4037 adjust_sit_entry_set(ses, head);
4038 return;
4039 }
4040 }
4041
4042 ses = grab_sit_entry_set();
4043
4044 ses->start_segno = start_segno;
4045 ses->entry_cnt++;
4046 list_add(&ses->set_list, head);
4047 }
4048
add_sits_in_set(struct f2fs_sb_info * sbi)4049 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4050 {
4051 struct f2fs_sm_info *sm_info = SM_I(sbi);
4052 struct list_head *set_list = &sm_info->sit_entry_set;
4053 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4054 unsigned int segno;
4055
4056 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4057 add_sit_entry(segno, set_list);
4058 }
4059
remove_sits_in_journal(struct f2fs_sb_info * sbi)4060 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4061 {
4062 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4063 struct f2fs_journal *journal = curseg->journal;
4064 int i;
4065
4066 down_write(&curseg->journal_rwsem);
4067 for (i = 0; i < sits_in_cursum(journal); i++) {
4068 unsigned int segno;
4069 bool dirtied;
4070
4071 segno = le32_to_cpu(segno_in_journal(journal, i));
4072 dirtied = __mark_sit_entry_dirty(sbi, segno);
4073
4074 if (!dirtied)
4075 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4076 }
4077 update_sits_in_cursum(journal, -i);
4078 up_write(&curseg->journal_rwsem);
4079 }
4080
4081 /*
4082 * CP calls this function, which flushes SIT entries including sit_journal,
4083 * and moves prefree segs to free segs.
4084 */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)4085 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4086 {
4087 struct sit_info *sit_i = SIT_I(sbi);
4088 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4089 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4090 struct f2fs_journal *journal = curseg->journal;
4091 struct sit_entry_set *ses, *tmp;
4092 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4093 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4094 struct seg_entry *se;
4095
4096 down_write(&sit_i->sentry_lock);
4097
4098 if (!sit_i->dirty_sentries)
4099 goto out;
4100
4101 /*
4102 * add and account sit entries of dirty bitmap in sit entry
4103 * set temporarily
4104 */
4105 add_sits_in_set(sbi);
4106
4107 /*
4108 * if there are no enough space in journal to store dirty sit
4109 * entries, remove all entries from journal and add and account
4110 * them in sit entry set.
4111 */
4112 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4113 !to_journal)
4114 remove_sits_in_journal(sbi);
4115
4116 /*
4117 * there are two steps to flush sit entries:
4118 * #1, flush sit entries to journal in current cold data summary block.
4119 * #2, flush sit entries to sit page.
4120 */
4121 list_for_each_entry_safe(ses, tmp, head, set_list) {
4122 struct page *page = NULL;
4123 struct f2fs_sit_block *raw_sit = NULL;
4124 unsigned int start_segno = ses->start_segno;
4125 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4126 (unsigned long)MAIN_SEGS(sbi));
4127 unsigned int segno = start_segno;
4128
4129 if (to_journal &&
4130 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4131 to_journal = false;
4132
4133 if (to_journal) {
4134 down_write(&curseg->journal_rwsem);
4135 } else {
4136 page = get_next_sit_page(sbi, start_segno);
4137 raw_sit = page_address(page);
4138 }
4139
4140 /* flush dirty sit entries in region of current sit set */
4141 for_each_set_bit_from(segno, bitmap, end) {
4142 int offset, sit_offset;
4143
4144 se = get_seg_entry(sbi, segno);
4145 #ifdef CONFIG_F2FS_CHECK_FS
4146 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4147 SIT_VBLOCK_MAP_SIZE))
4148 f2fs_bug_on(sbi, 1);
4149 #endif
4150
4151 /* add discard candidates */
4152 if (!(cpc->reason & CP_DISCARD)) {
4153 cpc->trim_start = segno;
4154 add_discard_addrs(sbi, cpc, false);
4155 }
4156
4157 if (to_journal) {
4158 offset = f2fs_lookup_journal_in_cursum(journal,
4159 SIT_JOURNAL, segno, 1);
4160 f2fs_bug_on(sbi, offset < 0);
4161 segno_in_journal(journal, offset) =
4162 cpu_to_le32(segno);
4163 seg_info_to_raw_sit(se,
4164 &sit_in_journal(journal, offset));
4165 check_block_count(sbi, segno,
4166 &sit_in_journal(journal, offset));
4167 } else {
4168 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4169 seg_info_to_raw_sit(se,
4170 &raw_sit->entries[sit_offset]);
4171 check_block_count(sbi, segno,
4172 &raw_sit->entries[sit_offset]);
4173 }
4174
4175 __clear_bit(segno, bitmap);
4176 sit_i->dirty_sentries--;
4177 ses->entry_cnt--;
4178 }
4179
4180 if (to_journal)
4181 up_write(&curseg->journal_rwsem);
4182 else
4183 f2fs_put_page(page, 1);
4184
4185 f2fs_bug_on(sbi, ses->entry_cnt);
4186 release_sit_entry_set(ses);
4187 }
4188
4189 f2fs_bug_on(sbi, !list_empty(head));
4190 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4191 out:
4192 if (cpc->reason & CP_DISCARD) {
4193 __u64 trim_start = cpc->trim_start;
4194
4195 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4196 add_discard_addrs(sbi, cpc, false);
4197
