1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51
52 #include "ext4.h"
53 #include "ext4_extents.h" /* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89 struct super_block *sb);
90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static const struct fs_parameter_spec ext4_param_specs[];
97
98 /*
99 * Lock ordering
100 *
101 * page fault path:
102 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
103 * -> page lock -> i_data_sem (rw)
104 *
105 * buffered write path:
106 * sb_start_write -> i_mutex -> mmap_lock
107 * sb_start_write -> i_mutex -> transaction start -> page lock ->
108 * i_data_sem (rw)
109 *
110 * truncate:
111 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
112 * page lock
113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
114 * i_data_sem (rw)
115 *
116 * direct IO:
117 * sb_start_write -> i_mutex -> mmap_lock
118 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
119 *
120 * writepages:
121 * transaction start -> page lock(s) -> i_data_sem (rw)
122 */
123
124 static const struct fs_context_operations ext4_context_ops = {
125 .parse_param = ext4_parse_param,
126 .get_tree = ext4_get_tree,
127 .reconfigure = ext4_reconfigure,
128 .free = ext4_fc_free,
129 };
130
131
132 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
133 static struct file_system_type ext2_fs_type = {
134 .owner = THIS_MODULE,
135 .name = "ext2",
136 .init_fs_context = ext4_init_fs_context,
137 .parameters = ext4_param_specs,
138 .kill_sb = kill_block_super,
139 .fs_flags = FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("ext2");
142 MODULE_ALIAS("ext2");
143 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
144 #else
145 #define IS_EXT2_SB(sb) (0)
146 #endif
147
148
149 static struct file_system_type ext3_fs_type = {
150 .owner = THIS_MODULE,
151 .name = "ext3",
152 .init_fs_context = ext4_init_fs_context,
153 .parameters = ext4_param_specs,
154 .kill_sb = kill_block_super,
155 .fs_flags = FS_REQUIRES_DEV,
156 };
157 MODULE_ALIAS_FS("ext3");
158 MODULE_ALIAS("ext3");
159 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
160
161
__ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io)162 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
163 bh_end_io_t *end_io)
164 {
165 /*
166 * buffer's verified bit is no longer valid after reading from
167 * disk again due to write out error, clear it to make sure we
168 * recheck the buffer contents.
169 */
170 clear_buffer_verified(bh);
171
172 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
173 get_bh(bh);
174 submit_bh(REQ_OP_READ | op_flags, bh);
175 }
176
ext4_read_bh_nowait(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io)177 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
178 bh_end_io_t *end_io)
179 {
180 BUG_ON(!buffer_locked(bh));
181
182 if (ext4_buffer_uptodate(bh)) {
183 unlock_buffer(bh);
184 return;
185 }
186 __ext4_read_bh(bh, op_flags, end_io);
187 }
188
ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io)189 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
190 {
191 BUG_ON(!buffer_locked(bh));
192
193 if (ext4_buffer_uptodate(bh)) {
194 unlock_buffer(bh);
195 return 0;
196 }
197
198 __ext4_read_bh(bh, op_flags, end_io);
199
200 wait_on_buffer(bh);
201 if (buffer_uptodate(bh))
202 return 0;
203 return -EIO;
204 }
205
ext4_read_bh_lock(struct buffer_head * bh,blk_opf_t op_flags,bool wait)206 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
207 {
208 lock_buffer(bh);
209 if (!wait) {
210 ext4_read_bh_nowait(bh, op_flags, NULL);
211 return 0;
212 }
213 return ext4_read_bh(bh, op_flags, NULL);
214 }
215
216 /*
217 * This works like __bread_gfp() except it uses ERR_PTR for error
218 * returns. Currently with sb_bread it's impossible to distinguish
219 * between ENOMEM and EIO situations (since both result in a NULL
220 * return.
221 */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,blk_opf_t op_flags,gfp_t gfp)222 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
223 sector_t block,
224 blk_opf_t op_flags, gfp_t gfp)
225 {
226 struct buffer_head *bh;
227 int ret;
228
229 bh = sb_getblk_gfp(sb, block, gfp);
230 if (bh == NULL)
231 return ERR_PTR(-ENOMEM);
232 if (ext4_buffer_uptodate(bh))
233 return bh;
234
235 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
236 if (ret) {
237 put_bh(bh);
238 return ERR_PTR(ret);
239 }
240 return bh;
241 }
242
ext4_sb_bread(struct super_block * sb,sector_t block,blk_opf_t op_flags)243 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
244 blk_opf_t op_flags)
245 {
246 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
247 }
248
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)249 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
250 sector_t block)
251 {
252 return __ext4_sb_bread_gfp(sb, block, 0, 0);
253 }
254
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)255 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
256 {
257 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
258
259 if (likely(bh)) {
260 if (trylock_buffer(bh))
261 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
262 brelse(bh);
263 }
264 }
265
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)266 static int ext4_verify_csum_type(struct super_block *sb,
267 struct ext4_super_block *es)
268 {
269 if (!ext4_has_feature_metadata_csum(sb))
270 return 1;
271
272 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
273 }
274
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)275 __le32 ext4_superblock_csum(struct super_block *sb,
276 struct ext4_super_block *es)
277 {
278 struct ext4_sb_info *sbi = EXT4_SB(sb);
279 int offset = offsetof(struct ext4_super_block, s_checksum);
280 __u32 csum;
281
282 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
283
284 return cpu_to_le32(csum);
285 }
286
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)287 static int ext4_superblock_csum_verify(struct super_block *sb,
288 struct ext4_super_block *es)
289 {
290 if (!ext4_has_metadata_csum(sb))
291 return 1;
292
293 return es->s_checksum == ext4_superblock_csum(sb, es);
294 }
295
ext4_superblock_csum_set(struct super_block * sb)296 void ext4_superblock_csum_set(struct super_block *sb)
297 {
298 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
299
300 if (!ext4_has_metadata_csum(sb))
301 return;
302
303 es->s_checksum = ext4_superblock_csum(sb, es);
304 }
305
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)306 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
307 struct ext4_group_desc *bg)
308 {
309 return le32_to_cpu(bg->bg_block_bitmap_lo) |
310 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
311 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
312 }
313
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)314 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
315 struct ext4_group_desc *bg)
316 {
317 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
318 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
319 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
320 }
321
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)322 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
323 struct ext4_group_desc *bg)
324 {
325 return le32_to_cpu(bg->bg_inode_table_lo) |
326 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
328 }
329
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)330 __u32 ext4_free_group_clusters(struct super_block *sb,
331 struct ext4_group_desc *bg)
332 {
333 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
334 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
336 }
337
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)338 __u32 ext4_free_inodes_count(struct super_block *sb,
339 struct ext4_group_desc *bg)
340 {
341 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
342 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
344 }
345
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)346 __u32 ext4_used_dirs_count(struct super_block *sb,
347 struct ext4_group_desc *bg)
348 {
349 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
350 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
351 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
352 }
353
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)354 __u32 ext4_itable_unused_count(struct super_block *sb,
355 struct ext4_group_desc *bg)
356 {
357 return le16_to_cpu(bg->bg_itable_unused_lo) |
358 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
359 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
360 }
361
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)362 void ext4_block_bitmap_set(struct super_block *sb,
363 struct ext4_group_desc *bg, ext4_fsblk_t blk)
364 {
365 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
366 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
367 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
368 }
369
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)370 void ext4_inode_bitmap_set(struct super_block *sb,
371 struct ext4_group_desc *bg, ext4_fsblk_t blk)
372 {
373 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
374 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
375 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
376 }
377
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)378 void ext4_inode_table_set(struct super_block *sb,
379 struct ext4_group_desc *bg, ext4_fsblk_t blk)
380 {
381 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
382 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
384 }
385
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)386 void ext4_free_group_clusters_set(struct super_block *sb,
387 struct ext4_group_desc *bg, __u32 count)
388 {
389 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
390 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
392 }
393
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)394 void ext4_free_inodes_set(struct super_block *sb,
395 struct ext4_group_desc *bg, __u32 count)
396 {
397 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
398 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
400 }
401
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)402 void ext4_used_dirs_set(struct super_block *sb,
403 struct ext4_group_desc *bg, __u32 count)
404 {
405 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
406 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
407 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
408 }
409
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)410 void ext4_itable_unused_set(struct super_block *sb,
411 struct ext4_group_desc *bg, __u32 count)
412 {
413 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
414 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
415 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
416 }
417
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)418 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
419 {
420 now = clamp_val(now, 0, (1ull << 40) - 1);
421
422 *lo = cpu_to_le32(lower_32_bits(now));
423 *hi = upper_32_bits(now);
424 }
425
__ext4_get_tstamp(__le32 * lo,__u8 * hi)426 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
427 {
428 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
429 }
430 #define ext4_update_tstamp(es, tstamp) \
431 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
432 ktime_get_real_seconds())
433 #define ext4_get_tstamp(es, tstamp) \
434 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
435
436 /*
437 * The del_gendisk() function uninitializes the disk-specific data
438 * structures, including the bdi structure, without telling anyone
439 * else. Once this happens, any attempt to call mark_buffer_dirty()
440 * (for example, by ext4_commit_super), will cause a kernel OOPS.
441 * This is a kludge to prevent these oops until we can put in a proper
442 * hook in del_gendisk() to inform the VFS and file system layers.
443 */
block_device_ejected(struct super_block * sb)444 static int block_device_ejected(struct super_block *sb)
445 {
446 struct inode *bd_inode = sb->s_bdev->bd_inode;
447 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
448
449 return bdi->dev == NULL;
450 }
451
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)452 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
453 {
454 struct super_block *sb = journal->j_private;
455 struct ext4_sb_info *sbi = EXT4_SB(sb);
456 int error = is_journal_aborted(journal);
457 struct ext4_journal_cb_entry *jce;
458
459 BUG_ON(txn->t_state == T_FINISHED);
460
461 ext4_process_freed_data(sb, txn->t_tid);
462
463 spin_lock(&sbi->s_md_lock);
464 while (!list_empty(&txn->t_private_list)) {
465 jce = list_entry(txn->t_private_list.next,
466 struct ext4_journal_cb_entry, jce_list);
467 list_del_init(&jce->jce_list);
468 spin_unlock(&sbi->s_md_lock);
469 jce->jce_func(sb, jce, error);
470 spin_lock(&sbi->s_md_lock);
471 }
472 spin_unlock(&sbi->s_md_lock);
473 }
474
475 /*
476 * This writepage callback for write_cache_pages()
477 * takes care of a few cases after page cleaning.
478 *
479 * write_cache_pages() already checks for dirty pages
480 * and calls clear_page_dirty_for_io(), which we want,
481 * to write protect the pages.
482 *
483 * However, we may have to redirty a page (see below.)
484 */
ext4_journalled_writepage_callback(struct page * page,struct writeback_control * wbc,void * data)485 static int ext4_journalled_writepage_callback(struct page *page,
486 struct writeback_control *wbc,
487 void *data)
488 {
489 transaction_t *transaction = (transaction_t *) data;
490 struct buffer_head *bh, *head;
491 struct journal_head *jh;
492
493 bh = head = page_buffers(page);
494 do {
495 /*
496 * We have to redirty a page in these cases:
497 * 1) If buffer is dirty, it means the page was dirty because it
498 * contains a buffer that needs checkpointing. So the dirty bit
499 * needs to be preserved so that checkpointing writes the buffer
500 * properly.
501 * 2) If buffer is not part of the committing transaction
502 * (we may have just accidentally come across this buffer because
503 * inode range tracking is not exact) or if the currently running
504 * transaction already contains this buffer as well, dirty bit
505 * needs to be preserved so that the buffer gets writeprotected
506 * properly on running transaction's commit.
507 */
508 jh = bh2jh(bh);
509 if (buffer_dirty(bh) ||
510 (jh && (jh->b_transaction != transaction ||
511 jh->b_next_transaction))) {
512 redirty_page_for_writepage(wbc, page);
513 goto out;
514 }
515 } while ((bh = bh->b_this_page) != head);
516
517 out:
518 return AOP_WRITEPAGE_ACTIVATE;
519 }
520
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)521 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
522 {
523 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
524 struct writeback_control wbc = {
525 .sync_mode = WB_SYNC_ALL,
526 .nr_to_write = LONG_MAX,
527 .range_start = jinode->i_dirty_start,
528 .range_end = jinode->i_dirty_end,
529 };
530
531 return write_cache_pages(mapping, &wbc,
532 ext4_journalled_writepage_callback,
533 jinode->i_transaction);
534 }
535
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)536 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
537 {
538 int ret;
539
540 if (ext4_should_journal_data(jinode->i_vfs_inode))
541 ret = ext4_journalled_submit_inode_data_buffers(jinode);
542 else
543 ret = jbd2_journal_submit_inode_data_buffers(jinode);
544
545 return ret;
546 }
547
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)548 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
549 {
550 int ret = 0;
551
552 if (!ext4_should_journal_data(jinode->i_vfs_inode))
553 ret = jbd2_journal_finish_inode_data_buffers(jinode);
554
555 return ret;
556 }
557
system_going_down(void)558 static bool system_going_down(void)
559 {
560 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
561 || system_state == SYSTEM_RESTART;
562 }
563
564 struct ext4_err_translation {
565 int code;
566 int errno;
567 };
568
569 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
570
571 static struct ext4_err_translation err_translation[] = {
572 EXT4_ERR_TRANSLATE(EIO),
573 EXT4_ERR_TRANSLATE(ENOMEM),
574 EXT4_ERR_TRANSLATE(EFSBADCRC),
575 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
576 EXT4_ERR_TRANSLATE(ENOSPC),
577 EXT4_ERR_TRANSLATE(ENOKEY),
578 EXT4_ERR_TRANSLATE(EROFS),
579 EXT4_ERR_TRANSLATE(EFBIG),
580 EXT4_ERR_TRANSLATE(EEXIST),
581 EXT4_ERR_TRANSLATE(ERANGE),
582 EXT4_ERR_TRANSLATE(EOVERFLOW),
583 EXT4_ERR_TRANSLATE(EBUSY),
584 EXT4_ERR_TRANSLATE(ENOTDIR),
585 EXT4_ERR_TRANSLATE(ENOTEMPTY),
586 EXT4_ERR_TRANSLATE(ESHUTDOWN),
587 EXT4_ERR_TRANSLATE(EFAULT),
588 };
589
ext4_errno_to_code(int errno)590 static int ext4_errno_to_code(int errno)
591 {
592 int i;
593
594 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
595 if (err_translation[i].errno == errno)
596 return err_translation[i].code;
597 return EXT4_ERR_UNKNOWN;
598 }
599
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)600 static void save_error_info(struct super_block *sb, int error,
601 __u32 ino, __u64 block,
602 const char *func, unsigned int line)
603 {
604 struct ext4_sb_info *sbi = EXT4_SB(sb);
605
606 /* We default to EFSCORRUPTED error... */
607 if (error == 0)
608 error = EFSCORRUPTED;
609
610 spin_lock(&sbi->s_error_lock);
611 sbi->s_add_error_count++;
612 sbi->s_last_error_code = error;
613 sbi->s_last_error_line = line;
614 sbi->s_last_error_ino = ino;
615 sbi->s_last_error_block = block;
616 sbi->s_last_error_func = func;
617 sbi->s_last_error_time = ktime_get_real_seconds();
618 if (!sbi->s_first_error_time) {
619 sbi->s_first_error_code = error;
620 sbi->s_first_error_line = line;
621 sbi->s_first_error_ino = ino;
622 sbi->s_first_error_block = block;
623 sbi->s_first_error_func = func;
624 sbi->s_first_error_time = sbi->s_last_error_time;
625 }
626 spin_unlock(&sbi->s_error_lock);
627 }
628
629 /* Deal with the reporting of failure conditions on a filesystem such as
630 * inconsistencies detected or read IO failures.
631 *
632 * On ext2, we can store the error state of the filesystem in the
633 * superblock. That is not possible on ext4, because we may have other
634 * write ordering constraints on the superblock which prevent us from
635 * writing it out straight away; and given that the journal is about to
636 * be aborted, we can't rely on the current, or future, transactions to
637 * write out the superblock safely.
638 *
639 * We'll just use the jbd2_journal_abort() error code to record an error in
640 * the journal instead. On recovery, the journal will complain about
641 * that error until we've noted it down and cleared it.
642 *
643 * If force_ro is set, we unconditionally force the filesystem into an
644 * ABORT|READONLY state, unless the error response on the fs has been set to
645 * panic in which case we take the easy way out and panic immediately. This is
646 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
647 * at a critical moment in log management.
648 */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)649 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
650 __u32 ino, __u64 block,
651 const char *func, unsigned int line)
652 {
653 journal_t *journal = EXT4_SB(sb)->s_journal;
654 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
655
656 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
657 if (test_opt(sb, WARN_ON_ERROR))
658 WARN_ON_ONCE(1);
659
660 if (!continue_fs && !sb_rdonly(sb)) {
661 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
662 if (journal)
663 jbd2_journal_abort(journal, -EIO);
664 }
665
666 if (!bdev_read_only(sb->s_bdev)) {
667 save_error_info(sb, error, ino, block, func, line);
668 /*
669 * In case the fs should keep running, we need to writeout
670 * superblock through the journal. Due to lock ordering
671 * constraints, it may not be safe to do it right here so we
672 * defer superblock flushing to a workqueue.
673 */
674 if (continue_fs && journal)
675 schedule_work(&EXT4_SB(sb)->s_error_work);
676 else
677 ext4_commit_super(sb);
678 }
679
680 /*
681 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
682 * could panic during 'reboot -f' as the underlying device got already
683 * disabled.
684 */
685 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
686 panic("EXT4-fs (device %s): panic forced after error\n",
687 sb->s_id);
688 }
689
690 if (sb_rdonly(sb) || continue_fs)
691 return;
692
693 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
694 /*
695 * Make sure updated value of ->s_mount_flags will be visible before
696 * ->s_flags update
697 */
698 smp_wmb();
699 sb->s_flags |= SB_RDONLY;
700 }
701
flush_stashed_error_work(struct work_struct * work)702 static void flush_stashed_error_work(struct work_struct *work)
703 {
704 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
705 s_error_work);
706 journal_t *journal = sbi->s_journal;
707 handle_t *handle;
708
709 /*
710 * If the journal is still running, we have to write out superblock
711 * through the journal to avoid collisions of other journalled sb
712 * updates.
713 *
714 * We use directly jbd2 functions here to avoid recursing back into
715 * ext4 error handling code during handling of previous errors.
716 */
717 if (!sb_rdonly(sbi->s_sb) && journal) {
718 struct buffer_head *sbh = sbi->s_sbh;
719 handle = jbd2_journal_start(journal, 1);
720 if (IS_ERR(handle))
721 goto write_directly;
722 if (jbd2_journal_get_write_access(handle, sbh)) {
723 jbd2_journal_stop(handle);
724 goto write_directly;
725 }
726 ext4_update_super(sbi->s_sb);
727 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
728 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
729 "superblock detected");
730 clear_buffer_write_io_error(sbh);
731 set_buffer_uptodate(sbh);
732 }
733
734 if (jbd2_journal_dirty_metadata(handle, sbh)) {
735 jbd2_journal_stop(handle);
736 goto write_directly;
737 }
738 jbd2_journal_stop(handle);
739 ext4_notify_error_sysfs(sbi);
740 return;
741 }
742 write_directly:
743 /*
744 * Write through journal failed. Write sb directly to get error info
745 * out and hope for the best.
746 */
747 ext4_commit_super(sbi->s_sb);
748 ext4_notify_error_sysfs(sbi);
749 }
750
751 #define ext4_error_ratelimit(sb) \
752 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
753 "EXT4-fs error")
754
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)755 void __ext4_error(struct super_block *sb, const char *function,
756 unsigned int line, bool force_ro, int error, __u64 block,
757 const char *fmt, ...)
758 {
759 struct va_format vaf;
760 va_list args;
761
762 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
763 return;
764
765 trace_ext4_error(sb, function, line);
766 if (ext4_error_ratelimit(sb)) {
767 va_start(args, fmt);
768 vaf.fmt = fmt;
769 vaf.va = &args;
770 printk(KERN_CRIT
771 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
772 sb->s_id, function, line, current->comm, &vaf);
773 va_end(args);
774 }
775 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
776
777 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
778 }
779
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)780 void __ext4_error_inode(struct inode *inode, const char *function,
781 unsigned int line, ext4_fsblk_t block, int error,
782 const char *fmt, ...)
783 {
784 va_list args;
785 struct va_format vaf;
786
787 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
788 return;
789
790 trace_ext4_error(inode->i_sb, function, line);
791 if (ext4_error_ratelimit(inode->i_sb)) {
792 va_start(args, fmt);
793 vaf.fmt = fmt;
794 vaf.va = &args;
795 if (block)
796 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
797 "inode #%lu: block %llu: comm %s: %pV\n",
798 inode->i_sb->s_id, function, line, inode->i_ino,
799 block, current->comm, &vaf);
800 else
801 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
802 "inode #%lu: comm %s: %pV\n",
803 inode->i_sb->s_id, function, line, inode->i_ino,
804 current->comm, &vaf);
805 va_end(args);
806 }
807 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
808
809 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
810 function, line);
811 }
812
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)813 void __ext4_error_file(struct file *file, const char *function,
814 unsigned int line, ext4_fsblk_t block,
815 const char *fmt, ...)
816 {
817 va_list args;
818 struct va_format vaf;
819 struct inode *inode = file_inode(file);
820 char pathname[80], *path;
821
822 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
823 return;
824
825 trace_ext4_error(inode->i_sb, function, line);
826 if (ext4_error_ratelimit(inode->i_sb)) {
827 path = file_path(file, pathname, sizeof(pathname));
828 if (IS_ERR(path))
829 path = "(unknown)";
830 va_start(args, fmt);
831 vaf.fmt = fmt;
832 vaf.va = &args;
833 if (block)
834 printk(KERN_CRIT
835 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
836 "block %llu: comm %s: path %s: %pV\n",
837 inode->i_sb->s_id, function, line, inode->i_ino,
838 block, current->comm, path, &vaf);
839 else
840 printk(KERN_CRIT
841 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
842 "comm %s: path %s: %pV\n",
843 inode->i_sb->s_id, function, line, inode->i_ino,
844 current->comm, path, &vaf);
845 va_end(args);
846 }
847 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
848
849 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
850 function, line);
851 }
852
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])853 const char *ext4_decode_error(struct super_block *sb, int errno,
854 char nbuf[16])
855 {
856 char *errstr = NULL;
857
858 switch (errno) {
859 case -EFSCORRUPTED:
860 errstr = "Corrupt filesystem";
861 break;
862 case -EFSBADCRC:
863 errstr = "Filesystem failed CRC";
864 break;
865 case -EIO:
866 errstr = "IO failure";
867 break;
868 case -ENOMEM:
869 errstr = "Out of memory";
870 break;
871 case -EROFS:
872 if (!sb || (EXT4_SB(sb)->s_journal &&
873 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
874 errstr = "Journal has aborted";
875 else
876 errstr = "Readonly filesystem";
877 break;
878 default:
879 /* If the caller passed in an extra buffer for unknown
880 * errors, textualise them now. Else we just return
881 * NULL. */
882 if (nbuf) {
883 /* Check for truncated error codes... */
884 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
885 errstr = nbuf;
886 }
887 break;
888 }
889
890 return errstr;
891 }
892
893 /* __ext4_std_error decodes expected errors from journaling functions
894 * automatically and invokes the appropriate error response. */
895
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)896 void __ext4_std_error(struct super_block *sb, const char *function,
897 unsigned int line, int errno)
898 {
899 char nbuf[16];
900 const char *errstr;
901
902 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
903 return;
904
905 /* Special case: if the error is EROFS, and we're not already
906 * inside a transaction, then there's really no point in logging
907 * an error. */
908 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
909 return;
910
911 if (ext4_error_ratelimit(sb)) {
912 errstr = ext4_decode_error(sb, errno, nbuf);
913 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
914 sb->s_id, function, line, errstr);
915 }
916 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
917
918 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
919 }
920
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)921 void __ext4_msg(struct super_block *sb,
922 const char *prefix, const char *fmt, ...)
