1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/checkpoint.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16
17 #include "f2fs.h"
18 #include "node.h"
19 #include "segment.h"
20 #include "trace.h"
21 #include <trace/events/f2fs.h>
22
23 static struct kmem_cache *ino_entry_slab;
24 struct kmem_cache *f2fs_inode_entry_slab;
25
f2fs_stop_checkpoint(struct f2fs_sb_info * sbi,bool end_io)26 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
27 {
28 f2fs_build_fault_attr(sbi, 0, 0);
29 set_ckpt_flags(sbi, CP_ERROR_FLAG);
30 if (!end_io)
31 f2fs_flush_merged_writes(sbi);
32 }
33
34 /*
35 * We guarantee no failure on the returned page.
36 */
f2fs_grab_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)37 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
38 {
39 struct address_space *mapping = META_MAPPING(sbi);
40 struct page *page = NULL;
41 repeat:
42 page = f2fs_grab_cache_page(mapping, index, false);
43 if (!page) {
44 cond_resched();
45 goto repeat;
46 }
47 f2fs_wait_on_page_writeback(page, META, true, true);
48 if (!PageUptodate(page))
49 SetPageUptodate(page);
50 return page;
51 }
52
__get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index,bool is_meta)53 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
54 bool is_meta)
55 {
56 struct address_space *mapping = META_MAPPING(sbi);
57 struct page *page;
58 struct f2fs_io_info fio = {
59 .sbi = sbi,
60 .type = META,
61 .op = REQ_OP_READ,
62 .op_flags = REQ_META | REQ_PRIO,
63 .old_blkaddr = index,
64 .new_blkaddr = index,
65 .encrypted_page = NULL,
66 .is_por = !is_meta,
67 };
68 int err;
69
70 if (unlikely(!is_meta))
71 fio.op_flags &= ~REQ_META;
72 repeat:
73 page = f2fs_grab_cache_page(mapping, index, false);
74 if (!page) {
75 cond_resched();
76 goto repeat;
77 }
78 if (PageUptodate(page))
79 goto out;
80
81 fio.page = page;
82
83 err = f2fs_submit_page_bio(&fio);
84 if (err) {
85 f2fs_put_page(page, 1);
86 return ERR_PTR(err);
87 }
88
89 f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
90
91 lock_page(page);
92 if (unlikely(page->mapping != mapping)) {
93 f2fs_put_page(page, 1);
94 goto repeat;
95 }
96
97 if (unlikely(!PageUptodate(page))) {
98 f2fs_put_page(page, 1);
99 return ERR_PTR(-EIO);
100 }
101 out:
102 return page;
103 }
104
f2fs_get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)105 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
106 {
107 return __get_meta_page(sbi, index, true);
108 }
109
f2fs_get_meta_page_retry(struct f2fs_sb_info * sbi,pgoff_t index)110 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
111 {
112 struct page *page;
113 int count = 0;
114
115 retry:
116 page = __get_meta_page(sbi, index, true);
117 if (IS_ERR(page)) {
118 if (PTR_ERR(page) == -EIO &&
119 ++count <= DEFAULT_RETRY_IO_COUNT)
120 goto retry;
121 f2fs_stop_checkpoint(sbi, false);
122 }
123 return page;
124 }
125
126 /* for POR only */
f2fs_get_tmp_page(struct f2fs_sb_info * sbi,pgoff_t index)127 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
128 {
129 return __get_meta_page(sbi, index, false);
130 }
131
__is_bitmap_valid(struct f2fs_sb_info * sbi,block_t blkaddr,int type)132 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
133 int type)
134 {
135 struct seg_entry *se;
136 unsigned int segno, offset;
137 bool exist;
138
139 if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ)
140 return true;
141
142 segno = GET_SEGNO(sbi, blkaddr);
143 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
144 se = get_seg_entry(sbi, segno);
145
146 exist = f2fs_test_bit(offset, se->cur_valid_map);
147 if (!exist && type == DATA_GENERIC_ENHANCE) {
148 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
149 blkaddr, exist);
150 set_sbi_flag(sbi, SBI_NEED_FSCK);
151 WARN_ON(1);
152 }
153 return exist;
154 }
155
f2fs_is_valid_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)156 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
157 block_t blkaddr, int type)
158 {
159 switch (type) {
160 case META_NAT:
161 break;
162 case META_SIT:
163 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
164 return false;
165 break;
166 case META_SSA:
167 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
168 blkaddr < SM_I(sbi)->ssa_blkaddr))
169 return false;
170 break;
171 case META_CP:
172 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
173 blkaddr < __start_cp_addr(sbi)))
174 return false;
175 break;
176 case META_POR:
177 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
178 blkaddr < MAIN_BLKADDR(sbi)))
179 return false;
180 break;
181 case DATA_GENERIC:
182 case DATA_GENERIC_ENHANCE:
183 case DATA_GENERIC_ENHANCE_READ:
184 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
185 blkaddr < MAIN_BLKADDR(sbi))) {
186 f2fs_warn(sbi, "access invalid blkaddr:%u",
187 blkaddr);
188 set_sbi_flag(sbi, SBI_NEED_FSCK);
189 WARN_ON(1);
190 return false;
191 } else {
192 return __is_bitmap_valid(sbi, blkaddr, type);
193 }
194 break;
195 case META_GENERIC:
196 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
197 blkaddr >= MAIN_BLKADDR(sbi)))
198 return false;
199 break;
200 default:
201 BUG();
202 }
203
204 return true;
205 }
206
207 /*
208 * Readahead CP/NAT/SIT/SSA/POR pages
209 */
f2fs_ra_meta_pages(struct f2fs_sb_info * sbi,block_t start,int nrpages,int type,bool sync)210 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
211 int type, bool sync)
212 {
213 struct page *page;
214 block_t blkno = start;
215 struct f2fs_io_info fio = {
216 .sbi = sbi,
217 .type = META,
218 .op = REQ_OP_READ,
219 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
220 .encrypted_page = NULL,
221 .in_list = false,
222 .is_por = (type == META_POR),
223 };
224 struct blk_plug plug;
225 int err;
226
227 if (unlikely(type == META_POR))
228 fio.op_flags &= ~REQ_META;
229
230 blk_start_plug(&plug);
