1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "misc.h"
18 #include "extent_io.h"
19 #include "extent-io-tree.h"
20 #include "extent_map.h"
21 #include "ctree.h"
22 #include "btrfs_inode.h"
23 #include "volumes.h"
24 #include "check-integrity.h"
25 #include "locking.h"
26 #include "rcu-string.h"
27 #include "backref.h"
28 #include "disk-io.h"
29 #include "subpage.h"
30 #include "zoned.h"
31 #include "block-group.h"
32 #include "compression.h"
33
34 static struct kmem_cache *extent_buffer_cache;
35
36 #ifdef CONFIG_BTRFS_DEBUG
btrfs_leak_debug_add_eb(struct extent_buffer * eb)37 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
38 {
39 struct btrfs_fs_info *fs_info = eb->fs_info;
40 unsigned long flags;
41
42 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
43 list_add(&eb->leak_list, &fs_info->allocated_ebs);
44 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
45 }
46
btrfs_leak_debug_del_eb(struct extent_buffer * eb)47 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
48 {
49 struct btrfs_fs_info *fs_info = eb->fs_info;
50 unsigned long flags;
51
52 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
53 list_del(&eb->leak_list);
54 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
55 }
56
btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info * fs_info)57 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
58 {
59 struct extent_buffer *eb;
60 unsigned long flags;
61
62 /*
63 * If we didn't get into open_ctree our allocated_ebs will not be
64 * initialized, so just skip this.
65 */
66 if (!fs_info->allocated_ebs.next)
67 return;
68
69 WARN_ON(!list_empty(&fs_info->allocated_ebs));
70 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
71 while (!list_empty(&fs_info->allocated_ebs)) {
72 eb = list_first_entry(&fs_info->allocated_ebs,
73 struct extent_buffer, leak_list);
74 pr_err(
75 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
76 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
77 btrfs_header_owner(eb));
78 list_del(&eb->leak_list);
79 kmem_cache_free(extent_buffer_cache, eb);
80 }
81 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
82 }
83 #else
84 #define btrfs_leak_debug_add_eb(eb) do {} while (0)
85 #define btrfs_leak_debug_del_eb(eb) do {} while (0)
86 #endif
87
88 /*
89 * Structure to record info about the bio being assembled, and other info like
90 * how many bytes are there before stripe/ordered extent boundary.
91 */
92 struct btrfs_bio_ctrl {
93 struct bio *bio;
94 int mirror_num;
95 enum btrfs_compression_type compress_type;
96 u32 len_to_stripe_boundary;
97 u32 len_to_oe_boundary;
98 btrfs_bio_end_io_t end_io_func;
99 };
100
101 struct extent_page_data {
102 struct btrfs_bio_ctrl bio_ctrl;
103 /* tells writepage not to lock the state bits for this range
104 * it still does the unlocking
105 */
106 unsigned int extent_locked:1;
107
108 /* tells the submit_bio code to use REQ_SYNC */
109 unsigned int sync_io:1;
110 };
111
submit_one_bio(struct btrfs_bio_ctrl * bio_ctrl)112 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
113 {
114 struct bio *bio;
115 struct bio_vec *bv;
116 struct inode *inode;
117 int mirror_num;
118
119 if (!bio_ctrl->bio)
120 return;
121
122 bio = bio_ctrl->bio;
123 bv = bio_first_bvec_all(bio);
124 inode = bv->bv_page->mapping->host;
125 mirror_num = bio_ctrl->mirror_num;
126
127 /* Caller should ensure the bio has at least some range added */
128 ASSERT(bio->bi_iter.bi_size);
129
130 btrfs_bio(bio)->file_offset = page_offset(bv->bv_page) + bv->bv_offset;
131
132 if (!is_data_inode(inode))
133 btrfs_submit_metadata_bio(inode, bio, mirror_num);
134 else if (btrfs_op(bio) == BTRFS_MAP_WRITE)
135 btrfs_submit_data_write_bio(inode, bio, mirror_num);
136 else
137 btrfs_submit_data_read_bio(inode, bio, mirror_num,
138 bio_ctrl->compress_type);
139
140 /* The bio is owned by the end_io handler now */
141 bio_ctrl->bio = NULL;
142 }
143
144 /*
145 * Submit or fail the current bio in an extent_page_data structure.
146 */
submit_write_bio(struct extent_page_data * epd,int ret)147 static void submit_write_bio(struct extent_page_data *epd, int ret)
148 {
149 struct bio *bio = epd->bio_ctrl.bio;
150
151 if (!bio)
152 return;
153
154 if (ret) {
155 ASSERT(ret < 0);
156 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
157 /* The bio is owned by the end_io handler now */
158 epd->bio_ctrl.bio = NULL;
159 } else {
160 submit_one_bio(&epd->bio_ctrl);
161 }
162 }
163
extent_buffer_init_cachep(void)164 int __init extent_buffer_init_cachep(void)
165 {
166 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
167 sizeof(struct extent_buffer), 0,
168 SLAB_MEM_SPREAD, NULL);
169 if (!extent_buffer_cache)
170 return -ENOMEM;
171
172 return 0;
173 }
174
extent_buffer_free_cachep(void)175 void __cold extent_buffer_free_cachep(void)
176 {
177 /*
178 * Make sure all delayed rcu free are flushed before we
179 * destroy caches.
180 */
181 rcu_barrier();
182 kmem_cache_destroy(extent_buffer_cache);
183 }
184
extent_range_clear_dirty_for_io(struct inode * inode,u64 start,u64 end)185 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
186 {
187 unsigned long index = start >> PAGE_SHIFT;
188 unsigned long end_index = end >> PAGE_SHIFT;
189 struct page *page;
190
191 while (index <= end_index) {
192 page = find_get_page(inode->i_mapping, index);
193 BUG_ON(!page); /* Pages should be in the extent_io_tree */
194 clear_page_dirty_for_io(page);
195 put_page(page);
196 index++;
197 }
198 }
199
extent_range_redirty_for_io(struct inode * inode,u64 start,u64 end)200 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
201 {
202 struct address_space *mapping = inode->i_mapping;
203 unsigned long index = start >> PAGE_SHIFT;
204 unsigned long end_index = end >> PAGE_SHIFT;
205 struct folio *folio;
206
207 while (index <= end_index) {
208 folio = filemap_get_folio(mapping, index);
209 filemap_dirty_folio(mapping, folio);
210 folio_account_redirty(folio);
211 index += folio_nr_pages(folio);
212 folio_put(folio);
213 }
214 }
215
216 /*
217 * Process one page for __process_pages_contig().
218 *
219 * Return >0 if we hit @page == @locked_page.
220 * Return 0 if we updated the page status.
221 * Return -EGAIN if the we need to try again.
222 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
223 */
process_one_page(struct btrfs_fs_info * fs_info,struct address_space * mapping,struct page * page,struct page * locked_page,unsigned long page_ops,u64 start,u64 end)224 static int process_one_page(struct btrfs_fs_info *fs_info,
225 struct address_space *mapping,
226 struct page *page, struct page *locked_page,
227 unsigned long page_ops, u64 start, u64 end)
228 {
229 u32 len;
230
231 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
232 len = end + 1 - start;
233
234 if (page_ops & PAGE_SET_ORDERED)
235 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
236 if (page_ops & PAGE_SET_ERROR)
237 btrfs_page_clamp_set_error(fs_info, page, start, len);
238 if (page_ops & PAGE_START_WRITEBACK) {
239 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
240 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
241 }
242 if (page_ops & PAGE_END_WRITEBACK)
243 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
244
245 if (page == locked_page)
246 return 1;
247
248 if (page_ops & PAGE_LOCK) {
249 int ret;
250
251 ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
252 if (ret)
253 return ret;
254 if (!PageDirty(page) || page->mapping != mapping) {
255 btrfs_page_end_writer_lock(fs_info, page, start, len);
256 return -EAGAIN;
257 }
258 }
259 if (page_ops & PAGE_UNLOCK)
260 btrfs_page_end_writer_lock(fs_info, page, start, len);
261 return 0;
262 }
263
__process_pages_contig(struct address_space * mapping,struct page * locked_page,u64 start,u64 end,unsigned long page_ops,u64 * processed_end)264 static int __process_pages_contig(struct address_space *mapping,
265 struct page *locked_page,
266 u64 start, u64 end, unsigned long page_ops,
267 u64 *processed_end)
268 {
269 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
270 pgoff_t start_index = start >> PAGE_SHIFT;
271 pgoff_t end_index = end >> PAGE_SHIFT;
272 pgoff_t index = start_index;
273 unsigned long pages_processed = 0;
274 struct folio_batch fbatch;
275 int err = 0;
276 int i;
277
278 if (page_ops & PAGE_LOCK) {
279 ASSERT(page_ops == PAGE_LOCK);
280 ASSERT(processed_end && *processed_end == start);
281 }
282
283 if ((page_ops & PAGE_SET_ERROR) && start_index <= end_index)
284 mapping_set_error(mapping, -EIO);
285
286 folio_batch_init(&fbatch);
287 while (index <= end_index) {
288 int found_folios;
289
290 found_folios = filemap_get_folios_contig(mapping, &index,
291 end_index, &fbatch);
292
293 if (found_folios == 0) {
294 /*
295 * Only if we're going to lock these pages, we can find
296 * nothing at @index.
297 */
298 ASSERT(page_ops & PAGE_LOCK);
299 err = -EAGAIN;
300 goto out;
301 }
302
303 for (i = 0; i < found_folios; i++) {
304 int process_ret;
305 struct folio *folio = fbatch.folios[i];
306 process_ret = process_one_page(fs_info, mapping,
307 &folio->page, locked_page, page_ops,
308 start, end);
309 if (process_ret < 0) {
310 err = -EAGAIN;
311 folio_batch_release(&fbatch);
312 goto out;
313 }
314 pages_processed += folio_nr_pages(folio);
315 }
316 folio_batch_release(&fbatch);
317 cond_resched();
318 }
319 out:
320 if (err && processed_end) {
321 /*
322 * Update @processed_end. I know this is awful since it has
323 * two different return value patterns (inclusive vs exclusive).
324 *
325 * But the exclusive pattern is necessary if @start is 0, or we
326 * underflow and check against processed_end won't work as
327 * expected.
328 */
329 if (pages_processed)
330 *processed_end = min(end,
331 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
332 else
333 *processed_end = start;
334 }
335 return err;
336 }
337
__unlock_for_delalloc(struct inode * inode,struct page * locked_page,u64 start,u64 end)338 static noinline void __unlock_for_delalloc(struct inode *inode,
339 struct page *locked_page,
340 u64 start, u64 end)
341 {
342 unsigned long index = start >> PAGE_SHIFT;
343 unsigned long end_index = end >> PAGE_SHIFT;
344
345 ASSERT(locked_page);
346 if (index == locked_page->index && end_index == index)
347 return;
348
349 __process_pages_contig(inode->i_mapping, locked_page, start, end,
350 PAGE_UNLOCK, NULL);
351 }
352
lock_delalloc_pages(struct inode * inode,struct page * locked_page,u64 delalloc_start,u64 delalloc_end)353 static noinline int lock_delalloc_pages(struct inode *inode,
354 struct page *locked_page,
355 u64 delalloc_start,
356 u64 delalloc_end)
357 {
358 unsigned long index = delalloc_start >> PAGE_SHIFT;
359 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
360 u64 processed_end = delalloc_start;
361 int ret;
362
363 ASSERT(locked_page);
364 if (index == locked_page->index && index == end_index)
365 return 0;
366
367 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
368 delalloc_end, PAGE_LOCK, &processed_end);
369 if (ret == -EAGAIN && processed_end > delalloc_start)
370 __unlock_for_delalloc(inode, locked_page, delalloc_start,
371 processed_end);
372 return ret;
373 }
374
375 /*
376 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
377 * more than @max_bytes.
378 *
379 * @start: The original start bytenr to search.
380 * Will store the extent range start bytenr.
381 * @end: The original end bytenr of the search range
382 * Will store the extent range end bytenr.
383 *
384 * Return true if we find a delalloc range which starts inside the original
385 * range, and @start/@end will store the delalloc range start/end.
386 *
387 * Return false if we can't find any delalloc range which starts inside the
388 * original range, and @start/@end will be the non-delalloc range start/end.
389 */
390 EXPORT_FOR_TESTS
find_lock_delalloc_range(struct inode * inode,struct page * locked_page,u64 * start,u64 * end)391 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
392 struct page *locked_page, u64 *start,
393 u64 *end)
394 {
395 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
396 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
397 const u64 orig_start = *start;
398 const u64 orig_end = *end;
399 /* The sanity tests may not set a valid fs_info. */
400 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
401 u64 delalloc_start;
402 u64 delalloc_end;
403 bool found;
404 struct extent_state *cached_state = NULL;
405 int ret;
406 int loops = 0;
407
408 /* Caller should pass a valid @end to indicate the search range end */
409 ASSERT(orig_end > orig_start);
410
411 /* The range should at least cover part of the page */
412 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
413 orig_end <= page_offset(locked_page)));
414 again:
415 /* step one, find a bunch of delalloc bytes starting at start */
416 delalloc_start = *start;
417 delalloc_end = 0;
418 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
419 max_bytes, &cached_state);
420 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
421 *start = delalloc_start;
422
423 /* @delalloc_end can be -1, never go beyond @orig_end */
424 *end = min(delalloc_end, orig_end);
425 free_extent_state(cached_state);
426 return false;
427 }
428
429 /*
430 * start comes from the offset of locked_page. We have to lock
431 * pages in order, so we can't process delalloc bytes before
432 * locked_page
433 */
434 if (delalloc_start < *start)
435 delalloc_start = *start;
436
437 /*
438 * make sure to limit the number of pages we try to lock down
439 */
440 if (delalloc_end + 1 - delalloc_start > max_bytes)
441 delalloc_end = delalloc_start + max_bytes - 1;
442
443 /* step two, lock all the pages after the page that has start */
444 ret = lock_delalloc_pages(inode, locked_page,
445 delalloc_start, delalloc_end);
446 ASSERT(!ret || ret == -EAGAIN);
447 if (ret == -EAGAIN) {
448 /* some of the pages are gone, lets avoid looping by
449 * shortening the size of the delalloc range we're searching
450 */
451 free_extent_state(cached_state);
452 cached_state = NULL;
453 if (!loops) {
454 max_bytes = PAGE_SIZE;
455 loops = 1;
456 goto again;
457 } else {
458 found = false;
459 goto out_failed;
460 }
461 }
462
463 /* step three, lock the state bits for the whole range */
464 lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
465
466 /* then test to make sure it is all still delalloc */
467 ret = test_range_bit(tree, delalloc_start, delalloc_end,
468 EXTENT_DELALLOC, 1, cached_state);
469 if (!ret) {
470 unlock_extent(tree, delalloc_start, delalloc_end,
471 &cached_state);
472 __unlock_for_delalloc(inode, locked_page,
473 delalloc_start, delalloc_end);
474 cond_resched();
475 goto again;
476 }
477 free_extent_state(cached_state);
478 *start = delalloc_start;
479 *end = delalloc_end;
480 out_failed:
481 return found;
482 }
483
extent_clear_unlock_delalloc(struct btrfs_inode * inode,u64 start,u64 end,struct page * locked_page,u32 clear_bits,unsigned long page_ops)484 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
485 struct page *locked_page,
486 u32 clear_bits, unsigned long page_ops)
487 {
488 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
489
490 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
491 start, end, page_ops, NULL);
492 }
493
insert_failrec(struct btrfs_inode * inode,struct io_failure_record * failrec)494 static int insert_failrec(struct btrfs_inode *inode,
495 struct io_failure_record *failrec)
496 {
497 struct rb_node *exist;
498
499 spin_lock(&inode->io_failure_lock);
500 exist = rb_simple_insert(&inode->io_failure_tree, failrec->bytenr,
501 &failrec->rb_node);
502 spin_unlock(&inode->io_failure_lock);
503
504 return (exist == NULL) ? 0 : -EEXIST;
505 }
506
get_failrec(struct btrfs_inode * inode,u64 start)507 static struct io_failure_record *get_failrec(struct btrfs_inode *inode, u64 start)
508 {
509 struct rb_node *node;
510 struct io_failure_record *failrec = ERR_PTR(-ENOENT);
511
512 spin_lock(&inode->io_failure_lock);
513 node = rb_simple_search(&inode->io_failure_tree, start);
514 if (node)
515 failrec = rb_entry(node, struct io_failure_record, rb_node);
516 spin_unlock(&inode->io_failure_lock);
517 return failrec;
518 }
519
free_io_failure(struct btrfs_inode * inode,struct io_failure_record * rec)520 static void free_io_failure(struct btrfs_inode *inode,
521 struct io_failure_record *rec)
522 {
523 spin_lock(&inode->io_failure_lock);
524 rb_erase(&rec->rb_node, &inode->io_failure_tree);
525 spin_unlock(&inode->io_failure_lock);
526
527 kfree(rec);
528 }
529
530 /*
531 * this bypasses the standard btrfs submit functions deliberately, as
532 * the standard behavior is to write all copies in a raid setup. here we only
533 * want to write the one bad copy. so we do the mapping for ourselves and issue
534 * submit_bio directly.
535 * to avoid any synchronization issues, wait for the data after writing, which
536 * actually prevents the read that triggered the error from finishing.
537 * currently, there can be no more than two copies of every data bit. thus,
538 * exactly one rewrite is required.
539 */
repair_io_failure(struct btrfs_fs_info * fs_info,u64 ino,u64 start,u64 length,u64 logical,struct page * page,unsigned int pg_offset,int mirror_num)540 static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
541 u64 length, u64 logical, struct page *page,
542 unsigned int pg_offset, int mirror_num)
543 {
544 struct btrfs_device *dev;
545 struct bio_vec bvec;
546 struct bio bio;
547 u64 map_length = 0;
548 u64 sector;
549 struct btrfs_io_context *bioc = NULL;
550 int ret = 0;
551
552 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
553 BUG_ON(!mirror_num);
554
555 if (btrfs_repair_one_zone(fs_info, logical))
556 return 0;
557
558 map_length = length;
559
560 /*
561 * Avoid races with device replace and make sure our bioc has devices
562 * associated to its stripes that don't go away while we are doing the
563 * read repair operation.
564 */
565 btrfs_bio_counter_inc_blocked(fs_info);
566 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
567 /*
568 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
569 * to update all raid stripes, but here we just want to correct
570 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
571 * stripe's dev and sector.
572 */
573 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
574 &map_length, &bioc, 0);
575 if (ret)
576 goto out_counter_dec;
577 ASSERT(bioc->mirror_num == 1);
578 } else {
579 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
580 &map_length, &bioc, mirror_num);
581 if (ret)
582 goto out_counter_dec;
583 BUG_ON(mirror_num != bioc->mirror_num);
584 }
585
586 sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
587 dev = bioc->stripes[bioc->mirror_num - 1].dev;
588 btrfs_put_bioc(bioc);
589
590 if (!dev || !dev->bdev ||
591 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
592 ret = -EIO;
593 goto out_counter_dec;
594 }
595
596 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
597 bio.bi_iter.bi_sector = sector;
598 __bio_add_page(&bio, page, length, pg_offset);
599
600 btrfsic_check_bio(&bio);
601 ret = submit_bio_wait(&bio);
602 if (ret) {
603 /* try to remap that extent elsewhere? */
604 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
605 goto out_bio_uninit;
606 }
607
608 btrfs_info_rl_in_rcu(fs_info,
609 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
610 ino, start,
611 rcu_str_deref(dev->name), sector);
612 ret = 0;
613
614 out_bio_uninit:
615 bio_uninit(&bio);
616 out_counter_dec:
617 btrfs_bio_counter_dec(fs_info);
618 return ret;
619 }
620
btrfs_repair_eb_io_failure(const struct extent_buffer * eb,int mirror_num)621 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
622 {
623 struct btrfs_fs_info *fs_info = eb->fs_info;
624 u64 start = eb->start;
625 int i, num_pages = num_extent_pages(eb);
626 int ret = 0;
627
628 if (sb_rdonly(fs_info->sb))
629 return -EROFS;
630
631 for (i = 0; i < num_pages; i++) {
632 struct page *p = eb->pages[i];
633
634 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
635 start - page_offset(p), mirror_num);
636 if (ret)
637 break;
638 start += PAGE_SIZE;
639 }
640
641 return ret;
642 }
643
next_mirror(const struct io_failure_record * failrec,int cur_mirror)644 static int next_mirror(const struct io_failure_record *failrec, int cur_mirror)
645 {
646 if (cur_mirror == failrec->num_copies)
647 return cur_mirror + 1 - failrec->num_copies;
648 return cur_mirror + 1;
649 }
650
prev_mirror(const struct io_failure_record * failrec,int cur_mirror)651 static int prev_mirror(const struct io_failure_record *failrec, int cur_mirror)
652 {
653 if (cur_mirror == 1)
654 return failrec->num_copies;
655 return cur_mirror - 1;
656 }
657
658 /*
659 * each time an IO finishes, we do a fast check in the IO failure tree
660 * to see if we need to process or clean up an io_failure_record
661 */
btrfs_clean_io_failure(struct btrfs_inode * inode,u64 start,struct page * page,unsigned int pg_offset)662 int btrfs_clean_io_failure(struct btrfs_inode *inode, u64 start,
663 struct page *page, unsigned int pg_offset)
664 {
665 struct btrfs_fs_info *fs_info = inode->root->fs_info;
666 struct extent_io_tree *io_tree = &inode->io_tree;
667 u64 ino = btrfs_ino(inode);
668 u64 locked_start, locked_end;
669 struct io_failure_record *failrec;
670 int mirror;
671 int ret;
672
673 failrec = get_failrec(inode, start);
674 if (IS_ERR(failrec))
675 return 0;
676
677 BUG_ON(!failrec->this_mirror);
678
679 if (sb_rdonly(fs_info->sb))
680 goto out;
681
682 ret = find_first_extent_bit(io_tree, failrec->bytenr, &locked_start,
683 &locked_end, EXTENT_LOCKED, NULL);
684 if (ret || locked_start > failrec->bytenr ||
685 locked_end < failrec->bytenr + failrec->len - 1)
686 goto out;
687
688 mirror = failrec->this_mirror;
689 do {
690 mirror = prev_mirror(failrec, mirror);
691 repair_io_failure(fs_info, ino, start, failrec->len,
692 failrec->logical, page, pg_offset, mirror);
693 } while (mirror != failrec->failed_mirror);
694
695 out:
696 free_io_failure(inode, failrec);
697 return 0;
698 }
699
700 /*
701 * Can be called when
702 * - hold extent lock
703 * - under ordered extent
704 * - the inode is freeing
705 */
btrfs_free_io_failure_record(struct btrfs_inode * inode,u64 start,u64 end)706 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
707 {
708 struct io_failure_record *failrec;
709 struct rb_node *node, *next;
710
711 if (RB_EMPTY_ROOT(&inode->io_failure_tree))
712 return;
713
714 spin_lock(&inode->io_failure_lock);
715 node = rb_simple_search_first(&inode->io_failure_tree, start);
716 while (node) {
717 failrec = rb_entry(node, struct io_failure_record, rb_node);
718 if (failrec->bytenr > end)
719 break;
720
721 next = rb_next(node);
722 rb_erase(&failrec->rb_node, &inode->io_failure_tree);
723 kfree(failrec);
724
725 node = next;
726 }
727 spin_unlock(&inode->io_failure_lock);
728 }
729
btrfs_get_io_failure_record(struct inode * inode,struct btrfs_bio * bbio,unsigned int bio_offset)730 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
731 struct btrfs_bio *bbio,
732 unsigned int bio_offset)
733 {
734 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
735 u64 start = bbio->file_offset + bio_offset;
736 struct io_failure_record *failrec;
737 const u32 sectorsize = fs_info->sectorsize;
738 int ret;
739
740 failrec = get_failrec(BTRFS_I(inode), start);
741 if (!IS_ERR(failrec)) {
742 btrfs_debug(fs_info,
743 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
744 failrec->logical, failrec->bytenr, failrec->len);
745 /*
746 * when data can be on disk more than twice, add to failrec here
747 * (e.g. with a list for failed_mirror) to make
748 * clean_io_failure() clean all those errors at once.