923 {
924 struct va_format vaf;
925 va_list args;
926
927 if (sb) {
928 atomic_inc(&EXT4_SB(sb)->s_msg_count);
929 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
930 "EXT4-fs"))
931 return;
932 }
933
934 va_start(args, fmt);
935 vaf.fmt = fmt;
936 vaf.va = &args;
937 if (sb)
938 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
939 else
940 printk("%sEXT4-fs: %pV\n", prefix, &vaf);
941 va_end(args);
942 }
943
ext4_warning_ratelimit(struct super_block * sb)944 static int ext4_warning_ratelimit(struct super_block *sb)
945 {
946 atomic_inc(&EXT4_SB(sb)->s_warning_count);
947 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
948 "EXT4-fs warning");
949 }
950
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)951 void __ext4_warning(struct super_block *sb, const char *function,
952 unsigned int line, const char *fmt, ...)
953 {
954 struct va_format vaf;
955 va_list args;
956
957 if (!ext4_warning_ratelimit(sb))
958 return;
959
960 va_start(args, fmt);
961 vaf.fmt = fmt;
962 vaf.va = &args;
963 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
964 sb->s_id, function, line, &vaf);
965 va_end(args);
966 }
967
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)968 void __ext4_warning_inode(const struct inode *inode, const char *function,
969 unsigned int line, const char *fmt, ...)
970 {
971 struct va_format vaf;
972 va_list args;
973
974 if (!ext4_warning_ratelimit(inode->i_sb))
975 return;
976
977 va_start(args, fmt);
978 vaf.fmt = fmt;
979 vaf.va = &args;
980 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
981 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
982 function, line, inode->i_ino, current->comm, &vaf);
983 va_end(args);
984 }
985
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)986 void __ext4_grp_locked_error(const char *function, unsigned int line,
987 struct super_block *sb, ext4_group_t grp,
988 unsigned long ino, ext4_fsblk_t block,
989 const char *fmt, ...)
990 __releases(bitlock)
991 __acquires(bitlock)
992 {
993 struct va_format vaf;
994 va_list args;
995
996 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
997 return;
998
999 trace_ext4_error(sb, function, line);
1000 if (ext4_error_ratelimit(sb)) {
1001 va_start(args, fmt);
1002 vaf.fmt = fmt;
1003 vaf.va = &args;
1004 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1005 sb->s_id, function, line, grp);
1006 if (ino)
1007 printk(KERN_CONT "inode %lu: ", ino);
1008 if (block)
1009 printk(KERN_CONT "block %llu:",
1010 (unsigned long long) block);
1011 printk(KERN_CONT "%pV\n", &vaf);
1012 va_end(args);
1013 }
1014
1015 if (test_opt(sb, ERRORS_CONT)) {
1016 if (test_opt(sb, WARN_ON_ERROR))
1017 WARN_ON_ONCE(1);
1018 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1019 if (!bdev_read_only(sb->s_bdev)) {
1020 save_error_info(sb, EFSCORRUPTED, ino, block, function,
1021 line);
1022 schedule_work(&EXT4_SB(sb)->s_error_work);
1023 }
1024 return;
1025 }
1026 ext4_unlock_group(sb, grp);
1027 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1028 /*
1029 * We only get here in the ERRORS_RO case; relocking the group
1030 * may be dangerous, but nothing bad will happen since the
1031 * filesystem will have already been marked read/only and the
1032 * journal has been aborted. We return 1 as a hint to callers
1033 * who might what to use the return value from
1034 * ext4_grp_locked_error() to distinguish between the
1035 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1036 * aggressively from the ext4 function in question, with a
1037 * more appropriate error code.
1038 */
1039 ext4_lock_group(sb, grp);
1040 return;
1041 }
1042
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1043 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1044 ext4_group_t group,
1045 unsigned int flags)
1046 {
1047 struct ext4_sb_info *sbi = EXT4_SB(sb);
1048 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1049 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1050 int ret;
1051
1052 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1053 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1054 &grp->bb_state);
1055 if (!ret)
1056 percpu_counter_sub(&sbi->s_freeclusters_counter,
1057 grp->bb_free);
1058 }
1059
1060 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1061 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1062 &grp->bb_state);
1063 if (!ret && gdp) {
1064 int count;
1065
1066 count = ext4_free_inodes_count(sb, gdp);
1067 percpu_counter_sub(&sbi->s_freeinodes_counter,
1068 count);
1069 }
1070 }
1071 }
1072
ext4_update_dynamic_rev(struct super_block * sb)1073 void ext4_update_dynamic_rev(struct super_block *sb)
1074 {
1075 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1076
1077 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1078 return;
1079
1080 ext4_warning(sb,
1081 "updating to rev %d because of new feature flag, "
1082 "running e2fsck is recommended",
1083 EXT4_DYNAMIC_REV);
1084
1085 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1086 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1087 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1088 /* leave es->s_feature_*compat flags alone */
1089 /* es->s_uuid will be set by e2fsck if empty */
1090
1091 /*
1092 * The rest of the superblock fields should be zero, and if not it
1093 * means they are likely already in use, so leave them alone. We
1094 * can leave it up to e2fsck to clean up any inconsistencies there.
1095 */
1096 }
1097
1098 /*
1099 * Open the external journal device
1100 */
ext4_blkdev_get(dev_t dev,struct super_block * sb)1101 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1102 {
1103 struct block_device *bdev;
1104
1105 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1106 if (IS_ERR(bdev))
1107 goto fail;
1108 return bdev;
1109
1110 fail:
1111 ext4_msg(sb, KERN_ERR,
1112 "failed to open journal device unknown-block(%u,%u) %ld",
1113 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1114 return NULL;
1115 }
1116
1117 /*
1118 * Release the journal device
1119 */
ext4_blkdev_put(struct block_device * bdev)1120 static void ext4_blkdev_put(struct block_device *bdev)
1121 {
1122 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1123 }
1124
ext4_blkdev_remove(struct ext4_sb_info * sbi)1125 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1126 {
1127 struct block_device *bdev;
1128 bdev = sbi->s_journal_bdev;
1129 if (bdev) {
1130 ext4_blkdev_put(bdev);
1131 sbi->s_journal_bdev = NULL;
1132 }
1133 }
1134
orphan_list_entry(struct list_head * l)1135 static inline struct inode *orphan_list_entry(struct list_head *l)
1136 {
1137 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1138 }
1139
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1140 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1141 {
1142 struct list_head *l;
1143
1144 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1145 le32_to_cpu(sbi->s_es->s_last_orphan));
1146
1147 printk(KERN_ERR "sb_info orphan list:\n");
1148 list_for_each(l, &sbi->s_orphan) {
1149 struct inode *inode = orphan_list_entry(l);
1150 printk(KERN_ERR " "
1151 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1152 inode->i_sb->s_id, inode->i_ino, inode,
1153 inode->i_mode, inode->i_nlink,
1154 NEXT_ORPHAN(inode));
1155 }
1156 }
1157
1158 #ifdef CONFIG_QUOTA
1159 static int ext4_quota_off(struct super_block *sb, int type);
1160
ext4_quota_off_umount(struct super_block * sb)1161 static inline void ext4_quota_off_umount(struct super_block *sb)
1162 {
1163 int type;
1164
1165 /* Use our quota_off function to clear inode flags etc. */
1166 for (type = 0; type < EXT4_MAXQUOTAS; type++)
1167 ext4_quota_off(sb, type);
1168 }
1169
1170 /*
1171 * This is a helper function which is used in the mount/remount
1172 * codepaths (which holds s_umount) to fetch the quota file name.
1173 */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1174 static inline char *get_qf_name(struct super_block *sb,
1175 struct ext4_sb_info *sbi,
1176 int type)
1177 {
1178 return rcu_dereference_protected(sbi->s_qf_names[type],
1179 lockdep_is_held(&sb->s_umount));
1180 }
1181 #else
ext4_quota_off_umount(struct super_block * sb)1182 static inline void ext4_quota_off_umount(struct super_block *sb)
1183 {
1184 }
1185 #endif
1186
ext4_put_super(struct super_block * sb)1187 static void ext4_put_super(struct super_block *sb)
1188 {
1189 struct ext4_sb_info *sbi = EXT4_SB(sb);
1190 struct ext4_super_block *es = sbi->s_es;
1191 struct buffer_head **group_desc;
1192 struct flex_groups **flex_groups;
1193 int aborted = 0;
1194 int i, err;
1195
1196 /*
1197 * Unregister sysfs before destroying jbd2 journal.
1198 * Since we could still access attr_journal_task attribute via sysfs
1199 * path which could have sbi->s_journal->j_task as NULL
1200 * Unregister sysfs before flush sbi->s_error_work.
1201 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1202 * read metadata verify failed then will queue error work.
1203 * flush_stashed_error_work will call start_this_handle may trigger
1204 * BUG_ON.
1205 */
1206 ext4_unregister_sysfs(sb);
1207
1208 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1209 ext4_msg(sb, KERN_INFO, "unmounting filesystem.");
1210
1211 ext4_unregister_li_request(sb);
1212 ext4_quota_off_umount(sb);
1213
1214 flush_work(&sbi->s_error_work);
1215 destroy_workqueue(sbi->rsv_conversion_wq);
1216 ext4_release_orphan_info(sb);
1217
1218 if (sbi->s_journal) {
1219 aborted = is_journal_aborted(sbi->s_journal);
1220 err = jbd2_journal_destroy(sbi->s_journal);
1221 sbi->s_journal = NULL;
1222 if ((err < 0) && !aborted) {
1223 ext4_abort(sb, -err, "Couldn't clean up the journal");
1224 }
1225 }
1226
1227 ext4_es_unregister_shrinker(sbi);
1228 del_timer_sync(&sbi->s_err_report);
1229 ext4_release_system_zone(sb);
1230 ext4_mb_release(sb);
1231 ext4_ext_release(sb);
1232
1233 if (!sb_rdonly(sb) && !aborted) {
1234 ext4_clear_feature_journal_needs_recovery(sb);
1235 ext4_clear_feature_orphan_present(sb);
1236 es->s_state = cpu_to_le16(sbi->s_mount_state);
1237 }
1238 if (!sb_rdonly(sb))
1239 ext4_commit_super(sb);
1240
1241 rcu_read_lock();
1242 group_desc = rcu_dereference(sbi->s_group_desc);
1243 for (i = 0; i < sbi->s_gdb_count; i++)
1244 brelse(group_desc[i]);
1245 kvfree(group_desc);
1246 flex_groups = rcu_dereference(sbi->s_flex_groups);
1247 if (flex_groups) {
1248 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1249 kvfree(flex_groups[i]);
1250 kvfree(flex_groups);
1251 }
1252 rcu_read_unlock();
1253 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1254 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1255 percpu_counter_destroy(&sbi->s_dirs_counter);
1256 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1257 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1258 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1259 #ifdef CONFIG_QUOTA
1260 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1261 kfree(get_qf_name(sb, sbi, i));
1262 #endif
1263
1264 /* Debugging code just in case the in-memory inode orphan list
1265 * isn't empty. The on-disk one can be non-empty if we've
1266 * detected an error and taken the fs readonly, but the
1267 * in-memory list had better be clean by this point. */
1268 if (!list_empty(&sbi->s_orphan))
1269 dump_orphan_list(sb, sbi);
1270 ASSERT(list_empty(&sbi->s_orphan));
1271
1272 sync_blockdev(sb->s_bdev);
1273 invalidate_bdev(sb->s_bdev);
1274 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1275 /*
1276 * Invalidate the journal device's buffers. We don't want them
1277 * floating about in memory - the physical journal device may
1278 * hotswapped, and it breaks the `ro-after' testing code.
1279 */
1280 sync_blockdev(sbi->s_journal_bdev);
1281 invalidate_bdev(sbi->s_journal_bdev);
1282 ext4_blkdev_remove(sbi);
1283 }
1284
1285 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1286 sbi->s_ea_inode_cache = NULL;
1287
1288 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1289 sbi->s_ea_block_cache = NULL;
1290
1291 ext4_stop_mmpd(sbi);
1292
1293 brelse(sbi->s_sbh);
1294 sb->s_fs_info = NULL;
1295 /*
1296 * Now that we are completely done shutting down the
1297 * superblock, we need to actually destroy the kobject.
1298 */
1299 kobject_put(&sbi->s_kobj);
1300 wait_for_completion(&sbi->s_kobj_unregister);
1301 if (sbi->s_chksum_driver)
1302 crypto_free_shash(sbi->s_chksum_driver);
1303 kfree(sbi->s_blockgroup_lock);
1304 fs_put_dax(sbi->s_daxdev, NULL);
1305 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1306 #if IS_ENABLED(CONFIG_UNICODE)
1307 utf8_unload(sb->s_encoding);
1308 #endif
1309 kfree(sbi);
1310 }
1311
1312 static struct kmem_cache *ext4_inode_cachep;
1313
1314 /*
1315 * Called inside transaction, so use GFP_NOFS
1316 */
ext4_alloc_inode(struct super_block * sb)1317 static struct inode *ext4_alloc_inode(struct super_block *sb)
1318 {
1319 struct ext4_inode_info *ei;
1320
1321 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1322 if (!ei)
1323 return NULL;
1324
1325 inode_set_iversion(&ei->vfs_inode, 1);
1326 spin_lock_init(&ei->i_raw_lock);
1327 INIT_LIST_HEAD(&ei->i_prealloc_list);
1328 atomic_set(&ei->i_prealloc_active, 0);
1329 spin_lock_init(&ei->i_prealloc_lock);
1330 ext4_es_init_tree(&ei->i_es_tree);
1331 rwlock_init(&ei->i_es_lock);
1332 INIT_LIST_HEAD(&ei->i_es_list);
1333 ei->i_es_all_nr = 0;
1334 ei->i_es_shk_nr = 0;
1335 ei->i_es_shrink_lblk = 0;
1336 ei->i_reserved_data_blocks = 0;
1337 spin_lock_init(&(ei->i_block_reservation_lock));
1338 ext4_init_pending_tree(&ei->i_pending_tree);
1339 #ifdef CONFIG_QUOTA
1340 ei->i_reserved_quota = 0;
1341 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1342 #endif
1343 ei->jinode = NULL;
1344 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1345 spin_lock_init(&ei->i_completed_io_lock);
1346 ei->i_sync_tid = 0;
1347 ei->i_datasync_tid = 0;
1348 atomic_set(&ei->i_unwritten, 0);
1349 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1350 ext4_fc_init_inode(&ei->vfs_inode);
1351 mutex_init(&ei->i_fc_lock);
1352 return &ei->vfs_inode;
1353 }
1354
ext4_drop_inode(struct inode * inode)1355 static int ext4_drop_inode(struct inode *inode)
1356 {
1357 int drop = generic_drop_inode(inode);
1358
1359 if (!drop)
1360 drop = fscrypt_drop_inode(inode);
1361
1362 trace_ext4_drop_inode(inode, drop);
1363 return drop;
1364 }
1365
ext4_free_in_core_inode(struct inode * inode)1366 static void ext4_free_in_core_inode(struct inode *inode)
1367 {
1368 fscrypt_free_inode(inode);
1369 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1370 pr_warn("%s: inode %ld still in fc list",
1371 __func__, inode->i_ino);
1372 }
1373 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1374 }
1375
ext4_destroy_inode(struct inode * inode)1376 static void ext4_destroy_inode(struct inode *inode)
1377 {
1378 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1379 ext4_msg(inode->i_sb, KERN_ERR,
1380 "Inode %lu (%p): orphan list check failed!",
1381 inode->i_ino, EXT4_I(inode));
1382 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1383 EXT4_I(inode), sizeof(struct ext4_inode_info),
1384 true);
1385 dump_stack();
1386 }
1387
1388 if (EXT4_I(inode)->i_reserved_data_blocks)
1389 ext4_msg(inode->i_sb, KERN_ERR,
1390 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1391 inode->i_ino, EXT4_I(inode),
1392 EXT4_I(inode)->i_reserved_data_blocks);
1393 }
1394
init_once(void * foo)1395 static void init_once(void *foo)
1396 {
1397 struct ext4_inode_info *ei = foo;
1398
1399 INIT_LIST_HEAD(&ei->i_orphan);
1400 init_rwsem(&ei->xattr_sem);
1401 init_rwsem(&ei->i_data_sem);
1402 inode_init_once(&ei->vfs_inode);
1403 ext4_fc_init_inode(&ei->vfs_inode);
1404 }
1405
init_inodecache(void)1406 static int __init init_inodecache(void)
1407 {
1408 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1409 sizeof(struct ext4_inode_info), 0,
1410 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1411 SLAB_ACCOUNT),
1412 offsetof(struct ext4_inode_info, i_data),
1413 sizeof_field(struct ext4_inode_info, i_data),
1414 init_once);
1415 if (ext4_inode_cachep == NULL)
1416 return -ENOMEM;
1417 return 0;
1418 }
1419
destroy_inodecache(void)1420 static void destroy_inodecache(void)
1421 {
1422 /*
1423 * Make sure all delayed rcu free inodes are flushed before we
1424 * destroy cache.
1425 */
1426 rcu_barrier();
1427 kmem_cache_destroy(ext4_inode_cachep);
1428 }
1429
ext4_clear_inode(struct inode * inode)1430 void ext4_clear_inode(struct inode *inode)
1431 {
1432 ext4_fc_del(inode);
1433 invalidate_inode_buffers(inode);
1434 clear_inode(inode);
1435 ext4_discard_preallocations(inode, 0);
1436 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1437 dquot_drop(inode);
1438 if (EXT4_I(inode)->jinode) {
1439 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1440 EXT4_I(inode)->jinode);
1441 jbd2_free_inode(EXT4_I(inode)->jinode);
1442 EXT4_I(inode)->jinode = NULL;
1443 }
1444 fscrypt_put_encryption_info(inode);
1445 fsverity_cleanup_inode(inode);
1446 }
1447
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1448 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1449 u64 ino, u32 generation)
1450 {
1451 struct inode *inode;
1452
1453 /*
1454 * Currently we don't know the generation for parent directory, so
1455 * a generation of 0 means "accept any"
1456 */
1457 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1458 if (IS_ERR(inode))
1459 return ERR_CAST(inode);
1460 if (generation && inode->i_generation != generation) {
1461 iput(inode);
1462 return ERR_PTR(-ESTALE);
1463 }
1464
1465 return inode;
1466 }
1467
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1468 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1469 int fh_len, int fh_type)
1470 {
1471 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1472 ext4_nfs_get_inode);
1473 }
1474
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1475 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1476 int fh_len, int fh_type)
1477 {
1478 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1479 ext4_nfs_get_inode);
1480 }
1481
ext4_nfs_commit_metadata(struct inode * inode)1482 static int ext4_nfs_commit_metadata(struct inode *inode)
1483 {
1484 struct writeback_control wbc = {
1485 .sync_mode = WB_SYNC_ALL
1486 };
1487
1488 trace_ext4_nfs_commit_metadata(inode);
1489 return ext4_write_inode(inode, &wbc);
1490 }
1491
1492 #ifdef CONFIG_QUOTA
1493 static const char * const quotatypes[] = INITQFNAMES;
1494 #define QTYPE2NAME(t) (quotatypes[t])
1495
1496 static int ext4_write_dquot(struct dquot *dquot);
1497 static int ext4_acquire_dquot(struct dquot *dquot);
1498 static int ext4_release_dquot(struct dquot *dquot);
1499 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1500 static int ext4_write_info(struct super_block *sb, int type);
1501 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1502 const struct path *path);
1503 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1504 size_t len, loff_t off);
1505 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1506 const char *data, size_t len, loff_t off);
1507 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1508 unsigned int flags);
1509
ext4_get_dquots(struct inode * inode)1510 static struct dquot **ext4_get_dquots(struct inode *inode)
1511 {
1512 return EXT4_I(inode)->i_dquot;
1513 }
1514
1515 static const struct dquot_operations ext4_quota_operations = {
1516 .get_reserved_space = ext4_get_reserved_space,
1517 .write_dquot = ext4_write_dquot,
1518 .acquire_dquot = ext4_acquire_dquot,
1519 .release_dquot = ext4_release_dquot,
1520 .mark_dirty = ext4_mark_dquot_dirty,
1521 .write_info = ext4_write_info,
1522 .alloc_dquot = dquot_alloc,
1523 .destroy_dquot = dquot_destroy,
1524 .get_projid = ext4_get_projid,
1525 .get_inode_usage = ext4_get_inode_usage,
1526 .get_next_id = dquot_get_next_id,
1527 };
1528
1529 static const struct quotactl_ops ext4_qctl_operations = {
1530 .quota_on = ext4_quota_on,
1531 .quota_off = ext4_quota_off,
1532 .quota_sync = dquot_quota_sync,
1533 .get_state = dquot_get_state,
1534 .set_info = dquot_set_dqinfo,
1535 .get_dqblk = dquot_get_dqblk,
1536 .set_dqblk = dquot_set_dqblk,
1537 .get_nextdqblk = dquot_get_next_dqblk,
1538 };
1539 #endif
1540
1541 static const struct super_operations ext4_sops = {
1542 .alloc_inode = ext4_alloc_inode,
1543 .free_inode = ext4_free_in_core_inode,
1544 .destroy_inode = ext4_destroy_inode,
1545 .write_inode = ext4_write_inode,
1546 .dirty_inode = ext4_dirty_inode,
1547 .drop_inode = ext4_drop_inode,
1548 .evict_inode = ext4_evict_inode,
1549 .put_super = ext4_put_super,
1550 .sync_fs = ext4_sync_fs,
1551 .freeze_fs = ext4_freeze,
1552 .unfreeze_fs = ext4_unfreeze,
1553 .statfs = ext4_statfs,
1554 .show_options = ext4_show_options,
1555 #ifdef CONFIG_QUOTA
1556 .quota_read = ext4_quota_read,
1557 .quota_write = ext4_quota_write,
1558 .get_dquots = ext4_get_dquots,
1559 #endif
1560 };
1561
1562 static const struct export_operations ext4_export_ops = {
1563 .fh_to_dentry = ext4_fh_to_dentry,
1564 .fh_to_parent = ext4_fh_to_parent,
1565 .get_parent = ext4_get_parent,
1566 .commit_metadata = ext4_nfs_commit_metadata,
1567 };
1568
1569 enum {
1570 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1571 Opt_resgid, Opt_resuid, Opt_sb,
1572 Opt_nouid32, Opt_debug, Opt_removed,
1573 Opt_user_xattr, Opt_acl,
1574 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1575 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1576 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1577 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1578 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1579 Opt_inlinecrypt,
1580 Opt_usrjquota, Opt_grpjquota, Opt_quota,
1581 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1582 Opt_usrquota, Opt_grpquota, Opt_prjquota,
1583 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1584 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1585 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1586 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1587 Opt_inode_readahead_blks, Opt_journal_ioprio,
1588 Opt_dioread_nolock, Opt_dioread_lock,
1589 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1590 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1591 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1592 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1593 #ifdef CONFIG_EXT4_DEBUG
1594 Opt_fc_debug_max_replay, Opt_fc_debug_force
1595 #endif
1596 };
1597
1598 static const struct constant_table ext4_param_errors[] = {
1599 {"continue", EXT4_MOUNT_ERRORS_CONT},
1600 {"panic", EXT4_MOUNT_ERRORS_PANIC},
1601 {"remount-ro", EXT4_MOUNT_ERRORS_RO},
1602 {}
1603 };
1604
1605 static const struct constant_table ext4_param_data[] = {
1606 {"journal", EXT4_MOUNT_JOURNAL_DATA},
1607 {"ordered", EXT4_MOUNT_ORDERED_DATA},
1608 {"writeback", EXT4_MOUNT_WRITEBACK_DATA},
1609 {}
1610 };
1611
1612 static const struct constant_table ext4_param_data_err[] = {
1613 {"abort", Opt_data_err_abort},
1614 {"ignore", Opt_data_err_ignore},
1615 {}
1616 };
1617
1618 static const struct constant_table ext4_param_jqfmt[] = {
1619 {"vfsold", QFMT_VFS_OLD},
1620 {"vfsv0", QFMT_VFS_V0},
1621 {"vfsv1", QFMT_VFS_V1},
1622 {}
1623 };
1624
1625 static const struct constant_table ext4_param_dax[] = {
1626 {"always", Opt_dax_always},
1627 {"inode", Opt_dax_inode},
1628 {"never", Opt_dax_never},
1629 {}
1630 };
1631
1632 /* String parameter that allows empty argument */
1633 #define fsparam_string_empty(NAME, OPT) \
1634 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1635
1636 /*
1637 * Mount option specification
1638 * We don't use fsparam_flag_no because of the way we set the
1639 * options and the way we show them in _ext4_show_options(). To
1640 * keep the changes to a minimum, let's keep the negative options
1641 * separate for now.
