1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <crypto/hash.h>
26 
27 #include <linux/fscrypt.h>
28 #include <linux/fsverity.h>
29 
30 #ifdef CONFIG_F2FS_CHECK_FS
31 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
32 #else
33 #define f2fs_bug_on(sbi, condition)					\
34 	do {								\
35 		if (unlikely(condition)) {				\
36 			WARN_ON(1);					\
37 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
38 		}							\
39 	} while (0)
40 #endif
41 
42 enum {
43 	FAULT_KMALLOC,
44 	FAULT_KVMALLOC,
45 	FAULT_PAGE_ALLOC,
46 	FAULT_PAGE_GET,
47 	FAULT_ALLOC_BIO,
48 	FAULT_ALLOC_NID,
49 	FAULT_ORPHAN,
50 	FAULT_BLOCK,
51 	FAULT_DIR_DEPTH,
52 	FAULT_EVICT_INODE,
53 	FAULT_TRUNCATE,
54 	FAULT_READ_IO,
55 	FAULT_CHECKPOINT,
56 	FAULT_DISCARD,
57 	FAULT_WRITE_IO,
58 	FAULT_MAX,
59 };
60 
61 #ifdef CONFIG_F2FS_FAULT_INJECTION
62 #define F2FS_ALL_FAULT_TYPE		((1 << FAULT_MAX) - 1)
63 
64 struct f2fs_fault_info {
65 	atomic_t inject_ops;
66 	unsigned int inject_rate;
67 	unsigned int inject_type;
68 };
69 
70 extern const char *f2fs_fault_name[FAULT_MAX];
71 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
72 #endif
73 
74 /*
75  * For mount options
76  */
77 #define F2FS_MOUNT_BG_GC		0x00000001
78 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
79 #define F2FS_MOUNT_DISCARD		0x00000004
80 #define F2FS_MOUNT_NOHEAP		0x00000008
81 #define F2FS_MOUNT_XATTR_USER		0x00000010
82 #define F2FS_MOUNT_POSIX_ACL		0x00000020
83 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
84 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
85 #define F2FS_MOUNT_INLINE_DATA		0x00000100
86 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
87 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
88 #define F2FS_MOUNT_NOBARRIER		0x00000800
89 #define F2FS_MOUNT_FASTBOOT		0x00001000
90 #define F2FS_MOUNT_EXTENT_CACHE		0x00002000
91 #define F2FS_MOUNT_FORCE_FG_GC		0x00004000
92 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
93 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
94 #define F2FS_MOUNT_ADAPTIVE		0x00020000
95 #define F2FS_MOUNT_LFS			0x00040000
96 #define F2FS_MOUNT_USRQUOTA		0x00080000
97 #define F2FS_MOUNT_GRPQUOTA		0x00100000
98 #define F2FS_MOUNT_PRJQUOTA		0x00200000
99 #define F2FS_MOUNT_QUOTA		0x00400000
100 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
101 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
102 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
103 
104 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
105 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
106 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
107 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
108 
109 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
110 		typecheck(unsigned long long, b) &&			\
111 		((long long)((a) - (b)) > 0))
112 
113 typedef u32 block_t;	/*
114 			 * should not change u32, since it is the on-disk block
115 			 * address format, __le32.
116 			 */
117 typedef u32 nid_t;
118 
119 struct f2fs_mount_info {
120 	unsigned int opt;
121 	int write_io_size_bits;		/* Write IO size bits */
122 	block_t root_reserved_blocks;	/* root reserved blocks */
123 	kuid_t s_resuid;		/* reserved blocks for uid */
124 	kgid_t s_resgid;		/* reserved blocks for gid */
125 	int active_logs;		/* # of active logs */
126 	int inline_xattr_size;		/* inline xattr size */
127 #ifdef CONFIG_F2FS_FAULT_INJECTION
128 	struct f2fs_fault_info fault_info;	/* For fault injection */
129 #endif
130 #ifdef CONFIG_QUOTA
131 	/* Names of quota files with journalled quota */
132 	char *s_qf_names[MAXQUOTAS];
133 	int s_jquota_fmt;			/* Format of quota to use */
134 #endif
135 	/* For which write hints are passed down to block layer */
136 	int whint_mode;
137 	int alloc_mode;			/* segment allocation policy */
138 	int fsync_mode;			/* fsync policy */
139 	bool test_dummy_encryption;	/* test dummy encryption */
140 	block_t unusable_cap;		/* Amount of space allowed to be
141 					 * unusable when disabling checkpoint
142 					 */
143 };
144 
145 #define F2FS_FEATURE_ENCRYPT		0x0001
146 #define F2FS_FEATURE_BLKZONED		0x0002
147 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
148 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
149 #define F2FS_FEATURE_PRJQUOTA		0x0010
150 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
151 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
152 #define F2FS_FEATURE_QUOTA_INO		0x0080
153 #define F2FS_FEATURE_INODE_CRTIME	0x0100
154 #define F2FS_FEATURE_LOST_FOUND		0x0200
155 #define F2FS_FEATURE_VERITY		0x0400
156 #define F2FS_FEATURE_SB_CHKSUM		0x0800
157 #define F2FS_FEATURE_CASEFOLD		0x1000
158 
159 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
160 	((raw_super->feature & cpu_to_le32(mask)) != 0)
161 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
162 #define F2FS_SET_FEATURE(sbi, mask)					\
163 	(sbi->raw_super->feature |= cpu_to_le32(mask))
164 #define F2FS_CLEAR_FEATURE(sbi, mask)					\
165 	(sbi->raw_super->feature &= ~cpu_to_le32(mask))
166 
167 /*
168  * Default values for user and/or group using reserved blocks
169  */
170 #define	F2FS_DEF_RESUID		0
171 #define	F2FS_DEF_RESGID		0
172 
173 /*
174  * For checkpoint manager
175  */
176 enum {
177 	NAT_BITMAP,
178 	SIT_BITMAP
179 };
180 
181 #define	CP_UMOUNT	0x00000001
182 #define	CP_FASTBOOT	0x00000002
183 #define	CP_SYNC		0x00000004
184 #define	CP_RECOVERY	0x00000008
185 #define	CP_DISCARD	0x00000010
186 #define CP_TRIMMED	0x00000020
187 #define CP_PAUSE	0x00000040
188 
189 #define MAX_DISCARD_BLOCKS(sbi)		BLKS_PER_SEC(sbi)
190 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
191 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
192 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
193 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
194 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
195 #define DEF_CP_INTERVAL			60	/* 60 secs */
196 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
197 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
198 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
199 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
200 
201 struct cp_control {
202 	int reason;
203 	__u64 trim_start;
204 	__u64 trim_end;
205 	__u64 trim_minlen;
206 };
207 
208 /*
209  * indicate meta/data type
210  */
211 enum {
212 	META_CP,
213 	META_NAT,
214 	META_SIT,
215 	META_SSA,
216 	META_MAX,
217 	META_POR,
218 	DATA_GENERIC,		/* check range only */
219 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
220 	DATA_GENERIC_ENHANCE_READ,	/*
221 					 * strong check on range and segment
222 					 * bitmap but no warning due to race
223 					 * condition of read on truncated area
224 					 * by extent_cache
225 					 */
226 	META_GENERIC,
227 };
228 
229 /* for the list of ino */
230 enum {
231 	ORPHAN_INO,		/* for orphan ino list */
232 	APPEND_INO,		/* for append ino list */
233 	UPDATE_INO,		/* for update ino list */
234 	TRANS_DIR_INO,		/* for trasactions dir ino list */
235 	FLUSH_INO,		/* for multiple device flushing */
236 	MAX_INO_ENTRY,		/* max. list */
237 };
238 
239 struct ino_entry {
240 	struct list_head list;		/* list head */
241 	nid_t ino;			/* inode number */
242 	unsigned int dirty_device;	/* dirty device bitmap */
243 };
244 
245 /* for the list of inodes to be GCed */
246 struct inode_entry {
247 	struct list_head list;	/* list head */
248 	struct inode *inode;	/* vfs inode pointer */
249 };
250 
251 struct fsync_node_entry {
252 	struct list_head list;	/* list head */
253 	struct page *page;	/* warm node page pointer */
254 	unsigned int seq_id;	/* sequence id */
255 };
256 
257 /* for the bitmap indicate blocks to be discarded */
258 struct discard_entry {
259 	struct list_head list;	/* list head */
260 	block_t start_blkaddr;	/* start blockaddr of current segment */
261 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
262 };
263 
264 /* default discard granularity of inner discard thread, unit: block count */
265 #define DEFAULT_DISCARD_GRANULARITY		16
266 
267 /* max discard pend list number */
268 #define MAX_PLIST_NUM		512
269 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
270 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
271 
272 enum {
273 	D_PREP,			/* initial */
274 	D_PARTIAL,		/* partially submitted */
275 	D_SUBMIT,		/* all submitted */
276 	D_DONE,			/* finished */
277 };
278 
279 struct discard_info {
280 	block_t lstart;			/* logical start address */
281 	block_t len;			/* length */
282 	block_t start;			/* actual start address in dev */
283 };
284 
285 struct discard_cmd {
286 	struct rb_node rb_node;		/* rb node located in rb-tree */
287 	union {
288 		struct {
289 			block_t lstart;	/* logical start address */
290 			block_t len;	/* length */
291 			block_t start;	/* actual start address in dev */
292 		};
293 		struct discard_info di;	/* discard info */
294 
295 	};
296 	struct list_head list;		/* command list */
297 	struct completion wait;		/* compleation */
298 	struct block_device *bdev;	/* bdev */
299 	unsigned short ref;		/* reference count */
300 	unsigned char state;		/* state */
301 	unsigned char queued;		/* queued discard */
302 	int error;			/* bio error */
303 	spinlock_t lock;		/* for state/bio_ref updating */
304 	unsigned short bio_ref;		/* bio reference count */
305 };
306 
307 enum {
308 	DPOLICY_BG,
309 	DPOLICY_FORCE,
310 	DPOLICY_FSTRIM,
311 	DPOLICY_UMOUNT,
312 	MAX_DPOLICY,
313 };
314 
315 struct discard_policy {
316 	int type;			/* type of discard */
317 	unsigned int min_interval;	/* used for candidates exist */
318 	unsigned int mid_interval;	/* used for device busy */
319 	unsigned int max_interval;	/* used for candidates not exist */
320 	unsigned int max_requests;	/* # of discards issued per round */
321 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
322 	bool io_aware;			/* issue discard in idle time */
323 	bool sync;			/* submit discard with REQ_SYNC flag */
324 	bool ordered;			/* issue discard by lba order */
325 	unsigned int granularity;	/* discard granularity */
326 	int timeout;			/* discard timeout for put_super */
327 };
328 
329 struct discard_cmd_control {
330 	struct task_struct *f2fs_issue_discard;	/* discard thread */
331 	struct list_head entry_list;		/* 4KB discard entry list */
332 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
333 	struct list_head wait_list;		/* store on-flushing entries */
334 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
335 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
336 	unsigned int discard_wake;		/* to wake up discard thread */
337 	struct mutex cmd_lock;
338 	unsigned int nr_discards;		/* # of discards in the list */
339 	unsigned int max_discards;		/* max. discards to be issued */
340 	unsigned int discard_granularity;	/* discard granularity */
341 	unsigned int undiscard_blks;		/* # of undiscard blocks */
342 	unsigned int next_pos;			/* next discard position */
343 	atomic_t issued_discard;		/* # of issued discard */
344 	atomic_t queued_discard;		/* # of queued discard */
345 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
346 	struct rb_root_cached root;		/* root of discard rb-tree */
347 	bool rbtree_check;			/* config for consistence check */
348 };
349 
350 /* for the list of fsync inodes, used only during recovery */
351 struct fsync_inode_entry {
352 	struct list_head list;	/* list head */
353 	struct inode *inode;	/* vfs inode pointer */
354 	block_t blkaddr;	/* block address locating the last fsync */
355 	block_t last_dentry;	/* block address locating the last dentry */
356 };
357 
358 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
359 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
360 
361 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
362 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
363 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
364 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
365 
366 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
367 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
368 
update_nats_in_cursum(struct f2fs_journal * journal,int i)369 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
370 {
371 	int before = nats_in_cursum(journal);
372 
373 	journal->n_nats = cpu_to_le16(before + i);
374 	return before;
375 }
376 
update_sits_in_cursum(struct f2fs_journal * journal,int i)377 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
378 {
379 	int before = sits_in_cursum(journal);
380 
381 	journal->n_sits = cpu_to_le16(before + i);
382 	return before;
383 }
384 
__has_cursum_space(struct f2fs_journal * journal,int size,int type)385 static inline bool __has_cursum_space(struct f2fs_journal *journal,
386 							int size, int type)
387 {
388 	if (type == NAT_JOURNAL)
389 		return size <= MAX_NAT_JENTRIES(journal);
390 	return size <= MAX_SIT_JENTRIES(journal);
391 }
392 
393 /*
394  * ioctl commands
395  */
396 #define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
397 #define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
398 #define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
399 
400 #define F2FS_IOCTL_MAGIC		0xf5
401 #define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
402 #define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
403 #define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
404 #define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
405 #define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
406 #define F2FS_IOC_GARBAGE_COLLECT	_IOW(F2FS_IOCTL_MAGIC, 6, __u32)
407 #define F2FS_IOC_WRITE_CHECKPOINT	_IO(F2FS_IOCTL_MAGIC, 7)
408 #define F2FS_IOC_DEFRAGMENT		_IOWR(F2FS_IOCTL_MAGIC, 8,	\
409 						struct f2fs_defragment)
410 #define F2FS_IOC_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
411 						struct f2fs_move_range)
412 #define F2FS_IOC_FLUSH_DEVICE		_IOW(F2FS_IOCTL_MAGIC, 10,	\
413 						struct f2fs_flush_device)
414 #define F2FS_IOC_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,	\
415 						struct f2fs_gc_range)
416 #define F2FS_IOC_GET_FEATURES		_IOR(F2FS_IOCTL_MAGIC, 12, __u32)
417 #define F2FS_IOC_SET_PIN_FILE		_IOW(F2FS_IOCTL_MAGIC, 13, __u32)
418 #define F2FS_IOC_GET_PIN_FILE		_IOR(F2FS_IOCTL_MAGIC, 14, __u32)
419 #define F2FS_IOC_PRECACHE_EXTENTS	_IO(F2FS_IOCTL_MAGIC, 15)
420 #define F2FS_IOC_RESIZE_FS		_IOW(F2FS_IOCTL_MAGIC, 16, __u64)
421 
422 #define F2FS_IOC_GET_VOLUME_NAME	FS_IOC_GETFSLABEL
423 #define F2FS_IOC_SET_VOLUME_NAME	FS_IOC_SETFSLABEL
424 
425 #define F2FS_IOC_SET_ENCRYPTION_POLICY	FS_IOC_SET_ENCRYPTION_POLICY
426 #define F2FS_IOC_GET_ENCRYPTION_POLICY	FS_IOC_GET_ENCRYPTION_POLICY
427 #define F2FS_IOC_GET_ENCRYPTION_PWSALT	FS_IOC_GET_ENCRYPTION_PWSALT
428 
429 /*
430  * should be same as XFS_IOC_GOINGDOWN.