749 */
750 ASSERT(failrec->this_mirror == bbio->mirror_num);
751 ASSERT(failrec->len == fs_info->sectorsize);
752 return failrec;
753 }
754
755 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
756 if (!failrec)
757 return ERR_PTR(-ENOMEM);
758
759 RB_CLEAR_NODE(&failrec->rb_node);
760 failrec->bytenr = start;
761 failrec->len = sectorsize;
762 failrec->failed_mirror = bbio->mirror_num;
763 failrec->this_mirror = bbio->mirror_num;
764 failrec->logical = (bbio->iter.bi_sector << SECTOR_SHIFT) + bio_offset;
765
766 btrfs_debug(fs_info,
767 "new io failure record logical %llu start %llu",
768 failrec->logical, start);
769
770 failrec->num_copies = btrfs_num_copies(fs_info, failrec->logical, sectorsize);
771 if (failrec->num_copies == 1) {
772 /*
773 * We only have a single copy of the data, so don't bother with
774 * all the retry and error correction code that follows. No
775 * matter what the error is, it is very likely to persist.
776 */
777 btrfs_debug(fs_info,
778 "cannot repair logical %llu num_copies %d",
779 failrec->logical, failrec->num_copies);
780 kfree(failrec);
781 return ERR_PTR(-EIO);
782 }
783
784 /* Set the bits in the private failure tree */
785 ret = insert_failrec(BTRFS_I(inode), failrec);
786 if (ret) {
787 kfree(failrec);
788 return ERR_PTR(ret);
789 }
790
791 return failrec;
792 }
793
btrfs_repair_one_sector(struct inode * inode,struct btrfs_bio * failed_bbio,u32 bio_offset,struct page * page,unsigned int pgoff,submit_bio_hook_t * submit_bio_hook)794 int btrfs_repair_one_sector(struct inode *inode, struct btrfs_bio *failed_bbio,
795 u32 bio_offset, struct page *page, unsigned int pgoff,
796 submit_bio_hook_t *submit_bio_hook)
797 {
798 u64 start = failed_bbio->file_offset + bio_offset;
799 struct io_failure_record *failrec;
800 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
801 struct bio *failed_bio = &failed_bbio->bio;
802 const int icsum = bio_offset >> fs_info->sectorsize_bits;
803 struct bio *repair_bio;
804 struct btrfs_bio *repair_bbio;
805
806 btrfs_debug(fs_info,
807 "repair read error: read error at %llu", start);
808
809 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
810
811 failrec = btrfs_get_io_failure_record(inode, failed_bbio, bio_offset);
812 if (IS_ERR(failrec))
813 return PTR_ERR(failrec);
814
815 /*
816 * There are two premises:
817 * a) deliver good data to the caller
818 * b) correct the bad sectors on disk
819 *
820 * Since we're only doing repair for one sector, we only need to get
821 * a good copy of the failed sector and if we succeed, we have setup
822 * everything for repair_io_failure to do the rest for us.
823 */
824 failrec->this_mirror = next_mirror(failrec, failrec->this_mirror);
825 if (failrec->this_mirror == failrec->failed_mirror) {
826 btrfs_debug(fs_info,
827 "failed to repair num_copies %d this_mirror %d failed_mirror %d",
828 failrec->num_copies, failrec->this_mirror, failrec->failed_mirror);
829 free_io_failure(BTRFS_I(inode), failrec);
830 return -EIO;
831 }
832
833 repair_bio = btrfs_bio_alloc(1, REQ_OP_READ, failed_bbio->end_io,
834 failed_bbio->private);
835 repair_bbio = btrfs_bio(repair_bio);
836 repair_bbio->file_offset = start;
837 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
838
839 if (failed_bbio->csum) {
840 const u32 csum_size = fs_info->csum_size;
841
842 repair_bbio->csum = repair_bbio->csum_inline;
843 memcpy(repair_bbio->csum,
844 failed_bbio->csum + csum_size * icsum, csum_size);
845 }
846
847 bio_add_page(repair_bio, page, failrec->len, pgoff);
848 repair_bbio->iter = repair_bio->bi_iter;
849
850 btrfs_debug(btrfs_sb(inode->i_sb),
851 "repair read error: submitting new read to mirror %d",
852 failrec->this_mirror);
853
854 /*
855 * At this point we have a bio, so any errors from submit_bio_hook()
856 * will be handled by the endio on the repair_bio, so we can't return an
857 * error here.
858 */
859 submit_bio_hook(inode, repair_bio, failrec->this_mirror, 0);
860 return BLK_STS_OK;
861 }
862
end_page_read(struct page * page,bool uptodate,u64 start,u32 len)863 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
864 {
865 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
866
867 ASSERT(page_offset(page) <= start &&
868 start + len <= page_offset(page) + PAGE_SIZE);
869
870 if (uptodate) {
871 if (fsverity_active(page->mapping->host) &&
872 !PageError(page) &&
873 !PageUptodate(page) &&
874 start < i_size_read(page->mapping->host) &&
875 !fsverity_verify_page(page)) {
876 btrfs_page_set_error(fs_info, page, start, len);
877 } else {
878 btrfs_page_set_uptodate(fs_info, page, start, len);
879 }
880 } else {
881 btrfs_page_clear_uptodate(fs_info, page, start, len);
882 btrfs_page_set_error(fs_info, page, start, len);
883 }
884
885 if (!btrfs_is_subpage(fs_info, page))
886 unlock_page(page);
887 else
888 btrfs_subpage_end_reader(fs_info, page, start, len);
889 }
890
end_sector_io(struct page * page,u64 offset,bool uptodate)891 static void end_sector_io(struct page *page, u64 offset, bool uptodate)
892 {
893 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
894 const u32 sectorsize = inode->root->fs_info->sectorsize;
895 struct extent_state *cached = NULL;
896
897 end_page_read(page, uptodate, offset, sectorsize);
898 if (uptodate)
899 set_extent_uptodate(&inode->io_tree, offset,
900 offset + sectorsize - 1, &cached, GFP_ATOMIC);
901 unlock_extent_atomic(&inode->io_tree, offset, offset + sectorsize - 1,
902 &cached);
903 }
904
submit_data_read_repair(struct inode * inode,struct btrfs_bio * failed_bbio,u32 bio_offset,const struct bio_vec * bvec,unsigned int error_bitmap)905 static void submit_data_read_repair(struct inode *inode,
906 struct btrfs_bio *failed_bbio,
907 u32 bio_offset, const struct bio_vec *bvec,
908 unsigned int error_bitmap)
909 {
910 const unsigned int pgoff = bvec->bv_offset;
911 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
912 struct page *page = bvec->bv_page;
913 const u64 start = page_offset(bvec->bv_page) + bvec->bv_offset;
914 const u64 end = start + bvec->bv_len - 1;
915 const u32 sectorsize = fs_info->sectorsize;
916 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
917 int i;
918
919 BUG_ON(bio_op(&failed_bbio->bio) == REQ_OP_WRITE);
920
921 /* This repair is only for data */
922 ASSERT(is_data_inode(inode));
923
924 /* We're here because we had some read errors or csum mismatch */
925 ASSERT(error_bitmap);
926
927 /*
928 * We only get called on buffered IO, thus page must be mapped and bio
929 * must not be cloned.
930 */
931 ASSERT(page->mapping && !bio_flagged(&failed_bbio->bio, BIO_CLONED));
932
933 /* Iterate through all the sectors in the range */
934 for (i = 0; i < nr_bits; i++) {
935 const unsigned int offset = i * sectorsize;
936 bool uptodate = false;
937 int ret;
938
939 if (!(error_bitmap & (1U << i))) {
940 /*
941 * This sector has no error, just end the page read
942 * and unlock the range.
943 */
944 uptodate = true;
945 goto next;
946 }
947
948 ret = btrfs_repair_one_sector(inode, failed_bbio,
949 bio_offset + offset, page, pgoff + offset,
950 btrfs_submit_data_read_bio);
951 if (!ret) {
952 /*
953 * We have submitted the read repair, the page release
954 * will be handled by the endio function of the
955 * submitted repair bio.
956 * Thus we don't need to do any thing here.
957 */
958 continue;
959 }
960 /*
961 * Continue on failed repair, otherwise the remaining sectors
962 * will not be properly unlocked.
963 */
964 next:
965 end_sector_io(page, start + offset, uptodate);
966 }
967 }
968
969 /* lots and lots of room for performance fixes in the end_bio funcs */
970
end_extent_writepage(struct page * page,int err,u64 start,u64 end)971 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
972 {
973 struct btrfs_inode *inode;
974 const bool uptodate = (err == 0);
975 int ret = 0;
976
977 ASSERT(page && page->mapping);
978 inode = BTRFS_I(page->mapping->host);
979 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
980
981 if (!uptodate) {
982 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
983 u32 len;
984
985 ASSERT(end + 1 - start <= U32_MAX);
986 len = end + 1 - start;
987
988 btrfs_page_clear_uptodate(fs_info, page, start, len);
989 btrfs_page_set_error(fs_info, page, start, len);
990 ret = err < 0 ? err : -EIO;
991 mapping_set_error(page->mapping, ret);
992 }
993 }
994
995 /*
996 * after a writepage IO is done, we need to:
997 * clear the uptodate bits on error
998 * clear the writeback bits in the extent tree for this IO
999 * end_page_writeback if the page has no more pending IO
1000 *
1001 * Scheduling is not allowed, so the extent state tree is expected
1002 * to have one and only one object corresponding to this IO.
1003 */
end_bio_extent_writepage(struct btrfs_bio * bbio)1004 static void end_bio_extent_writepage(struct btrfs_bio *bbio)
1005 {
1006 struct bio *bio = &bbio->bio;
1007 int error = blk_status_to_errno(bio->bi_status);
1008 struct bio_vec *bvec;
1009 u64 start;
1010 u64 end;
1011 struct bvec_iter_all iter_all;
1012 bool first_bvec = true;
1013
1014 ASSERT(!bio_flagged(bio, BIO_CLONED));
1015 bio_for_each_segment_all(bvec, bio, iter_all) {
1016 struct page *page = bvec->bv_page;
1017 struct inode *inode = page->mapping->host;
1018 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1019 const u32 sectorsize = fs_info->sectorsize;
1020
1021 /* Our read/write should always be sector aligned. */
1022 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
1023 btrfs_err(fs_info,
1024 "partial page write in btrfs with offset %u and length %u",
1025 bvec->bv_offset, bvec->bv_len);
1026 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
1027 btrfs_info(fs_info,
1028 "incomplete page write with offset %u and length %u",
1029 bvec->bv_offset, bvec->bv_len);
1030
1031 start = page_offset(page) + bvec->bv_offset;
1032 end = start + bvec->bv_len - 1;
1033
1034 if (first_bvec) {
1035 btrfs_record_physical_zoned(inode, start, bio);
1036 first_bvec = false;
1037 }
1038
1039 end_extent_writepage(page, error, start, end);
1040
1041 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
1042 }
1043
1044 bio_put(bio);
1045 }
1046
1047 /*
1048 * Record previously processed extent range
1049 *
1050 * For endio_readpage_release_extent() to handle a full extent range, reducing
1051 * the extent io operations.
1052 */
1053 struct processed_extent {
1054 struct btrfs_inode *inode;
1055 /* Start of the range in @inode */
1056 u64 start;
1057 /* End of the range in @inode */
1058 u64 end;
1059 bool uptodate;
1060 };
1061
1062 /*
1063 * Try to release processed extent range
1064 *
1065 * May not release the extent range right now if the current range is
1066 * contiguous to processed extent.
1067 *
1068 * Will release processed extent when any of @inode, @uptodate, the range is
1069 * no longer contiguous to the processed range.
1070 *
1071 * Passing @inode == NULL will force processed extent to be released.
1072 */
endio_readpage_release_extent(struct processed_extent * processed,struct btrfs_inode * inode,u64 start,u64 end,bool uptodate)1073 static void endio_readpage_release_extent(struct processed_extent *processed,
1074 struct btrfs_inode *inode, u64 start, u64 end,
1075 bool uptodate)
1076 {
1077 struct extent_state *cached = NULL;
1078 struct extent_io_tree *tree;
1079
1080 /* The first extent, initialize @processed */
1081 if (!processed->inode)
1082 goto update;
1083
1084 /*
1085 * Contiguous to processed extent, just uptodate the end.
1086 *
1087 * Several things to notice:
1088 *
1089 * - bio can be merged as long as on-disk bytenr is contiguous
1090 * This means we can have page belonging to other inodes, thus need to
1091 * check if the inode still matches.
1092 * - bvec can contain range beyond current page for multi-page bvec
1093 * Thus we need to do processed->end + 1 >= start check
1094 */
1095 if (processed->inode == inode && processed->uptodate == uptodate &&
1096 processed->end + 1 >= start && end >= processed->end) {
1097 processed->end = end;
1098 return;
1099 }
1100
1101 tree = &processed->inode->io_tree;
1102 /*
1103 * Now we don't have range contiguous to the processed range, release
1104 * the processed range now.
1105 */
1106 unlock_extent_atomic(tree, processed->start, processed->end, &cached);
1107
1108 update:
1109 /* Update processed to current range */
1110 processed->inode = inode;
1111 processed->start = start;
1112 processed->end = end;
1113 processed->uptodate = uptodate;
1114 }
1115
begin_page_read(struct btrfs_fs_info * fs_info,struct page * page)1116 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
1117 {
1118 ASSERT(PageLocked(page));
1119 if (!btrfs_is_subpage(fs_info, page))
1120 return;
1121
1122 ASSERT(PagePrivate(page));
1123 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
1124 }
1125
1126 /*
1127 * Find extent buffer for a givne bytenr.
1128 *
1129 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
1130 * in endio context.
1131 */
find_extent_buffer_readpage(struct btrfs_fs_info * fs_info,struct page * page,u64 bytenr)1132 static struct extent_buffer *find_extent_buffer_readpage(
1133 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
1134 {
1135 struct extent_buffer *eb;
1136
1137 /*
1138 * For regular sectorsize, we can use page->private to grab extent
1139 * buffer
1140 */
1141 if (fs_info->nodesize >= PAGE_SIZE) {
1142 ASSERT(PagePrivate(page) && page->private);
1143 return (struct extent_buffer *)page->private;
1144 }
1145
1146 /* For subpage case, we need to lookup buffer radix tree */
1147 rcu_read_lock();
1148 eb = radix_tree_lookup(&fs_info->buffer_radix,
1149 bytenr >> fs_info->sectorsize_bits);
1150 rcu_read_unlock();
1151 ASSERT(eb);
1152 return eb;
1153 }
1154
1155 /*
1156 * after a readpage IO is done, we need to:
1157 * clear the uptodate bits on error
1158 * set the uptodate bits if things worked
1159 * set the page up to date if all extents in the tree are uptodate
1160 * clear the lock bit in the extent tree
1161 * unlock the page if there are no other extents locked for it
1162 *
1163 * Scheduling is not allowed, so the extent state tree is expected
1164 * to have one and only one object corresponding to this IO.
1165 */
end_bio_extent_readpage(struct btrfs_bio * bbio)1166 static void end_bio_extent_readpage(struct btrfs_bio *bbio)
1167 {
1168 struct bio *bio = &bbio->bio;
1169 struct bio_vec *bvec;
1170 struct processed_extent processed = { 0 };
1171 /*
1172 * The offset to the beginning of a bio, since one bio can never be
1173 * larger than UINT_MAX, u32 here is enough.
1174 */
1175 u32 bio_offset = 0;
1176 int mirror;
1177 struct bvec_iter_all iter_all;
1178
1179 ASSERT(!bio_flagged(bio, BIO_CLONED));
1180 bio_for_each_segment_all(bvec, bio, iter_all) {
1181 bool uptodate = !bio->bi_status;
1182 struct page *page = bvec->bv_page;
1183 struct inode *inode = page->mapping->host;
1184 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1185 const u32 sectorsize = fs_info->sectorsize;
1186 unsigned int error_bitmap = (unsigned int)-1;
1187 bool repair = false;
1188 u64 start;
1189 u64 end;
1190 u32 len;
1191
1192 btrfs_debug(fs_info,
1193 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
1194 bio->bi_iter.bi_sector, bio->bi_status,
1195 bbio->mirror_num);
1196
1197 /*
1198 * We always issue full-sector reads, but if some block in a
1199 * page fails to read, blk_update_request() will advance
1200 * bv_offset and adjust bv_len to compensate. Print a warning
1201 * for unaligned offsets, and an error if they don't add up to
1202 * a full sector.
1203 */
1204 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
1205 btrfs_err(fs_info,
1206 "partial page read in btrfs with offset %u and length %u",
1207 bvec->bv_offset, bvec->bv_len);
1208 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
1209 sectorsize))
1210 btrfs_info(fs_info,
1211 "incomplete page read with offset %u and length %u",
1212 bvec->bv_offset, bvec->bv_len);
1213
1214 start = page_offset(page) + bvec->bv_offset;
1215 end = start + bvec->bv_len - 1;
1216 len = bvec->bv_len;
1217
1218 mirror = bbio->mirror_num;
1219 if (likely(uptodate)) {
1220 if (is_data_inode(inode)) {
1221 error_bitmap = btrfs_verify_data_csum(bbio,
1222 bio_offset, page, start, end);
1223 if (error_bitmap)
1224 uptodate = false;
1225 } else {
1226 if (btrfs_validate_metadata_buffer(bbio,
1227 page, start, end, mirror))
1228 uptodate = false;
1229 }
1230 }
1231
1232 if (likely(uptodate)) {
1233 loff_t i_size = i_size_read(inode);
1234 pgoff_t end_index = i_size >> PAGE_SHIFT;
1235
1236 btrfs_clean_io_failure(BTRFS_I(inode), start, page, 0);
1237
1238 /*
1239 * Zero out the remaining part if this range straddles
1240 * i_size.
1241 *
1242 * Here we should only zero the range inside the bvec,
1243 * not touch anything else.
1244 *
1245 * NOTE: i_size is exclusive while end is inclusive.
1246 */
1247 if (page->index == end_index && i_size <= end) {
1248 u32 zero_start = max(offset_in_page(i_size),
1249 offset_in_page(start));
1250
1251 zero_user_segment(page, zero_start,
1252 offset_in_page(end) + 1);
1253 }
1254 } else if (is_data_inode(inode)) {
1255 /*
1256 * Only try to repair bios that actually made it to a
1257 * device. If the bio failed to be submitted mirror
1258 * is 0 and we need to fail it without retrying.
1259 *
1260 * This also includes the high level bios for compressed
1261 * extents - these never make it to a device and repair
1262 * is already handled on the lower compressed bio.
1263 */
1264 if (mirror > 0)
1265 repair = true;
1266 } else {
1267 struct extent_buffer *eb;
1268
1269 eb = find_extent_buffer_readpage(fs_info, page, start);
1270 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
1271 eb->read_mirror = mirror;
1272 atomic_dec(&eb->io_pages);
1273 }
1274
1275 if (repair) {
1276 /*
1277 * submit_data_read_repair() will handle all the good
1278 * and bad sectors, we just continue to the next bvec.
1279 */
1280 submit_data_read_repair(inode, bbio, bio_offset, bvec,
1281 error_bitmap);
1282 } else {
1283 /* Update page status and unlock */
1284 end_page_read(page, uptodate, start, len);
1285 endio_readpage_release_extent(&processed, BTRFS_I(inode),
1286 start, end, PageUptodate(page));
1287 }
1288
1289 ASSERT(bio_offset + len > bio_offset);
1290 bio_offset += len;
1291
1292 }
1293 /* Release the last extent */
1294 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
1295 btrfs_bio_free_csum(bbio);
1296 bio_put(bio);
1297 }
1298
1299 /**
1300 * Populate every free slot in a provided array with pages.
1301 *
1302 * @nr_pages: number of pages to allocate
1303 * @page_array: the array to fill with pages; any existing non-null entries in
1304 * the array will be skipped
1305 *
1306 * Return: 0 if all pages were able to be allocated;
1307 * -ENOMEM otherwise, and the caller is responsible for freeing all
1308 * non-null page pointers in the array.
1309 */
btrfs_alloc_page_array(unsigned int nr_pages,struct page ** page_array)1310 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
1311 {
1312 unsigned int allocated;
1313
1314 for (allocated = 0; allocated < nr_pages;) {
1315 unsigned int last = allocated;
1316
1317 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
1318
1319 if (allocated == nr_pages)
1320 return 0;
1321
1322 /*
1323 * During this iteration, no page could be allocated, even
1324 * though alloc_pages_bulk_array() falls back to alloc_page()
1325 * if it could not bulk-allocate. So we must be out of memory.
1326 */
1327 if (allocated == last)
1328 return -ENOMEM;
1329
1330 memalloc_retry_wait(GFP_NOFS);
1331 }
1332 return 0;
1333 }
1334
1335 /**
1336 * Attempt to add a page to bio
1337 *
1338 * @bio_ctrl: record both the bio, and its bio_flags
1339 * @page: page to add to the bio
1340 * @disk_bytenr: offset of the new bio or to check whether we are adding
1341 * a contiguous page to the previous one
1342 * @size: portion of page that we want to write
1343 * @pg_offset: starting offset in the page
1344 * @compress_type: compression type of the current bio to see if we can merge them
1345 *
1346 * Attempt to add a page to bio considering stripe alignment etc.
1347 *
1348 * Return >= 0 for the number of bytes added to the bio.
1349 * Can return 0 if the current bio is already at stripe/zone boundary.
1350 * Return <0 for error.
1351 */
btrfs_bio_add_page(struct btrfs_bio_ctrl * bio_ctrl,struct page * page,u64 disk_bytenr,unsigned int size,unsigned int pg_offset,enum btrfs_compression_type compress_type)1352 static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
1353 struct page *page,
1354 u64 disk_bytenr, unsigned int size,
1355 unsigned int pg_offset,
1356 enum btrfs_compression_type compress_type)
1357 {
1358 struct bio *bio = bio_ctrl->bio;
1359 u32 bio_size = bio->bi_iter.bi_size;
1360 u32 real_size;
1361 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
1362 bool contig = false;
1363 int ret;
1364
1365 ASSERT(bio);
1366 /* The limit should be calculated when bio_ctrl->bio is allocated */
1367 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
1368 if (bio_ctrl->compress_type != compress_type)
1369 return 0;
1370
1371
1372 if (bio->bi_iter.bi_size == 0) {
1373 /* We can always add a page into an empty bio. */
1374 contig = true;
1375 } else if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE) {
1376 struct bio_vec *bvec = bio_last_bvec_all(bio);
1377
1378 /*
1379 * The contig check requires the following conditions to be met:
1380 * 1) The pages are belonging to the same inode
1381 * This is implied by the call chain.
1382 *
1383 * 2) The range has adjacent logical bytenr
1384 *
1385 * 3) The range has adjacent file offset
1386 * This is required for the usage of btrfs_bio->file_offset.
1387 */
1388 if (bio_end_sector(bio) == sector &&
1389 page_offset(bvec->bv_page) + bvec->bv_offset +
1390 bvec->bv_len == page_offset(page) + pg_offset)
1391 contig = true;
1392 } else {
1393 /*
1394 * For compression, all IO should have its logical bytenr
1395 * set to the starting bytenr of the compressed extent.
1396 */
1397 contig = bio->bi_iter.bi_sector == sector;
1398 }
1399
1400 if (!contig)
1401 return 0;
1402
1403 real_size = min(bio_ctrl->len_to_oe_boundary,
1404 bio_ctrl->len_to_stripe_boundary) - bio_size;
1405 real_size = min(real_size, size);
1406
1407 /*
1408 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
1409 * bio will still execute its endio function on the page!
1410 */
1411 if (real_size == 0)
1412 return 0;
1413
1414 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1415 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
1416 else
1417 ret = bio_add_page(bio, page, real_size, pg_offset);
1418
1419 return ret;
1420 }
1421
calc_bio_boundaries(struct btrfs_bio_ctrl * bio_ctrl,struct btrfs_inode * inode,u64 file_offset)1422 static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
1423 struct btrfs_inode *inode, u64 file_offset)
1424 {
1425 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1426 struct btrfs_io_geometry geom;
1427 struct btrfs_ordered_extent *ordered;
1428 struct extent_map *em;
1429 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
1430 int ret;
1431
1432 /*
1433 * Pages for compressed extent are never submitted to disk directly,
1434 * thus it has no real boundary, just set them to U32_MAX.