4198 cpc->trim_start = trim_start;
4199 }
4200 up_write(&sit_i->sentry_lock);
4201
4202 set_prefree_as_free_segments(sbi);
4203 }
4204
build_sit_info(struct f2fs_sb_info * sbi)4205 static int build_sit_info(struct f2fs_sb_info *sbi)
4206 {
4207 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4208 struct sit_info *sit_i;
4209 unsigned int sit_segs, start;
4210 char *src_bitmap, *bitmap;
4211 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4212
4213 /* allocate memory for SIT information */
4214 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4215 if (!sit_i)
4216 return -ENOMEM;
4217
4218 SM_I(sbi)->sit_info = sit_i;
4219
4220 sit_i->sentries =
4221 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4222 MAIN_SEGS(sbi)),
4223 GFP_KERNEL);
4224 if (!sit_i->sentries)
4225 return -ENOMEM;
4226
4227 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4228 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4229 GFP_KERNEL);
4230 if (!sit_i->dirty_sentries_bitmap)
4231 return -ENOMEM;
4232
4233 #ifdef CONFIG_F2FS_CHECK_FS
4234 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4235 #else
4236 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4237 #endif
4238 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4239 if (!sit_i->bitmap)
4240 return -ENOMEM;
4241
4242 bitmap = sit_i->bitmap;
4243
4244 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4245 sit_i->sentries[start].cur_valid_map = bitmap;
4246 bitmap += SIT_VBLOCK_MAP_SIZE;
4247
4248 sit_i->sentries[start].ckpt_valid_map = bitmap;
4249 bitmap += SIT_VBLOCK_MAP_SIZE;
4250
4251 #ifdef CONFIG_F2FS_CHECK_FS
4252 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4253 bitmap += SIT_VBLOCK_MAP_SIZE;
4254 #endif
4255
4256 sit_i->sentries[start].discard_map = bitmap;
4257 bitmap += SIT_VBLOCK_MAP_SIZE;
4258 }
4259
4260 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4261 if (!sit_i->tmp_map)
4262 return -ENOMEM;
4263
4264 if (__is_large_section(sbi)) {
4265 sit_i->sec_entries =
4266 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4267 MAIN_SECS(sbi)),
4268 GFP_KERNEL);
4269 if (!sit_i->sec_entries)
4270 return -ENOMEM;
4271 }
4272
4273 /* get information related with SIT */
4274 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4275
4276 /* setup SIT bitmap from ckeckpoint pack */
4277 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4278 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4279
4280 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4281 if (!sit_i->sit_bitmap)
4282 return -ENOMEM;
4283
4284 #ifdef CONFIG_F2FS_CHECK_FS
4285 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4286 sit_bitmap_size, GFP_KERNEL);
4287 if (!sit_i->sit_bitmap_mir)
4288 return -ENOMEM;
4289
4290 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4291 main_bitmap_size, GFP_KERNEL);
4292 if (!sit_i->invalid_segmap)
4293 return -ENOMEM;
4294 #endif
4295
4296 /* init SIT information */
4297 sit_i->s_ops = &default_salloc_ops;
4298
4299 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4300 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4301 sit_i->written_valid_blocks = 0;
4302 sit_i->bitmap_size = sit_bitmap_size;
4303 sit_i->dirty_sentries = 0;
4304 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4305 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4306 sit_i->mounted_time = ktime_get_boottime_seconds();
4307 init_rwsem(&sit_i->sentry_lock);
4308 return 0;
4309 }
4310
build_free_segmap(struct f2fs_sb_info * sbi)4311 static int build_free_segmap(struct f2fs_sb_info *sbi)
4312 {
4313 struct free_segmap_info *free_i;
4314 unsigned int bitmap_size, sec_bitmap_size;
4315
4316 /* allocate memory for free segmap information */
4317 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4318 if (!free_i)
4319 return -ENOMEM;
4320
4321 SM_I(sbi)->free_info = free_i;
4322
4323 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4324 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4325 if (!free_i->free_segmap)
4326 return -ENOMEM;
4327
4328 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4329 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4330 if (!free_i->free_secmap)
4331 return -ENOMEM;
4332
4333 /* set all segments as dirty temporarily */
4334 memset(free_i->free_segmap, 0xff, bitmap_size);
4335 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4336
4337 /* init free segmap information */
4338 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4339 free_i->free_segments = 0;
4340 free_i->free_sections = 0;
4341 spin_lock_init(&free_i->segmap_lock);
4342 return 0;
4343 }
4344
build_curseg(struct f2fs_sb_info * sbi)4345 static int build_curseg(struct f2fs_sb_info *sbi)
4346 {
4347 struct curseg_info *array;
4348 int i;
4349
4350 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4351 sizeof(*array)), GFP_KERNEL);
4352 if (!array)
4353 return -ENOMEM;
4354
4355 SM_I(sbi)->curseg_array = array;
4356