431  * Flags for going down operation used by FS_IOC_GOINGDOWN
432  */
433 #define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
434 #define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
435 #define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
436 #define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
437 #define F2FS_GOING_DOWN_METAFLUSH	0x3	/* going down with meta flush */
438 #define F2FS_GOING_DOWN_NEED_FSCK	0x4	/* going down to trigger fsck */
439 
440 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
441 /*
442  * ioctl commands in 32 bit emulation
443  */
444 #define F2FS_IOC32_GETFLAGS		FS_IOC32_GETFLAGS
445 #define F2FS_IOC32_SETFLAGS		FS_IOC32_SETFLAGS
446 #define F2FS_IOC32_GETVERSION		FS_IOC32_GETVERSION
447 #endif
448 
449 #define F2FS_IOC_FSGETXATTR		FS_IOC_FSGETXATTR
450 #define F2FS_IOC_FSSETXATTR		FS_IOC_FSSETXATTR
451 
452 struct f2fs_gc_range {
453 	u32 sync;
454 	u64 start;
455 	u64 len;
456 };
457 
458 struct f2fs_defragment {
459 	u64 start;
460 	u64 len;
461 };
462 
463 struct f2fs_move_range {
464 	u32 dst_fd;		/* destination fd */
465 	u64 pos_in;		/* start position in src_fd */
466 	u64 pos_out;		/* start position in dst_fd */
467 	u64 len;		/* size to move */
468 };
469 
470 struct f2fs_flush_device {
471 	u32 dev_num;		/* device number to flush */
472 	u32 segments;		/* # of segments to flush */
473 };
474 
475 /* for inline stuff */
476 #define DEF_INLINE_RESERVED_SIZE	1
477 static inline int get_extra_isize(struct inode *inode);
478 static inline int get_inline_xattr_addrs(struct inode *inode);
479 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
480 				(CUR_ADDRS_PER_INODE(inode) -		\
481 				get_inline_xattr_addrs(inode) -	\
482 				DEF_INLINE_RESERVED_SIZE))
483 
484 /* for inline dir */
485 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
486 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
487 				BITS_PER_BYTE + 1))
488 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
489 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
490 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
491 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
492 				NR_INLINE_DENTRY(inode) + \
493 				INLINE_DENTRY_BITMAP_SIZE(inode)))
494 
495 /*
496  * For INODE and NODE manager
497  */
498 /* for directory operations */
499 struct f2fs_dentry_ptr {
500 	struct inode *inode;
501 	void *bitmap;
502 	struct f2fs_dir_entry *dentry;
503 	__u8 (*filename)[F2FS_SLOT_LEN];
504 	int max;
505 	int nr_bitmap;
506 };
507 
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)508 static inline void make_dentry_ptr_block(struct inode *inode,
509 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
510 {
511 	d->inode = inode;
512 	d->max = NR_DENTRY_IN_BLOCK;
513 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
514 	d->bitmap = t->dentry_bitmap;
515 	d->dentry = t->dentry;
516 	d->filename = t->filename;
517 }
518 
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)519 static inline void make_dentry_ptr_inline(struct inode *inode,
520 					struct f2fs_dentry_ptr *d, void *t)
521 {
522 	int entry_cnt = NR_INLINE_DENTRY(inode);
523 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
524 	int reserved_size = INLINE_RESERVED_SIZE(inode);
525 
526 	d->inode = inode;
527 	d->max = entry_cnt;
528 	d->nr_bitmap = bitmap_size;
529 	d->bitmap = t;
530 	d->dentry = t + bitmap_size + reserved_size;
531 	d->filename = t + bitmap_size + reserved_size +
532 					SIZE_OF_DIR_ENTRY * entry_cnt;
533 }
534 
535 /*
536  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
537  * as its node offset to distinguish from index node blocks.
538  * But some bits are used to mark the node block.
539  */
540 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
541 				>> OFFSET_BIT_SHIFT)
542 enum {
543 	ALLOC_NODE,			/* allocate a new node page if needed */
544 	LOOKUP_NODE,			/* look up a node without readahead */
545 	LOOKUP_NODE_RA,			/*
546 					 * look up a node with readahead called
547 					 * by get_data_block.
548 					 */
549 };
550 
551 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO count */
552 
553 /* maximum retry quota flush count */
554 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
555 
556 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
557 
558 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
559 
560 /* for in-memory extent cache entry */
561 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
562 
563 /* number of extent info in extent cache we try to shrink */
564 #define EXTENT_CACHE_SHRINK_NUMBER	128
565 
566 struct rb_entry {
567 	struct rb_node rb_node;		/* rb node located in rb-tree */
568 	unsigned int ofs;		/* start offset of the entry */
569 	unsigned int len;		/* length of the entry */
570 };
571 
572 struct extent_info {
573 	unsigned int fofs;		/* start offset in a file */
574 	unsigned int len;		/* length of the extent */
575 	u32 blk;			/* start block address of the extent */
576 };
577 
578 struct extent_node {
579 	struct rb_node rb_node;		/* rb node located in rb-tree */
580 	struct extent_info ei;		/* extent info */
581 	struct list_head list;		/* node in global extent list of sbi */
582 	struct extent_tree *et;		/* extent tree pointer */
583 };
584 
585 struct extent_tree {
586 	nid_t ino;			/* inode number */
587 	struct rb_root_cached root;	/* root of extent info rb-tree */
588 	struct extent_node *cached_en;	/* recently accessed extent node */
589 	struct extent_info largest;	/* largested extent info */
590 	struct list_head list;		/* to be used by sbi->zombie_list */
591 	rwlock_t lock;			/* protect extent info rb-tree */
592 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
593 	bool largest_updated;		/* largest extent updated */
594 };
595 
596 /*
597  * This structure is taken from ext4_map_blocks.
598  *
599  * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
600  */
601 #define F2FS_MAP_NEW		(1 << BH_New)
602 #define F2FS_MAP_MAPPED		(1 << BH_Mapped)
603 #define F2FS_MAP_UNWRITTEN	(1 << BH_Unwritten)
604 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
605 				F2FS_MAP_UNWRITTEN)
606 
607 struct f2fs_map_blocks {
608 	block_t m_pblk;
609 	block_t m_lblk;
610 	unsigned int m_len;
611 	unsigned int m_flags;
612 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
613 	pgoff_t *m_next_extent;		/* point to next possible extent */
614 	int m_seg_type;
615 	bool m_may_create;		/* indicate it is from write path */
616 };
617 
618 /* for flag in get_data_block */
619 enum {
620 	F2FS_GET_BLOCK_DEFAULT,
621 	F2FS_GET_BLOCK_FIEMAP,
622 	F2FS_GET_BLOCK_BMAP,
623 	F2FS_GET_BLOCK_DIO,
624 	F2FS_GET_BLOCK_PRE_DIO,
625 	F2FS_GET_BLOCK_PRE_AIO,
626 	F2FS_GET_BLOCK_PRECACHE,
627 };
628 
629 /*
630  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
631  */
632 #define FADVISE_COLD_BIT	0x01
633 #define FADVISE_LOST_PINO_BIT	0x02
634 #define FADVISE_ENCRYPT_BIT	0x04
635 #define FADVISE_ENC_NAME_BIT	0x08
636 #define FADVISE_KEEP_SIZE_BIT	0x10
637 #define FADVISE_HOT_BIT		0x20
638 #define FADVISE_VERITY_BIT	0x40
639 
640 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
641 
642 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
643 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
644 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
645 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
646 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
647 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
648 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
649 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
650 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
651 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
652 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
653 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
654 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
655 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
656 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
657 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
658 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
659 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
660 
661 #define DEF_DIR_LEVEL		0
662 
663 enum {
664 	GC_FAILURE_PIN,
665 	GC_FAILURE_ATOMIC,
666 	MAX_GC_FAILURE
667 };
668 
669 struct f2fs_inode_info {
670 	struct inode vfs_inode;		/* serve a vfs inode */
671 	unsigned long i_flags;		/* keep an inode flags for ioctl */
672 	unsigned char i_advise;		/* use to give file attribute hints */
673 	unsigned char i_dir_level;	/* use for dentry level for large dir */
674 	unsigned int i_current_depth;	/* only for directory depth */
675 	/* for gc failure statistic */
676 	unsigned int i_gc_failures[MAX_GC_FAILURE];
677 	unsigned int i_pino;		/* parent inode number */
678 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
679 
680 	/* Use below internally in f2fs*/
681 	unsigned long flags;		/* use to pass per-file flags */
682 	struct rw_semaphore i_sem;	/* protect fi info */
683 	atomic_t dirty_pages;		/* # of dirty pages */
684 	f2fs_hash_t chash;		/* hash value of given file name */
685 	unsigned int clevel;		/* maximum level of given file name */
686 	struct task_struct *task;	/* lookup and create consistency */
687 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
688 	nid_t i_xattr_nid;		/* node id that contains xattrs */
689 	loff_t	last_disk_size;		/* lastly written file size */
690 
691 #ifdef CONFIG_QUOTA
692 	struct dquot *i_dquot[MAXQUOTAS];
693 
694 	/* quota space reservation, managed internally by quota code */
695 	qsize_t i_reserved_quota;
696 #endif
697 	struct list_head dirty_list;	/* dirty list for dirs and files */
698 	struct list_head gdirty_list;	/* linked in global dirty list */
699 	struct list_head inmem_ilist;	/* list for inmem inodes */
700 	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
701 	struct task_struct *inmem_task;	/* store inmemory task */
702 	struct mutex inmem_lock;	/* lock for inmemory pages */
703 	struct extent_tree *extent_tree;	/* cached extent_tree entry */
704 
705 	/* avoid racing between foreground op and gc */
706 	struct rw_semaphore i_gc_rwsem[2];
707 	struct rw_semaphore i_mmap_sem;
708 	struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
709 
710 	int i_extra_isize;		/* size of extra space located in i_addr */
711 	kprojid_t i_projid;		/* id for project quota */
712 	int i_inline_xattr_size;	/* inline xattr size */
713 	struct timespec64 i_crtime;	/* inode creation time */
714 	struct timespec64 i_disk_time[4];/* inode disk times */
715 };
716 
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)717 static inline void get_extent_info(struct extent_info *ext,
718 					struct f2fs_extent *i_ext)
719 {
720 	ext->fofs = le32_to_cpu(i_ext->fofs);
721 	ext->blk = le32_to_cpu(i_ext->blk);
722 	ext->len = le32_to_cpu(i_ext->len);
723 }
724 
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)725 static inline void set_raw_extent(struct extent_info *ext,
726 					struct f2fs_extent *i_ext)
727 {
728 	i_ext->fofs = cpu_to_le32(ext->fofs);
729 	i_ext->blk = cpu_to_le32(ext->blk);
730 	i_ext->len = cpu_to_le32(ext->len);
731 }
732 
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)733 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
734 						u32 blk, unsigned int len)
735 {
736 	ei->fofs = fofs;
737 	ei->blk = blk;
738 	ei->len = len;
739 }
740 
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)741 static inline bool __is_discard_mergeable(struct discard_info *back,
742 			struct discard_info *front, unsigned int max_len)
743 {
744 	return (back->lstart + back->len == front->lstart) &&
745 		(back->len + front->len <= max_len);
746 }
747 
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)748 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
749 			struct discard_info *back, unsigned int max_len)
750 {
751 	return __is_discard_mergeable(back, cur, max_len);
752 }
753 
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)754 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
755 			struct discard_info *front, unsigned int max_len)
756 {
757 	return __is_discard_mergeable(cur, front, max_len);
758 }
759 
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)760 static inline bool __is_extent_mergeable(struct extent_info *back,
761 						struct extent_info *front)
762 {
763 	return (back->fofs + back->len == front->fofs &&
764 			back->blk + back->len == front->blk);
765 }
766 
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)767 static inline bool __is_back_mergeable(struct extent_info *cur,
768 						struct extent_info *back)
769 {
770 	return __is_extent_mergeable(back, cur);
771 }
772 
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)773 static inline bool __is_front_mergeable(struct extent_info *cur,
774 						struct extent_info *front)
775 {
776 	return __is_extent_mergeable(cur, front);
777 }
778 
779 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)780 static inline void __try_update_largest_extent(struct extent_tree *et,
781 						struct extent_node *en)
782 {
783 	if (en->ei.len > et->largest.len) {
784 		et->largest = en->ei;
785 		et->largest_updated = true;
786 	}
787 }
788 
789 /*
790  * For free nid management
791  */
792 enum nid_state {
793 	FREE_NID,		/* newly added to free nid list */
794 	PREALLOC_NID,		/* it is preallocated */
795 	MAX_NID_STATE,
796 };
797 
798 struct f2fs_nm_info {
799 	block_t nat_blkaddr;		/* base disk address of NAT */
800 	nid_t max_nid;			/* maximum possible node ids */
801 	nid_t available_nids;		/* # of available node ids */
802 	nid_t next_scan_nid;		/* the next nid to be scanned */
803 	unsigned int ram_thresh;	/* control the memory footprint */
804 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
805 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
806 
807 	/* NAT cache management */
808 	struct radix_tree_root nat_root;/* root of the nat entry cache */
809 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
810 	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
811 	struct list_head nat_entries;	/* cached nat entry list (clean) */
812 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
813 	unsigned int nat_cnt;		/* the # of cached nat entries */
814 	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
815 	unsigned int nat_blocks;	/* # of nat blocks */
816 
817 	/* free node ids management */
818 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
819 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
820 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
821 	spinlock_t nid_list_lock;	/* protect nid lists ops */
822 	struct mutex build_lock;	/* lock for build free nids */
823 	unsigned char **free_nid_bitmap;
824 	unsigned char *nat_block_bitmap;
825 	unsigned short *free_nid_count;	/* free nid count of NAT block */
826 
827 	/* for checkpoint */
828 	char *nat_bitmap;		/* NAT bitmap pointer */
829 
830 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
831 	unsigned char *nat_bits;	/* NAT bits blocks */
832 	unsigned char *full_nat_bits;	/* full NAT pages */
833 	unsigned char *empty_nat_bits;	/* empty NAT pages */
834 #ifdef CONFIG_F2FS_CHECK_FS
835 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
836 #endif
837 	int bitmap_size;		/* bitmap size */
838 };
839 
840 /*
841  * this structure is used as one of function parameters.
842  * all the information are dedicated to a given direct node block determined
843  * by the data offset in a file.
844  */
845 struct dnode_of_data {
846 	struct inode *inode;		/* vfs inode pointer */
847 	struct page *inode_page;	/* its inode page, NULL is possible */
848 	struct page *node_page;		/* cached direct node page */
849 	nid_t nid;			/* node id of the direct node block */
850 	unsigned int ofs_in_node;	/* data offset in the node page */
851 	bool inode_page_locked;		/* inode page is locked or not */
852 	bool node_changed;		/* is node block changed */
853 	char cur_level;			/* level of hole node page */
854 	char max_level;			/* level of current page located */
855 	block_t	data_blkaddr;		/* block address of the node block */
856 };
857 
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)858 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
859 		struct page *ipage, struct page *npage, nid_t nid)
860 {
861 	memset(dn, 0, sizeof(*dn));
862 	dn->inode = inode;
863 	dn->inode_page = ipage;
864 	dn->node_page = npage;
865 	dn->nid = nid;
866 }
867 
868 /*
869  * For SIT manager
870  *
871  * By default, there are 6 active log areas across the whole main area.