1435 *
1436 * The split happens for real compressed bio, which happens in
1437 * btrfs_submit_compressed_read/write().
1438 */
1439 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
1440 bio_ctrl->len_to_oe_boundary = U32_MAX;
1441 bio_ctrl->len_to_stripe_boundary = U32_MAX;
1442 return 0;
1443 }
1444 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
1445 if (IS_ERR(em))
1446 return PTR_ERR(em);
1447 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
1448 logical, &geom);
1449 free_extent_map(em);
1450 if (ret < 0) {
1451 return ret;
1452 }
1453 if (geom.len > U32_MAX)
1454 bio_ctrl->len_to_stripe_boundary = U32_MAX;
1455 else
1456 bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
1457
1458 if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
1459 bio_ctrl->len_to_oe_boundary = U32_MAX;
1460 return 0;
1461 }
1462
1463 /* Ordered extent not yet created, so we're good */
1464 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
1465 if (!ordered) {
1466 bio_ctrl->len_to_oe_boundary = U32_MAX;
1467 return 0;
1468 }
1469
1470 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
1471 ordered->disk_bytenr + ordered->disk_num_bytes - logical);
1472 btrfs_put_ordered_extent(ordered);
1473 return 0;
1474 }
1475
alloc_new_bio(struct btrfs_inode * inode,struct btrfs_bio_ctrl * bio_ctrl,struct writeback_control * wbc,blk_opf_t opf,u64 disk_bytenr,u32 offset,u64 file_offset,enum btrfs_compression_type compress_type)1476 static int alloc_new_bio(struct btrfs_inode *inode,
1477 struct btrfs_bio_ctrl *bio_ctrl,
1478 struct writeback_control *wbc,
1479 blk_opf_t opf,
1480 u64 disk_bytenr, u32 offset, u64 file_offset,
1481 enum btrfs_compression_type compress_type)
1482 {
1483 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1484 struct bio *bio;
1485 int ret;
1486
1487 ASSERT(bio_ctrl->end_io_func);
1488
1489 bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, bio_ctrl->end_io_func, NULL);
1490 /*
1491 * For compressed page range, its disk_bytenr is always @disk_bytenr
1492 * passed in, no matter if we have added any range into previous bio.
1493 */
1494 if (compress_type != BTRFS_COMPRESS_NONE)
1495 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
1496 else
1497 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
1498 bio_ctrl->bio = bio;
1499 bio_ctrl->compress_type = compress_type;
1500 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
1501 if (ret < 0)
1502 goto error;
1503
1504 if (wbc) {
1505 /*
1506 * For Zone append we need the correct block_device that we are
1507 * going to write to set in the bio to be able to respect the
1508 * hardware limitation. Look it up here:
1509 */
1510 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1511 struct btrfs_device *dev;
1512
1513 dev = btrfs_zoned_get_device(fs_info, disk_bytenr,
1514 fs_info->sectorsize);
1515 if (IS_ERR(dev)) {
1516 ret = PTR_ERR(dev);
1517 goto error;
1518 }
1519
1520 bio_set_dev(bio, dev->bdev);
1521 } else {
1522 /*
1523 * Otherwise pick the last added device to support
1524 * cgroup writeback. For multi-device file systems this
1525 * means blk-cgroup policies have to always be set on the
1526 * last added/replaced device. This is a bit odd but has
1527 * been like that for a long time.
1528 */
1529 bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev);
1530 }
1531 wbc_init_bio(wbc, bio);
1532 } else {
1533 ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND);
1534 }
1535 return 0;
1536 error:
1537 bio_ctrl->bio = NULL;
1538 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
1539 return ret;
1540 }
1541
1542 /*
1543 * @opf: bio REQ_OP_* and REQ_* flags as one value
1544 * @wbc: optional writeback control for io accounting
1545 * @disk_bytenr: logical bytenr where the write will be
1546 * @page: page to add to the bio
1547 * @size: portion of page that we want to write to
1548 * @pg_offset: offset of the new bio or to check whether we are adding
1549 * a contiguous page to the previous one
1550 * @compress_type: compress type for current bio
1551 *
1552 * The will either add the page into the existing @bio_ctrl->bio, or allocate a
1553 * new one in @bio_ctrl->bio.
1554 * The mirror number for this IO should already be initizlied in
1555 * @bio_ctrl->mirror_num.
1556 */
submit_extent_page(blk_opf_t opf,struct writeback_control * wbc,struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,struct page * page,size_t size,unsigned long pg_offset,enum btrfs_compression_type compress_type,bool force_bio_submit)1557 static int submit_extent_page(blk_opf_t opf,
1558 struct writeback_control *wbc,
1559 struct btrfs_bio_ctrl *bio_ctrl,
1560 u64 disk_bytenr, struct page *page,
1561 size_t size, unsigned long pg_offset,
1562 enum btrfs_compression_type compress_type,
1563 bool force_bio_submit)
1564 {
1565 int ret = 0;
1566 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1567 unsigned int cur = pg_offset;
1568
1569 ASSERT(bio_ctrl);
1570
1571 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
1572 pg_offset + size <= PAGE_SIZE);
1573
1574 ASSERT(bio_ctrl->end_io_func);
1575
1576 if (force_bio_submit)
1577 submit_one_bio(bio_ctrl);
1578
1579 while (cur < pg_offset + size) {
1580 u32 offset = cur - pg_offset;
1581 int added;
1582
1583 /* Allocate new bio if needed */
1584 if (!bio_ctrl->bio) {
1585 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
1586 disk_bytenr, offset,
1587 page_offset(page) + cur,
1588 compress_type);
1589 if (ret < 0)
1590 return ret;
1591 }
1592 /*
1593 * We must go through btrfs_bio_add_page() to ensure each
1594 * page range won't cross various boundaries.
1595 */
1596 if (compress_type != BTRFS_COMPRESS_NONE)
1597 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
1598 size - offset, pg_offset + offset,
1599 compress_type);
1600 else
1601 added = btrfs_bio_add_page(bio_ctrl, page,
1602 disk_bytenr + offset, size - offset,
1603 pg_offset + offset, compress_type);
1604
1605 /* Metadata page range should never be split */
1606 if (!is_data_inode(&inode->vfs_inode))
1607 ASSERT(added == 0 || added == size - offset);
1608
1609 /* At least we added some page, update the account */
1610 if (wbc && added)
1611 wbc_account_cgroup_owner(wbc, page, added);
1612
1613 /* We have reached boundary, submit right now */
1614 if (added < size - offset) {
1615 /* The bio should contain some page(s) */
1616 ASSERT(bio_ctrl->bio->bi_iter.bi_size);
1617 submit_one_bio(bio_ctrl);
1618 }
1619 cur += added;
1620 }
1621 return 0;
1622 }
1623
attach_extent_buffer_page(struct extent_buffer * eb,struct page * page,struct btrfs_subpage * prealloc)1624 static int attach_extent_buffer_page(struct extent_buffer *eb,
1625 struct page *page,
1626 struct btrfs_subpage *prealloc)
1627 {
1628 struct btrfs_fs_info *fs_info = eb->fs_info;
1629 int ret = 0;
1630
1631 /*
1632 * If the page is mapped to btree inode, we should hold the private
1633 * lock to prevent race.
1634 * For cloned or dummy extent buffers, their pages are not mapped and
1635 * will not race with any other ebs.
1636 */
1637 if (page->mapping)
1638 lockdep_assert_held(&page->mapping->private_lock);
1639
1640 if (fs_info->nodesize >= PAGE_SIZE) {
1641 if (!PagePrivate(page))
1642 attach_page_private(page, eb);
1643 else
1644 WARN_ON(page->private != (unsigned long)eb);
1645 return 0;
1646 }
1647
1648 /* Already mapped, just free prealloc */
1649 if (PagePrivate(page)) {
1650 btrfs_free_subpage(prealloc);
1651 return 0;
1652 }
1653
1654 if (prealloc)
1655 /* Has preallocated memory for subpage */
1656 attach_page_private(page, prealloc);
1657 else
1658 /* Do new allocation to attach subpage */
1659 ret = btrfs_attach_subpage(fs_info, page,
1660 BTRFS_SUBPAGE_METADATA);
1661 return ret;
1662 }
1663
set_page_extent_mapped(struct page * page)1664 int set_page_extent_mapped(struct page *page)
1665 {
1666 struct btrfs_fs_info *fs_info;
1667
1668 ASSERT(page->mapping);
1669
1670 if (PagePrivate(page))
1671 return 0;
1672
1673 fs_info = btrfs_sb(page->mapping->host->i_sb);
1674
1675 if (btrfs_is_subpage(fs_info, page))
1676 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
1677
1678 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
1679 return 0;
1680 }
1681
clear_page_extent_mapped(struct page * page)1682 void clear_page_extent_mapped(struct page *page)
1683 {
1684 struct btrfs_fs_info *fs_info;
1685
1686 ASSERT(page->mapping);
1687
1688 if (!PagePrivate(page))
1689 return;
1690
1691 fs_info = btrfs_sb(page->mapping->host->i_sb);
1692 if (btrfs_is_subpage(fs_info, page))
1693 return btrfs_detach_subpage(fs_info, page);
1694
1695 detach_page_private(page);
1696 }
1697
1698 static struct extent_map *
__get_extent_map(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,struct extent_map ** em_cached)1699 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
1700 u64 start, u64 len, struct extent_map **em_cached)
1701 {
1702 struct extent_map *em;
1703
1704 if (em_cached && *em_cached) {
1705 em = *em_cached;
1706 if (extent_map_in_tree(em) && start >= em->start &&
1707 start < extent_map_end(em)) {
1708 refcount_inc(&em->refs);
1709 return em;
1710 }
1711
1712 free_extent_map(em);
1713 *em_cached = NULL;
1714 }
1715
1716 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
1717 if (em_cached && !IS_ERR(em)) {
1718 BUG_ON(*em_cached);
1719 refcount_inc(&em->refs);
1720 *em_cached = em;
1721 }
1722 return em;
1723 }
1724 /*
1725 * basic readpage implementation. Locked extent state structs are inserted
1726 * into the tree that are removed when the IO is done (by the end_io
1727 * handlers)
1728 * XXX JDM: This needs looking at to ensure proper page locking
1729 * return 0 on success, otherwise return error
1730 */
btrfs_do_readpage(struct page * page,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl,blk_opf_t read_flags,u64 * prev_em_start)1731 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
1732 struct btrfs_bio_ctrl *bio_ctrl,
1733 blk_opf_t read_flags, u64 *prev_em_start)
1734 {
1735 struct inode *inode = page->mapping->host;
1736 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1737 u64 start = page_offset(page);
1738 const u64 end = start + PAGE_SIZE - 1;
1739 u64 cur = start;
1740 u64 extent_offset;
1741 u64 last_byte = i_size_read(inode);
1742 u64 block_start;
1743 struct extent_map *em;
1744 int ret = 0;
1745 size_t pg_offset = 0;
1746 size_t iosize;
1747 size_t blocksize = inode->i_sb->s_blocksize;
1748 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1749
1750 ret = set_page_extent_mapped(page);
1751 if (ret < 0) {
1752 unlock_extent(tree, start, end, NULL);
1753 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
1754 unlock_page(page);
1755 goto out;
1756 }
1757
1758 if (page->index == last_byte >> PAGE_SHIFT) {
1759 size_t zero_offset = offset_in_page(last_byte);
1760
1761 if (zero_offset) {
1762 iosize = PAGE_SIZE - zero_offset;
1763 memzero_page(page, zero_offset, iosize);
1764 }
1765 }
1766 bio_ctrl->end_io_func = end_bio_extent_readpage;
1767 begin_page_read(fs_info, page);
1768 while (cur <= end) {
1769 unsigned long this_bio_flag = 0;
1770 bool force_bio_submit = false;
1771 u64 disk_bytenr;
1772
1773 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1774 if (cur >= last_byte) {
1775 struct extent_state *cached = NULL;
1776
1777 iosize = PAGE_SIZE - pg_offset;
1778 memzero_page(page, pg_offset, iosize);
1779 set_extent_uptodate(tree, cur, cur + iosize - 1,
1780 &cached, GFP_NOFS);
1781 unlock_extent(tree, cur, cur + iosize - 1, &cached);
1782 end_page_read(page, true, cur, iosize);
1783 break;
1784 }
1785 em = __get_extent_map(inode, page, pg_offset, cur,
1786 end - cur + 1, em_cached);
1787 if (IS_ERR(em)) {
1788 unlock_extent(tree, cur, end, NULL);
1789 end_page_read(page, false, cur, end + 1 - cur);
1790 ret = PTR_ERR(em);
1791 break;
1792 }
1793 extent_offset = cur - em->start;
1794 BUG_ON(extent_map_end(em) <= cur);
1795 BUG_ON(end < cur);
1796
1797 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1798 this_bio_flag = em->compress_type;
1799
1800 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1801 iosize = ALIGN(iosize, blocksize);
1802 if (this_bio_flag != BTRFS_COMPRESS_NONE)
1803 disk_bytenr = em->block_start;
1804 else
1805 disk_bytenr = em->block_start + extent_offset;
1806 block_start = em->block_start;
1807 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1808 block_start = EXTENT_MAP_HOLE;
1809
1810 /*
1811 * If we have a file range that points to a compressed extent
1812 * and it's followed by a consecutive file range that points
1813 * to the same compressed extent (possibly with a different
1814 * offset and/or length, so it either points to the whole extent
1815 * or only part of it), we must make sure we do not submit a
1816 * single bio to populate the pages for the 2 ranges because
1817 * this makes the compressed extent read zero out the pages
1818 * belonging to the 2nd range. Imagine the following scenario:
1819 *
1820 * File layout
1821 * [0 - 8K] [8K - 24K]
1822 * | |
1823 * | |
1824 * points to extent X, points to extent X,
1825 * offset 4K, length of 8K offset 0, length 16K
1826 *
1827 * [extent X, compressed length = 4K uncompressed length = 16K]
1828 *
1829 * If the bio to read the compressed extent covers both ranges,
1830 * it will decompress extent X into the pages belonging to the
1831 * first range and then it will stop, zeroing out the remaining
1832 * pages that belong to the other range that points to extent X.
1833 * So here we make sure we submit 2 bios, one for the first
1834 * range and another one for the third range. Both will target
1835 * the same physical extent from disk, but we can't currently
1836 * make the compressed bio endio callback populate the pages
1837 * for both ranges because each compressed bio is tightly
1838 * coupled with a single extent map, and each range can have
1839 * an extent map with a different offset value relative to the
1840 * uncompressed data of our extent and different lengths. This
1841 * is a corner case so we prioritize correctness over
1842 * non-optimal behavior (submitting 2 bios for the same extent).
1843 */
1844 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
1845 prev_em_start && *prev_em_start != (u64)-1 &&
1846 *prev_em_start != em->start)
1847 force_bio_submit = true;
1848
1849 if (prev_em_start)
1850 *prev_em_start = em->start;
1851
1852 free_extent_map(em);
1853 em = NULL;
1854
1855 /* we've found a hole, just zero and go on */
1856 if (block_start == EXTENT_MAP_HOLE) {
1857 struct extent_state *cached = NULL;
1858
1859 memzero_page(page, pg_offset, iosize);
1860
1861 set_extent_uptodate(tree, cur, cur + iosize - 1,
1862 &cached, GFP_NOFS);
1863 unlock_extent(tree, cur, cur + iosize - 1, &cached);
1864 end_page_read(page, true, cur, iosize);
1865 cur = cur + iosize;
1866 pg_offset += iosize;
1867 continue;
1868 }
1869 /* the get_extent function already copied into the page */
1870 if (block_start == EXTENT_MAP_INLINE) {
1871 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1872 end_page_read(page, true, cur, iosize);
1873 cur = cur + iosize;
1874 pg_offset += iosize;
1875 continue;
1876 }
1877
1878 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
1879 bio_ctrl, disk_bytenr, page, iosize,
1880 pg_offset, this_bio_flag,
1881 force_bio_submit);
1882 if (ret) {
1883 /*
1884 * We have to unlock the remaining range, or the page
1885 * will never be unlocked.
1886 */
1887 unlock_extent(tree, cur, end, NULL);
1888 end_page_read(page, false, cur, end + 1 - cur);
1889 goto out;
1890 }
1891 cur = cur + iosize;
1892 pg_offset += iosize;
1893 }
1894 out:
1895 return ret;
1896 }
1897
btrfs_read_folio(struct file * file,struct folio * folio)1898 int btrfs_read_folio(struct file *file, struct folio *folio)
1899 {
1900 struct page *page = &folio->page;
1901 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1902 u64 start = page_offset(page);
1903 u64 end = start + PAGE_SIZE - 1;
1904 struct btrfs_bio_ctrl bio_ctrl = { 0 };
1905 int ret;
1906
1907 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1908
1909 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
1910 /*
1911 * If btrfs_do_readpage() failed we will want to submit the assembled
1912 * bio to do the cleanup.
1913 */
1914 submit_one_bio(&bio_ctrl);
1915 return ret;
1916 }
1917
contiguous_readpages(struct page * pages[],int nr_pages,u64 start,u64 end,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl,u64 * prev_em_start)1918 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1919 u64 start, u64 end,
1920 struct extent_map **em_cached,
1921 struct btrfs_bio_ctrl *bio_ctrl,
1922 u64 *prev_em_start)
1923 {
1924 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
1925 int index;
1926
1927 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1928
1929 for (index = 0; index < nr_pages; index++) {
1930 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1931 REQ_RAHEAD, prev_em_start);
1932 put_page(pages[index]);
1933 }
1934 }
1935
1936 /*
1937 * helper for __extent_writepage, doing all of the delayed allocation setup.
1938 *
1939 * This returns 1 if btrfs_run_delalloc_range function did all the work required
1940 * to write the page (copy into inline extent). In this case the IO has
1941 * been started and the page is already unlocked.
1942 *
1943 * This returns 0 if all went well (page still locked)
1944 * This returns < 0 if there were errors (page still locked)
1945 */
writepage_delalloc(struct btrfs_inode * inode,struct page * page,struct writeback_control * wbc)1946 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1947 struct page *page, struct writeback_control *wbc)
1948 {
1949 const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
1950 u64 delalloc_start = page_offset(page);
1951 u64 delalloc_to_write = 0;
1952 /* How many pages are started by btrfs_run_delalloc_range() */
1953 unsigned long nr_written = 0;
1954 int ret;
1955 int page_started = 0;
1956
1957 while (delalloc_start < page_end) {
1958 u64 delalloc_end = page_end;
1959 bool found;
1960
1961 found = find_lock_delalloc_range(&inode->vfs_inode, page,
1962 &delalloc_start,
1963 &delalloc_end);
1964 if (!found) {
1965 delalloc_start = delalloc_end + 1;
1966 continue;
1967 }
1968 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1969 delalloc_end, &page_started, &nr_written, wbc);
1970 if (ret) {
1971 btrfs_page_set_error(inode->root->fs_info, page,
1972 page_offset(page), PAGE_SIZE);
1973 return ret;
1974 }
1975 /*
1976 * delalloc_end is already one less than the total length, so
1977 * we don't subtract one from PAGE_SIZE
1978 */
1979 delalloc_to_write += (delalloc_end - delalloc_start +
1980 PAGE_SIZE) >> PAGE_SHIFT;
1981 delalloc_start = delalloc_end + 1;
1982 }
1983 if (wbc->nr_to_write < delalloc_to_write) {
1984 int thresh = 8192;
1985
1986 if (delalloc_to_write < thresh * 2)
1987 thresh = delalloc_to_write;
1988 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1989 thresh);
1990 }
1991
1992 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */
1993 if (page_started) {
1994 /*
1995 * We've unlocked the page, so we can't update the mapping's
1996 * writeback index, just update nr_to_write.
1997 */
1998 wbc->nr_to_write -= nr_written;
1999 return 1;
2000 }
2001
2002 return 0;
2003 }
2004
2005 /*
2006 * Find the first byte we need to write.
2007 *
2008 * For subpage, one page can contain several sectors, and
2009 * __extent_writepage_io() will just grab all extent maps in the page
2010 * range and try to submit all non-inline/non-compressed extents.
2011 *
2012 * This is a big problem for subpage, we shouldn't re-submit already written
2013 * data at all.
2014 * This function will lookup subpage dirty bit to find which range we really
2015 * need to submit.
2016 *
2017 * Return the next dirty range in [@start, @end).
2018 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
2019 */
find_next_dirty_byte(struct btrfs_fs_info * fs_info,struct page * page,u64 * start,u64 * end)2020 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
2021 struct page *page, u64 *start, u64 *end)
2022 {
2023 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
2024 struct btrfs_subpage_info *spi = fs_info->subpage_info;
2025 u64 orig_start = *start;
2026 /* Declare as unsigned long so we can use bitmap ops */
2027 unsigned long flags;
2028 int range_start_bit;
2029 int range_end_bit;
2030
2031 /*
2032 * For regular sector size == page size case, since one page only
2033 * contains one sector, we return the page offset directly.
2034 */
2035 if (!btrfs_is_subpage(fs_info, page)) {
2036 *start = page_offset(page);
2037 *end = page_offset(page) + PAGE_SIZE;
2038 return;
2039 }
2040
2041 range_start_bit = spi->dirty_offset +
2042 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
2043
2044 /* We should have the page locked, but just in case */
2045 spin_lock_irqsave(&subpage->lock, flags);
2046 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
2047 spi->dirty_offset + spi->bitmap_nr_bits);
2048 spin_unlock_irqrestore(&subpage->lock, flags);
2049
2050 range_start_bit -= spi->dirty_offset;
2051 range_end_bit -= spi->dirty_offset;
2052
2053 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
2054 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
2055 }
2056
2057 /*
2058 * helper for __extent_writepage. This calls the writepage start hooks,
2059 * and does the loop to map the page into extents and bios.
2060 *
2061 * We return 1 if the IO is started and the page is unlocked,
2062 * 0 if all went well (page still locked)
2063 * < 0 if there were errors (page still locked)
2064 */
__extent_writepage_io(struct btrfs_inode * inode,struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,loff_t i_size,int * nr_ret)2065 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
2066 struct page *page,
2067 struct writeback_control *wbc,
2068 struct extent_page_data *epd,
2069 loff_t i_size,
2070 int *nr_ret)
2071 {
2072 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2073 u64 cur = page_offset(page);
2074 u64 end = cur + PAGE_SIZE - 1;
2075 u64 extent_offset;
2076 u64 block_start;
2077 struct extent_map *em;
2078 int saved_ret = 0;
2079 int ret = 0;
2080 int nr = 0;
2081 enum req_op op = REQ_OP_WRITE;
2082 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
2083 bool has_error = false;
2084 bool compressed;
2085
2086 ret = btrfs_writepage_cow_fixup(page);
2087 if (ret) {
2088 /* Fixup worker will requeue */
2089 redirty_page_for_writepage(wbc, page);
2090 unlock_page(page);
2091 return 1;
2092 }
2093
2094 /*
2095 * we don't want to touch the inode after unlocking the page,
2096 * so we update the mapping writeback index now
2097 */
2098 wbc->nr_to_write--;
2099
2100 epd->bio_ctrl.end_io_func = end_bio_extent_writepage;
2101 while (cur <= end) {
2102 u64 disk_bytenr;
2103 u64 em_end;
2104 u64 dirty_range_start = cur;
2105 u64 dirty_range_end;
2106 u32 iosize;
2107
2108 if (cur >= i_size) {
2109 btrfs_writepage_endio_finish_ordered(inode, page, cur,
2110 end, true);
2111 /*
2112 * This range is beyond i_size, thus we don't need to
2113 * bother writing back.
2114 * But we still need to clear the dirty subpage bit, or
2115 * the next time the page gets dirtied, we will try to
2116 * writeback the sectors with subpage dirty bits,
2117 * causing writeback without ordered extent.