4357 for (i = 0; i < NO_CHECK_TYPE; i++) {
4358 mutex_init(&array[i].curseg_mutex);
4359 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4360 if (!array[i].sum_blk)
4361 return -ENOMEM;
4362 init_rwsem(&array[i].journal_rwsem);
4363 array[i].journal = f2fs_kzalloc(sbi,
4364 sizeof(struct f2fs_journal), GFP_KERNEL);
4365 if (!array[i].journal)
4366 return -ENOMEM;
4367 if (i < NR_PERSISTENT_LOG)
4368 array[i].seg_type = CURSEG_HOT_DATA + i;
4369 else if (i == CURSEG_COLD_DATA_PINNED)
4370 array[i].seg_type = CURSEG_COLD_DATA;
4371 else if (i == CURSEG_ALL_DATA_ATGC)
4372 array[i].seg_type = CURSEG_COLD_DATA;
4373 array[i].segno = NULL_SEGNO;
4374 array[i].next_blkoff = 0;
4375 array[i].inited = false;
4376 }
4377 return restore_curseg_summaries(sbi);
4378 }
4379
build_sit_entries(struct f2fs_sb_info * sbi)4380 static int build_sit_entries(struct f2fs_sb_info *sbi)
4381 {
4382 struct sit_info *sit_i = SIT_I(sbi);
4383 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4384 struct f2fs_journal *journal = curseg->journal;
4385 struct seg_entry *se;
4386 struct f2fs_sit_entry sit;
4387 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4388 unsigned int i, start, end;
4389 unsigned int readed, start_blk = 0;
4390 int err = 0;
4391 block_t total_node_blocks = 0;
4392
4393 do {
4394 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4395 META_SIT, true);
4396
4397 start = start_blk * sit_i->sents_per_block;
4398 end = (start_blk + readed) * sit_i->sents_per_block;
4399
4400 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4401 struct f2fs_sit_block *sit_blk;
4402 struct page *page;
4403
4404 se = &sit_i->sentries[start];
4405 page = get_current_sit_page(sbi, start);
4406 if (IS_ERR(page))
4407 return PTR_ERR(page);
4408 sit_blk = (struct f2fs_sit_block *)page_address(page);
4409 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4410 f2fs_put_page(page, 1);
4411
4412 err = check_block_count(sbi, start, &sit);
4413 if (err)
4414 return err;
4415 seg_info_from_raw_sit(se, &sit);
4416 if (IS_NODESEG(se->type))
4417 total_node_blocks += se->valid_blocks;
4418
4419 /* build discard map only one time */
4420 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4421 memset(se->discard_map, 0xff,
4422 SIT_VBLOCK_MAP_SIZE);
4423 } else {
4424 memcpy(se->discard_map,
4425 se->cur_valid_map,
4426 SIT_VBLOCK_MAP_SIZE);
4427 sbi->discard_blks +=
4428 sbi->blocks_per_seg -
4429 se->valid_blocks;
4430 }
4431
4432 if (__is_large_section(sbi))
4433 get_sec_entry(sbi, start)->valid_blocks +=
4434 se->valid_blocks;
4435 }
4436 start_blk += readed;
4437 } while (start_blk < sit_blk_cnt);
4438
4439 down_read(&curseg->journal_rwsem);
4440 for (i = 0; i < sits_in_cursum(journal); i++) {
4441 unsigned int old_valid_blocks;
4442
4443 start = le32_to_cpu(segno_in_journal(journal, i));
4444 if (start >= MAIN_SEGS(sbi)) {
4445 f2fs_err(sbi, "Wrong journal entry on segno %u",
4446 start);
4447 err = -EFSCORRUPTED;
4448 break;
4449 }
4450
4451 se = &sit_i->sentries[start];
4452 sit = sit_in_journal(journal, i);
4453
4454 old_valid_blocks = se->valid_blocks;
4455 if (IS_NODESEG(se->type))
4456 total_node_blocks -= old_valid_blocks;
4457
4458 err = check_block_count(sbi, start, &sit);
4459 if (err)
4460 break;
4461 seg_info_from_raw_sit(se, &sit);
4462 if (IS_NODESEG(se->type))
4463 total_node_blocks += se->valid_blocks;
4464
4465 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4466 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4467 } else {
4468 memcpy(se->discard_map, se->cur_valid_map,
4469 SIT_VBLOCK_MAP_SIZE);
4470 sbi->discard_blks += old_valid_blocks;
4471 sbi->discard_blks -= se->valid_blocks;
4472 }
4473
4474 if (__is_large_section(sbi)) {
4475 get_sec_entry(sbi, start)->valid_blocks +=
4476 se->valid_blocks;
4477 get_sec_entry(sbi, start)->valid_blocks -=
4478 old_valid_blocks;
4479 }
4480 }
4481 up_read(&curseg->journal_rwsem);
4482
4483 if (!err && total_node_blocks != valid_node_count(sbi)) {
4484 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4485 total_node_blocks, valid_node_count(sbi));
4486 err = -EFSCORRUPTED;
4487 }
4488
4489 return err;
4490 }
4491
init_free_segmap(struct f2fs_sb_info * sbi)4492 static void init_free_segmap(struct f2fs_sb_info *sbi)
4493 {
4494 unsigned int start;
4495 int type;
4496 struct seg_entry *sentry;
4497
4498 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4499 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4500 continue;
4501 sentry = get_seg_entry(sbi, start);
4502 if (!sentry->valid_blocks)
4503 __set_free(sbi, start);
4504 else
4505 SIT_I(sbi)->written_valid_blocks +=
4506 sentry->valid_blocks;
4507 }
4508
4509 /* set use the current segments */
4510 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4511 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4512 __set_test_and_inuse(sbi, curseg_t->segno);
4513 }
4514 }
4515
init_dirty_segmap(struct f2fs_sb_info * sbi)4516 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4517 {