872  * When considering hot and cold data separation to reduce cleaning overhead,
873  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
874  * respectively.
875  * In the current design, you should not change the numbers intentionally.
876  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
877  * logs individually according to the underlying devices. (default: 6)
878  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
879  * data and 8 for node logs.
880  */
881 #define	NR_CURSEG_DATA_TYPE	(3)
882 #define NR_CURSEG_NODE_TYPE	(3)
883 #define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
884 
885 enum {
886 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
887 	CURSEG_WARM_DATA,	/* data blocks */
888 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
889 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
890 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
891 	CURSEG_COLD_NODE,	/* indirect node blocks */
892 	NO_CHECK_TYPE,
893 };
894 
895 struct flush_cmd {
896 	struct completion wait;
897 	struct llist_node llnode;
898 	nid_t ino;
899 	int ret;
900 };
901 
902 struct flush_cmd_control {
903 	struct task_struct *f2fs_issue_flush;	/* flush thread */
904 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
905 	atomic_t issued_flush;			/* # of issued flushes */
906 	atomic_t queued_flush;			/* # of queued flushes */
907 	struct llist_head issue_list;		/* list for command issue */
908 	struct llist_node *dispatch_list;	/* list for command dispatch */
909 };
910 
911 struct f2fs_sm_info {
912 	struct sit_info *sit_info;		/* whole segment information */
913 	struct free_segmap_info *free_info;	/* free segment information */
914 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
915 	struct curseg_info *curseg_array;	/* active segment information */
916 
917 	struct rw_semaphore curseg_lock;	/* for preventing curseg change */
918 
919 	block_t seg0_blkaddr;		/* block address of 0'th segment */
920 	block_t main_blkaddr;		/* start block address of main area */
921 	block_t ssa_blkaddr;		/* start block address of SSA area */
922 
923 	unsigned int segment_count;	/* total # of segments */
924 	unsigned int main_segments;	/* # of segments in main area */
925 	unsigned int reserved_segments;	/* # of reserved segments */
926 	unsigned int ovp_segments;	/* # of overprovision segments */
927 
928 	/* a threshold to reclaim prefree segments */
929 	unsigned int rec_prefree_segments;
930 
931 	/* for batched trimming */
932 	unsigned int trim_sections;		/* # of sections to trim */
933 
934 	struct list_head sit_entry_set;	/* sit entry set list */
935 
936 	unsigned int ipu_policy;	/* in-place-update policy */
937 	unsigned int min_ipu_util;	/* in-place-update threshold */
938 	unsigned int min_fsync_blocks;	/* threshold for fsync */
939 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
940 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
941 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
942 
943 	/* for flush command control */
944 	struct flush_cmd_control *fcc_info;
945 
946 	/* for discard command control */
947 	struct discard_cmd_control *dcc_info;
948 };
949 
950 /*
951  * For superblock
952  */
953 /*
954  * COUNT_TYPE for monitoring
955  *
956  * f2fs monitors the number of several block types such as on-writeback,
957  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
958  */
959 #define WB_DATA_TYPE(p)	(__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
960 enum count_type {
961 	F2FS_DIRTY_DENTS,
962 	F2FS_DIRTY_DATA,
963 	F2FS_DIRTY_QDATA,
964 	F2FS_DIRTY_NODES,
965 	F2FS_DIRTY_META,
966 	F2FS_INMEM_PAGES,
967 	F2FS_DIRTY_IMETA,
968 	F2FS_WB_CP_DATA,
969 	F2FS_WB_DATA,
970 	F2FS_RD_DATA,
971 	F2FS_RD_NODE,
972 	F2FS_RD_META,
973 	F2FS_DIO_WRITE,
974 	F2FS_DIO_READ,
975 	NR_COUNT_TYPE,
976 };
977 
978 /*
979  * The below are the page types of bios used in submit_bio().
980  * The available types are:
981  * DATA			User data pages. It operates as async mode.
982  * NODE			Node pages. It operates as async mode.
983  * META			FS metadata pages such as SIT, NAT, CP.
984  * NR_PAGE_TYPE		The number of page types.
985  * META_FLUSH		Make sure the previous pages are written
986  *			with waiting the bio's completion
987  * ...			Only can be used with META.
988  */
989 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
990 enum page_type {
991 	DATA,
992 	NODE,
993 	META,
994 	NR_PAGE_TYPE,
995 	META_FLUSH,
996 	INMEM,		/* the below types are used by tracepoints only. */
997 	INMEM_DROP,
998 	INMEM_INVALIDATE,
999 	INMEM_REVOKE,
1000 	IPU,
1001 	OPU,
1002 };
1003 
1004 enum temp_type {
1005 	HOT = 0,	/* must be zero for meta bio */
1006 	WARM,
1007 	COLD,
1008 	NR_TEMP_TYPE,
1009 };
1010 
1011 enum need_lock_type {
1012 	LOCK_REQ = 0,
1013 	LOCK_DONE,
1014 	LOCK_RETRY,
1015 };
1016 
1017 enum cp_reason_type {
1018 	CP_NO_NEEDED,
1019 	CP_NON_REGULAR,
1020 	CP_HARDLINK,
1021 	CP_SB_NEED_CP,
1022 	CP_WRONG_PINO,
1023 	CP_NO_SPC_ROLL,
1024 	CP_NODE_NEED_CP,
1025 	CP_FASTBOOT_MODE,
1026 	CP_SPEC_LOG_NUM,
1027 	CP_RECOVER_DIR,
1028 };
1029 
1030 enum iostat_type {
1031 	APP_DIRECT_IO,			/* app direct IOs */
1032 	APP_BUFFERED_IO,		/* app buffered IOs */
1033 	APP_WRITE_IO,			/* app write IOs */
1034 	APP_MAPPED_IO,			/* app mapped IOs */
1035 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1036 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1037 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1038 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1039 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1040 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1041 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1042 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1043 	FS_DISCARD,			/* discard */
1044 	NR_IO_TYPE,
1045 };
1046 
1047 struct f2fs_io_info {
1048 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1049 	nid_t ino;		/* inode number */
1050 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1051 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1052 	int op;			/* contains REQ_OP_ */
1053 	int op_flags;		/* req_flag_bits */
1054 	block_t new_blkaddr;	/* new block address to be written */
1055 	block_t old_blkaddr;	/* old block address before Cow */
1056 	struct page *page;	/* page to be written */
1057 	struct page *encrypted_page;	/* encrypted page */
1058 	struct list_head list;		/* serialize IOs */
1059 	bool submitted;		/* indicate IO submission */
1060 	int need_lock;		/* indicate we need to lock cp_rwsem */
1061 	bool in_list;		/* indicate fio is in io_list */
1062 	bool is_por;		/* indicate IO is from recovery or not */
1063 	bool retry;		/* need to reallocate block address */
1064 	enum iostat_type io_type;	/* io type */
1065 	struct writeback_control *io_wbc; /* writeback control */
1066 	struct bio **bio;		/* bio for ipu */
1067 	sector_t *last_block;		/* last block number in bio */
1068 	unsigned char version;		/* version of the node */
1069 };
1070 
1071 #define is_read_io(rw) ((rw) == READ)
1072 struct f2fs_bio_info {
1073 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1074 	struct bio *bio;		/* bios to merge */
1075 	sector_t last_block_in_bio;	/* last block number */
1076 	struct f2fs_io_info fio;	/* store buffered io info. */
1077 	struct rw_semaphore io_rwsem;	/* blocking op for bio */
1078 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1079 	struct list_head io_list;	/* track fios */
1080 };
1081 
1082 #define FDEV(i)				(sbi->devs[i])
1083 #define RDEV(i)				(raw_super->devs[i])
1084 struct f2fs_dev_info {
1085 	struct block_device *bdev;
1086 	char path[MAX_PATH_LEN];
1087 	unsigned int total_segments;
1088 	block_t start_blk;
1089 	block_t end_blk;
1090 #ifdef CONFIG_BLK_DEV_ZONED
1091 	unsigned int nr_blkz;		/* Total number of zones */
1092 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1093 #endif
1094 };
1095 
1096 enum inode_type {
1097 	DIR_INODE,			/* for dirty dir inode */
1098 	FILE_INODE,			/* for dirty regular/symlink inode */
1099 	DIRTY_META,			/* for all dirtied inode metadata */
1100 	ATOMIC_FILE,			/* for all atomic files */
1101 	NR_INODE_TYPE,
1102 };
1103 
1104 /* for inner inode cache management */
1105 struct inode_management {
1106 	struct radix_tree_root ino_root;	/* ino entry array */
1107 	spinlock_t ino_lock;			/* for ino entry lock */
1108 	struct list_head ino_list;		/* inode list head */
1109 	unsigned long ino_num;			/* number of entries */
1110 };
1111 
1112 /* For s_flag in struct f2fs_sb_info */
1113 enum {
1114 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1115 	SBI_IS_CLOSE,				/* specify unmounting */
1116 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1117 	SBI_POR_DOING,				/* recovery is doing or not */
1118 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1119 	SBI_NEED_CP,				/* need to checkpoint */
1120 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1121 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1122 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1123 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1124 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1125 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1126 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1127 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1128 };
1129 
1130 enum {
1131 	CP_TIME,
1132 	REQ_TIME,
1133 	DISCARD_TIME,
1134 	GC_TIME,
1135 	DISABLE_TIME,
1136 	UMOUNT_DISCARD_TIMEOUT,
1137 	MAX_TIME,
1138 };
1139 
1140 enum {
1141 	GC_NORMAL,
1142 	GC_IDLE_CB,
1143 	GC_IDLE_GREEDY,
1144 	GC_URGENT,
1145 };
1146 
1147 enum {
1148 	WHINT_MODE_OFF,		/* not pass down write hints */
1149 	WHINT_MODE_USER,	/* try to pass down hints given by users */
1150 	WHINT_MODE_FS,		/* pass down hints with F2FS policy */
1151 };
1152 
1153 enum {
1154 	ALLOC_MODE_DEFAULT,	/* stay default */
1155 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1156 };
1157 
1158 enum fsync_mode {
1159 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1160 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1161 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1162 };
1163 
1164 #ifdef CONFIG_FS_ENCRYPTION
1165 #define DUMMY_ENCRYPTION_ENABLED(sbi) \
1166 			(unlikely(F2FS_OPTION(sbi).test_dummy_encryption))
1167 #else
1168 #define DUMMY_ENCRYPTION_ENABLED(sbi) (0)
1169 #endif
1170 
1171 struct f2fs_sb_info {
1172 	struct super_block *sb;			/* pointer to VFS super block */
1173 	struct proc_dir_entry *s_proc;		/* proc entry */
1174 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1175 	struct rw_semaphore sb_lock;		/* lock for raw super block */
1176 	int valid_super_block;			/* valid super block no */
1177 	unsigned long s_flag;				/* flags for sbi */
1178 	struct mutex writepages;		/* mutex for writepages() */
1179 #ifdef CONFIG_UNICODE
1180 	struct unicode_map *s_encoding;
1181 	__u16 s_encoding_flags;
1182 #endif
1183 
1184 #ifdef CONFIG_BLK_DEV_ZONED
1185 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1186 	unsigned int log_blocks_per_blkz;	/* log2 F2FS blocks per zone */
1187 #endif
1188 
1189 	/* for node-related operations */
1190 	struct f2fs_nm_info *nm_info;		/* node manager */
1191 	struct inode *node_inode;		/* cache node blocks */
1192 
1193 	/* for segment-related operations */
1194 	struct f2fs_sm_info *sm_info;		/* segment manager */
1195 
1196 	/* for bio operations */
1197 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1198 	/* keep migration IO order for LFS mode */
1199 	struct rw_semaphore io_order_lock;
1200 	mempool_t *write_io_dummy;		/* Dummy pages */
1201 
1202 	/* for checkpoint */
1203 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1204 	int cur_cp_pack;			/* remain current cp pack */
1205 	spinlock_t cp_lock;			/* for flag in ckpt */
1206 	struct inode *meta_inode;		/* cache meta blocks */
1207 	struct mutex cp_mutex;			/* checkpoint procedure lock */
1208 	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
1209 	struct rw_semaphore node_write;		/* locking node writes */
1210 	struct rw_semaphore node_change;	/* locking node change */
1211 	wait_queue_head_t cp_wait;
1212 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1213 	long interval_time[MAX_TIME];		/* to store thresholds */
1214 
1215 	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
1216 
1217 	spinlock_t fsync_node_lock;		/* for node entry lock */
1218 	struct list_head fsync_node_list;	/* node list head */
1219 	unsigned int fsync_seg_id;		/* sequence id */
1220 	unsigned int fsync_node_num;		/* number of node entries */
1221 
1222 	/* for orphan inode, use 0'th array */
1223 	unsigned int max_orphans;		/* max orphan inodes */
1224 
1225 	/* for inode management */
1226 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1227 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1228 	struct mutex flush_lock;		/* for flush exclusion */
1229 
1230 	/* for extent tree cache */
1231 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1232 	struct mutex extent_tree_lock;	/* locking extent radix tree */
1233 	struct list_head extent_list;		/* lru list for shrinker */
1234 	spinlock_t extent_lock;			/* locking extent lru list */
1235 	atomic_t total_ext_tree;		/* extent tree count */
1236 	struct list_head zombie_list;		/* extent zombie tree list */
1237 	atomic_t total_zombie_tree;		/* extent zombie tree count */
1238 	atomic_t total_ext_node;		/* extent info count */
1239 
1240 	/* basic filesystem units */
1241 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1242 	unsigned int log_blocksize;		/* log2 block size */
1243 	unsigned int blocksize;			/* block size */
1244 	unsigned int root_ino_num;		/* root inode number*/
1245 	unsigned int node_ino_num;		/* node inode number*/
1246 	unsigned int meta_ino_num;		/* meta inode number*/
1247 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1248 	unsigned int blocks_per_seg;		/* blocks per segment */
1249 	unsigned int segs_per_sec;		/* segments per section */
1250 	unsigned int secs_per_zone;		/* sections per zone */
1251 	unsigned int total_sections;		/* total section count */
1252 	struct mutex resize_mutex;		/* for resize exclusion */
1253 	unsigned int total_node_count;		/* total node block count */
1254 	unsigned int total_valid_node_count;	/* valid node block count */
1255 	loff_t max_file_blocks;			/* max block index of file */
1256 	int dir_level;				/* directory level */
1257 	int readdir_ra;				/* readahead inode in readdir */
1258 
1259 	block_t user_block_count;		/* # of user blocks */
1260 	block_t total_valid_block_count;	/* # of valid blocks */
1261 	block_t discard_blks;			/* discard command candidats */
1262 	block_t last_valid_block_count;		/* for recovery */
1263 	block_t reserved_blocks;		/* configurable reserved blocks */
1264 	block_t current_reserved_blocks;	/* current reserved blocks */
1265 
1266 	/* Additional tracking for no checkpoint mode */
1267 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1268 
1269 	unsigned int nquota_files;		/* # of quota sysfile */
1270 	struct rw_semaphore quota_sem;		/* blocking cp for flags */
1271 
1272 	/* # of pages, see count_type */
1273 	atomic_t nr_pages[NR_COUNT_TYPE];
1274 	/* # of allocated blocks */
1275 	struct percpu_counter alloc_valid_block_count;
1276 
1277 	/* writeback control */
1278 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1279 
1280 	/* valid inode count */
1281 	struct percpu_counter total_valid_inode_count;
1282 
1283 	struct f2fs_mount_info mount_opt;	/* mount options */
1284 
1285 	/* for cleaning operations */
1286 	struct mutex gc_mutex;			/* mutex for GC */
1287 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1288 	unsigned int cur_victim_sec;		/* current victim section num */
1289 	unsigned int gc_mode;			/* current GC state */
1290 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1291 	/* for skip statistic */
1292 	unsigned long long skipped_atomic_files[2];	/* FG_GC and BG_GC */
1293 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1294 
1295 	/* threshold for gc trials on pinned files */
1296 	u64 gc_pin_file_threshold;
1297 
1298 	/* maximum # of trials to find a victim segment for SSR and GC */
1299 	unsigned int max_victim_search;
1300 	/* migration granularity of garbage collection, unit: segment */
1301 	unsigned int migration_granularity;
1302 
1303 	/*
1304 	 * for stat information.