1642 */
1643 static const struct fs_parameter_spec ext4_param_specs[] = {
1644 fsparam_flag ("bsddf", Opt_bsd_df),
1645 fsparam_flag ("minixdf", Opt_minix_df),
1646 fsparam_flag ("grpid", Opt_grpid),
1647 fsparam_flag ("bsdgroups", Opt_grpid),
1648 fsparam_flag ("nogrpid", Opt_nogrpid),
1649 fsparam_flag ("sysvgroups", Opt_nogrpid),
1650 fsparam_u32 ("resgid", Opt_resgid),
1651 fsparam_u32 ("resuid", Opt_resuid),
1652 fsparam_u32 ("sb", Opt_sb),
1653 fsparam_enum ("errors", Opt_errors, ext4_param_errors),
1654 fsparam_flag ("nouid32", Opt_nouid32),
1655 fsparam_flag ("debug", Opt_debug),
1656 fsparam_flag ("oldalloc", Opt_removed),
1657 fsparam_flag ("orlov", Opt_removed),
1658 fsparam_flag ("user_xattr", Opt_user_xattr),
1659 fsparam_flag ("acl", Opt_acl),
1660 fsparam_flag ("norecovery", Opt_noload),
1661 fsparam_flag ("noload", Opt_noload),
1662 fsparam_flag ("bh", Opt_removed),
1663 fsparam_flag ("nobh", Opt_removed),
1664 fsparam_u32 ("commit", Opt_commit),
1665 fsparam_u32 ("min_batch_time", Opt_min_batch_time),
1666 fsparam_u32 ("max_batch_time", Opt_max_batch_time),
1667 fsparam_u32 ("journal_dev", Opt_journal_dev),
1668 fsparam_bdev ("journal_path", Opt_journal_path),
1669 fsparam_flag ("journal_checksum", Opt_journal_checksum),
1670 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum),
1671 fsparam_flag ("journal_async_commit",Opt_journal_async_commit),
1672 fsparam_flag ("abort", Opt_abort),
1673 fsparam_enum ("data", Opt_data, ext4_param_data),
1674 fsparam_enum ("data_err", Opt_data_err,
1675 ext4_param_data_err),
1676 fsparam_string_empty
1677 ("usrjquota", Opt_usrjquota),
1678 fsparam_string_empty
1679 ("grpjquota", Opt_grpjquota),
1680 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt),
1681 fsparam_flag ("grpquota", Opt_grpquota),
1682 fsparam_flag ("quota", Opt_quota),
1683 fsparam_flag ("noquota", Opt_noquota),
1684 fsparam_flag ("usrquota", Opt_usrquota),
1685 fsparam_flag ("prjquota", Opt_prjquota),
1686 fsparam_flag ("barrier", Opt_barrier),
1687 fsparam_u32 ("barrier", Opt_barrier),
1688 fsparam_flag ("nobarrier", Opt_nobarrier),
1689 fsparam_flag ("i_version", Opt_removed),
1690 fsparam_flag ("dax", Opt_dax),
1691 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax),
1692 fsparam_u32 ("stripe", Opt_stripe),
1693 fsparam_flag ("delalloc", Opt_delalloc),
1694 fsparam_flag ("nodelalloc", Opt_nodelalloc),
1695 fsparam_flag ("warn_on_error", Opt_warn_on_error),
1696 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error),
1697 fsparam_u32 ("debug_want_extra_isize",
1698 Opt_debug_want_extra_isize),
1699 fsparam_flag ("mblk_io_submit", Opt_removed),
1700 fsparam_flag ("nomblk_io_submit", Opt_removed),
1701 fsparam_flag ("block_validity", Opt_block_validity),
1702 fsparam_flag ("noblock_validity", Opt_noblock_validity),
1703 fsparam_u32 ("inode_readahead_blks",
1704 Opt_inode_readahead_blks),
1705 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio),
1706 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc),
1707 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc),
1708 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc),
1709 fsparam_flag ("dioread_nolock", Opt_dioread_nolock),
1710 fsparam_flag ("nodioread_nolock", Opt_dioread_lock),
1711 fsparam_flag ("dioread_lock", Opt_dioread_lock),
1712 fsparam_flag ("discard", Opt_discard),
1713 fsparam_flag ("nodiscard", Opt_nodiscard),
1714 fsparam_u32 ("init_itable", Opt_init_itable),
1715 fsparam_flag ("init_itable", Opt_init_itable),
1716 fsparam_flag ("noinit_itable", Opt_noinit_itable),
1717 #ifdef CONFIG_EXT4_DEBUG
1718 fsparam_flag ("fc_debug_force", Opt_fc_debug_force),
1719 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay),
1720 #endif
1721 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb),
1722 fsparam_flag ("test_dummy_encryption",
1723 Opt_test_dummy_encryption),
1724 fsparam_string ("test_dummy_encryption",
1725 Opt_test_dummy_encryption),
1726 fsparam_flag ("inlinecrypt", Opt_inlinecrypt),
1727 fsparam_flag ("nombcache", Opt_nombcache),
1728 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */
1729 fsparam_flag ("prefetch_block_bitmaps",
1730 Opt_removed),
1731 fsparam_flag ("no_prefetch_block_bitmaps",
1732 Opt_no_prefetch_block_bitmaps),
1733 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan),
1734 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */
1735 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */
1736 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */
1737 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */
1738 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */
1739 {}
1740 };
1741
1742 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1743
1744 #define MOPT_SET 0x0001
1745 #define MOPT_CLEAR 0x0002
1746 #define MOPT_NOSUPPORT 0x0004
1747 #define MOPT_EXPLICIT 0x0008
1748 #ifdef CONFIG_QUOTA
1749 #define MOPT_Q 0
1750 #define MOPT_QFMT 0x0010
1751 #else
1752 #define MOPT_Q MOPT_NOSUPPORT
1753 #define MOPT_QFMT MOPT_NOSUPPORT
1754 #endif
1755 #define MOPT_NO_EXT2 0x0020
1756 #define MOPT_NO_EXT3 0x0040
1757 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1758 #define MOPT_SKIP 0x0080
1759 #define MOPT_2 0x0100
1760
1761 static const struct mount_opts {
1762 int token;
1763 int mount_opt;
1764 int flags;
1765 } ext4_mount_opts[] = {
1766 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1767 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1768 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1769 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1770 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1771 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1772 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1773 MOPT_EXT4_ONLY | MOPT_SET},
1774 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1775 MOPT_EXT4_ONLY | MOPT_CLEAR},
1776 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1777 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1778 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1779 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1780 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1781 MOPT_EXT4_ONLY | MOPT_CLEAR},
1782 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1783 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1784 {Opt_commit, 0, MOPT_NO_EXT2},
1785 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1786 MOPT_EXT4_ONLY | MOPT_CLEAR},
1787 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1788 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1789 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1790 EXT4_MOUNT_JOURNAL_CHECKSUM),
1791 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1792 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1793 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1794 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1795 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1796 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1797 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1798 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1799 {Opt_dax_type, 0, MOPT_EXT4_ONLY},
1800 {Opt_journal_dev, 0, MOPT_NO_EXT2},
1801 {Opt_journal_path, 0, MOPT_NO_EXT2},
1802 {Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1803 {Opt_data, 0, MOPT_NO_EXT2},
1804 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1805 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1806 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1807 #else
1808 {Opt_acl, 0, MOPT_NOSUPPORT},
1809 #endif
1810 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1811 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1812 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1813 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1814 MOPT_SET | MOPT_Q},
1815 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1816 MOPT_SET | MOPT_Q},
1817 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1818 MOPT_SET | MOPT_Q},
1819 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1820 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1821 MOPT_CLEAR | MOPT_Q},
1822 {Opt_usrjquota, 0, MOPT_Q},
1823 {Opt_grpjquota, 0, MOPT_Q},
1824 {Opt_jqfmt, 0, MOPT_QFMT},
1825 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1826 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1827 MOPT_SET},
1828 #ifdef CONFIG_EXT4_DEBUG
1829 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1830 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1831 #endif
1832 {Opt_err, 0, 0}
1833 };
1834
1835 #if IS_ENABLED(CONFIG_UNICODE)
1836 static const struct ext4_sb_encodings {
1837 __u16 magic;
1838 char *name;
1839 unsigned int version;
1840 } ext4_sb_encoding_map[] = {
1841 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1842 };
1843
1844 static const struct ext4_sb_encodings *
ext4_sb_read_encoding(const struct ext4_super_block * es)1845 ext4_sb_read_encoding(const struct ext4_super_block *es)
1846 {
1847 __u16 magic = le16_to_cpu(es->s_encoding);
1848 int i;
1849
1850 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1851 if (magic == ext4_sb_encoding_map[i].magic)
1852 return &ext4_sb_encoding_map[i];
1853
1854 return NULL;
1855 }
1856 #endif
1857
1858 #define EXT4_SPEC_JQUOTA (1 << 0)
1859 #define EXT4_SPEC_JQFMT (1 << 1)
1860 #define EXT4_SPEC_DATAJ (1 << 2)
1861 #define EXT4_SPEC_SB_BLOCK (1 << 3)
1862 #define EXT4_SPEC_JOURNAL_DEV (1 << 4)
1863 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5)
1864 #define EXT4_SPEC_s_want_extra_isize (1 << 7)
1865 #define EXT4_SPEC_s_max_batch_time (1 << 8)
1866 #define EXT4_SPEC_s_min_batch_time (1 << 9)
1867 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10)
1868 #define EXT4_SPEC_s_li_wait_mult (1 << 11)
1869 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12)
1870 #define EXT4_SPEC_s_stripe (1 << 13)
1871 #define EXT4_SPEC_s_resuid (1 << 14)
1872 #define EXT4_SPEC_s_resgid (1 << 15)
1873 #define EXT4_SPEC_s_commit_interval (1 << 16)
1874 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17)
1875 #define EXT4_SPEC_s_sb_block (1 << 18)
1876 #define EXT4_SPEC_mb_optimize_scan (1 << 19)
1877
1878 struct ext4_fs_context {
1879 char *s_qf_names[EXT4_MAXQUOTAS];
1880 struct fscrypt_dummy_policy dummy_enc_policy;
1881 int s_jquota_fmt; /* Format of quota to use */
1882 #ifdef CONFIG_EXT4_DEBUG
1883 int s_fc_debug_max_replay;
1884 #endif
1885 unsigned short qname_spec;
1886 unsigned long vals_s_flags; /* Bits to set in s_flags */
1887 unsigned long mask_s_flags; /* Bits changed in s_flags */
1888 unsigned long journal_devnum;
1889 unsigned long s_commit_interval;
1890 unsigned long s_stripe;
1891 unsigned int s_inode_readahead_blks;
1892 unsigned int s_want_extra_isize;
1893 unsigned int s_li_wait_mult;
1894 unsigned int s_max_dir_size_kb;
1895 unsigned int journal_ioprio;
1896 unsigned int vals_s_mount_opt;
1897 unsigned int mask_s_mount_opt;
1898 unsigned int vals_s_mount_opt2;
1899 unsigned int mask_s_mount_opt2;
1900 unsigned long vals_s_mount_flags;
1901 unsigned long mask_s_mount_flags;
1902 unsigned int opt_flags; /* MOPT flags */
1903 unsigned int spec;
1904 u32 s_max_batch_time;
1905 u32 s_min_batch_time;
1906 kuid_t s_resuid;
1907 kgid_t s_resgid;
1908 ext4_fsblk_t s_sb_block;
1909 };
1910
ext4_fc_free(struct fs_context * fc)1911 static void ext4_fc_free(struct fs_context *fc)
1912 {
1913 struct ext4_fs_context *ctx = fc->fs_private;
1914 int i;
1915
1916 if (!ctx)
1917 return;
1918
1919 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1920 kfree(ctx->s_qf_names[i]);
1921
1922 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
1923 kfree(ctx);
1924 }
1925
ext4_init_fs_context(struct fs_context * fc)1926 int ext4_init_fs_context(struct fs_context *fc)
1927 {
1928 struct ext4_fs_context *ctx;
1929
1930 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
1931 if (!ctx)
1932 return -ENOMEM;
1933
1934 fc->fs_private = ctx;
1935 fc->ops = &ext4_context_ops;
1936
1937 return 0;
1938 }
1939
1940 #ifdef CONFIG_QUOTA
1941 /*
1942 * Note the name of the specified quota file.
1943 */
note_qf_name(struct fs_context * fc,int qtype,struct fs_parameter * param)1944 static int note_qf_name(struct fs_context *fc, int qtype,
1945 struct fs_parameter *param)
1946 {
1947 struct ext4_fs_context *ctx = fc->fs_private;
1948 char *qname;
1949
1950 if (param->size < 1) {
1951 ext4_msg(NULL, KERN_ERR, "Missing quota name");
1952 return -EINVAL;
1953 }
1954 if (strchr(param->string, '/')) {
1955 ext4_msg(NULL, KERN_ERR,
1956 "quotafile must be on filesystem root");
1957 return -EINVAL;
1958 }
1959 if (ctx->s_qf_names[qtype]) {
1960 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
1961 ext4_msg(NULL, KERN_ERR,
1962 "%s quota file already specified",
1963 QTYPE2NAME(qtype));
1964 return -EINVAL;
1965 }
1966 return 0;
1967 }
1968
1969 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
1970 if (!qname) {
1971 ext4_msg(NULL, KERN_ERR,
1972 "Not enough memory for storing quotafile name");
1973 return -ENOMEM;
1974 }
1975 ctx->s_qf_names[qtype] = qname;
1976 ctx->qname_spec |= 1 << qtype;
1977 ctx->spec |= EXT4_SPEC_JQUOTA;
1978 return 0;
1979 }
1980
1981 /*
1982 * Clear the name of the specified quota file.
1983 */
unnote_qf_name(struct fs_context * fc,int qtype)1984 static int unnote_qf_name(struct fs_context *fc, int qtype)
1985 {
1986 struct ext4_fs_context *ctx = fc->fs_private;
1987
1988 if (ctx->s_qf_names[qtype])
1989 kfree(ctx->s_qf_names[qtype]);
1990
1991 ctx->s_qf_names[qtype] = NULL;
1992 ctx->qname_spec |= 1 << qtype;
1993 ctx->spec |= EXT4_SPEC_JQUOTA;
1994 return 0;
1995 }
1996 #endif
1997
ext4_parse_test_dummy_encryption(const struct fs_parameter * param,struct ext4_fs_context * ctx)1998 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
1999 struct ext4_fs_context *ctx)
2000 {
2001 int err;
2002
2003 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2004 ext4_msg(NULL, KERN_WARNING,
2005 "test_dummy_encryption option not supported");
2006 return -EINVAL;
2007 }
2008 err = fscrypt_parse_test_dummy_encryption(param,
2009 &ctx->dummy_enc_policy);
2010 if (err == -EINVAL) {
2011 ext4_msg(NULL, KERN_WARNING,
2012 "Value of option \"%s\" is unrecognized", param->key);
2013 } else if (err == -EEXIST) {
2014 ext4_msg(NULL, KERN_WARNING,
2015 "Conflicting test_dummy_encryption options");
2016 return -EINVAL;
2017 }
2018 return err;
2019 }
2020
2021 #define EXT4_SET_CTX(name) \
2022 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \
2023 unsigned long flag) \
2024 { \
2025 ctx->mask_s_##name |= flag; \
2026 ctx->vals_s_##name |= flag; \
2027 }
2028
2029 #define EXT4_CLEAR_CTX(name) \
2030 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \
2031 unsigned long flag) \
2032 { \
2033 ctx->mask_s_##name |= flag; \
2034 ctx->vals_s_##name &= ~flag; \
2035 }
2036
2037 #define EXT4_TEST_CTX(name) \
2038 static inline unsigned long \
2039 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2040 { \
2041 return (ctx->vals_s_##name & flag); \
2042 }
2043
2044 EXT4_SET_CTX(flags); /* set only */
2045 EXT4_SET_CTX(mount_opt);
2046 EXT4_CLEAR_CTX(mount_opt);
2047 EXT4_TEST_CTX(mount_opt);
2048 EXT4_SET_CTX(mount_opt2);
2049 EXT4_CLEAR_CTX(mount_opt2);
2050 EXT4_TEST_CTX(mount_opt2);
2051
ctx_set_mount_flag(struct ext4_fs_context * ctx,int bit)2052 static inline void ctx_set_mount_flag(struct ext4_fs_context *ctx, int bit)
2053 {
2054 set_bit(bit, &ctx->mask_s_mount_flags);
2055 set_bit(bit, &ctx->vals_s_mount_flags);
2056 }
2057
ext4_parse_param(struct fs_context * fc,struct fs_parameter * param)2058 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2059 {
2060 struct ext4_fs_context *ctx = fc->fs_private;
2061 struct fs_parse_result result;
2062 const struct mount_opts *m;
2063 int is_remount;
2064 kuid_t uid;
2065 kgid_t gid;
2066 int token;
2067
2068 token = fs_parse(fc, ext4_param_specs, param, &result);
2069 if (token < 0)
2070 return token;
2071 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2072
2073 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2074 if (token == m->token)
2075 break;
2076
2077 ctx->opt_flags |= m->flags;
2078
2079 if (m->flags & MOPT_EXPLICIT) {
2080 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2081 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2082 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2083 ctx_set_mount_opt2(ctx,
2084 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2085 } else
2086 return -EINVAL;
2087 }
2088
2089 if (m->flags & MOPT_NOSUPPORT) {
2090 ext4_msg(NULL, KERN_ERR, "%s option not supported",
2091 param->key);
2092 return 0;
2093 }
2094
2095 switch (token) {
2096 #ifdef CONFIG_QUOTA
2097 case Opt_usrjquota:
2098 if (!*param->string)
2099 return unnote_qf_name(fc, USRQUOTA);
2100 else
2101 return note_qf_name(fc, USRQUOTA, param);
2102 case Opt_grpjquota:
2103 if (!*param->string)
2104 return unnote_qf_name(fc, GRPQUOTA);
2105 else
2106 return note_qf_name(fc, GRPQUOTA, param);
2107 #endif
2108 case Opt_sb:
2109 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2110 ext4_msg(NULL, KERN_WARNING,
2111 "Ignoring %s option on remount", param->key);
2112 } else {
2113 ctx->s_sb_block = result.uint_32;
2114 ctx->spec |= EXT4_SPEC_s_sb_block;
2115 }
2116 return 0;
2117 case Opt_removed:
2118 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2119 param->key);
2120 return 0;
2121 case Opt_abort:
2122 ctx_set_mount_flag(ctx, EXT4_MF_FS_ABORTED);
2123 return 0;
2124 case Opt_inlinecrypt:
2125 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2126 ctx_set_flags(ctx, SB_INLINECRYPT);
2127 #else
2128 ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2129 #endif
2130 return 0;
2131 case Opt_errors:
2132 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2133 ctx_set_mount_opt(ctx, result.uint_32);
2134 return 0;
2135 #ifdef CONFIG_QUOTA
2136 case Opt_jqfmt:
2137 ctx->s_jquota_fmt = result.uint_32;
2138 ctx->spec |= EXT4_SPEC_JQFMT;
2139 return 0;
2140 #endif
2141 case Opt_data:
2142 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2143 ctx_set_mount_opt(ctx, result.uint_32);
2144 ctx->spec |= EXT4_SPEC_DATAJ;
2145 return 0;
2146 case Opt_commit:
2147 if (result.uint_32 == 0)
2148 ctx->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE;
2149 else if (result.uint_32 > INT_MAX / HZ) {
2150 ext4_msg(NULL, KERN_ERR,
2151 "Invalid commit interval %d, "
2152 "must be smaller than %d",
2153 result.uint_32, INT_MAX / HZ);
2154 return -EINVAL;
2155 }
2156 ctx->s_commit_interval = HZ * result.uint_32;
2157 ctx->spec |= EXT4_SPEC_s_commit_interval;
2158 return 0;
2159 case Opt_debug_want_extra_isize:
2160 if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2161 ext4_msg(NULL, KERN_ERR,
2162 "Invalid want_extra_isize %d", result.uint_32);
2163 return -EINVAL;
2164 }
2165 ctx->s_want_extra_isize = result.uint_32;
2166 ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2167 return 0;
2168 case Opt_max_batch_time:
2169 ctx->s_max_batch_time = result.uint_32;
2170 ctx->spec |= EXT4_SPEC_s_max_batch_time;
2171 return 0;
2172 case Opt_min_batch_time:
2173 ctx->s_min_batch_time = result.uint_32;
2174 ctx->spec |= EXT4_SPEC_s_min_batch_time;
2175 return 0;
2176 case Opt_inode_readahead_blks:
2177 if (result.uint_32 &&
2178 (result.uint_32 > (1 << 30) ||
2179 !is_power_of_2(result.uint_32))) {
2180 ext4_msg(NULL, KERN_ERR,
2181 "EXT4-fs: inode_readahead_blks must be "
2182 "0 or a power of 2 smaller than 2^31");
2183 return -EINVAL;
2184 }
2185 ctx->s_inode_readahead_blks = result.uint_32;
2186 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2187 return 0;
2188 case Opt_init_itable:
2189 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2190 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2191 if (param->type == fs_value_is_string)
2192 ctx->s_li_wait_mult = result.uint_32;
2193 ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2194 return 0;
2195 case Opt_max_dir_size_kb:
2196 ctx->s_max_dir_size_kb = result.uint_32;
2197 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2198 return 0;
2199 #ifdef CONFIG_EXT4_DEBUG
2200 case Opt_fc_debug_max_replay:
2201 ctx->s_fc_debug_max_replay = result.uint_32;
2202 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2203 return 0;
2204 #endif
2205 case Opt_stripe:
2206 ctx->s_stripe = result.uint_32;
2207 ctx->spec |= EXT4_SPEC_s_stripe;
2208 return 0;
2209 case Opt_resuid:
2210 uid = make_kuid(current_user_ns(), result.uint_32);
2211 if (!uid_valid(uid)) {
2212 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2213 result.uint_32);
2214 return -EINVAL;
2215 }
2216 ctx->s_resuid = uid;
2217 ctx->spec |= EXT4_SPEC_s_resuid;
2218 return 0;
2219 case Opt_resgid:
2220 gid = make_kgid(current_user_ns(), result.uint_32);
2221 if (!gid_valid(gid)) {
2222 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2223 result.uint_32);
2224 return -EINVAL;
2225 }
2226 ctx->s_resgid = gid;
2227 ctx->spec |= EXT4_SPEC_s_resgid;
2228 return 0;
2229 case Opt_journal_dev:
2230 if (is_remount) {
2231 ext4_msg(NULL, KERN_ERR,
2232 "Cannot specify journal on remount");
2233 return -EINVAL;
2234 }
2235 ctx->journal_devnum = result.uint_32;
2236 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2237 return 0;
2238 case Opt_journal_path:
2239 {
2240 struct inode *journal_inode;
2241 struct path path;
2242 int error;
2243
2244 if (is_remount) {
2245 ext4_msg(NULL, KERN_ERR,
2246 "Cannot specify journal on remount");
2247 return -EINVAL;
2248 }
2249
2250 error = fs_lookup_param(fc, param, 1, &path);
2251 if (error) {
2252 ext4_msg(NULL, KERN_ERR, "error: could not find "
2253 "journal device path");
2254 return -EINVAL;
2255 }
2256
2257 journal_inode = d_inode(path.dentry);
2258 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2259 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2260 path_put(&path);
2261 return 0;
2262 }
2263 case Opt_journal_ioprio:
2264 if (result.uint_32 > 7) {
2265 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2266 " (must be 0-7)");
2267 return -EINVAL;
2268 }
2269 ctx->journal_ioprio =
2270 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2271 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2272 return 0;
2273 case Opt_test_dummy_encryption:
2274 return ext4_parse_test_dummy_encryption(param, ctx);
2275 case Opt_dax:
2276 case Opt_dax_type:
2277 #ifdef CONFIG_FS_DAX
2278 {
2279 int type = (token == Opt_dax) ?