4518 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4519 struct free_segmap_info *free_i = FREE_I(sbi);
4520 unsigned int segno = 0, offset = 0, secno;
4521 block_t valid_blocks, usable_blks_in_seg;
4522 block_t blks_per_sec = BLKS_PER_SEC(sbi);
4523
4524 while (1) {
4525 /* find dirty segment based on free segmap */
4526 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4527 if (segno >= MAIN_SEGS(sbi))
4528 break;
4529 offset = segno + 1;
4530 valid_blocks = get_valid_blocks(sbi, segno, false);
4531 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4532 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4533 continue;
4534 if (valid_blocks > usable_blks_in_seg) {
4535 f2fs_bug_on(sbi, 1);
4536 continue;
4537 }
4538 mutex_lock(&dirty_i->seglist_lock);
4539 __locate_dirty_segment(sbi, segno, DIRTY);
4540 mutex_unlock(&dirty_i->seglist_lock);
4541 }
4542
4543 if (!__is_large_section(sbi))
4544 return;
4545
4546 mutex_lock(&dirty_i->seglist_lock);
4547 for (segno = 0; segno < MAIN_SECS(sbi); segno += blks_per_sec) {
4548 valid_blocks = get_valid_blocks(sbi, segno, true);
4549 secno = GET_SEC_FROM_SEG(sbi, segno);
4550
4551 if (!valid_blocks || valid_blocks == blks_per_sec)
4552 continue;
4553 if (IS_CURSEC(sbi, secno))
4554 continue;
4555 set_bit(secno, dirty_i->dirty_secmap);
4556 }
4557 mutex_unlock(&dirty_i->seglist_lock);
4558 }
4559
init_victim_secmap(struct f2fs_sb_info * sbi)4560 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4561 {
4562 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4563 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4564
4565 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4566 if (!dirty_i->victim_secmap)
4567 return -ENOMEM;
4568 return 0;
4569 }
4570
build_dirty_segmap(struct f2fs_sb_info * sbi)4571 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4572 {
4573 struct dirty_seglist_info *dirty_i;
4574 unsigned int bitmap_size, i;
4575
4576 /* allocate memory for dirty segments list information */
4577 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4578 GFP_KERNEL);
4579 if (!dirty_i)
4580 return -ENOMEM;
4581
4582 SM_I(sbi)->dirty_info = dirty_i;
4583 mutex_init(&dirty_i->seglist_lock);
4584
4585 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4586
4587 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4588 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4589 GFP_KERNEL);
4590 if (!dirty_i->dirty_segmap[i])
4591 return -ENOMEM;
4592 }
4593
4594 if (__is_large_section(sbi)) {
4595 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4596 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4597 bitmap_size, GFP_KERNEL);
4598 if (!dirty_i->dirty_secmap)
4599 return -ENOMEM;
4600 }
4601
4602 init_dirty_segmap(sbi);
4603 return init_victim_secmap(sbi);
4604 }
4605
sanity_check_curseg(struct f2fs_sb_info * sbi)4606 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4607 {
4608 int i;
4609
4610 /*
4611 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4612 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4613 */
4614 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4615 struct curseg_info *curseg = CURSEG_I(sbi, i);
4616 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4617 unsigned int blkofs = curseg->next_blkoff;
4618
4619 sanity_check_seg_type(sbi, curseg->seg_type);
4620
4621 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4622 goto out;
4623
4624 if (curseg->alloc_type == SSR)
4625 continue;
4626
4627 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4628 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4629 continue;
4630 out:
4631 f2fs_err(sbi,
4632 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4633 i, curseg->segno, curseg->alloc_type,
4634 curseg->next_blkoff, blkofs);
4635 return -EFSCORRUPTED;
4636 }
4637 }
4638 return 0;
4639 }
4640
4641 #ifdef CONFIG_BLK_DEV_ZONED
4642
check_zone_write_pointer(struct f2fs_sb_info * sbi,struct f2fs_dev_info * fdev,struct blk_zone * zone)4643 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4644 struct f2fs_dev_info *fdev,
4645 struct blk_zone *zone)
4646 {
4647 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4648 block_t zone_block, wp_block, last_valid_block;
4649 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4650 int i, s, b, ret;
4651 struct seg_entry *se;
4652
4653 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4654 return 0;
4655
4656 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4657 wp_segno = GET_SEGNO(sbi, wp_block);
4658 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4659 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4660 zone_segno = GET_SEGNO(sbi, zone_block);
4661 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4662
4663 if (zone_segno >= MAIN_SEGS(sbi))
4664 return 0;
4665
4666 /*
4667 * Skip check of zones cursegs point to, since
4668 * fix_curseg_write_pointer() checks them.