1305 	 * one is for the LFS mode, and the other is for the SSR mode.
1306 	 */
1307 #ifdef CONFIG_F2FS_STAT_FS
1308 	struct f2fs_stat_info *stat_info;	/* FS status information */
1309 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1310 	unsigned int segment_count[2];		/* # of allocated segments */
1311 	unsigned int block_count[2];		/* # of allocated blocks */
1312 	atomic_t inplace_count;		/* # of inplace update */
1313 	atomic64_t total_hit_ext;		/* # of lookup extent cache */
1314 	atomic64_t read_hit_rbtree;		/* # of hit rbtree extent node */
1315 	atomic64_t read_hit_largest;		/* # of hit largest extent node */
1316 	atomic64_t read_hit_cached;		/* # of hit cached extent node */
1317 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1318 	atomic_t inline_inode;			/* # of inline_data inodes */
1319 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1320 	atomic_t aw_cnt;			/* # of atomic writes */
1321 	atomic_t vw_cnt;			/* # of volatile writes */
1322 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1323 	atomic_t max_vw_cnt;			/* max # of volatile writes */
1324 	int bg_gc;				/* background gc calls */
1325 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1326 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1327 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1328 #endif
1329 	spinlock_t stat_lock;			/* lock for stat operations */
1330 
1331 	/* For app/fs IO statistics */
1332 	spinlock_t iostat_lock;
1333 	unsigned long long write_iostat[NR_IO_TYPE];
1334 	bool iostat_enable;
1335 
1336 	/* For sysfs suppport */
1337 	struct kobject s_kobj;
1338 	struct completion s_kobj_unregister;
1339 
1340 	/* For shrinker support */
1341 	struct list_head s_list;
1342 	int s_ndevs;				/* number of devices */
1343 	struct f2fs_dev_info *devs;		/* for device list */
1344 	unsigned int dirty_device;		/* for checkpoint data flush */
1345 	spinlock_t dev_lock;			/* protect dirty_device */
1346 	struct mutex umount_mutex;
1347 	unsigned int shrinker_run_no;
1348 
1349 	/* For write statistics */
1350 	u64 sectors_written_start;
1351 	u64 kbytes_written;
1352 
1353 	/* Reference to checksum algorithm driver via cryptoapi */
1354 	struct crypto_shash *s_chksum_driver;
1355 
1356 	/* Precomputed FS UUID checksum for seeding other checksums */
1357 	__u32 s_chksum_seed;
1358 };
1359 
1360 struct f2fs_private_dio {
1361 	struct inode *inode;
1362 	void *orig_private;
1363 	bio_end_io_t *orig_end_io;
1364 	bool write;
1365 };
1366 
1367 #ifdef CONFIG_F2FS_FAULT_INJECTION
1368 #define f2fs_show_injection_info(type)					\
1369 	printk_ratelimited("%sF2FS-fs : inject %s in %s of %pS\n",	\
1370 		KERN_INFO, f2fs_fault_name[type],			\
1371 		__func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1372 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1373 {
1374 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1375 
1376 	if (!ffi->inject_rate)
1377 		return false;
1378 
1379 	if (!IS_FAULT_SET(ffi, type))
1380 		return false;
1381 
1382 	atomic_inc(&ffi->inject_ops);
1383 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1384 		atomic_set(&ffi->inject_ops, 0);
1385 		return true;
1386 	}
1387 	return false;
1388 }
1389 #else
1390 #define f2fs_show_injection_info(type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1391 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1392 {
1393 	return false;
1394 }
1395 #endif
1396 
1397 /*
1398  * Test if the mounted volume is a multi-device volume.
1399  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1400  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1401  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1402  */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1403 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1404 {
1405 	return sbi->s_ndevs > 1;
1406 }
1407 
1408 /* For write statistics. Suppose sector size is 512 bytes,
1409  * and the return value is in kbytes. s is of struct f2fs_sb_info.
1410  */
1411 #define BD_PART_WRITTEN(s)						 \
1412 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[STAT_WRITE]) -   \
1413 		(s)->sectors_written_start) >> 1)
1414 
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1415 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1416 {
1417 	unsigned long now = jiffies;
1418 
1419 	sbi->last_time[type] = now;
1420 
1421 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1422 	if (type == REQ_TIME) {
1423 		sbi->last_time[DISCARD_TIME] = now;
1424 		sbi->last_time[GC_TIME] = now;
1425 	}
1426 }
1427 
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1428 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1429 {
1430 	unsigned long interval = sbi->interval_time[type] * HZ;
1431 
1432 	return time_after(jiffies, sbi->last_time[type] + interval);
1433 }
1434 
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1435 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1436 						int type)
1437 {
1438 	unsigned long interval = sbi->interval_time[type] * HZ;
1439 	unsigned int wait_ms = 0;
1440 	long delta;
1441 
1442 	delta = (sbi->last_time[type] + interval) - jiffies;
1443 	if (delta > 0)
1444 		wait_ms = jiffies_to_msecs(delta);
1445 
1446 	return wait_ms;
1447 }
1448 
1449 /*
1450  * Inline functions
1451  */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1452 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1453 			      const void *address, unsigned int length)
1454 {
1455 	struct {
1456 		struct shash_desc shash;
1457 		char ctx[4];
1458 	} desc;
1459 	int err;
1460 
1461 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1462 
1463 	desc.shash.tfm = sbi->s_chksum_driver;
1464 	*(u32 *)desc.ctx = crc;
1465 
1466 	err = crypto_shash_update(&desc.shash, address, length);
1467 	BUG_ON(err);
1468 
1469 	return *(u32 *)desc.ctx;
1470 }
1471 
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1472 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1473 			   unsigned int length)
1474 {
1475 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1476 }
1477 
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1478 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1479 				  void *buf, size_t buf_size)
1480 {
1481 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1482 }
1483 
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1484 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1485 			      const void *address, unsigned int length)
1486 {
1487 	return __f2fs_crc32(sbi, crc, address, length);
1488 }
1489 
F2FS_I(struct inode * inode)1490 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1491 {
1492 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1493 }
1494 
F2FS_SB(struct super_block * sb)1495 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1496 {
1497 	return sb->s_fs_info;
1498 }
1499 
F2FS_I_SB(struct inode * inode)1500 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1501 {
1502 	return F2FS_SB(inode->i_sb);
1503 }
1504 
F2FS_M_SB(struct address_space * mapping)1505 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1506 {
1507 	return F2FS_I_SB(mapping->host);
1508 }
1509 
F2FS_P_SB(struct page * page)1510 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1511 {
1512 	return F2FS_M_SB(page_file_mapping(page));
1513 }
1514 
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1515 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1516 {
1517 	return (struct f2fs_super_block *)(sbi->raw_super);
1518 }
1519 
F2FS_CKPT(struct f2fs_sb_info * sbi)1520 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1521 {
1522 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1523 }
1524 
F2FS_NODE(struct page * page)1525 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1526 {
1527 	return (struct f2fs_node *)page_address(page);
1528 }
1529 
F2FS_INODE(struct page * page)1530 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1531 {
1532 	return &((struct f2fs_node *)page_address(page))->i;
1533 }
1534 
NM_I(struct f2fs_sb_info * sbi)1535 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1536 {
1537 	return (struct f2fs_nm_info *)(sbi->nm_info);
1538 }
1539 
SM_I(struct f2fs_sb_info * sbi)1540 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1541 {
1542 	return (struct f2fs_sm_info *)(sbi->sm_info);
1543 }
1544 
SIT_I(struct f2fs_sb_info * sbi)1545 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1546 {
1547 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1548 }
1549 
FREE_I(struct f2fs_sb_info * sbi)1550 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1551 {
1552 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1553 }
1554 
DIRTY_I(struct f2fs_sb_info * sbi)1555 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1556 {
1557 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1558 }
1559 
META_MAPPING(struct f2fs_sb_info * sbi)1560 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1561 {
1562 	return sbi->meta_inode->i_mapping;
1563 }
1564 
NODE_MAPPING(struct f2fs_sb_info * sbi)1565 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1566 {
1567 	return sbi->node_inode->i_mapping;
1568 }
1569 
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1570 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1571 {
1572 	return test_bit(type, &sbi->s_flag);
1573 }
1574 
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1575 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1576 {
1577 	set_bit(type, &sbi->s_flag);
1578 }
1579 
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1580 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1581 {
1582 	clear_bit(type, &sbi->s_flag);
1583 }
1584 
cur_cp_version(struct f2fs_checkpoint * cp)1585 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1586 {
1587 	return le64_to_cpu(cp->checkpoint_ver);
1588 }
1589 
f2fs_qf_ino(struct super_block * sb,int type)1590 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1591 {
1592 	if (type < F2FS_MAX_QUOTAS)
1593 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1594 	return 0;
1595 }
1596 
cur_cp_crc(struct f2fs_checkpoint * cp)1597 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1598 {
1599 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1600 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1601 }
1602 
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1603 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1604 {
1605 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1606 
1607 	return ckpt_flags & f;
1608 }
1609 
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1610 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1611 {
1612 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1613 }
1614 
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1615 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1616 {
1617 	unsigned int ckpt_flags;
1618 
1619 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1620 	ckpt_flags |= f;
1621 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1622 }
1623 
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1624 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1625 {
1626 	unsigned long flags;
1627 
1628 	spin_lock_irqsave(&sbi->cp_lock, flags);
1629 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
1630 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1631 }
1632 
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1633 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1634 {
1635 	unsigned int ckpt_flags;
1636 
1637 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1638 	ckpt_flags &= (~f);
1639 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1640 }
1641 
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1642 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1643 {
1644 	unsigned long flags;
1645 
1646 	spin_lock_irqsave(&sbi->cp_lock, flags);
1647 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
1648 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1649 }
1650 
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)1651 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1652 {
1653 	unsigned long flags;
1654 	unsigned char *nat_bits;
1655 
1656 	/*
1657 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
1658 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
1659 	 * so let's rely on regular fsck or unclean shutdown.
