1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/sched/mm.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include "iostat.h"
21 #include <trace/events/f2fs.h>
22
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25 static struct kmem_cache *nat_entry_slab;
26 static struct kmem_cache *free_nid_slab;
27 static struct kmem_cache *nat_entry_set_slab;
28 static struct kmem_cache *fsync_node_entry_slab;
29
30 /*
31 * Check whether the given nid is within node id range.
32 */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)33 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34 {
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 return -EFSCORRUPTED;
41 }
42 return 0;
43 }
44
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)45 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46 {
47 struct f2fs_nm_info *nm_i = NM_I(sbi);
48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 struct sysinfo val;
50 unsigned long avail_ram;
51 unsigned long mem_size = 0;
52 bool res = false;
53
54 if (!nm_i)
55 return true;
56
57 si_meminfo(&val);
58
59 /* only uses low memory */
60 avail_ram = val.totalram - val.totalhigh;
61
62 /*
63 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
64 */
65 if (type == FREE_NIDS) {
66 mem_size = (nm_i->nid_cnt[FREE_NID] *
67 sizeof(struct free_nid)) >> PAGE_SHIFT;
68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 } else if (type == NAT_ENTRIES) {
70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 if (excess_cached_nats(sbi))
74 res = false;
75 } else if (type == DIRTY_DENTS) {
76 if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 return false;
78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 } else if (type == INO_ENTRIES) {
81 int i;
82
83 for (i = 0; i < MAX_INO_ENTRY; i++)
84 mem_size += sbi->im[i].ino_num *
85 sizeof(struct ino_entry);
86 mem_size >>= PAGE_SHIFT;
87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 } else if (type == EXTENT_CACHE) {
89 mem_size = (atomic_read(&sbi->total_ext_tree) *
90 sizeof(struct extent_tree) +
91 atomic_read(&sbi->total_ext_node) *
92 sizeof(struct extent_node)) >> PAGE_SHIFT;
93 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
94 } else if (type == DISCARD_CACHE) {
95 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
96 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
97 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
98 } else if (type == COMPRESS_PAGE) {
99 #ifdef CONFIG_F2FS_FS_COMPRESSION
100 unsigned long free_ram = val.freeram;
101
102 /*
103 * free memory is lower than watermark or cached page count
104 * exceed threshold, deny caching compress page.
105 */
106 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
107 (COMPRESS_MAPPING(sbi)->nrpages <
108 free_ram * sbi->compress_percent / 100);
109 #else
110 res = false;
111 #endif
112 } else {
113 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
114 return true;
115 }
116 return res;
117 }
118
clear_node_page_dirty(struct page * page)119 static void clear_node_page_dirty(struct page *page)
120 {
121 if (PageDirty(page)) {
122 f2fs_clear_page_cache_dirty_tag(page);
123 clear_page_dirty_for_io(page);
124 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
125 }
126 ClearPageUptodate(page);
127 }
128
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)129 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
130 {
131 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
132 }
133
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)134 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
135 {
136 struct page *src_page;
137 struct page *dst_page;
138 pgoff_t dst_off;
139 void *src_addr;
140 void *dst_addr;
141 struct f2fs_nm_info *nm_i = NM_I(sbi);
142
143 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
144
145 /* get current nat block page with lock */
146 src_page = get_current_nat_page(sbi, nid);
147 if (IS_ERR(src_page))
148 return src_page;
149 dst_page = f2fs_grab_meta_page(sbi, dst_off);
150 f2fs_bug_on(sbi, PageDirty(src_page));
151
152 src_addr = page_address(src_page);
153 dst_addr = page_address(dst_page);
154 memcpy(dst_addr, src_addr, PAGE_SIZE);
155 set_page_dirty(dst_page);
156 f2fs_put_page(src_page, 1);
157
158 set_to_next_nat(nm_i, nid);
159
160 return dst_page;
161 }
162
__alloc_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,bool no_fail)163 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
164 nid_t nid, bool no_fail)
165 {
166 struct nat_entry *new;
167
168 new = f2fs_kmem_cache_alloc(nat_entry_slab,
169 GFP_F2FS_ZERO, no_fail, sbi);
170 if (new) {
171 nat_set_nid(new, nid);
172 nat_reset_flag(new);
173 }
174 return new;
175 }
176
__free_nat_entry(struct nat_entry * e)177 static void __free_nat_entry(struct nat_entry *e)
178 {
179 kmem_cache_free(nat_entry_slab, e);
180 }
181
182 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)183 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
184 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
185 {
186 if (no_fail)
187 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
188 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
189 return NULL;
190
191 if (raw_ne)
192 node_info_from_raw_nat(&ne->ni, raw_ne);
193
194 spin_lock(&nm_i->nat_list_lock);
195 list_add_tail(&ne->list, &nm_i->nat_entries);
196 spin_unlock(&nm_i->nat_list_lock);
197
198 nm_i->nat_cnt[TOTAL_NAT]++;
199 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
200 return ne;
201 }
202
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)203 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
204 {
205 struct nat_entry *ne;
206
207 ne = radix_tree_lookup(&nm_i->nat_root, n);
208
209 /* for recent accessed nat entry, move it to tail of lru list */
210 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
211 spin_lock(&nm_i->nat_list_lock);
212 if (!list_empty(&ne->list))
213 list_move_tail(&ne->list, &nm_i->nat_entries);
214 spin_unlock(&nm_i->nat_list_lock);
215 }
216
217 return ne;
218 }
219
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)220 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
221 nid_t start, unsigned int nr, struct nat_entry **ep)
222 {
223 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
224 }
225
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)226 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
227 {
228 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
229 nm_i->nat_cnt[TOTAL_NAT]--;
230 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
231 __free_nat_entry(e);
232 }
233
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)234 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
235 struct nat_entry *ne)
236 {
237 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
238 struct nat_entry_set *head;
239
240 head = radix_tree_lookup(&nm_i->nat_set_root, set);
241 if (!head) {
242 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
243 GFP_NOFS, true, NULL);
244
245 INIT_LIST_HEAD(&head->entry_list);
246 INIT_LIST_HEAD(&head->set_list);
247 head->set = set;
248 head->entry_cnt = 0;
249 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
250 }
251 return head;
252 }
253
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)254 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
255 struct nat_entry *ne)
256 {
257 struct nat_entry_set *head;
258 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
259
260 if (!new_ne)
261 head = __grab_nat_entry_set(nm_i, ne);
262
263 /*
264 * update entry_cnt in below condition:
265 * 1. update NEW_ADDR to valid block address;
266 * 2. update old block address to new one;
267 */
268 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
269 !get_nat_flag(ne, IS_DIRTY)))
270 head->entry_cnt++;
271
272 set_nat_flag(ne, IS_PREALLOC, new_ne);
273
274 if (get_nat_flag(ne, IS_DIRTY))
275 goto refresh_list;
276
277 nm_i->nat_cnt[DIRTY_NAT]++;
278 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
279 set_nat_flag(ne, IS_DIRTY, true);
280 refresh_list:
281 spin_lock(&nm_i->nat_list_lock);
282 if (new_ne)
283 list_del_init(&ne->list);
284 else
285 list_move_tail(&ne->list, &head->entry_list);
286 spin_unlock(&nm_i->nat_list_lock);
287 }
288
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)289 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
290 struct nat_entry_set *set, struct nat_entry *ne)
291 {
292 spin_lock(&nm_i->nat_list_lock);
293 list_move_tail(&ne->list, &nm_i->nat_entries);
294 spin_unlock(&nm_i->nat_list_lock);
295
296 set_nat_flag(ne, IS_DIRTY, false);
297 set->entry_cnt--;
298 nm_i->nat_cnt[DIRTY_NAT]--;
299 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
300 }
301
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)302 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
303 nid_t start, unsigned int nr, struct nat_entry_set **ep)
304 {
305 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
306 start, nr);
307 }
308
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct page * page)309 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
310 {
311 return NODE_MAPPING(sbi) == page->mapping &&
312 IS_DNODE(page) && is_cold_node(page);
313 }
314
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)315 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
316 {
317 spin_lock_init(&sbi->fsync_node_lock);
318 INIT_LIST_HEAD(&sbi->fsync_node_list);
319 sbi->fsync_seg_id = 0;
320 sbi->fsync_node_num = 0;
321 }
322
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)323 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
324 struct page *page)
325 {
326 struct fsync_node_entry *fn;
327 unsigned long flags;
328 unsigned int seq_id;
329
330 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
331 GFP_NOFS, true, NULL);
332
333 get_page(page);
334 fn->page = page;
335 INIT_LIST_HEAD(&fn->list);
336
337 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
338 list_add_tail(&fn->list, &sbi->fsync_node_list);
339 fn->seq_id = sbi->fsync_seg_id++;
340 seq_id = fn->seq_id;
341 sbi->fsync_node_num++;
342 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
343
344 return seq_id;
345 }
346
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)347 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
348 {
349 struct fsync_node_entry *fn;
350 unsigned long flags;
351
352 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
353 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
354 if (fn->page == page) {
355 list_del(&fn->list);
356 sbi->fsync_node_num--;
357 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
358 kmem_cache_free(fsync_node_entry_slab, fn);
359 put_page(page);
360 return;
361 }
362 }
363 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
364 f2fs_bug_on(sbi, 1);
365 }
366
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)367 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
368 {
369 unsigned long flags;
370
371 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
372 sbi->fsync_seg_id = 0;
373 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
374 }
375
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)376 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
377 {
378 struct f2fs_nm_info *nm_i = NM_I(sbi);
379 struct nat_entry *e;
380 bool need = false;
381
382 f2fs_down_read(&nm_i->nat_tree_lock);
383 e = __lookup_nat_cache(nm_i, nid);
384 if (e) {
385 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
386 !get_nat_flag(e, HAS_FSYNCED_INODE))
387 need = true;
388 }
389 f2fs_up_read(&nm_i->nat_tree_lock);
390 return need;
391 }
392
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)393 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
394 {
395 struct f2fs_nm_info *nm_i = NM_I(sbi);
396 struct nat_entry *e;
397 bool is_cp = true;
398
399 f2fs_down_read(&nm_i->nat_tree_lock);
400 e = __lookup_nat_cache(nm_i, nid);
401 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
402 is_cp = false;
403 f2fs_up_read(&nm_i->nat_tree_lock);
404 return is_cp;
405 }
406
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)407 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
408 {
409 struct f2fs_nm_info *nm_i = NM_I(sbi);
410 struct nat_entry *e;
411 bool need_update = true;
412
413 f2fs_down_read(&nm_i->nat_tree_lock);
414 e = __lookup_nat_cache(nm_i, ino);
415 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
416 (get_nat_flag(e, IS_CHECKPOINTED) ||
417 get_nat_flag(e, HAS_FSYNCED_INODE)))
418 need_update = false;
419 f2fs_up_read(&nm_i->nat_tree_lock);
420 return need_update;
421 }
422
423 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)424 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
425 struct f2fs_nat_entry *ne)
426 {
427 struct f2fs_nm_info *nm_i = NM_I(sbi);
428 struct nat_entry *new, *e;
429
430 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
431 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
432 return;
433
434 new = __alloc_nat_entry(sbi, nid, false);
435 if (!new)
436 return;
437
438 f2fs_down_write(&nm_i->nat_tree_lock);
439 e = __lookup_nat_cache(nm_i, nid);
440 if (!e)
441 e = __init_nat_entry(nm_i, new, ne, false);
442 else
443 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
444 nat_get_blkaddr(e) !=
445 le32_to_cpu(ne->block_addr) ||
446 nat_get_version(e) != ne->version);
447 f2fs_up_write(&nm_i->nat_tree_lock);
448 if (e != new)
449 __free_nat_entry(new);
450 }
451
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)452 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
453 block_t new_blkaddr, bool fsync_done)
454 {
455 struct f2fs_nm_info *nm_i = NM_I(sbi);
456 struct nat_entry *e;
457 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
458
459 f2fs_down_write(&nm_i->nat_tree_lock);
460 e = __lookup_nat_cache(nm_i, ni->nid);
461 if (!e) {
462 e = __init_nat_entry(nm_i, new, NULL, true);
463 copy_node_info(&e->ni, ni);
464 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
465 } else if (new_blkaddr == NEW_ADDR) {
466 /*
467 * when nid is reallocated,
468 * previous nat entry can be remained in nat cache.