4669 */
4670 for (i = 0; i < NO_CHECK_TYPE; i++)
4671 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4672 CURSEG_I(sbi, i)->segno))
4673 return 0;
4674
4675 /*
4676 * Get last valid block of the zone.
4677 */
4678 last_valid_block = zone_block - 1;
4679 for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4680 segno = zone_segno + s;
4681 se = get_seg_entry(sbi, segno);
4682 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4683 if (f2fs_test_bit(b, se->cur_valid_map)) {
4684 last_valid_block = START_BLOCK(sbi, segno) + b;
4685 break;
4686 }
4687 if (last_valid_block >= zone_block)
4688 break;
4689 }
4690
4691 /*
4692 * If last valid block is beyond the write pointer, report the
4693 * inconsistency. This inconsistency does not cause write error
4694 * because the zone will not be selected for write operation until
4695 * it get discarded. Just report it.
4696 */
4697 if (last_valid_block >= wp_block) {
4698 f2fs_notice(sbi, "Valid block beyond write pointer: "
4699 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4700 GET_SEGNO(sbi, last_valid_block),
4701 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4702 wp_segno, wp_blkoff);
4703 return 0;
4704 }
4705
4706 /*
4707 * If there is no valid block in the zone and if write pointer is
4708 * not at zone start, reset the write pointer.
4709 */
4710 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4711 f2fs_notice(sbi,
4712 "Zone without valid block has non-zero write "
4713 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4714 wp_segno, wp_blkoff);
4715 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4716 zone->len >> log_sectors_per_block);
4717 if (ret) {
4718 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4719 fdev->path, ret);
4720 return ret;
4721 }
4722 }
4723
4724 return 0;
4725 }
4726
get_target_zoned_dev(struct f2fs_sb_info * sbi,block_t zone_blkaddr)4727 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4728 block_t zone_blkaddr)
4729 {
4730 int i;
4731
4732 for (i = 0; i < sbi->s_ndevs; i++) {
4733 if (!bdev_is_zoned(FDEV(i).bdev))
4734 continue;
4735 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4736 zone_blkaddr <= FDEV(i).end_blk))
4737 return &FDEV(i);
4738 }
4739
4740 return NULL;
4741 }
4742
report_one_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)4743 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4744 void *data) {
4745 memcpy(data, zone, sizeof(struct blk_zone));
4746 return 0;
4747 }
4748
fix_curseg_write_pointer(struct f2fs_sb_info * sbi,int type)4749 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4750 {
4751 struct curseg_info *cs = CURSEG_I(sbi, type);
4752 struct f2fs_dev_info *zbd;
4753 struct blk_zone zone;
4754 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4755 block_t cs_zone_block, wp_block;
4756 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4757 sector_t zone_sector;
4758 int err;
4759
4760 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4761 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4762
4763 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4764 if (!zbd)
4765 return 0;
4766
4767 /* report zone for the sector the curseg points to */
4768 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4769 << log_sectors_per_block;
4770 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4771 report_one_zone_cb, &zone);
4772 if (err != 1) {
4773 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4774 zbd->path, err);
4775 return err;
4776 }
4777
4778 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4779 return 0;
4780
4781 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4782 wp_segno = GET_SEGNO(sbi, wp_block);
4783 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4784 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4785
4786 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4787 wp_sector_off == 0)
4788 return 0;
4789
4790 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4791 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4792 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4793
4794 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4795 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4796 allocate_segment_by_default(sbi, type, true);
4797
4798 /* check consistency of the zone curseg pointed to */
4799 if (check_zone_write_pointer(sbi, zbd, &zone))
4800 return -EIO;
4801
4802 /* check newly assigned zone */
4803 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4804 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4805
4806 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4807 if (!zbd)
4808 return 0;
4809
4810 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4811 << log_sectors_per_block;
4812 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4813 report_one_zone_cb, &zone);
4814 if (err != 1) {