1660 	 */
1661 
1662 	if (lock)
1663 		spin_lock_irqsave(&sbi->cp_lock, flags);
1664 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1665 	nat_bits = NM_I(sbi)->nat_bits;
1666 	NM_I(sbi)->nat_bits = NULL;
1667 	if (lock)
1668 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
1669 
1670 	kvfree(nat_bits);
1671 }
1672 
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)1673 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1674 					struct cp_control *cpc)
1675 {
1676 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1677 
1678 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1679 }
1680 
f2fs_lock_op(struct f2fs_sb_info * sbi)1681 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1682 {
1683 	down_read(&sbi->cp_rwsem);
1684 }
1685 
f2fs_trylock_op(struct f2fs_sb_info * sbi)1686 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1687 {
1688 	return down_read_trylock(&sbi->cp_rwsem);
1689 }
1690 
f2fs_unlock_op(struct f2fs_sb_info * sbi)1691 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1692 {
1693 	up_read(&sbi->cp_rwsem);
1694 }
1695 
f2fs_lock_all(struct f2fs_sb_info * sbi)1696 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1697 {
1698 	down_write(&sbi->cp_rwsem);
1699 }
1700 
f2fs_unlock_all(struct f2fs_sb_info * sbi)1701 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1702 {
1703 	up_write(&sbi->cp_rwsem);
1704 }
1705 
__get_cp_reason(struct f2fs_sb_info * sbi)1706 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1707 {
1708 	int reason = CP_SYNC;
1709 
1710 	if (test_opt(sbi, FASTBOOT))
1711 		reason = CP_FASTBOOT;
1712 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1713 		reason = CP_UMOUNT;
1714 	return reason;
1715 }
1716 
__remain_node_summaries(int reason)1717 static inline bool __remain_node_summaries(int reason)
1718 {
1719 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
1720 }
1721 
__exist_node_summaries(struct f2fs_sb_info * sbi)1722 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1723 {
1724 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1725 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1726 }
1727 
1728 /*
1729  * Check whether the inode has blocks or not
1730  */
F2FS_HAS_BLOCKS(struct inode * inode)1731 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1732 {
1733 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1734 
1735 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1736 }
1737 
f2fs_has_xattr_block(unsigned int ofs)1738 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1739 {
1740 	return ofs == XATTR_NODE_OFFSET;
1741 }
1742 
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)1743 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
1744 					struct inode *inode, bool cap)
1745 {
1746 	if (!inode)
1747 		return true;
1748 	if (!test_opt(sbi, RESERVE_ROOT))
1749 		return false;
1750 	if (IS_NOQUOTA(inode))
1751 		return true;
1752 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
1753 		return true;
1754 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
1755 					in_group_p(F2FS_OPTION(sbi).s_resgid))
1756 		return true;
1757 	if (cap && capable(CAP_SYS_RESOURCE))
1758 		return true;
1759 	return false;
1760 }
1761 
1762 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)1763 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1764 				 struct inode *inode, blkcnt_t *count)
1765 {
1766 	blkcnt_t diff = 0, release = 0;
1767 	block_t avail_user_block_count;
1768 	int ret;
1769 
1770 	ret = dquot_reserve_block(inode, *count);
1771 	if (ret)
1772 		return ret;
1773 
1774 	if (time_to_inject(sbi, FAULT_BLOCK)) {
1775 		f2fs_show_injection_info(FAULT_BLOCK);
1776 		release = *count;
1777 		goto release_quota;
1778 	}
1779 
1780 	/*
1781 	 * let's increase this in prior to actual block count change in order
1782 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1783 	 */
1784 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1785 
1786 	spin_lock(&sbi->stat_lock);
1787 	sbi->total_valid_block_count += (block_t)(*count);
1788 	avail_user_block_count = sbi->user_block_count -
1789 					sbi->current_reserved_blocks;
1790 
1791 	if (!__allow_reserved_blocks(sbi, inode, true))
1792 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
1793 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1794 		if (avail_user_block_count > sbi->unusable_block_count)
1795 			avail_user_block_count -= sbi->unusable_block_count;
1796 		else
1797 			avail_user_block_count = 0;
1798 	}
1799 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1800 		diff = sbi->total_valid_block_count - avail_user_block_count;
1801 		if (diff > *count)
1802 			diff = *count;
1803 		*count -= diff;
1804 		release = diff;
1805 		sbi->total_valid_block_count -= diff;
1806 		if (!*count) {
1807 			spin_unlock(&sbi->stat_lock);
1808 			goto enospc;
1809 		}
1810 	}
1811 	spin_unlock(&sbi->stat_lock);
1812 
1813 	if (unlikely(release)) {
1814 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1815 		dquot_release_reservation_block(inode, release);
1816 	}
1817 	f2fs_i_blocks_write(inode, *count, true, true);
1818 	return 0;
1819 
1820 enospc:
1821 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
1822 release_quota:
1823 	dquot_release_reservation_block(inode, release);
1824 	return -ENOSPC;
1825 }
1826 
1827 __printf(2, 3)
1828 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
1829 
1830 #define f2fs_err(sbi, fmt, ...)						\
1831 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
1832 #define f2fs_warn(sbi, fmt, ...)					\
1833 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
1834 #define f2fs_notice(sbi, fmt, ...)					\
1835 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
1836 #define f2fs_info(sbi, fmt, ...)					\
1837 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
1838 #define f2fs_debug(sbi, fmt, ...)					\
1839 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
1840 
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)1841 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1842 						struct inode *inode,
1843 						block_t count)
1844 {
1845 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1846 
1847 	spin_lock(&sbi->stat_lock);
1848 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1849 	sbi->total_valid_block_count -= (block_t)count;
1850 	if (sbi->reserved_blocks &&
1851 		sbi->current_reserved_blocks < sbi->reserved_blocks)
1852 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1853 					sbi->current_reserved_blocks + count);
1854 	spin_unlock(&sbi->stat_lock);
1855 	if (unlikely(inode->i_blocks < sectors)) {
1856 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
1857 			  inode->i_ino,
1858 			  (unsigned long long)inode->i_blocks,
1859 			  (unsigned long long)sectors);
1860 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1861 		return;
1862 	}
1863 	f2fs_i_blocks_write(inode, count, false, true);
1864 }
1865 
inc_page_count(struct f2fs_sb_info * sbi,int count_type)1866 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1867 {
1868 	atomic_inc(&sbi->nr_pages[count_type]);
1869 
1870 	if (count_type == F2FS_DIRTY_DENTS ||
1871 			count_type == F2FS_DIRTY_NODES ||
1872 			count_type == F2FS_DIRTY_META ||
1873 			count_type == F2FS_DIRTY_QDATA ||
1874 			count_type == F2FS_DIRTY_IMETA)
1875 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1876 }
1877 
inode_inc_dirty_pages(struct inode * inode)1878 static inline void inode_inc_dirty_pages(struct inode *inode)
1879 {
1880 	atomic_inc(&F2FS_I(inode)->dirty_pages);
1881 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1882 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1883 	if (IS_NOQUOTA(inode))
1884 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1885 }
1886 
dec_page_count(struct f2fs_sb_info * sbi,int count_type)1887 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1888 {
1889 	atomic_dec(&sbi->nr_pages[count_type]);
1890 }
1891 
inode_dec_dirty_pages(struct inode * inode)1892 static inline void inode_dec_dirty_pages(struct inode *inode)
1893 {
1894 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1895 			!S_ISLNK(inode->i_mode))
1896 		return;
1897 
1898 	atomic_dec(&F2FS_I(inode)->dirty_pages);
1899 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1900 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1901 	if (IS_NOQUOTA(inode))
1902 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1903 }
1904 
get_pages(struct f2fs_sb_info * sbi,int count_type)1905 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1906 {
1907 	return atomic_read(&sbi->nr_pages[count_type]);
1908 }
1909 
get_dirty_pages(struct inode * inode)1910 static inline int get_dirty_pages(struct inode *inode)
1911 {
1912 	return atomic_read(&F2FS_I(inode)->dirty_pages);
1913 }
1914 
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)1915 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1916 {
1917 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1918 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1919 						sbi->log_blocks_per_seg;
1920 
1921 	return segs / sbi->segs_per_sec;
1922 }
1923 
valid_user_blocks(struct f2fs_sb_info * sbi)1924 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1925 {
1926 	return sbi->total_valid_block_count;
1927 }
1928 
discard_blocks(struct f2fs_sb_info * sbi)1929 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1930 {
1931 	return sbi->discard_blks;
1932 }
1933 
__bitmap_size(struct f2fs_sb_info * sbi,int flag)1934 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1935 {
1936 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1937 
1938 	/* return NAT or SIT bitmap */
1939 	if (flag == NAT_BITMAP)
1940 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1941 	else if (flag == SIT_BITMAP)
1942 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1943 
1944 	return 0;
1945 }
1946 
__cp_payload(struct f2fs_sb_info * sbi)1947 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1948 {
1949 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1950 }
1951 
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)1952 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1953 {
1954 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1955 	int offset;
1956 
1957 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
1958 		offset = (flag == SIT_BITMAP) ?
1959 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
1960 		/*
1961 		 * if large_nat_bitmap feature is enabled, leave checksum
1962 		 * protection for all nat/sit bitmaps.
1963 		 */
1964 		return &ckpt->sit_nat_version_bitmap + offset + sizeof(__le32);
1965 	}
1966 
1967 	if (__cp_payload(sbi) > 0) {
1968 		if (flag == NAT_BITMAP)
1969 			return &ckpt->sit_nat_version_bitmap;
1970 		else
1971 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1972 	} else {
1973 		offset = (flag == NAT_BITMAP) ?
1974 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1975 		return &ckpt->sit_nat_version_bitmap + offset;
1976 	}
1977 }
1978 
__start_cp_addr(struct f2fs_sb_info * sbi)1979 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1980 {
1981 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1982 
1983 	if (sbi->cur_cp_pack == 2)
1984 		start_addr += sbi->blocks_per_seg;
1985 	return start_addr;
1986 }
1987 
__start_cp_next_addr(struct f2fs_sb_info * sbi)1988 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1989 {
1990 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1991 
1992 	if (sbi->cur_cp_pack == 1)
1993 		start_addr += sbi->blocks_per_seg;
1994 	return start_addr;
1995 }
1996 
__set_cp_next_pack(struct f2fs_sb_info * sbi)1997 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1998 {
1999 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2000 }
2001 
__start_sum_addr(struct f2fs_sb_info * sbi)2002 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2003 {
2004 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2005 }
2006 
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2007 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2008 					struct inode *inode, bool is_inode)
2009 {
2010 	block_t	valid_block_count;
2011 	unsigned int valid_node_count, user_block_count;
2012 	int err;
2013 
2014 	if (is_inode) {
2015 		if (inode) {
2016 			err = dquot_alloc_inode(inode);
2017 			if (err)
2018 				return err;
2019 		}
2020 	} else {
2021 		err = dquot_reserve_block(inode, 1);
2022 		if (err)
2023 			return err;
2024 	}
2025 
2026 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2027 		f2fs_show_injection_info(FAULT_BLOCK);
2028 		goto enospc;
2029 	}
2030 
2031 	spin_lock(&sbi->stat_lock);
2032 
2033 	valid_block_count = sbi->total_valid_block_count +
2034 					sbi->current_reserved_blocks + 1;
2035 
2036 	if (!__allow_reserved_blocks(sbi, inode, false))
2037 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2038 	user_block_count = sbi->user_block_count;
2039 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2040 		user_block_count -= sbi->unusable_block_count;
2041 
2042 	if (unlikely(valid_block_count > user_block_count)) {
2043 		spin_unlock(&sbi->stat_lock);
2044 		goto enospc;
2045 	}
2046 
2047 	valid_node_count = sbi->total_valid_node_count + 1;
2048 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2049 		spin_unlock(&sbi->stat_lock);
2050 		goto enospc;
2051 	}
2052 
2053 	sbi->total_valid_node_count++;
2054 	sbi->total_valid_block_count++;
2055 	spin_unlock(&sbi->stat_lock);
2056 
2057 	if (inode) {
2058 		if (is_inode)
2059 			f2fs_mark_inode_dirty_sync(inode, true);
2060 		else
2061 			f2fs_i_blocks_write(inode, 1, true, true);
2062 	}
2063 
2064 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2065 	return 0;
2066 
2067 enospc:
2068 	if (is_inode) {
2069 		if (inode)
2070 			dquot_free_inode(inode);
2071 	} else {
2072 		dquot_release_reservation_block(inode, 1);
2073 	}
2074 	return -ENOSPC;
2075 }
2076 
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2077 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2078 					struct inode *inode, bool is_inode)
2079 {
2080 	spin_lock(&sbi->stat_lock);
2081 
2082 	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
2083 	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
2084 
2085 	sbi->total_valid_node_count--;
2086 	sbi->total_valid_block_count--;
2087 	if (sbi->reserved_blocks &&
2088 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2089 		sbi->current_reserved_blocks++;
2090 
2091 	spin_unlock(&sbi->stat_lock);
2092 
2093 	if (is_inode) {
2094 		dquot_free_inode(inode);
2095 	} else {
2096 		if (unlikely(inode->i_blocks == 0)) {
2097 			f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
2098 				  inode->i_ino,
2099 				  (unsigned long long)inode->i_blocks);
2100 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2101 			return;
2102 		}
2103 		f2fs_i_blocks_write(inode, 1, false, true);
2104 	}
2105 }
2106 
valid_node_count(struct f2fs_sb_info * sbi)2107 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2108 {
2109 	return sbi->total_valid_node_count;
2110 }
2111 
inc_valid_inode_count(struct f2fs_sb_info * sbi)2112 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2113 {
2114 	percpu_counter_inc(&sbi->total_valid_inode_count);
2115 }
2116 
dec_valid_inode_count(struct f2fs_sb_info * sbi)2117 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2118 {
2119 	percpu_counter_dec(&sbi->total_valid_inode_count);
2120 }
2121 
valid_inode_count(struct f2fs_sb_info * sbi)2122 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2123 {
2124 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2125 }
2126 
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2127 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2128 						pgoff_t index, bool for_write)
2129 {
2130 	struct page *page;
2131 
2132 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2133 		if (!for_write)
2134 			page = find_get_page_flags(mapping, index,
2135 							FGP_LOCK | FGP_ACCESSED);
2136 		else
2137 			page = find_lock_page(mapping, index);
2138 		if (page)
2139 			return page;
2140 
2141 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2142 			f2fs_show_injection_info(FAULT_PAGE_ALLOC);
2143 			return NULL;
2144 		}
2145 	}
2146 
2147 	if (!for_write)
2148 		return grab_cache_page(mapping, index);
2149 	return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2150 }
2151 
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2152 static inline struct page *f2fs_pagecache_get_page(
2153 				struct address_space *mapping, pgoff_t index,
2154 				int fgp_flags, gfp_t gfp_mask)
2155 {
2156 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2157 		f2fs_show_injection_info(FAULT_PAGE_GET);
2158 		return NULL;
2159 	}
2160 
2161 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2162 }
2163 
f2fs_copy_page(struct page * src,struct page * dst)2164 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2165 {
2166 	char *src_kaddr = kmap(src);
2167 	char *dst_kaddr = kmap(dst);
2168 
2169 	memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2170 	kunmap(dst);
2171 	kunmap(src);
2172 }
2173 
f2fs_put_page(struct page * page,int unlock)2174 static inline void f2fs_put_page(struct page *page, int unlock)
2175 {
2176 	if (!page)
2177 		return;
2178 
2179 	if (unlock) {
2180 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2181 		unlock_page(page);
2182 	}
2183 	put_page(page);
2184 }
2185 
f2fs_put_dnode(struct dnode_of_data * dn)2186 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2187 {
2188 	if (dn->node_page)
2189 		f2fs_put_page(dn->node_page, 1);
2190 	if (dn->inode_page && dn->node_page != dn->inode_page)
2191 		f2fs_put_page(dn->inode_page, 0);
2192 	dn->node_page = NULL;
2193 	dn->inode_page = NULL;
2194 }
2195 
f2fs_kmem_cache_create(const char * name,size_t size)2196 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2197 					size_t size)
2198 {
2199 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2200 }
2201 
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2202 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2203 						gfp_t flags)
2204 {
2205 	void *entry;
2206 
2207 	entry = kmem_cache_alloc(cachep, flags);
2208 	if (!entry)
2209 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2210 	return entry;
2211 }
2212 
f2fs_bio_alloc(struct f2fs_sb_info * sbi,int npages,bool no_fail)2213 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2214 						int npages, bool no_fail)
2215 {
2216 	struct bio *bio;
2217 
2218 	if (no_fail) {
2219 		/* No failure on bio allocation */
2220 		bio = bio_alloc(GFP_NOIO, npages);
2221 		if (!bio)
2222 			bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2223 		return bio;
2224 	}
2225 	if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2226 		f2fs_show_injection_info(FAULT_ALLOC_BIO);