469 * So, reinitialize it with new information.
470 */
471 copy_node_info(&e->ni, ni);
472 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
473 }
474 /* let's free early to reduce memory consumption */
475 if (e != new)
476 __free_nat_entry(new);
477
478 /* sanity check */
479 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
480 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
481 new_blkaddr == NULL_ADDR);
482 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
483 new_blkaddr == NEW_ADDR);
484 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
485 new_blkaddr == NEW_ADDR);
486
487 /* increment version no as node is removed */
488 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
489 unsigned char version = nat_get_version(e);
490
491 nat_set_version(e, inc_node_version(version));
492 }
493
494 /* change address */
495 nat_set_blkaddr(e, new_blkaddr);
496 if (!__is_valid_data_blkaddr(new_blkaddr))
497 set_nat_flag(e, IS_CHECKPOINTED, false);
498 __set_nat_cache_dirty(nm_i, e);
499
500 /* update fsync_mark if its inode nat entry is still alive */
501 if (ni->nid != ni->ino)
502 e = __lookup_nat_cache(nm_i, ni->ino);
503 if (e) {
504 if (fsync_done && ni->nid == ni->ino)
505 set_nat_flag(e, HAS_FSYNCED_INODE, true);
506 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
507 }
508 f2fs_up_write(&nm_i->nat_tree_lock);
509 }
510
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)511 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
512 {
513 struct f2fs_nm_info *nm_i = NM_I(sbi);
514 int nr = nr_shrink;
515
516 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
517 return 0;
518
519 spin_lock(&nm_i->nat_list_lock);
520 while (nr_shrink) {
521 struct nat_entry *ne;
522
523 if (list_empty(&nm_i->nat_entries))
524 break;
525
526 ne = list_first_entry(&nm_i->nat_entries,
527 struct nat_entry, list);
528 list_del(&ne->list);
529 spin_unlock(&nm_i->nat_list_lock);
530
531 __del_from_nat_cache(nm_i, ne);
532 nr_shrink--;
533
534 spin_lock(&nm_i->nat_list_lock);
535 }
536 spin_unlock(&nm_i->nat_list_lock);
537
538 f2fs_up_write(&nm_i->nat_tree_lock);
539 return nr - nr_shrink;
540 }
541
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni,bool checkpoint_context)542 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
543 struct node_info *ni, bool checkpoint_context)
544 {
545 struct f2fs_nm_info *nm_i = NM_I(sbi);
546 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
547 struct f2fs_journal *journal = curseg->journal;
548 nid_t start_nid = START_NID(nid);
549 struct f2fs_nat_block *nat_blk;
550 struct page *page = NULL;
551 struct f2fs_nat_entry ne;
552 struct nat_entry *e;
553 pgoff_t index;
554 block_t blkaddr;
555 int i;
556
557 ni->nid = nid;
558 retry:
559 /* Check nat cache */
560 f2fs_down_read(&nm_i->nat_tree_lock);
561 e = __lookup_nat_cache(nm_i, nid);
562 if (e) {
563 ni->ino = nat_get_ino(e);
564 ni->blk_addr = nat_get_blkaddr(e);
565 ni->version = nat_get_version(e);
566 f2fs_up_read(&nm_i->nat_tree_lock);
567 return 0;
568 }
569
570 /*
571 * Check current segment summary by trying to grab journal_rwsem first.
572 * This sem is on the critical path on the checkpoint requiring the above
573 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
574 * while not bothering checkpoint.
575 */
576 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
577 down_read(&curseg->journal_rwsem);
578 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
579 !down_read_trylock(&curseg->journal_rwsem)) {
580 f2fs_up_read(&nm_i->nat_tree_lock);
581 goto retry;
582 }
583
584 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
585 if (i >= 0) {
586 ne = nat_in_journal(journal, i);
587 node_info_from_raw_nat(ni, &ne);
588 }
589 up_read(&curseg->journal_rwsem);
590 if (i >= 0) {
591 f2fs_up_read(&nm_i->nat_tree_lock);
592 goto cache;
593 }
594
595 /* Fill node_info from nat page */
596 index = current_nat_addr(sbi, nid);
597 f2fs_up_read(&nm_i->nat_tree_lock);
598
599 page = f2fs_get_meta_page(sbi, index);
600 if (IS_ERR(page))
601 return PTR_ERR(page);
602
603 nat_blk = (struct f2fs_nat_block *)page_address(page);
604 ne = nat_blk->entries[nid - start_nid];
605 node_info_from_raw_nat(ni, &ne);
606 f2fs_put_page(page, 1);
607 cache:
608 blkaddr = le32_to_cpu(ne.block_addr);
609 if (__is_valid_data_blkaddr(blkaddr) &&
610 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
611 return -EFAULT;
612
613 /* cache nat entry */
614 cache_nat_entry(sbi, nid, &ne);
615 return 0;
616 }
617
618 /*
619 * readahead MAX_RA_NODE number of node pages.
620 */
f2fs_ra_node_pages(struct page * parent,int start,int n)621 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
622 {
623 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
624 struct blk_plug plug;
625 int i, end;
626 nid_t nid;
627
628 blk_start_plug(&plug);
629
630 /* Then, try readahead for siblings of the desired node */
631 end = start + n;
632 end = min(end, NIDS_PER_BLOCK);
633 for (i = start; i < end; i++) {
634 nid = get_nid(parent, i, false);
635 f2fs_ra_node_page(sbi, nid);
636 }
637
638 blk_finish_plug(&plug);
639 }
640
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)641 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
642 {
643 const long direct_index = ADDRS_PER_INODE(dn->inode);
644 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
645 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
646 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
647 int cur_level = dn->cur_level;
648 int max_level = dn->max_level;
649 pgoff_t base = 0;
650
651 if (!dn->max_level)
652 return pgofs + 1;
653
654 while (max_level-- > cur_level)
655 skipped_unit *= NIDS_PER_BLOCK;
656
657 switch (dn->max_level) {
658 case 3:
659 base += 2 * indirect_blks;
660 fallthrough;
661 case 2:
662 base += 2 * direct_blks;
663 fallthrough;
664 case 1:
665 base += direct_index;
666 break;
667 default:
668 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
669 }
670
671 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
672 }
673
674 /*
675 * The maximum depth is four.
676 * Offset[0] will have raw inode offset.
677 */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])678 static int get_node_path(struct inode *inode, long block,
679 int offset[4], unsigned int noffset[4])
680 {
681 const long direct_index = ADDRS_PER_INODE(inode);
682 const long direct_blks = ADDRS_PER_BLOCK(inode);
683 const long dptrs_per_blk = NIDS_PER_BLOCK;
684 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
685 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
686 int n = 0;
687 int level = 0;
688
689 noffset[0] = 0;
690
691 if (block < direct_index) {
692 offset[n] = block;
693 goto got;
694 }
695 block -= direct_index;
696 if (block < direct_blks) {
697 offset[n++] = NODE_DIR1_BLOCK;
698 noffset[n] = 1;
699 offset[n] = block;
700 level = 1;
701 goto got;
702 }
703 block -= direct_blks;
704 if (block < direct_blks) {
705 offset[n++] = NODE_DIR2_BLOCK;
706 noffset[n] = 2;
707 offset[n] = block;
708 level = 1;
709 goto got;
710 }
711 block -= direct_blks;
712 if (block < indirect_blks) {
713 offset[n++] = NODE_IND1_BLOCK;
714 noffset[n] = 3;
715 offset[n++] = block / direct_blks;
716 noffset[n] = 4 + offset[n - 1];
717 offset[n] = block % direct_blks;
718 level = 2;
719 goto got;
720 }
721 block -= indirect_blks;
722 if (block < indirect_blks) {
723 offset[n++] = NODE_IND2_BLOCK;
724 noffset[n] = 4 + dptrs_per_blk;
725 offset[n++] = block / direct_blks;
726 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
727 offset[n] = block % direct_blks;
728 level = 2;
729 goto got;
730 }
731 block -= indirect_blks;
732 if (block < dindirect_blks) {
733 offset[n++] = NODE_DIND_BLOCK;
734 noffset[n] = 5 + (dptrs_per_blk * 2);
735 offset[n++] = block / indirect_blks;
736 noffset[n] = 6 + (dptrs_per_blk * 2) +
737 offset[n - 1] * (dptrs_per_blk + 1);
738 offset[n++] = (block / direct_blks) % dptrs_per_blk;
739 noffset[n] = 7 + (dptrs_per_blk * 2) +
740 offset[n - 2] * (dptrs_per_blk + 1) +
741 offset[n - 1];
742 offset[n] = block % direct_blks;
743 level = 3;
744 goto got;
745 } else {
746 return -E2BIG;
747 }
748 got:
749 return level;
750 }
751
752 /*
753 * Caller should call f2fs_put_dnode(dn).