231 for (; nrpages-- > 0; blkno++) {
232
233 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
234 goto out;
235
236 switch (type) {
237 case META_NAT:
238 if (unlikely(blkno >=
239 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
240 blkno = 0;
241 /* get nat block addr */
242 fio.new_blkaddr = current_nat_addr(sbi,
243 blkno * NAT_ENTRY_PER_BLOCK);
244 break;
245 case META_SIT:
246 if (unlikely(blkno >= TOTAL_SEGS(sbi)))
247 goto out;
248 /* get sit block addr */
249 fio.new_blkaddr = current_sit_addr(sbi,
250 blkno * SIT_ENTRY_PER_BLOCK);
251 break;
252 case META_SSA:
253 case META_CP:
254 case META_POR:
255 fio.new_blkaddr = blkno;
256 break;
257 default:
258 BUG();
259 }
260
261 page = f2fs_grab_cache_page(META_MAPPING(sbi),
262 fio.new_blkaddr, false);
263 if (!page)
264 continue;
265 if (PageUptodate(page)) {
266 f2fs_put_page(page, 1);
267 continue;
268 }
269
270 fio.page = page;
271 err = f2fs_submit_page_bio(&fio);
272 f2fs_put_page(page, err ? 1 : 0);
273
274 if (!err)
275 f2fs_update_iostat(sbi, FS_META_READ_IO, F2FS_BLKSIZE);
276 }
277 out:
278 blk_finish_plug(&plug);
279 return blkno - start;
280 }
281
f2fs_ra_meta_pages_cond(struct f2fs_sb_info * sbi,pgoff_t index)282 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
283 {
284 struct page *page;
285 bool readahead = false;
286
287 page = find_get_page(META_MAPPING(sbi), index);
288 if (!page || !PageUptodate(page))
289 readahead = true;
290 f2fs_put_page(page, 0);
291
292 if (readahead)
293 f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
294 }
295
__f2fs_write_meta_page(struct page * page,struct writeback_control * wbc,enum iostat_type io_type)296 static int __f2fs_write_meta_page(struct page *page,
297 struct writeback_control *wbc,
298 enum iostat_type io_type)
299 {
300 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
301
302 trace_f2fs_writepage(page, META);
303
304 if (unlikely(f2fs_cp_error(sbi)))
305 goto redirty_out;
306 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
307 goto redirty_out;
308 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
309 goto redirty_out;
310
311 f2fs_do_write_meta_page(sbi, page, io_type);
312 dec_page_count(sbi, F2FS_DIRTY_META);
313
314 if (wbc->for_reclaim)
315 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
316
317 unlock_page(page);
318
319 if (unlikely(f2fs_cp_error(sbi)))
320 f2fs_submit_merged_write(sbi, META);
321
322 return 0;
323
324 redirty_out:
325 redirty_page_for_writepage(wbc, page);
326 return AOP_WRITEPAGE_ACTIVATE;
327 }
328
f2fs_write_meta_page(struct page * page,struct writeback_control * wbc)329 static int f2fs_write_meta_page(struct page *page,
330 struct writeback_control *wbc)
331 {
332 return __f2fs_write_meta_page(page, wbc, FS_META_IO);
333 }
334
f2fs_write_meta_pages(struct address_space * mapping,struct writeback_control * wbc)335 static int f2fs_write_meta_pages(struct address_space *mapping,
336 struct writeback_control *wbc)
337 {
338 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
339 long diff, written;
340
341 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
342 goto skip_write;
343
344 /* collect a number of dirty meta pages and write together */
345 if (wbc->sync_mode != WB_SYNC_ALL &&
346 get_pages(sbi, F2FS_DIRTY_META) <
347 nr_pages_to_skip(sbi, META))
348 goto skip_write;
349
350 /* if locked failed, cp will flush dirty pages instead */
351 if (!mutex_trylock(&sbi->cp_mutex))
352 goto skip_write;
353
354 trace_f2fs_writepages(mapping->host, wbc, META);
355 diff = nr_pages_to_write(sbi, META, wbc);
356 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
357 mutex_unlock(&sbi->cp_mutex);
358 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
359 return 0;
360
361 skip_write:
362 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
363 trace_f2fs_writepages(mapping->host, wbc, META);
364 return 0;
365 }
366
f2fs_sync_meta_pages(struct f2fs_sb_info * sbi,enum page_type type,long nr_to_write,enum iostat_type io_type)367 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
368 long nr_to_write, enum iostat_type io_type)
369 {
370 struct address_space *mapping = META_MAPPING(sbi);
371 pgoff_t index = 0, prev = ULONG_MAX;
372 struct pagevec pvec;
373 long nwritten = 0;
374 int nr_pages;
375 struct writeback_control wbc = {
376 .for_reclaim = 0,
377 };
378 struct blk_plug plug;
379
380 pagevec_init(&pvec);
381
382 blk_start_plug(&plug);
383
384 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
385 PAGECACHE_TAG_DIRTY))) {
386 int i;
387
388 for (i = 0; i < nr_pages; i++) {
389 struct page *page = pvec.pages[i];
390
391 if (prev == ULONG_MAX)
392 prev = page->index - 1;
393 if (nr_to_write != LONG_MAX && page->index != prev + 1) {
394 pagevec_release(&pvec);
395 goto stop;
396 }
397
398 lock_page(page);
399
400 if (unlikely(page->mapping != mapping)) {
401 continue_unlock:
402 unlock_page(page);
403 continue;
404 }
405 if (!PageDirty(page)) {
406 /* someone wrote it for us */
407 goto continue_unlock;
408 }
409
410 f2fs_wait_on_page_writeback(page, META, true, true);
411
412 if (!clear_page_dirty_for_io(page))
413 goto continue_unlock;
414
415 if (__f2fs_write_meta_page(page, &wbc, io_type)) {
416 unlock_page(page);
417 break;
418 }
419 nwritten++;
420 prev = page->index;
421 if (unlikely(nwritten >= nr_to_write))
422 break;
423 }
424 pagevec_release(&pvec);
425 cond_resched();
426 }
427 stop:
428 if (nwritten)
429 f2fs_submit_merged_write(sbi, type);
430
431 blk_finish_plug(&plug);
432
433 return nwritten;
434 }
435
f2fs_set_meta_page_dirty(struct page * page)436 static int f2fs_set_meta_page_dirty(struct page *page)
437 {
438 trace_f2fs_set_page_dirty(page, META);
439
440 if (!PageUptodate(page))
441 SetPageUptodate(page);
442 if (!PageDirty(page)) {
443 __set_page_dirty_nobuffers(page);