2227 		return NULL;
2228 	}
2229 
2230 	return bio_alloc(GFP_KERNEL, npages);
2231 }
2232 
is_idle(struct f2fs_sb_info * sbi,int type)2233 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2234 {
2235 	if (sbi->gc_mode == GC_URGENT)
2236 		return true;
2237 
2238 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2239 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2240 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2241 		get_pages(sbi, F2FS_DIO_READ) ||
2242 		get_pages(sbi, F2FS_DIO_WRITE))
2243 		return false;
2244 
2245 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2246 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2247 		return false;
2248 
2249 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2250 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2251 		return false;
2252 
2253 	return f2fs_time_over(sbi, type);
2254 }
2255 
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2256 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2257 				unsigned long index, void *item)
2258 {
2259 	while (radix_tree_insert(root, index, item))
2260 		cond_resched();
2261 }
2262 
2263 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2264 
IS_INODE(struct page * page)2265 static inline bool IS_INODE(struct page *page)
2266 {
2267 	struct f2fs_node *p = F2FS_NODE(page);
2268 
2269 	return RAW_IS_INODE(p);
2270 }
2271 
offset_in_addr(struct f2fs_inode * i)2272 static inline int offset_in_addr(struct f2fs_inode *i)
2273 {
2274 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2275 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2276 }
2277 
blkaddr_in_node(struct f2fs_node * node)2278 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2279 {
2280 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2281 }
2282 
2283 static inline int f2fs_has_extra_attr(struct inode *inode);
datablock_addr(struct inode * inode,struct page * node_page,unsigned int offset)2284 static inline block_t datablock_addr(struct inode *inode,
2285 			struct page *node_page, unsigned int offset)
2286 {
2287 	struct f2fs_node *raw_node;
2288 	__le32 *addr_array;
2289 	int base = 0;
2290 	bool is_inode = IS_INODE(node_page);
2291 
2292 	raw_node = F2FS_NODE(node_page);
2293 
2294 	/* from GC path only */
2295 	if (is_inode) {
2296 		if (!inode)
2297 			base = offset_in_addr(&raw_node->i);
2298 		else if (f2fs_has_extra_attr(inode))
2299 			base = get_extra_isize(inode);
2300 	}
2301 
2302 	addr_array = blkaddr_in_node(raw_node);
2303 	return le32_to_cpu(addr_array[base + offset]);
2304 }
2305 
f2fs_test_bit(unsigned int nr,char * addr)2306 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2307 {
2308 	int mask;
2309 
2310 	addr += (nr >> 3);
2311 	mask = 1 << (7 - (nr & 0x07));
2312 	return mask & *addr;
2313 }
2314 
f2fs_set_bit(unsigned int nr,char * addr)2315 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2316 {
2317 	int mask;
2318 
2319 	addr += (nr >> 3);
2320 	mask = 1 << (7 - (nr & 0x07));
2321 	*addr |= mask;
2322 }
2323 
f2fs_clear_bit(unsigned int nr,char * addr)2324 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2325 {
2326 	int mask;
2327 
2328 	addr += (nr >> 3);
2329 	mask = 1 << (7 - (nr & 0x07));
2330 	*addr &= ~mask;
2331 }
2332 
f2fs_test_and_set_bit(unsigned int nr,char * addr)2333 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2334 {
2335 	int mask;
2336 	int ret;
2337 
2338 	addr += (nr >> 3);
2339 	mask = 1 << (7 - (nr & 0x07));
2340 	ret = mask & *addr;
2341 	*addr |= mask;
2342 	return ret;
2343 }
2344 
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2345 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2346 {
2347 	int mask;
2348 	int ret;
2349 
2350 	addr += (nr >> 3);
2351 	mask = 1 << (7 - (nr & 0x07));
2352 	ret = mask & *addr;
2353 	*addr &= ~mask;
2354 	return ret;
2355 }
2356 
f2fs_change_bit(unsigned int nr,char * addr)2357 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2358 {
2359 	int mask;
2360 
2361 	addr += (nr >> 3);
2362 	mask = 1 << (7 - (nr & 0x07));
2363 	*addr ^= mask;
2364 }
2365 
2366 /*
2367  * On-disk inode flags (f2fs_inode::i_flags)
2368  */
2369 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2370 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2371 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2372 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2373 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2374 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2375 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2376 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2377 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2378 
2379 /* Flags that should be inherited by new inodes from their parent. */
2380 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2381 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2382 			   F2FS_CASEFOLD_FL)
2383 
2384 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2385 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2386 				F2FS_CASEFOLD_FL))
2387 
2388 /* Flags that are appropriate for non-directories/regular files. */
2389 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2390 
f2fs_mask_flags(umode_t mode,__u32 flags)2391 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2392 {
2393 	if (S_ISDIR(mode))
2394 		return flags;
2395 	else if (S_ISREG(mode))
2396 		return flags & F2FS_REG_FLMASK;
2397 	else
2398 		return flags & F2FS_OTHER_FLMASK;
2399 }
2400 
2401 /* used for f2fs_inode_info->flags */
2402 enum {
2403 	FI_NEW_INODE,		/* indicate newly allocated inode */
2404 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
2405 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
2406 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
2407 	FI_INC_LINK,		/* need to increment i_nlink */
2408 	FI_ACL_MODE,		/* indicate acl mode */
2409 	FI_NO_ALLOC,		/* should not allocate any blocks */
2410 	FI_FREE_NID,		/* free allocated nide */
2411 	FI_NO_EXTENT,		/* not to use the extent cache */
2412 	FI_INLINE_XATTR,	/* used for inline xattr */
2413 	FI_INLINE_DATA,		/* used for inline data*/
2414 	FI_INLINE_DENTRY,	/* used for inline dentry */
2415 	FI_APPEND_WRITE,	/* inode has appended data */
2416 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
2417 	FI_NEED_IPU,		/* used for ipu per file */
2418 	FI_ATOMIC_FILE,		/* indicate atomic file */
2419 	FI_ATOMIC_COMMIT,	/* indicate the state of atomical committing */
2420 	FI_VOLATILE_FILE,	/* indicate volatile file */
2421 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
2422 	FI_DROP_CACHE,		/* drop dirty page cache */
2423 	FI_DATA_EXIST,		/* indicate data exists */
2424 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
2425 	FI_DO_DEFRAG,		/* indicate defragment is running */
2426 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
2427 	FI_NO_PREALLOC,		/* indicate skipped preallocated blocks */
2428 	FI_HOT_DATA,		/* indicate file is hot */
2429 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
2430 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
2431 	FI_PIN_FILE,		/* indicate file should not be gced */
2432 	FI_ATOMIC_REVOKE_REQUEST, /* request to drop atomic data */
2433 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
2434 };
2435 
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2436 static inline void __mark_inode_dirty_flag(struct inode *inode,
2437 						int flag, bool set)
2438 {
2439 	switch (flag) {
2440 	case FI_INLINE_XATTR:
2441 	case FI_INLINE_DATA:
2442 	case FI_INLINE_DENTRY:
2443 	case FI_NEW_INODE:
2444 		if (set)
2445 			return;
2446 		/* fall through */
2447 	case FI_DATA_EXIST:
2448 	case FI_INLINE_DOTS:
2449 	case FI_PIN_FILE:
2450 		f2fs_mark_inode_dirty_sync(inode, true);
2451 	}
2452 }
2453 
set_inode_flag(struct inode * inode,int flag)2454 static inline void set_inode_flag(struct inode *inode, int flag)
2455 {
2456 	if (!test_bit(flag, &F2FS_I(inode)->flags))
2457 		set_bit(flag, &F2FS_I(inode)->flags);
2458 	__mark_inode_dirty_flag(inode, flag, true);
2459 }
2460 
is_inode_flag_set(struct inode * inode,int flag)2461 static inline int is_inode_flag_set(struct inode *inode, int flag)
2462 {
2463 	return test_bit(flag, &F2FS_I(inode)->flags);
2464 }
2465 
clear_inode_flag(struct inode * inode,int flag)2466 static inline void clear_inode_flag(struct inode *inode, int flag)
2467 {
2468 	if (test_bit(flag, &F2FS_I(inode)->flags))
2469 		clear_bit(flag, &F2FS_I(inode)->flags);
2470 	__mark_inode_dirty_flag(inode, flag, false);
2471 }
2472 
f2fs_verity_in_progress(struct inode * inode)2473 static inline bool f2fs_verity_in_progress(struct inode *inode)
2474 {
2475 	return IS_ENABLED(CONFIG_FS_VERITY) &&
2476 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
2477 }
2478 
set_acl_inode(struct inode * inode,umode_t mode)2479 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2480 {
2481 	F2FS_I(inode)->i_acl_mode = mode;
2482 	set_inode_flag(inode, FI_ACL_MODE);
2483 	f2fs_mark_inode_dirty_sync(inode, false);
2484 }
2485 
f2fs_i_links_write(struct inode * inode,bool inc)2486 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2487 {
2488 	if (inc)
2489 		inc_nlink(inode);
2490 	else
2491 		drop_nlink(inode);
2492 	f2fs_mark_inode_dirty_sync(inode, true);
2493 }
2494 
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2495 static inline void f2fs_i_blocks_write(struct inode *inode,
2496 					block_t diff, bool add, bool claim)
2497 {
2498 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2499 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2500 
2501 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
2502 	if (add) {
2503 		if (claim)
2504 			dquot_claim_block(inode, diff);
2505 		else
2506 			dquot_alloc_block_nofail(inode, diff);
2507 	} else {
2508 		dquot_free_block(inode, diff);
2509 	}
2510 
2511 	f2fs_mark_inode_dirty_sync(inode, true);
2512 	if (clean || recover)
2513 		set_inode_flag(inode, FI_AUTO_RECOVER);
2514 }
2515 
f2fs_i_size_write(struct inode * inode,loff_t i_size)2516 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2517 {
2518 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2519 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2520 
2521 	if (i_size_read(inode) == i_size)
2522 		return;
2523 
2524 	i_size_write(inode, i_size);
2525 	f2fs_mark_inode_dirty_sync(inode, true);
2526 	if (clean || recover)
2527 		set_inode_flag(inode, FI_AUTO_RECOVER);
2528 }
2529 
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2530 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2531 {
2532 	F2FS_I(inode)->i_current_depth = depth;
2533 	f2fs_mark_inode_dirty_sync(inode, true);
2534 }
2535 
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)2536 static inline void f2fs_i_gc_failures_write(struct inode *inode,
2537 					unsigned int count)
2538 {
2539 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
2540 	f2fs_mark_inode_dirty_sync(inode, true);
2541 }
2542 
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2543 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2544 {
2545 	F2FS_I(inode)->i_xattr_nid = xnid;
2546 	f2fs_mark_inode_dirty_sync(inode, true);
2547 }
2548 
f2fs_i_pino_write(struct inode * inode,nid_t pino)2549 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2550 {
2551 	F2FS_I(inode)->i_pino = pino;
2552 	f2fs_mark_inode_dirty_sync(inode, true);
2553 }
2554 
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2555 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2556 {
2557 	struct f2fs_inode_info *fi = F2FS_I(inode);
2558 
2559 	if (ri->i_inline & F2FS_INLINE_XATTR)
2560 		set_bit(FI_INLINE_XATTR, &fi->flags);
2561 	if (ri->i_inline & F2FS_INLINE_DATA)
2562 		set_bit(FI_INLINE_DATA, &fi->flags);
2563 	if (ri->i_inline & F2FS_INLINE_DENTRY)
2564 		set_bit(FI_INLINE_DENTRY, &fi->flags);
2565 	if (ri->i_inline & F2FS_DATA_EXIST)
2566 		set_bit(FI_DATA_EXIST, &fi->flags);
2567 	if (ri->i_inline & F2FS_INLINE_DOTS)
2568 		set_bit(FI_INLINE_DOTS, &fi->flags);
2569 	if (ri->i_inline & F2FS_EXTRA_ATTR)
2570 		set_bit(FI_EXTRA_ATTR, &fi->flags);
2571 	if (ri->i_inline & F2FS_PIN_FILE)
2572 		set_bit(FI_PIN_FILE, &fi->flags);
2573 }
2574 
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2575 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2576 {
2577 	ri->i_inline = 0;
2578 
2579 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2580 		ri->i_inline |= F2FS_INLINE_XATTR;
2581 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
2582 		ri->i_inline |= F2FS_INLINE_DATA;
2583 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2584 		ri->i_inline |= F2FS_INLINE_DENTRY;
2585 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
2586 		ri->i_inline |= F2FS_DATA_EXIST;
2587 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2588 		ri->i_inline |= F2FS_INLINE_DOTS;
2589 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2590 		ri->i_inline |= F2FS_EXTRA_ATTR;
2591 	if (is_inode_flag_set(inode, FI_PIN_FILE))
2592 		ri->i_inline |= F2FS_PIN_FILE;
2593 }
2594 
f2fs_has_extra_attr(struct inode * inode)2595 static inline int f2fs_has_extra_attr(struct inode *inode)
2596 {
2597 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2598 }
2599 
f2fs_has_inline_xattr(struct inode * inode)2600 static inline int f2fs_has_inline_xattr(struct inode *inode)
2601 {
2602 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
2603 }
2604 
addrs_per_inode(struct inode * inode)2605 static inline unsigned int addrs_per_inode(struct inode *inode)
2606 {
2607 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
2608 				get_inline_xattr_addrs(inode);
2609 	return ALIGN_DOWN(addrs, 1);
2610 }
2611 
addrs_per_block(struct inode * inode)2612 static inline unsigned int addrs_per_block(struct inode *inode)
2613 {
2614 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, 1);
2615 }
2616 
inline_xattr_addr(struct inode * inode,struct page * page)2617 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2618 {
2619 	struct f2fs_inode *ri = F2FS_INODE(page);
2620 
2621 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2622 					get_inline_xattr_addrs(inode)]);
2623 }
2624 
inline_xattr_size(struct inode * inode)2625 static inline int inline_xattr_size(struct inode *inode)
2626 {
2627 	if (f2fs_has_inline_xattr(inode))
2628 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
2629 	return 0;
2630 }
2631 
f2fs_has_inline_data(struct inode * inode)2632 static inline int f2fs_has_inline_data(struct inode *inode)
2633 {
2634 	return is_inode_flag_set(inode, FI_INLINE_DATA);
2635 }
2636 
f2fs_exist_data(struct inode * inode)2637 static inline int f2fs_exist_data(struct inode *inode)
2638 {
2639 	return is_inode_flag_set(inode, FI_DATA_EXIST);
2640 }
2641 
f2fs_has_inline_dots(struct inode * inode)2642 static inline int f2fs_has_inline_dots(struct inode *inode)
2643 {
2644 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
2645 }
2646 
f2fs_is_pinned_file(struct inode * inode)2647 static inline bool f2fs_is_pinned_file(struct inode *inode)
2648 {
2649 	return is_inode_flag_set(inode, FI_PIN_FILE);
2650 }
2651 
f2fs_is_atomic_file(struct inode * inode)2652 static inline bool f2fs_is_atomic_file(struct inode *inode)
2653 {
2654 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2655 }
2656 
f2fs_is_commit_atomic_write(struct inode * inode)2657 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2658 {
2659 	return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2660 }
2661 
f2fs_is_volatile_file(struct inode * inode)2662 static inline bool f2fs_is_volatile_file(struct inode *inode)
2663 {
2664 	return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2665 }
2666 
f2fs_is_first_block_written(struct inode * inode)2667 static inline bool f2fs_is_first_block_written(struct inode *inode)
2668 {
2669 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2670 }
2671 
f2fs_is_drop_cache(struct inode * inode)2672 static inline bool f2fs_is_drop_cache(struct inode *inode)
2673 {
2674 	return is_inode_flag_set(inode, FI_DROP_CACHE);
2675 }
2676 
inline_data_addr(struct inode * inode,struct page * page)2677 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2678 {
2679 	struct f2fs_inode *ri = F2FS_INODE(page);
2680 	int extra_size = get_extra_isize(inode);
2681 
2682 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2683 }
2684 
f2fs_has_inline_dentry(struct inode * inode)2685 static inline int f2fs_has_inline_dentry(struct inode *inode)
2686 {
2687 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2688 }
2689 
is_file(struct inode * inode,int type)2690 static inline int is_file(struct inode *inode, int type)
2691 {
2692 	return F2FS_I(inode)->i_advise & type;
2693 }
2694 
set_file(struct inode * inode,int type)2695 static inline void set_file(struct inode *inode, int type)
2696 {
2697 	F2FS_I(inode)->i_advise |= type;
2698 	f2fs_mark_inode_dirty_sync(inode, true);
2699 }
2700 
clear_file(struct inode * inode,int type)2701 static inline void clear_file(struct inode *inode, int type)
2702 {
2703 	F2FS_I(inode)->i_advise &= ~type;
2704 	f2fs_mark_inode_dirty_sync(inode, true);
2705 }
2706 
f2fs_skip_inode_update(struct inode * inode,int dsync)2707 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2708 {
2709 	bool ret;
2710 
2711 	if (dsync) {
2712 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2713 
2714 		spin_lock(&sbi->inode_lock[DIRTY_META]);
2715 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
2716 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
2717 		return ret;
2718 	}
2719 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2720 			file_keep_isize(inode) ||
2721 			i_size_read(inode) & ~PAGE_MASK)
2722 		return false;
2723 
2724 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
2725 		return false;
2726 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
2727 		return false;
2728 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
2729 		return false;
2730 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
2731 						&F2FS_I(inode)->i_crtime))
2732 		return false;
2733 
2734 	down_read(&F2FS_I(inode)->i_sem);
2735 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2736 	up_read(&F2FS_I(inode)->i_sem);
2737 
2738 	return ret;
2739 }
2740 
f2fs_readonly(struct super_block * sb)2741 static inline bool f2fs_readonly(struct super_block *sb)
2742 {
2743 	return sb_rdonly(sb);
2744 }
2745 
f2fs_cp_error(struct f2fs_sb_info * sbi)2746 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2747 {
2748 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2749 }
2750 
is_dot_dotdot(const struct qstr * str)2751 static inline bool is_dot_dotdot(const struct qstr *str)
2752 {
2753 	if (str->len == 1 && str->name[0] == '.')