4815 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4816 zbd->path, err);
4817 return err;
4818 }
4819
4820 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4821 return 0;
4822
4823 if (zone.wp != zone.start) {
4824 f2fs_notice(sbi,
4825 "New zone for curseg[%d] is not yet discarded. "
4826 "Reset the zone: curseg[0x%x,0x%x]",
4827 type, cs->segno, cs->next_blkoff);
4828 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4829 zone_sector >> log_sectors_per_block,
4830 zone.len >> log_sectors_per_block);
4831 if (err) {
4832 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4833 zbd->path, err);
4834 return err;
4835 }
4836 }
4837
4838 return 0;
4839 }
4840
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)4841 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4842 {
4843 int i, ret;
4844
4845 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4846 ret = fix_curseg_write_pointer(sbi, i);
4847 if (ret)
4848 return ret;
4849 }
4850
4851 return 0;
4852 }
4853
4854 struct check_zone_write_pointer_args {
4855 struct f2fs_sb_info *sbi;
4856 struct f2fs_dev_info *fdev;
4857 };
4858
check_zone_write_pointer_cb(struct blk_zone * zone,unsigned int idx,void * data)4859 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4860 void *data) {
4861 struct check_zone_write_pointer_args *args;
4862 args = (struct check_zone_write_pointer_args *)data;
4863
4864 return check_zone_write_pointer(args->sbi, args->fdev, zone);
4865 }
4866
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)4867 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4868 {
4869 int i, ret;
4870 struct check_zone_write_pointer_args args;
4871
4872 for (i = 0; i < sbi->s_ndevs; i++) {
4873 if (!bdev_is_zoned(FDEV(i).bdev))
4874 continue;
4875
4876 args.sbi = sbi;
4877 args.fdev = &FDEV(i);
4878 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4879 check_zone_write_pointer_cb, &args);
4880 if (ret < 0)
4881 return ret;
4882 }
4883
4884 return 0;
4885 }
4886
is_conv_zone(struct f2fs_sb_info * sbi,unsigned int zone_idx,unsigned int dev_idx)4887 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4888 unsigned int dev_idx)
4889 {
4890 if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4891 return true;
4892 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4893 }
4894
4895 /* Return the zone index in the given device */
get_zone_idx(struct f2fs_sb_info * sbi,unsigned int secno,int dev_idx)4896 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4897 int dev_idx)
4898 {
4899 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4900
4901 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4902 sbi->log_blocks_per_blkz;
4903 }
4904
4905 /*
4906 * Return the usable segments in a section based on the zone's
4907 * corresponding zone capacity. Zone is equal to a section.
4908 */
f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)4909 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4910 struct f2fs_sb_info *sbi, unsigned int segno)
4911 {
4912 unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
4913
4914 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4915 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4916
4917 /* Conventional zone's capacity is always equal to zone size */
4918 if (is_conv_zone(sbi, zone_idx, dev_idx))
4919 return sbi->segs_per_sec;
4920
4921 /*
4922 * If the zone_capacity_blocks array is NULL, then zone capacity
4923 * is equal to the zone size for all zones
4924 */
4925 if (!FDEV(dev_idx).zone_capacity_blocks)
4926 return sbi->segs_per_sec;
4927
4928 /* Get the segment count beyond zone capacity block */
4929 unusable_segs_in_sec = (sbi->blocks_per_blkz -
4930 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
4931 sbi->log_blocks_per_seg;
4932 return sbi->segs_per_sec - unusable_segs_in_sec;
4933 }
4934
4935 /*
4936 * Return the number of usable blocks in a segment. The number of blocks
4937 * returned is always equal to the number of blocks in a segment for
4938 * segments fully contained within a sequential zone capacity or a
4939 * conventional zone. For segments partially contained in a sequential
4940 * zone capacity, the number of usable blocks up to the zone capacity
4941 * is returned. 0 is returned in all other cases.
4942 */
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)4943 static inline unsigned int f2fs_usable_zone_blks_in_seg(
4944 struct f2fs_sb_info *sbi, unsigned int segno)
4945 {
4946 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
4947 unsigned int zone_idx, dev_idx, secno;
4948
4949 secno = GET_SEC_FROM_SEG(sbi, segno);
4950 seg_start = START_BLOCK(sbi, segno);
4951 dev_idx = f2fs_target_device_index(sbi, seg_start);
4952 zone_idx = get_zone_idx(sbi, secno, dev_idx);
4953
4954 /*
4955 * Conventional zone's capacity is always equal to zone size,
4956 * so, blocks per segment is unchanged.