444 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
445 f2fs_set_page_private(page, 0);
446 f2fs_trace_pid(page);
447 return 1;
448 }
449 return 0;
450 }
451
452 const struct address_space_operations f2fs_meta_aops = {
453 .writepage = f2fs_write_meta_page,
454 .writepages = f2fs_write_meta_pages,
455 .set_page_dirty = f2fs_set_meta_page_dirty,
456 .invalidatepage = f2fs_invalidate_page,
457 .releasepage = f2fs_release_page,
458 #ifdef CONFIG_MIGRATION
459 .migratepage = f2fs_migrate_page,
460 #endif
461 };
462
__add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)463 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
464 unsigned int devidx, int type)
465 {
466 struct inode_management *im = &sbi->im[type];
467 struct ino_entry *e, *tmp;
468
469 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
470
471 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
472
473 spin_lock(&im->ino_lock);
474 e = radix_tree_lookup(&im->ino_root, ino);
475 if (!e) {
476 e = tmp;
477 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
478 f2fs_bug_on(sbi, 1);
479
480 memset(e, 0, sizeof(struct ino_entry));
481 e->ino = ino;
482
483 list_add_tail(&e->list, &im->ino_list);
484 if (type != ORPHAN_INO)
485 im->ino_num++;
486 }
487
488 if (type == FLUSH_INO)
489 f2fs_set_bit(devidx, (char *)&e->dirty_device);
490
491 spin_unlock(&im->ino_lock);
492 radix_tree_preload_end();
493
494 if (e != tmp)
495 kmem_cache_free(ino_entry_slab, tmp);
496 }
497
__remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)498 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
499 {
500 struct inode_management *im = &sbi->im[type];
501 struct ino_entry *e;
502
503 spin_lock(&im->ino_lock);
504 e = radix_tree_lookup(&im->ino_root, ino);
505 if (e) {
506 list_del(&e->list);
507 radix_tree_delete(&im->ino_root, ino);
508 im->ino_num--;
509 spin_unlock(&im->ino_lock);
510 kmem_cache_free(ino_entry_slab, e);
511 return;
512 }
513 spin_unlock(&im->ino_lock);
514 }
515
f2fs_add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)516 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
517 {
518 /* add new dirty ino entry into list */
519 __add_ino_entry(sbi, ino, 0, type);
520 }
521
f2fs_remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)522 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
523 {
524 /* remove dirty ino entry from list */
525 __remove_ino_entry(sbi, ino, type);
526 }
527
528 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
f2fs_exist_written_data(struct f2fs_sb_info * sbi,nid_t ino,int mode)529 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
530 {
531 struct inode_management *im = &sbi->im[mode];
532 struct ino_entry *e;
533
534 spin_lock(&im->ino_lock);
535 e = radix_tree_lookup(&im->ino_root, ino);
536 spin_unlock(&im->ino_lock);
537 return e ? true : false;
538 }
539
f2fs_release_ino_entry(struct f2fs_sb_info * sbi,bool all)540 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
541 {
542 struct ino_entry *e, *tmp;
543 int i;
544
545 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
546 struct inode_management *im = &sbi->im[i];
547
548 spin_lock(&im->ino_lock);
549 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
550 list_del(&e->list);
551 radix_tree_delete(&im->ino_root, e->ino);
552 kmem_cache_free(ino_entry_slab, e);
553 im->ino_num--;
554 }
555 spin_unlock(&im->ino_lock);
556 }
557 }
558
f2fs_set_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)559 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
560 unsigned int devidx, int type)
561 {
562 __add_ino_entry(sbi, ino, devidx, type);
563 }
564
f2fs_is_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)565 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
566 unsigned int devidx, int type)
567 {
568 struct inode_management *im = &sbi->im[type];
569 struct ino_entry *e;
570 bool is_dirty = false;
571
572 spin_lock(&im->ino_lock);
573 e = radix_tree_lookup(&im->ino_root, ino);
574 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
575 is_dirty = true;
576 spin_unlock(&im->ino_lock);
577 return is_dirty;
578 }
579
f2fs_acquire_orphan_inode(struct f2fs_sb_info * sbi)580 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
581 {
582 struct inode_management *im = &sbi->im[ORPHAN_INO];
583 int err = 0;
584
585 spin_lock(&im->ino_lock);
586
587 if (time_to_inject(sbi, FAULT_ORPHAN)) {
588 spin_unlock(&im->ino_lock);
589 f2fs_show_injection_info(sbi, FAULT_ORPHAN);
590 return -ENOSPC;
591 }
592
593 if (unlikely(im->ino_num >= sbi->max_orphans))
594 err = -ENOSPC;
595 else
596 im->ino_num++;
597 spin_unlock(&im->ino_lock);
598
599 return err;
600 }
601
f2fs_release_orphan_inode(struct f2fs_sb_info * sbi)602 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
603 {
604 struct inode_management *im = &sbi->im[ORPHAN_INO];
605
606 spin_lock(&im->ino_lock);
607 f2fs_bug_on(sbi, im->ino_num == 0);
608 im->ino_num--;
609 spin_unlock(&im->ino_lock);
610 }
611
f2fs_add_orphan_inode(struct inode * inode)612 void f2fs_add_orphan_inode(struct inode *inode)
613 {
614 /* add new orphan ino entry into list */
615 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
616 f2fs_update_inode_page(inode);
617 }
618
f2fs_remove_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)619 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
620 {
621 /* remove orphan entry from orphan list */
622 __remove_ino_entry(sbi, ino, ORPHAN_INO);
623 }
624
recover_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)625 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
626 {
627 struct inode *inode;
628 struct node_info ni;
629 int err;
630
631 inode = f2fs_iget_retry(sbi->sb, ino);
632 if (IS_ERR(inode)) {
633 /*
634 * there should be a bug that we can't find the entry
635 * to orphan inode.