754 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
755 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
756 */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)757 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
758 {
759 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
760 struct page *npage[4];
761 struct page *parent = NULL;
762 int offset[4];
763 unsigned int noffset[4];
764 nid_t nids[4];
765 int level, i = 0;
766 int err = 0;
767
768 level = get_node_path(dn->inode, index, offset, noffset);
769 if (level < 0)
770 return level;
771
772 nids[0] = dn->inode->i_ino;
773 npage[0] = dn->inode_page;
774
775 if (!npage[0]) {
776 npage[0] = f2fs_get_node_page(sbi, nids[0]);
777 if (IS_ERR(npage[0]))
778 return PTR_ERR(npage[0]);
779 }
780
781 /* if inline_data is set, should not report any block indices */
782 if (f2fs_has_inline_data(dn->inode) && index) {
783 err = -ENOENT;
784 f2fs_put_page(npage[0], 1);
785 goto release_out;
786 }
787
788 parent = npage[0];
789 if (level != 0)
790 nids[1] = get_nid(parent, offset[0], true);
791 dn->inode_page = npage[0];
792 dn->inode_page_locked = true;
793
794 /* get indirect or direct nodes */
795 for (i = 1; i <= level; i++) {
796 bool done = false;
797
798 if (!nids[i] && mode == ALLOC_NODE) {
799 /* alloc new node */
800 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
801 err = -ENOSPC;
802 goto release_pages;
803 }
804
805 dn->nid = nids[i];
806 npage[i] = f2fs_new_node_page(dn, noffset[i]);
807 if (IS_ERR(npage[i])) {
808 f2fs_alloc_nid_failed(sbi, nids[i]);
809 err = PTR_ERR(npage[i]);
810 goto release_pages;
811 }
812
813 set_nid(parent, offset[i - 1], nids[i], i == 1);
814 f2fs_alloc_nid_done(sbi, nids[i]);
815 done = true;
816 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
817 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
818 if (IS_ERR(npage[i])) {
819 err = PTR_ERR(npage[i]);
820 goto release_pages;
821 }
822 done = true;
823 }
824 if (i == 1) {
825 dn->inode_page_locked = false;
826 unlock_page(parent);
827 } else {
828 f2fs_put_page(parent, 1);
829 }
830
831 if (!done) {
832 npage[i] = f2fs_get_node_page(sbi, nids[i]);
833 if (IS_ERR(npage[i])) {
834 err = PTR_ERR(npage[i]);
835 f2fs_put_page(npage[0], 0);
836 goto release_out;
837 }
838 }
839 if (i < level) {
840 parent = npage[i];
841 nids[i + 1] = get_nid(parent, offset[i], false);
842 }
843 }
844 dn->nid = nids[level];
845 dn->ofs_in_node = offset[level];
846 dn->node_page = npage[level];
847 dn->data_blkaddr = f2fs_data_blkaddr(dn);
848
849 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
850 f2fs_sb_has_readonly(sbi)) {
851 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
852 block_t blkaddr;
853
854 if (!c_len)
855 goto out;
856
857 blkaddr = f2fs_data_blkaddr(dn);
858 if (blkaddr == COMPRESS_ADDR)
859 blkaddr = data_blkaddr(dn->inode, dn->node_page,
860 dn->ofs_in_node + 1);
861
862 f2fs_update_extent_tree_range_compressed(dn->inode,
863 index, blkaddr,
864 F2FS_I(dn->inode)->i_cluster_size,
865 c_len);
866 }
867 out:
868 return 0;
869
870 release_pages:
871 f2fs_put_page(parent, 1);
872 if (i > 1)
873 f2fs_put_page(npage[0], 0);
874 release_out:
875 dn->inode_page = NULL;
876 dn->node_page = NULL;
877 if (err == -ENOENT) {
878 dn->cur_level = i;
879 dn->max_level = level;
880 dn->ofs_in_node = offset[level];
881 }
882 return err;
883 }
884
truncate_node(struct dnode_of_data * dn)885 static int truncate_node(struct dnode_of_data *dn)
886 {
887 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
888 struct node_info ni;
889 int err;
890 pgoff_t index;
891
892 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
893 if (err)
894 return err;
895
896 /* Deallocate node address */
897 f2fs_invalidate_blocks(sbi, ni.blk_addr);
898 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
899 set_node_addr(sbi, &ni, NULL_ADDR, false);
900
901 if (dn->nid == dn->inode->i_ino) {
902 f2fs_remove_orphan_inode(sbi, dn->nid);
903 dec_valid_inode_count(sbi);
904 f2fs_inode_synced(dn->inode);
905 }
906
907 clear_node_page_dirty(dn->node_page);
908 set_sbi_flag(sbi, SBI_IS_DIRTY);
909
910 index = dn->node_page->index;
911 f2fs_put_page(dn->node_page, 1);
912
913 invalidate_mapping_pages(NODE_MAPPING(sbi),
914 index, index);
915
916 dn->node_page = NULL;
917 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
918
919 return 0;
920 }
921
truncate_dnode(struct dnode_of_data * dn)922 static int truncate_dnode(struct dnode_of_data *dn)
923 {
924 struct page *page;
925 int err;
926
927 if (dn->nid == 0)
928 return 1;
929
930 /* get direct node */
931 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
932 if (PTR_ERR(page) == -ENOENT)
933 return 1;
934 else if (IS_ERR(page))
935 return PTR_ERR(page);
936
937 /* Make dnode_of_data for parameter */
938 dn->node_page = page;
939 dn->ofs_in_node = 0;
940 f2fs_truncate_data_blocks(dn);
941 err = truncate_node(dn);
942 if (err)
943 return err;
944
945 return 1;
946 }
947
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)948 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
949 int ofs, int depth)
950 {
951 struct dnode_of_data rdn = *dn;
952 struct page *page;
953 struct f2fs_node *rn;
954 nid_t child_nid;
955 unsigned int child_nofs;
956 int freed = 0;
957 int i, ret;
958
959 if (dn->nid == 0)
960 return NIDS_PER_BLOCK + 1;
961
962 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
963
964 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
965 if (IS_ERR(page)) {
966 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
967 return PTR_ERR(page);
968 }
969
970 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
971
972 rn = F2FS_NODE(page);
973 if (depth < 3) {
974 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
975 child_nid = le32_to_cpu(rn->in.nid[i]);
976 if (child_nid == 0)
977 continue;
978 rdn.nid = child_nid;
979 ret = truncate_dnode(&rdn);
980 if (ret < 0)
981 goto out_err;
982 if (set_nid(page, i, 0, false))
983 dn->node_changed = true;
984 }
985 } else {
986 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
987 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
988 child_nid = le32_to_cpu(rn->in.nid[i]);
989 if (child_nid == 0) {
990 child_nofs += NIDS_PER_BLOCK + 1;
991 continue;
992 }
993 rdn.nid = child_nid;
994 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
995 if (ret == (NIDS_PER_BLOCK + 1)) {
996 if (set_nid(page, i, 0, false))
997 dn->node_changed = true;
998 child_nofs += ret;
999 } else if (ret < 0 && ret != -ENOENT) {
1000 goto out_err;
1001 }
1002 }
1003 freed = child_nofs;
1004 }
1005
1006 if (!ofs) {
1007 /* remove current indirect node */
1008 dn->node_page = page;
1009 ret = truncate_node(dn);
1010 if (ret)
1011 goto out_err;
1012 freed++;
1013 } else {
1014 f2fs_put_page(page, 1);
1015 }
1016 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1017 return freed;
1018
1019 out_err:
1020 f2fs_put_page(page, 1);
1021 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1022 return ret;
1023 }
1024
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)1025 static int truncate_partial_nodes(struct dnode_of_data *dn,
1026 struct f2fs_inode *ri, int *offset, int depth)
1027 {
1028 struct page *pages[2];
1029 nid_t nid[3];
1030 nid_t child_nid;
1031 int err = 0;
1032 int i;
1033 int idx = depth - 2;
1034
1035 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1036 if (!nid[0])
1037 return 0;
1038
1039 /* get indirect nodes in the path */
1040 for (i = 0; i < idx + 1; i++) {
1041 /* reference count'll be increased */
1042 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1043 if (IS_ERR(pages[i])) {
1044 err = PTR_ERR(pages[i]);
1045 idx = i - 1;
1046 goto fail;
1047 }
1048 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1049 }
1050
1051 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1052
1053 /* free direct nodes linked to a partial indirect node */
1054 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1055 child_nid = get_nid(pages[idx], i, false);
1056 if (!child_nid)
1057 continue;
1058 dn->nid = child_nid;
1059 err = truncate_dnode(dn);
1060 if (err < 0)
1061 goto fail;
1062 if (set_nid(pages[idx], i, 0, false))
1063 dn->node_changed = true;
1064 }
1065
1066 if (offset[idx + 1] == 0) {
1067 dn->node_page = pages[idx];
1068 dn->nid = nid[idx];
1069 err = truncate_node(dn);
1070 if (err)
1071 goto fail;
1072 } else {
1073 f2fs_put_page(pages[idx], 1);
1074 }
1075 offset[idx]++;
1076 offset[idx + 1] = 0;
1077 idx--;
1078 fail:
1079 for (i = idx; i >= 0; i--)
1080 f2fs_put_page(pages[i], 1);
1081
1082 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1083
1084 return err;
1085 }
1086
1087 /*
1088 * All the block addresses of data and nodes should be nullified.
1089 */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1090 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1091 {
1092 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1093 int err = 0, cont = 1;
1094 int level, offset[4], noffset[4];
1095 unsigned int nofs = 0;
1096 struct f2fs_inode *ri;
1097 struct dnode_of_data dn;
1098 struct page *page;
1099
1100 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1101
1102 level = get_node_path(inode, from, offset, noffset);
1103 if (level < 0) {
1104 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1105 return level;
1106 }
1107
1108 page = f2fs_get_node_page(sbi, inode->i_ino);
1109 if (IS_ERR(page)) {
1110 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1111 return PTR_ERR(page);
1112 }
1113
1114 set_new_dnode(&dn, inode, page, NULL, 0);
1115 unlock_page(page);
1116
1117 ri = F2FS_INODE(page);
1118 switch (level) {
1119 case 0:
1120 case 1:
1121 nofs = noffset[1];
1122 break;
1123 case 2:
1124 nofs = noffset[1];
1125 if (!offset[level - 1])
1126 goto skip_partial;
1127 err = truncate_partial_nodes(&dn, ri, offset, level);
1128 if (err < 0 && err != -ENOENT)
1129 goto fail;
1130 nofs += 1 + NIDS_PER_BLOCK;
1131 break;
1132 case 3:
1133 nofs = 5 + 2 * NIDS_PER_BLOCK;
1134 if (!offset[level - 1])
1135 goto skip_partial;
1136 err = truncate_partial_nodes(&dn, ri, offset, level);
1137 if (err < 0 && err != -ENOENT)
1138 goto fail;
1139 break;
1140 default:
1141 BUG();
1142 }
1143
1144 skip_partial:
1145 while (cont) {
1146 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1147 switch (offset[0]) {
1148 case NODE_DIR1_BLOCK:
1149 case NODE_DIR2_BLOCK:
1150 err = truncate_dnode(&dn);
1151 break;
1152
1153 case NODE_IND1_BLOCK:
1154 case NODE_IND2_BLOCK:
1155 err = truncate_nodes(&dn, nofs, offset[1], 2);
1156 break;
1157
1158 case NODE_DIND_BLOCK:
1159 err = truncate_nodes(&dn, nofs, offset[1], 3);
1160 cont = 0;
1161 break;
1162
1163 default:
1164 BUG();
1165 }
1166 if (err < 0 && err != -ENOENT)
1167 goto fail;
1168 if (offset[1] == 0 &&
1169 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1170 lock_page(page);
1171 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1172 f2fs_wait_on_page_writeback(page, NODE, true, true);
1173 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1174 set_page_dirty(page);
1175 unlock_page(page);
1176 }
1177 offset[1] = 0;
1178 offset[0]++;
1179 nofs += err;
1180 }
1181 fail:
1182 f2fs_put_page(page, 0);
1183 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1184 return err > 0 ? 0 : err;
1185 }
1186
1187 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1188 int f2fs_truncate_xattr_node(struct inode *inode)
1189 {
1190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1191 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1192 struct dnode_of_data dn;
1193 struct page *npage;
1194 int err;
1195
1196 if (!nid)
1197 return 0;
1198
1199 npage = f2fs_get_node_page(sbi, nid);
1200 if (IS_ERR(npage))
1201 return PTR_ERR(npage);
1202
1203 set_new_dnode(&dn, inode, NULL, npage, nid);
1204 err = truncate_node(&dn);
1205 if (err) {
1206 f2fs_put_page(npage, 1);
1207 return err;
1208 }
1209
1210 f2fs_i_xnid_write(inode, 0);
1211
1212 return 0;
1213 }
1214
1215 /*
1216 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1217 * f2fs_unlock_op().
1218 */
f2fs_remove_inode_page(struct inode * inode)1219 int f2fs_remove_inode_page(struct inode *inode)
1220 {
1221 struct dnode_of_data dn;
1222 int err;
1223
1224 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1225 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1226 if (err)
1227 return err;
1228
1229 err = f2fs_truncate_xattr_node(inode);
1230 if (err) {
1231 f2fs_put_dnode(&dn);
1232 return err;
1233 }
1234
1235 /* remove potential inline_data blocks */
1236 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1237 S_ISLNK(inode->i_mode))
1238 f2fs_truncate_data_blocks_range(&dn, 1);
1239
1240 /* 0 is possible, after f2fs_new_inode() has failed */
1241 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1242 f2fs_put_dnode(&dn);
1243 return -EIO;
1244 }
1245
1246 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1247 f2fs_warn(F2FS_I_SB(inode),
1248 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1249 inode->i_ino, (unsigned long long)inode->i_blocks);
1250 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1251 }
1252
1253 /* will put inode & node pages */
1254 err = truncate_node(&dn);
1255 if (err) {
1256 f2fs_put_dnode(&dn);
1257 return err;
1258 }
1259 return 0;
1260 }
1261
f2fs_new_inode_page(struct inode * inode)1262 struct page *f2fs_new_inode_page(struct inode *inode)
1263 {
1264 struct dnode_of_data dn;
1265
1266 /* allocate inode page for new inode */
1267 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1268
1269 /* caller should f2fs_put_page(page, 1); */
1270 return f2fs_new_node_page(&dn, 0);
1271 }
1272
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1273 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1274 {
1275 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1276 struct node_info new_ni;
1277 struct page *page;
1278 int err;
1279
1280 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1281 return ERR_PTR(-EPERM);
1282
1283 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1284 if (!page)
1285 return ERR_PTR(-ENOMEM);
1286
1287 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1288 goto fail;
1289
1290 #ifdef CONFIG_F2FS_CHECK_FS
1291 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1292 if (err) {
1293 dec_valid_node_count(sbi, dn->inode, !ofs);
1294 goto fail;
1295 }
1296 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1297 err = -EFSCORRUPTED;
1298 set_sbi_flag(sbi, SBI_NEED_FSCK);
1299 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1300 goto fail;
1301 }
1302 #endif
1303 new_ni.nid = dn->nid;
1304 new_ni.ino = dn->inode->i_ino;
1305 new_ni.blk_addr = NULL_ADDR;
1306 new_ni.flag = 0;
1307 new_ni.version = 0;
1308 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1309
1310 f2fs_wait_on_page_writeback(page, NODE, true, true);
1311 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1312 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1313 if (!PageUptodate(page))
1314 SetPageUptodate(page);
1315 if (set_page_dirty(page))
1316 dn->node_changed = true;
1317
1318 if (f2fs_has_xattr_block(ofs))
1319 f2fs_i_xnid_write(dn->inode, dn->nid);
1320
1321 if (ofs == 0)
1322 inc_valid_inode_count(sbi);
1323 return page;
1324
1325 fail:
1326 clear_node_page_dirty(page);
1327 f2fs_put_page(page, 1);
1328 return ERR_PTR(err);
1329 }
1330
1331 /*
1332 * Caller should do after getting the following values.