2280 Opt_dax : result.uint_32;
2281
2282 switch (type) {
2283 case Opt_dax:
2284 case Opt_dax_always:
2285 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2286 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2287 break;
2288 case Opt_dax_never:
2289 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2290 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2291 break;
2292 case Opt_dax_inode:
2293 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2294 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2295 /* Strictly for printing options */
2296 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2297 break;
2298 }
2299 return 0;
2300 }
2301 #else
2302 ext4_msg(NULL, KERN_INFO, "dax option not supported");
2303 return -EINVAL;
2304 #endif
2305 case Opt_data_err:
2306 if (result.uint_32 == Opt_data_err_abort)
2307 ctx_set_mount_opt(ctx, m->mount_opt);
2308 else if (result.uint_32 == Opt_data_err_ignore)
2309 ctx_clear_mount_opt(ctx, m->mount_opt);
2310 return 0;
2311 case Opt_mb_optimize_scan:
2312 if (result.int_32 == 1) {
2313 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2314 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2315 } else if (result.int_32 == 0) {
2316 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2317 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2318 } else {
2319 ext4_msg(NULL, KERN_WARNING,
2320 "mb_optimize_scan should be set to 0 or 1.");
2321 return -EINVAL;
2322 }
2323 return 0;
2324 }
2325
2326 /*
2327 * At this point we should only be getting options requiring MOPT_SET,
2328 * or MOPT_CLEAR. Anything else is a bug
2329 */
2330 if (m->token == Opt_err) {
2331 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2332 param->key);
2333 WARN_ON(1);
2334 return -EINVAL;
2335 }
2336
2337 else {
2338 unsigned int set = 0;
2339
2340 if ((param->type == fs_value_is_flag) ||
2341 result.uint_32 > 0)
2342 set = 1;
2343
2344 if (m->flags & MOPT_CLEAR)
2345 set = !set;
2346 else if (unlikely(!(m->flags & MOPT_SET))) {
2347 ext4_msg(NULL, KERN_WARNING,
2348 "buggy handling of option %s",
2349 param->key);
2350 WARN_ON(1);
2351 return -EINVAL;
2352 }
2353 if (m->flags & MOPT_2) {
2354 if (set != 0)
2355 ctx_set_mount_opt2(ctx, m->mount_opt);
2356 else
2357 ctx_clear_mount_opt2(ctx, m->mount_opt);
2358 } else {
2359 if (set != 0)
2360 ctx_set_mount_opt(ctx, m->mount_opt);
2361 else
2362 ctx_clear_mount_opt(ctx, m->mount_opt);
2363 }
2364 }
2365
2366 return 0;
2367 }
2368
parse_options(struct fs_context * fc,char * options)2369 static int parse_options(struct fs_context *fc, char *options)
2370 {
2371 struct fs_parameter param;
2372 int ret;
2373 char *key;
2374
2375 if (!options)
2376 return 0;
2377
2378 while ((key = strsep(&options, ",")) != NULL) {
2379 if (*key) {
2380 size_t v_len = 0;
2381 char *value = strchr(key, '=');
2382
2383 param.type = fs_value_is_flag;
2384 param.string = NULL;
2385
2386 if (value) {
2387 if (value == key)
2388 continue;
2389
2390 *value++ = 0;
2391 v_len = strlen(value);
2392 param.string = kmemdup_nul(value, v_len,
2393 GFP_KERNEL);
2394 if (!param.string)
2395 return -ENOMEM;
2396 param.type = fs_value_is_string;
2397 }
2398
2399 param.key = key;
2400 param.size = v_len;
2401
2402 ret = ext4_parse_param(fc, ¶m);
2403 if (param.string)
2404 kfree(param.string);
2405 if (ret < 0)
2406 return ret;
2407 }
2408 }
2409
2410 ret = ext4_validate_options(fc);
2411 if (ret < 0)
2412 return ret;
2413
2414 return 0;
2415 }
2416
parse_apply_sb_mount_options(struct super_block * sb,struct ext4_fs_context * m_ctx)2417 static int parse_apply_sb_mount_options(struct super_block *sb,
2418 struct ext4_fs_context *m_ctx)
2419 {
2420 struct ext4_sb_info *sbi = EXT4_SB(sb);
2421 char *s_mount_opts = NULL;
2422 struct ext4_fs_context *s_ctx = NULL;
2423 struct fs_context *fc = NULL;
2424 int ret = -ENOMEM;
2425
2426 if (!sbi->s_es->s_mount_opts[0])
2427 return 0;
2428
2429 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2430 sizeof(sbi->s_es->s_mount_opts),
2431 GFP_KERNEL);
2432 if (!s_mount_opts)
2433 return ret;
2434
2435 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2436 if (!fc)
2437 goto out_free;
2438
2439 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2440 if (!s_ctx)
2441 goto out_free;
2442
2443 fc->fs_private = s_ctx;
2444 fc->s_fs_info = sbi;
2445
2446 ret = parse_options(fc, s_mount_opts);
2447 if (ret < 0)
2448 goto parse_failed;
2449
2450 ret = ext4_check_opt_consistency(fc, sb);
2451 if (ret < 0) {
2452 parse_failed:
2453 ext4_msg(sb, KERN_WARNING,
2454 "failed to parse options in superblock: %s",
2455 s_mount_opts);
2456 ret = 0;
2457 goto out_free;
2458 }
2459
2460 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2461 m_ctx->journal_devnum = s_ctx->journal_devnum;
2462 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2463 m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2464
2465 ext4_apply_options(fc, sb);
2466 ret = 0;
2467
2468 out_free:
2469 if (fc) {
2470 ext4_fc_free(fc);
2471 kfree(fc);
2472 }
2473 kfree(s_mount_opts);
2474 return ret;
2475 }
2476
ext4_apply_quota_options(struct fs_context * fc,struct super_block * sb)2477 static void ext4_apply_quota_options(struct fs_context *fc,
2478 struct super_block *sb)
2479 {
2480 #ifdef CONFIG_QUOTA
2481 bool quota_feature = ext4_has_feature_quota(sb);
2482 struct ext4_fs_context *ctx = fc->fs_private;
2483 struct ext4_sb_info *sbi = EXT4_SB(sb);
2484 char *qname;
2485 int i;
2486
2487 if (quota_feature)
2488 return;
2489
2490 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2491 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2492 if (!(ctx->qname_spec & (1 << i)))
2493 continue;
2494
2495 qname = ctx->s_qf_names[i]; /* May be NULL */
2496 if (qname)
2497 set_opt(sb, QUOTA);
2498 ctx->s_qf_names[i] = NULL;
2499 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2500 lockdep_is_held(&sb->s_umount));
2501 if (qname)
2502 kfree_rcu(qname);
2503 }
2504 }
2505
2506 if (ctx->spec & EXT4_SPEC_JQFMT)
2507 sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2508 #endif
2509 }
2510
2511 /*
2512 * Check quota settings consistency.
2513 */
ext4_check_quota_consistency(struct fs_context * fc,struct super_block * sb)2514 static int ext4_check_quota_consistency(struct fs_context *fc,
2515 struct super_block *sb)
2516 {
2517 #ifdef CONFIG_QUOTA
2518 struct ext4_fs_context *ctx = fc->fs_private;
2519 struct ext4_sb_info *sbi = EXT4_SB(sb);
2520 bool quota_feature = ext4_has_feature_quota(sb);
2521 bool quota_loaded = sb_any_quota_loaded(sb);
2522 bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2523 int quota_flags, i;
2524
2525 /*
2526 * We do the test below only for project quotas. 'usrquota' and
2527 * 'grpquota' mount options are allowed even without quota feature
2528 * to support legacy quotas in quota files.
2529 */
2530 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2531 !ext4_has_feature_project(sb)) {
2532 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2533 "Cannot enable project quota enforcement.");
2534 return -EINVAL;
2535 }
2536
2537 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2538 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2539 if (quota_loaded &&
2540 ctx->mask_s_mount_opt & quota_flags &&
2541 !ctx_test_mount_opt(ctx, quota_flags))
2542 goto err_quota_change;
2543
2544 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2545
2546 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2547 if (!(ctx->qname_spec & (1 << i)))
2548 continue;
2549
2550 if (quota_loaded &&
2551 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2552 goto err_jquota_change;
2553
2554 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2555 strcmp(get_qf_name(sb, sbi, i),
2556 ctx->s_qf_names[i]) != 0)
2557 goto err_jquota_specified;
2558 }
2559
2560 if (quota_feature) {
2561 ext4_msg(NULL, KERN_INFO,
2562 "Journaled quota options ignored when "
2563 "QUOTA feature is enabled");
2564 return 0;
2565 }
2566 }
2567
2568 if (ctx->spec & EXT4_SPEC_JQFMT) {
2569 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2570 goto err_jquota_change;
2571 if (quota_feature) {
2572 ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2573 "ignored when QUOTA feature is enabled");
2574 return 0;
2575 }
2576 }
2577
2578 /* Make sure we don't mix old and new quota format */
2579 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2580 ctx->s_qf_names[USRQUOTA]);
2581 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2582 ctx->s_qf_names[GRPQUOTA]);
2583
2584 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2585 test_opt(sb, USRQUOTA));
2586
2587 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2588 test_opt(sb, GRPQUOTA));
2589
2590 if (usr_qf_name) {
2591 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2592 usrquota = false;
2593 }
2594 if (grp_qf_name) {
2595 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2596 grpquota = false;
2597 }
2598
2599 if (usr_qf_name || grp_qf_name) {
2600 if (usrquota || grpquota) {
2601 ext4_msg(NULL, KERN_ERR, "old and new quota "
2602 "format mixing");
2603 return -EINVAL;
2604 }
2605
2606 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2607 ext4_msg(NULL, KERN_ERR, "journaled quota format "
2608 "not specified");
2609 return -EINVAL;
2610 }
2611 }
2612
2613 return 0;
2614
2615 err_quota_change:
2616 ext4_msg(NULL, KERN_ERR,
2617 "Cannot change quota options when quota turned on");
2618 return -EINVAL;
2619 err_jquota_change:
2620 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2621 "options when quota turned on");
2622 return -EINVAL;
2623 err_jquota_specified:
2624 ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2625 QTYPE2NAME(i));
2626 return -EINVAL;
2627 #else
2628 return 0;
2629 #endif
2630 }
2631
ext4_check_test_dummy_encryption(const struct fs_context * fc,struct super_block * sb)2632 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2633 struct super_block *sb)
2634 {
2635 const struct ext4_fs_context *ctx = fc->fs_private;
2636 const struct ext4_sb_info *sbi = EXT4_SB(sb);
2637 int err;
2638
2639 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2640 return 0;
2641
2642 if (!ext4_has_feature_encrypt(sb)) {
2643 ext4_msg(NULL, KERN_WARNING,
2644 "test_dummy_encryption requires encrypt feature");
2645 return -EINVAL;
2646 }
2647 /*
2648 * This mount option is just for testing, and it's not worthwhile to
2649 * implement the extra complexity (e.g. RCU protection) that would be
2650 * needed to allow it to be set or changed during remount. We do allow
2651 * it to be specified during remount, but only if there is no change.
2652 */
2653 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2654 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2655 &ctx->dummy_enc_policy))
2656 return 0;
2657 ext4_msg(NULL, KERN_WARNING,
2658 "Can't set or change test_dummy_encryption on remount");
2659 return -EINVAL;
2660 }
2661 /* Also make sure s_mount_opts didn't contain a conflicting value. */
2662 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2663 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2664 &ctx->dummy_enc_policy))
2665 return 0;
2666 ext4_msg(NULL, KERN_WARNING,
2667 "Conflicting test_dummy_encryption options");
2668 return -EINVAL;
2669 }
2670 /*
2671 * fscrypt_add_test_dummy_key() technically changes the super_block, so
2672 * technically it should be delayed until ext4_apply_options() like the
2673 * other changes. But since we never get here for remounts (see above),
2674 * and this is the last chance to report errors, we do it here.
2675 */
2676 err = fscrypt_add_test_dummy_key(sb, &ctx->dummy_enc_policy);
2677 if (err)
2678 ext4_msg(NULL, KERN_WARNING,
2679 "Error adding test dummy encryption key [%d]", err);
2680 return err;
2681 }
2682
ext4_apply_test_dummy_encryption(struct ext4_fs_context * ctx,struct super_block * sb)2683 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2684 struct super_block *sb)
2685 {
2686 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2687 /* if already set, it was already verified to be the same */
2688 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2689 return;
2690 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2691 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2692 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2693 }
2694
ext4_check_opt_consistency(struct fs_context * fc,struct super_block * sb)2695 static int ext4_check_opt_consistency(struct fs_context *fc,
2696 struct super_block *sb)
2697 {
2698 struct ext4_fs_context *ctx = fc->fs_private;
2699 struct ext4_sb_info *sbi = fc->s_fs_info;
2700 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2701 int err;
2702
2703 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2704 ext4_msg(NULL, KERN_ERR,
2705 "Mount option(s) incompatible with ext2");
2706 return -EINVAL;
2707 }
2708 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2709 ext4_msg(NULL, KERN_ERR,
2710 "Mount option(s) incompatible with ext3");
2711 return -EINVAL;
2712 }
2713
2714 if (ctx->s_want_extra_isize >
2715 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2716 ext4_msg(NULL, KERN_ERR,
2717 "Invalid want_extra_isize %d",
2718 ctx->s_want_extra_isize);
2719 return -EINVAL;
2720 }
2721
2722 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
2723 int blocksize =
2724 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2725 if (blocksize < PAGE_SIZE)
2726 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
2727 "experimental mount option 'dioread_nolock' "
2728 "for blocksize < PAGE_SIZE");
2729 }
2730
2731 err = ext4_check_test_dummy_encryption(fc, sb);
2732 if (err)
2733 return err;
2734
2735 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2736 if (!sbi->s_journal) {
2737 ext4_msg(NULL, KERN_WARNING,
2738 "Remounting file system with no journal "
2739 "so ignoring journalled data option");
2740 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2741 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2742 test_opt(sb, DATA_FLAGS)) {
2743 ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2744 "on remount");
2745 return -EINVAL;
2746 }
2747 }
2748
2749 if (is_remount) {
2750 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2751 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2752 ext4_msg(NULL, KERN_ERR, "can't mount with "
2753 "both data=journal and dax");
2754 return -EINVAL;
2755 }
2756
2757 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2758 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2759 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2760 fail_dax_change_remount:
2761 ext4_msg(NULL, KERN_ERR, "can't change "
2762 "dax mount option while remounting");
2763 return -EINVAL;
2764 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2765 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2766 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2767 goto fail_dax_change_remount;
2768 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2769 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2770 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2771 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2772 goto fail_dax_change_remount;
2773 }
2774 }
2775
2776 return ext4_check_quota_consistency(fc, sb);
2777 }
2778
ext4_apply_options(struct fs_context * fc,struct super_block * sb)2779 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2780 {
2781 struct ext4_fs_context *ctx = fc->fs_private;
2782 struct ext4_sb_info *sbi = fc->s_fs_info;
2783
2784 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2785 sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2786 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2787 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2788 sbi->s_mount_flags &= ~ctx->mask_s_mount_flags;
2789 sbi->s_mount_flags |= ctx->vals_s_mount_flags;
2790 sb->s_flags &= ~ctx->mask_s_flags;
2791 sb->s_flags |= ctx->vals_s_flags;
2792
2793 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2794 APPLY(s_commit_interval);
2795 APPLY(s_stripe);
2796 APPLY(s_max_batch_time);
2797 APPLY(s_min_batch_time);
2798 APPLY(s_want_extra_isize);
2799 APPLY(s_inode_readahead_blks);
2800 APPLY(s_max_dir_size_kb);
2801 APPLY(s_li_wait_mult);
2802 APPLY(s_resgid);
2803 APPLY(s_resuid);
2804
2805 #ifdef CONFIG_EXT4_DEBUG
2806 APPLY(s_fc_debug_max_replay);
2807 #endif
2808
2809 ext4_apply_quota_options(fc, sb);
2810 ext4_apply_test_dummy_encryption(ctx, sb);
2811 }
2812
2813
ext4_validate_options(struct fs_context * fc)2814 static int ext4_validate_options(struct fs_context *fc)
2815 {
2816 #ifdef CONFIG_QUOTA
2817 struct ext4_fs_context *ctx = fc->fs_private;
2818 char *usr_qf_name, *grp_qf_name;
2819
2820 usr_qf_name = ctx->s_qf_names[USRQUOTA];
2821 grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2822
2823 if (usr_qf_name || grp_qf_name) {
2824 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2825 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2826
2827 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2828 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2829
2830 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2831 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2832 ext4_msg(NULL, KERN_ERR, "old and new quota "
2833 "format mixing");
2834 return -EINVAL;
2835 }
2836 }
2837 #endif
2838 return 1;
2839 }
2840
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2841 static inline void ext4_show_quota_options(struct seq_file *seq,
2842 struct super_block *sb)
2843 {
2844 #if defined(CONFIG_QUOTA)
2845 struct ext4_sb_info *sbi = EXT4_SB(sb);
2846 char *usr_qf_name, *grp_qf_name;
2847
2848 if (sbi->s_jquota_fmt) {
2849 char *fmtname = "";
2850
2851 switch (sbi->s_jquota_fmt) {
2852 case QFMT_VFS_OLD:
2853 fmtname = "vfsold";
2854 break;
2855 case QFMT_VFS_V0:
2856 fmtname = "vfsv0";
2857 break;
2858 case QFMT_VFS_V1:
2859 fmtname = "vfsv1";
2860 break;
2861 }
2862 seq_printf(seq, ",jqfmt=%s", fmtname);
2863 }
2864
2865 rcu_read_lock();
2866 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2867 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2868 if (usr_qf_name)
2869 seq_show_option(seq, "usrjquota", usr_qf_name);
2870 if (grp_qf_name)
2871 seq_show_option(seq, "grpjquota", grp_qf_name);
2872 rcu_read_unlock();
2873 #endif
2874 }
2875
token2str(int token)2876 static const char *token2str(int token)
2877 {
2878 const struct fs_parameter_spec *spec;
2879
2880 for (spec = ext4_param_specs; spec->name != NULL; spec++)
2881 if (spec->opt == token && !spec->type)
2882 break;
2883 return spec->name;
2884 }
2885
2886 /*
2887 * Show an option if
2888 * - it's set to a non-default value OR
2889 * - if the per-sb default is different from the global default
2890 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2891 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2892 int nodefs)
2893 {
2894 struct ext4_sb_info *sbi = EXT4_SB(sb);
2895 struct ext4_super_block *es = sbi->s_es;
2896 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2897 const struct mount_opts *m;
2898 char sep = nodefs ? '\n' : ',';
2899
2900 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2901 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2902
2903 if (sbi->s_sb_block != 1)
2904 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2905
2906 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2907 int want_set = m->flags & MOPT_SET;
2908 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2909 m->flags & MOPT_SKIP)
2910 continue;
2911 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2912 continue; /* skip if same as the default */
2913 if ((want_set &&
2914 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2915 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2916 continue; /* select Opt_noFoo vs Opt_Foo */
2917 SEQ_OPTS_PRINT("%s", token2str(m->token));
2918 }
2919
2920 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2921 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2922 SEQ_OPTS_PRINT("resuid=%u",
2923 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2924 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2925 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2926 SEQ_OPTS_PRINT("resgid=%u",
2927 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2928 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2929 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2930 SEQ_OPTS_PUTS("errors=remount-ro");
2931 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2932 SEQ_OPTS_PUTS("errors=continue");
2933 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2934 SEQ_OPTS_PUTS("errors=panic");
2935 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2936 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2937 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2938 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2939 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2940 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2941 if (nodefs || sbi->s_stripe)
2942 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2943 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2944 (sbi->s_mount_opt ^ def_mount_opt)) {
2945 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2946 SEQ_OPTS_PUTS("data=journal");
2947 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2948 SEQ_OPTS_PUTS("data=ordered");
2949 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2950 SEQ_OPTS_PUTS("data=writeback");
2951 }
2952 if (nodefs ||
2953 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2954 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2955 sbi->s_inode_readahead_blks);
2956
2957 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2958 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2959 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2960 if (nodefs || sbi->s_max_dir_size_kb)
2961 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2962 if (test_opt(sb, DATA_ERR_ABORT))
2963 SEQ_OPTS_PUTS("data_err=abort");
2964
2965 fscrypt_show_test_dummy_encryption(seq, sep, sb);
2966
2967 if (sb->s_flags & SB_INLINECRYPT)
2968 SEQ_OPTS_PUTS("inlinecrypt");
2969
2970 if (test_opt(sb, DAX_ALWAYS)) {
2971 if (IS_EXT2_SB(sb))
2972 SEQ_OPTS_PUTS("dax");
2973 else
2974 SEQ_OPTS_PUTS("dax=always");
2975 } else if (test_opt2(sb, DAX_NEVER)) {
2976 SEQ_OPTS_PUTS("dax=never");
2977 } else if (test_opt2(sb, DAX_INODE)) {
2978 SEQ_OPTS_PUTS("dax=inode");
2979 }
2980
2981 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
2982 !test_opt2(sb, MB_OPTIMIZE_SCAN)) {
2983 SEQ_OPTS_PUTS("mb_optimize_scan=0");
2984 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
2985 test_opt2(sb, MB_OPTIMIZE_SCAN)) {
2986 SEQ_OPTS_PUTS("mb_optimize_scan=1");
2987 }
2988
2989 ext4_show_quota_options(seq, sb);
2990 return 0;
2991 }
2992
ext4_show_options(struct seq_file * seq,struct dentry * root)2993 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2994 {
2995 return _ext4_show_options(seq, root->d_sb, 0);
2996 }
2997
ext4_seq_options_show(struct seq_file * seq,void * offset)2998 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2999 {
3000 struct super_block *sb = seq->private;
3001 int rc;
3002
3003 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3004 rc = _ext4_show_options(seq, sb, 1);
3005 seq_puts(seq, "\n");
3006 return rc;
3007 }
3008
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)3009 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3010 int read_only)
3011 {
3012 struct ext4_sb_info *sbi = EXT4_SB(sb);
3013 int err = 0;
3014
3015 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3016 ext4_msg(sb, KERN_ERR, "revision level too high, "
3017 "forcing read-only mode");
3018 err = -EROFS;
3019 goto done;
3020 }
3021 if (read_only)
3022 goto done;
3023 if (!(sbi->s_mount_state & EXT4_VALID_FS))
3024 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3025 "running e2fsck is recommended");
3026 else if (sbi->s_mount_state & EXT4_ERROR_FS)
3027 ext4_msg(sb, KERN_WARNING,
3028 "warning: mounting fs with errors, "
3029 "running e2fsck is recommended");
3030 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3031 le16_to_cpu(es->s_mnt_count) >=
3032 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3033 ext4_msg(sb, KERN_WARNING,
3034 "warning: maximal mount count reached, "
3035 "running e2fsck is recommended");
3036 else if (le32_to_cpu(es->s_checkinterval) &&
3037 (ext4_get_tstamp(es, s_lastcheck) +
3038 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3039 ext4_msg(sb, KERN_WARNING,
3040 "warning: checktime reached, "
3041 "running e2fsck is recommended");
3042 if (!sbi->s_journal)
3043 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3044 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3045 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3046 le16_add_cpu(&es->s_mnt_count, 1);