2118 */
2119 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
2120 break;
2121 }
2122
2123 find_next_dirty_byte(fs_info, page, &dirty_range_start,
2124 &dirty_range_end);
2125 if (cur < dirty_range_start) {
2126 cur = dirty_range_start;
2127 continue;
2128 }
2129
2130 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
2131 if (IS_ERR(em)) {
2132 btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
2133 ret = PTR_ERR_OR_ZERO(em);
2134 has_error = true;
2135 if (!saved_ret)
2136 saved_ret = ret;
2137 break;
2138 }
2139
2140 extent_offset = cur - em->start;
2141 em_end = extent_map_end(em);
2142 ASSERT(cur <= em_end);
2143 ASSERT(cur < end);
2144 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
2145 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
2146 block_start = em->block_start;
2147 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2148 disk_bytenr = em->block_start + extent_offset;
2149
2150 /*
2151 * Note that em_end from extent_map_end() and dirty_range_end from
2152 * find_next_dirty_byte() are all exclusive
2153 */
2154 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
2155
2156 if (btrfs_use_zone_append(inode, em->block_start))
2157 op = REQ_OP_ZONE_APPEND;
2158
2159 free_extent_map(em);
2160 em = NULL;
2161
2162 /*
2163 * compressed and inline extents are written through other
2164 * paths in the FS
2165 */
2166 if (compressed || block_start == EXTENT_MAP_HOLE ||
2167 block_start == EXTENT_MAP_INLINE) {
2168 if (compressed)
2169 nr++;
2170 else
2171 btrfs_writepage_endio_finish_ordered(inode,
2172 page, cur, cur + iosize - 1, true);
2173 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
2174 cur += iosize;
2175 continue;
2176 }
2177
2178 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
2179 if (!PageWriteback(page)) {
2180 btrfs_err(inode->root->fs_info,
2181 "page %lu not writeback, cur %llu end %llu",
2182 page->index, cur, end);
2183 }
2184
2185 /*
2186 * Although the PageDirty bit is cleared before entering this
2187 * function, subpage dirty bit is not cleared.
2188 * So clear subpage dirty bit here so next time we won't submit
2189 * page for range already written to disk.
2190 */
2191 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
2192
2193 ret = submit_extent_page(op | write_flags, wbc,
2194 &epd->bio_ctrl, disk_bytenr,
2195 page, iosize,
2196 cur - page_offset(page),
2197 0, false);
2198 if (ret) {
2199 has_error = true;
2200 if (!saved_ret)
2201 saved_ret = ret;
2202
2203 btrfs_page_set_error(fs_info, page, cur, iosize);
2204 if (PageWriteback(page))
2205 btrfs_page_clear_writeback(fs_info, page, cur,
2206 iosize);
2207 }
2208
2209 cur += iosize;
2210 nr++;
2211 }
2212 /*
2213 * If we finish without problem, we should not only clear page dirty,
2214 * but also empty subpage dirty bits
2215 */
2216 if (!has_error)
2217 btrfs_page_assert_not_dirty(fs_info, page);
2218 else
2219 ret = saved_ret;
2220 *nr_ret = nr;
2221 return ret;
2222 }
2223
2224 /*
2225 * the writepage semantics are similar to regular writepage. extent
2226 * records are inserted to lock ranges in the tree, and as dirty areas
2227 * are found, they are marked writeback. Then the lock bits are removed
2228 * and the end_io handler clears the writeback ranges
2229 *
2230 * Return 0 if everything goes well.
2231 * Return <0 for error.
2232 */
__extent_writepage(struct page * page,struct writeback_control * wbc,struct extent_page_data * epd)2233 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2234 struct extent_page_data *epd)
2235 {
2236 struct folio *folio = page_folio(page);
2237 struct inode *inode = page->mapping->host;
2238 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2239 const u64 page_start = page_offset(page);
2240 const u64 page_end = page_start + PAGE_SIZE - 1;
2241 int ret;
2242 int nr = 0;
2243 size_t pg_offset;
2244 loff_t i_size = i_size_read(inode);
2245 unsigned long end_index = i_size >> PAGE_SHIFT;
2246
2247 trace___extent_writepage(page, inode, wbc);
2248
2249 WARN_ON(!PageLocked(page));
2250
2251 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
2252 page_offset(page), PAGE_SIZE);
2253
2254 pg_offset = offset_in_page(i_size);
2255 if (page->index > end_index ||
2256 (page->index == end_index && !pg_offset)) {
2257 folio_invalidate(folio, 0, folio_size(folio));
2258 folio_unlock(folio);
2259 return 0;
2260 }
2261
2262 if (page->index == end_index)
2263 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
2264
2265 ret = set_page_extent_mapped(page);
2266 if (ret < 0) {
2267 SetPageError(page);
2268 goto done;
2269 }
2270
2271 if (!epd->extent_locked) {
2272 ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
2273 if (ret == 1)
2274 return 0;
2275 if (ret)
2276 goto done;
2277 }
2278
2279 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
2280 &nr);
2281 if (ret == 1)
2282 return 0;
2283
2284 done:
2285 if (nr == 0) {
2286 /* make sure the mapping tag for page dirty gets cleared */
2287 set_page_writeback(page);
2288 end_page_writeback(page);
2289 }
2290 /*
2291 * Here we used to have a check for PageError() and then set @ret and
2292 * call end_extent_writepage().
2293 *
2294 * But in fact setting @ret here will cause different error paths
2295 * between subpage and regular sectorsize.
2296 *
2297 * For regular page size, we never submit current page, but only add
2298 * current page to current bio.
2299 * The bio submission can only happen in next page.
2300 * Thus if we hit the PageError() branch, @ret is already set to
2301 * non-zero value and will not get updated for regular sectorsize.
2302 *
2303 * But for subpage case, it's possible we submit part of current page,
2304 * thus can get PageError() set by submitted bio of the same page,
2305 * while our @ret is still 0.
2306 *
2307 * So here we unify the behavior and don't set @ret.
2308 * Error can still be properly passed to higher layer as page will
2309 * be set error, here we just don't handle the IO failure.
2310 *
2311 * NOTE: This is just a hotfix for subpage.
2312 * The root fix will be properly ending ordered extent when we hit
2313 * an error during writeback.
2314 *
2315 * But that needs a bigger refactoring, as we not only need to grab the
2316 * submitted OE, but also need to know exactly at which bytenr we hit
2317 * the error.
2318 * Currently the full page based __extent_writepage_io() is not
2319 * capable of that.
2320 */
2321 if (PageError(page))
2322 end_extent_writepage(page, ret, page_start, page_end);
2323 if (epd->extent_locked) {
2324 /*
2325 * If epd->extent_locked, it's from extent_write_locked_range(),
2326 * the page can either be locked by lock_page() or
2327 * process_one_page().
2328 * Let btrfs_page_unlock_writer() handle both cases.
2329 */
2330 ASSERT(wbc);
2331 btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
2332 wbc->range_end + 1 - wbc->range_start);
2333 } else {
2334 unlock_page(page);
2335 }
2336 ASSERT(ret <= 0);
2337 return ret;
2338 }
2339
wait_on_extent_buffer_writeback(struct extent_buffer * eb)2340 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
2341 {
2342 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
2343 TASK_UNINTERRUPTIBLE);
2344 }
2345
end_extent_buffer_writeback(struct extent_buffer * eb)2346 static void end_extent_buffer_writeback(struct extent_buffer *eb)
2347 {
2348 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2349 smp_mb__after_atomic();
2350 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
2351 }
2352
2353 /*
2354 * Lock extent buffer status and pages for writeback.
2355 *
2356 * May try to flush write bio if we can't get the lock.
2357 *
2358 * Return 0 if the extent buffer doesn't need to be submitted.
2359 * (E.g. the extent buffer is not dirty)
2360 * Return >0 is the extent buffer is submitted to bio.
2361 * Return <0 if something went wrong, no page is locked.
2362 */
lock_extent_buffer_for_io(struct extent_buffer * eb,struct extent_page_data * epd)2363 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
2364 struct extent_page_data *epd)
2365 {
2366 struct btrfs_fs_info *fs_info = eb->fs_info;
2367 int i, num_pages;
2368 int flush = 0;
2369 int ret = 0;
2370
2371 if (!btrfs_try_tree_write_lock(eb)) {
2372 submit_write_bio(epd, 0);
2373 flush = 1;
2374 btrfs_tree_lock(eb);
2375 }
2376
2377 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
2378 btrfs_tree_unlock(eb);
2379 if (!epd->sync_io)
2380 return 0;
2381 if (!flush) {
2382 submit_write_bio(epd, 0);
2383 flush = 1;
2384 }
2385 while (1) {
2386 wait_on_extent_buffer_writeback(eb);
2387 btrfs_tree_lock(eb);
2388 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
2389 break;
2390 btrfs_tree_unlock(eb);
2391 }
2392 }
2393
2394 /*
2395 * We need to do this to prevent races in people who check if the eb is
2396 * under IO since we can end up having no IO bits set for a short period
2397 * of time.
2398 */
2399 spin_lock(&eb->refs_lock);
2400 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2401 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2402 spin_unlock(&eb->refs_lock);
2403 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2404 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
2405 -eb->len,
2406 fs_info->dirty_metadata_batch);
2407 ret = 1;
2408 } else {
2409 spin_unlock(&eb->refs_lock);
2410 }
2411
2412 btrfs_tree_unlock(eb);
2413
2414 /*
2415 * Either we don't need to submit any tree block, or we're submitting
2416 * subpage eb.
2417 * Subpage metadata doesn't use page locking at all, so we can skip
2418 * the page locking.
2419 */
2420 if (!ret || fs_info->nodesize < PAGE_SIZE)
2421 return ret;
2422
2423 num_pages = num_extent_pages(eb);
2424 for (i = 0; i < num_pages; i++) {
2425 struct page *p = eb->pages[i];
2426
2427 if (!trylock_page(p)) {
2428 if (!flush) {
2429 submit_write_bio(epd, 0);
2430 flush = 1;
2431 }
2432 lock_page(p);
2433 }
2434 }
2435
2436 return ret;
2437 }
2438
set_btree_ioerr(struct page * page,struct extent_buffer * eb)2439 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
2440 {
2441 struct btrfs_fs_info *fs_info = eb->fs_info;
2442
2443 btrfs_page_set_error(fs_info, page, eb->start, eb->len);
2444 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
2445 return;
2446
2447 /*
2448 * A read may stumble upon this buffer later, make sure that it gets an
2449 * error and knows there was an error.
2450 */
2451 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
2452
2453 /*
2454 * We need to set the mapping with the io error as well because a write
2455 * error will flip the file system readonly, and then syncfs() will
2456 * return a 0 because we are readonly if we don't modify the err seq for
2457 * the superblock.
2458 */
2459 mapping_set_error(page->mapping, -EIO);
2460
2461 /*
2462 * If we error out, we should add back the dirty_metadata_bytes
2463 * to make it consistent.
2464 */
2465 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
2466 eb->len, fs_info->dirty_metadata_batch);
2467
2468 /*
2469 * If writeback for a btree extent that doesn't belong to a log tree
2470 * failed, increment the counter transaction->eb_write_errors.
2471 * We do this because while the transaction is running and before it's
2472 * committing (when we call filemap_fdata[write|wait]_range against
2473 * the btree inode), we might have
2474 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
2475 * returns an error or an error happens during writeback, when we're
2476 * committing the transaction we wouldn't know about it, since the pages
2477 * can be no longer dirty nor marked anymore for writeback (if a
2478 * subsequent modification to the extent buffer didn't happen before the
2479 * transaction commit), which makes filemap_fdata[write|wait]_range not
2480 * able to find the pages tagged with SetPageError at transaction
2481 * commit time. So if this happens we must abort the transaction,
2482 * otherwise we commit a super block with btree roots that point to
2483 * btree nodes/leafs whose content on disk is invalid - either garbage
2484 * or the content of some node/leaf from a past generation that got
2485 * cowed or deleted and is no longer valid.
2486 *
2487 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
2488 * not be enough - we need to distinguish between log tree extents vs
2489 * non-log tree extents, and the next filemap_fdatawait_range() call
2490 * will catch and clear such errors in the mapping - and that call might
2491 * be from a log sync and not from a transaction commit. Also, checking
2492 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
2493 * not done and would not be reliable - the eb might have been released
2494 * from memory and reading it back again means that flag would not be
2495 * set (since it's a runtime flag, not persisted on disk).
2496 *
2497 * Using the flags below in the btree inode also makes us achieve the
2498 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
2499 * writeback for all dirty pages and before filemap_fdatawait_range()
2500 * is called, the writeback for all dirty pages had already finished
2501 * with errors - because we were not using AS_EIO/AS_ENOSPC,
2502 * filemap_fdatawait_range() would return success, as it could not know
2503 * that writeback errors happened (the pages were no longer tagged for
2504 * writeback).
2505 */
2506 switch (eb->log_index) {
2507 case -1:
2508 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
2509 break;
2510 case 0:
2511 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2512 break;
2513 case 1:
2514 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2515 break;
2516 default:
2517 BUG(); /* unexpected, logic error */
2518 }
2519 }
2520
2521 /*
2522 * The endio specific version which won't touch any unsafe spinlock in endio
2523 * context.
2524 */
find_extent_buffer_nolock(struct btrfs_fs_info * fs_info,u64 start)2525 static struct extent_buffer *find_extent_buffer_nolock(
2526 struct btrfs_fs_info *fs_info, u64 start)
2527 {
2528 struct extent_buffer *eb;
2529
2530 rcu_read_lock();
2531 eb = radix_tree_lookup(&fs_info->buffer_radix,
2532 start >> fs_info->sectorsize_bits);
2533 if (eb && atomic_inc_not_zero(&eb->refs)) {
2534 rcu_read_unlock();
2535 return eb;
2536 }
2537 rcu_read_unlock();
2538 return NULL;
2539 }
2540
2541 /*
2542 * The endio function for subpage extent buffer write.
2543 *
2544 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
2545 * after all extent buffers in the page has finished their writeback.
2546 */
end_bio_subpage_eb_writepage(struct btrfs_bio * bbio)2547 static void end_bio_subpage_eb_writepage(struct btrfs_bio *bbio)
2548 {
2549 struct bio *bio = &bbio->bio;
2550 struct btrfs_fs_info *fs_info;
2551 struct bio_vec *bvec;
2552 struct bvec_iter_all iter_all;
2553
2554 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
2555 ASSERT(fs_info->nodesize < PAGE_SIZE);
2556
2557 ASSERT(!bio_flagged(bio, BIO_CLONED));
2558 bio_for_each_segment_all(bvec, bio, iter_all) {
2559 struct page *page = bvec->bv_page;
2560 u64 bvec_start = page_offset(page) + bvec->bv_offset;
2561 u64 bvec_end = bvec_start + bvec->bv_len - 1;
2562 u64 cur_bytenr = bvec_start;
2563
2564 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
2565
2566 /* Iterate through all extent buffers in the range */
2567 while (cur_bytenr <= bvec_end) {
2568 struct extent_buffer *eb;
2569 int done;
2570
2571 /*
2572 * Here we can't use find_extent_buffer(), as it may
2573 * try to lock eb->refs_lock, which is not safe in endio
2574 * context.
2575 */
2576 eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
2577 ASSERT(eb);
2578
2579 cur_bytenr = eb->start + eb->len;
2580
2581 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
2582 done = atomic_dec_and_test(&eb->io_pages);
2583 ASSERT(done);
2584
2585 if (bio->bi_status ||
2586 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
2587 ClearPageUptodate(page);
2588 set_btree_ioerr(page, eb);
2589 }
2590
2591 btrfs_subpage_clear_writeback(fs_info, page, eb->start,
2592 eb->len);
2593 end_extent_buffer_writeback(eb);
2594 /*
2595 * free_extent_buffer() will grab spinlock which is not
2596 * safe in endio context. Thus here we manually dec
2597 * the ref.
2598 */
2599 atomic_dec(&eb->refs);
2600 }
2601 }
2602 bio_put(bio);
2603 }
2604
end_bio_extent_buffer_writepage(struct btrfs_bio * bbio)2605 static void end_bio_extent_buffer_writepage(struct btrfs_bio *bbio)
2606 {
2607 struct bio *bio = &bbio->bio;
2608 struct bio_vec *bvec;
2609 struct extent_buffer *eb;
2610 int done;
2611 struct bvec_iter_all iter_all;
2612
2613 ASSERT(!bio_flagged(bio, BIO_CLONED));
2614 bio_for_each_segment_all(bvec, bio, iter_all) {
2615 struct page *page = bvec->bv_page;
2616
2617 eb = (struct extent_buffer *)page->private;
2618 BUG_ON(!eb);
2619 done = atomic_dec_and_test(&eb->io_pages);
2620
2621 if (bio->bi_status ||
2622 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
2623 ClearPageUptodate(page);
2624 set_btree_ioerr(page, eb);
2625 }
2626
2627 end_page_writeback(page);
2628
2629 if (!done)
2630 continue;
2631
2632 end_extent_buffer_writeback(eb);
2633 }
2634
2635 bio_put(bio);
2636 }
2637
prepare_eb_write(struct extent_buffer * eb)2638 static void prepare_eb_write(struct extent_buffer *eb)
2639 {
2640 u32 nritems;
2641 unsigned long start;
2642 unsigned long end;
2643
2644 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
2645 atomic_set(&eb->io_pages, num_extent_pages(eb));
2646
2647 /* Set btree blocks beyond nritems with 0 to avoid stale content */
2648 nritems = btrfs_header_nritems(eb);
2649 if (btrfs_header_level(eb) > 0) {
2650 end = btrfs_node_key_ptr_offset(nritems);
2651 memzero_extent_buffer(eb, end, eb->len - end);
2652 } else {
2653 /*
2654 * Leaf:
2655 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
2656 */
2657 start = btrfs_item_nr_offset(nritems);
2658 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
2659 memzero_extent_buffer(eb, start, end - start);
2660 }
2661 }
2662
2663 /*
2664 * Unlike the work in write_one_eb(), we rely completely on extent locking.
2665 * Page locking is only utilized at minimum to keep the VMM code happy.
2666 */
write_one_subpage_eb(struct extent_buffer * eb,struct writeback_control * wbc,struct extent_page_data * epd)2667 static int write_one_subpage_eb(struct extent_buffer *eb,
2668 struct writeback_control *wbc,
2669 struct extent_page_data *epd)
2670 {
2671 struct btrfs_fs_info *fs_info = eb->fs_info;
2672 struct page *page = eb->pages[0];
2673 blk_opf_t write_flags = wbc_to_write_flags(wbc);
2674 bool no_dirty_ebs = false;
2675 int ret;
2676
2677 prepare_eb_write(eb);
2678
2679 /* clear_page_dirty_for_io() in subpage helper needs page locked */
2680 lock_page(page);
2681 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
2682
2683 /* Check if this is the last dirty bit to update nr_written */
2684 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
2685 eb->start, eb->len);
2686 if (no_dirty_ebs)
2687 clear_page_dirty_for_io(page);
2688
2689 epd->bio_ctrl.end_io_func = end_bio_subpage_eb_writepage;
2690
2691 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
2692 &epd->bio_ctrl, eb->start, page, eb->len,
2693 eb->start - page_offset(page), 0, false);
2694 if (ret) {
2695 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
2696 set_btree_ioerr(page, eb);
2697 unlock_page(page);
2698
2699 if (atomic_dec_and_test(&eb->io_pages))
2700 end_extent_buffer_writeback(eb);
2701 return -EIO;
2702 }
2703 unlock_page(page);
2704 /*
2705 * Submission finished without problem, if no range of the page is
2706 * dirty anymore, we have submitted a page. Update nr_written in wbc.
2707 */
2708 if (no_dirty_ebs)
2709 wbc->nr_to_write--;
2710 return ret;
2711 }
2712
write_one_eb(struct extent_buffer * eb,struct writeback_control * wbc,struct extent_page_data * epd)2713 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
2714 struct writeback_control *wbc,
2715 struct extent_page_data *epd)
2716 {
2717 u64 disk_bytenr = eb->start;
2718 int i, num_pages;
2719 blk_opf_t write_flags = wbc_to_write_flags(wbc);
2720 int ret = 0;
2721
2722 prepare_eb_write(eb);
2723
2724 epd->bio_ctrl.end_io_func = end_bio_extent_buffer_writepage;
2725
2726 num_pages = num_extent_pages(eb);
2727 for (i = 0; i < num_pages; i++) {
2728 struct page *p = eb->pages[i];
2729
2730 clear_page_dirty_for_io(p);
2731 set_page_writeback(p);
2732 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
2733 &epd->bio_ctrl, disk_bytenr, p,
2734 PAGE_SIZE, 0, 0, false);
2735 if (ret) {
2736 set_btree_ioerr(p, eb);
2737 if (PageWriteback(p))
2738 end_page_writeback(p);
2739 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
2740 end_extent_buffer_writeback(eb);
2741 ret = -EIO;
2742 break;
2743 }
2744 disk_bytenr += PAGE_SIZE;
2745 wbc->nr_to_write--;
2746 unlock_page(p);
2747 }
2748
2749 if (unlikely(ret)) {
2750 for (; i < num_pages; i++) {
2751 struct page *p = eb->pages[i];
2752 clear_page_dirty_for_io(p);
2753 unlock_page(p);
2754 }
2755 }
2756
2757 return ret;
2758 }
2759
2760 /*
2761 * Submit one subpage btree page.
2762 *
2763 * The main difference to submit_eb_page() is:
2764 * - Page locking
2765 * For subpage, we don't rely on page locking at all.
2766 *
2767 * - Flush write bio
2768 * We only flush bio if we may be unable to fit current extent buffers into
2769 * current bio.
2770 *
2771 * Return >=0 for the number of submitted extent buffers.
2772 * Return <0 for fatal error.
2773 */
submit_eb_subpage(struct page * page,struct writeback_control * wbc,struct extent_page_data * epd)2774 static int submit_eb_subpage(struct page *page,
2775 struct writeback_control *wbc,
2776 struct extent_page_data *epd)
2777 {
2778 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2779 int submitted = 0;
2780 u64 page_start = page_offset(page);
2781 int bit_start = 0;
2782 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
2783 int ret;
2784
2785 /* Lock and write each dirty extent buffers in the range */
2786 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
2787 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
2788 struct extent_buffer *eb;
2789 unsigned long flags;
2790 u64 start;
2791
2792 /*
2793 * Take private lock to ensure the subpage won't be detached
2794 * in the meantime.
2795 */
2796 spin_lock(&page->mapping->private_lock);
2797 if (!PagePrivate(page)) {
2798 spin_unlock(&page->mapping->private_lock);
2799 break;
2800 }
2801 spin_lock_irqsave(&subpage->lock, flags);
2802 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
2803 subpage->bitmaps)) {
2804 spin_unlock_irqrestore(&subpage->lock, flags);
2805 spin_unlock(&page->mapping->private_lock);
2806 bit_start++;
2807 continue;
2808 }
2809
2810 start = page_start + bit_start * fs_info->sectorsize;
2811 bit_start += sectors_per_node;
2812
2813 /*
2814 * Here we just want to grab the eb without touching extra
2815 * spin locks, so call find_extent_buffer_nolock().
2816 */
2817 eb = find_extent_buffer_nolock(fs_info, start);
2818 spin_unlock_irqrestore(&subpage->lock, flags);
2819 spin_unlock(&page->mapping->private_lock);
2820
2821 /*
2822 * The eb has already reached 0 refs thus find_extent_buffer()
2823 * doesn't return it. We don't need to write back such eb
2824 * anyway.
2825 */
2826 if (!eb)
2827 continue;
2828
2829 ret = lock_extent_buffer_for_io(eb, epd);
2830 if (ret == 0) {
2831 free_extent_buffer(eb);
2832 continue;
2833 }
2834 if (ret < 0) {
2835 free_extent_buffer(eb);
2836 goto cleanup;
2837 }
2838 ret = write_one_subpage_eb(eb, wbc, epd);
2839 free_extent_buffer(eb);
2840 if (ret < 0)
2841 goto cleanup;
2842 submitted++;
2843 }
2844 return submitted;
2845
2846 cleanup:
2847 /* We hit error, end bio for the submitted extent buffers */
2848 submit_write_bio(epd, ret);
2849 return ret;
2850 }
2851
2852 /*
2853 * Submit all page(s) of one extent buffer.
2854 *
2855 * @page: the page of one extent buffer
2856 * @eb_context: to determine if we need to submit this page, if current page
2857 * belongs to this eb, we don't need to submit
2858 *
2859 * The caller should pass each page in their bytenr order, and here we use
2860 * @eb_context to determine if we have submitted pages of one extent buffer.