4957 */
4958 if (is_conv_zone(sbi, zone_idx, dev_idx))
4959 return sbi->blocks_per_seg;
4960
4961 if (!FDEV(dev_idx).zone_capacity_blocks)
4962 return sbi->blocks_per_seg;
4963
4964 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4965 sec_cap_blkaddr = sec_start_blkaddr +
4966 FDEV(dev_idx).zone_capacity_blocks[zone_idx];
4967
4968 /*
4969 * If segment starts before zone capacity and spans beyond
4970 * zone capacity, then usable blocks are from seg start to
4971 * zone capacity. If the segment starts after the zone capacity,
4972 * then there are no usable blocks.
4973 */
4974 if (seg_start >= sec_cap_blkaddr)
4975 return 0;
4976 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
4977 return sec_cap_blkaddr - seg_start;
4978
4979 return sbi->blocks_per_seg;
4980 }
4981 #else
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)4982 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4983 {
4984 return 0;
4985 }
4986
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)4987 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4988 {
4989 return 0;
4990 }
4991
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)4992 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
4993 unsigned int segno)
4994 {
4995 return 0;
4996 }
4997
f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)4998 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
4999 unsigned int segno)
5000 {
5001 return 0;
5002 }
5003 #endif
f2fs_usable_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5004 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5005 unsigned int segno)
5006 {
5007 if (f2fs_sb_has_blkzoned(sbi))
5008 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5009
5010 return sbi->blocks_per_seg;
5011 }
5012
f2fs_usable_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)5013 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5014 unsigned int segno)
5015 {
5016 if (f2fs_sb_has_blkzoned(sbi))
5017 return f2fs_usable_zone_segs_in_sec(sbi, segno);
5018
5019 return sbi->segs_per_sec;
5020 }
5021
5022 /*
5023 * Update min, max modified time for cost-benefit GC algorithm
5024 */
init_min_max_mtime(struct f2fs_sb_info * sbi)5025 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5026 {
5027 struct sit_info *sit_i = SIT_I(sbi);
5028 unsigned int segno;
5029
5030 down_write(&sit_i->sentry_lock);
5031
5032 sit_i->min_mtime = ULLONG_MAX;
5033
5034 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5035 unsigned int i;
5036 unsigned long long mtime = 0;
5037
5038 for (i = 0; i < sbi->segs_per_sec; i++)
5039 mtime += get_seg_entry(sbi, segno + i)->mtime;
5040
5041 mtime = div_u64(mtime, sbi->segs_per_sec);
5042
5043 if (sit_i->min_mtime > mtime)
5044 sit_i->min_mtime = mtime;
5045 }
5046 sit_i->max_mtime = get_mtime(sbi, false);
5047 sit_i->dirty_max_mtime = 0;
5048 up_write(&sit_i->sentry_lock);
5049 }
5050
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)5051 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5052 {
5053 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5054 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5055 struct f2fs_sm_info *sm_info;
5056 int err;
5057
5058 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5059 if (!sm_info)
5060 return -ENOMEM;
5061
5062 /* init sm info */
5063 sbi->sm_info = sm_info;
5064 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5065 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5066 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5067 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5068 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5069 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5070 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5071 sm_info->rec_prefree_segments = sm_info->main_segments *
5072 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5073 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5074 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5075
5076 if (!f2fs_lfs_mode(sbi))
5077 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5078 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5079 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5080 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
5081 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5082 sm_info->min_ssr_sections = reserved_sections(sbi);
5083
5084 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5085
5086 init_rwsem(&sm_info->curseg_lock);
5087
5088 if (!f2fs_readonly(sbi->sb)) {
5089 err = f2fs_create_flush_cmd_control(sbi);
5090 if (err)
5091 return err;
5092 }
5093
5094 err = create_discard_cmd_control(sbi);
5095 if (err)
5096 return err;
5097
5098 err = build_sit_info(sbi);
5099 if (err)
5100 return err;
5101 err = build_free_segmap(sbi);
5102 if (err)