3047 ext4_update_tstamp(es, s_mtime);
3048 if (sbi->s_journal) {
3049 ext4_set_feature_journal_needs_recovery(sb);
3050 if (ext4_has_feature_orphan_file(sb))
3051 ext4_set_feature_orphan_present(sb);
3052 }
3053
3054 err = ext4_commit_super(sb);
3055 done:
3056 if (test_opt(sb, DEBUG))
3057 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3058 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3059 sb->s_blocksize,
3060 sbi->s_groups_count,
3061 EXT4_BLOCKS_PER_GROUP(sb),
3062 EXT4_INODES_PER_GROUP(sb),
3063 sbi->s_mount_opt, sbi->s_mount_opt2);
3064 return err;
3065 }
3066
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)3067 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3068 {
3069 struct ext4_sb_info *sbi = EXT4_SB(sb);
3070 struct flex_groups **old_groups, **new_groups;
3071 int size, i, j;
3072
3073 if (!sbi->s_log_groups_per_flex)
3074 return 0;
3075
3076 size = ext4_flex_group(sbi, ngroup - 1) + 1;
3077 if (size <= sbi->s_flex_groups_allocated)
3078 return 0;
3079
3080 new_groups = kvzalloc(roundup_pow_of_two(size *
3081 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3082 if (!new_groups) {
3083 ext4_msg(sb, KERN_ERR,
3084 "not enough memory for %d flex group pointers", size);
3085 return -ENOMEM;
3086 }
3087 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3088 new_groups[i] = kvzalloc(roundup_pow_of_two(
3089 sizeof(struct flex_groups)),
3090 GFP_KERNEL);
3091 if (!new_groups[i]) {
3092 for (j = sbi->s_flex_groups_allocated; j < i; j++)
3093 kvfree(new_groups[j]);
3094 kvfree(new_groups);
3095 ext4_msg(sb, KERN_ERR,
3096 "not enough memory for %d flex groups", size);
3097 return -ENOMEM;
3098 }
3099 }
3100 rcu_read_lock();
3101 old_groups = rcu_dereference(sbi->s_flex_groups);
3102 if (old_groups)
3103 memcpy(new_groups, old_groups,
3104 (sbi->s_flex_groups_allocated *
3105 sizeof(struct flex_groups *)));
3106 rcu_read_unlock();
3107 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3108 sbi->s_flex_groups_allocated = size;
3109 if (old_groups)
3110 ext4_kvfree_array_rcu(old_groups);
3111 return 0;
3112 }
3113
ext4_fill_flex_info(struct super_block * sb)3114 static int ext4_fill_flex_info(struct super_block *sb)
3115 {
3116 struct ext4_sb_info *sbi = EXT4_SB(sb);
3117 struct ext4_group_desc *gdp = NULL;
3118 struct flex_groups *fg;
3119 ext4_group_t flex_group;
3120 int i, err;
3121
3122 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3123 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3124 sbi->s_log_groups_per_flex = 0;
3125 return 1;
3126 }
3127
3128 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3129 if (err)
3130 goto failed;
3131
3132 for (i = 0; i < sbi->s_groups_count; i++) {
3133 gdp = ext4_get_group_desc(sb, i, NULL);
3134
3135 flex_group = ext4_flex_group(sbi, i);
3136 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3137 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3138 atomic64_add(ext4_free_group_clusters(sb, gdp),
3139 &fg->free_clusters);
3140 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3141 }
3142
3143 return 1;
3144 failed:
3145 return 0;
3146 }
3147
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3148 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3149 struct ext4_group_desc *gdp)
3150 {
3151 int offset = offsetof(struct ext4_group_desc, bg_checksum);
3152 __u16 crc = 0;
3153 __le32 le_group = cpu_to_le32(block_group);
3154 struct ext4_sb_info *sbi = EXT4_SB(sb);
3155
3156 if (ext4_has_metadata_csum(sbi->s_sb)) {
3157 /* Use new metadata_csum algorithm */
3158 __u32 csum32;
3159 __u16 dummy_csum = 0;
3160
3161 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3162 sizeof(le_group));
3163 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3164 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3165 sizeof(dummy_csum));
3166 offset += sizeof(dummy_csum);
3167 if (offset < sbi->s_desc_size)
3168 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3169 sbi->s_desc_size - offset);
3170
3171 crc = csum32 & 0xFFFF;
3172 goto out;
3173 }
3174
3175 /* old crc16 code */
3176 if (!ext4_has_feature_gdt_csum(sb))
3177 return 0;
3178
3179 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3180 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3181 crc = crc16(crc, (__u8 *)gdp, offset);
3182 offset += sizeof(gdp->bg_checksum); /* skip checksum */
3183 /* for checksum of struct ext4_group_desc do the rest...*/
3184 if (ext4_has_feature_64bit(sb) &&
3185 offset < le16_to_cpu(sbi->s_es->s_desc_size))
3186 crc = crc16(crc, (__u8 *)gdp + offset,
3187 le16_to_cpu(sbi->s_es->s_desc_size) -
3188 offset);
3189
3190 out:
3191 return cpu_to_le16(crc);
3192 }
3193
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3194 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3195 struct ext4_group_desc *gdp)
3196 {
3197 if (ext4_has_group_desc_csum(sb) &&
3198 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3199 return 0;
3200
3201 return 1;
3202 }
3203
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3204 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3205 struct ext4_group_desc *gdp)
3206 {
3207 if (!ext4_has_group_desc_csum(sb))
3208 return;
3209 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3210 }
3211
3212 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)3213 static int ext4_check_descriptors(struct super_block *sb,
3214 ext4_fsblk_t sb_block,
3215 ext4_group_t *first_not_zeroed)
3216 {
3217 struct ext4_sb_info *sbi = EXT4_SB(sb);
3218 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3219 ext4_fsblk_t last_block;
3220 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3221 ext4_fsblk_t block_bitmap;
3222 ext4_fsblk_t inode_bitmap;
3223 ext4_fsblk_t inode_table;
3224 int flexbg_flag = 0;
3225 ext4_group_t i, grp = sbi->s_groups_count;
3226
3227 if (ext4_has_feature_flex_bg(sb))
3228 flexbg_flag = 1;
3229
3230 ext4_debug("Checking group descriptors");
3231
3232 for (i = 0; i < sbi->s_groups_count; i++) {
3233 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3234
3235 if (i == sbi->s_groups_count - 1 || flexbg_flag)
3236 last_block = ext4_blocks_count(sbi->s_es) - 1;
3237 else
3238 last_block = first_block +
3239 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
3240
3241 if ((grp == sbi->s_groups_count) &&
3242 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3243 grp = i;
3244
3245 block_bitmap = ext4_block_bitmap(sb, gdp);
3246 if (block_bitmap == sb_block) {
3247 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3248 "Block bitmap for group %u overlaps "
3249 "superblock", i);
3250 if (!sb_rdonly(sb))
3251 return 0;
3252 }
3253 if (block_bitmap >= sb_block + 1 &&
3254 block_bitmap <= last_bg_block) {
3255 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3256 "Block bitmap for group %u overlaps "
3257 "block group descriptors", i);
3258 if (!sb_rdonly(sb))
3259 return 0;
3260 }
3261 if (block_bitmap < first_block || block_bitmap > last_block) {
3262 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3263 "Block bitmap for group %u not in group "
3264 "(block %llu)!", i, block_bitmap);
3265 return 0;
3266 }
3267 inode_bitmap = ext4_inode_bitmap(sb, gdp);
3268 if (inode_bitmap == sb_block) {
3269 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3270 "Inode bitmap for group %u overlaps "
3271 "superblock", i);
3272 if (!sb_rdonly(sb))
3273 return 0;
3274 }
3275 if (inode_bitmap >= sb_block + 1 &&
3276 inode_bitmap <= last_bg_block) {
3277 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3278 "Inode bitmap for group %u overlaps "
3279 "block group descriptors", i);
3280 if (!sb_rdonly(sb))
3281 return 0;
3282 }
3283 if (inode_bitmap < first_block || inode_bitmap > last_block) {
3284 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3285 "Inode bitmap for group %u not in group "
3286 "(block %llu)!", i, inode_bitmap);
3287 return 0;
3288 }
3289 inode_table = ext4_inode_table(sb, gdp);
3290 if (inode_table == sb_block) {
3291 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3292 "Inode table for group %u overlaps "
3293 "superblock", i);
3294 if (!sb_rdonly(sb))
3295 return 0;
3296 }
3297 if (inode_table >= sb_block + 1 &&
3298 inode_table <= last_bg_block) {
3299 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3300 "Inode table for group %u overlaps "
3301 "block group descriptors", i);
3302 if (!sb_rdonly(sb))
3303 return 0;
3304 }
3305 if (inode_table < first_block ||
3306 inode_table + sbi->s_itb_per_group - 1 > last_block) {
3307 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3308 "Inode table for group %u not in group "
3309 "(block %llu)!", i, inode_table);
3310 return 0;
3311 }
3312 ext4_lock_group(sb, i);
3313 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3314 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3315 "Checksum for group %u failed (%u!=%u)",
3316 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3317 gdp)), le16_to_cpu(gdp->bg_checksum));
3318 if (!sb_rdonly(sb)) {
3319 ext4_unlock_group(sb, i);
3320 return 0;
3321 }
3322 }
3323 ext4_unlock_group(sb, i);
3324 if (!flexbg_flag)
3325 first_block += EXT4_BLOCKS_PER_GROUP(sb);
3326 }
3327 if (NULL != first_not_zeroed)
3328 *first_not_zeroed = grp;
3329 return 1;
3330 }
3331
3332 /*
3333 * Maximal extent format file size.
3334 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3335 * extent format containers, within a sector_t, and within i_blocks
3336 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3337 * so that won't be a limiting factor.
3338 *
3339 * However there is other limiting factor. We do store extents in the form
3340 * of starting block and length, hence the resulting length of the extent
3341 * covering maximum file size must fit into on-disk format containers as
3342 * well. Given that length is always by 1 unit bigger than max unit (because
3343 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3344 *
3345 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3346 */
ext4_max_size(int blkbits,int has_huge_files)3347 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3348 {
3349 loff_t res;
3350 loff_t upper_limit = MAX_LFS_FILESIZE;
3351
3352 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3353
3354 if (!has_huge_files) {
3355 upper_limit = (1LL << 32) - 1;
3356
3357 /* total blocks in file system block size */
3358 upper_limit >>= (blkbits - 9);
3359 upper_limit <<= blkbits;
3360 }
3361
3362 /*
3363 * 32-bit extent-start container, ee_block. We lower the maxbytes
3364 * by one fs block, so ee_len can cover the extent of maximum file
3365 * size
3366 */
3367 res = (1LL << 32) - 1;
3368 res <<= blkbits;
3369
3370 /* Sanity check against vm- & vfs- imposed limits */
3371 if (res > upper_limit)
3372 res = upper_limit;
3373
3374 return res;
3375 }
3376
3377 /*
3378 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3379 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3380 * We need to be 1 filesystem block less than the 2^48 sector limit.
3381 */
ext4_max_bitmap_size(int bits,int has_huge_files)3382 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3383 {
3384 loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3385 int meta_blocks;
3386 unsigned int ppb = 1 << (bits - 2);
3387
3388 /*
3389 * This is calculated to be the largest file size for a dense, block
3390 * mapped file such that the file's total number of 512-byte sectors,
3391 * including data and all indirect blocks, does not exceed (2^48 - 1).
3392 *
3393 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3394 * number of 512-byte sectors of the file.
3395 */
3396 if (!has_huge_files) {
3397 /*
3398 * !has_huge_files or implies that the inode i_block field
3399 * represents total file blocks in 2^32 512-byte sectors ==
3400 * size of vfs inode i_blocks * 8
3401 */
3402 upper_limit = (1LL << 32) - 1;
3403
3404 /* total blocks in file system block size */
3405 upper_limit >>= (bits - 9);
3406
3407 } else {
3408 /*
3409 * We use 48 bit ext4_inode i_blocks
3410 * With EXT4_HUGE_FILE_FL set the i_blocks
3411 * represent total number of blocks in
3412 * file system block size
3413 */
3414 upper_limit = (1LL << 48) - 1;
3415
3416 }
3417
3418 /* Compute how many blocks we can address by block tree */
3419 res += ppb;
3420 res += ppb * ppb;
3421 res += ((loff_t)ppb) * ppb * ppb;
3422 /* Compute how many metadata blocks are needed */
3423 meta_blocks = 1;
3424 meta_blocks += 1 + ppb;
3425 meta_blocks += 1 + ppb + ppb * ppb;
3426 /* Does block tree limit file size? */
3427 if (res + meta_blocks <= upper_limit)
3428 goto check_lfs;
3429
3430 res = upper_limit;
3431 /* How many metadata blocks are needed for addressing upper_limit? */
3432 upper_limit -= EXT4_NDIR_BLOCKS;
3433 /* indirect blocks */
3434 meta_blocks = 1;
3435 upper_limit -= ppb;
3436 /* double indirect blocks */
3437 if (upper_limit < ppb * ppb) {
3438 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3439 res -= meta_blocks;
3440 goto check_lfs;
3441 }
3442 meta_blocks += 1 + ppb;
3443 upper_limit -= ppb * ppb;
3444 /* tripple indirect blocks for the rest */
3445 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3446 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3447 res -= meta_blocks;
3448 check_lfs:
3449 res <<= bits;
3450 if (res > MAX_LFS_FILESIZE)
3451 res = MAX_LFS_FILESIZE;
3452
3453 return res;
3454 }
3455
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3456 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3457 ext4_fsblk_t logical_sb_block, int nr)
3458 {
3459 struct ext4_sb_info *sbi = EXT4_SB(sb);
3460 ext4_group_t bg, first_meta_bg;
3461 int has_super = 0;
3462
3463 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3464
3465 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3466 return logical_sb_block + nr + 1;
3467 bg = sbi->s_desc_per_block * nr;
3468 if (ext4_bg_has_super(sb, bg))
3469 has_super = 1;
3470
3471 /*
3472 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3473 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3474 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3475 * compensate.
3476 */
3477 if (sb->s_blocksize == 1024 && nr == 0 &&
3478 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3479 has_super++;
3480
3481 return (has_super + ext4_group_first_block_no(sb, bg));
3482 }
3483
3484 /**
3485 * ext4_get_stripe_size: Get the stripe size.
3486 * @sbi: In memory super block info
3487 *
3488 * If we have specified it via mount option, then
3489 * use the mount option value. If the value specified at mount time is
3490 * greater than the blocks per group use the super block value.
3491 * If the super block value is greater than blocks per group return 0.
3492 * Allocator needs it be less than blocks per group.
3493 *
3494 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3495 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3496 {
3497 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3498 unsigned long stripe_width =
3499 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3500 int ret;
3501
3502 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3503 ret = sbi->s_stripe;
3504 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3505 ret = stripe_width;
3506 else if (stride && stride <= sbi->s_blocks_per_group)
3507 ret = stride;
3508 else
3509 ret = 0;
3510
3511 /*
3512 * If the stripe width is 1, this makes no sense and
3513 * we set it to 0 to turn off stripe handling code.
3514 */
3515 if (ret <= 1)
3516 ret = 0;
3517
3518 return ret;
3519 }
3520
3521 /*
3522 * Check whether this filesystem can be mounted based on
3523 * the features present and the RDONLY/RDWR mount requested.
3524 * Returns 1 if this filesystem can be mounted as requested,
3525 * 0 if it cannot be.
3526 */
ext4_feature_set_ok(struct super_block * sb,int readonly)3527 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3528 {
3529 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3530 ext4_msg(sb, KERN_ERR,
3531 "Couldn't mount because of "
3532 "unsupported optional features (%x)",
3533 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3534 ~EXT4_FEATURE_INCOMPAT_SUPP));
3535 return 0;
3536 }
3537
3538 #if !IS_ENABLED(CONFIG_UNICODE)
3539 if (ext4_has_feature_casefold(sb)) {
3540 ext4_msg(sb, KERN_ERR,
3541 "Filesystem with casefold feature cannot be "
3542 "mounted without CONFIG_UNICODE");
3543 return 0;
3544 }
3545 #endif
3546
3547 if (readonly)
3548 return 1;
3549
3550 if (ext4_has_feature_readonly(sb)) {
3551 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3552 sb->s_flags |= SB_RDONLY;
3553 return 1;
3554 }
3555
3556 /* Check that feature set is OK for a read-write mount */
3557 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3558 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3559 "unsupported optional features (%x)",
3560 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3561 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3562 return 0;
3563 }
3564 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3565 ext4_msg(sb, KERN_ERR,
3566 "Can't support bigalloc feature without "
3567 "extents feature\n");
3568 return 0;
3569 }
3570
3571 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3572 if (!readonly && (ext4_has_feature_quota(sb) ||
3573 ext4_has_feature_project(sb))) {
3574 ext4_msg(sb, KERN_ERR,
3575 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3576 return 0;
3577 }
3578 #endif /* CONFIG_QUOTA */
3579 return 1;
3580 }
3581
3582 /*
3583 * This function is called once a day if we have errors logged
3584 * on the file system
3585 */
print_daily_error_info(struct timer_list * t)3586 static void print_daily_error_info(struct timer_list *t)
3587 {
3588 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3589 struct super_block *sb = sbi->s_sb;
3590 struct ext4_super_block *es = sbi->s_es;
3591
3592 if (es->s_error_count)
3593 /* fsck newer than v1.41.13 is needed to clean this condition. */
3594 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3595 le32_to_cpu(es->s_error_count));
3596 if (es->s_first_error_time) {
3597 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3598 sb->s_id,
3599 ext4_get_tstamp(es, s_first_error_time),
3600 (int) sizeof(es->s_first_error_func),
3601 es->s_first_error_func,
3602 le32_to_cpu(es->s_first_error_line));
3603 if (es->s_first_error_ino)
3604 printk(KERN_CONT ": inode %u",
3605 le32_to_cpu(es->s_first_error_ino));
3606 if (es->s_first_error_block)
3607 printk(KERN_CONT ": block %llu", (unsigned long long)
3608 le64_to_cpu(es->s_first_error_block));
3609 printk(KERN_CONT "\n");
3610 }
3611 if (es->s_last_error_time) {
3612 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3613 sb->s_id,
3614 ext4_get_tstamp(es, s_last_error_time),
3615 (int) sizeof(es->s_last_error_func),
3616 es->s_last_error_func,
3617 le32_to_cpu(es->s_last_error_line));
3618 if (es->s_last_error_ino)
3619 printk(KERN_CONT ": inode %u",
3620 le32_to_cpu(es->s_last_error_ino));
3621 if (es->s_last_error_block)
3622 printk(KERN_CONT ": block %llu", (unsigned long long)
3623 le64_to_cpu(es->s_last_error_block));
3624 printk(KERN_CONT "\n");
3625 }
3626 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3627 }
3628
3629 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3630 static int ext4_run_li_request(struct ext4_li_request *elr)
3631 {
3632 struct ext4_group_desc *gdp = NULL;
3633 struct super_block *sb = elr->lr_super;
3634 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3635 ext4_group_t group = elr->lr_next_group;
3636 unsigned int prefetch_ios = 0;
3637 int ret = 0;
3638 u64 start_time;
3639
3640 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3641 elr->lr_next_group = ext4_mb_prefetch(sb, group,
3642 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3643 if (prefetch_ios)
3644 ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3645 prefetch_ios);
3646 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3647 prefetch_ios);
3648 if (group >= elr->lr_next_group) {
3649 ret = 1;
3650 if (elr->lr_first_not_zeroed != ngroups &&
3651 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3652 elr->lr_next_group = elr->lr_first_not_zeroed;
3653 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3654 ret = 0;
3655 }
3656 }
3657 return ret;
3658 }
3659
3660 for (; group < ngroups; group++) {
3661 gdp = ext4_get_group_desc(sb, group, NULL);
3662 if (!gdp) {
3663 ret = 1;
3664 break;
3665 }
3666
3667 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3668 break;
3669 }
3670
3671 if (group >= ngroups)
3672 ret = 1;
3673
3674 if (!ret) {
3675 start_time = ktime_get_real_ns();
3676 ret = ext4_init_inode_table(sb, group,
3677 elr->lr_timeout ? 0 : 1);
3678 trace_ext4_lazy_itable_init(sb, group);
3679 if (elr->lr_timeout == 0) {
3680 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3681 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3682 }
3683 elr->lr_next_sched = jiffies + elr->lr_timeout;
3684 elr->lr_next_group = group + 1;
3685 }
3686 return ret;
3687 }
3688
3689 /*
3690 * Remove lr_request from the list_request and free the
3691 * request structure. Should be called with li_list_mtx held
3692 */
ext4_remove_li_request(struct ext4_li_request * elr)3693 static void ext4_remove_li_request(struct ext4_li_request *elr)
3694 {
3695 if (!elr)
3696 return;
3697
3698 list_del(&elr->lr_request);
3699 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3700 kfree(elr);
3701 }
3702
ext4_unregister_li_request(struct super_block * sb)3703 static void ext4_unregister_li_request(struct super_block *sb)
3704 {
3705 mutex_lock(&ext4_li_mtx);
3706 if (!ext4_li_info) {
3707 mutex_unlock(&ext4_li_mtx);
3708 return;
3709 }
3710
3711 mutex_lock(&ext4_li_info->li_list_mtx);
3712 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3713 mutex_unlock(&ext4_li_info->li_list_mtx);
3714 mutex_unlock(&ext4_li_mtx);
3715 }
3716
3717 static struct task_struct *ext4_lazyinit_task;
3718
3719 /*
3720 * This is the function where ext4lazyinit thread lives. It walks
3721 * through the request list searching for next scheduled filesystem.
3722 * When such a fs is found, run the lazy initialization request
3723 * (ext4_rn_li_request) and keep track of the time spend in this
3724 * function. Based on that time we compute next schedule time of
3725 * the request. When walking through the list is complete, compute
3726 * next waking time and put itself into sleep.
3727 */
ext4_lazyinit_thread(void * arg)3728 static int ext4_lazyinit_thread(void *arg)
3729 {
3730 struct ext4_lazy_init *eli = arg;
3731 struct list_head *pos, *n;
3732 struct ext4_li_request *elr;
3733 unsigned long next_wakeup, cur;
3734
3735 BUG_ON(NULL == eli);
3736 set_freezable();
3737
3738 cont_thread:
3739 while (true) {
3740 next_wakeup = MAX_JIFFY_OFFSET;
3741
3742 mutex_lock(&eli->li_list_mtx);
3743 if (list_empty(&eli->li_request_list)) {
3744 mutex_unlock(&eli->li_list_mtx);
3745 goto exit_thread;
3746 }
3747 list_for_each_safe(pos, n, &eli->li_request_list) {
3748 int err = 0;
3749 int progress = 0;
3750 elr = list_entry(pos, struct ext4_li_request,
3751 lr_request);
3752
3753 if (time_before(jiffies, elr->lr_next_sched)) {
3754 if (time_before(elr->lr_next_sched, next_wakeup))
3755 next_wakeup = elr->lr_next_sched;
3756 continue;
3757 }
3758 if (down_read_trylock(&elr->lr_super->s_umount)) {
3759 if (sb_start_write_trylock(elr->lr_super)) {
3760 progress = 1;
3761 /*
3762 * We hold sb->s_umount, sb can not
3763 * be removed from the list, it is
3764 * now safe to drop li_list_mtx
3765 */
3766 mutex_unlock(&eli->li_list_mtx);
3767 err = ext4_run_li_request(elr);
3768 sb_end_write(elr->lr_super);
3769 mutex_lock(&eli->li_list_mtx);
3770 n = pos->next;
3771 }
3772 up_read((&elr->lr_super->s_umount));
3773 }
3774 /* error, remove the lazy_init job */
3775 if (err) {
3776 ext4_remove_li_request(elr);
3777 continue;
3778 }
3779 if (!progress) {
3780 elr->lr_next_sched = jiffies +
3781 prandom_u32_max(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3782 }
3783 if (time_before(elr->lr_next_sched, next_wakeup))
3784 next_wakeup = elr->lr_next_sched;
3785 }
3786 mutex_unlock(&eli->li_list_mtx);
3787
3788 try_to_freeze();
3789
3790 cur = jiffies;
3791 if ((time_after_eq(cur, next_wakeup)) ||
3792 (MAX_JIFFY_OFFSET == next_wakeup)) {
3793 cond_resched();
3794 continue;
3795 }
3796
3797 schedule_timeout_interruptible(next_wakeup - cur);
3798
3799 if (kthread_should_stop()) {
3800 ext4_clear_request_list();
3801 goto exit_thread;
3802 }
3803 }
3804
3805 exit_thread:
3806 /*
3807 * It looks like the request list is empty, but we need
3808 * to check it under the li_list_mtx lock, to prevent any
3809 * additions into it, and of course we should lock ext4_li_mtx
3810 * to atomically free the list and ext4_li_info, because at
3811 * this point another ext4 filesystem could be registering
3812 * new one.