1333 * 0: f2fs_put_page(page, 0)
1334 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1335 */
read_node_page(struct page * page,blk_opf_t op_flags)1336 static int read_node_page(struct page *page, blk_opf_t op_flags)
1337 {
1338 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1339 struct node_info ni;
1340 struct f2fs_io_info fio = {
1341 .sbi = sbi,
1342 .type = NODE,
1343 .op = REQ_OP_READ,
1344 .op_flags = op_flags,
1345 .page = page,
1346 .encrypted_page = NULL,
1347 };
1348 int err;
1349
1350 if (PageUptodate(page)) {
1351 if (!f2fs_inode_chksum_verify(sbi, page)) {
1352 ClearPageUptodate(page);
1353 return -EFSBADCRC;
1354 }
1355 return LOCKED_PAGE;
1356 }
1357
1358 err = f2fs_get_node_info(sbi, page->index, &ni, false);
1359 if (err)
1360 return err;
1361
1362 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1363 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR) ||
1364 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1365 ClearPageUptodate(page);
1366 return -ENOENT;
1367 }
1368
1369 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1370
1371 err = f2fs_submit_page_bio(&fio);
1372
1373 if (!err)
1374 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1375
1376 return err;
1377 }
1378
1379 /*
1380 * Readahead a node page
1381 */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1382 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1383 {
1384 struct page *apage;
1385 int err;
1386
1387 if (!nid)
1388 return;
1389 if (f2fs_check_nid_range(sbi, nid))
1390 return;
1391
1392 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1393 if (apage)
1394 return;
1395
1396 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1397 if (!apage)
1398 return;
1399
1400 err = read_node_page(apage, REQ_RAHEAD);
1401 f2fs_put_page(apage, err ? 1 : 0);
1402 }
1403
__get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start)1404 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1405 struct page *parent, int start)
1406 {
1407 struct page *page;
1408 int err;
1409
1410 if (!nid)
1411 return ERR_PTR(-ENOENT);
1412 if (f2fs_check_nid_range(sbi, nid))
1413 return ERR_PTR(-EINVAL);
1414 repeat:
1415 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1416 if (!page)
1417 return ERR_PTR(-ENOMEM);
1418
1419 err = read_node_page(page, 0);
1420 if (err < 0) {
1421 goto out_put_err;
1422 } else if (err == LOCKED_PAGE) {
1423 err = 0;
1424 goto page_hit;
1425 }
1426
1427 if (parent)
1428 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1429
1430 lock_page(page);
1431
1432 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1433 f2fs_put_page(page, 1);
1434 goto repeat;
1435 }
1436
1437 if (unlikely(!PageUptodate(page))) {
1438 err = -EIO;
1439 goto out_err;
1440 }
1441
1442 if (!f2fs_inode_chksum_verify(sbi, page)) {
1443 err = -EFSBADCRC;
1444 goto out_err;
1445 }
1446 page_hit:
1447 if (likely(nid == nid_of_node(page)))
1448 return page;
1449
1450 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1451 nid, nid_of_node(page), ino_of_node(page),
1452 ofs_of_node(page), cpver_of_node(page),
1453 next_blkaddr_of_node(page));
1454 set_sbi_flag(sbi, SBI_NEED_FSCK);
1455 err = -EINVAL;
1456 out_err:
1457 ClearPageUptodate(page);
1458 out_put_err:
1459 /* ENOENT comes from read_node_page which is not an error. */
1460 if (err != -ENOENT)
1461 f2fs_handle_page_eio(sbi, page->index, NODE);
1462 f2fs_put_page(page, 1);
1463 return ERR_PTR(err);
1464 }
1465
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1466 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1467 {
1468 return __get_node_page(sbi, nid, NULL, 0);
1469 }
1470
f2fs_get_node_page_ra(struct page * parent,int start)1471 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1472 {
1473 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1474 nid_t nid = get_nid(parent, start, false);
1475
1476 return __get_node_page(sbi, nid, parent, start);
1477 }
1478
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1479 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1480 {
1481 struct inode *inode;
1482 struct page *page;
1483 int ret;
1484
1485 /* should flush inline_data before evict_inode */
1486 inode = ilookup(sbi->sb, ino);
1487 if (!inode)
1488 return;
1489
1490 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1491 FGP_LOCK|FGP_NOWAIT, 0);
1492 if (!page)
1493 goto iput_out;
1494
1495 if (!PageUptodate(page))
1496 goto page_out;
1497
1498 if (!PageDirty(page))
1499 goto page_out;
1500
1501 if (!clear_page_dirty_for_io(page))
1502 goto page_out;
1503
1504 ret = f2fs_write_inline_data(inode, page);
1505 inode_dec_dirty_pages(inode);
1506 f2fs_remove_dirty_inode(inode);
1507 if (ret)
1508 set_page_dirty(page);
1509 page_out:
1510 f2fs_put_page(page, 1);
1511 iput_out:
1512 iput(inode);
1513 }
1514
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1515 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1516 {
1517 pgoff_t index;
1518 struct pagevec pvec;
1519 struct page *last_page = NULL;
1520 int nr_pages;
1521
1522 pagevec_init(&pvec);
1523 index = 0;
1524
1525 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1526 PAGECACHE_TAG_DIRTY))) {
1527 int i;
1528
1529 for (i = 0; i < nr_pages; i++) {
1530 struct page *page = pvec.pages[i];
1531
1532 if (unlikely(f2fs_cp_error(sbi))) {
1533 f2fs_put_page(last_page, 0);
1534 pagevec_release(&pvec);
1535 return ERR_PTR(-EIO);
1536 }
1537
1538 if (!IS_DNODE(page) || !is_cold_node(page))
1539 continue;
1540 if (ino_of_node(page) != ino)
1541 continue;
1542
1543 lock_page(page);
1544
1545 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1546 continue_unlock:
1547 unlock_page(page);
1548 continue;
1549 }
1550 if (ino_of_node(page) != ino)
1551 goto continue_unlock;
1552
1553 if (!PageDirty(page)) {
1554 /* someone wrote it for us */
1555 goto continue_unlock;
1556 }
1557
1558 if (last_page)
1559 f2fs_put_page(last_page, 0);
1560
1561 get_page(page);
1562 last_page = page;
1563 unlock_page(page);
1564 }
1565 pagevec_release(&pvec);
1566 cond_resched();
1567 }
1568 return last_page;
1569 }
1570
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1571 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1572 struct writeback_control *wbc, bool do_balance,
1573 enum iostat_type io_type, unsigned int *seq_id)
1574 {
1575 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1576 nid_t nid;
1577 struct node_info ni;
1578 struct f2fs_io_info fio = {
1579 .sbi = sbi,
1580 .ino = ino_of_node(page),
1581 .type = NODE,
1582 .op = REQ_OP_WRITE,
1583 .op_flags = wbc_to_write_flags(wbc),
1584 .page = page,
1585 .encrypted_page = NULL,
1586 .submitted = false,
1587 .io_type = io_type,
1588 .io_wbc = wbc,
1589 };
1590 unsigned int seq;
1591
1592 trace_f2fs_writepage(page, NODE);
1593
1594 if (unlikely(f2fs_cp_error(sbi))) {
1595 ClearPageUptodate(page);
1596 dec_page_count(sbi, F2FS_DIRTY_NODES);
1597 unlock_page(page);
1598 return 0;
1599 }
1600
1601 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1602 goto redirty_out;
1603
1604 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1605 wbc->sync_mode == WB_SYNC_NONE &&
1606 IS_DNODE(page) && is_cold_node(page))
1607 goto redirty_out;
1608
1609 /* get old block addr of this node page */
1610 nid = nid_of_node(page);
1611 f2fs_bug_on(sbi, page->index != nid);
1612
1613 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1614 goto redirty_out;
1615
1616 if (wbc->for_reclaim) {
1617 if (!f2fs_down_read_trylock(&sbi->node_write))
1618 goto redirty_out;
1619 } else {
1620 f2fs_down_read(&sbi->node_write);
1621 }
1622
1623 /* This page is already truncated */
1624 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1625 ClearPageUptodate(page);
1626 dec_page_count(sbi, F2FS_DIRTY_NODES);
1627 f2fs_up_read(&sbi->node_write);
1628 unlock_page(page);
1629 return 0;
1630 }
1631
1632 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1633 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1634 DATA_GENERIC_ENHANCE)) {
1635 f2fs_up_read(&sbi->node_write);
1636 goto redirty_out;
1637 }
1638
1639 if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1640 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1641
1642 /* should add to global list before clearing PAGECACHE status */
1643 if (f2fs_in_warm_node_list(sbi, page)) {
1644 seq = f2fs_add_fsync_node_entry(sbi, page);
1645 if (seq_id)
1646 *seq_id = seq;
1647 }
1648
1649 set_page_writeback(page);
1650 ClearPageError(page);
1651
1652 fio.old_blkaddr = ni.blk_addr;
1653 f2fs_do_write_node_page(nid, &fio);
1654 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1655 dec_page_count(sbi, F2FS_DIRTY_NODES);
1656 f2fs_up_read(&sbi->node_write);
1657
1658 if (wbc->for_reclaim) {
1659 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1660 submitted = NULL;
1661 }
1662
1663 unlock_page(page);
1664
1665 if (unlikely(f2fs_cp_error(sbi))) {
1666 f2fs_submit_merged_write(sbi, NODE);
1667 submitted = NULL;
1668 }
1669 if (submitted)
1670 *submitted = fio.submitted;
1671
1672 if (do_balance)
1673 f2fs_balance_fs(sbi, false);
1674 return 0;
1675
1676 redirty_out:
1677 redirty_page_for_writepage(wbc, page);
1678 return AOP_WRITEPAGE_ACTIVATE;
1679 }
1680
f2fs_move_node_page(struct page * node_page,int gc_type)1681 int f2fs_move_node_page(struct page *node_page, int gc_type)
1682 {
1683 int err = 0;
1684
1685 if (gc_type == FG_GC) {
1686 struct writeback_control wbc = {
1687 .sync_mode = WB_SYNC_ALL,
1688 .nr_to_write = 1,
1689 .for_reclaim = 0,
1690 };
1691
1692 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1693
1694 set_page_dirty(node_page);
1695
1696 if (!clear_page_dirty_for_io(node_page)) {
1697 err = -EAGAIN;
1698 goto out_page;
1699 }
1700
1701 if (__write_node_page(node_page, false, NULL,
1702 &wbc, false, FS_GC_NODE_IO, NULL)) {
1703 err = -EAGAIN;
1704 unlock_page(node_page);
1705 }
1706 goto release_page;
1707 } else {
1708 /* set page dirty and write it */
1709 if (!PageWriteback(node_page))
1710 set_page_dirty(node_page);
1711 }
1712 out_page:
1713 unlock_page(node_page);
1714 release_page:
1715 f2fs_put_page(node_page, 0);
1716 return err;
1717 }
1718
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1719 static int f2fs_write_node_page(struct page *page,
1720 struct writeback_control *wbc)
1721 {
1722 return __write_node_page(page, false, NULL, wbc, false,
1723 FS_NODE_IO, NULL);
1724 }
1725
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1726 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1727 struct writeback_control *wbc, bool atomic,
1728 unsigned int *seq_id)
1729 {
1730 pgoff_t index;
1731 struct pagevec pvec;
1732 int ret = 0;
1733 struct page *last_page = NULL;
1734 bool marked = false;
1735 nid_t ino = inode->i_ino;
1736 int nr_pages;
1737 int nwritten = 0;
1738
1739 if (atomic) {
1740 last_page = last_fsync_dnode(sbi, ino);
1741 if (IS_ERR_OR_NULL(last_page))
1742 return PTR_ERR_OR_ZERO(last_page);
1743 }
1744 retry:
1745 pagevec_init(&pvec);
1746 index = 0;
1747
1748 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1749 PAGECACHE_TAG_DIRTY))) {
1750 int i;
1751
1752 for (i = 0; i < nr_pages; i++) {
1753 struct page *page = pvec.pages[i];
1754 bool submitted = false;
1755
1756 if (unlikely(f2fs_cp_error(sbi))) {
1757 f2fs_put_page(last_page, 0);
1758 pagevec_release(&pvec);
1759 ret = -EIO;
1760 goto out;
1761 }
1762
1763 if (!IS_DNODE(page) || !is_cold_node(page))
1764 continue;
1765 if (ino_of_node(page) != ino)