636 */
637 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
638 return PTR_ERR(inode);
639 }
640
641 err = dquot_initialize(inode);
642 if (err) {
643 iput(inode);
644 goto err_out;
645 }
646
647 clear_nlink(inode);
648
649 /* truncate all the data during iput */
650 iput(inode);
651
652 err = f2fs_get_node_info(sbi, ino, &ni);
653 if (err)
654 goto err_out;
655
656 /* ENOMEM was fully retried in f2fs_evict_inode. */
657 if (ni.blk_addr != NULL_ADDR) {
658 err = -EIO;
659 goto err_out;
660 }
661 return 0;
662
663 err_out:
664 set_sbi_flag(sbi, SBI_NEED_FSCK);
665 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
666 __func__, ino);
667 return err;
668 }
669
f2fs_recover_orphan_inodes(struct f2fs_sb_info * sbi)670 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
671 {
672 block_t start_blk, orphan_blocks, i, j;
673 unsigned int s_flags = sbi->sb->s_flags;
674 int err = 0;
675 #ifdef CONFIG_QUOTA
676 int quota_enabled;
677 #endif
678
679 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
680 return 0;
681
682 if (bdev_read_only(sbi->sb->s_bdev)) {
683 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
684 return 0;
685 }
686
687 if (s_flags & SB_RDONLY) {
688 f2fs_info(sbi, "orphan cleanup on readonly fs");
689 sbi->sb->s_flags &= ~SB_RDONLY;
690 }
691
692 #ifdef CONFIG_QUOTA
693 /* Needed for iput() to work correctly and not trash data */
694 sbi->sb->s_flags |= SB_ACTIVE;
695
696 /*
697 * Turn on quotas which were not enabled for read-only mounts if
698 * filesystem has quota feature, so that they are updated correctly.
699 */
700 quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
701 #endif
702
703 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
704 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
705
706 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
707
708 for (i = 0; i < orphan_blocks; i++) {
709 struct page *page;
710 struct f2fs_orphan_block *orphan_blk;
711
712 page = f2fs_get_meta_page(sbi, start_blk + i);
713 if (IS_ERR(page)) {
714 err = PTR_ERR(page);
715 goto out;
716 }
717
718 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
719 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
720 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
721 err = recover_orphan_inode(sbi, ino);
722 if (err) {
723 f2fs_put_page(page, 1);
724 goto out;
725 }
726 }
727 f2fs_put_page(page, 1);
728 }
729 /* clear Orphan Flag */
730 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
731 out:
732 set_sbi_flag(sbi, SBI_IS_RECOVERED);
733
734 #ifdef CONFIG_QUOTA
735 /* Turn quotas off */
736 if (quota_enabled)
737 f2fs_quota_off_umount(sbi->sb);
738 #endif
739 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
740
741 return err;
742 }
743
write_orphan_inodes(struct f2fs_sb_info * sbi,block_t start_blk)744 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
745 {
746 struct list_head *head;
747 struct f2fs_orphan_block *orphan_blk = NULL;
748 unsigned int nentries = 0;
749 unsigned short index = 1;
750 unsigned short orphan_blocks;
751 struct page *page = NULL;
752 struct ino_entry *orphan = NULL;
753 struct inode_management *im = &sbi->im[ORPHAN_INO];
754
755 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
756
757 /*
758 * we don't need to do spin_lock(&im->ino_lock) here, since all the
759 * orphan inode operations are covered under f2fs_lock_op().
760 * And, spin_lock should be avoided due to page operations below.
761 */
762 head = &im->ino_list;
763
764 /* loop for each orphan inode entry and write them in Jornal block */
765 list_for_each_entry(orphan, head, list) {
766 if (!page) {
767 page = f2fs_grab_meta_page(sbi, start_blk++);
768 orphan_blk =
769 (struct f2fs_orphan_block *)page_address(page);
770 memset(orphan_blk, 0, sizeof(*orphan_blk));
771 }
772
773 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
774
775 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
776 /*
777 * an orphan block is full of 1020 entries,
778 * then we need to flush current orphan blocks
779 * and bring another one in memory
780 */
781 orphan_blk->blk_addr = cpu_to_le16(index);
782 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
783 orphan_blk->entry_count = cpu_to_le32(nentries);
784 set_page_dirty(page);
785 f2fs_put_page(page, 1);
786 index++;
787 nentries = 0;
788 page = NULL;
789 }
790 }
791
792 if (page) {
793 orphan_blk->blk_addr = cpu_to_le16(index);
794 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
795 orphan_blk->entry_count = cpu_to_le32(nentries);
796 set_page_dirty(page);
797 f2fs_put_page(page, 1);
798 }
799 }
800
f2fs_checkpoint_chksum(struct f2fs_sb_info * sbi,struct f2fs_checkpoint * ckpt)801 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
802 struct f2fs_checkpoint *ckpt)
803 {
804 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
805 __u32 chksum;
806
807 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
808 if (chksum_ofs < CP_CHKSUM_OFFSET) {
809 chksum_ofs += sizeof(chksum);
810 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
811 F2FS_BLKSIZE - chksum_ofs);
812 }
813 return chksum;
814 }
815
get_checkpoint_version(struct f2fs_sb_info * sbi,block_t cp_addr,struct f2fs_checkpoint ** cp_block,struct page ** cp_page,unsigned long long * version)816 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
817 struct f2fs_checkpoint **cp_block, struct page **cp_page,
818 unsigned long long *version)
819 {
820 size_t crc_offset = 0;
821 __u32 crc;
822
823 *cp_page = f2fs_get_meta_page(sbi, cp_addr);
824 if (IS_ERR(*cp_page))
825 return PTR_ERR(*cp_page);
826
827 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
828
829 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
830 if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
831 crc_offset > CP_CHKSUM_OFFSET) {
832 f2fs_put_page(*cp_page, 1);
833 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
834 return -EINVAL;
835 }
836
837 crc = f2fs_checkpoint_chksum(sbi, *cp_block);
838 if (crc != cur_cp_crc(*cp_block)) {
839 f2fs_put_page(*cp_page, 1);
840 f2fs_warn(sbi, "invalid crc value");
841 return -EINVAL;
842 }
843
844 *version = cur_cp_version(*cp_block);
845 return 0;
846 }
847
validate_checkpoint(struct f2fs_sb_info * sbi,block_t cp_addr,unsigned long long * version)848 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