3813 */
3814 mutex_lock(&ext4_li_mtx);
3815 mutex_lock(&eli->li_list_mtx);
3816 if (!list_empty(&eli->li_request_list)) {
3817 mutex_unlock(&eli->li_list_mtx);
3818 mutex_unlock(&ext4_li_mtx);
3819 goto cont_thread;
3820 }
3821 mutex_unlock(&eli->li_list_mtx);
3822 kfree(ext4_li_info);
3823 ext4_li_info = NULL;
3824 mutex_unlock(&ext4_li_mtx);
3825
3826 return 0;
3827 }
3828
ext4_clear_request_list(void)3829 static void ext4_clear_request_list(void)
3830 {
3831 struct list_head *pos, *n;
3832 struct ext4_li_request *elr;
3833
3834 mutex_lock(&ext4_li_info->li_list_mtx);
3835 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3836 elr = list_entry(pos, struct ext4_li_request,
3837 lr_request);
3838 ext4_remove_li_request(elr);
3839 }
3840 mutex_unlock(&ext4_li_info->li_list_mtx);
3841 }
3842
ext4_run_lazyinit_thread(void)3843 static int ext4_run_lazyinit_thread(void)
3844 {
3845 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3846 ext4_li_info, "ext4lazyinit");
3847 if (IS_ERR(ext4_lazyinit_task)) {
3848 int err = PTR_ERR(ext4_lazyinit_task);
3849 ext4_clear_request_list();
3850 kfree(ext4_li_info);
3851 ext4_li_info = NULL;
3852 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3853 "initialization thread\n",
3854 err);
3855 return err;
3856 }
3857 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3858 return 0;
3859 }
3860
3861 /*
3862 * Check whether it make sense to run itable init. thread or not.
3863 * If there is at least one uninitialized inode table, return
3864 * corresponding group number, else the loop goes through all
3865 * groups and return total number of groups.
3866 */
ext4_has_uninit_itable(struct super_block * sb)3867 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3868 {
3869 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3870 struct ext4_group_desc *gdp = NULL;
3871
3872 if (!ext4_has_group_desc_csum(sb))
3873 return ngroups;
3874
3875 for (group = 0; group < ngroups; group++) {
3876 gdp = ext4_get_group_desc(sb, group, NULL);
3877 if (!gdp)
3878 continue;
3879
3880 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3881 break;
3882 }
3883
3884 return group;
3885 }
3886
ext4_li_info_new(void)3887 static int ext4_li_info_new(void)
3888 {
3889 struct ext4_lazy_init *eli = NULL;
3890
3891 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3892 if (!eli)
3893 return -ENOMEM;
3894
3895 INIT_LIST_HEAD(&eli->li_request_list);
3896 mutex_init(&eli->li_list_mtx);
3897
3898 eli->li_state |= EXT4_LAZYINIT_QUIT;
3899
3900 ext4_li_info = eli;
3901
3902 return 0;
3903 }
3904
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3905 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3906 ext4_group_t start)
3907 {
3908 struct ext4_li_request *elr;
3909
3910 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3911 if (!elr)
3912 return NULL;
3913
3914 elr->lr_super = sb;
3915 elr->lr_first_not_zeroed = start;
3916 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3917 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3918 elr->lr_next_group = start;
3919 } else {
3920 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3921 }
3922
3923 /*
3924 * Randomize first schedule time of the request to
3925 * spread the inode table initialization requests
3926 * better.
3927 */
3928 elr->lr_next_sched = jiffies + prandom_u32_max(
3929 EXT4_DEF_LI_MAX_START_DELAY * HZ);
3930 return elr;
3931 }
3932
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3933 int ext4_register_li_request(struct super_block *sb,
3934 ext4_group_t first_not_zeroed)
3935 {
3936 struct ext4_sb_info *sbi = EXT4_SB(sb);
3937 struct ext4_li_request *elr = NULL;
3938 ext4_group_t ngroups = sbi->s_groups_count;
3939 int ret = 0;
3940
3941 mutex_lock(&ext4_li_mtx);
3942 if (sbi->s_li_request != NULL) {
3943 /*
3944 * Reset timeout so it can be computed again, because
3945 * s_li_wait_mult might have changed.
3946 */
3947 sbi->s_li_request->lr_timeout = 0;
3948 goto out;
3949 }
3950
3951 if (sb_rdonly(sb) ||
3952 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3953 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
3954 goto out;
3955
3956 elr = ext4_li_request_new(sb, first_not_zeroed);
3957 if (!elr) {
3958 ret = -ENOMEM;
3959 goto out;
3960 }
3961
3962 if (NULL == ext4_li_info) {
3963 ret = ext4_li_info_new();
3964 if (ret)
3965 goto out;
3966 }
3967
3968 mutex_lock(&ext4_li_info->li_list_mtx);
3969 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3970 mutex_unlock(&ext4_li_info->li_list_mtx);
3971
3972 sbi->s_li_request = elr;
3973 /*
3974 * set elr to NULL here since it has been inserted to
3975 * the request_list and the removal and free of it is
3976 * handled by ext4_clear_request_list from now on.
3977 */
3978 elr = NULL;
3979
3980 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3981 ret = ext4_run_lazyinit_thread();
3982 if (ret)
3983 goto out;
3984 }
3985 out:
3986 mutex_unlock(&ext4_li_mtx);
3987 if (ret)
3988 kfree(elr);
3989 return ret;
3990 }
3991
3992 /*
3993 * We do not need to lock anything since this is called on
3994 * module unload.
3995 */
ext4_destroy_lazyinit_thread(void)3996 static void ext4_destroy_lazyinit_thread(void)
3997 {
3998 /*
3999 * If thread exited earlier
4000 * there's nothing to be done.
4001 */
4002 if (!ext4_li_info || !ext4_lazyinit_task)
4003 return;
4004
4005 kthread_stop(ext4_lazyinit_task);
4006 }
4007
set_journal_csum_feature_set(struct super_block * sb)4008 static int set_journal_csum_feature_set(struct super_block *sb)
4009 {
4010 int ret = 1;
4011 int compat, incompat;
4012 struct ext4_sb_info *sbi = EXT4_SB(sb);
4013
4014 if (ext4_has_metadata_csum(sb)) {
4015 /* journal checksum v3 */
4016 compat = 0;
4017 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4018 } else {
4019 /* journal checksum v1 */
4020 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4021 incompat = 0;
4022 }
4023
4024 jbd2_journal_clear_features(sbi->s_journal,
4025 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4026 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4027 JBD2_FEATURE_INCOMPAT_CSUM_V2);
4028 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4029 ret = jbd2_journal_set_features(sbi->s_journal,
4030 compat, 0,
4031 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4032 incompat);
4033 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4034 ret = jbd2_journal_set_features(sbi->s_journal,
4035 compat, 0,
4036 incompat);
4037 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4038 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4039 } else {
4040 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4041 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4042 }
4043
4044 return ret;
4045 }
4046
4047 /*
4048 * Note: calculating the overhead so we can be compatible with
4049 * historical BSD practice is quite difficult in the face of
4050 * clusters/bigalloc. This is because multiple metadata blocks from
4051 * different block group can end up in the same allocation cluster.
4052 * Calculating the exact overhead in the face of clustered allocation
4053 * requires either O(all block bitmaps) in memory or O(number of block
4054 * groups**2) in time. We will still calculate the superblock for
4055 * older file systems --- and if we come across with a bigalloc file
4056 * system with zero in s_overhead_clusters the estimate will be close to
4057 * correct especially for very large cluster sizes --- but for newer
4058 * file systems, it's better to calculate this figure once at mkfs
4059 * time, and store it in the superblock. If the superblock value is
4060 * present (even for non-bigalloc file systems), we will use it.
4061 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)4062 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4063 char *buf)
4064 {
4065 struct ext4_sb_info *sbi = EXT4_SB(sb);
4066 struct ext4_group_desc *gdp;
4067 ext4_fsblk_t first_block, last_block, b;
4068 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4069 int s, j, count = 0;
4070 int has_super = ext4_bg_has_super(sb, grp);
4071
4072 if (!ext4_has_feature_bigalloc(sb))
4073 return (has_super + ext4_bg_num_gdb(sb, grp) +
4074 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4075 sbi->s_itb_per_group + 2);
4076
4077 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4078 (grp * EXT4_BLOCKS_PER_GROUP(sb));
4079 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4080 for (i = 0; i < ngroups; i++) {
4081 gdp = ext4_get_group_desc(sb, i, NULL);
4082 b = ext4_block_bitmap(sb, gdp);
4083 if (b >= first_block && b <= last_block) {
4084 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4085 count++;
4086 }
4087 b = ext4_inode_bitmap(sb, gdp);
4088 if (b >= first_block && b <= last_block) {
4089 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4090 count++;
4091 }
4092 b = ext4_inode_table(sb, gdp);
4093 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4094 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4095 int c = EXT4_B2C(sbi, b - first_block);
4096 ext4_set_bit(c, buf);
4097 count++;
4098 }
4099 if (i != grp)
4100 continue;
4101 s = 0;
4102 if (ext4_bg_has_super(sb, grp)) {
4103 ext4_set_bit(s++, buf);
4104 count++;
4105 }
4106 j = ext4_bg_num_gdb(sb, grp);
4107 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4108 ext4_error(sb, "Invalid number of block group "
4109 "descriptor blocks: %d", j);
4110 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4111 }
4112 count += j;
4113 for (; j > 0; j--)
4114 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4115 }
4116 if (!count)
4117 return 0;
4118 return EXT4_CLUSTERS_PER_GROUP(sb) -
4119 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4120 }
4121
4122 /*
4123 * Compute the overhead and stash it in sbi->s_overhead
4124 */
ext4_calculate_overhead(struct super_block * sb)4125 int ext4_calculate_overhead(struct super_block *sb)
4126 {
4127 struct ext4_sb_info *sbi = EXT4_SB(sb);
4128 struct ext4_super_block *es = sbi->s_es;
4129 struct inode *j_inode;
4130 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4131 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4132 ext4_fsblk_t overhead = 0;
4133 char *buf = (char *) get_zeroed_page(GFP_NOFS);
4134
4135 if (!buf)
4136 return -ENOMEM;
4137
4138 /*
4139 * Compute the overhead (FS structures). This is constant
4140 * for a given filesystem unless the number of block groups
4141 * changes so we cache the previous value until it does.
4142 */
4143
4144 /*
4145 * All of the blocks before first_data_block are overhead
4146 */
4147 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4148
4149 /*
4150 * Add the overhead found in each block group
4151 */
4152 for (i = 0; i < ngroups; i++) {
4153 int blks;
4154
4155 blks = count_overhead(sb, i, buf);
4156 overhead += blks;
4157 if (blks)
4158 memset(buf, 0, PAGE_SIZE);
4159 cond_resched();
4160 }
4161
4162 /*
4163 * Add the internal journal blocks whether the journal has been
4164 * loaded or not
4165 */
4166 if (sbi->s_journal && !sbi->s_journal_bdev)
4167 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4168 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4169 /* j_inum for internal journal is non-zero */
4170 j_inode = ext4_get_journal_inode(sb, j_inum);
4171 if (j_inode) {
4172 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4173 overhead += EXT4_NUM_B2C(sbi, j_blocks);
4174 iput(j_inode);
4175 } else {
4176 ext4_msg(sb, KERN_ERR, "can't get journal size");
4177 }
4178 }
4179 sbi->s_overhead = overhead;
4180 smp_wmb();
4181 free_page((unsigned long) buf);
4182 return 0;
4183 }
4184
ext4_set_resv_clusters(struct super_block * sb)4185 static void ext4_set_resv_clusters(struct super_block *sb)
4186 {
4187 ext4_fsblk_t resv_clusters;
4188 struct ext4_sb_info *sbi = EXT4_SB(sb);
4189
4190 /*
4191 * There's no need to reserve anything when we aren't using extents.
4192 * The space estimates are exact, there are no unwritten extents,
4193 * hole punching doesn't need new metadata... This is needed especially
4194 * to keep ext2/3 backward compatibility.
4195 */
4196 if (!ext4_has_feature_extents(sb))
4197 return;
4198 /*
4199 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4200 * This should cover the situations where we can not afford to run
4201 * out of space like for example punch hole, or converting
4202 * unwritten extents in delalloc path. In most cases such
4203 * allocation would require 1, or 2 blocks, higher numbers are
4204 * very rare.
4205 */
4206 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4207 sbi->s_cluster_bits);
4208
4209 do_div(resv_clusters, 50);
4210 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4211
4212 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4213 }
4214
ext4_quota_mode(struct super_block * sb)4215 static const char *ext4_quota_mode(struct super_block *sb)
4216 {
4217 #ifdef CONFIG_QUOTA
4218 if (!ext4_quota_capable(sb))
4219 return "none";
4220
4221 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4222 return "journalled";
4223 else
4224 return "writeback";
4225 #else
4226 return "disabled";
4227 #endif
4228 }
4229
ext4_setup_csum_trigger(struct super_block * sb,enum ext4_journal_trigger_type type,void (* trigger)(struct jbd2_buffer_trigger_type * type,struct buffer_head * bh,void * mapped_data,size_t size))4230 static void ext4_setup_csum_trigger(struct super_block *sb,
4231 enum ext4_journal_trigger_type type,
4232 void (*trigger)(
4233 struct jbd2_buffer_trigger_type *type,
4234 struct buffer_head *bh,
4235 void *mapped_data,
4236 size_t size))
4237 {
4238 struct ext4_sb_info *sbi = EXT4_SB(sb);
4239
4240 sbi->s_journal_triggers[type].sb = sb;
4241 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4242 }
4243
ext4_free_sbi(struct ext4_sb_info * sbi)4244 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4245 {
4246 if (!sbi)
4247 return;
4248
4249 kfree(sbi->s_blockgroup_lock);
4250 fs_put_dax(sbi->s_daxdev, NULL);
4251 kfree(sbi);
4252 }
4253
ext4_alloc_sbi(struct super_block * sb)4254 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4255 {
4256 struct ext4_sb_info *sbi;
4257
4258 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4259 if (!sbi)
4260 return NULL;
4261
4262 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4263 NULL, NULL);
4264
4265 sbi->s_blockgroup_lock =
4266 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4267
4268 if (!sbi->s_blockgroup_lock)
4269 goto err_out;
4270
4271 sb->s_fs_info = sbi;
4272 sbi->s_sb = sb;
4273 return sbi;
4274 err_out:
4275 fs_put_dax(sbi->s_daxdev, NULL);
4276 kfree(sbi);
4277 return NULL;
4278 }
4279
ext4_set_def_opts(struct super_block * sb,struct ext4_super_block * es)4280 static void ext4_set_def_opts(struct super_block *sb,
4281 struct ext4_super_block *es)
4282 {
4283 unsigned long def_mount_opts;
4284
4285 /* Set defaults before we parse the mount options */
4286 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4287 set_opt(sb, INIT_INODE_TABLE);
4288 if (def_mount_opts & EXT4_DEFM_DEBUG)
4289 set_opt(sb, DEBUG);
4290 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4291 set_opt(sb, GRPID);
4292 if (def_mount_opts & EXT4_DEFM_UID16)
4293 set_opt(sb, NO_UID32);
4294 /* xattr user namespace & acls are now defaulted on */
4295 set_opt(sb, XATTR_USER);
4296 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4297 set_opt(sb, POSIX_ACL);
4298 #endif
4299 if (ext4_has_feature_fast_commit(sb))
4300 set_opt2(sb, JOURNAL_FAST_COMMIT);
4301 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4302 if (ext4_has_metadata_csum(sb))
4303 set_opt(sb, JOURNAL_CHECKSUM);
4304
4305 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4306 set_opt(sb, JOURNAL_DATA);
4307 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4308 set_opt(sb, ORDERED_DATA);
4309 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4310 set_opt(sb, WRITEBACK_DATA);
4311
4312 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4313 set_opt(sb, ERRORS_PANIC);
4314 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4315 set_opt(sb, ERRORS_CONT);
4316 else
4317 set_opt(sb, ERRORS_RO);
4318 /* block_validity enabled by default; disable with noblock_validity */
4319 set_opt(sb, BLOCK_VALIDITY);
4320 if (def_mount_opts & EXT4_DEFM_DISCARD)
4321 set_opt(sb, DISCARD);
4322
4323 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4324 set_opt(sb, BARRIER);
4325
4326 /*
4327 * enable delayed allocation by default
4328 * Use -o nodelalloc to turn it off
4329 */
4330 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4331 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4332 set_opt(sb, DELALLOC);
4333
4334 if (sb->s_blocksize == PAGE_SIZE)
4335 set_opt(sb, DIOREAD_NOLOCK);
4336 }
4337
ext4_handle_clustersize(struct super_block * sb)4338 static int ext4_handle_clustersize(struct super_block *sb)
4339 {
4340 struct ext4_sb_info *sbi = EXT4_SB(sb);
4341 struct ext4_super_block *es = sbi->s_es;
4342 int clustersize;
4343
4344 /* Handle clustersize */
4345 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4346 if (ext4_has_feature_bigalloc(sb)) {
4347 if (clustersize < sb->s_blocksize) {
4348 ext4_msg(sb, KERN_ERR,
4349 "cluster size (%d) smaller than "
4350 "block size (%lu)", clustersize, sb->s_blocksize);
4351 return -EINVAL;
4352 }
4353 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4354 le32_to_cpu(es->s_log_block_size);
4355 sbi->s_clusters_per_group =
4356 le32_to_cpu(es->s_clusters_per_group);
4357 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4358 ext4_msg(sb, KERN_ERR,
4359 "#clusters per group too big: %lu",
4360 sbi->s_clusters_per_group);
4361 return -EINVAL;
4362 }
4363 if (sbi->s_blocks_per_group !=
4364 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4365 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4366 "clusters per group (%lu) inconsistent",
4367 sbi->s_blocks_per_group,
4368 sbi->s_clusters_per_group);
4369 return -EINVAL;
4370 }
4371 } else {
4372 if (clustersize != sb->s_blocksize) {
4373 ext4_msg(sb, KERN_ERR,
4374 "fragment/cluster size (%d) != "
4375 "block size (%lu)", clustersize, sb->s_blocksize);
4376 return -EINVAL;
4377 }
4378 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4379 ext4_msg(sb, KERN_ERR,
4380 "#blocks per group too big: %lu",
4381 sbi->s_blocks_per_group);
4382 return -EINVAL;
4383 }
4384 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4385 sbi->s_cluster_bits = 0;
4386 }
4387 sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4388
4389 /* Do we have standard group size of clustersize * 8 blocks ? */
4390 if (sbi->s_blocks_per_group == clustersize << 3)
4391 set_opt2(sb, STD_GROUP_SIZE);
4392
4393 return 0;
4394 }
4395
ext4_fast_commit_init(struct super_block * sb)4396 static void ext4_fast_commit_init(struct super_block *sb)
4397 {
4398 struct ext4_sb_info *sbi = EXT4_SB(sb);
4399
4400 /* Initialize fast commit stuff */
4401 atomic_set(&sbi->s_fc_subtid, 0);
4402 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4403 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4404 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4405 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4406 sbi->s_fc_bytes = 0;
4407 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4408 sbi->s_fc_ineligible_tid = 0;
4409 spin_lock_init(&sbi->s_fc_lock);
4410 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4411 sbi->s_fc_replay_state.fc_regions = NULL;
4412 sbi->s_fc_replay_state.fc_regions_size = 0;
4413 sbi->s_fc_replay_state.fc_regions_used = 0;
4414 sbi->s_fc_replay_state.fc_regions_valid = 0;
4415 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4416 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4417 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4418 }
4419
ext4_inode_info_init(struct super_block * sb,struct ext4_super_block * es)4420 static int ext4_inode_info_init(struct super_block *sb,
4421 struct ext4_super_block *es)
4422 {
4423 struct ext4_sb_info *sbi = EXT4_SB(sb);
4424
4425 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4426 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4427 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4428 } else {
4429 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4430 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4431 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4432 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4433 sbi->s_first_ino);
4434 return -EINVAL;
4435 }
4436 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4437 (!is_power_of_2(sbi->s_inode_size)) ||
4438 (sbi->s_inode_size > sb->s_blocksize)) {
4439 ext4_msg(sb, KERN_ERR,
4440 "unsupported inode size: %d",
4441 sbi->s_inode_size);
4442 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4443 return -EINVAL;
4444 }
4445 /*
4446 * i_atime_extra is the last extra field available for
4447 * [acm]times in struct ext4_inode. Checking for that
4448 * field should suffice to ensure we have extra space
4449 * for all three.
4450 */
4451 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4452 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4453 sb->s_time_gran = 1;
4454 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4455 } else {
4456 sb->s_time_gran = NSEC_PER_SEC;
4457 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4458 }
4459 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4460 }
4461
4462 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4463 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4464 EXT4_GOOD_OLD_INODE_SIZE;
4465 if (ext4_has_feature_extra_isize(sb)) {
4466 unsigned v, max = (sbi->s_inode_size -
4467 EXT4_GOOD_OLD_INODE_SIZE);
4468
4469 v = le16_to_cpu(es->s_want_extra_isize);
4470 if (v > max) {
4471 ext4_msg(sb, KERN_ERR,
4472 "bad s_want_extra_isize: %d", v);
4473 return -EINVAL;
4474 }
4475 if (sbi->s_want_extra_isize < v)
4476 sbi->s_want_extra_isize = v;
4477
4478 v = le16_to_cpu(es->s_min_extra_isize);
4479 if (v > max) {
4480 ext4_msg(sb, KERN_ERR,
4481 "bad s_min_extra_isize: %d", v);
4482 return -EINVAL;
4483 }
4484 if (sbi->s_want_extra_isize < v)
4485 sbi->s_want_extra_isize = v;
4486 }
4487 }
4488
4489 return 0;
4490 }
4491
4492 #if IS_ENABLED(CONFIG_UNICODE)
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4493 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4494 {
4495 const struct ext4_sb_encodings *encoding_info;
4496 struct unicode_map *encoding;
4497 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4498
4499 if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4500 return 0;
4501
4502 encoding_info = ext4_sb_read_encoding(es);
4503 if (!encoding_info) {
4504 ext4_msg(sb, KERN_ERR,
4505 "Encoding requested by superblock is unknown");
4506 return -EINVAL;
4507 }
4508
4509 encoding = utf8_load(encoding_info->version);
4510 if (IS_ERR(encoding)) {
4511 ext4_msg(sb, KERN_ERR,
4512 "can't mount with superblock charset: %s-%u.%u.%u "
4513 "not supported by the kernel. flags: 0x%x.",
4514 encoding_info->name,
4515 unicode_major(encoding_info->version),
4516 unicode_minor(encoding_info->version),
4517 unicode_rev(encoding_info->version),
4518 encoding_flags);
4519 return -EINVAL;
4520 }
4521 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4522 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4523 unicode_major(encoding_info->version),
4524 unicode_minor(encoding_info->version),
4525 unicode_rev(encoding_info->version),
4526 encoding_flags);
4527
4528 sb->s_encoding = encoding;
4529 sb->s_encoding_flags = encoding_flags;
4530
4531 return 0;
4532 }
4533 #else
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4534 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4535 {
4536 return 0;
4537 }
4538 #endif
4539
ext4_init_metadata_csum(struct super_block * sb,struct ext4_super_block * es)4540 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4541 {
4542 struct ext4_sb_info *sbi = EXT4_SB(sb);
4543
4544 /* Warn if metadata_csum and gdt_csum are both set. */
4545 if (ext4_has_feature_metadata_csum(sb) &&
4546 ext4_has_feature_gdt_csum(sb))
4547 ext4_warning(sb, "metadata_csum and uninit_bg are "
4548 "redundant flags; please run fsck.");
4549
4550 /* Check for a known checksum algorithm */
4551 if (!ext4_verify_csum_type(sb, es)) {
4552 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4553 "unknown checksum algorithm.");
4554 return -EINVAL;
4555 }
4556 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4557 ext4_orphan_file_block_trigger);
4558
4559 /* Load the checksum driver */
4560 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4561 if (IS_ERR(sbi->s_chksum_driver)) {
4562 int ret = PTR_ERR(sbi->s_chksum_driver);
4563 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4564 sbi->s_chksum_driver = NULL;
4565 return ret;
4566 }
4567
4568 /* Check superblock checksum */
4569 if (!ext4_superblock_csum_verify(sb, es)) {
4570 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4571 "invalid superblock checksum. Run e2fsck?");
4572 return -EFSBADCRC;
4573 }
4574
4575 /* Precompute checksum seed for all metadata */
4576 if (ext4_has_feature_csum_seed(sb))
4577 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4578 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4579 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4580 sizeof(es->s_uuid));
4581 return 0;
4582 }
4583
ext4_check_feature_compatibility(struct super_block * sb,struct ext4_super_block * es,int silent)4584 static int ext4_check_feature_compatibility(struct super_block *sb,
4585 struct ext4_super_block *es,
4586 int silent)
4587 {
4588 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4589 (ext4_has_compat_features(sb) ||
4590 ext4_has_ro_compat_features(sb) ||
4591 ext4_has_incompat_features(sb)))
4592 ext4_msg(sb, KERN_WARNING,
4593 "feature flags set on rev 0 fs, "
4594 "running e2fsck is recommended");
4595
4596 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4597 set_opt2(sb, HURD_COMPAT);
4598 if (ext4_has_feature_64bit(sb)) {
4599 ext4_msg(sb, KERN_ERR,
4600 "The Hurd can't support 64-bit file systems");
4601 return -EINVAL;
4602 }
4603
4604 /*
4605 * ea_inode feature uses l_i_version field which is not
4606 * available in HURD_COMPAT mode.