1766 continue;
1767
1768 lock_page(page);
1769
1770 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1771 continue_unlock:
1772 unlock_page(page);
1773 continue;
1774 }
1775 if (ino_of_node(page) != ino)
1776 goto continue_unlock;
1777
1778 if (!PageDirty(page) && page != last_page) {
1779 /* someone wrote it for us */
1780 goto continue_unlock;
1781 }
1782
1783 f2fs_wait_on_page_writeback(page, NODE, true, true);
1784
1785 set_fsync_mark(page, 0);
1786 set_dentry_mark(page, 0);
1787
1788 if (!atomic || page == last_page) {
1789 set_fsync_mark(page, 1);
1790 percpu_counter_inc(&sbi->rf_node_block_count);
1791 if (IS_INODE(page)) {
1792 if (is_inode_flag_set(inode,
1793 FI_DIRTY_INODE))
1794 f2fs_update_inode(inode, page);
1795 set_dentry_mark(page,
1796 f2fs_need_dentry_mark(sbi, ino));
1797 }
1798 /* may be written by other thread */
1799 if (!PageDirty(page))
1800 set_page_dirty(page);
1801 }
1802
1803 if (!clear_page_dirty_for_io(page))
1804 goto continue_unlock;
1805
1806 ret = __write_node_page(page, atomic &&
1807 page == last_page,
1808 &submitted, wbc, true,
1809 FS_NODE_IO, seq_id);
1810 if (ret) {
1811 unlock_page(page);
1812 f2fs_put_page(last_page, 0);
1813 break;
1814 } else if (submitted) {
1815 nwritten++;
1816 }
1817
1818 if (page == last_page) {
1819 f2fs_put_page(page, 0);
1820 marked = true;
1821 break;
1822 }
1823 }
1824 pagevec_release(&pvec);
1825 cond_resched();
1826
1827 if (ret || marked)
1828 break;
1829 }
1830 if (!ret && atomic && !marked) {
1831 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1832 ino, last_page->index);
1833 lock_page(last_page);
1834 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1835 set_page_dirty(last_page);
1836 unlock_page(last_page);
1837 goto retry;
1838 }
1839 out:
1840 if (nwritten)
1841 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1842 return ret ? -EIO : 0;
1843 }
1844
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1845 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1846 {
1847 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1848 bool clean;
1849
1850 if (inode->i_ino != ino)
1851 return 0;
1852
1853 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1854 return 0;
1855
1856 spin_lock(&sbi->inode_lock[DIRTY_META]);
1857 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1858 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1859
1860 if (clean)
1861 return 0;
1862
1863 inode = igrab(inode);
1864 if (!inode)
1865 return 0;
1866 return 1;
1867 }
1868
flush_dirty_inode(struct page * page)1869 static bool flush_dirty_inode(struct page *page)
1870 {
1871 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1872 struct inode *inode;
1873 nid_t ino = ino_of_node(page);
1874
1875 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1876 if (!inode)
1877 return false;
1878
1879 f2fs_update_inode(inode, page);
1880 unlock_page(page);
1881
1882 iput(inode);
1883 return true;
1884 }
1885
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1886 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1887 {
1888 pgoff_t index = 0;
1889 struct pagevec pvec;
1890 int nr_pages;
1891
1892 pagevec_init(&pvec);
1893
1894 while ((nr_pages = pagevec_lookup_tag(&pvec,
1895 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1896 int i;
1897
1898 for (i = 0; i < nr_pages; i++) {
1899 struct page *page = pvec.pages[i];
1900
1901 if (!IS_DNODE(page))
1902 continue;
1903
1904 lock_page(page);
1905
1906 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1907 continue_unlock:
1908 unlock_page(page);
1909 continue;
1910 }
1911
1912 if (!PageDirty(page)) {
1913 /* someone wrote it for us */
1914 goto continue_unlock;
1915 }
1916
1917 /* flush inline_data, if it's async context. */
1918 if (page_private_inline(page)) {
1919 clear_page_private_inline(page);
1920 unlock_page(page);
1921 flush_inline_data(sbi, ino_of_node(page));
1922 continue;
1923 }
1924 unlock_page(page);
1925 }
1926 pagevec_release(&pvec);
1927 cond_resched();
1928 }
1929 }
1930
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1931 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1932 struct writeback_control *wbc,
1933 bool do_balance, enum iostat_type io_type)
1934 {
1935 pgoff_t index;
1936 struct pagevec pvec;
1937 int step = 0;
1938 int nwritten = 0;
1939 int ret = 0;
1940 int nr_pages, done = 0;
1941
1942 pagevec_init(&pvec);
1943
1944 next_step:
1945 index = 0;
1946
1947 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1948 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1949 int i;
1950
1951 for (i = 0; i < nr_pages; i++) {
1952 struct page *page = pvec.pages[i];
1953 bool submitted = false;
1954
1955 /* give a priority to WB_SYNC threads */
1956 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1957 wbc->sync_mode == WB_SYNC_NONE) {
1958 done = 1;
1959 break;
1960 }
1961
1962 /*
1963 * flushing sequence with step:
1964 * 0. indirect nodes
1965 * 1. dentry dnodes
1966 * 2. file dnodes
1967 */
1968 if (step == 0 && IS_DNODE(page))
1969 continue;
1970 if (step == 1 && (!IS_DNODE(page) ||
1971 is_cold_node(page)))
1972 continue;
1973 if (step == 2 && (!IS_DNODE(page) ||
1974 !is_cold_node(page)))
1975 continue;
1976 lock_node:
1977 if (wbc->sync_mode == WB_SYNC_ALL)
1978 lock_page(page);
1979 else if (!trylock_page(page))
1980 continue;
1981
1982 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1983 continue_unlock:
1984 unlock_page(page);
1985 continue;
1986 }
1987
1988 if (!PageDirty(page)) {
1989 /* someone wrote it for us */
1990 goto continue_unlock;
1991 }
1992
1993 /* flush inline_data/inode, if it's async context. */
1994 if (!do_balance)
1995 goto write_node;
1996
1997 /* flush inline_data */
1998 if (page_private_inline(page)) {
1999 clear_page_private_inline(page);
2000 unlock_page(page);
2001 flush_inline_data(sbi, ino_of_node(page));
2002 goto lock_node;
2003 }
2004
2005 /* flush dirty inode */
2006 if (IS_INODE(page) && flush_dirty_inode(page))
2007 goto lock_node;
2008 write_node:
2009 f2fs_wait_on_page_writeback(page, NODE, true, true);
2010
2011 if (!clear_page_dirty_for_io(page))
2012 goto continue_unlock;
2013
2014 set_fsync_mark(page, 0);
2015 set_dentry_mark(page, 0);
2016
2017 ret = __write_node_page(page, false, &submitted,
2018 wbc, do_balance, io_type, NULL);
2019 if (ret)
2020 unlock_page(page);
2021 else if (submitted)
2022 nwritten++;
2023
2024 if (--wbc->nr_to_write == 0)
2025 break;
2026 }
2027 pagevec_release(&pvec);
2028 cond_resched();
2029
2030 if (wbc->nr_to_write == 0) {
2031 step = 2;
2032 break;
2033 }
2034 }
2035
2036 if (step < 2) {
2037 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2038 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2039 goto out;
2040 step++;
2041 goto next_step;
2042 }
2043 out:
2044 if (nwritten)
2045 f2fs_submit_merged_write(sbi, NODE);
2046
2047 if (unlikely(f2fs_cp_error(sbi)))
2048 return -EIO;
2049 return ret;
2050 }
2051
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)2052 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2053 unsigned int seq_id)
2054 {
2055 struct fsync_node_entry *fn;
2056 struct page *page;
2057 struct list_head *head = &sbi->fsync_node_list;
2058 unsigned long flags;
2059 unsigned int cur_seq_id = 0;
2060 int ret2, ret = 0;
2061
2062 while (seq_id && cur_seq_id < seq_id) {
2063 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2064 if (list_empty(head)) {
2065 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2066 break;
2067 }
2068 fn = list_first_entry(head, struct fsync_node_entry, list);
2069 if (fn->seq_id > seq_id) {
2070 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2071 break;
2072 }
2073 cur_seq_id = fn->seq_id;
2074 page = fn->page;
2075 get_page(page);
2076 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2077
2078 f2fs_wait_on_page_writeback(page, NODE, true, false);
2079 if (TestClearPageError(page))
2080 ret = -EIO;
2081
2082 put_page(page);
2083
2084 if (ret)
2085 break;
2086 }
2087
2088 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2089 if (!ret)
2090 ret = ret2;
2091
2092 return ret;
2093 }
2094
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2095 static int f2fs_write_node_pages(struct address_space *mapping,
2096 struct writeback_control *wbc)
2097 {
2098 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2099 struct blk_plug plug;
2100 long diff;
2101
2102 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2103 goto skip_write;
2104
2105 /* balancing f2fs's metadata in background */
2106 f2fs_balance_fs_bg(sbi, true);
2107
2108 /* collect a number of dirty node pages and write together */
2109 if (wbc->sync_mode != WB_SYNC_ALL &&
2110 get_pages(sbi, F2FS_DIRTY_NODES) <
2111 nr_pages_to_skip(sbi, NODE))
2112 goto skip_write;
2113
2114 if (wbc->sync_mode == WB_SYNC_ALL)
2115 atomic_inc(&sbi->wb_sync_req[NODE]);
2116 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2117 /* to avoid potential deadlock */
2118 if (current->plug)
2119 blk_finish_plug(current->plug);
2120 goto skip_write;
2121 }
2122
2123 trace_f2fs_writepages(mapping->host, wbc, NODE);
2124
2125 diff = nr_pages_to_write(sbi, NODE, wbc);
2126 blk_start_plug(&plug);
2127 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2128 blk_finish_plug(&plug);
2129 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2130
2131 if (wbc->sync_mode == WB_SYNC_ALL)
2132 atomic_dec(&sbi->wb_sync_req[NODE]);
2133 return 0;
2134
2135 skip_write:
2136 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2137 trace_f2fs_writepages(mapping->host, wbc, NODE);
2138 return 0;
2139 }
2140
f2fs_dirty_node_folio(struct address_space * mapping,struct folio * folio)2141 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2142 struct folio *folio)
2143 {
2144 trace_f2fs_set_page_dirty(&folio->page, NODE);
2145
2146 if (!folio_test_uptodate(folio))
2147 folio_mark_uptodate(folio);
2148 #ifdef CONFIG_F2FS_CHECK_FS
2149 if (IS_INODE(&folio->page))
2150 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2151 #endif
2152 if (filemap_dirty_folio(mapping, folio)) {
2153 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2154 set_page_private_reference(&folio->page);
2155 return true;
2156 }
2157 return false;
2158 }
2159
2160 /*
2161 * Structure of the f2fs node operations
2162 */
2163 const struct address_space_operations f2fs_node_aops = {
2164 .writepage = f2fs_write_node_page,
2165 .writepages = f2fs_write_node_pages,
2166 .dirty_folio = f2fs_dirty_node_folio,
2167 .invalidate_folio = f2fs_invalidate_folio,
2168 .release_folio = f2fs_release_folio,
2169 .migrate_folio = filemap_migrate_folio,
2170 };
2171
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2172 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2173 nid_t n)
2174 {
2175 return radix_tree_lookup(&nm_i->free_nid_root, n);
2176 }
2177
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2178 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2179 struct free_nid *i)
2180 {
2181 struct f2fs_nm_info *nm_i = NM_I(sbi);
2182 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2183
2184 if (err)
2185 return err;
2186
2187 nm_i->nid_cnt[FREE_NID]++;
2188 list_add_tail(&i->list, &nm_i->free_nid_list);
2189 return 0;
2190 }
2191
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2192 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2193 struct free_nid *i, enum nid_state state)
2194 {
2195 struct f2fs_nm_info *nm_i = NM_I(sbi);
2196