2754 		return true;
2755 
2756 	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2757 		return true;
2758 
2759 	return false;
2760 }
2761 
f2fs_may_extent_tree(struct inode * inode)2762 static inline bool f2fs_may_extent_tree(struct inode *inode)
2763 {
2764 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2765 
2766 	if (!test_opt(sbi, EXTENT_CACHE) ||
2767 			is_inode_flag_set(inode, FI_NO_EXTENT))
2768 		return false;
2769 
2770 	/*
2771 	 * for recovered files during mount do not create extents
2772 	 * if shrinker is not registered.
2773 	 */
2774 	if (list_empty(&sbi->s_list))
2775 		return false;
2776 
2777 	return S_ISREG(inode->i_mode);
2778 }
2779 
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2780 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2781 					size_t size, gfp_t flags)
2782 {
2783 	void *ret;
2784 
2785 	if (time_to_inject(sbi, FAULT_KMALLOC)) {
2786 		f2fs_show_injection_info(FAULT_KMALLOC);
2787 		return NULL;
2788 	}
2789 
2790 	ret = kmalloc(size, flags);
2791 	if (ret)
2792 		return ret;
2793 
2794 	return kvmalloc(size, flags);
2795 }
2796 
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2797 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
2798 					size_t size, gfp_t flags)
2799 {
2800 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
2801 }
2802 
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2803 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
2804 					size_t size, gfp_t flags)
2805 {
2806 	if (time_to_inject(sbi, FAULT_KVMALLOC)) {
2807 		f2fs_show_injection_info(FAULT_KVMALLOC);
2808 		return NULL;
2809 	}
2810 
2811 	return kvmalloc(size, flags);
2812 }
2813 
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2814 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
2815 					size_t size, gfp_t flags)
2816 {
2817 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
2818 }
2819 
get_extra_isize(struct inode * inode)2820 static inline int get_extra_isize(struct inode *inode)
2821 {
2822 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2823 }
2824 
get_inline_xattr_addrs(struct inode * inode)2825 static inline int get_inline_xattr_addrs(struct inode *inode)
2826 {
2827 	return F2FS_I(inode)->i_inline_xattr_size;
2828 }
2829 
2830 #define f2fs_get_inode_mode(i) \
2831 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2832 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2833 
2834 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
2835 	(offsetof(struct f2fs_inode, i_extra_end) -	\
2836 	offsetof(struct f2fs_inode, i_extra_isize))	\
2837 
2838 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
2839 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
2840 		((offsetof(typeof(*(f2fs_inode)), field) +	\
2841 		sizeof((f2fs_inode)->field))			\
2842 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
2843 
f2fs_reset_iostat(struct f2fs_sb_info * sbi)2844 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2845 {
2846 	int i;
2847 
2848 	spin_lock(&sbi->iostat_lock);
2849 	for (i = 0; i < NR_IO_TYPE; i++)
2850 		sbi->write_iostat[i] = 0;
2851 	spin_unlock(&sbi->iostat_lock);
2852 }
2853 
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)2854 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2855 			enum iostat_type type, unsigned long long io_bytes)
2856 {
2857 	if (!sbi->iostat_enable)
2858 		return;
2859 	spin_lock(&sbi->iostat_lock);
2860 	sbi->write_iostat[type] += io_bytes;
2861 
2862 	if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2863 		sbi->write_iostat[APP_BUFFERED_IO] =
2864 			sbi->write_iostat[APP_WRITE_IO] -
2865 			sbi->write_iostat[APP_DIRECT_IO];
2866 	spin_unlock(&sbi->iostat_lock);
2867 }
2868 
2869 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
2870 
2871 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
2872 
2873 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
2874 					block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)2875 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
2876 					block_t blkaddr, int type)
2877 {
2878 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
2879 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
2880 			 blkaddr, type);
2881 		f2fs_bug_on(sbi, 1);
2882 	}
2883 }
2884 
__is_valid_data_blkaddr(block_t blkaddr)2885 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
2886 {
2887 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2888 		return false;
2889 	return true;
2890 }
2891 
f2fs_set_page_private(struct page * page,unsigned long data)2892 static inline void f2fs_set_page_private(struct page *page,
2893 						unsigned long data)
2894 {
2895 	if (PagePrivate(page))
2896 		return;
2897 
2898 	get_page(page);
2899 	SetPagePrivate(page);
2900 	set_page_private(page, data);
2901 }
2902 
f2fs_clear_page_private(struct page * page)2903 static inline void f2fs_clear_page_private(struct page *page)
2904 {
2905 	if (!PagePrivate(page))
2906 		return;
2907 
2908 	set_page_private(page, 0);
2909 	ClearPagePrivate(page);
2910 	f2fs_put_page(page, 0);
2911 }
2912 
2913 /*
2914  * file.c
2915  */
2916 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2917 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
2918 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
2919 int f2fs_truncate(struct inode *inode);
2920 int f2fs_getattr(const struct path *path, struct kstat *stat,
2921 			u32 request_mask, unsigned int flags);
2922 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2923 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2924 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2925 int f2fs_precache_extents(struct inode *inode);
2926 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2927 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2928 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
2929 int f2fs_pin_file_control(struct inode *inode, bool inc);
2930 
2931 /*
2932  * inode.c
2933  */
2934 void f2fs_set_inode_flags(struct inode *inode);
2935 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2936 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2937 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2938 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2939 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2940 void f2fs_update_inode(struct inode *inode, struct page *node_page);
2941 void f2fs_update_inode_page(struct inode *inode);
2942 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2943 void f2fs_evict_inode(struct inode *inode);
2944 void f2fs_handle_failed_inode(struct inode *inode);
2945 
2946 /*
2947  * namei.c
2948  */
2949 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
2950 							bool hot, bool set);
2951 struct dentry *f2fs_get_parent(struct dentry *child);
2952 
2953 extern int f2fs_ci_compare(const struct inode *parent,
2954 			   const struct qstr *name,
2955 			   const struct qstr *entry,
2956 			   bool quick);
2957 
2958 /*
2959  * dir.c
2960  */
2961 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
2962 struct f2fs_dir_entry *f2fs_find_target_dentry(struct fscrypt_name *fname,
2963 			f2fs_hash_t namehash, int *max_slots,
2964 			struct f2fs_dentry_ptr *d);
2965 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2966 			unsigned int start_pos, struct fscrypt_str *fstr);
2967 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
2968 			struct f2fs_dentry_ptr *d);
2969 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
2970 			const struct qstr *new_name,
2971 			const struct qstr *orig_name, struct page *dpage);
2972 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
2973 			unsigned int current_depth);
2974 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
2975 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2976 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2977 			struct fscrypt_name *fname, struct page **res_page);
2978 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2979 			const struct qstr *child, struct page **res_page);
2980 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2981 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2982 			struct page **page);
2983 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2984 			struct page *page, struct inode *inode);
2985 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2986 			const struct qstr *name, f2fs_hash_t name_hash,
2987 			unsigned int bit_pos);
2988 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2989 			const struct qstr *orig_name,
2990 			struct inode *inode, nid_t ino, umode_t mode);
2991 int f2fs_add_dentry(struct inode *dir, struct fscrypt_name *fname,
2992 			struct inode *inode, nid_t ino, umode_t mode);
2993 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
2994 			struct inode *inode, nid_t ino, umode_t mode);
2995 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2996 			struct inode *dir, struct inode *inode);
2997 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2998 bool f2fs_empty_dir(struct inode *dir);
2999 
f2fs_add_link(struct dentry * dentry,struct inode * inode)3000 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3001 {
3002 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3003 				inode, inode->i_ino, inode->i_mode);
3004 }
3005 
3006 /*
3007  * super.c
3008  */
3009 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3010 void f2fs_inode_synced(struct inode *inode);
3011 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3012 int f2fs_quota_sync(struct super_block *sb, int type);
3013 void f2fs_quota_off_umount(struct super_block *sb);
3014 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3015 int f2fs_sync_fs(struct super_block *sb, int sync);
3016 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3017 
3018 /*
3019  * hash.c
3020  */
3021 f2fs_hash_t f2fs_dentry_hash(const struct inode *dir,
3022 		const struct qstr *name_info, struct fscrypt_name *fname);
3023 
3024 /*
3025  * node.c
3026  */
3027 struct dnode_of_data;
3028 struct node_info;
3029 
3030 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3031 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3032 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3033 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3034 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3035 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3036 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3037 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3038 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3039 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3040 						struct node_info *ni);
3041 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3042 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3043 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3044 int f2fs_truncate_xattr_node(struct inode *inode);
3045 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3046 					unsigned int seq_id);
3047 int f2fs_remove_inode_page(struct inode *inode);
3048 struct page *f2fs_new_inode_page(struct inode *inode);
3049 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3050 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3051 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3052 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3053 int f2fs_move_node_page(struct page *node_page, int gc_type);
3054 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3055 			struct writeback_control *wbc, bool atomic,
3056 			unsigned int *seq_id);
3057 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3058 			struct writeback_control *wbc,
3059 			bool do_balance, enum iostat_type io_type);
3060 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3061 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3062 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3063 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3064 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3065 void f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3066 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3067 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3068 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3069 			unsigned int segno, struct f2fs_summary_block *sum);
3070 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3071 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3072 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3073 int __init f2fs_create_node_manager_caches(void);
3074 void f2fs_destroy_node_manager_caches(void);
3075 
3076 /*
3077  * segment.c
3078  */
3079 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3080 void f2fs_register_inmem_page(struct inode *inode, struct page *page);
3081 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure);
3082 void f2fs_drop_inmem_pages(struct inode *inode);
3083 void f2fs_drop_inmem_page(struct inode *inode, struct page *page);
3084 int f2fs_commit_inmem_pages(struct inode *inode);
3085 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3086 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
3087 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3088 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3089 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3090 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3091 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3092 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3093 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3094 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3095 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3096 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3097 					struct cp_control *cpc);
3098 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3099 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3100 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3101 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3102 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3103 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3104 					unsigned int start, unsigned int end);
3105 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3106 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3107 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3108 					struct cp_control *cpc);
3109 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3110 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3111 					block_t blk_addr);
3112 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3113 						enum iostat_type io_type);
3114 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3115 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3116 			struct f2fs_io_info *fio);
3117 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3118 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3119 			block_t old_blkaddr, block_t new_blkaddr,
3120 			bool recover_curseg, bool recover_newaddr);
3121 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3122 			block_t old_addr, block_t new_addr,
3123 			unsigned char version, bool recover_curseg,
3124 			bool recover_newaddr);
3125 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3126 			block_t old_blkaddr, block_t *new_blkaddr,
3127 			struct f2fs_summary *sum, int type,
3128 			struct f2fs_io_info *fio, bool add_list);
3129 void f2fs_wait_on_page_writeback(struct page *page,
3130 			enum page_type type, bool ordered, bool locked);
3131 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3132 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3133 								block_t len);
3134 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3135 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3136 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3137 			unsigned int val, int alloc);
3138 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3139 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3140 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3141 int __init f2fs_create_segment_manager_caches(void);
3142 void f2fs_destroy_segment_manager_caches(void);
3143 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3144 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3145 			enum page_type type, enum temp_type temp);
3146 
3147 /*
3148  * checkpoint.c
3149  */
3150 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
3151 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3152 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3153 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index);
3154 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3155 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3156 					block_t blkaddr, int type);
3157 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3158 			int type, bool sync);
3159 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
3160 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3161 			long nr_to_write, enum iostat_type io_type);
3162 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3163 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3164 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3165 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3166 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3167 					unsigned int devidx, int type);
3168 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3169 					unsigned int devidx, int type);
3170 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3171 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3172 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3173 void f2fs_add_orphan_inode(struct inode *inode);
3174 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3175 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3176 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3177 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3178 void f2fs_remove_dirty_inode(struct inode *inode);
3179 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
3180 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi);
3181 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3182 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3183 int __init f2fs_create_checkpoint_caches(void);
3184 void f2fs_destroy_checkpoint_caches(void);
3185 
3186 /*
3187  * data.c
3188  */
3189 int f2fs_init_post_read_processing(void);
3190 void f2fs_destroy_post_read_processing(void);
3191 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3192 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3193 				struct inode *inode, struct page *page,
3194 				nid_t ino, enum page_type type);
3195 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3196 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3197 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3198 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3199 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3200 			block_t blk_addr, struct bio *bio);
3201 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3202 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3203 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3204 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3205 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3206 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3207 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
3208 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3209 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3210 			int op_flags, bool for_write);
3211 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3212 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3213 			bool for_write);
3214 struct page *f2fs_get_new_data_page(struct inode *inode,
3215 			struct page *ipage, pgoff_t index, bool new_i_size);
3216 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3217 void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3218 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3219 			int create, int flag);
3220 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3221 			u64 start, u64 len);
3222 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3223 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3224 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3225 			unsigned int length);
3226 int f2fs_release_page(struct page *page, gfp_t wait);
3227 #ifdef CONFIG_MIGRATION
3228 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3229 			struct page *page, enum migrate_mode mode);
3230 #endif
3231 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3232 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3233 
3234 /*
3235  * gc.c
3236  */
3237 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3238 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3239 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3240 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
3241 			unsigned int segno);
3242 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3243 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count);