4607 */
4608 if (ext4_has_feature_ea_inode(sb)) {
4609 ext4_msg(sb, KERN_ERR,
4610 "ea_inode feature is not supported for Hurd");
4611 return -EINVAL;
4612 }
4613 }
4614
4615 if (IS_EXT2_SB(sb)) {
4616 if (ext2_feature_set_ok(sb))
4617 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4618 "using the ext4 subsystem");
4619 else {
4620 /*
4621 * If we're probing be silent, if this looks like
4622 * it's actually an ext[34] filesystem.
4623 */
4624 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4625 return -EINVAL;
4626 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4627 "to feature incompatibilities");
4628 return -EINVAL;
4629 }
4630 }
4631
4632 if (IS_EXT3_SB(sb)) {
4633 if (ext3_feature_set_ok(sb))
4634 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4635 "using the ext4 subsystem");
4636 else {
4637 /*
4638 * If we're probing be silent, if this looks like
4639 * it's actually an ext4 filesystem.
4640 */
4641 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4642 return -EINVAL;
4643 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4644 "to feature incompatibilities");
4645 return -EINVAL;
4646 }
4647 }
4648
4649 /*
4650 * Check feature flags regardless of the revision level, since we
4651 * previously didn't change the revision level when setting the flags,
4652 * so there is a chance incompat flags are set on a rev 0 filesystem.
4653 */
4654 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4655 return -EINVAL;
4656
4657 return 0;
4658 }
4659
ext4_geometry_check(struct super_block * sb,struct ext4_super_block * es)4660 static int ext4_geometry_check(struct super_block *sb,
4661 struct ext4_super_block *es)
4662 {
4663 struct ext4_sb_info *sbi = EXT4_SB(sb);
4664 __u64 blocks_count;
4665
4666 /* check blocks count against device size */
4667 blocks_count = sb_bdev_nr_blocks(sb);
4668 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4669 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4670 "exceeds size of device (%llu blocks)",
4671 ext4_blocks_count(es), blocks_count);
4672 return -EINVAL;
4673 }
4674
4675 /*
4676 * It makes no sense for the first data block to be beyond the end
4677 * of the filesystem.
4678 */
4679 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4680 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4681 "block %u is beyond end of filesystem (%llu)",
4682 le32_to_cpu(es->s_first_data_block),
4683 ext4_blocks_count(es));
4684 return -EINVAL;
4685 }
4686 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4687 (sbi->s_cluster_ratio == 1)) {
4688 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4689 "block is 0 with a 1k block and cluster size");
4690 return -EINVAL;
4691 }
4692
4693 blocks_count = (ext4_blocks_count(es) -
4694 le32_to_cpu(es->s_first_data_block) +
4695 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4696 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4697 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4698 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4699 "(block count %llu, first data block %u, "
4700 "blocks per group %lu)", blocks_count,
4701 ext4_blocks_count(es),
4702 le32_to_cpu(es->s_first_data_block),
4703 EXT4_BLOCKS_PER_GROUP(sb));
4704 return -EINVAL;
4705 }
4706 sbi->s_groups_count = blocks_count;
4707 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4708 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4709 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4710 le32_to_cpu(es->s_inodes_count)) {
4711 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4712 le32_to_cpu(es->s_inodes_count),
4713 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4714 return -EINVAL;
4715 }
4716
4717 return 0;
4718 }
4719
ext4_group_desc_free(struct ext4_sb_info * sbi)4720 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
4721 {
4722 struct buffer_head **group_desc;
4723 int i;
4724
4725 rcu_read_lock();
4726 group_desc = rcu_dereference(sbi->s_group_desc);
4727 for (i = 0; i < sbi->s_gdb_count; i++)
4728 brelse(group_desc[i]);
4729 kvfree(group_desc);
4730 rcu_read_unlock();
4731 }
4732
ext4_group_desc_init(struct super_block * sb,struct ext4_super_block * es,ext4_fsblk_t logical_sb_block,ext4_group_t * first_not_zeroed)4733 static int ext4_group_desc_init(struct super_block *sb,
4734 struct ext4_super_block *es,
4735 ext4_fsblk_t logical_sb_block,
4736 ext4_group_t *first_not_zeroed)
4737 {
4738 struct ext4_sb_info *sbi = EXT4_SB(sb);
4739 unsigned int db_count;
4740 ext4_fsblk_t block;
4741 int ret;
4742 int i;
4743
4744 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4745 EXT4_DESC_PER_BLOCK(sb);
4746 if (ext4_has_feature_meta_bg(sb)) {
4747 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4748 ext4_msg(sb, KERN_WARNING,
4749 "first meta block group too large: %u "
4750 "(group descriptor block count %u)",
4751 le32_to_cpu(es->s_first_meta_bg), db_count);
4752 return -EINVAL;
4753 }
4754 }
4755 rcu_assign_pointer(sbi->s_group_desc,
4756 kvmalloc_array(db_count,
4757 sizeof(struct buffer_head *),
4758 GFP_KERNEL));
4759 if (sbi->s_group_desc == NULL) {
4760 ext4_msg(sb, KERN_ERR, "not enough memory");
4761 return -ENOMEM;
4762 }
4763
4764 bgl_lock_init(sbi->s_blockgroup_lock);
4765
4766 /* Pre-read the descriptors into the buffer cache */
4767 for (i = 0; i < db_count; i++) {
4768 block = descriptor_loc(sb, logical_sb_block, i);
4769 ext4_sb_breadahead_unmovable(sb, block);
4770 }
4771
4772 for (i = 0; i < db_count; i++) {
4773 struct buffer_head *bh;
4774
4775 block = descriptor_loc(sb, logical_sb_block, i);
4776 bh = ext4_sb_bread_unmovable(sb, block);
4777 if (IS_ERR(bh)) {
4778 ext4_msg(sb, KERN_ERR,
4779 "can't read group descriptor %d", i);
4780 sbi->s_gdb_count = i;
4781 ret = PTR_ERR(bh);
4782 goto out;
4783 }
4784 rcu_read_lock();
4785 rcu_dereference(sbi->s_group_desc)[i] = bh;
4786 rcu_read_unlock();
4787 }
4788 sbi->s_gdb_count = db_count;
4789 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4790 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4791 ret = -EFSCORRUPTED;
4792 goto out;
4793 }
4794 return 0;
4795 out:
4796 ext4_group_desc_free(sbi);
4797 return ret;
4798 }
4799
ext4_load_and_init_journal(struct super_block * sb,struct ext4_super_block * es,struct ext4_fs_context * ctx)4800 static int ext4_load_and_init_journal(struct super_block *sb,
4801 struct ext4_super_block *es,
4802 struct ext4_fs_context *ctx)
4803 {
4804 struct ext4_sb_info *sbi = EXT4_SB(sb);
4805 int err;
4806
4807 err = ext4_load_journal(sb, es, ctx->journal_devnum);
4808 if (err)
4809 return err;
4810
4811 if (ext4_has_feature_64bit(sb) &&
4812 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4813 JBD2_FEATURE_INCOMPAT_64BIT)) {
4814 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4815 goto out;
4816 }
4817
4818 if (!set_journal_csum_feature_set(sb)) {
4819 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4820 "feature set");
4821 goto out;
4822 }
4823
4824 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4825 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4826 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4827 ext4_msg(sb, KERN_ERR,
4828 "Failed to set fast commit journal feature");
4829 goto out;
4830 }
4831
4832 /* We have now updated the journal if required, so we can
4833 * validate the data journaling mode. */
4834 switch (test_opt(sb, DATA_FLAGS)) {
4835 case 0:
4836 /* No mode set, assume a default based on the journal
4837 * capabilities: ORDERED_DATA if the journal can
4838 * cope, else JOURNAL_DATA
4839 */
4840 if (jbd2_journal_check_available_features
4841 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4842 set_opt(sb, ORDERED_DATA);
4843 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4844 } else {
4845 set_opt(sb, JOURNAL_DATA);
4846 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4847 }
4848 break;
4849
4850 case EXT4_MOUNT_ORDERED_DATA:
4851 case EXT4_MOUNT_WRITEBACK_DATA:
4852 if (!jbd2_journal_check_available_features
4853 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4854 ext4_msg(sb, KERN_ERR, "Journal does not support "
4855 "requested data journaling mode");
4856 goto out;
4857 }
4858 break;
4859 default:
4860 break;
4861 }
4862
4863 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4864 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4865 ext4_msg(sb, KERN_ERR, "can't mount with "
4866 "journal_async_commit in data=ordered mode");
4867 goto out;
4868 }
4869
4870 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4871
4872 sbi->s_journal->j_submit_inode_data_buffers =
4873 ext4_journal_submit_inode_data_buffers;
4874 sbi->s_journal->j_finish_inode_data_buffers =
4875 ext4_journal_finish_inode_data_buffers;
4876
4877 return 0;
4878
4879 out:
4880 /* flush s_error_work before journal destroy. */
4881 flush_work(&sbi->s_error_work);
4882 jbd2_journal_destroy(sbi->s_journal);
4883 sbi->s_journal = NULL;
4884 return -EINVAL;
4885 }
4886
ext4_journal_data_mode_check(struct super_block * sb)4887 static int ext4_journal_data_mode_check(struct super_block *sb)
4888 {
4889 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4890 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4891 "data=journal disables delayed allocation, "
4892 "dioread_nolock, O_DIRECT and fast_commit support!\n");
4893 /* can't mount with both data=journal and dioread_nolock. */
4894 clear_opt(sb, DIOREAD_NOLOCK);
4895 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4896 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4897 ext4_msg(sb, KERN_ERR, "can't mount with "
4898 "both data=journal and delalloc");
4899 return -EINVAL;
4900 }
4901 if (test_opt(sb, DAX_ALWAYS)) {
4902 ext4_msg(sb, KERN_ERR, "can't mount with "
4903 "both data=journal and dax");
4904 return -EINVAL;
4905 }
4906 if (ext4_has_feature_encrypt(sb)) {
4907 ext4_msg(sb, KERN_WARNING,
4908 "encrypted files will use data=ordered "
4909 "instead of data journaling mode");
4910 }
4911 if (test_opt(sb, DELALLOC))
4912 clear_opt(sb, DELALLOC);
4913 } else {
4914 sb->s_iflags |= SB_I_CGROUPWB;
4915 }
4916
4917 return 0;
4918 }
4919
ext4_load_super(struct super_block * sb,ext4_fsblk_t * lsb,int silent)4920 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
4921 int silent)
4922 {
4923 struct ext4_sb_info *sbi = EXT4_SB(sb);
4924 struct ext4_super_block *es;
4925 ext4_fsblk_t logical_sb_block;
4926 unsigned long offset = 0;
4927 struct buffer_head *bh;
4928 int ret = -EINVAL;
4929 int blocksize;
4930
4931 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4932 if (!blocksize) {
4933 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4934 return -EINVAL;
4935 }
4936
4937 /*
4938 * The ext4 superblock will not be buffer aligned for other than 1kB
4939 * block sizes. We need to calculate the offset from buffer start.
4940 */
4941 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4942 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
4943 offset = do_div(logical_sb_block, blocksize);
4944 } else {
4945 logical_sb_block = sbi->s_sb_block;
4946 }
4947
4948 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4949 if (IS_ERR(bh)) {
4950 ext4_msg(sb, KERN_ERR, "unable to read superblock");
4951 return PTR_ERR(bh);
4952 }
4953 /*
4954 * Note: s_es must be initialized as soon as possible because
4955 * some ext4 macro-instructions depend on its value
4956 */
4957 es = (struct ext4_super_block *) (bh->b_data + offset);
4958 sbi->s_es = es;
4959 sb->s_magic = le16_to_cpu(es->s_magic);
4960 if (sb->s_magic != EXT4_SUPER_MAGIC) {
4961 if (!silent)
4962 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4963 goto out;
4964 }
4965
4966 if (le32_to_cpu(es->s_log_block_size) >
4967 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4968 ext4_msg(sb, KERN_ERR,
4969 "Invalid log block size: %u",
4970 le32_to_cpu(es->s_log_block_size));
4971 goto out;
4972 }
4973 if (le32_to_cpu(es->s_log_cluster_size) >
4974 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4975 ext4_msg(sb, KERN_ERR,
4976 "Invalid log cluster size: %u",
4977 le32_to_cpu(es->s_log_cluster_size));
4978 goto out;
4979 }
4980
4981 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4982
4983 /*
4984 * If the default block size is not the same as the real block size,
4985 * we need to reload it.
4986 */
4987 if (sb->s_blocksize == blocksize) {
4988 *lsb = logical_sb_block;
4989 sbi->s_sbh = bh;
4990 return 0;
4991 }
4992
4993 /*
4994 * bh must be released before kill_bdev(), otherwise
4995 * it won't be freed and its page also. kill_bdev()
4996 * is called by sb_set_blocksize().
4997 */
4998 brelse(bh);
4999 /* Validate the filesystem blocksize */
5000 if (!sb_set_blocksize(sb, blocksize)) {
5001 ext4_msg(sb, KERN_ERR, "bad block size %d",
5002 blocksize);
5003 bh = NULL;
5004 goto out;
5005 }
5006
5007 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5008 offset = do_div(logical_sb_block, blocksize);
5009 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5010 if (IS_ERR(bh)) {
5011 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5012 ret = PTR_ERR(bh);
5013 bh = NULL;
5014 goto out;
5015 }
5016 es = (struct ext4_super_block *)(bh->b_data + offset);
5017 sbi->s_es = es;
5018 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5019 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5020 goto out;
5021 }
5022 *lsb = logical_sb_block;
5023 sbi->s_sbh = bh;
5024 return 0;
5025 out:
5026 brelse(bh);
5027 return ret;
5028 }
5029
__ext4_fill_super(struct fs_context * fc,struct super_block * sb)5030 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5031 {
5032 struct ext4_super_block *es = NULL;
5033 struct ext4_sb_info *sbi = EXT4_SB(sb);
5034 struct flex_groups **flex_groups;
5035 ext4_fsblk_t block;
5036 ext4_fsblk_t logical_sb_block;
5037 struct inode *root;
5038 int ret = -ENOMEM;
5039 unsigned int i;
5040 int needs_recovery, has_huge_files;
5041 int err = 0;
5042 ext4_group_t first_not_zeroed;
5043 struct ext4_fs_context *ctx = fc->fs_private;
5044 int silent = fc->sb_flags & SB_SILENT;
5045
5046 /* Set defaults for the variables that will be set during parsing */
5047 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5048 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5049
5050 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5051 sbi->s_sectors_written_start =
5052 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5053
5054 /* -EINVAL is default */
5055 ret = -EINVAL;
5056 err = ext4_load_super(sb, &logical_sb_block, silent);
5057 if (err)
5058 goto out_fail;
5059
5060 es = sbi->s_es;
5061 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5062
5063 err = ext4_init_metadata_csum(sb, es);
5064 if (err)
5065 goto failed_mount;
5066
5067 ext4_set_def_opts(sb, es);
5068
5069 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5070 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5071 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5072 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5073 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5074
5075 /*
5076 * set default s_li_wait_mult for lazyinit, for the case there is
5077 * no mount option specified.
5078 */
5079 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5080
5081 if (ext4_inode_info_init(sb, es))
5082 goto failed_mount;
5083
5084 err = parse_apply_sb_mount_options(sb, ctx);
5085 if (err < 0)
5086 goto failed_mount;
5087
5088 sbi->s_def_mount_opt = sbi->s_mount_opt;
5089
5090 err = ext4_check_opt_consistency(fc, sb);
5091 if (err < 0)
5092 goto failed_mount;
5093
5094 ext4_apply_options(fc, sb);
5095
5096 if (ext4_encoding_init(sb, es))
5097 goto failed_mount;
5098
5099 if (ext4_journal_data_mode_check(sb))
5100 goto failed_mount;
5101
5102 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5103 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5104
5105 /* i_version is always enabled now */
5106 sb->s_flags |= SB_I_VERSION;
5107
5108 if (ext4_check_feature_compatibility(sb, es, silent))
5109 goto failed_mount;
5110
5111 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
5112 ext4_msg(sb, KERN_ERR,
5113 "Number of reserved GDT blocks insanely large: %d",
5114 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
5115 goto failed_mount;
5116 }
5117
5118 if (sbi->s_daxdev) {
5119 if (sb->s_blocksize == PAGE_SIZE)
5120 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
5121 else
5122 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
5123 }
5124
5125 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
5126 if (ext4_has_feature_inline_data(sb)) {
5127 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
5128 " that may contain inline data");
5129 goto failed_mount;
5130 }
5131 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
5132 ext4_msg(sb, KERN_ERR,
5133 "DAX unsupported by block device.");
5134 goto failed_mount;
5135 }
5136 }
5137
5138 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
5139 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
5140 es->s_encryption_level);
5141 goto failed_mount;
5142 }
5143
5144 has_huge_files = ext4_has_feature_huge_file(sb);
5145 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5146 has_huge_files);
5147 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5148
5149 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5150 if (ext4_has_feature_64bit(sb)) {
5151 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5152 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5153 !is_power_of_2(sbi->s_desc_size)) {
5154 ext4_msg(sb, KERN_ERR,
5155 "unsupported descriptor size %lu",
5156 sbi->s_desc_size);
5157 goto failed_mount;
5158 }
5159 } else
5160 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5161
5162 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5163 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5164
5165 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5166 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5167 if (!silent)
5168 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5169 goto failed_mount;
5170 }
5171 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5172 sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5173 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5174 sbi->s_inodes_per_group);
5175 goto failed_mount;
5176 }
5177 sbi->s_itb_per_group = sbi->s_inodes_per_group /
5178 sbi->s_inodes_per_block;
5179 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5180 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5181 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5182 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5183
5184 for (i = 0; i < 4; i++)
5185 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5186 sbi->s_def_hash_version = es->s_def_hash_version;
5187 if (ext4_has_feature_dir_index(sb)) {
5188 i = le32_to_cpu(es->s_flags);
5189 if (i & EXT2_FLAGS_UNSIGNED_HASH)
5190 sbi->s_hash_unsigned = 3;
5191 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5192 #ifdef __CHAR_UNSIGNED__
5193 if (!sb_rdonly(sb))
5194 es->s_flags |=
5195 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5196 sbi->s_hash_unsigned = 3;
5197 #else
5198 if (!sb_rdonly(sb))
5199 es->s_flags |=
5200 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5201 #endif
5202 }
5203 }
5204
5205 if (ext4_handle_clustersize(sb))
5206 goto failed_mount;
5207
5208 /*
5209 * Test whether we have more sectors than will fit in sector_t,
5210 * and whether the max offset is addressable by the page cache.
5211 */
5212 err = generic_check_addressable(sb->s_blocksize_bits,
5213 ext4_blocks_count(es));
5214 if (err) {
5215 ext4_msg(sb, KERN_ERR, "filesystem"
5216 " too large to mount safely on this system");
5217 goto failed_mount;
5218 }
5219
5220 if (ext4_geometry_check(sb, es))
5221 goto failed_mount;
5222
5223 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5224 if (err)
5225 goto failed_mount;
5226
5227 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5228 spin_lock_init(&sbi->s_error_lock);
5229 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
5230
5231 /* Register extent status tree shrinker */
5232 if (ext4_es_register_shrinker(sbi))
5233 goto failed_mount3;
5234
5235 sbi->s_stripe = ext4_get_stripe_size(sbi);
5236 sbi->s_extent_max_zeroout_kb = 32;
5237
5238 /*
5239 * set up enough so that it can read an inode
5240 */
5241 sb->s_op = &ext4_sops;
5242 sb->s_export_op = &ext4_export_ops;
5243 sb->s_xattr = ext4_xattr_handlers;
5244 #ifdef CONFIG_FS_ENCRYPTION
5245 sb->s_cop = &ext4_cryptops;
5246 #endif
5247 #ifdef CONFIG_FS_VERITY
5248 sb->s_vop = &ext4_verityops;
5249 #endif
5250 #ifdef CONFIG_QUOTA
5251 sb->dq_op = &ext4_quota_operations;
5252 if (ext4_has_feature_quota(sb))
5253 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5254 else
5255 sb->s_qcop = &ext4_qctl_operations;
5256 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5257 #endif
5258 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5259
5260 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5261 mutex_init(&sbi->s_orphan_lock);
5262
5263 ext4_fast_commit_init(sb);
5264
5265 sb->s_root = NULL;
5266
5267 needs_recovery = (es->s_last_orphan != 0 ||
5268 ext4_has_feature_orphan_present(sb) ||
5269 ext4_has_feature_journal_needs_recovery(sb));
5270
5271 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
5272 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
5273 goto failed_mount3a;
5274
5275 /*
5276 * The first inode we look at is the journal inode. Don't try
5277 * root first: it may be modified in the journal!
5278 */
5279 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5280 err = ext4_load_and_init_journal(sb, es, ctx);
5281 if (err)
5282 goto failed_mount3a;
5283 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5284 ext4_has_feature_journal_needs_recovery(sb)) {
5285 ext4_msg(sb, KERN_ERR, "required journal recovery "
5286 "suppressed and not mounted read-only");
5287 goto failed_mount3a;
5288 } else {
5289 /* Nojournal mode, all journal mount options are illegal */
5290 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5291 ext4_msg(sb, KERN_ERR, "can't mount with "
5292 "journal_checksum, fs mounted w/o journal");
5293 goto failed_mount3a;
5294 }
5295 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5296 ext4_msg(sb, KERN_ERR, "can't mount with "
5297 "journal_async_commit, fs mounted w/o journal");
5298 goto failed_mount3a;
5299 }
5300 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5301 ext4_msg(sb, KERN_ERR, "can't mount with "
5302 "commit=%lu, fs mounted w/o journal",
5303 sbi->s_commit_interval / HZ);
5304 goto failed_mount3a;
5305 }
5306 if (EXT4_MOUNT_DATA_FLAGS &
5307 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5308 ext4_msg(sb, KERN_ERR, "can't mount with "
5309 "data=, fs mounted w/o journal");
5310 goto failed_mount3a;
5311 }
5312 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5313 clear_opt(sb, JOURNAL_CHECKSUM);
5314 clear_opt(sb, DATA_FLAGS);
5315 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5316 sbi->s_journal = NULL;
5317 needs_recovery = 0;
5318 }
5319
5320 if (!test_opt(sb, NO_MBCACHE)) {
5321 sbi->s_ea_block_cache = ext4_xattr_create_cache();
5322 if (!sbi->s_ea_block_cache) {
5323 ext4_msg(sb, KERN_ERR,
5324 "Failed to create ea_block_cache");
5325 goto failed_mount_wq;
5326 }
5327
5328 if (ext4_has_feature_ea_inode(sb)) {
5329 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5330 if (!sbi->s_ea_inode_cache) {
5331 ext4_msg(sb, KERN_ERR,
5332 "Failed to create ea_inode_cache");
5333 goto failed_mount_wq;
5334 }
5335 }
5336 }
5337
5338 if (ext4_has_feature_verity(sb) && sb->s_blocksize != PAGE_SIZE) {
5339 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
5340 goto failed_mount_wq;
5341 }
5342
5343 /*
5344 * Get the # of file system overhead blocks from the
5345 * superblock if present.