2197 f2fs_bug_on(sbi, state != i->state);
2198 nm_i->nid_cnt[state]--;
2199 if (state == FREE_NID)
2200 list_del(&i->list);
2201 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2202 }
2203
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2204 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2205 enum nid_state org_state, enum nid_state dst_state)
2206 {
2207 struct f2fs_nm_info *nm_i = NM_I(sbi);
2208
2209 f2fs_bug_on(sbi, org_state != i->state);
2210 i->state = dst_state;
2211 nm_i->nid_cnt[org_state]--;
2212 nm_i->nid_cnt[dst_state]++;
2213
2214 switch (dst_state) {
2215 case PREALLOC_NID:
2216 list_del(&i->list);
2217 break;
2218 case FREE_NID:
2219 list_add_tail(&i->list, &nm_i->free_nid_list);
2220 break;
2221 default:
2222 BUG_ON(1);
2223 }
2224 }
2225
f2fs_nat_bitmap_enabled(struct f2fs_sb_info * sbi)2226 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2227 {
2228 struct f2fs_nm_info *nm_i = NM_I(sbi);
2229 unsigned int i;
2230 bool ret = true;
2231
2232 f2fs_down_read(&nm_i->nat_tree_lock);
2233 for (i = 0; i < nm_i->nat_blocks; i++) {
2234 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2235 ret = false;
2236 break;
2237 }
2238 }
2239 f2fs_up_read(&nm_i->nat_tree_lock);
2240
2241 return ret;
2242 }
2243
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2244 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2245 bool set, bool build)
2246 {
2247 struct f2fs_nm_info *nm_i = NM_I(sbi);
2248 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2249 unsigned int nid_ofs = nid - START_NID(nid);
2250
2251 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2252 return;
2253
2254 if (set) {
2255 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2256 return;
2257 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2258 nm_i->free_nid_count[nat_ofs]++;
2259 } else {
2260 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2261 return;
2262 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2263 if (!build)
2264 nm_i->free_nid_count[nat_ofs]--;
2265 }
2266 }
2267
2268 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2269 static bool add_free_nid(struct f2fs_sb_info *sbi,
2270 nid_t nid, bool build, bool update)
2271 {
2272 struct f2fs_nm_info *nm_i = NM_I(sbi);
2273 struct free_nid *i, *e;
2274 struct nat_entry *ne;
2275 int err = -EINVAL;
2276 bool ret = false;
2277
2278 /* 0 nid should not be used */
2279 if (unlikely(nid == 0))
2280 return false;
2281
2282 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2283 return false;
2284
2285 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2286 i->nid = nid;
2287 i->state = FREE_NID;
2288
2289 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2290
2291 spin_lock(&nm_i->nid_list_lock);
2292
2293 if (build) {
2294 /*
2295 * Thread A Thread B
2296 * - f2fs_create
2297 * - f2fs_new_inode
2298 * - f2fs_alloc_nid
2299 * - __insert_nid_to_list(PREALLOC_NID)
2300 * - f2fs_balance_fs_bg
2301 * - f2fs_build_free_nids
2302 * - __f2fs_build_free_nids
2303 * - scan_nat_page
2304 * - add_free_nid
2305 * - __lookup_nat_cache
2306 * - f2fs_add_link
2307 * - f2fs_init_inode_metadata
2308 * - f2fs_new_inode_page
2309 * - f2fs_new_node_page
2310 * - set_node_addr
2311 * - f2fs_alloc_nid_done
2312 * - __remove_nid_from_list(PREALLOC_NID)
2313 * - __insert_nid_to_list(FREE_NID)
2314 */
2315 ne = __lookup_nat_cache(nm_i, nid);
2316 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2317 nat_get_blkaddr(ne) != NULL_ADDR))
2318 goto err_out;
2319
2320 e = __lookup_free_nid_list(nm_i, nid);
2321 if (e) {
2322 if (e->state == FREE_NID)
2323 ret = true;
2324 goto err_out;
2325 }
2326 }
2327 ret = true;
2328 err = __insert_free_nid(sbi, i);
2329 err_out:
2330 if (update) {
2331 update_free_nid_bitmap(sbi, nid, ret, build);
2332 if (!build)
2333 nm_i->available_nids++;
2334 }
2335 spin_unlock(&nm_i->nid_list_lock);
2336 radix_tree_preload_end();
2337
2338 if (err)
2339 kmem_cache_free(free_nid_slab, i);
2340 return ret;
2341 }
2342
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2343 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2344 {
2345 struct f2fs_nm_info *nm_i = NM_I(sbi);
2346 struct free_nid *i;
2347 bool need_free = false;
2348
2349 spin_lock(&nm_i->nid_list_lock);
2350 i = __lookup_free_nid_list(nm_i, nid);
2351 if (i && i->state == FREE_NID) {
2352 __remove_free_nid(sbi, i, FREE_NID);
2353 need_free = true;
2354 }
2355 spin_unlock(&nm_i->nid_list_lock);
2356
2357 if (need_free)
2358 kmem_cache_free(free_nid_slab, i);
2359 }
2360
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2361 static int scan_nat_page(struct f2fs_sb_info *sbi,
2362 struct page *nat_page, nid_t start_nid)
2363 {
2364 struct f2fs_nm_info *nm_i = NM_I(sbi);
2365 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2366 block_t blk_addr;
2367 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2368 int i;
2369
2370 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2371
2372 i = start_nid % NAT_ENTRY_PER_BLOCK;
2373
2374 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2375 if (unlikely(start_nid >= nm_i->max_nid))
2376 break;
2377
2378 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2379
2380 if (blk_addr == NEW_ADDR)
2381 return -EINVAL;
2382
2383 if (blk_addr == NULL_ADDR) {
2384 add_free_nid(sbi, start_nid, true, true);
2385 } else {
2386 spin_lock(&NM_I(sbi)->nid_list_lock);
2387 update_free_nid_bitmap(sbi, start_nid, false, true);
2388 spin_unlock(&NM_I(sbi)->nid_list_lock);
2389 }
2390 }
2391
2392 return 0;
2393 }
2394
scan_curseg_cache(struct f2fs_sb_info * sbi)2395 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2396 {
2397 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2398 struct f2fs_journal *journal = curseg->journal;
2399 int i;
2400
2401 down_read(&curseg->journal_rwsem);
2402 for (i = 0; i < nats_in_cursum(journal); i++) {
2403 block_t addr;
2404 nid_t nid;
2405
2406 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2407 nid = le32_to_cpu(nid_in_journal(journal, i));
2408 if (addr == NULL_ADDR)
2409 add_free_nid(sbi, nid, true, false);
2410 else
2411 remove_free_nid(sbi, nid);
2412 }
2413 up_read(&curseg->journal_rwsem);
2414 }
2415
scan_free_nid_bits(struct f2fs_sb_info * sbi)2416 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2417 {
2418 struct f2fs_nm_info *nm_i = NM_I(sbi);
2419 unsigned int i, idx;
2420 nid_t nid;
2421
2422 f2fs_down_read(&nm_i->nat_tree_lock);
2423
2424 for (i = 0; i < nm_i->nat_blocks; i++) {
2425 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2426 continue;
2427 if (!nm_i->free_nid_count[i])
2428 continue;
2429 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2430 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2431 NAT_ENTRY_PER_BLOCK, idx);
2432 if (idx >= NAT_ENTRY_PER_BLOCK)
2433 break;
2434
2435 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2436 add_free_nid(sbi, nid, true, false);
2437
2438 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2439 goto out;
2440 }
2441 }
2442 out:
2443 scan_curseg_cache(sbi);
2444
2445 f2fs_up_read(&nm_i->nat_tree_lock);
2446 }
2447
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2448 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2449 bool sync, bool mount)
2450 {
2451 struct f2fs_nm_info *nm_i = NM_I(sbi);
2452 int i = 0, ret;
2453 nid_t nid = nm_i->next_scan_nid;
2454
2455 if (unlikely(nid >= nm_i->max_nid))
2456 nid = 0;
2457
2458 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2459 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2460
2461 /* Enough entries */
2462 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2463 return 0;
2464
2465 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2466 return 0;
2467
2468 if (!mount) {
2469 /* try to find free nids in free_nid_bitmap */
2470 scan_free_nid_bits(sbi);
2471
2472 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2473 return 0;
2474 }
2475
2476 /* readahead nat pages to be scanned */
2477 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2478 META_NAT, true);
2479
2480 f2fs_down_read(&nm_i->nat_tree_lock);
2481
2482 while (1) {
2483 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2484 nm_i->nat_block_bitmap)) {
2485 struct page *page = get_current_nat_page(sbi, nid);
2486
2487 if (IS_ERR(page)) {
2488 ret = PTR_ERR(page);
2489 } else {
2490 ret = scan_nat_page(sbi, page, nid);
2491 f2fs_put_page(page, 1);
2492 }
2493
2494 if (ret) {
2495 f2fs_up_read(&nm_i->nat_tree_lock);
2496 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2497 return ret;
2498 }
2499 }
2500
2501 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2502 if (unlikely(nid >= nm_i->max_nid))
2503 nid = 0;
2504
2505 if (++i >= FREE_NID_PAGES)
2506 break;
2507 }
2508
2509 /* go to the next free nat pages to find free nids abundantly */
2510 nm_i->next_scan_nid = nid;
2511
2512 /* find free nids from current sum_pages */
2513 scan_curseg_cache(sbi);
2514
2515 f2fs_up_read(&nm_i->nat_tree_lock);
2516
2517 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2518 nm_i->ra_nid_pages, META_NAT, false);
2519
2520 return 0;
2521 }
2522
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2523 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2524 {
2525 int ret;
2526
2527 mutex_lock(&NM_I(sbi)->build_lock);
2528 ret = __f2fs_build_free_nids(sbi, sync, mount);
2529 mutex_unlock(&NM_I(sbi)->build_lock);
2530
2531 return ret;
2532 }
2533
2534 /*
2535 * If this function returns success, caller can obtain a new nid
2536 * from second parameter of this function.
2537 * The returned nid could be used ino as well as nid when inode is created.
2538 */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2539 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2540 {
2541 struct f2fs_nm_info *nm_i = NM_I(sbi);
2542 struct free_nid *i = NULL;
2543 retry:
2544 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2545 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2546 return false;
2547 }
2548
2549 spin_lock(&nm_i->nid_list_lock);
2550
2551 if (unlikely(nm_i->available_nids == 0)) {
2552 spin_unlock(&nm_i->nid_list_lock);
2553 return false;
2554 }
2555
2556 /* We should not use stale free nids created by f2fs_build_free_nids */
2557 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2558 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2559 i = list_first_entry(&nm_i->free_nid_list,
2560 struct free_nid, list);
2561 *nid = i->nid;
2562
2563 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2564 nm_i->available_nids--;
2565
2566 update_free_nid_bitmap(sbi, *nid, false, false);
2567
2568 spin_unlock(&nm_i->nid_list_lock);
2569 return true;
2570 }
2571 spin_unlock(&nm_i->nid_list_lock);
2572
2573 /* Let's scan nat pages and its caches to get free nids */
2574 if (!f2fs_build_free_nids(sbi, true, false))
2575 goto retry;
2576 return false;
2577 }
2578
2579 /*
2580 * f2fs_alloc_nid() should be called prior to this function.
2581 */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2582 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2583 {
2584 struct f2fs_nm_info *nm_i = NM_I(sbi);
2585 struct free_nid *i;
2586
2587 spin_lock(&nm_i->nid_list_lock);
2588 i = __lookup_free_nid_list(nm_i, nid);
2589 f2fs_bug_on(sbi, !i);
2590 __remove_free_nid(sbi, i, PREALLOC_NID);
2591 spin_unlock(&nm_i->nid_list_lock);
2592
2593 kmem_cache_free(free_nid_slab, i);
2594 }
2595
2596 /*
2597 * f2fs_alloc_nid() should be called prior to this function.