849 block_t cp_addr, unsigned long long *version)
850 {
851 struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
852 struct f2fs_checkpoint *cp_block = NULL;
853 unsigned long long cur_version = 0, pre_version = 0;
854 int err;
855
856 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
857 &cp_page_1, version);
858 if (err)
859 return NULL;
860
861 if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
862 sbi->blocks_per_seg) {
863 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
864 le32_to_cpu(cp_block->cp_pack_total_block_count));
865 goto invalid_cp;
866 }
867 pre_version = *version;
868
869 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
870 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
871 &cp_page_2, version);
872 if (err)
873 goto invalid_cp;
874 cur_version = *version;
875
876 if (cur_version == pre_version) {
877 *version = cur_version;
878 f2fs_put_page(cp_page_2, 1);
879 return cp_page_1;
880 }
881 f2fs_put_page(cp_page_2, 1);
882 invalid_cp:
883 f2fs_put_page(cp_page_1, 1);
884 return NULL;
885 }
886
f2fs_get_valid_checkpoint(struct f2fs_sb_info * sbi)887 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
888 {
889 struct f2fs_checkpoint *cp_block;
890 struct f2fs_super_block *fsb = sbi->raw_super;
891 struct page *cp1, *cp2, *cur_page;
892 unsigned long blk_size = sbi->blocksize;
893 unsigned long long cp1_version = 0, cp2_version = 0;
894 unsigned long long cp_start_blk_no;
895 unsigned int cp_blks = 1 + __cp_payload(sbi);
896 block_t cp_blk_no;
897 int i;
898 int err;
899
900 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
901 GFP_KERNEL);
902 if (!sbi->ckpt)
903 return -ENOMEM;
904 /*
905 * Finding out valid cp block involves read both
906 * sets( cp pack 1 and cp pack 2)
907 */
908 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
909 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
910
911 /* The second checkpoint pack should start at the next segment */
912 cp_start_blk_no += ((unsigned long long)1) <<
913 le32_to_cpu(fsb->log_blocks_per_seg);
914 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
915
916 if (cp1 && cp2) {
917 if (ver_after(cp2_version, cp1_version))
918 cur_page = cp2;
919 else
920 cur_page = cp1;
921 } else if (cp1) {
922 cur_page = cp1;
923 } else if (cp2) {
924 cur_page = cp2;
925 } else {
926 err = -EFSCORRUPTED;
927 goto fail_no_cp;
928 }
929
930 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
931 memcpy(sbi->ckpt, cp_block, blk_size);
932
933 if (cur_page == cp1)
934 sbi->cur_cp_pack = 1;
935 else
936 sbi->cur_cp_pack = 2;
937
938 /* Sanity checking of checkpoint */
939 if (f2fs_sanity_check_ckpt(sbi)) {
940 err = -EFSCORRUPTED;
941 goto free_fail_no_cp;
942 }
943
944 if (cp_blks <= 1)
945 goto done;
946
947 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
948 if (cur_page == cp2)
949 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
950
951 for (i = 1; i < cp_blks; i++) {
952 void *sit_bitmap_ptr;
953 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
954
955 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
956 if (IS_ERR(cur_page)) {
957 err = PTR_ERR(cur_page);
958 goto free_fail_no_cp;
959 }
960 sit_bitmap_ptr = page_address(cur_page);
961 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
962 f2fs_put_page(cur_page, 1);
963 }
964 done:
965 f2fs_put_page(cp1, 1);
966 f2fs_put_page(cp2, 1);
967 return 0;
968
969 free_fail_no_cp:
970 f2fs_put_page(cp1, 1);
971 f2fs_put_page(cp2, 1);
972 fail_no_cp:
973 kvfree(sbi->ckpt);
974 return err;
975 }
976
__add_dirty_inode(struct inode * inode,enum inode_type type)977 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
978 {
979 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
980 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
981
982 if (is_inode_flag_set(inode, flag))
983 return;
984
985 set_inode_flag(inode, flag);
986 if (!f2fs_is_volatile_file(inode))
987 list_add_tail(&F2FS_I(inode)->dirty_list,
988 &sbi->inode_list[type]);
989 stat_inc_dirty_inode(sbi, type);
990 }
991
__remove_dirty_inode(struct inode * inode,enum inode_type type)992 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
993 {
994 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
995
996 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
997 return;
998
999 list_del_init(&F2FS_I(inode)->dirty_list);
1000 clear_inode_flag(inode, flag);
1001 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1002 }
1003
f2fs_update_dirty_page(struct inode * inode,struct page * page)1004 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
1005 {
1006 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1007 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1008
1009 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1010 !S_ISLNK(inode->i_mode))
1011 return;
1012
1013 spin_lock(&sbi->inode_lock[type]);
1014 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1015 __add_dirty_inode(inode, type);
1016 inode_inc_dirty_pages(inode);
1017 spin_unlock(&sbi->inode_lock[type]);
1018
1019 f2fs_set_page_private(page, 0);
1020 f2fs_trace_pid(page);
1021 }
1022
f2fs_remove_dirty_inode(struct inode * inode)1023 void f2fs_remove_dirty_inode(struct inode *inode)
1024 {
1025 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1026 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1027
1028 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1029 !S_ISLNK(inode->i_mode))
1030 return;
1031
1032 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1033 return;
1034
1035 spin_lock(&sbi->inode_lock[type]);
1036 __remove_dirty_inode(inode, type);
1037 spin_unlock(&sbi->inode_lock[type]);
1038 }
1039
f2fs_sync_dirty_inodes(struct f2fs_sb_info * sbi,enum inode_type type)1040 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
1041 {
1042 struct list_head *head;
1043 struct inode *inode;
1044 struct f2fs_inode_info *fi;
1045 bool is_dir = (type == DIR_INODE);
1046 unsigned long ino = 0;
1047
1048 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1049 get_pages(sbi, is_dir ?
1050 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1051 retry:
1052 if (unlikely(f2fs_cp_error(sbi))) {
1053 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1054 get_pages(sbi, is_dir ?