2861 *
2862 * If we have, we just skip until we hit a new page that doesn't belong to
2863 * current @eb_context.
2864 *
2865 * If not, we submit all the page(s) of the extent buffer.
2866 *
2867 * Return >0 if we have submitted the extent buffer successfully.
2868 * Return 0 if we don't need to submit the page, as it's already submitted by
2869 * previous call.
2870 * Return <0 for fatal error.
2871 */
submit_eb_page(struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,struct extent_buffer ** eb_context)2872 static int submit_eb_page(struct page *page, struct writeback_control *wbc,
2873 struct extent_page_data *epd,
2874 struct extent_buffer **eb_context)
2875 {
2876 struct address_space *mapping = page->mapping;
2877 struct btrfs_block_group *cache = NULL;
2878 struct extent_buffer *eb;
2879 int ret;
2880
2881 if (!PagePrivate(page))
2882 return 0;
2883
2884 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
2885 return submit_eb_subpage(page, wbc, epd);
2886
2887 spin_lock(&mapping->private_lock);
2888 if (!PagePrivate(page)) {
2889 spin_unlock(&mapping->private_lock);
2890 return 0;
2891 }
2892
2893 eb = (struct extent_buffer *)page->private;
2894
2895 /*
2896 * Shouldn't happen and normally this would be a BUG_ON but no point
2897 * crashing the machine for something we can survive anyway.
2898 */
2899 if (WARN_ON(!eb)) {
2900 spin_unlock(&mapping->private_lock);
2901 return 0;
2902 }
2903
2904 if (eb == *eb_context) {
2905 spin_unlock(&mapping->private_lock);
2906 return 0;
2907 }
2908 ret = atomic_inc_not_zero(&eb->refs);
2909 spin_unlock(&mapping->private_lock);
2910 if (!ret)
2911 return 0;
2912
2913 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
2914 /*
2915 * If for_sync, this hole will be filled with
2916 * trasnsaction commit.
2917 */
2918 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
2919 ret = -EAGAIN;
2920 else
2921 ret = 0;
2922 free_extent_buffer(eb);
2923 return ret;
2924 }
2925
2926 *eb_context = eb;
2927
2928 ret = lock_extent_buffer_for_io(eb, epd);
2929 if (ret <= 0) {
2930 btrfs_revert_meta_write_pointer(cache, eb);
2931 if (cache)
2932 btrfs_put_block_group(cache);
2933 free_extent_buffer(eb);
2934 return ret;
2935 }
2936 if (cache) {
2937 /*
2938 * Implies write in zoned mode. Mark the last eb in a block group.
2939 */
2940 btrfs_schedule_zone_finish_bg(cache, eb);
2941 btrfs_put_block_group(cache);
2942 }
2943 ret = write_one_eb(eb, wbc, epd);
2944 free_extent_buffer(eb);
2945 if (ret < 0)
2946 return ret;
2947 return 1;
2948 }
2949
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)2950 int btree_write_cache_pages(struct address_space *mapping,
2951 struct writeback_control *wbc)
2952 {
2953 struct extent_buffer *eb_context = NULL;
2954 struct extent_page_data epd = {
2955 .bio_ctrl = { 0 },
2956 .extent_locked = 0,
2957 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2958 };
2959 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
2960 int ret = 0;
2961 int done = 0;
2962 int nr_to_write_done = 0;
2963 struct pagevec pvec;
2964 int nr_pages;
2965 pgoff_t index;
2966 pgoff_t end; /* Inclusive */
2967 int scanned = 0;
2968 xa_mark_t tag;
2969
2970 pagevec_init(&pvec);
2971 if (wbc->range_cyclic) {
2972 index = mapping->writeback_index; /* Start from prev offset */
2973 end = -1;
2974 /*
2975 * Start from the beginning does not need to cycle over the
2976 * range, mark it as scanned.
2977 */
2978 scanned = (index == 0);
2979 } else {
2980 index = wbc->range_start >> PAGE_SHIFT;
2981 end = wbc->range_end >> PAGE_SHIFT;
2982 scanned = 1;
2983 }
2984 if (wbc->sync_mode == WB_SYNC_ALL)
2985 tag = PAGECACHE_TAG_TOWRITE;
2986 else
2987 tag = PAGECACHE_TAG_DIRTY;
2988 btrfs_zoned_meta_io_lock(fs_info);
2989 retry:
2990 if (wbc->sync_mode == WB_SYNC_ALL)
2991 tag_pages_for_writeback(mapping, index, end);
2992 while (!done && !nr_to_write_done && (index <= end) &&
2993 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2994 tag))) {
2995 unsigned i;
2996
2997 for (i = 0; i < nr_pages; i++) {
2998 struct page *page = pvec.pages[i];
2999
3000 ret = submit_eb_page(page, wbc, &epd, &eb_context);
3001 if (ret == 0)
3002 continue;
3003 if (ret < 0) {
3004 done = 1;
3005 break;
3006 }
3007
3008 /*
3009 * the filesystem may choose to bump up nr_to_write.
3010 * We have to make sure to honor the new nr_to_write
3011 * at any time
3012 */
3013 nr_to_write_done = wbc->nr_to_write <= 0;
3014 }
3015 pagevec_release(&pvec);
3016 cond_resched();
3017 }
3018 if (!scanned && !done) {
3019 /*
3020 * We hit the last page and there is more work to be done: wrap
3021 * back to the start of the file
3022 */
3023 scanned = 1;
3024 index = 0;
3025 goto retry;
3026 }
3027 /*
3028 * If something went wrong, don't allow any metadata write bio to be
3029 * submitted.
3030 *
3031 * This would prevent use-after-free if we had dirty pages not
3032 * cleaned up, which can still happen by fuzzed images.
3033 *
3034 * - Bad extent tree
3035 * Allowing existing tree block to be allocated for other trees.
3036 *
3037 * - Log tree operations
3038 * Exiting tree blocks get allocated to log tree, bumps its
3039 * generation, then get cleaned in tree re-balance.
3040 * Such tree block will not be written back, since it's clean,
3041 * thus no WRITTEN flag set.
3042 * And after log writes back, this tree block is not traced by
3043 * any dirty extent_io_tree.
3044 *
3045 * - Offending tree block gets re-dirtied from its original owner
3046 * Since it has bumped generation, no WRITTEN flag, it can be
3047 * reused without COWing. This tree block will not be traced
3048 * by btrfs_transaction::dirty_pages.
3049 *
3050 * Now such dirty tree block will not be cleaned by any dirty
3051 * extent io tree. Thus we don't want to submit such wild eb
3052 * if the fs already has error.
3053 *
3054 * We can get ret > 0 from submit_extent_page() indicating how many ebs
3055 * were submitted. Reset it to 0 to avoid false alerts for the caller.
3056 */
3057 if (ret > 0)
3058 ret = 0;
3059 if (!ret && BTRFS_FS_ERROR(fs_info))
3060 ret = -EROFS;
3061 submit_write_bio(&epd, ret);
3062
3063 btrfs_zoned_meta_io_unlock(fs_info);
3064 return ret;
3065 }
3066
3067 /**
3068 * Walk the list of dirty pages of the given address space and write all of them.
3069 *
3070 * @mapping: address space structure to write
3071 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3072 * @epd: holds context for the write, namely the bio
3073 *
3074 * If a page is already under I/O, write_cache_pages() skips it, even
3075 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3076 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3077 * and msync() need to guarantee that all the data which was dirty at the time
3078 * the call was made get new I/O started against them. If wbc->sync_mode is
3079 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3080 * existing IO to complete.
3081 */
extent_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,struct extent_page_data * epd)3082 static int extent_write_cache_pages(struct address_space *mapping,
3083 struct writeback_control *wbc,
3084 struct extent_page_data *epd)
3085 {
3086 struct inode *inode = mapping->host;
3087 int ret = 0;
3088 int done = 0;
3089 int nr_to_write_done = 0;
3090 struct pagevec pvec;
3091 int nr_pages;
3092 pgoff_t index;
3093 pgoff_t end; /* Inclusive */
3094 pgoff_t done_index;
3095 int range_whole = 0;
3096 int scanned = 0;
3097 xa_mark_t tag;
3098
3099 /*
3100 * We have to hold onto the inode so that ordered extents can do their
3101 * work when the IO finishes. The alternative to this is failing to add
3102 * an ordered extent if the igrab() fails there and that is a huge pain
3103 * to deal with, so instead just hold onto the inode throughout the
3104 * writepages operation. If it fails here we are freeing up the inode
3105 * anyway and we'd rather not waste our time writing out stuff that is
3106 * going to be truncated anyway.
3107 */
3108 if (!igrab(inode))
3109 return 0;
3110
3111 pagevec_init(&pvec);
3112 if (wbc->range_cyclic) {
3113 index = mapping->writeback_index; /* Start from prev offset */
3114 end = -1;
3115 /*
3116 * Start from the beginning does not need to cycle over the
3117 * range, mark it as scanned.
3118 */
3119 scanned = (index == 0);
3120 } else {
3121 index = wbc->range_start >> PAGE_SHIFT;
3122 end = wbc->range_end >> PAGE_SHIFT;
3123 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3124 range_whole = 1;
3125 scanned = 1;
3126 }
3127
3128 /*
3129 * We do the tagged writepage as long as the snapshot flush bit is set
3130 * and we are the first one who do the filemap_flush() on this inode.
3131 *
3132 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
3133 * not race in and drop the bit.
3134 */
3135 if (range_whole && wbc->nr_to_write == LONG_MAX &&
3136 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
3137 &BTRFS_I(inode)->runtime_flags))
3138 wbc->tagged_writepages = 1;
3139
3140 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3141 tag = PAGECACHE_TAG_TOWRITE;
3142 else
3143 tag = PAGECACHE_TAG_DIRTY;
3144 retry:
3145 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3146 tag_pages_for_writeback(mapping, index, end);
3147 done_index = index;
3148 while (!done && !nr_to_write_done && (index <= end) &&
3149 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3150 &index, end, tag))) {
3151 unsigned i;
3152
3153 for (i = 0; i < nr_pages; i++) {
3154 struct page *page = pvec.pages[i];
3155
3156 done_index = page->index + 1;
3157 /*
3158 * At this point we hold neither the i_pages lock nor
3159 * the page lock: the page may be truncated or
3160 * invalidated (changing page->mapping to NULL),
3161 * or even swizzled back from swapper_space to
3162 * tmpfs file mapping
3163 */
3164 if (!trylock_page(page)) {
3165 submit_write_bio(epd, 0);
3166 lock_page(page);
3167 }
3168
3169 if (unlikely(page->mapping != mapping)) {
3170 unlock_page(page);
3171 continue;
3172 }
3173
3174 if (wbc->sync_mode != WB_SYNC_NONE) {
3175 if (PageWriteback(page))
3176 submit_write_bio(epd, 0);
3177 wait_on_page_writeback(page);
3178 }
3179
3180 if (PageWriteback(page) ||
3181 !clear_page_dirty_for_io(page)) {
3182 unlock_page(page);
3183 continue;
3184 }
3185
3186 ret = __extent_writepage(page, wbc, epd);
3187 if (ret < 0) {
3188 done = 1;
3189 break;
3190 }
3191
3192 /*
3193 * the filesystem may choose to bump up nr_to_write.
3194 * We have to make sure to honor the new nr_to_write
3195 * at any time
3196 */
3197 nr_to_write_done = wbc->nr_to_write <= 0;
3198 }
3199 pagevec_release(&pvec);
3200 cond_resched();
3201 }
3202 if (!scanned && !done) {
3203 /*
3204 * We hit the last page and there is more work to be done: wrap
3205 * back to the start of the file
3206 */
3207 scanned = 1;
3208 index = 0;
3209
3210 /*
3211 * If we're looping we could run into a page that is locked by a
3212 * writer and that writer could be waiting on writeback for a
3213 * page in our current bio, and thus deadlock, so flush the
3214 * write bio here.
3215 */
3216 submit_write_bio(epd, 0);
3217 goto retry;
3218 }
3219
3220 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
3221 mapping->writeback_index = done_index;
3222
3223 btrfs_add_delayed_iput(inode);
3224 return ret;
3225 }
3226
3227 /*
3228 * Submit the pages in the range to bio for call sites which delalloc range has
3229 * already been ran (aka, ordered extent inserted) and all pages are still
3230 * locked.
3231 */
extent_write_locked_range(struct inode * inode,u64 start,u64 end)3232 int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
3233 {
3234 bool found_error = false;
3235 int first_error = 0;
3236 int ret = 0;
3237 struct address_space *mapping = inode->i_mapping;
3238 struct page *page;
3239 u64 cur = start;
3240 unsigned long nr_pages;
3241 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
3242 struct extent_page_data epd = {
3243 .bio_ctrl = { 0 },
3244 .extent_locked = 1,
3245 .sync_io = 1,
3246 };
3247 struct writeback_control wbc_writepages = {
3248 .sync_mode = WB_SYNC_ALL,
3249 .range_start = start,
3250 .range_end = end + 1,
3251 /* We're called from an async helper function */
3252 .punt_to_cgroup = 1,
3253 .no_cgroup_owner = 1,
3254 };
3255
3256 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
3257 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
3258 PAGE_SHIFT;
3259 wbc_writepages.nr_to_write = nr_pages * 2;
3260
3261 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
3262 while (cur <= end) {
3263 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
3264
3265 page = find_get_page(mapping, cur >> PAGE_SHIFT);
3266 /*
3267 * All pages in the range are locked since
3268 * btrfs_run_delalloc_range(), thus there is no way to clear
3269 * the page dirty flag.
3270 */
3271 ASSERT(PageLocked(page));
3272 ASSERT(PageDirty(page));
3273 clear_page_dirty_for_io(page);
3274 ret = __extent_writepage(page, &wbc_writepages, &epd);
3275 ASSERT(ret <= 0);
3276 if (ret < 0) {
3277 found_error = true;
3278 first_error = ret;
3279 }
3280 put_page(page);
3281 cur = cur_end + 1;
3282 }
3283
3284 submit_write_bio(&epd, found_error ? ret : 0);
3285
3286 wbc_detach_inode(&wbc_writepages);
3287 if (found_error)
3288 return first_error;
3289 return ret;
3290 }
3291
extent_writepages(struct address_space * mapping,struct writeback_control * wbc)3292 int extent_writepages(struct address_space *mapping,
3293 struct writeback_control *wbc)
3294 {
3295 struct inode *inode = mapping->host;
3296 int ret = 0;
3297 struct extent_page_data epd = {
3298 .bio_ctrl = { 0 },
3299 .extent_locked = 0,
3300 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3301 };
3302
3303 /*
3304 * Allow only a single thread to do the reloc work in zoned mode to
3305 * protect the write pointer updates.
3306 */
3307 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
3308 ret = extent_write_cache_pages(mapping, wbc, &epd);
3309 submit_write_bio(&epd, ret);
3310 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
3311 return ret;
3312 }
3313
extent_readahead(struct readahead_control * rac)3314 void extent_readahead(struct readahead_control *rac)
3315 {
3316 struct btrfs_bio_ctrl bio_ctrl = { 0 };
3317 struct page *pagepool[16];
3318 struct extent_map *em_cached = NULL;
3319 u64 prev_em_start = (u64)-1;
3320 int nr;
3321
3322 while ((nr = readahead_page_batch(rac, pagepool))) {
3323 u64 contig_start = readahead_pos(rac);
3324 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
3325
3326 contiguous_readpages(pagepool, nr, contig_start, contig_end,
3327 &em_cached, &bio_ctrl, &prev_em_start);
3328 }
3329
3330 if (em_cached)
3331 free_extent_map(em_cached);
3332 submit_one_bio(&bio_ctrl);
3333 }
3334
3335 /*
3336 * basic invalidate_folio code, this waits on any locked or writeback
3337 * ranges corresponding to the folio, and then deletes any extent state
3338 * records from the tree
3339 */
extent_invalidate_folio(struct extent_io_tree * tree,struct folio * folio,size_t offset)3340 int extent_invalidate_folio(struct extent_io_tree *tree,
3341 struct folio *folio, size_t offset)
3342 {
3343 struct extent_state *cached_state = NULL;
3344 u64 start = folio_pos(folio);
3345 u64 end = start + folio_size(folio) - 1;
3346 size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
3347
3348 /* This function is only called for the btree inode */
3349 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
3350
3351 start += ALIGN(offset, blocksize);
3352 if (start > end)
3353 return 0;
3354
3355 lock_extent(tree, start, end, &cached_state);
3356 folio_wait_writeback(folio);
3357
3358 /*
3359 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
3360 * so here we only need to unlock the extent range to free any
3361 * existing extent state.
3362 */
3363 unlock_extent(tree, start, end, &cached_state);
3364 return 0;
3365 }
3366
3367 /*
3368 * a helper for release_folio, this tests for areas of the page that
3369 * are locked or under IO and drops the related state bits if it is safe
3370 * to drop the page.
3371 */
try_release_extent_state(struct extent_io_tree * tree,struct page * page,gfp_t mask)3372 static int try_release_extent_state(struct extent_io_tree *tree,
3373 struct page *page, gfp_t mask)
3374 {
3375 u64 start = page_offset(page);
3376 u64 end = start + PAGE_SIZE - 1;
3377 int ret = 1;
3378
3379 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
3380 ret = 0;
3381 } else {
3382 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
3383 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS);
3384
3385 /*
3386 * At this point we can safely clear everything except the
3387 * locked bit, the nodatasum bit and the delalloc new bit.
3388 * The delalloc new bit will be cleared by ordered extent
3389 * completion.
3390 */
3391 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL,
3392 mask, NULL);
3393
3394 /* if clear_extent_bit failed for enomem reasons,
3395 * we can't allow the release to continue.
3396 */
3397 if (ret < 0)
3398 ret = 0;
3399 else
3400 ret = 1;
3401 }
3402 return ret;
3403 }
3404
3405 /*
3406 * a helper for release_folio. As long as there are no locked extents
3407 * in the range corresponding to the page, both state records and extent
3408 * map records are removed
3409 */
try_release_extent_mapping(struct page * page,gfp_t mask)3410 int try_release_extent_mapping(struct page *page, gfp_t mask)
3411 {
3412 struct extent_map *em;
3413 u64 start = page_offset(page);
3414 u64 end = start + PAGE_SIZE - 1;
3415 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
3416 struct extent_io_tree *tree = &btrfs_inode->io_tree;
3417 struct extent_map_tree *map = &btrfs_inode->extent_tree;
3418
3419 if (gfpflags_allow_blocking(mask) &&
3420 page->mapping->host->i_size > SZ_16M) {
3421 u64 len;
3422 while (start <= end) {
3423 struct btrfs_fs_info *fs_info;
3424 u64 cur_gen;
3425
3426 len = end - start + 1;
3427 write_lock(&map->lock);
3428 em = lookup_extent_mapping(map, start, len);
3429 if (!em) {
3430 write_unlock(&map->lock);
3431 break;
3432 }
3433 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3434 em->start != start) {
3435 write_unlock(&map->lock);
3436 free_extent_map(em);
3437 break;
3438 }
3439 if (test_range_bit(tree, em->start,
3440 extent_map_end(em) - 1,
3441 EXTENT_LOCKED, 0, NULL))
3442 goto next;
3443 /*
3444 * If it's not in the list of modified extents, used
3445 * by a fast fsync, we can remove it. If it's being
3446 * logged we can safely remove it since fsync took an
3447 * extra reference on the em.
3448 */
3449 if (list_empty(&em->list) ||
3450 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
3451 goto remove_em;
3452 /*
3453 * If it's in the list of modified extents, remove it
3454 * only if its generation is older then the current one,
3455 * in which case we don't need it for a fast fsync.
3456 * Otherwise don't remove it, we could be racing with an
3457 * ongoing fast fsync that could miss the new extent.
3458 */
3459 fs_info = btrfs_inode->root->fs_info;
3460 spin_lock(&fs_info->trans_lock);
3461 cur_gen = fs_info->generation;
3462 spin_unlock(&fs_info->trans_lock);
3463 if (em->generation >= cur_gen)
3464 goto next;
3465 remove_em:
3466 /*
3467 * We only remove extent maps that are not in the list of
3468 * modified extents or that are in the list but with a
3469 * generation lower then the current generation, so there
3470 * is no need to set the full fsync flag on the inode (it
3471 * hurts the fsync performance for workloads with a data
3472 * size that exceeds or is close to the system's memory).
3473 */
3474 remove_extent_mapping(map, em);
3475 /* once for the rb tree */
3476 free_extent_map(em);
3477 next:
3478 start = extent_map_end(em);
3479 write_unlock(&map->lock);
3480
3481 /* once for us */
3482 free_extent_map(em);
3483
3484 cond_resched(); /* Allow large-extent preemption. */
3485 }
3486 }
3487 return try_release_extent_state(tree, page, mask);
3488 }
3489
3490 /*
3491 * To cache previous fiemap extent
3492 *
3493 * Will be used for merging fiemap extent
3494 */
3495 struct fiemap_cache {
3496 u64 offset;
3497 u64 phys;
3498 u64 len;
3499 u32 flags;
3500 bool cached;
3501 };
3502
3503 /*
3504 * Helper to submit fiemap extent.
3505 *
3506 * Will try to merge current fiemap extent specified by @offset, @phys,
3507 * @len and @flags with cached one.
3508 * And only when we fails to merge, cached one will be submitted as
3509 * fiemap extent.
3510 *
3511 * Return value is the same as fiemap_fill_next_extent().
3512 */
emit_fiemap_extent(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache,u64 offset,u64 phys,u64 len,u32 flags)3513 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
3514 struct fiemap_cache *cache,
3515 u64 offset, u64 phys, u64 len, u32 flags)
3516 {
3517 int ret = 0;
3518
3519 /* Set at the end of extent_fiemap(). */
3520 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
3521
3522 if (!cache->cached)
3523 goto assign;
3524
3525 /*
3526 * Sanity check, extent_fiemap() should have ensured that new
3527 * fiemap extent won't overlap with cached one.
3528 * Not recoverable.
3529 *
3530 * NOTE: Physical address can overlap, due to compression
3531 */
3532 if (cache->offset + cache->len > offset) {
3533 WARN_ON(1);
3534 return -EINVAL;
3535 }
3536
3537 /*
3538 * Only merges fiemap extents if
3539 * 1) Their logical addresses are continuous
3540 *
3541 * 2) Their physical addresses are continuous
3542 * So truly compressed (physical size smaller than logical size)
3543 * extents won't get merged with each other
3544 *
3545 * 3) Share same flags
3546 */
3547 if (cache->offset + cache->len == offset &&
3548 cache->phys + cache->len == phys &&
3549 cache->flags == flags) {
3550 cache->len += len;
3551 return 0;
3552 }
3553
3554 /* Not mergeable, need to submit cached one */
3555 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
3556 cache->len, cache->flags);
3557 cache->cached = false;
3558 if (ret)
3559 return ret;
3560 assign:
3561 cache->cached = true;
3562 cache->offset = offset;
3563 cache->phys = phys;
3564 cache->len = len;
3565 cache->flags = flags;
3566
3567 return 0;
3568 }
3569
3570 /*
3571 * Emit last fiemap cache
3572 *
3573 * The last fiemap cache may still be cached in the following case:
3574 * 0 4k 8k
3575 * |<- Fiemap range ->|
3576 * |<------------ First extent ----------->|
3577 *
3578 * In this case, the first extent range will be cached but not emitted.
3579 * So we must emit it before ending extent_fiemap().
3580 */
emit_last_fiemap_cache(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache)3581 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
3582 struct fiemap_cache *cache)
3583 {
3584 int ret;
3585
3586 if (!cache->cached)
3587 return 0;
3588
3589 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
3590 cache->len, cache->flags);
3591 cache->cached = false;
3592 if (ret > 0)
3593 ret = 0;
3594 return ret;
3595 }
3596
fiemap_next_leaf_item(struct btrfs_inode * inode,struct btrfs_path * path)3597 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
3598 {
3599 struct extent_buffer *clone;
3600 struct btrfs_key key;
3601 int slot;
3602 int ret;
3603
3604 path->slots[0]++;
3605 if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
3606 return 0;
3607
3608 ret = btrfs_next_leaf(inode->root, path);
3609 if (ret != 0)
3610 return ret;
3611
3612 /*
3613 * Don't bother with cloning if there are no more file extent items for
3614 * our inode.