2598 */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2599 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2600 {
2601 struct f2fs_nm_info *nm_i = NM_I(sbi);
2602 struct free_nid *i;
2603 bool need_free = false;
2604
2605 if (!nid)
2606 return;
2607
2608 spin_lock(&nm_i->nid_list_lock);
2609 i = __lookup_free_nid_list(nm_i, nid);
2610 f2fs_bug_on(sbi, !i);
2611
2612 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2613 __remove_free_nid(sbi, i, PREALLOC_NID);
2614 need_free = true;
2615 } else {
2616 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2617 }
2618
2619 nm_i->available_nids++;
2620
2621 update_free_nid_bitmap(sbi, nid, true, false);
2622
2623 spin_unlock(&nm_i->nid_list_lock);
2624
2625 if (need_free)
2626 kmem_cache_free(free_nid_slab, i);
2627 }
2628
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2629 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2630 {
2631 struct f2fs_nm_info *nm_i = NM_I(sbi);
2632 int nr = nr_shrink;
2633
2634 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2635 return 0;
2636
2637 if (!mutex_trylock(&nm_i->build_lock))
2638 return 0;
2639
2640 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2641 struct free_nid *i, *next;
2642 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2643
2644 spin_lock(&nm_i->nid_list_lock);
2645 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2646 if (!nr_shrink || !batch ||
2647 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2648 break;
2649 __remove_free_nid(sbi, i, FREE_NID);
2650 kmem_cache_free(free_nid_slab, i);
2651 nr_shrink--;
2652 batch--;
2653 }
2654 spin_unlock(&nm_i->nid_list_lock);
2655 }
2656
2657 mutex_unlock(&nm_i->build_lock);
2658
2659 return nr - nr_shrink;
2660 }
2661
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2662 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2663 {
2664 void *src_addr, *dst_addr;
2665 size_t inline_size;
2666 struct page *ipage;
2667 struct f2fs_inode *ri;
2668
2669 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2670 if (IS_ERR(ipage))
2671 return PTR_ERR(ipage);
2672
2673 ri = F2FS_INODE(page);
2674 if (ri->i_inline & F2FS_INLINE_XATTR) {
2675 if (!f2fs_has_inline_xattr(inode)) {
2676 set_inode_flag(inode, FI_INLINE_XATTR);
2677 stat_inc_inline_xattr(inode);
2678 }
2679 } else {
2680 if (f2fs_has_inline_xattr(inode)) {
2681 stat_dec_inline_xattr(inode);
2682 clear_inode_flag(inode, FI_INLINE_XATTR);
2683 }
2684 goto update_inode;
2685 }
2686
2687 dst_addr = inline_xattr_addr(inode, ipage);
2688 src_addr = inline_xattr_addr(inode, page);
2689 inline_size = inline_xattr_size(inode);
2690
2691 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2692 memcpy(dst_addr, src_addr, inline_size);
2693 update_inode:
2694 f2fs_update_inode(inode, ipage);
2695 f2fs_put_page(ipage, 1);
2696 return 0;
2697 }
2698
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2699 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2700 {
2701 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2702 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2703 nid_t new_xnid;
2704 struct dnode_of_data dn;
2705 struct node_info ni;
2706 struct page *xpage;
2707 int err;
2708
2709 if (!prev_xnid)
2710 goto recover_xnid;
2711
2712 /* 1: invalidate the previous xattr nid */
2713 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2714 if (err)
2715 return err;
2716
2717 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2718 dec_valid_node_count(sbi, inode, false);
2719 set_node_addr(sbi, &ni, NULL_ADDR, false);
2720
2721 recover_xnid:
2722 /* 2: update xattr nid in inode */
2723 if (!f2fs_alloc_nid(sbi, &new_xnid))
2724 return -ENOSPC;
2725
2726 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2727 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2728 if (IS_ERR(xpage)) {
2729 f2fs_alloc_nid_failed(sbi, new_xnid);
2730 return PTR_ERR(xpage);
2731 }
2732
2733 f2fs_alloc_nid_done(sbi, new_xnid);
2734 f2fs_update_inode_page(inode);
2735
2736 /* 3: update and set xattr node page dirty */
2737 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2738
2739 set_page_dirty(xpage);
2740 f2fs_put_page(xpage, 1);
2741
2742 return 0;
2743 }
2744
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2745 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2746 {
2747 struct f2fs_inode *src, *dst;
2748 nid_t ino = ino_of_node(page);
2749 struct node_info old_ni, new_ni;
2750 struct page *ipage;
2751 int err;
2752
2753 err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2754 if (err)
2755 return err;
2756
2757 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2758 return -EINVAL;
2759 retry:
2760 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2761 if (!ipage) {
2762 memalloc_retry_wait(GFP_NOFS);
2763 goto retry;
2764 }
2765
2766 /* Should not use this inode from free nid list */
2767 remove_free_nid(sbi, ino);
2768
2769 if (!PageUptodate(ipage))
2770 SetPageUptodate(ipage);
2771 fill_node_footer(ipage, ino, ino, 0, true);
2772 set_cold_node(ipage, false);
2773
2774 src = F2FS_INODE(page);
2775 dst = F2FS_INODE(ipage);
2776
2777 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2778 dst->i_size = 0;
2779 dst->i_blocks = cpu_to_le64(1);
2780 dst->i_links = cpu_to_le32(1);
2781 dst->i_xattr_nid = 0;
2782 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2783 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2784 dst->i_extra_isize = src->i_extra_isize;
2785
2786 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2787 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2788 i_inline_xattr_size))
2789 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2790
2791 if (f2fs_sb_has_project_quota(sbi) &&
2792 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2793 i_projid))
2794 dst->i_projid = src->i_projid;
2795
2796 if (f2fs_sb_has_inode_crtime(sbi) &&
2797 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2798 i_crtime_nsec)) {
2799 dst->i_crtime = src->i_crtime;
2800 dst->i_crtime_nsec = src->i_crtime_nsec;
2801 }
2802 }
2803
2804 new_ni = old_ni;
2805 new_ni.ino = ino;
2806
2807 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2808 WARN_ON(1);
2809 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2810 inc_valid_inode_count(sbi);
2811 set_page_dirty(ipage);
2812 f2fs_put_page(ipage, 1);
2813 return 0;
2814 }
2815
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2816 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2817 unsigned int segno, struct f2fs_summary_block *sum)
2818 {
2819 struct f2fs_node *rn;
2820 struct f2fs_summary *sum_entry;
2821 block_t addr;
2822 int i, idx, last_offset, nrpages;
2823
2824 /* scan the node segment */
2825 last_offset = sbi->blocks_per_seg;
2826 addr = START_BLOCK(sbi, segno);
2827 sum_entry = &sum->entries[0];
2828
2829 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2830 nrpages = bio_max_segs(last_offset - i);
2831
2832 /* readahead node pages */
2833 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2834
2835 for (idx = addr; idx < addr + nrpages; idx++) {
2836 struct page *page = f2fs_get_tmp_page(sbi, idx);
2837
2838 if (IS_ERR(page))
2839 return PTR_ERR(page);
2840
2841 rn = F2FS_NODE(page);
2842 sum_entry->nid = rn->footer.nid;
2843 sum_entry->version = 0;
2844 sum_entry->ofs_in_node = 0;
2845 sum_entry++;
2846 f2fs_put_page(page, 1);
2847 }
2848
2849 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2850 addr + nrpages);
2851 }
2852 return 0;
2853 }
2854
remove_nats_in_journal(struct f2fs_sb_info * sbi)2855 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2856 {
2857 struct f2fs_nm_info *nm_i = NM_I(sbi);
2858 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2859 struct f2fs_journal *journal = curseg->journal;
2860 int i;
2861
2862 down_write(&curseg->journal_rwsem);
2863 for (i = 0; i < nats_in_cursum(journal); i++) {
2864 struct nat_entry *ne;
2865 struct f2fs_nat_entry raw_ne;
2866 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2867
2868 if (f2fs_check_nid_range(sbi, nid))
2869 continue;
2870
2871 raw_ne = nat_in_journal(journal, i);
2872
2873 ne = __lookup_nat_cache(nm_i, nid);
2874 if (!ne) {
2875 ne = __alloc_nat_entry(sbi, nid, true);
2876 __init_nat_entry(nm_i, ne, &raw_ne, true);
2877 }
2878
2879 /*
2880 * if a free nat in journal has not been used after last
2881 * checkpoint, we should remove it from available nids,
2882 * since later we will add it again.
2883 */
2884 if (!get_nat_flag(ne, IS_DIRTY) &&
2885 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2886 spin_lock(&nm_i->nid_list_lock);
2887 nm_i->available_nids--;
2888 spin_unlock(&nm_i->nid_list_lock);
2889 }
2890
2891 __set_nat_cache_dirty(nm_i, ne);
2892 }
2893 update_nats_in_cursum(journal, -i);
2894 up_write(&curseg->journal_rwsem);
2895 }
2896
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2897 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2898 struct list_head *head, int max)
2899 {
2900 struct nat_entry_set *cur;
2901
2902 if (nes->entry_cnt >= max)
2903 goto add_out;
2904
2905 list_for_each_entry(cur, head, set_list) {
2906 if (cur->entry_cnt >= nes->entry_cnt) {
2907 list_add(&nes->set_list, cur->set_list.prev);
2908 return;
2909 }
2910 }
2911 add_out:
2912 list_add_tail(&nes->set_list, head);
2913 }
2914
__update_nat_bits(struct f2fs_nm_info * nm_i,unsigned int nat_ofs,unsigned int valid)2915 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2916 unsigned int valid)
2917 {
2918 if (valid == 0) {
2919 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2920 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2921 return;
2922 }
2923
2924 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2925 if (valid == NAT_ENTRY_PER_BLOCK)
2926 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2927 else
2928 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2929 }
2930
update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2931 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2932 struct page *page)
2933 {
2934 struct f2fs_nm_info *nm_i = NM_I(sbi);
2935 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2936 struct f2fs_nat_block *nat_blk = page_address(page);
2937 int valid = 0;
2938 int i = 0;
2939
2940 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2941 return;
2942
2943 if (nat_index == 0) {
2944 valid = 1;
2945 i = 1;
2946 }
2947 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2948 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2949 valid++;
2950 }
2951
2952 __update_nat_bits(nm_i, nat_index, valid);
2953 }
2954
f2fs_enable_nat_bits(struct f2fs_sb_info * sbi)2955 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2956 {
2957 struct f2fs_nm_info *nm_i = NM_I(sbi);
2958 unsigned int nat_ofs;
2959
2960 f2fs_down_read(&nm_i->nat_tree_lock);
2961
2962 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2963 unsigned int valid = 0, nid_ofs = 0;
2964
2965 /* handle nid zero due to it should never be used */
2966 if (unlikely(nat_ofs == 0)) {
2967 valid = 1;
2968 nid_ofs = 1;
2969 }
2970
2971 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2972 if (!test_bit_le(nid_ofs,
2973 nm_i->free_nid_bitmap[nat_ofs]))
2974 valid++;
2975 }
2976
2977 __update_nat_bits(nm_i, nat_ofs, valid);
2978 }
2979
2980 f2fs_up_read(&nm_i->nat_tree_lock);
2981 }
2982
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)2983 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2984 struct nat_entry_set *set, struct cp_control *cpc)
2985 {
2986 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2987 struct f2fs_journal *journal = curseg->journal;
2988 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2989 bool to_journal = true;
2990 struct f2fs_nat_block *nat_blk;
2991 struct nat_entry *ne, *cur;
2992 struct page *page = NULL;
2993
2994 /*
2995 * there are two steps to flush nat entries:
2996 * #1, flush nat entries to journal in current hot data summary block.
2997 * #2, flush nat entries to nat page.
2998 */
2999 if ((cpc->reason & CP_UMOUNT) ||
3000 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3001 to_journal = false;
3002
3003 if (to_journal) {
3004 down_write(&curseg->journal_rwsem);
3005 } else {
3006 page = get_next_nat_page(sbi, start_nid);
3007 if (IS_ERR(page))
3008 return PTR_ERR(page);
3009
3010 nat_blk = page_address(page);
3011 f2fs_bug_on(sbi, !nat_blk);
3012 }
3013
3014 /* flush dirty nats in nat entry set */
3015 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3016 struct f2fs_nat_entry *raw_ne;
3017 nid_t nid = nat_get_nid(ne);
3018 int offset;
3019
3020 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3021
3022 if (to_journal) {
3023 offset = f2fs_lookup_journal_in_cursum(journal,
3024 NAT_JOURNAL, nid, 1);
3025 f2fs_bug_on(sbi, offset < 0);
3026 raw_ne = &nat_in_journal(journal, offset);
3027 nid_in_journal(journal, offset) = cpu_to_le32(nid);
3028 } else {
3029 raw_ne = &nat_blk->entries[nid - start_nid];
3030 }
3031 raw_nat_from_node_info(raw_ne, &ne->ni);
3032 nat_reset_flag(ne);
3033 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3034 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3035 add_free_nid(sbi, nid, false, true);
3036 } else {
3037 spin_lock(&NM_I(sbi)->nid_list_lock);
3038 update_free_nid_bitmap(sbi, nid, false, false);
3039 spin_unlock(&NM_I(sbi)->nid_list_lock);
3040 }
3041 }
3042
3043 if (to_journal) {
3044 up_write(&curseg->journal_rwsem);
3045 } else {
3046 update_nat_bits(sbi, start_nid, page);
3047 f2fs_put_page(page, 1);
3048 }
3049
3050 /* Allow dirty nats by node block allocation in write_begin */
3051 if (!set->entry_cnt) {
3052 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3053 kmem_cache_free(nat_entry_set_slab, set);
3054 }
3055 return 0;
3056 }
3057
3058 /*
3059 * This function is called during the checkpointing process.