1055 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1056 return -EIO;
1057 }
1058
1059 spin_lock(&sbi->inode_lock[type]);
1060
1061 head = &sbi->inode_list[type];
1062 if (list_empty(head)) {
1063 spin_unlock(&sbi->inode_lock[type]);
1064 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1065 get_pages(sbi, is_dir ?
1066 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1067 return 0;
1068 }
1069 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1070 inode = igrab(&fi->vfs_inode);
1071 spin_unlock(&sbi->inode_lock[type]);
1072 if (inode) {
1073 unsigned long cur_ino = inode->i_ino;
1074
1075 F2FS_I(inode)->cp_task = current;
1076
1077 filemap_fdatawrite(inode->i_mapping);
1078
1079 F2FS_I(inode)->cp_task = NULL;
1080
1081 iput(inode);
1082 /* We need to give cpu to another writers. */
1083 if (ino == cur_ino)
1084 cond_resched();
1085 else
1086 ino = cur_ino;
1087 } else {
1088 /*
1089 * We should submit bio, since it exists several
1090 * wribacking dentry pages in the freeing inode.
1091 */
1092 f2fs_submit_merged_write(sbi, DATA);
1093 cond_resched();
1094 }
1095 goto retry;
1096 }
1097
f2fs_sync_inode_meta(struct f2fs_sb_info * sbi)1098 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1099 {
1100 struct list_head *head = &sbi->inode_list[DIRTY_META];
1101 struct inode *inode;
1102 struct f2fs_inode_info *fi;
1103 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1104
1105 while (total--) {
1106 if (unlikely(f2fs_cp_error(sbi)))
1107 return -EIO;
1108
1109 spin_lock(&sbi->inode_lock[DIRTY_META]);
1110 if (list_empty(head)) {
1111 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1112 return 0;
1113 }
1114 fi = list_first_entry(head, struct f2fs_inode_info,
1115 gdirty_list);
1116 inode = igrab(&fi->vfs_inode);
1117 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1118 if (inode) {
1119 sync_inode_metadata(inode, 0);
1120
1121 /* it's on eviction */
1122 if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1123 f2fs_update_inode_page(inode);
1124 iput(inode);
1125 }
1126 }
1127 return 0;
1128 }
1129
__prepare_cp_block(struct f2fs_sb_info * sbi)1130 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1131 {
1132 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1133 struct f2fs_nm_info *nm_i = NM_I(sbi);
1134 nid_t last_nid = nm_i->next_scan_nid;
1135
1136 next_free_nid(sbi, &last_nid);
1137 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1138 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1139 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1140 ckpt->next_free_nid = cpu_to_le32(last_nid);
1141 }
1142
__need_flush_quota(struct f2fs_sb_info * sbi)1143 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1144 {
1145 bool ret = false;
1146
1147 if (!is_journalled_quota(sbi))
1148 return false;
1149
1150 down_write(&sbi->quota_sem);
1151 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1152 ret = false;
1153 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1154 ret = false;
1155 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1156 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1157 ret = true;
1158 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1159 ret = true;
1160 }
1161 up_write(&sbi->quota_sem);
1162 return ret;
1163 }
1164
1165 /*
1166 * Freeze all the FS-operations for checkpoint.
1167 */
block_operations(struct f2fs_sb_info * sbi)1168 static int block_operations(struct f2fs_sb_info *sbi)
1169 {
1170 struct writeback_control wbc = {
1171 .sync_mode = WB_SYNC_ALL,
1172 .nr_to_write = LONG_MAX,
1173 .for_reclaim = 0,
1174 };
1175 int err = 0, cnt = 0;
1176
1177 /*
1178 * Let's flush inline_data in dirty node pages.
1179 */
1180 f2fs_flush_inline_data(sbi);
1181
1182 retry_flush_quotas:
1183 f2fs_lock_all(sbi);
1184 if (__need_flush_quota(sbi)) {
1185 int locked;
1186
1187 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1188 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1189 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1190 goto retry_flush_dents;
1191 }
1192 f2fs_unlock_all(sbi);
1193
1194 /* only failed during mount/umount/freeze/quotactl */
1195 locked = down_read_trylock(&sbi->sb->s_umount);
1196 f2fs_quota_sync(sbi->sb, -1);
1197 if (locked)
1198 up_read(&sbi->sb->s_umount);
1199 cond_resched();
1200 goto retry_flush_quotas;
1201 }
1202
1203 retry_flush_dents:
1204 /* write all the dirty dentry pages */
1205 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1206 f2fs_unlock_all(sbi);
1207 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1208 if (err)
1209 return err;
1210 cond_resched();
1211 goto retry_flush_quotas;
1212 }
1213
1214 /*
1215 * POR: we should ensure that there are no dirty node pages
1216 * until finishing nat/sit flush. inode->i_blocks can be updated.
1217 */
1218 down_write(&sbi->node_change);
1219
1220 if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1221 up_write(&sbi->node_change);
1222 f2fs_unlock_all(sbi);
1223 err = f2fs_sync_inode_meta(sbi);
1224 if (err)
1225 return err;
1226 cond_resched();
1227 goto retry_flush_quotas;
1228 }
1229
1230 retry_flush_nodes:
1231 down_write(&sbi->node_write);
1232
1233 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1234 up_write(&sbi->node_write);
1235 atomic_inc(&sbi->wb_sync_req[NODE]);
1236 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1237 atomic_dec(&sbi->wb_sync_req[NODE]);
1238 if (err) {
1239 up_write(&sbi->node_change);
1240 f2fs_unlock_all(sbi);
1241 return err;
1242 }
1243 cond_resched();
1244 goto retry_flush_nodes;
1245 }
1246
1247 /*
1248 * sbi->node_change is used only for AIO write_begin path which produces
1249 * dirty node blocks and some checkpoint values by block allocation.