3615 */
3616 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3617 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
3618 return 1;
3619
3620 /* See the comment at fiemap_search_slot() about why we clone. */
3621 clone = btrfs_clone_extent_buffer(path->nodes[0]);
3622 if (!clone)
3623 return -ENOMEM;
3624
3625 slot = path->slots[0];
3626 btrfs_release_path(path);
3627 path->nodes[0] = clone;
3628 path->slots[0] = slot;
3629
3630 return 0;
3631 }
3632
3633 /*
3634 * Search for the first file extent item that starts at a given file offset or
3635 * the one that starts immediately before that offset.
3636 * Returns: 0 on success, < 0 on error, 1 if not found.
3637 */
fiemap_search_slot(struct btrfs_inode * inode,struct btrfs_path * path,u64 file_offset)3638 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
3639 u64 file_offset)
3640 {
3641 const u64 ino = btrfs_ino(inode);
3642 struct btrfs_root *root = inode->root;
3643 struct extent_buffer *clone;
3644 struct btrfs_key key;
3645 int slot;
3646 int ret;
3647
3648 key.objectid = ino;
3649 key.type = BTRFS_EXTENT_DATA_KEY;
3650 key.offset = file_offset;
3651
3652 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3653 if (ret < 0)
3654 return ret;
3655
3656 if (ret > 0 && path->slots[0] > 0) {
3657 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3658 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3659 path->slots[0]--;
3660 }
3661
3662 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3663 ret = btrfs_next_leaf(root, path);
3664 if (ret != 0)
3665 return ret;
3666
3667 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3668 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3669 return 1;
3670 }
3671
3672 /*
3673 * We clone the leaf and use it during fiemap. This is because while
3674 * using the leaf we do expensive things like checking if an extent is
3675 * shared, which can take a long time. In order to prevent blocking
3676 * other tasks for too long, we use a clone of the leaf. We have locked
3677 * the file range in the inode's io tree, so we know none of our file
3678 * extent items can change. This way we avoid blocking other tasks that
3679 * want to insert items for other inodes in the same leaf or b+tree
3680 * rebalance operations (triggered for example when someone is trying
3681 * to push items into this leaf when trying to insert an item in a
3682 * neighbour leaf).
3683 * We also need the private clone because holding a read lock on an
3684 * extent buffer of the subvolume's b+tree will make lockdep unhappy
3685 * when we call fiemap_fill_next_extent(), because that may cause a page
3686 * fault when filling the user space buffer with fiemap data.
3687 */
3688 clone = btrfs_clone_extent_buffer(path->nodes[0]);
3689 if (!clone)
3690 return -ENOMEM;
3691
3692 slot = path->slots[0];
3693 btrfs_release_path(path);
3694 path->nodes[0] = clone;
3695 path->slots[0] = slot;
3696
3697 return 0;
3698 }
3699
3700 /*
3701 * Process a range which is a hole or a prealloc extent in the inode's subvolume
3702 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
3703 * extent. The end offset (@end) is inclusive.
3704 */
fiemap_process_hole(struct btrfs_inode * inode,struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache,struct btrfs_backref_shared_cache * backref_cache,u64 disk_bytenr,u64 extent_offset,u64 extent_gen,struct ulist * roots,struct ulist * tmp_ulist,u64 start,u64 end)3705 static int fiemap_process_hole(struct btrfs_inode *inode,
3706 struct fiemap_extent_info *fieinfo,
3707 struct fiemap_cache *cache,
3708 struct btrfs_backref_shared_cache *backref_cache,
3709 u64 disk_bytenr, u64 extent_offset,
3710 u64 extent_gen,
3711 struct ulist *roots, struct ulist *tmp_ulist,
3712 u64 start, u64 end)
3713 {
3714 const u64 i_size = i_size_read(&inode->vfs_inode);
3715 const u64 ino = btrfs_ino(inode);
3716 u64 cur_offset = start;
3717 u64 last_delalloc_end = 0;
3718 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
3719 bool checked_extent_shared = false;
3720 int ret;
3721
3722 /*
3723 * There can be no delalloc past i_size, so don't waste time looking for
3724 * it beyond i_size.
3725 */
3726 while (cur_offset < end && cur_offset < i_size) {
3727 u64 delalloc_start;
3728 u64 delalloc_end;
3729 u64 prealloc_start;
3730 u64 prealloc_len = 0;
3731 bool delalloc;
3732
3733 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
3734 &delalloc_start,
3735 &delalloc_end);
3736 if (!delalloc)
3737 break;
3738
3739 /*
3740 * If this is a prealloc extent we have to report every section
3741 * of it that has no delalloc.
3742 */
3743 if (disk_bytenr != 0) {
3744 if (last_delalloc_end == 0) {
3745 prealloc_start = start;
3746 prealloc_len = delalloc_start - start;
3747 } else {
3748 prealloc_start = last_delalloc_end + 1;
3749 prealloc_len = delalloc_start - prealloc_start;
3750 }
3751 }
3752
3753 if (prealloc_len > 0) {
3754 if (!checked_extent_shared && fieinfo->fi_extents_max) {
3755 ret = btrfs_is_data_extent_shared(inode->root,
3756 ino, disk_bytenr,
3757 extent_gen, roots,
3758 tmp_ulist,
3759 backref_cache);
3760 if (ret < 0)
3761 return ret;
3762 else if (ret > 0)
3763 prealloc_flags |= FIEMAP_EXTENT_SHARED;
3764
3765 checked_extent_shared = true;
3766 }
3767 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
3768 disk_bytenr + extent_offset,
3769 prealloc_len, prealloc_flags);
3770 if (ret)
3771 return ret;
3772 extent_offset += prealloc_len;
3773 }
3774
3775 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
3776 delalloc_end + 1 - delalloc_start,
3777 FIEMAP_EXTENT_DELALLOC |
3778 FIEMAP_EXTENT_UNKNOWN);
3779 if (ret)
3780 return ret;
3781
3782 last_delalloc_end = delalloc_end;
3783 cur_offset = delalloc_end + 1;
3784 extent_offset += cur_offset - delalloc_start;
3785 cond_resched();
3786 }
3787
3788 /*
3789 * Either we found no delalloc for the whole prealloc extent or we have
3790 * a prealloc extent that spans i_size or starts at or after i_size.
3791 */
3792 if (disk_bytenr != 0 && last_delalloc_end < end) {
3793 u64 prealloc_start;
3794 u64 prealloc_len;
3795
3796 if (last_delalloc_end == 0) {
3797 prealloc_start = start;
3798 prealloc_len = end + 1 - start;
3799 } else {
3800 prealloc_start = last_delalloc_end + 1;
3801 prealloc_len = end + 1 - prealloc_start;
3802 }
3803
3804 if (!checked_extent_shared && fieinfo->fi_extents_max) {
3805 ret = btrfs_is_data_extent_shared(inode->root,
3806 ino, disk_bytenr,
3807 extent_gen, roots,
3808 tmp_ulist,
3809 backref_cache);
3810 if (ret < 0)
3811 return ret;
3812 else if (ret > 0)
3813 prealloc_flags |= FIEMAP_EXTENT_SHARED;
3814 }
3815 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
3816 disk_bytenr + extent_offset,
3817 prealloc_len, prealloc_flags);
3818 if (ret)
3819 return ret;
3820 }
3821
3822 return 0;
3823 }
3824
fiemap_find_last_extent_offset(struct btrfs_inode * inode,struct btrfs_path * path,u64 * last_extent_end_ret)3825 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
3826 struct btrfs_path *path,
3827 u64 *last_extent_end_ret)
3828 {
3829 const u64 ino = btrfs_ino(inode);
3830 struct btrfs_root *root = inode->root;
3831 struct extent_buffer *leaf;
3832 struct btrfs_file_extent_item *ei;
3833 struct btrfs_key key;
3834 u64 disk_bytenr;
3835 int ret;
3836
3837 /*
3838 * Lookup the last file extent. We're not using i_size here because
3839 * there might be preallocation past i_size.
3840 */
3841 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
3842 /* There can't be a file extent item at offset (u64)-1 */
3843 ASSERT(ret != 0);
3844 if (ret < 0)
3845 return ret;
3846
3847 /*
3848 * For a non-existing key, btrfs_search_slot() always leaves us at a
3849 * slot > 0, except if the btree is empty, which is impossible because
3850 * at least it has the inode item for this inode and all the items for
3851 * the root inode 256.
3852 */
3853 ASSERT(path->slots[0] > 0);
3854 path->slots[0]--;
3855 leaf = path->nodes[0];
3856 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3857 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
3858 /* No file extent items in the subvolume tree. */
3859 *last_extent_end_ret = 0;
3860 return 0;
3861 }
3862
3863 /*
3864 * For an inline extent, the disk_bytenr is where inline data starts at,
3865 * so first check if we have an inline extent item before checking if we
3866 * have an implicit hole (disk_bytenr == 0).
3867 */
3868 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
3869 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
3870 *last_extent_end_ret = btrfs_file_extent_end(path);
3871 return 0;
3872 }
3873
3874 /*
3875 * Find the last file extent item that is not a hole (when NO_HOLES is
3876 * not enabled). This should take at most 2 iterations in the worst
3877 * case: we have one hole file extent item at slot 0 of a leaf and
3878 * another hole file extent item as the last item in the previous leaf.
3879 * This is because we merge file extent items that represent holes.
3880 */
3881 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3882 while (disk_bytenr == 0) {
3883 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
3884 if (ret < 0) {
3885 return ret;
3886 } else if (ret > 0) {
3887 /* No file extent items that are not holes. */
3888 *last_extent_end_ret = 0;
3889 return 0;
3890 }
3891 leaf = path->nodes[0];
3892 ei = btrfs_item_ptr(leaf, path->slots[0],
3893 struct btrfs_file_extent_item);
3894 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3895 }
3896
3897 *last_extent_end_ret = btrfs_file_extent_end(path);
3898 return 0;
3899 }
3900
extent_fiemap(struct btrfs_inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)3901 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
3902 u64 start, u64 len)
3903 {
3904 const u64 ino = btrfs_ino(inode);
3905 struct extent_state *cached_state = NULL;
3906 struct btrfs_path *path;
3907 struct btrfs_root *root = inode->root;
3908 struct fiemap_cache cache = { 0 };
3909 struct btrfs_backref_shared_cache *backref_cache;
3910 struct ulist *roots;
3911 struct ulist *tmp_ulist;
3912 u64 last_extent_end;
3913 u64 prev_extent_end;
3914 u64 lockstart;
3915 u64 lockend;
3916 bool stopped = false;
3917 int ret;
3918
3919 backref_cache = kzalloc(sizeof(*backref_cache), GFP_KERNEL);
3920 path = btrfs_alloc_path();
3921 roots = ulist_alloc(GFP_KERNEL);
3922 tmp_ulist = ulist_alloc(GFP_KERNEL);
3923 if (!backref_cache || !path || !roots || !tmp_ulist) {
3924 ret = -ENOMEM;
3925 goto out;
3926 }
3927
3928 lockstart = round_down(start, root->fs_info->sectorsize);
3929 lockend = round_up(start + len, root->fs_info->sectorsize);
3930 prev_extent_end = lockstart;
3931
3932 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3933
3934 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
3935 if (ret < 0)
3936 goto out_unlock;
3937 btrfs_release_path(path);
3938
3939 path->reada = READA_FORWARD;
3940 ret = fiemap_search_slot(inode, path, lockstart);
3941 if (ret < 0) {
3942 goto out_unlock;
3943 } else if (ret > 0) {
3944 /*
3945 * No file extent item found, but we may have delalloc between
3946 * the current offset and i_size. So check for that.
3947 */
3948 ret = 0;
3949 goto check_eof_delalloc;
3950 }
3951
3952 while (prev_extent_end < lockend) {
3953 struct extent_buffer *leaf = path->nodes[0];
3954 struct btrfs_file_extent_item *ei;
3955 struct btrfs_key key;
3956 u64 extent_end;
3957 u64 extent_len;
3958 u64 extent_offset = 0;
3959 u64 extent_gen;
3960 u64 disk_bytenr = 0;
3961 u64 flags = 0;
3962 int extent_type;
3963 u8 compression;
3964
3965 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3966 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3967 break;
3968
3969 extent_end = btrfs_file_extent_end(path);
3970
3971 /*
3972 * The first iteration can leave us at an extent item that ends
3973 * before our range's start. Move to the next item.
3974 */
3975 if (extent_end <= lockstart)
3976 goto next_item;
3977
3978 /* We have in implicit hole (NO_HOLES feature enabled). */
3979 if (prev_extent_end < key.offset) {
3980 const u64 range_end = min(key.offset, lockend) - 1;
3981
3982 ret = fiemap_process_hole(inode, fieinfo, &cache,
3983 backref_cache, 0, 0, 0,
3984 roots, tmp_ulist,
3985 prev_extent_end, range_end);
3986 if (ret < 0) {
3987 goto out_unlock;
3988 } else if (ret > 0) {
3989 /* fiemap_fill_next_extent() told us to stop. */
3990 stopped = true;
3991 break;
3992 }
3993
3994 /* We've reached the end of the fiemap range, stop. */
3995 if (key.offset >= lockend) {
3996 stopped = true;
3997 break;
3998 }
3999 }
4000
4001 extent_len = extent_end - key.offset;
4002 ei = btrfs_item_ptr(leaf, path->slots[0],
4003 struct btrfs_file_extent_item);
4004 compression = btrfs_file_extent_compression(leaf, ei);
4005 extent_type = btrfs_file_extent_type(leaf, ei);
4006 extent_gen = btrfs_file_extent_generation(leaf, ei);
4007
4008 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4009 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
4010 if (compression == BTRFS_COMPRESS_NONE)
4011 extent_offset = btrfs_file_extent_offset(leaf, ei);
4012 }
4013
4014 if (compression != BTRFS_COMPRESS_NONE)
4015 flags |= FIEMAP_EXTENT_ENCODED;
4016
4017 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4018 flags |= FIEMAP_EXTENT_DATA_INLINE;
4019 flags |= FIEMAP_EXTENT_NOT_ALIGNED;
4020 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
4021 extent_len, flags);
4022 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
4023 ret = fiemap_process_hole(inode, fieinfo, &cache,
4024 backref_cache,
4025 disk_bytenr, extent_offset,
4026 extent_gen, roots, tmp_ulist,
4027 key.offset, extent_end - 1);
4028 } else if (disk_bytenr == 0) {
4029 /* We have an explicit hole. */
4030 ret = fiemap_process_hole(inode, fieinfo, &cache,
4031 backref_cache, 0, 0, 0,
4032 roots, tmp_ulist,
4033 key.offset, extent_end - 1);
4034 } else {
4035 /* We have a regular extent. */
4036 if (fieinfo->fi_extents_max) {
4037 ret = btrfs_is_data_extent_shared(root, ino,
4038 disk_bytenr,
4039 extent_gen,
4040 roots,
4041 tmp_ulist,
4042 backref_cache);
4043 if (ret < 0)
4044 goto out_unlock;
4045 else if (ret > 0)
4046 flags |= FIEMAP_EXTENT_SHARED;
4047 }
4048
4049 ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
4050 disk_bytenr + extent_offset,
4051 extent_len, flags);
4052 }
4053
4054 if (ret < 0) {
4055 goto out_unlock;
4056 } else if (ret > 0) {
4057 /* fiemap_fill_next_extent() told us to stop. */
4058 stopped = true;
4059 break;
4060 }
4061
4062 prev_extent_end = extent_end;
4063 next_item:
4064 if (fatal_signal_pending(current)) {
4065 ret = -EINTR;
4066 goto out_unlock;
4067 }
4068
4069 ret = fiemap_next_leaf_item(inode, path);
4070 if (ret < 0) {
4071 goto out_unlock;
4072 } else if (ret > 0) {
4073 /* No more file extent items for this inode. */
4074 break;
4075 }
4076 cond_resched();
4077 }
4078
4079 check_eof_delalloc:
4080 /*
4081 * Release (and free) the path before emitting any final entries to
4082 * fiemap_fill_next_extent() to keep lockdep happy. This is because
4083 * once we find no more file extent items exist, we may have a
4084 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
4085 * faults when copying data to the user space buffer.
4086 */
4087 btrfs_free_path(path);
4088 path = NULL;
4089
4090 if (!stopped && prev_extent_end < lockend) {
4091 ret = fiemap_process_hole(inode, fieinfo, &cache, backref_cache,
4092 0, 0, 0, roots, tmp_ulist,
4093 prev_extent_end, lockend - 1);
4094 if (ret < 0)
4095 goto out_unlock;
4096 prev_extent_end = lockend;
4097 }
4098
4099 if (cache.cached && cache.offset + cache.len >= last_extent_end) {
4100 const u64 i_size = i_size_read(&inode->vfs_inode);
4101
4102 if (prev_extent_end < i_size) {
4103 u64 delalloc_start;
4104 u64 delalloc_end;
4105 bool delalloc;
4106
4107 delalloc = btrfs_find_delalloc_in_range(inode,
4108 prev_extent_end,
4109 i_size - 1,
4110 &delalloc_start,
4111 &delalloc_end);
4112 if (!delalloc)
4113 cache.flags |= FIEMAP_EXTENT_LAST;
4114 } else {
4115 cache.flags |= FIEMAP_EXTENT_LAST;
4116 }
4117 }
4118
4119 ret = emit_last_fiemap_cache(fieinfo, &cache);
4120
4121 out_unlock:
4122 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
4123 out:
4124 kfree(backref_cache);
4125 btrfs_free_path(path);
4126 ulist_free(roots);
4127 ulist_free(tmp_ulist);
4128 return ret;
4129 }
4130
__free_extent_buffer(struct extent_buffer * eb)4131 static void __free_extent_buffer(struct extent_buffer *eb)
4132 {
4133 kmem_cache_free(extent_buffer_cache, eb);
4134 }
4135
extent_buffer_under_io(const struct extent_buffer * eb)4136 int extent_buffer_under_io(const struct extent_buffer *eb)
4137 {
4138 return (atomic_read(&eb->io_pages) ||
4139 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4140 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4141 }
4142
page_range_has_eb(struct btrfs_fs_info * fs_info,struct page * page)4143 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
4144 {
4145 struct btrfs_subpage *subpage;
4146
4147 lockdep_assert_held(&page->mapping->private_lock);
4148
4149 if (PagePrivate(page)) {
4150 subpage = (struct btrfs_subpage *)page->private;
4151 if (atomic_read(&subpage->eb_refs))
4152 return true;
4153 /*
4154 * Even there is no eb refs here, we may still have
4155 * end_page_read() call relying on page::private.
4156 */
4157 if (atomic_read(&subpage->readers))
4158 return true;
4159 }
4160 return false;
4161 }
4162
detach_extent_buffer_page(struct extent_buffer * eb,struct page * page)4163 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
4164 {
4165 struct btrfs_fs_info *fs_info = eb->fs_info;
4166 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4167
4168 /*
4169 * For mapped eb, we're going to change the page private, which should
4170 * be done under the private_lock.
4171 */
4172 if (mapped)
4173 spin_lock(&page->mapping->private_lock);
4174
4175 if (!PagePrivate(page)) {
4176 if (mapped)
4177 spin_unlock(&page->mapping->private_lock);
4178 return;
4179 }
4180
4181 if (fs_info->nodesize >= PAGE_SIZE) {
4182 /*
4183 * We do this since we'll remove the pages after we've
4184 * removed the eb from the radix tree, so we could race
4185 * and have this page now attached to the new eb. So
4186 * only clear page_private if it's still connected to
4187 * this eb.
4188 */
4189 if (PagePrivate(page) &&
4190 page->private == (unsigned long)eb) {
4191 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4192 BUG_ON(PageDirty(page));
4193 BUG_ON(PageWriteback(page));
4194 /*
4195 * We need to make sure we haven't be attached
4196 * to a new eb.
4197 */
4198 detach_page_private(page);
4199 }
4200 if (mapped)
4201 spin_unlock(&page->mapping->private_lock);
4202 return;
4203 }
4204
4205 /*
4206 * For subpage, we can have dummy eb with page private. In this case,
4207 * we can directly detach the private as such page is only attached to
4208 * one dummy eb, no sharing.
4209 */
4210 if (!mapped) {
4211 btrfs_detach_subpage(fs_info, page);
4212 return;
4213 }
4214
4215 btrfs_page_dec_eb_refs(fs_info, page);
4216
4217 /*
4218 * We can only detach the page private if there are no other ebs in the
4219 * page range and no unfinished IO.
4220 */
4221 if (!page_range_has_eb(fs_info, page))
4222 btrfs_detach_subpage(fs_info, page);
4223
4224 spin_unlock(&page->mapping->private_lock);
4225 }
4226
4227 /* Release all pages attached to the extent buffer */
btrfs_release_extent_buffer_pages(struct extent_buffer * eb)4228 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4229 {
4230 int i;
4231 int num_pages;
4232
4233 ASSERT(!extent_buffer_under_io(eb));
4234
4235 num_pages = num_extent_pages(eb);
4236 for (i = 0; i < num_pages; i++) {
4237 struct page *page = eb->pages[i];
4238
4239 if (!page)
4240 continue;
4241
4242 detach_extent_buffer_page(eb, page);
4243
4244 /* One for when we allocated the page */
4245 put_page(page);
4246 }
4247 }
4248
4249 /*
4250 * Helper for releasing the extent buffer.
4251 */
btrfs_release_extent_buffer(struct extent_buffer * eb)4252 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4253 {
4254 btrfs_release_extent_buffer_pages(eb);
4255 btrfs_leak_debug_del_eb(eb);
4256 __free_extent_buffer(eb);
4257 }
4258
4259 static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)4260 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4261 unsigned long len)
4262 {
4263 struct extent_buffer *eb = NULL;
4264
4265 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4266 eb->start = start;
4267 eb->len = len;
4268 eb->fs_info = fs_info;
4269 eb->bflags = 0;
4270 init_rwsem(&eb->lock);
4271
4272 btrfs_leak_debug_add_eb(eb);
4273 INIT_LIST_HEAD(&eb->release_list);
4274
4275 spin_lock_init(&eb->refs_lock);
4276 atomic_set(&eb->refs, 1);
4277 atomic_set(&eb->io_pages, 0);
4278
4279 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
4280
4281 return eb;
4282 }
4283
btrfs_clone_extent_buffer(const struct extent_buffer * src)4284 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
4285 {
4286 int i;
4287 struct extent_buffer *new;
4288 int num_pages = num_extent_pages(src);
4289 int ret;
4290
4291 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4292 if (new == NULL)
4293 return NULL;
4294
4295 /*
4296 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
4297 * btrfs_release_extent_buffer() have different behavior for
4298 * UNMAPPED subpage extent buffer.
4299 */
4300 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4301
4302 memset(new->pages, 0, sizeof(*new->pages) * num_pages);
4303 ret = btrfs_alloc_page_array(num_pages, new->pages);
4304 if (ret) {
4305 btrfs_release_extent_buffer(new);
4306 return NULL;
4307 }
4308
4309 for (i = 0; i < num_pages; i++) {
4310 int ret;
4311 struct page *p = new->pages[i];
4312
4313 ret = attach_extent_buffer_page(new, p, NULL);
4314 if (ret < 0) {
4315 btrfs_release_extent_buffer(new);
4316 return NULL;
4317 }
4318 WARN_ON(PageDirty(p));
4319 copy_page(page_address(p), page_address(src->pages[i]));
4320 }
4321 set_extent_buffer_uptodate(new);
4322
4323 return new;
4324 }
4325
__alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)4326 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4327 u64 start, unsigned long len)
4328 {
4329 struct extent_buffer *eb;
4330 int num_pages;
4331 int i;
4332 int ret;
4333
4334 eb = __alloc_extent_buffer(fs_info, start, len);
4335 if (!eb)
4336 return NULL;
4337
4338 num_pages = num_extent_pages(eb);
4339 ret = btrfs_alloc_page_array(num_pages, eb->pages);
4340 if (ret)
4341 goto err;
4342
4343 for (i = 0; i < num_pages; i++) {
4344 struct page *p = eb->pages[i];
4345
4346 ret = attach_extent_buffer_page(eb, p, NULL);
4347 if (ret < 0)
4348 goto err;
4349 }
4350
4351 set_extent_buffer_uptodate(eb);
4352 btrfs_set_header_nritems(eb, 0);
4353 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4354
4355 return eb;
4356 err:
4357 for (i = 0; i < num_pages; i++) {
4358 if (eb->pages[i]) {
4359 detach_extent_buffer_page(eb, eb->pages[i]);
4360 __free_page(eb->pages[i]);
4361 }
4362 }
4363 __free_extent_buffer(eb);
4364 return NULL;
4365 }
4366
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)4367 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4368 u64 start)
4369 {
4370 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4371 }
4372
check_buffer_tree_ref(struct extent_buffer * eb)4373 static void check_buffer_tree_ref(struct extent_buffer *eb)
4374 {
4375 int refs;
4376 /*
4377 * The TREE_REF bit is first set when the extent_buffer is added
4378 * to the radix tree. It is also reset, if unset, when a new reference
4379 * is created by find_extent_buffer.