3060 */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)3061 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3062 {
3063 struct f2fs_nm_info *nm_i = NM_I(sbi);
3064 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3065 struct f2fs_journal *journal = curseg->journal;
3066 struct nat_entry_set *setvec[SETVEC_SIZE];
3067 struct nat_entry_set *set, *tmp;
3068 unsigned int found;
3069 nid_t set_idx = 0;
3070 LIST_HEAD(sets);
3071 int err = 0;
3072
3073 /*
3074 * during unmount, let's flush nat_bits before checking
3075 * nat_cnt[DIRTY_NAT].
3076 */
3077 if (cpc->reason & CP_UMOUNT) {
3078 f2fs_down_write(&nm_i->nat_tree_lock);
3079 remove_nats_in_journal(sbi);
3080 f2fs_up_write(&nm_i->nat_tree_lock);
3081 }
3082
3083 if (!nm_i->nat_cnt[DIRTY_NAT])
3084 return 0;
3085
3086 f2fs_down_write(&nm_i->nat_tree_lock);
3087
3088 /*
3089 * if there are no enough space in journal to store dirty nat
3090 * entries, remove all entries from journal and merge them
3091 * into nat entry set.
3092 */
3093 if (cpc->reason & CP_UMOUNT ||
3094 !__has_cursum_space(journal,
3095 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3096 remove_nats_in_journal(sbi);
3097
3098 while ((found = __gang_lookup_nat_set(nm_i,
3099 set_idx, SETVEC_SIZE, setvec))) {
3100 unsigned idx;
3101
3102 set_idx = setvec[found - 1]->set + 1;
3103 for (idx = 0; idx < found; idx++)
3104 __adjust_nat_entry_set(setvec[idx], &sets,
3105 MAX_NAT_JENTRIES(journal));
3106 }
3107
3108 /* flush dirty nats in nat entry set */
3109 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3110 err = __flush_nat_entry_set(sbi, set, cpc);
3111 if (err)
3112 break;
3113 }
3114
3115 f2fs_up_write(&nm_i->nat_tree_lock);
3116 /* Allow dirty nats by node block allocation in write_begin */
3117
3118 return err;
3119 }
3120
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3121 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3122 {
3123 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3124 struct f2fs_nm_info *nm_i = NM_I(sbi);
3125 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3126 unsigned int i;
3127 __u64 cp_ver = cur_cp_version(ckpt);
3128 block_t nat_bits_addr;
3129
3130 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3131 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3132 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3133 if (!nm_i->nat_bits)
3134 return -ENOMEM;
3135
3136 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3137 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3138
3139 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3140 return 0;
3141
3142 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3143 nm_i->nat_bits_blocks;
3144 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3145 struct page *page;
3146
3147 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3148 if (IS_ERR(page))
3149 return PTR_ERR(page);
3150
3151 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3152 page_address(page), F2FS_BLKSIZE);
3153 f2fs_put_page(page, 1);
3154 }
3155
3156 cp_ver |= (cur_cp_crc(ckpt) << 32);
3157 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3158 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3159 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3160 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3161 return 0;
3162 }
3163
3164 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3165 return 0;
3166 }
3167
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3168 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3169 {
3170 struct f2fs_nm_info *nm_i = NM_I(sbi);
3171 unsigned int i = 0;
3172 nid_t nid, last_nid;
3173
3174 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3175 return;
3176
3177 for (i = 0; i < nm_i->nat_blocks; i++) {
3178 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3179 if (i >= nm_i->nat_blocks)
3180 break;
3181
3182 __set_bit_le(i, nm_i->nat_block_bitmap);
3183
3184 nid = i * NAT_ENTRY_PER_BLOCK;
3185 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3186
3187 spin_lock(&NM_I(sbi)->nid_list_lock);
3188 for (; nid < last_nid; nid++)
3189 update_free_nid_bitmap(sbi, nid, true, true);
3190 spin_unlock(&NM_I(sbi)->nid_list_lock);
3191 }
3192
3193 for (i = 0; i < nm_i->nat_blocks; i++) {
3194 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3195 if (i >= nm_i->nat_blocks)
3196 break;
3197
3198 __set_bit_le(i, nm_i->nat_block_bitmap);
3199 }
3200 }
3201
init_node_manager(struct f2fs_sb_info * sbi)3202 static int init_node_manager(struct f2fs_sb_info *sbi)
3203 {
3204 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3205 struct f2fs_nm_info *nm_i = NM_I(sbi);
3206 unsigned char *version_bitmap;
3207 unsigned int nat_segs;
3208 int err;
3209
3210 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3211
3212 /* segment_count_nat includes pair segment so divide to 2. */
3213 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3214 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3215 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3216
3217 /* not used nids: 0, node, meta, (and root counted as valid node) */
3218 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3219 F2FS_RESERVED_NODE_NUM;
3220 nm_i->nid_cnt[FREE_NID] = 0;
3221 nm_i->nid_cnt[PREALLOC_NID] = 0;
3222 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3223 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3224 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3225 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3226
3227 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3228 INIT_LIST_HEAD(&nm_i->free_nid_list);
3229 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3230 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3231 INIT_LIST_HEAD(&nm_i->nat_entries);
3232 spin_lock_init(&nm_i->nat_list_lock);
3233
3234 mutex_init(&nm_i->build_lock);
3235 spin_lock_init(&nm_i->nid_list_lock);
3236 init_f2fs_rwsem(&nm_i->nat_tree_lock);
3237
3238 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3239 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3240 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3241 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3242 GFP_KERNEL);
3243 if (!nm_i->nat_bitmap)
3244 return -ENOMEM;
3245
3246 err = __get_nat_bitmaps(sbi);
3247 if (err)
3248 return err;
3249
3250 #ifdef CONFIG_F2FS_CHECK_FS
3251 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3252 GFP_KERNEL);
3253 if (!nm_i->nat_bitmap_mir)
3254 return -ENOMEM;
3255 #endif
3256
3257 return 0;
3258 }
3259
init_free_nid_cache(struct f2fs_sb_info * sbi)3260 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3261 {
3262 struct f2fs_nm_info *nm_i = NM_I(sbi);
3263 int i;
3264
3265 nm_i->free_nid_bitmap =
3266 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3267 nm_i->nat_blocks),
3268 GFP_KERNEL);
3269 if (!nm_i->free_nid_bitmap)
3270 return -ENOMEM;
3271
3272 for (i = 0; i < nm_i->nat_blocks; i++) {
3273 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3274 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3275 if (!nm_i->free_nid_bitmap[i])
3276 return -ENOMEM;
3277 }
3278
3279 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3280 GFP_KERNEL);
3281 if (!nm_i->nat_block_bitmap)
3282 return -ENOMEM;
3283
3284 nm_i->free_nid_count =
3285 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3286 nm_i->nat_blocks),
3287 GFP_KERNEL);
3288 if (!nm_i->free_nid_count)
3289 return -ENOMEM;
3290 return 0;
3291 }
3292
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3293 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3294 {
3295 int err;
3296
3297 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3298 GFP_KERNEL);
3299 if (!sbi->nm_info)
3300 return -ENOMEM;
3301
3302 err = init_node_manager(sbi);
3303 if (err)
3304 return err;
3305
3306 err = init_free_nid_cache(sbi);
3307 if (err)
3308 return err;
3309
3310 /* load free nid status from nat_bits table */
3311 load_free_nid_bitmap(sbi);
3312
3313 return f2fs_build_free_nids(sbi, true, true);
3314 }
3315
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3316 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3317 {
3318 struct f2fs_nm_info *nm_i = NM_I(sbi);
3319 struct free_nid *i, *next_i;
3320 struct nat_entry *natvec[NATVEC_SIZE];
3321 struct nat_entry_set *setvec[SETVEC_SIZE];
3322 nid_t nid = 0;
3323 unsigned int found;
3324
3325 if (!nm_i)
3326 return;
3327
3328 /* destroy free nid list */
3329 spin_lock(&nm_i->nid_list_lock);
3330 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3331 __remove_free_nid(sbi, i, FREE_NID);
3332 spin_unlock(&nm_i->nid_list_lock);
3333 kmem_cache_free(free_nid_slab, i);
3334 spin_lock(&nm_i->nid_list_lock);
3335 }
3336 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3337 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3338 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3339 spin_unlock(&nm_i->nid_list_lock);
3340
3341 /* destroy nat cache */
3342 f2fs_down_write(&nm_i->nat_tree_lock);
3343 while ((found = __gang_lookup_nat_cache(nm_i,
3344 nid, NATVEC_SIZE, natvec))) {
3345 unsigned idx;
3346
3347 nid = nat_get_nid(natvec[found - 1]) + 1;
3348 for (idx = 0; idx < found; idx++) {
3349 spin_lock(&nm_i->nat_list_lock);
3350 list_del(&natvec[idx]->list);
3351 spin_unlock(&nm_i->nat_list_lock);
3352
3353 __del_from_nat_cache(nm_i, natvec[idx]);
3354 }
3355 }
3356 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3357
3358 /* destroy nat set cache */
3359 nid = 0;
3360 while ((found = __gang_lookup_nat_set(nm_i,
3361 nid, SETVEC_SIZE, setvec))) {
3362 unsigned idx;
3363
3364 nid = setvec[found - 1]->set + 1;
3365 for (idx = 0; idx < found; idx++) {
3366 /* entry_cnt is not zero, when cp_error was occurred */
3367 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3368 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3369 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3370 }
3371 }
3372 f2fs_up_write(&nm_i->nat_tree_lock);
3373
3374 kvfree(nm_i->nat_block_bitmap);
3375 if (nm_i->free_nid_bitmap) {
3376 int i;
3377
3378 for (i = 0; i < nm_i->nat_blocks; i++)
3379 kvfree(nm_i->free_nid_bitmap[i]);
3380 kvfree(nm_i->free_nid_bitmap);
3381 }
3382 kvfree(nm_i->free_nid_count);
3383
3384 kvfree(nm_i->nat_bitmap);
3385 kvfree(nm_i->nat_bits);
3386 #ifdef CONFIG_F2FS_CHECK_FS
3387 kvfree(nm_i->nat_bitmap_mir);
3388 #endif
3389 sbi->nm_info = NULL;
3390 kfree(nm_i);
3391 }
3392
f2fs_create_node_manager_caches(void)3393 int __init f2fs_create_node_manager_caches(void)
3394 {
3395 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3396 sizeof(struct nat_entry));
3397 if (!nat_entry_slab)
3398 goto fail;
3399
3400 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3401 sizeof(struct free_nid));
3402 if (!free_nid_slab)
3403 goto destroy_nat_entry;
3404
3405 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3406 sizeof(struct nat_entry_set));
3407 if (!nat_entry_set_slab)
3408 goto destroy_free_nid;
3409
3410 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3411 sizeof(struct fsync_node_entry));
3412 if (!fsync_node_entry_slab)
3413 goto destroy_nat_entry_set;
3414 return 0;
3415
3416 destroy_nat_entry_set:
3417 kmem_cache_destroy(nat_entry_set_slab);
3418 destroy_free_nid:
3419 kmem_cache_destroy(free_nid_slab);
3420 destroy_nat_entry:
3421 kmem_cache_destroy(nat_entry_slab);
3422 fail:
3423 return -ENOMEM;
3424 }
3425
f2fs_destroy_node_manager_caches(void)3426 void f2fs_destroy_node_manager_caches(void)
3427 {
3428 kmem_cache_destroy(fsync_node_entry_slab);
3429 kmem_cache_destroy(nat_entry_set_slab);
3430 kmem_cache_destroy(free_nid_slab);
3431 kmem_cache_destroy(nat_entry_slab);
3432 }
3433