3244 
3245 /*
3246  * recovery.c
3247  */
3248 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3249 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3250 
3251 /*
3252  * debug.c
3253  */
3254 #ifdef CONFIG_F2FS_STAT_FS
3255 struct f2fs_stat_info {
3256 	struct list_head stat_list;
3257 	struct f2fs_sb_info *sbi;
3258 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3259 	int main_area_segs, main_area_sections, main_area_zones;
3260 	unsigned long long hit_largest, hit_cached, hit_rbtree;
3261 	unsigned long long hit_total, total_ext;
3262 	int ext_tree, zombie_tree, ext_node;
3263 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3264 	int ndirty_data, ndirty_qdata;
3265 	int inmem_pages;
3266 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3267 	int nats, dirty_nats, sits, dirty_sits;
3268 	int free_nids, avail_nids, alloc_nids;
3269 	int total_count, utilization;
3270 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3271 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3272 	int nr_dio_read, nr_dio_write;
3273 	unsigned int io_skip_bggc, other_skip_bggc;
3274 	int nr_flushing, nr_flushed, flush_list_empty;
3275 	int nr_discarding, nr_discarded;
3276 	int nr_discard_cmd;
3277 	unsigned int undiscard_blks;
3278 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3279 	int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
3280 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3281 	unsigned int bimodal, avg_vblocks;
3282 	int util_free, util_valid, util_invalid;
3283 	int rsvd_segs, overp_segs;
3284 	int dirty_count, node_pages, meta_pages;
3285 	int prefree_count, call_count, cp_count, bg_cp_count;
3286 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3287 	int bg_node_segs, bg_data_segs;
3288 	int tot_blks, data_blks, node_blks;
3289 	int bg_data_blks, bg_node_blks;
3290 	unsigned long long skipped_atomic_files[2];
3291 	int curseg[NR_CURSEG_TYPE];
3292 	int cursec[NR_CURSEG_TYPE];
3293 	int curzone[NR_CURSEG_TYPE];
3294 
3295 	unsigned int meta_count[META_MAX];
3296 	unsigned int segment_count[2];
3297 	unsigned int block_count[2];
3298 	unsigned int inplace_count;
3299 	unsigned long long base_mem, cache_mem, page_mem;
3300 };
3301 
F2FS_STAT(struct f2fs_sb_info * sbi)3302 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3303 {
3304 	return (struct f2fs_stat_info *)sbi->stat_info;
3305 }
3306 
3307 #define stat_inc_cp_count(si)		((si)->cp_count++)
3308 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3309 #define stat_inc_call_count(si)		((si)->call_count++)
3310 #define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
3311 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3312 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3313 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3314 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3315 #define stat_inc_total_hit(sbi)		(atomic64_inc(&(sbi)->total_hit_ext))
3316 #define stat_inc_rbtree_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_rbtree))
3317 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3318 #define stat_inc_cached_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_cached))
3319 #define stat_inc_inline_xattr(inode)					\
3320 	do {								\
3321 		if (f2fs_has_inline_xattr(inode))			\
3322 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3323 	} while (0)
3324 #define stat_dec_inline_xattr(inode)					\
3325 	do {								\
3326 		if (f2fs_has_inline_xattr(inode))			\
3327 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3328 	} while (0)
3329 #define stat_inc_inline_inode(inode)					\
3330 	do {								\
3331 		if (f2fs_has_inline_data(inode))			\
3332 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3333 	} while (0)
3334 #define stat_dec_inline_inode(inode)					\
3335 	do {								\
3336 		if (f2fs_has_inline_data(inode))			\
3337 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3338 	} while (0)
3339 #define stat_inc_inline_dir(inode)					\
3340 	do {								\
3341 		if (f2fs_has_inline_dentry(inode))			\
3342 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3343 	} while (0)
3344 #define stat_dec_inline_dir(inode)					\
3345 	do {								\
3346 		if (f2fs_has_inline_dentry(inode))			\
3347 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3348 	} while (0)
3349 #define stat_inc_meta_count(sbi, blkaddr)				\
3350 	do {								\
3351 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3352 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3353 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3354 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3355 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3356 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3357 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
3358 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
3359 	} while (0)
3360 #define stat_inc_seg_type(sbi, curseg)					\
3361 		((sbi)->segment_count[(curseg)->alloc_type]++)
3362 #define stat_inc_block_count(sbi, curseg)				\
3363 		((sbi)->block_count[(curseg)->alloc_type]++)
3364 #define stat_inc_inplace_blocks(sbi)					\
3365 		(atomic_inc(&(sbi)->inplace_count))
3366 #define stat_inc_atomic_write(inode)					\
3367 		(atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
3368 #define stat_dec_atomic_write(inode)					\
3369 		(atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
3370 #define stat_update_max_atomic_write(inode)				\
3371 	do {								\
3372 		int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt);	\
3373 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
3374 		if (cur > max)						\
3375 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
3376 	} while (0)
3377 #define stat_inc_volatile_write(inode)					\
3378 		(atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
3379 #define stat_dec_volatile_write(inode)					\
3380 		(atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
3381 #define stat_update_max_volatile_write(inode)				\
3382 	do {								\
3383 		int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt);	\
3384 		int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt);	\
3385 		if (cur > max)						\
3386 			atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur);	\
3387 	} while (0)
3388 #define stat_inc_seg_count(sbi, type, gc_type)				\
3389 	do {								\
3390 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3391 		si->tot_segs++;						\
3392 		if ((type) == SUM_TYPE_DATA) {				\
3393 			si->data_segs++;				\
3394 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
3395 		} else {						\
3396 			si->node_segs++;				\
3397 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
3398 		}							\
3399 	} while (0)
3400 
3401 #define stat_inc_tot_blk_count(si, blks)				\
3402 	((si)->tot_blks += (blks))
3403 
3404 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
3405 	do {								\
3406 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3407 		stat_inc_tot_blk_count(si, blks);			\
3408 		si->data_blks += (blks);				\
3409 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3410 	} while (0)
3411 
3412 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
3413 	do {								\
3414 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
3415 		stat_inc_tot_blk_count(si, blks);			\
3416 		si->node_blks += (blks);				\
3417 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
3418 	} while (0)
3419 
3420 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3421 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3422 void __init f2fs_create_root_stats(void);
3423 void f2fs_destroy_root_stats(void);
3424 #else
3425 #define stat_inc_cp_count(si)				do { } while (0)
3426 #define stat_inc_bg_cp_count(si)			do { } while (0)
3427 #define stat_inc_call_count(si)				do { } while (0)
3428 #define stat_inc_bggc_count(si)				do { } while (0)
3429 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
3430 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
3431 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
3432 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
3433 #define stat_inc_total_hit(sb)				do { } while (0)
3434 #define stat_inc_rbtree_node_hit(sb)			do { } while (0)
3435 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
3436 #define stat_inc_cached_node_hit(sbi)			do { } while (0)
3437 #define stat_inc_inline_xattr(inode)			do { } while (0)
3438 #define stat_dec_inline_xattr(inode)			do { } while (0)
3439 #define stat_inc_inline_inode(inode)			do { } while (0)
3440 #define stat_dec_inline_inode(inode)			do { } while (0)
3441 #define stat_inc_inline_dir(inode)			do { } while (0)
3442 #define stat_dec_inline_dir(inode)			do { } while (0)
3443 #define stat_inc_atomic_write(inode)			do { } while (0)
3444 #define stat_dec_atomic_write(inode)			do { } while (0)
3445 #define stat_update_max_atomic_write(inode)		do { } while (0)
3446 #define stat_inc_volatile_write(inode)			do { } while (0)
3447 #define stat_dec_volatile_write(inode)			do { } while (0)
3448 #define stat_update_max_volatile_write(inode)		do { } while (0)
3449 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
3450 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
3451 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
3452 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
3453 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
3454 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
3455 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
3456 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
3457 
f2fs_build_stats(struct f2fs_sb_info * sbi)3458 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3459 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3460 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)3461 static inline void f2fs_destroy_root_stats(void) { }
3462 #endif
3463 
3464 extern const struct file_operations f2fs_dir_operations;
3465 #ifdef CONFIG_UNICODE
3466 extern const struct dentry_operations f2fs_dentry_ops;
3467 #endif
3468 extern const struct file_operations f2fs_file_operations;
3469 extern const struct inode_operations f2fs_file_inode_operations;
3470 extern const struct address_space_operations f2fs_dblock_aops;
3471 extern const struct address_space_operations f2fs_node_aops;
3472 extern const struct address_space_operations f2fs_meta_aops;
3473 extern const struct inode_operations f2fs_dir_inode_operations;
3474 extern const struct inode_operations f2fs_symlink_inode_operations;
3475 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3476 extern const struct inode_operations f2fs_special_inode_operations;
3477 extern struct kmem_cache *f2fs_inode_entry_slab;
3478 
3479 /*
3480  * inline.c
3481  */
3482 bool f2fs_may_inline_data(struct inode *inode);
3483 bool f2fs_may_inline_dentry(struct inode *inode);
3484 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
3485 void f2fs_truncate_inline_inode(struct inode *inode,
3486 						struct page *ipage, u64 from);
3487 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3488 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3489 int f2fs_convert_inline_inode(struct inode *inode);
3490 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3491 bool f2fs_recover_inline_data(struct inode *inode, struct page *npage);
3492 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
3493 			struct fscrypt_name *fname, struct page **res_page);
3494 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
3495 			struct page *ipage);
3496 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3497 			const struct qstr *orig_name,
3498 			struct inode *inode, nid_t ino, umode_t mode);
3499 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
3500 				struct page *page, struct inode *dir,
3501 				struct inode *inode);
3502 bool f2fs_empty_inline_dir(struct inode *dir);
3503 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3504 			struct fscrypt_str *fstr);
3505 int f2fs_inline_data_fiemap(struct inode *inode,
3506 			struct fiemap_extent_info *fieinfo,
3507 			__u64 start, __u64 len);
3508 
3509 /*
3510  * shrinker.c
3511  */
3512 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3513 			struct shrink_control *sc);
3514 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3515 			struct shrink_control *sc);
3516 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3517 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3518 
3519 /*
3520  * extent_cache.c
3521  */
3522 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
3523 				struct rb_entry *cached_re, unsigned int ofs);
3524 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3525 				struct rb_root_cached *root,
3526 				struct rb_node **parent,
3527 				unsigned int ofs, bool *leftmost);
3528 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
3529 		struct rb_entry *cached_re, unsigned int ofs,
3530 		struct rb_entry **prev_entry, struct rb_entry **next_entry,
3531 		struct rb_node ***insert_p, struct rb_node **insert_parent,
3532 		bool force, bool *leftmost);
3533 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3534 						struct rb_root_cached *root);
3535 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3536 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3537 void f2fs_drop_extent_tree(struct inode *inode);
3538 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3539 void f2fs_destroy_extent_tree(struct inode *inode);
3540 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3541 			struct extent_info *ei);
3542 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3543 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3544 			pgoff_t fofs, block_t blkaddr, unsigned int len);
3545 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
3546 int __init f2fs_create_extent_cache(void);
3547 void f2fs_destroy_extent_cache(void);
3548 
3549 /*
3550  * sysfs.c
3551  */
3552 int __init f2fs_init_sysfs(void);
3553 void f2fs_exit_sysfs(void);
3554 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3555 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3556 
3557 /* verity.c */
3558 extern const struct fsverity_operations f2fs_verityops;
3559 
3560 /*
3561  * crypto support
3562  */
f2fs_encrypted_file(struct inode * inode)3563 static inline bool f2fs_encrypted_file(struct inode *inode)
3564 {
3565 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
3566 }
3567 
f2fs_set_encrypted_inode(struct inode * inode)3568 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3569 {
3570 #ifdef CONFIG_FS_ENCRYPTION
3571 	file_set_encrypt(inode);
3572 	f2fs_set_inode_flags(inode);
3573 #endif
3574 }
3575 
3576 /*
3577  * Returns true if the reads of the inode's data need to undergo some
3578  * postprocessing step, like decryption or authenticity verification.
3579  */
f2fs_post_read_required(struct inode * inode)3580 static inline bool f2fs_post_read_required(struct inode *inode)
3581 {
3582 	return f2fs_encrypted_file(inode) || fsverity_active(inode);
3583 }
3584 
3585 #define F2FS_FEATURE_FUNCS(name, flagname) \
3586 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
3587 { \
3588 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
3589 }
3590 
3591 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
3592 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
3593 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
3594 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
3595 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
3596 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
3597 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
3598 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
3599 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
3600 F2FS_FEATURE_FUNCS(verity, VERITY);
3601 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
3602 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
3603 
3604 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)3605 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
3606 				    block_t blkaddr)
3607 {
3608 	unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3609 
3610 	return test_bit(zno, FDEV(devi).blkz_seq);
3611 }
3612 #endif
3613 
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)3614 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
3615 {
3616 	return f2fs_sb_has_blkzoned(sbi);
3617 }
3618 
f2fs_bdev_support_discard(struct block_device * bdev)3619 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
3620 {
3621 	return blk_queue_discard(bdev_get_queue(bdev)) ||
3622 	       bdev_is_zoned(bdev);
3623 }
3624 
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)3625 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
3626 {
3627 	int i;
3628 
3629 	if (!f2fs_is_multi_device(sbi))
3630 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
3631 
3632 	for (i = 0; i < sbi->s_ndevs; i++)
3633 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
3634 			return true;
3635 	return false;
3636 }
3637 
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)3638 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
3639 {
3640 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
3641 					f2fs_hw_should_discard(sbi);
3642 }
3643 
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)3644 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
3645 {
3646 	int i;
3647 
3648 	if (!f2fs_is_multi_device(sbi))
3649 		return bdev_read_only(sbi->sb->s_bdev);
3650 
3651 	for (i = 0; i < sbi->s_ndevs; i++)
3652 		if (bdev_read_only(FDEV(i).bdev))
3653 			return true;
3654 	return false;
3655 }
3656 
3657 
set_opt_mode(struct f2fs_sb_info * sbi,unsigned int mt)3658 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3659 {
3660 	clear_opt(sbi, ADAPTIVE);
3661 	clear_opt(sbi, LFS);
3662 
3663 	switch (mt) {
3664 	case F2FS_MOUNT_ADAPTIVE:
3665 		set_opt(sbi, ADAPTIVE);
3666 		break;
3667 	case F2FS_MOUNT_LFS:
3668 		set_opt(sbi, LFS);
3669 		break;
3670 	}
3671 }
3672 
f2fs_may_encrypt(struct inode * inode)3673 static inline bool f2fs_may_encrypt(struct inode *inode)
3674 {
3675 #ifdef CONFIG_FS_ENCRYPTION
3676 	umode_t mode = inode->i_mode;
3677 
3678 	return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3679 #else
3680 	return false;
3681 #endif
3682 }
3683 
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)3684 static inline int block_unaligned_IO(struct inode *inode,
3685 				struct kiocb *iocb, struct iov_iter *iter)
3686 {
3687 	unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
3688 	unsigned int blocksize_mask = (1 << i_blkbits) - 1;
3689 	loff_t offset = iocb->ki_pos;
3690 	unsigned long align = offset | iov_iter_alignment(iter);
3691 
3692 	return align & blocksize_mask;
3693 }
3694 
allow_outplace_dio(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)3695 static inline int allow_outplace_dio(struct inode *inode,
3696 				struct kiocb *iocb, struct iov_iter *iter)
3697 {
3698 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3699 	int rw = iov_iter_rw(iter);
3700 
3701 	return (test_opt(sbi, LFS) && (rw == WRITE) &&
3702 				!block_unaligned_IO(inode, iocb, iter));
3703 }
3704 
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)3705 static inline bool f2fs_force_buffered_io(struct inode *inode,
3706 				struct kiocb *iocb, struct iov_iter *iter)
3707 {
3708 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3709 	int rw = iov_iter_rw(iter);
3710 
3711 	if (f2fs_post_read_required(inode))
3712 		return true;
3713 	if (f2fs_is_multi_device(sbi))
3714 		return true;
3715 	/*
3716 	 * for blkzoned device, fallback direct IO to buffered IO, so
3717 	 * all IOs can be serialized by log-structured write.
3718 	 */
3719 	if (f2fs_sb_has_blkzoned(sbi))
3720 		return true;
3721 	if (test_opt(sbi, LFS) && (rw == WRITE)) {
3722 		if (block_unaligned_IO(inode, iocb, iter))
3723 			return true;
3724 		if (F2FS_IO_ALIGNED(sbi))
3725 			return true;
3726 	}
3727 	if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED) &&
3728 					!IS_SWAPFILE(inode))
3729 		return true;
3730 
3731 	return false;
3732 }
3733 
3734 #ifdef CONFIG_F2FS_FAULT_INJECTION
3735 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
3736 							unsigned int type);
3737 #else
3738 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
3739 #endif
3740 
is_journalled_quota(struct f2fs_sb_info * sbi)3741 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
3742 {
3743 #ifdef CONFIG_QUOTA
3744 	if (f2fs_sb_has_quota_ino(sbi))
3745 		return true;
3746 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
3747 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
3748 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
3749 		return true;
3750 #endif
3751 	return false;
3752 }
3753 
3754 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
3755 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
3756 
3757 #endif /* _LINUX_F2FS_H */
3758