4380 *
4381 * It is only cleared in two cases: freeing the last non-tree
4382 * reference to the extent_buffer when its STALE bit is set or
4383 * calling release_folio when the tree reference is the only reference.
4384 *
4385 * In both cases, care is taken to ensure that the extent_buffer's
4386 * pages are not under io. However, release_folio can be concurrently
4387 * called with creating new references, which is prone to race
4388 * conditions between the calls to check_buffer_tree_ref in those
4389 * codepaths and clearing TREE_REF in try_release_extent_buffer.
4390 *
4391 * The actual lifetime of the extent_buffer in the radix tree is
4392 * adequately protected by the refcount, but the TREE_REF bit and
4393 * its corresponding reference are not. To protect against this
4394 * class of races, we call check_buffer_tree_ref from the codepaths
4395 * which trigger io after they set eb->io_pages. Note that once io is
4396 * initiated, TREE_REF can no longer be cleared, so that is the
4397 * moment at which any such race is best fixed.
4398 */
4399 refs = atomic_read(&eb->refs);
4400 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4401 return;
4402
4403 spin_lock(&eb->refs_lock);
4404 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4405 atomic_inc(&eb->refs);
4406 spin_unlock(&eb->refs_lock);
4407 }
4408
mark_extent_buffer_accessed(struct extent_buffer * eb,struct page * accessed)4409 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4410 struct page *accessed)
4411 {
4412 int num_pages, i;
4413
4414 check_buffer_tree_ref(eb);
4415
4416 num_pages = num_extent_pages(eb);
4417 for (i = 0; i < num_pages; i++) {
4418 struct page *p = eb->pages[i];
4419
4420 if (p != accessed)
4421 mark_page_accessed(p);
4422 }
4423 }
4424
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)4425 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4426 u64 start)
4427 {
4428 struct extent_buffer *eb;
4429
4430 eb = find_extent_buffer_nolock(fs_info, start);
4431 if (!eb)
4432 return NULL;
4433 /*
4434 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
4435 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
4436 * another task running free_extent_buffer() might have seen that flag
4437 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
4438 * writeback flags not set) and it's still in the tree (flag
4439 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
4440 * decrementing the extent buffer's reference count twice. So here we
4441 * could race and increment the eb's reference count, clear its stale
4442 * flag, mark it as dirty and drop our reference before the other task
4443 * finishes executing free_extent_buffer, which would later result in
4444 * an attempt to free an extent buffer that is dirty.
4445 */
4446 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4447 spin_lock(&eb->refs_lock);
4448 spin_unlock(&eb->refs_lock);
4449 }
4450 mark_extent_buffer_accessed(eb, NULL);
4451 return eb;
4452 }
4453
4454 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)4455 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4456 u64 start)
4457 {
4458 struct extent_buffer *eb, *exists = NULL;
4459 int ret;
4460
4461 eb = find_extent_buffer(fs_info, start);
4462 if (eb)
4463 return eb;
4464 eb = alloc_dummy_extent_buffer(fs_info, start);
4465 if (!eb)
4466 return ERR_PTR(-ENOMEM);
4467 eb->fs_info = fs_info;
4468 again:
4469 ret = radix_tree_preload(GFP_NOFS);
4470 if (ret) {
4471 exists = ERR_PTR(ret);
4472 goto free_eb;
4473 }
4474 spin_lock(&fs_info->buffer_lock);
4475 ret = radix_tree_insert(&fs_info->buffer_radix,
4476 start >> fs_info->sectorsize_bits, eb);
4477 spin_unlock(&fs_info->buffer_lock);
4478 radix_tree_preload_end();
4479 if (ret == -EEXIST) {
4480 exists = find_extent_buffer(fs_info, start);
4481 if (exists)
4482 goto free_eb;
4483 else
4484 goto again;
4485 }
4486 check_buffer_tree_ref(eb);
4487 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4488
4489 return eb;
4490 free_eb:
4491 btrfs_release_extent_buffer(eb);
4492 return exists;
4493 }
4494 #endif
4495
grab_extent_buffer(struct btrfs_fs_info * fs_info,struct page * page)4496 static struct extent_buffer *grab_extent_buffer(
4497 struct btrfs_fs_info *fs_info, struct page *page)
4498 {
4499 struct extent_buffer *exists;
4500
4501 /*
4502 * For subpage case, we completely rely on radix tree to ensure we
4503 * don't try to insert two ebs for the same bytenr. So here we always
4504 * return NULL and just continue.
4505 */
4506 if (fs_info->nodesize < PAGE_SIZE)
4507 return NULL;
4508
4509 /* Page not yet attached to an extent buffer */
4510 if (!PagePrivate(page))
4511 return NULL;
4512
4513 /*
4514 * We could have already allocated an eb for this page and attached one
4515 * so lets see if we can get a ref on the existing eb, and if we can we
4516 * know it's good and we can just return that one, else we know we can
4517 * just overwrite page->private.
4518 */
4519 exists = (struct extent_buffer *)page->private;
4520 if (atomic_inc_not_zero(&exists->refs))
4521 return exists;
4522
4523 WARN_ON(PageDirty(page));
4524 detach_page_private(page);
4525 return NULL;
4526 }
4527
check_eb_alignment(struct btrfs_fs_info * fs_info,u64 start)4528 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
4529 {
4530 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4531 btrfs_err(fs_info, "bad tree block start %llu", start);
4532 return -EINVAL;
4533 }
4534
4535 if (fs_info->nodesize < PAGE_SIZE &&
4536 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
4537 btrfs_err(fs_info,
4538 "tree block crosses page boundary, start %llu nodesize %u",
4539 start, fs_info->nodesize);
4540 return -EINVAL;
4541 }
4542 if (fs_info->nodesize >= PAGE_SIZE &&
4543 !PAGE_ALIGNED(start)) {
4544 btrfs_err(fs_info,
4545 "tree block is not page aligned, start %llu nodesize %u",
4546 start, fs_info->nodesize);
4547 return -EINVAL;
4548 }
4549 return 0;
4550 }
4551
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,u64 owner_root,int level)4552 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4553 u64 start, u64 owner_root, int level)
4554 {
4555 unsigned long len = fs_info->nodesize;
4556 int num_pages;
4557 int i;
4558 unsigned long index = start >> PAGE_SHIFT;
4559 struct extent_buffer *eb;
4560 struct extent_buffer *exists = NULL;
4561 struct page *p;
4562 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4563 u64 lockdep_owner = owner_root;
4564 int uptodate = 1;
4565 int ret;
4566
4567 if (check_eb_alignment(fs_info, start))
4568 return ERR_PTR(-EINVAL);
4569
4570 #if BITS_PER_LONG == 32
4571 if (start >= MAX_LFS_FILESIZE) {
4572 btrfs_err_rl(fs_info,
4573 "extent buffer %llu is beyond 32bit page cache limit", start);
4574 btrfs_err_32bit_limit(fs_info);
4575 return ERR_PTR(-EOVERFLOW);
4576 }
4577 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
4578 btrfs_warn_32bit_limit(fs_info);
4579 #endif
4580
4581 eb = find_extent_buffer(fs_info, start);
4582 if (eb)
4583 return eb;
4584
4585 eb = __alloc_extent_buffer(fs_info, start, len);
4586 if (!eb)
4587 return ERR_PTR(-ENOMEM);
4588
4589 /*
4590 * The reloc trees are just snapshots, so we need them to appear to be
4591 * just like any other fs tree WRT lockdep.
4592 */
4593 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
4594 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4595
4596 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
4597
4598 num_pages = num_extent_pages(eb);
4599 for (i = 0; i < num_pages; i++, index++) {
4600 struct btrfs_subpage *prealloc = NULL;
4601
4602 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4603 if (!p) {
4604 exists = ERR_PTR(-ENOMEM);
4605 goto free_eb;
4606 }
4607
4608 /*
4609 * Preallocate page->private for subpage case, so that we won't
4610 * allocate memory with private_lock hold. The memory will be
4611 * freed by attach_extent_buffer_page() or freed manually if
4612 * we exit earlier.
4613 *
4614 * Although we have ensured one subpage eb can only have one
4615 * page, but it may change in the future for 16K page size
4616 * support, so we still preallocate the memory in the loop.
4617 */
4618 if (fs_info->nodesize < PAGE_SIZE) {
4619 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
4620 if (IS_ERR(prealloc)) {
4621 ret = PTR_ERR(prealloc);
4622 unlock_page(p);
4623 put_page(p);
4624 exists = ERR_PTR(ret);
4625 goto free_eb;
4626 }
4627 }
4628
4629 spin_lock(&mapping->private_lock);
4630 exists = grab_extent_buffer(fs_info, p);
4631 if (exists) {
4632 spin_unlock(&mapping->private_lock);
4633 unlock_page(p);
4634 put_page(p);
4635 mark_extent_buffer_accessed(exists, p);
4636 btrfs_free_subpage(prealloc);
4637 goto free_eb;
4638 }
4639 /* Should not fail, as we have preallocated the memory */
4640 ret = attach_extent_buffer_page(eb, p, prealloc);
4641 ASSERT(!ret);
4642 /*
4643 * To inform we have extra eb under allocation, so that
4644 * detach_extent_buffer_page() won't release the page private
4645 * when the eb hasn't yet been inserted into radix tree.
4646 *
4647 * The ref will be decreased when the eb released the page, in
4648 * detach_extent_buffer_page().
4649 * Thus needs no special handling in error path.
4650 */
4651 btrfs_page_inc_eb_refs(fs_info, p);
4652 spin_unlock(&mapping->private_lock);
4653
4654 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
4655 eb->pages[i] = p;
4656 if (!PageUptodate(p))
4657 uptodate = 0;
4658
4659 /*
4660 * We can't unlock the pages just yet since the extent buffer
4661 * hasn't been properly inserted in the radix tree, this
4662 * opens a race with btree_release_folio which can free a page
4663 * while we are still filling in all pages for the buffer and
4664 * we could crash.
4665 */
4666 }
4667 if (uptodate)
4668 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4669 again:
4670 ret = radix_tree_preload(GFP_NOFS);
4671 if (ret) {
4672 exists = ERR_PTR(ret);
4673 goto free_eb;
4674 }
4675
4676 spin_lock(&fs_info->buffer_lock);
4677 ret = radix_tree_insert(&fs_info->buffer_radix,
4678 start >> fs_info->sectorsize_bits, eb);
4679 spin_unlock(&fs_info->buffer_lock);
4680 radix_tree_preload_end();
4681 if (ret == -EEXIST) {
4682 exists = find_extent_buffer(fs_info, start);
4683 if (exists)
4684 goto free_eb;
4685 else
4686 goto again;
4687 }
4688 /* add one reference for the tree */
4689 check_buffer_tree_ref(eb);
4690 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4691
4692 /*
4693 * Now it's safe to unlock the pages because any calls to
4694 * btree_release_folio will correctly detect that a page belongs to a
4695 * live buffer and won't free them prematurely.
4696 */
4697 for (i = 0; i < num_pages; i++)
4698 unlock_page(eb->pages[i]);
4699 return eb;
4700
4701 free_eb:
4702 WARN_ON(!atomic_dec_and_test(&eb->refs));
4703 for (i = 0; i < num_pages; i++) {
4704 if (eb->pages[i])
4705 unlock_page(eb->pages[i]);
4706 }
4707
4708 btrfs_release_extent_buffer(eb);
4709 return exists;
4710 }
4711
btrfs_release_extent_buffer_rcu(struct rcu_head * head)4712 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4713 {
4714 struct extent_buffer *eb =
4715 container_of(head, struct extent_buffer, rcu_head);
4716
4717 __free_extent_buffer(eb);
4718 }
4719
release_extent_buffer(struct extent_buffer * eb)4720 static int release_extent_buffer(struct extent_buffer *eb)
4721 __releases(&eb->refs_lock)
4722 {
4723 lockdep_assert_held(&eb->refs_lock);
4724
4725 WARN_ON(atomic_read(&eb->refs) == 0);
4726 if (atomic_dec_and_test(&eb->refs)) {
4727 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4728 struct btrfs_fs_info *fs_info = eb->fs_info;
4729
4730 spin_unlock(&eb->refs_lock);
4731
4732 spin_lock(&fs_info->buffer_lock);
4733 radix_tree_delete(&fs_info->buffer_radix,
4734 eb->start >> fs_info->sectorsize_bits);
4735 spin_unlock(&fs_info->buffer_lock);
4736 } else {
4737 spin_unlock(&eb->refs_lock);
4738 }
4739
4740 btrfs_leak_debug_del_eb(eb);
4741 /* Should be safe to release our pages at this point */
4742 btrfs_release_extent_buffer_pages(eb);
4743 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4744 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
4745 __free_extent_buffer(eb);
4746 return 1;
4747 }
4748 #endif
4749 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4750 return 1;
4751 }
4752 spin_unlock(&eb->refs_lock);
4753
4754 return 0;
4755 }
4756
free_extent_buffer(struct extent_buffer * eb)4757 void free_extent_buffer(struct extent_buffer *eb)
4758 {
4759 int refs;
4760 if (!eb)
4761 return;
4762
4763 refs = atomic_read(&eb->refs);
4764 while (1) {
4765 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
4766 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
4767 refs == 1))
4768 break;
4769 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
4770 return;
4771 }
4772
4773 spin_lock(&eb->refs_lock);
4774 if (atomic_read(&eb->refs) == 2 &&
4775 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4776 !extent_buffer_under_io(eb) &&
4777 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4778 atomic_dec(&eb->refs);
4779
4780 /*
4781 * I know this is terrible, but it's temporary until we stop tracking
4782 * the uptodate bits and such for the extent buffers.
4783 */
4784 release_extent_buffer(eb);
4785 }
4786
free_extent_buffer_stale(struct extent_buffer * eb)4787 void free_extent_buffer_stale(struct extent_buffer *eb)
4788 {
4789 if (!eb)
4790 return;
4791
4792 spin_lock(&eb->refs_lock);
4793 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4794
4795 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4796 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4797 atomic_dec(&eb->refs);
4798 release_extent_buffer(eb);
4799 }
4800
btree_clear_page_dirty(struct page * page)4801 static void btree_clear_page_dirty(struct page *page)
4802 {
4803 ASSERT(PageDirty(page));
4804 ASSERT(PageLocked(page));
4805 clear_page_dirty_for_io(page);
4806 xa_lock_irq(&page->mapping->i_pages);
4807 if (!PageDirty(page))
4808 __xa_clear_mark(&page->mapping->i_pages,
4809 page_index(page), PAGECACHE_TAG_DIRTY);
4810 xa_unlock_irq(&page->mapping->i_pages);
4811 }
4812
clear_subpage_extent_buffer_dirty(const struct extent_buffer * eb)4813 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
4814 {
4815 struct btrfs_fs_info *fs_info = eb->fs_info;
4816 struct page *page = eb->pages[0];
4817 bool last;
4818
4819 /* btree_clear_page_dirty() needs page locked */
4820 lock_page(page);
4821 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
4822 eb->len);
4823 if (last)
4824 btree_clear_page_dirty(page);
4825 unlock_page(page);
4826 WARN_ON(atomic_read(&eb->refs) == 0);
4827 }
4828
clear_extent_buffer_dirty(const struct extent_buffer * eb)4829 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
4830 {
4831 int i;
4832 int num_pages;
4833 struct page *page;
4834
4835 if (eb->fs_info->nodesize < PAGE_SIZE)
4836 return clear_subpage_extent_buffer_dirty(eb);
4837
4838 num_pages = num_extent_pages(eb);
4839
4840 for (i = 0; i < num_pages; i++) {
4841 page = eb->pages[i];
4842 if (!PageDirty(page))
4843 continue;
4844 lock_page(page);
4845 btree_clear_page_dirty(page);
4846 ClearPageError(page);
4847 unlock_page(page);
4848 }
4849 WARN_ON(atomic_read(&eb->refs) == 0);
4850 }
4851
set_extent_buffer_dirty(struct extent_buffer * eb)4852 bool set_extent_buffer_dirty(struct extent_buffer *eb)
4853 {
4854 int i;
4855 int num_pages;
4856 bool was_dirty;
4857
4858 check_buffer_tree_ref(eb);
4859
4860 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4861
4862 num_pages = num_extent_pages(eb);
4863 WARN_ON(atomic_read(&eb->refs) == 0);
4864 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4865
4866 if (!was_dirty) {
4867 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
4868
4869 /*
4870 * For subpage case, we can have other extent buffers in the
4871 * same page, and in clear_subpage_extent_buffer_dirty() we
4872 * have to clear page dirty without subpage lock held.
4873 * This can cause race where our page gets dirty cleared after
4874 * we just set it.
4875 *
4876 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
4877 * its page for other reasons, we can use page lock to prevent
4878 * the above race.
4879 */
4880 if (subpage)
4881 lock_page(eb->pages[0]);
4882 for (i = 0; i < num_pages; i++)
4883 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
4884 eb->start, eb->len);
4885 if (subpage)
4886 unlock_page(eb->pages[0]);
4887 }
4888 #ifdef CONFIG_BTRFS_DEBUG
4889 for (i = 0; i < num_pages; i++)
4890 ASSERT(PageDirty(eb->pages[i]));
4891 #endif
4892
4893 return was_dirty;
4894 }
4895
clear_extent_buffer_uptodate(struct extent_buffer * eb)4896 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
4897 {
4898 struct btrfs_fs_info *fs_info = eb->fs_info;
4899 struct page *page;
4900 int num_pages;
4901 int i;
4902
4903 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4904 num_pages = num_extent_pages(eb);
4905 for (i = 0; i < num_pages; i++) {
4906 page = eb->pages[i];
4907 if (!page)
4908 continue;
4909
4910 /*
4911 * This is special handling for metadata subpage, as regular
4912 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4913 */
4914 if (fs_info->nodesize >= PAGE_SIZE)
4915 ClearPageUptodate(page);
4916 else
4917 btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
4918 eb->len);
4919 }
4920 }
4921
set_extent_buffer_uptodate(struct extent_buffer * eb)4922 void set_extent_buffer_uptodate(struct extent_buffer *eb)
4923 {
4924 struct btrfs_fs_info *fs_info = eb->fs_info;
4925 struct page *page;
4926 int num_pages;
4927 int i;
4928
4929 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4930 num_pages = num_extent_pages(eb);
4931 for (i = 0; i < num_pages; i++) {
4932 page = eb->pages[i];
4933
4934 /*
4935 * This is special handling for metadata subpage, as regular
4936 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4937 */
4938 if (fs_info->nodesize >= PAGE_SIZE)
4939 SetPageUptodate(page);
4940 else
4941 btrfs_subpage_set_uptodate(fs_info, page, eb->start,
4942 eb->len);
4943 }
4944 }
4945
read_extent_buffer_subpage(struct extent_buffer * eb,int wait,int mirror_num)4946 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
4947 int mirror_num)
4948 {
4949 struct btrfs_fs_info *fs_info = eb->fs_info;
4950 struct extent_io_tree *io_tree;
4951 struct page *page = eb->pages[0];
4952 struct btrfs_bio_ctrl bio_ctrl = {
4953 .mirror_num = mirror_num,
4954 };
4955 int ret = 0;
4956
4957 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
4958 ASSERT(PagePrivate(page));
4959 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
4960
4961 if (wait == WAIT_NONE) {
4962 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
4963 return -EAGAIN;
4964 } else {
4965 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1, NULL);
4966 if (ret < 0)
4967 return ret;
4968 }
4969
4970 ret = 0;
4971 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
4972 PageUptodate(page) ||
4973 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
4974 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4975 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, NULL);
4976 return ret;
4977 }
4978
4979 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4980 eb->read_mirror = 0;
4981 atomic_set(&eb->io_pages, 1);
4982 check_buffer_tree_ref(eb);
4983 bio_ctrl.end_io_func = end_bio_extent_readpage;
4984
4985 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
4986
4987 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
4988 ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl,
4989 eb->start, page, eb->len,
4990 eb->start - page_offset(page), 0, true);
4991 if (ret) {
4992 /*
4993 * In the endio function, if we hit something wrong we will
4994 * increase the io_pages, so here we need to decrease it for
4995 * error path.
4996 */
4997 atomic_dec(&eb->io_pages);
4998 }
4999 submit_one_bio(&bio_ctrl);
5000 if (ret || wait != WAIT_COMPLETE)
5001 return ret;
5002
5003 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
5004 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5005 ret = -EIO;
5006 return ret;
5007 }
5008
read_extent_buffer_pages(struct extent_buffer * eb,int wait,int mirror_num)5009 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5010 {
5011 int i;
5012 struct page *page;
5013 int err;
5014 int ret = 0;
5015 int locked_pages = 0;
5016 int all_uptodate = 1;
5017 int num_pages;
5018 unsigned long num_reads = 0;
5019 struct btrfs_bio_ctrl bio_ctrl = {
5020 .mirror_num = mirror_num,
5021 };
5022
5023 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5024 return 0;
5025
5026 /*
5027 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
5028 * operation, which could potentially still be in flight. In this case
5029 * we simply want to return an error.
5030 */
5031 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
5032 return -EIO;
5033
5034 if (eb->fs_info->nodesize < PAGE_SIZE)
5035 return read_extent_buffer_subpage(eb, wait, mirror_num);
5036
5037 num_pages = num_extent_pages(eb);
5038 for (i = 0; i < num_pages; i++) {
5039 page = eb->pages[i];
5040 if (wait == WAIT_NONE) {
5041 /*
5042 * WAIT_NONE is only utilized by readahead. If we can't
5043 * acquire the lock atomically it means either the eb
5044 * is being read out or under modification.
5045 * Either way the eb will be or has been cached,
5046 * readahead can exit safely.
5047 */
5048 if (!trylock_page(page))
5049 goto unlock_exit;
5050 } else {
5051 lock_page(page);
5052 }
5053 locked_pages++;
5054 }
5055 /*
5056 * We need to firstly lock all pages to make sure that
5057 * the uptodate bit of our pages won't be affected by
5058 * clear_extent_buffer_uptodate().
5059 */
5060 for (i = 0; i < num_pages; i++) {
5061 page = eb->pages[i];
5062 if (!PageUptodate(page)) {
5063 num_reads++;
5064 all_uptodate = 0;
5065 }
5066 }
5067
5068 if (all_uptodate) {
5069 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5070 goto unlock_exit;
5071 }
5072
5073 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5074 eb->read_mirror = 0;
5075 atomic_set(&eb->io_pages, num_reads);
5076 /*
5077 * It is possible for release_folio to clear the TREE_REF bit before we
5078 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5079 */
5080 check_buffer_tree_ref(eb);
5081 bio_ctrl.end_io_func = end_bio_extent_readpage;
5082 for (i = 0; i < num_pages; i++) {
5083 page = eb->pages[i];
5084
5085 if (!PageUptodate(page)) {
5086 if (ret) {
5087 atomic_dec(&eb->io_pages);
5088 unlock_page(page);
5089 continue;
5090 }
5091
5092 ClearPageError(page);
5093 err = submit_extent_page(REQ_OP_READ, NULL,
5094 &bio_ctrl, page_offset(page), page,
5095 PAGE_SIZE, 0, 0, false);
5096 if (err) {
5097 /*
5098 * We failed to submit the bio so it's the
5099 * caller's responsibility to perform cleanup
5100 * i.e unlock page/set error bit.