1250 */
1251 __prepare_cp_block(sbi);
1252 up_write(&sbi->node_change);
1253 return err;
1254 }
1255
unblock_operations(struct f2fs_sb_info * sbi)1256 static void unblock_operations(struct f2fs_sb_info *sbi)
1257 {
1258 up_write(&sbi->node_write);
1259 f2fs_unlock_all(sbi);
1260 }
1261
f2fs_wait_on_all_pages(struct f2fs_sb_info * sbi,int type)1262 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1263 {
1264 DEFINE_WAIT(wait);
1265
1266 for (;;) {
1267 if (!get_pages(sbi, type))
1268 break;
1269
1270 if (unlikely(f2fs_cp_error(sbi)))
1271 break;
1272
1273 if (type == F2FS_DIRTY_META)
1274 f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1275 FS_CP_META_IO);
1276 else if (type == F2FS_WB_CP_DATA)
1277 f2fs_submit_merged_write(sbi, DATA);
1278
1279 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1280 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1281 }
1282 finish_wait(&sbi->cp_wait, &wait);
1283 }
1284
update_ckpt_flags(struct f2fs_sb_info * sbi,struct cp_control * cpc)1285 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1286 {
1287 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1288 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1289 unsigned long flags;
1290
1291 spin_lock_irqsave(&sbi->cp_lock, flags);
1292
1293 if ((cpc->reason & CP_UMOUNT) &&
1294 le32_to_cpu(ckpt->cp_pack_total_block_count) >
1295 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1296 disable_nat_bits(sbi, false);
1297
1298 if (cpc->reason & CP_TRIMMED)
1299 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1300 else
1301 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1302
1303 if (cpc->reason & CP_UMOUNT)
1304 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1305 else
1306 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1307
1308 if (cpc->reason & CP_FASTBOOT)
1309 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1310 else
1311 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1312
1313 if (orphan_num)
1314 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1315 else
1316 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1317
1318 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1319 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1320
1321 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1322 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1323 else
1324 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1325
1326 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1327 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1328 else
1329 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1330
1331 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1332 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1333 else
1334 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1335
1336 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1337 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1338 else
1339 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1340
1341 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1342 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1343
1344 /* set this flag to activate crc|cp_ver for recovery */
1345 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1346 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1347
1348 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1349 }
1350
commit_checkpoint(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)1351 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1352 void *src, block_t blk_addr)
1353 {
1354 struct writeback_control wbc = {
1355 .for_reclaim = 0,
1356 };
1357
1358 /*
1359 * pagevec_lookup_tag and lock_page again will take
1360 * some extra time. Therefore, f2fs_update_meta_pages and
1361 * f2fs_sync_meta_pages are combined in this function.
1362 */
1363 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1364 int err;
1365
1366 f2fs_wait_on_page_writeback(page, META, true, true);
1367
1368 memcpy(page_address(page), src, PAGE_SIZE);
1369
1370 set_page_dirty(page);
1371 if (unlikely(!clear_page_dirty_for_io(page)))
1372 f2fs_bug_on(sbi, 1);
1373
1374 /* writeout cp pack 2 page */
1375 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1376 if (unlikely(err && f2fs_cp_error(sbi))) {
1377 f2fs_put_page(page, 1);
1378 return;
1379 }
1380
1381 f2fs_bug_on(sbi, err);
1382 f2fs_put_page(page, 0);
1383
1384 /* submit checkpoint (with barrier if NOBARRIER is not set) */
1385 f2fs_submit_merged_write(sbi, META_FLUSH);
1386 }
1387
do_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1388 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1389 {
1390 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1391 struct f2fs_nm_info *nm_i = NM_I(sbi);
1392 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1393 block_t start_blk;
1394 unsigned int data_sum_blocks, orphan_blocks;
1395 __u32 crc32 = 0;
1396 int i;
1397 int cp_payload_blks = __cp_payload(sbi);
1398 struct super_block *sb = sbi->sb;
1399 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1400 u64 kbytes_written;
1401 int err;
1402
1403 /* Flush all the NAT/SIT pages */
1404 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1405
1406 /* start to update checkpoint, cp ver is already updated previously */
1407 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1408 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1409 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1410 ckpt->cur_node_segno[i] =
1411 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1412 ckpt->cur_node_blkoff[i] =
1413 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1414 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1415 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1416 }
1417 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1418 ckpt->cur_data_segno[i] =
1419 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1420 ckpt->cur_data_blkoff[i] =
1421 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1422 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1423 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1424 }
1425
1426 /* 2 cp + n data seg summary + orphan inode blocks */
1427 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1428 spin_lock_irqsave(&sbi->cp_lock, flags);
1429 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1430 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1431 else
1432 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1433 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1434
1435 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1436 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1437 orphan_blocks);
1438
1439 if (__remain_node_summaries(cpc->reason))
1440 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1441 cp_payload_blks + data_sum_blocks +
1442 orphan_blocks + NR_CURSEG_NODE_TYPE);
1443 else
1444 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1445 cp_payload_blks + data_sum_blocks +
1446 orphan_blocks);
1447
1448 /* update ckpt flag for checkpoint */
1449 update_ckpt_flags(sbi, cpc);
1450
1451 /* update SIT/NAT bitmap */
1452 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1453 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1454
1455 crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1456 *((__le32 *)((unsigned char *)ckpt +
1457 le32_to_cpu(ckpt->checksum_offset)))
1458 = cpu_to_le32(crc32);
1459
1460 start_blk = __start_cp_next_addr(sbi);
1461
1462 /* write nat bits */
1463 if (enabled_nat_bits(sbi, cpc)) {
1464 __u64 cp_ver = cur_cp_version(ckpt);
1465 block_t blk;
1466
1467 cp_ver |= ((__u64)crc32 << 32);
1468 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1469
1470 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1471 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1472 f2fs_update_meta_page(sbi, nm_i->nat_bits +
1473 (i << F2FS_BLKSIZE_BITS), blk + i);
1474 }
1475
1476 /* write out checkpoint buffer at block 0 */
1477 f2fs_update_meta_page(sbi, ckpt, start_blk++);
1478
1479 for (i = 1; i < 1 + cp_payload_blks; i++)
1480 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1481 start_blk++);
1482
1483 if (orphan_num) {
1484 write_orphan_inodes(sbi, start_blk);
1485 start_blk += orphan_blocks;
1486 }
1487
1488 f2fs_write_data_summaries(sbi, start_blk);
1489 start_blk += data_sum_blocks;
1490
1491 /* Record write statistics in the hot node summary */
1492 kbytes_written = sbi->kbytes_written;
1493 if (sb->s_bdev->bd_part)
1494 kbytes_written += BD_PART_WRITTEN(sbi);
1495
1496 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1497
1498 if (__remain_node_summaries(cpc->reason)) {
1499 f2fs_write_node_summaries(sbi, start_blk);
1500 start_blk += NR_CURSEG_NODE_TYPE;
1501 }
1502
1503 /* update user_block_counts */
1504 sbi->last_valid_block_count = sbi->total_valid_block_count;
1505 percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1506
1507 /* Here, we have one bio having CP pack except cp pack 2 page */
1508 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1509 /* Wait for all dirty meta pages to be submitted for IO */
1510 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1511
1512 /* wait for previous submitted meta pages writeback */
1513 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1514
1515 /* flush all device cache */
1516 err = f2fs_flush_device_cache(sbi);
1517 if (err)
1518 return err;
1519
1520 /* barrier and flush checkpoint cp pack 2 page if it can */
1521 commit_checkpoint(sbi, ckpt, start_blk);
1522 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1523
1524 /*
1525 * invalidate intermediate page cache borrowed from meta inode which are
1526 * used for migration of encrypted, verity or compressed inode's blocks.