5103 return err;
5104 err = build_curseg(sbi);
5105 if (err)
5106 return err;
5107
5108 /* reinit free segmap based on SIT */
5109 err = build_sit_entries(sbi);
5110 if (err)
5111 return err;
5112
5113 init_free_segmap(sbi);
5114 err = build_dirty_segmap(sbi);
5115 if (err)
5116 return err;
5117
5118 err = sanity_check_curseg(sbi);
5119 if (err)
5120 return err;
5121
5122 init_min_max_mtime(sbi);
5123 return 0;
5124 }
5125
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)5126 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5127 enum dirty_type dirty_type)
5128 {
5129 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5130
5131 mutex_lock(&dirty_i->seglist_lock);
5132 kvfree(dirty_i->dirty_segmap[dirty_type]);
5133 dirty_i->nr_dirty[dirty_type] = 0;
5134 mutex_unlock(&dirty_i->seglist_lock);
5135 }
5136
destroy_victim_secmap(struct f2fs_sb_info * sbi)5137 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5138 {
5139 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5140 kvfree(dirty_i->victim_secmap);
5141 }
5142
destroy_dirty_segmap(struct f2fs_sb_info * sbi)5143 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5144 {
5145 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5146 int i;
5147
5148 if (!dirty_i)
5149 return;
5150
5151 /* discard pre-free/dirty segments list */
5152 for (i = 0; i < NR_DIRTY_TYPE; i++)
5153 discard_dirty_segmap(sbi, i);
5154
5155 if (__is_large_section(sbi)) {
5156 mutex_lock(&dirty_i->seglist_lock);
5157 kvfree(dirty_i->dirty_secmap);
5158 mutex_unlock(&dirty_i->seglist_lock);
5159 }
5160
5161 destroy_victim_secmap(sbi);
5162 SM_I(sbi)->dirty_info = NULL;
5163 kfree(dirty_i);
5164 }
5165
destroy_curseg(struct f2fs_sb_info * sbi)5166 static void destroy_curseg(struct f2fs_sb_info *sbi)
5167 {
5168 struct curseg_info *array = SM_I(sbi)->curseg_array;
5169 int i;
5170
5171 if (!array)
5172 return;
5173 SM_I(sbi)->curseg_array = NULL;
5174 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5175 kfree(array[i].sum_blk);
5176 kfree(array[i].journal);
5177 }
5178 kfree(array);
5179 }
5180
destroy_free_segmap(struct f2fs_sb_info * sbi)5181 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5182 {
5183 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5184 if (!free_i)
5185 return;
5186 SM_I(sbi)->free_info = NULL;
5187 kvfree(free_i->free_segmap);
5188 kvfree(free_i->free_secmap);
5189 kfree(free_i);
5190 }
5191
destroy_sit_info(struct f2fs_sb_info * sbi)5192 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5193 {
5194 struct sit_info *sit_i = SIT_I(sbi);
5195
5196 if (!sit_i)
5197 return;
5198
5199 if (sit_i->sentries)
5200 kvfree(sit_i->bitmap);
5201 kfree(sit_i->tmp_map);
5202
5203 kvfree(sit_i->sentries);
5204 kvfree(sit_i->sec_entries);
5205 kvfree(sit_i->dirty_sentries_bitmap);
5206
5207 SM_I(sbi)->sit_info = NULL;
5208 kvfree(sit_i->sit_bitmap);
5209 #ifdef CONFIG_F2FS_CHECK_FS
5210 kvfree(sit_i->sit_bitmap_mir);
5211 kvfree(sit_i->invalid_segmap);
5212 #endif
5213 kfree(sit_i);
5214 }
5215
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)5216 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5217 {
5218 struct f2fs_sm_info *sm_info = SM_I(sbi);
5219
5220 if (!sm_info)
5221 return;
5222 f2fs_destroy_flush_cmd_control(sbi, true);
5223 destroy_discard_cmd_control(sbi);
5224 destroy_dirty_segmap(sbi);
5225 destroy_curseg(sbi);
5226 destroy_free_segmap(sbi);
5227 destroy_sit_info(sbi);
5228 sbi->sm_info = NULL;
5229 kfree(sm_info);
5230 }
5231
f2fs_create_segment_manager_caches(void)5232 int __init f2fs_create_segment_manager_caches(void)
5233 {
5234 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5235 sizeof(struct discard_entry));
5236 if (!discard_entry_slab)
5237 goto fail;
5238
5239 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5240 sizeof(struct discard_cmd));
5241 if (!discard_cmd_slab)
5242 goto destroy_discard_entry;
5243
5244 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5245 sizeof(struct sit_entry_set));
5246 if (!sit_entry_set_slab)
5247 goto destroy_discard_cmd;
5248
5249 inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5250 sizeof(struct inmem_pages));
5251 if (!inmem_entry_slab)
5252 goto destroy_sit_entry_set;
5253 return 0;
5254
5255 destroy_sit_entry_set:
5256 kmem_cache_destroy(sit_entry_set_slab);
5257 destroy_discard_cmd:
5258 kmem_cache_destroy(discard_cmd_slab);
5259 destroy_discard_entry:
5260 kmem_cache_destroy(discard_entry_slab);
5261 fail:
5262 return -ENOMEM;
5263 }
5264
f2fs_destroy_segment_manager_caches(void)5265 void f2fs_destroy_segment_manager_caches(void)
5266 {
5267 kmem_cache_destroy(sit_entry_set_slab);
5268 kmem_cache_destroy(discard_cmd_slab);
5269 kmem_cache_destroy(discard_entry_slab);
5270 kmem_cache_destroy(inmem_entry_slab);
5271 }
5272