5101 */
5102 ret = err;
5103 SetPageError(page);
5104 unlock_page(page);
5105 atomic_dec(&eb->io_pages);
5106 }
5107 } else {
5108 unlock_page(page);
5109 }
5110 }
5111
5112 submit_one_bio(&bio_ctrl);
5113
5114 if (ret || wait != WAIT_COMPLETE)
5115 return ret;
5116
5117 for (i = 0; i < num_pages; i++) {
5118 page = eb->pages[i];
5119 wait_on_page_locked(page);
5120 if (!PageUptodate(page))
5121 ret = -EIO;
5122 }
5123
5124 return ret;
5125
5126 unlock_exit:
5127 while (locked_pages > 0) {
5128 locked_pages--;
5129 page = eb->pages[locked_pages];
5130 unlock_page(page);
5131 }
5132 return ret;
5133 }
5134
report_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)5135 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
5136 unsigned long len)
5137 {
5138 btrfs_warn(eb->fs_info,
5139 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
5140 eb->start, eb->len, start, len);
5141 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5142
5143 return true;
5144 }
5145
5146 /*
5147 * Check if the [start, start + len) range is valid before reading/writing
5148 * the eb.
5149 * NOTE: @start and @len are offset inside the eb, not logical address.
5150 *
5151 * Caller should not touch the dst/src memory if this function returns error.
5152 */
check_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)5153 static inline int check_eb_range(const struct extent_buffer *eb,
5154 unsigned long start, unsigned long len)
5155 {
5156 unsigned long offset;
5157
5158 /* start, start + len should not go beyond eb->len nor overflow */
5159 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
5160 return report_eb_range(eb, start, len);
5161
5162 return false;
5163 }
5164
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)5165 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5166 unsigned long start, unsigned long len)
5167 {
5168 size_t cur;
5169 size_t offset;
5170 struct page *page;
5171 char *kaddr;
5172 char *dst = (char *)dstv;
5173 unsigned long i = get_eb_page_index(start);
5174
5175 if (check_eb_range(eb, start, len))
5176 return;
5177
5178 offset = get_eb_offset_in_page(eb, start);
5179
5180 while (len > 0) {
5181 page = eb->pages[i];
5182
5183 cur = min(len, (PAGE_SIZE - offset));
5184 kaddr = page_address(page);
5185 memcpy(dst, kaddr + offset, cur);
5186
5187 dst += cur;
5188 len -= cur;
5189 offset = 0;
5190 i++;
5191 }
5192 }
5193
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)5194 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5195 void __user *dstv,
5196 unsigned long start, unsigned long len)
5197 {
5198 size_t cur;
5199 size_t offset;
5200 struct page *page;
5201 char *kaddr;
5202 char __user *dst = (char __user *)dstv;
5203 unsigned long i = get_eb_page_index(start);
5204 int ret = 0;
5205
5206 WARN_ON(start > eb->len);
5207 WARN_ON(start + len > eb->start + eb->len);
5208
5209 offset = get_eb_offset_in_page(eb, start);
5210
5211 while (len > 0) {
5212 page = eb->pages[i];
5213
5214 cur = min(len, (PAGE_SIZE - offset));
5215 kaddr = page_address(page);
5216 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
5217 ret = -EFAULT;
5218 break;
5219 }
5220
5221 dst += cur;
5222 len -= cur;
5223 offset = 0;
5224 i++;
5225 }
5226
5227 return ret;
5228 }
5229
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)5230 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5231 unsigned long start, unsigned long len)
5232 {
5233 size_t cur;
5234 size_t offset;
5235 struct page *page;
5236 char *kaddr;
5237 char *ptr = (char *)ptrv;
5238 unsigned long i = get_eb_page_index(start);
5239 int ret = 0;
5240
5241 if (check_eb_range(eb, start, len))
5242 return -EINVAL;
5243
5244 offset = get_eb_offset_in_page(eb, start);
5245
5246 while (len > 0) {
5247 page = eb->pages[i];
5248
5249 cur = min(len, (PAGE_SIZE - offset));
5250
5251 kaddr = page_address(page);
5252 ret = memcmp(ptr, kaddr + offset, cur);
5253 if (ret)
5254 break;
5255
5256 ptr += cur;
5257 len -= cur;
5258 offset = 0;
5259 i++;
5260 }
5261 return ret;
5262 }
5263
5264 /*
5265 * Check that the extent buffer is uptodate.
5266 *
5267 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
5268 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
5269 */
assert_eb_page_uptodate(const struct extent_buffer * eb,struct page * page)5270 static void assert_eb_page_uptodate(const struct extent_buffer *eb,
5271 struct page *page)
5272 {
5273 struct btrfs_fs_info *fs_info = eb->fs_info;
5274
5275 /*
5276 * If we are using the commit root we could potentially clear a page
5277 * Uptodate while we're using the extent buffer that we've previously
5278 * looked up. We don't want to complain in this case, as the page was
5279 * valid before, we just didn't write it out. Instead we want to catch
5280 * the case where we didn't actually read the block properly, which
5281 * would have !PageUptodate && !PageError, as we clear PageError before
5282 * reading.
5283 */
5284 if (fs_info->nodesize < PAGE_SIZE) {
5285 bool uptodate, error;
5286
5287 uptodate = btrfs_subpage_test_uptodate(fs_info, page,
5288 eb->start, eb->len);
5289 error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
5290 WARN_ON(!uptodate && !error);
5291 } else {
5292 WARN_ON(!PageUptodate(page) && !PageError(page));
5293 }
5294 }
5295
write_extent_buffer_chunk_tree_uuid(const struct extent_buffer * eb,const void * srcv)5296 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5297 const void *srcv)
5298 {
5299 char *kaddr;
5300
5301 assert_eb_page_uptodate(eb, eb->pages[0]);
5302 kaddr = page_address(eb->pages[0]) +
5303 get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
5304 chunk_tree_uuid));
5305 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
5306 }
5307
write_extent_buffer_fsid(const struct extent_buffer * eb,const void * srcv)5308 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5309 {
5310 char *kaddr;
5311
5312 assert_eb_page_uptodate(eb, eb->pages[0]);
5313 kaddr = page_address(eb->pages[0]) +
5314 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
5315 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
5316 }
5317
write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)5318 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5319 unsigned long start, unsigned long len)
5320 {
5321 size_t cur;
5322 size_t offset;
5323 struct page *page;
5324 char *kaddr;
5325 char *src = (char *)srcv;
5326 unsigned long i = get_eb_page_index(start);
5327
5328 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
5329
5330 if (check_eb_range(eb, start, len))
5331 return;
5332
5333 offset = get_eb_offset_in_page(eb, start);
5334
5335 while (len > 0) {
5336 page = eb->pages[i];
5337 assert_eb_page_uptodate(eb, page);
5338
5339 cur = min(len, PAGE_SIZE - offset);
5340 kaddr = page_address(page);
5341 memcpy(kaddr + offset, src, cur);
5342
5343 src += cur;
5344 len -= cur;
5345 offset = 0;
5346 i++;
5347 }
5348 }
5349
memzero_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long len)5350 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5351 unsigned long len)
5352 {
5353 size_t cur;
5354 size_t offset;
5355 struct page *page;
5356 char *kaddr;
5357 unsigned long i = get_eb_page_index(start);
5358
5359 if (check_eb_range(eb, start, len))
5360 return;
5361
5362 offset = get_eb_offset_in_page(eb, start);
5363
5364 while (len > 0) {
5365 page = eb->pages[i];
5366 assert_eb_page_uptodate(eb, page);
5367
5368 cur = min(len, PAGE_SIZE - offset);
5369 kaddr = page_address(page);
5370 memset(kaddr + offset, 0, cur);
5371
5372 len -= cur;
5373 offset = 0;
5374 i++;
5375 }
5376 }
5377
copy_extent_buffer_full(const struct extent_buffer * dst,const struct extent_buffer * src)5378 void copy_extent_buffer_full(const struct extent_buffer *dst,
5379 const struct extent_buffer *src)
5380 {
5381 int i;
5382 int num_pages;
5383
5384 ASSERT(dst->len == src->len);
5385
5386 if (dst->fs_info->nodesize >= PAGE_SIZE) {
5387 num_pages = num_extent_pages(dst);
5388 for (i = 0; i < num_pages; i++)
5389 copy_page(page_address(dst->pages[i]),
5390 page_address(src->pages[i]));
5391 } else {
5392 size_t src_offset = get_eb_offset_in_page(src, 0);
5393 size_t dst_offset = get_eb_offset_in_page(dst, 0);
5394
5395 ASSERT(src->fs_info->nodesize < PAGE_SIZE);
5396 memcpy(page_address(dst->pages[0]) + dst_offset,
5397 page_address(src->pages[0]) + src_offset,
5398 src->len);
5399 }
5400 }
5401
copy_extent_buffer(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5402 void copy_extent_buffer(const struct extent_buffer *dst,
5403 const struct extent_buffer *src,
5404 unsigned long dst_offset, unsigned long src_offset,
5405 unsigned long len)
5406 {
5407 u64 dst_len = dst->len;
5408 size_t cur;
5409 size_t offset;
5410 struct page *page;
5411 char *kaddr;
5412 unsigned long i = get_eb_page_index(dst_offset);
5413
5414 if (check_eb_range(dst, dst_offset, len) ||
5415 check_eb_range(src, src_offset, len))
5416 return;
5417
5418 WARN_ON(src->len != dst_len);
5419
5420 offset = get_eb_offset_in_page(dst, dst_offset);
5421
5422 while (len > 0) {
5423 page = dst->pages[i];
5424 assert_eb_page_uptodate(dst, page);
5425
5426 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5427
5428 kaddr = page_address(page);
5429 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5430
5431 src_offset += cur;
5432 len -= cur;
5433 offset = 0;
5434 i++;
5435 }
5436 }
5437
5438 /*
5439 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5440 * given bit number
5441 * @eb: the extent buffer
5442 * @start: offset of the bitmap item in the extent buffer
5443 * @nr: bit number
5444 * @page_index: return index of the page in the extent buffer that contains the
5445 * given bit number
5446 * @page_offset: return offset into the page given by page_index
5447 *
5448 * This helper hides the ugliness of finding the byte in an extent buffer which
5449 * contains a given bit.
5450 */
eb_bitmap_offset(const struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * page_index,size_t * page_offset)5451 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5452 unsigned long start, unsigned long nr,
5453 unsigned long *page_index,
5454 size_t *page_offset)
5455 {
5456 size_t byte_offset = BIT_BYTE(nr);
5457 size_t offset;
5458
5459 /*
5460 * The byte we want is the offset of the extent buffer + the offset of
5461 * the bitmap item in the extent buffer + the offset of the byte in the
5462 * bitmap item.
5463 */
5464 offset = start + offset_in_page(eb->start) + byte_offset;
5465
5466 *page_index = offset >> PAGE_SHIFT;
5467 *page_offset = offset_in_page(offset);
5468 }
5469
5470 /**
5471 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5472 * @eb: the extent buffer
5473 * @start: offset of the bitmap item in the extent buffer
5474 * @nr: bit number to test
5475 */
extent_buffer_test_bit(const struct extent_buffer * eb,unsigned long start,unsigned long nr)5476 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5477 unsigned long nr)
5478 {
5479 u8 *kaddr;
5480 struct page *page;
5481 unsigned long i;
5482 size_t offset;
5483
5484 eb_bitmap_offset(eb, start, nr, &i, &offset);
5485 page = eb->pages[i];
5486 assert_eb_page_uptodate(eb, page);
5487 kaddr = page_address(page);
5488 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5489 }
5490
5491 /**
5492 * extent_buffer_bitmap_set - set an area of a bitmap
5493 * @eb: the extent buffer
5494 * @start: offset of the bitmap item in the extent buffer
5495 * @pos: bit number of the first bit
5496 * @len: number of bits to set
5497 */
extent_buffer_bitmap_set(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)5498 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5499 unsigned long pos, unsigned long len)
5500 {
5501 u8 *kaddr;
5502 struct page *page;
5503 unsigned long i;
5504 size_t offset;
5505 const unsigned int size = pos + len;
5506 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5507 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5508
5509 eb_bitmap_offset(eb, start, pos, &i, &offset);
5510 page = eb->pages[i];
5511 assert_eb_page_uptodate(eb, page);
5512 kaddr = page_address(page);
5513
5514 while (len >= bits_to_set) {
5515 kaddr[offset] |= mask_to_set;
5516 len -= bits_to_set;
5517 bits_to_set = BITS_PER_BYTE;
5518 mask_to_set = ~0;
5519 if (++offset >= PAGE_SIZE && len > 0) {
5520 offset = 0;
5521 page = eb->pages[++i];
5522 assert_eb_page_uptodate(eb, page);
5523 kaddr = page_address(page);
5524 }
5525 }
5526 if (len) {
5527 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5528 kaddr[offset] |= mask_to_set;
5529 }
5530 }
5531
5532
5533 /**
5534 * extent_buffer_bitmap_clear - clear an area of a bitmap
5535 * @eb: the extent buffer
5536 * @start: offset of the bitmap item in the extent buffer
5537 * @pos: bit number of the first bit
5538 * @len: number of bits to clear
5539 */
extent_buffer_bitmap_clear(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)5540 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5541 unsigned long start, unsigned long pos,
5542 unsigned long len)
5543 {
5544 u8 *kaddr;
5545 struct page *page;
5546 unsigned long i;
5547 size_t offset;
5548 const unsigned int size = pos + len;
5549 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5550 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5551
5552 eb_bitmap_offset(eb, start, pos, &i, &offset);
5553 page = eb->pages[i];
5554 assert_eb_page_uptodate(eb, page);
5555 kaddr = page_address(page);
5556
5557 while (len >= bits_to_clear) {
5558 kaddr[offset] &= ~mask_to_clear;
5559 len -= bits_to_clear;
5560 bits_to_clear = BITS_PER_BYTE;
5561 mask_to_clear = ~0;
5562 if (++offset >= PAGE_SIZE && len > 0) {
5563 offset = 0;
5564 page = eb->pages[++i];
5565 assert_eb_page_uptodate(eb, page);
5566 kaddr = page_address(page);
5567 }
5568 }
5569 if (len) {
5570 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5571 kaddr[offset] &= ~mask_to_clear;
5572 }
5573 }
5574
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)5575 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5576 {
5577 unsigned long distance = (src > dst) ? src - dst : dst - src;
5578 return distance < len;
5579 }
5580
copy_pages(struct page * dst_page,struct page * src_page,unsigned long dst_off,unsigned long src_off,unsigned long len)5581 static void copy_pages(struct page *dst_page, struct page *src_page,
5582 unsigned long dst_off, unsigned long src_off,
5583 unsigned long len)
5584 {
5585 char *dst_kaddr = page_address(dst_page);
5586 char *src_kaddr;
5587 int must_memmove = 0;
5588
5589 if (dst_page != src_page) {
5590 src_kaddr = page_address(src_page);
5591 } else {
5592 src_kaddr = dst_kaddr;
5593 if (areas_overlap(src_off, dst_off, len))
5594 must_memmove = 1;
5595 }
5596
5597 if (must_memmove)
5598 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5599 else
5600 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5601 }
5602
memcpy_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5603 void memcpy_extent_buffer(const struct extent_buffer *dst,
5604 unsigned long dst_offset, unsigned long src_offset,
5605 unsigned long len)
5606 {
5607 size_t cur;
5608 size_t dst_off_in_page;
5609 size_t src_off_in_page;
5610 unsigned long dst_i;
5611 unsigned long src_i;
5612
5613 if (check_eb_range(dst, dst_offset, len) ||
5614 check_eb_range(dst, src_offset, len))
5615 return;
5616
5617 while (len > 0) {
5618 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
5619 src_off_in_page = get_eb_offset_in_page(dst, src_offset);
5620
5621 dst_i = get_eb_page_index(dst_offset);
5622 src_i = get_eb_page_index(src_offset);
5623
5624 cur = min(len, (unsigned long)(PAGE_SIZE -
5625 src_off_in_page));
5626 cur = min_t(unsigned long, cur,
5627 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5628
5629 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5630 dst_off_in_page, src_off_in_page, cur);
5631
5632 src_offset += cur;
5633 dst_offset += cur;
5634 len -= cur;
5635 }
5636 }
5637
memmove_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5638 void memmove_extent_buffer(const struct extent_buffer *dst,
5639 unsigned long dst_offset, unsigned long src_offset,
5640 unsigned long len)
5641 {
5642 size_t cur;
5643 size_t dst_off_in_page;
5644 size_t src_off_in_page;
5645 unsigned long dst_end = dst_offset + len - 1;
5646 unsigned long src_end = src_offset + len - 1;
5647 unsigned long dst_i;
5648 unsigned long src_i;
5649
5650 if (check_eb_range(dst, dst_offset, len) ||
5651 check_eb_range(dst, src_offset, len))
5652 return;
5653 if (dst_offset < src_offset) {
5654 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5655 return;
5656 }
5657 while (len > 0) {
5658 dst_i = get_eb_page_index(dst_end);
5659 src_i = get_eb_page_index(src_end);
5660
5661 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
5662 src_off_in_page = get_eb_offset_in_page(dst, src_end);
5663
5664 cur = min_t(unsigned long, len, src_off_in_page + 1);
5665 cur = min(cur, dst_off_in_page + 1);
5666 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5667 dst_off_in_page - cur + 1,
5668 src_off_in_page - cur + 1, cur);
5669
5670 dst_end -= cur;
5671 src_end -= cur;
5672 len -= cur;
5673 }
5674 }
5675
5676 #define GANG_LOOKUP_SIZE 16
get_next_extent_buffer(struct btrfs_fs_info * fs_info,struct page * page,u64 bytenr)5677 static struct extent_buffer *get_next_extent_buffer(
5678 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
5679 {
5680 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
5681 struct extent_buffer *found = NULL;
5682 u64 page_start = page_offset(page);
5683 u64 cur = page_start;
5684
5685 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
5686 lockdep_assert_held(&fs_info->buffer_lock);
5687
5688 while (cur < page_start + PAGE_SIZE) {
5689 int ret;
5690 int i;
5691
5692 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
5693 (void **)gang, cur >> fs_info->sectorsize_bits,
5694 min_t(unsigned int, GANG_LOOKUP_SIZE,
5695 PAGE_SIZE / fs_info->nodesize));
5696 if (ret == 0)
5697 goto out;
5698 for (i = 0; i < ret; i++) {
5699 /* Already beyond page end */
5700 if (gang[i]->start >= page_start + PAGE_SIZE)
5701 goto out;
5702 /* Found one */
5703 if (gang[i]->start >= bytenr) {
5704 found = gang[i];
5705 goto out;
5706 }
5707 }
5708 cur = gang[ret - 1]->start + gang[ret - 1]->len;
5709 }
5710 out:
5711 return found;
5712 }
5713
try_release_subpage_extent_buffer(struct page * page)5714 static int try_release_subpage_extent_buffer(struct page *page)
5715 {
5716 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
5717 u64 cur = page_offset(page);
5718 const u64 end = page_offset(page) + PAGE_SIZE;
5719 int ret;
5720
5721 while (cur < end) {
5722 struct extent_buffer *eb = NULL;
5723
5724 /*
5725 * Unlike try_release_extent_buffer() which uses page->private
5726 * to grab buffer, for subpage case we rely on radix tree, thus
5727 * we need to ensure radix tree consistency.
5728 *
5729 * We also want an atomic snapshot of the radix tree, thus go
5730 * with spinlock rather than RCU.
5731 */
5732 spin_lock(&fs_info->buffer_lock);
5733 eb = get_next_extent_buffer(fs_info, page, cur);
5734 if (!eb) {
5735 /* No more eb in the page range after or at cur */
5736 spin_unlock(&fs_info->buffer_lock);
5737 break;
5738 }
5739 cur = eb->start + eb->len;
5740
5741 /*
5742 * The same as try_release_extent_buffer(), to ensure the eb
5743 * won't disappear out from under us.
5744 */
5745 spin_lock(&eb->refs_lock);
5746 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5747 spin_unlock(&eb->refs_lock);
5748 spin_unlock(&fs_info->buffer_lock);
5749 break;
5750 }
5751 spin_unlock(&fs_info->buffer_lock);
5752
5753 /*
5754 * If tree ref isn't set then we know the ref on this eb is a
5755 * real ref, so just return, this eb will likely be freed soon
5756 * anyway.
5757 */
5758 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5759 spin_unlock(&eb->refs_lock);
5760 break;
5761 }
5762
5763 /*
5764 * Here we don't care about the return value, we will always
5765 * check the page private at the end. And
5766 * release_extent_buffer() will release the refs_lock.
5767 */
5768 release_extent_buffer(eb);
5769 }
5770 /*
5771 * Finally to check if we have cleared page private, as if we have
5772 * released all ebs in the page, the page private should be cleared now.
5773 */
5774 spin_lock(&page->mapping->private_lock);
5775 if (!PagePrivate(page))
5776 ret = 1;
5777 else
5778 ret = 0;
5779 spin_unlock(&page->mapping->private_lock);
5780 return ret;
5781
5782 }
5783
try_release_extent_buffer(struct page * page)5784 int try_release_extent_buffer(struct page *page)
5785 {
5786 struct extent_buffer *eb;
5787
5788 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
5789 return try_release_subpage_extent_buffer(page);
5790
5791 /*
5792 * We need to make sure nobody is changing page->private, as we rely on
5793 * page->private as the pointer to extent buffer.
5794 */
5795 spin_lock(&page->mapping->private_lock);
5796 if (!PagePrivate(page)) {
5797 spin_unlock(&page->mapping->private_lock);
5798 return 1;
5799 }
5800
5801 eb = (struct extent_buffer *)page->private;
5802 BUG_ON(!eb);
5803
5804 /*
5805 * This is a little awful but should be ok, we need to make sure that
5806 * the eb doesn't disappear out from under us while we're looking at
5807 * this page.
5808 */
5809 spin_lock(&eb->refs_lock);
5810 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5811 spin_unlock(&eb->refs_lock);
5812 spin_unlock(&page->mapping->private_lock);
5813 return 0;
5814 }
5815 spin_unlock(&page->mapping->private_lock);
5816
5817 /*
5818 * If tree ref isn't set then we know the ref on this eb is a real ref,
5819 * so just return, this page will likely be freed soon anyway.
5820 */
5821 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5822 spin_unlock(&eb->refs_lock);
5823 return 0;
5824 }
5825
5826 return release_extent_buffer(eb);
5827 }
5828
5829 /*
5830 * btrfs_readahead_tree_block - attempt to readahead a child block
5831 * @fs_info: the fs_info
5832 * @bytenr: bytenr to read
5833 * @owner_root: objectid of the root that owns this eb
5834 * @gen: generation for the uptodate check, can be 0
5835 * @level: level for the eb
5836 *
5837 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
5838 * normal uptodate check of the eb, without checking the generation. If we have
5839 * to read the block we will not block on anything.
5840 */
btrfs_readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 gen,int level)5841 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
5842 u64 bytenr, u64 owner_root, u64 gen, int level)
5843 {
5844 struct extent_buffer *eb;
5845 int ret;
5846
5847 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
5848 if (IS_ERR(eb))
5849 return;
5850
5851 if (btrfs_buffer_uptodate(eb, gen, 1)) {
5852 free_extent_buffer(eb);
5853 return;
5854 }
5855
5856 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
5857 if (ret < 0)
5858 free_extent_buffer_stale(eb);
5859 else
5860 free_extent_buffer(eb);
5861 }
5862
5863 /*
5864 * btrfs_readahead_node_child - readahead a node's child block
5865 * @node: parent node we're reading from
5866 * @slot: slot in the parent node for the child we want to read
5867 *
5868 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
5869 * the slot in the node provided.
5870 */
btrfs_readahead_node_child(struct extent_buffer * node,int slot)5871 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
5872 {
5873 btrfs_readahead_tree_block(node->fs_info,
5874 btrfs_node_blockptr(node, slot),
5875 btrfs_header_owner(node),
5876 btrfs_node_ptr_generation(node, slot),
5877 btrfs_header_level(node) - 1);
5878 }
5879