1527 */
1528 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1529 f2fs_sb_has_compression(sbi))
1530 invalidate_mapping_pages(META_MAPPING(sbi),
1531 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1532
1533 f2fs_release_ino_entry(sbi, false);
1534
1535 f2fs_reset_fsync_node_info(sbi);
1536
1537 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1538 clear_sbi_flag(sbi, SBI_NEED_CP);
1539 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1540
1541 spin_lock(&sbi->stat_lock);
1542 sbi->unusable_block_count = 0;
1543 spin_unlock(&sbi->stat_lock);
1544
1545 __set_cp_next_pack(sbi);
1546
1547 /*
1548 * redirty superblock if metadata like node page or inode cache is
1549 * updated during writing checkpoint.
1550 */
1551 if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1552 get_pages(sbi, F2FS_DIRTY_IMETA))
1553 set_sbi_flag(sbi, SBI_IS_DIRTY);
1554
1555 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1556
1557 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1558 }
1559
f2fs_write_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1560 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1561 {
1562 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1563 unsigned long long ckpt_ver;
1564 int err = 0;
1565
1566 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1567 return -EROFS;
1568
1569 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1570 if (cpc->reason != CP_PAUSE)
1571 return 0;
1572 f2fs_warn(sbi, "Start checkpoint disabled!");
1573 }
1574 if (cpc->reason != CP_RESIZE)
1575 mutex_lock(&sbi->cp_mutex);
1576
1577 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1578 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1579 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1580 goto out;
1581 if (unlikely(f2fs_cp_error(sbi))) {
1582 err = -EIO;
1583 goto out;
1584 }
1585
1586 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1587
1588 err = block_operations(sbi);
1589 if (err)
1590 goto out;
1591
1592 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1593
1594 f2fs_flush_merged_writes(sbi);
1595
1596 /* this is the case of multiple fstrims without any changes */
1597 if (cpc->reason & CP_DISCARD) {
1598 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1599 unblock_operations(sbi);
1600 goto out;
1601 }
1602
1603 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1604 SIT_I(sbi)->dirty_sentries == 0 &&
1605 prefree_segments(sbi) == 0) {
1606 f2fs_flush_sit_entries(sbi, cpc);
1607 f2fs_clear_prefree_segments(sbi, cpc);
1608 unblock_operations(sbi);
1609 goto out;
1610 }
1611 }
1612
1613 /*
1614 * update checkpoint pack index
1615 * Increase the version number so that
1616 * SIT entries and seg summaries are written at correct place
1617 */
1618 ckpt_ver = cur_cp_version(ckpt);
1619 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1620
1621 /* write cached NAT/SIT entries to NAT/SIT area */
1622 err = f2fs_flush_nat_entries(sbi, cpc);
1623 if (err)
1624 goto stop;
1625
1626 f2fs_flush_sit_entries(sbi, cpc);
1627
1628 /* save inmem log status */
1629 f2fs_save_inmem_curseg(sbi);
1630
1631 err = do_checkpoint(sbi, cpc);
1632 if (err)
1633 f2fs_release_discard_addrs(sbi);
1634 else
1635 f2fs_clear_prefree_segments(sbi, cpc);
1636
1637 f2fs_restore_inmem_curseg(sbi);
1638 stop:
1639 unblock_operations(sbi);
1640 stat_inc_cp_count(sbi->stat_info);
1641
1642 if (cpc->reason & CP_RECOVERY)
1643 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1644
1645 /* update CP_TIME to trigger checkpoint periodically */
1646 f2fs_update_time(sbi, CP_TIME);
1647 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1648 out:
1649 if (cpc->reason != CP_RESIZE)
1650 mutex_unlock(&sbi->cp_mutex);
1651 return err;
1652 }
1653
f2fs_init_ino_entry_info(struct f2fs_sb_info * sbi)1654 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1655 {
1656 int i;
1657
1658 for (i = 0; i < MAX_INO_ENTRY; i++) {
1659 struct inode_management *im = &sbi->im[i];
1660
1661 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1662 spin_lock_init(&im->ino_lock);
1663 INIT_LIST_HEAD(&im->ino_list);
1664 im->ino_num = 0;
1665 }
1666
1667 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1668 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1669 F2FS_ORPHANS_PER_BLOCK;
1670 }
1671
f2fs_create_checkpoint_caches(void)1672 int __init f2fs_create_checkpoint_caches(void)
1673 {
1674 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1675 sizeof(struct ino_entry));
1676 if (!ino_entry_slab)
1677 return -ENOMEM;
1678 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1679 sizeof(struct inode_entry));
1680 if (!f2fs_inode_entry_slab) {
1681 kmem_cache_destroy(ino_entry_slab);
1682 return -ENOMEM;
1683 }
1684 return 0;
1685 }
1686
f2fs_destroy_checkpoint_caches(void)1687 void f2fs_destroy_checkpoint_caches(void)
1688 {
1689 kmem_cache_destroy(ino_entry_slab);
1690 kmem_cache_destroy(f2fs_inode_entry_slab);
1691 }
1692