5346 */
5347 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5348 /* ignore the precalculated value if it is ridiculous */
5349 if (sbi->s_overhead > ext4_blocks_count(es))
5350 sbi->s_overhead = 0;
5351 /*
5352 * If the bigalloc feature is not enabled recalculating the
5353 * overhead doesn't take long, so we might as well just redo
5354 * it to make sure we are using the correct value.
5355 */
5356 if (!ext4_has_feature_bigalloc(sb))
5357 sbi->s_overhead = 0;
5358 if (sbi->s_overhead == 0) {
5359 err = ext4_calculate_overhead(sb);
5360 if (err)
5361 goto failed_mount_wq;
5362 }
5363
5364 /*
5365 * The maximum number of concurrent works can be high and
5366 * concurrency isn't really necessary. Limit it to 1.
5367 */
5368 EXT4_SB(sb)->rsv_conversion_wq =
5369 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5370 if (!EXT4_SB(sb)->rsv_conversion_wq) {
5371 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5372 ret = -ENOMEM;
5373 goto failed_mount4;
5374 }
5375
5376 /*
5377 * The jbd2_journal_load will have done any necessary log recovery,
5378 * so we can safely mount the rest of the filesystem now.
5379 */
5380
5381 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5382 if (IS_ERR(root)) {
5383 ext4_msg(sb, KERN_ERR, "get root inode failed");
5384 ret = PTR_ERR(root);
5385 root = NULL;
5386 goto failed_mount4;
5387 }
5388 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5389 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5390 iput(root);
5391 goto failed_mount4;
5392 }
5393
5394 sb->s_root = d_make_root(root);
5395 if (!sb->s_root) {
5396 ext4_msg(sb, KERN_ERR, "get root dentry failed");
5397 ret = -ENOMEM;
5398 goto failed_mount4;
5399 }
5400
5401 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
5402 if (ret == -EROFS) {
5403 sb->s_flags |= SB_RDONLY;
5404 ret = 0;
5405 } else if (ret)
5406 goto failed_mount4a;
5407
5408 ext4_set_resv_clusters(sb);
5409
5410 if (test_opt(sb, BLOCK_VALIDITY)) {
5411 err = ext4_setup_system_zone(sb);
5412 if (err) {
5413 ext4_msg(sb, KERN_ERR, "failed to initialize system "
5414 "zone (%d)", err);
5415 goto failed_mount4a;
5416 }
5417 }
5418 ext4_fc_replay_cleanup(sb);
5419
5420 ext4_ext_init(sb);
5421
5422 /*
5423 * Enable optimize_scan if number of groups is > threshold. This can be
5424 * turned off by passing "mb_optimize_scan=0". This can also be
5425 * turned on forcefully by passing "mb_optimize_scan=1".
5426 */
5427 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5428 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5429 set_opt2(sb, MB_OPTIMIZE_SCAN);
5430 else
5431 clear_opt2(sb, MB_OPTIMIZE_SCAN);
5432 }
5433
5434 err = ext4_mb_init(sb);
5435 if (err) {
5436 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5437 err);
5438 goto failed_mount5;
5439 }
5440
5441 /*
5442 * We can only set up the journal commit callback once
5443 * mballoc is initialized
5444 */
5445 if (sbi->s_journal)
5446 sbi->s_journal->j_commit_callback =
5447 ext4_journal_commit_callback;
5448
5449 block = ext4_count_free_clusters(sb);
5450 ext4_free_blocks_count_set(sbi->s_es,
5451 EXT4_C2B(sbi, block));
5452 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5453 GFP_KERNEL);
5454 if (!err) {
5455 unsigned long freei = ext4_count_free_inodes(sb);
5456 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5457 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5458 GFP_KERNEL);
5459 }
5460 if (!err)
5461 err = percpu_counter_init(&sbi->s_dirs_counter,
5462 ext4_count_dirs(sb), GFP_KERNEL);
5463 if (!err)
5464 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5465 GFP_KERNEL);
5466 if (!err)
5467 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5468 GFP_KERNEL);
5469 if (!err)
5470 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5471
5472 if (err) {
5473 ext4_msg(sb, KERN_ERR, "insufficient memory");
5474 goto failed_mount6;
5475 }
5476
5477 if (ext4_has_feature_flex_bg(sb))
5478 if (!ext4_fill_flex_info(sb)) {
5479 ext4_msg(sb, KERN_ERR,
5480 "unable to initialize "
5481 "flex_bg meta info!");
5482 ret = -ENOMEM;
5483 goto failed_mount6;
5484 }
5485
5486 err = ext4_register_li_request(sb, first_not_zeroed);
5487 if (err)
5488 goto failed_mount6;
5489
5490 err = ext4_register_sysfs(sb);
5491 if (err)
5492 goto failed_mount7;
5493
5494 err = ext4_init_orphan_info(sb);
5495 if (err)
5496 goto failed_mount8;
5497 #ifdef CONFIG_QUOTA
5498 /* Enable quota usage during mount. */
5499 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5500 err = ext4_enable_quotas(sb);
5501 if (err)
5502 goto failed_mount9;
5503 }
5504 #endif /* CONFIG_QUOTA */
5505
5506 /*
5507 * Save the original bdev mapping's wb_err value which could be
5508 * used to detect the metadata async write error.
5509 */
5510 spin_lock_init(&sbi->s_bdev_wb_lock);
5511 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5512 &sbi->s_bdev_wb_err);
5513 sb->s_bdev->bd_super = sb;
5514 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5515 ext4_orphan_cleanup(sb, es);
5516 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5517 /*
5518 * Update the checksum after updating free space/inode counters and
5519 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5520 * checksum in the buffer cache until it is written out and
5521 * e2fsprogs programs trying to open a file system immediately
5522 * after it is mounted can fail.
5523 */
5524 ext4_superblock_csum_set(sb);
5525 if (needs_recovery) {
5526 ext4_msg(sb, KERN_INFO, "recovery complete");
5527 err = ext4_mark_recovery_complete(sb, es);
5528 if (err)
5529 goto failed_mount9;
5530 }
5531
5532 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5533 ext4_msg(sb, KERN_WARNING,
5534 "mounting with \"discard\" option, but the device does not support discard");
5535
5536 if (es->s_error_count)
5537 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5538
5539 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5540 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5541 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5542 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5543 atomic_set(&sbi->s_warning_count, 0);
5544 atomic_set(&sbi->s_msg_count, 0);
5545
5546 return 0;
5547
5548 failed_mount9:
5549 ext4_release_orphan_info(sb);
5550 failed_mount8:
5551 ext4_unregister_sysfs(sb);
5552 kobject_put(&sbi->s_kobj);
5553 failed_mount7:
5554 ext4_unregister_li_request(sb);
5555 failed_mount6:
5556 ext4_mb_release(sb);
5557 rcu_read_lock();
5558 flex_groups = rcu_dereference(sbi->s_flex_groups);
5559 if (flex_groups) {
5560 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5561 kvfree(flex_groups[i]);
5562 kvfree(flex_groups);
5563 }
5564 rcu_read_unlock();
5565 percpu_counter_destroy(&sbi->s_freeclusters_counter);
5566 percpu_counter_destroy(&sbi->s_freeinodes_counter);
5567 percpu_counter_destroy(&sbi->s_dirs_counter);
5568 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5569 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5570 percpu_free_rwsem(&sbi->s_writepages_rwsem);
5571 failed_mount5:
5572 ext4_ext_release(sb);
5573 ext4_release_system_zone(sb);
5574 failed_mount4a:
5575 dput(sb->s_root);
5576 sb->s_root = NULL;
5577 failed_mount4:
5578 ext4_msg(sb, KERN_ERR, "mount failed");
5579 if (EXT4_SB(sb)->rsv_conversion_wq)
5580 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5581 failed_mount_wq:
5582 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5583 sbi->s_ea_inode_cache = NULL;
5584
5585 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5586 sbi->s_ea_block_cache = NULL;
5587
5588 if (sbi->s_journal) {
5589 /* flush s_error_work before journal destroy. */
5590 flush_work(&sbi->s_error_work);
5591 jbd2_journal_destroy(sbi->s_journal);
5592 sbi->s_journal = NULL;
5593 }
5594 failed_mount3a:
5595 ext4_es_unregister_shrinker(sbi);
5596 failed_mount3:
5597 /* flush s_error_work before sbi destroy */
5598 flush_work(&sbi->s_error_work);
5599 del_timer_sync(&sbi->s_err_report);
5600 ext4_stop_mmpd(sbi);
5601 ext4_group_desc_free(sbi);
5602 failed_mount:
5603 if (sbi->s_chksum_driver)
5604 crypto_free_shash(sbi->s_chksum_driver);
5605
5606 #if IS_ENABLED(CONFIG_UNICODE)
5607 utf8_unload(sb->s_encoding);
5608 #endif
5609
5610 #ifdef CONFIG_QUOTA
5611 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5612 kfree(get_qf_name(sb, sbi, i));
5613 #endif
5614 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5615 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5616 brelse(sbi->s_sbh);
5617 ext4_blkdev_remove(sbi);
5618 out_fail:
5619 sb->s_fs_info = NULL;
5620 return err ? err : ret;
5621 }
5622
ext4_fill_super(struct super_block * sb,struct fs_context * fc)5623 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5624 {
5625 struct ext4_fs_context *ctx = fc->fs_private;
5626 struct ext4_sb_info *sbi;
5627 const char *descr;
5628 int ret;
5629
5630 sbi = ext4_alloc_sbi(sb);
5631 if (!sbi)
5632 return -ENOMEM;
5633
5634 fc->s_fs_info = sbi;
5635
5636 /* Cleanup superblock name */
5637 strreplace(sb->s_id, '/', '!');
5638
5639 sbi->s_sb_block = 1; /* Default super block location */
5640 if (ctx->spec & EXT4_SPEC_s_sb_block)
5641 sbi->s_sb_block = ctx->s_sb_block;
5642
5643 ret = __ext4_fill_super(fc, sb);
5644 if (ret < 0)
5645 goto free_sbi;
5646
5647 if (sbi->s_journal) {
5648 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5649 descr = " journalled data mode";
5650 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5651 descr = " ordered data mode";
5652 else
5653 descr = " writeback data mode";
5654 } else
5655 descr = "out journal";
5656
5657 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5658 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5659 "Quota mode: %s.", descr, ext4_quota_mode(sb));
5660
5661 /* Update the s_overhead_clusters if necessary */
5662 ext4_update_overhead(sb, false);
5663 return 0;
5664
5665 free_sbi:
5666 ext4_free_sbi(sbi);
5667 fc->s_fs_info = NULL;
5668 return ret;
5669 }
5670
ext4_get_tree(struct fs_context * fc)5671 static int ext4_get_tree(struct fs_context *fc)
5672 {
5673 return get_tree_bdev(fc, ext4_fill_super);
5674 }
5675
5676 /*
5677 * Setup any per-fs journal parameters now. We'll do this both on
5678 * initial mount, once the journal has been initialised but before we've
5679 * done any recovery; and again on any subsequent remount.
5680 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5681 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5682 {
5683 struct ext4_sb_info *sbi = EXT4_SB(sb);
5684
5685 journal->j_commit_interval = sbi->s_commit_interval;
5686 journal->j_min_batch_time = sbi->s_min_batch_time;
5687 journal->j_max_batch_time = sbi->s_max_batch_time;
5688 ext4_fc_init(sb, journal);
5689
5690 write_lock(&journal->j_state_lock);
5691 if (test_opt(sb, BARRIER))
5692 journal->j_flags |= JBD2_BARRIER;
5693 else
5694 journal->j_flags &= ~JBD2_BARRIER;
5695 if (test_opt(sb, DATA_ERR_ABORT))
5696 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5697 else
5698 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5699 write_unlock(&journal->j_state_lock);
5700 }
5701
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5702 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5703 unsigned int journal_inum)
5704 {
5705 struct inode *journal_inode;
5706
5707 /*
5708 * Test for the existence of a valid inode on disk. Bad things
5709 * happen if we iget() an unused inode, as the subsequent iput()
5710 * will try to delete it.
5711 */
5712 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5713 if (IS_ERR(journal_inode)) {
5714 ext4_msg(sb, KERN_ERR, "no journal found");
5715 return NULL;
5716 }
5717 if (!journal_inode->i_nlink) {
5718 make_bad_inode(journal_inode);
5719 iput(journal_inode);
5720 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5721 return NULL;
5722 }
5723
5724 ext4_debug("Journal inode found at %p: %lld bytes\n",
5725 journal_inode, journal_inode->i_size);
5726 if (!S_ISREG(journal_inode->i_mode)) {
5727 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5728 iput(journal_inode);
5729 return NULL;
5730 }
5731 return journal_inode;
5732 }
5733
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)5734 static journal_t *ext4_get_journal(struct super_block *sb,
5735 unsigned int journal_inum)
5736 {
5737 struct inode *journal_inode;
5738 journal_t *journal;
5739
5740 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5741 return NULL;
5742
5743 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5744 if (!journal_inode)
5745 return NULL;
5746
5747 journal = jbd2_journal_init_inode(journal_inode);
5748 if (!journal) {
5749 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5750 iput(journal_inode);
5751 return NULL;
5752 }
5753 journal->j_private = sb;
5754 ext4_init_journal_params(sb, journal);
5755 return journal;
5756 }
5757
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)5758 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5759 dev_t j_dev)
5760 {
5761 struct buffer_head *bh;
5762 journal_t *journal;
5763 ext4_fsblk_t start;
5764 ext4_fsblk_t len;
5765 int hblock, blocksize;
5766 ext4_fsblk_t sb_block;
5767 unsigned long offset;
5768 struct ext4_super_block *es;
5769 struct block_device *bdev;
5770
5771 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5772 return NULL;
5773
5774 bdev = ext4_blkdev_get(j_dev, sb);
5775 if (bdev == NULL)
5776 return NULL;
5777
5778 blocksize = sb->s_blocksize;
5779 hblock = bdev_logical_block_size(bdev);
5780 if (blocksize < hblock) {
5781 ext4_msg(sb, KERN_ERR,
5782 "blocksize too small for journal device");
5783 goto out_bdev;
5784 }
5785
5786 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5787 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5788 set_blocksize(bdev, blocksize);
5789 if (!(bh = __bread(bdev, sb_block, blocksize))) {
5790 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5791 "external journal");
5792 goto out_bdev;
5793 }
5794
5795 es = (struct ext4_super_block *) (bh->b_data + offset);
5796 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5797 !(le32_to_cpu(es->s_feature_incompat) &
5798 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5799 ext4_msg(sb, KERN_ERR, "external journal has "
5800 "bad superblock");
5801 brelse(bh);
5802 goto out_bdev;
5803 }
5804
5805 if ((le32_to_cpu(es->s_feature_ro_compat) &
5806 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5807 es->s_checksum != ext4_superblock_csum(sb, es)) {
5808 ext4_msg(sb, KERN_ERR, "external journal has "
5809 "corrupt superblock");
5810 brelse(bh);
5811 goto out_bdev;
5812 }
5813
5814 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5815 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5816 brelse(bh);
5817 goto out_bdev;
5818 }
5819
5820 len = ext4_blocks_count(es);
5821 start = sb_block + 1;
5822 brelse(bh); /* we're done with the superblock */
5823
5824 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5825 start, len, blocksize);
5826 if (!journal) {
5827 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5828 goto out_bdev;
5829 }
5830 journal->j_private = sb;
5831 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5832 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5833 goto out_journal;
5834 }
5835 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5836 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5837 "user (unsupported) - %d",
5838 be32_to_cpu(journal->j_superblock->s_nr_users));
5839 goto out_journal;
5840 }
5841 EXT4_SB(sb)->s_journal_bdev = bdev;
5842 ext4_init_journal_params(sb, journal);
5843 return journal;
5844
5845 out_journal:
5846 jbd2_journal_destroy(journal);
5847 out_bdev:
5848 ext4_blkdev_put(bdev);
5849 return NULL;
5850 }
5851
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5852 static int ext4_load_journal(struct super_block *sb,
5853 struct ext4_super_block *es,
5854 unsigned long journal_devnum)
5855 {
5856 journal_t *journal;
5857 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5858 dev_t journal_dev;
5859 int err = 0;
5860 int really_read_only;
5861 int journal_dev_ro;
5862
5863 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5864 return -EFSCORRUPTED;
5865
5866 if (journal_devnum &&
5867 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5868 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5869 "numbers have changed");
5870 journal_dev = new_decode_dev(journal_devnum);
5871 } else
5872 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5873
5874 if (journal_inum && journal_dev) {
5875 ext4_msg(sb, KERN_ERR,
5876 "filesystem has both journal inode and journal device!");
5877 return -EINVAL;
5878 }
5879
5880 if (journal_inum) {
5881 journal = ext4_get_journal(sb, journal_inum);
5882 if (!journal)
5883 return -EINVAL;
5884 } else {
5885 journal = ext4_get_dev_journal(sb, journal_dev);
5886 if (!journal)
5887 return -EINVAL;
5888 }
5889
5890 journal_dev_ro = bdev_read_only(journal->j_dev);
5891 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5892
5893 if (journal_dev_ro && !sb_rdonly(sb)) {
5894 ext4_msg(sb, KERN_ERR,
5895 "journal device read-only, try mounting with '-o ro'");
5896 err = -EROFS;
5897 goto err_out;
5898 }
5899
5900 /*
5901 * Are we loading a blank journal or performing recovery after a
5902 * crash? For recovery, we need to check in advance whether we
5903 * can get read-write access to the device.
5904 */
5905 if (ext4_has_feature_journal_needs_recovery(sb)) {
5906 if (sb_rdonly(sb)) {
5907 ext4_msg(sb, KERN_INFO, "INFO: recovery "
5908 "required on readonly filesystem");
5909 if (really_read_only) {
5910 ext4_msg(sb, KERN_ERR, "write access "
5911 "unavailable, cannot proceed "
5912 "(try mounting with noload)");
5913 err = -EROFS;
5914 goto err_out;
5915 }
5916 ext4_msg(sb, KERN_INFO, "write access will "
5917 "be enabled during recovery");
5918 }
5919 }
5920
5921 if (!(journal->j_flags & JBD2_BARRIER))
5922 ext4_msg(sb, KERN_INFO, "barriers disabled");
5923
5924 if (!ext4_has_feature_journal_needs_recovery(sb))
5925 err = jbd2_journal_wipe(journal, !really_read_only);
5926 if (!err) {
5927 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5928 if (save)
5929 memcpy(save, ((char *) es) +
5930 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5931 err = jbd2_journal_load(journal);
5932 if (save)
5933 memcpy(((char *) es) + EXT4_S_ERR_START,
5934 save, EXT4_S_ERR_LEN);
5935 kfree(save);
5936 }
5937
5938 if (err) {
5939 ext4_msg(sb, KERN_ERR, "error loading journal");
5940 goto err_out;
5941 }
5942
5943 EXT4_SB(sb)->s_journal = journal;
5944 err = ext4_clear_journal_err(sb, es);
5945 if (err) {
5946 EXT4_SB(sb)->s_journal = NULL;
5947 jbd2_journal_destroy(journal);
5948 return err;
5949 }
5950
5951 if (!really_read_only && journal_devnum &&
5952 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5953 es->s_journal_dev = cpu_to_le32(journal_devnum);
5954
5955 /* Make sure we flush the recovery flag to disk. */
5956 ext4_commit_super(sb);
5957 }
5958
5959 return 0;
5960
5961 err_out:
5962 jbd2_journal_destroy(journal);
5963 return err;
5964 }
5965
5966 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)5967 static void ext4_update_super(struct super_block *sb)
5968 {
5969 struct ext4_sb_info *sbi = EXT4_SB(sb);
5970 struct ext4_super_block *es = sbi->s_es;
5971 struct buffer_head *sbh = sbi->s_sbh;
5972
5973 lock_buffer(sbh);
5974 /*
5975 * If the file system is mounted read-only, don't update the
5976 * superblock write time. This avoids updating the superblock
5977 * write time when we are mounting the root file system
5978 * read/only but we need to replay the journal; at that point,
5979 * for people who are east of GMT and who make their clock
5980 * tick in localtime for Windows bug-for-bug compatibility,
5981 * the clock is set in the future, and this will cause e2fsck
5982 * to complain and force a full file system check.
5983 */
5984 if (!(sb->s_flags & SB_RDONLY))
5985 ext4_update_tstamp(es, s_wtime);
5986 es->s_kbytes_written =
5987 cpu_to_le64(sbi->s_kbytes_written +
5988 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5989 sbi->s_sectors_written_start) >> 1));
5990 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5991 ext4_free_blocks_count_set(es,
5992 EXT4_C2B(sbi, percpu_counter_sum_positive(
5993 &sbi->s_freeclusters_counter)));
5994 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5995 es->s_free_inodes_count =
5996 cpu_to_le32(percpu_counter_sum_positive(
5997 &sbi->s_freeinodes_counter));
5998 /* Copy error information to the on-disk superblock */
5999 spin_lock(&sbi->s_error_lock);
6000 if (sbi->s_add_error_count > 0) {
6001 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6002 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6003 __ext4_update_tstamp(&es->s_first_error_time,
6004 &es->s_first_error_time_hi,
6005 sbi->s_first_error_time);
6006 strncpy(es->s_first_error_func, sbi->s_first_error_func,
6007 sizeof(es->s_first_error_func));
6008 es->s_first_error_line =
6009 cpu_to_le32(sbi->s_first_error_line);
6010 es->s_first_error_ino =
6011 cpu_to_le32(sbi->s_first_error_ino);
6012 es->s_first_error_block =
6013 cpu_to_le64(sbi->s_first_error_block);
6014 es->s_first_error_errcode =
6015 ext4_errno_to_code(sbi->s_first_error_code);
6016 }
6017 __ext4_update_tstamp(&es->s_last_error_time,
6018 &es->s_last_error_time_hi,
6019 sbi->s_last_error_time);
6020 strncpy(es->s_last_error_func, sbi->s_last_error_func,
6021 sizeof(es->s_last_error_func));
6022 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6023 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6024 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6025 es->s_last_error_errcode =
6026 ext4_errno_to_code(sbi->s_last_error_code);
6027 /*
6028 * Start the daily error reporting function if it hasn't been
6029 * started already
6030 */
6031 if (!es->s_error_count)
6032 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6033 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6034 sbi->s_add_error_count = 0;
6035 }
6036 spin_unlock(&sbi->s_error_lock);
6037
6038 ext4_superblock_csum_set(sb);
6039 unlock_buffer(sbh);
6040 }
6041
ext4_commit_super(struct super_block * sb)6042 static int ext4_commit_super(struct super_block *sb)
6043 {
6044 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6045
6046 if (!sbh)
6047 return -EINVAL;
6048 if (block_device_ejected(sb))
6049 return -ENODEV;
6050
6051 ext4_update_super(sb);
6052
6053 lock_buffer(sbh);
6054 /* Buffer got discarded which means block device got invalidated */
6055 if (!buffer_mapped(sbh)) {
6056 unlock_buffer(sbh);
6057 return -EIO;
6058 }
6059
6060 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6061 /*
6062 * Oh, dear. A previous attempt to write the
6063 * superblock failed. This could happen because the
6064 * USB device was yanked out. Or it could happen to
6065 * be a transient write error and maybe the block will
6066 * be remapped. Nothing we can do but to retry the
6067 * write and hope for the best.
6068 */
6069 ext4_msg(sb, KERN_ERR, "previous I/O error to "
6070 "superblock detected");
6071 clear_buffer_write_io_error(sbh);
6072 set_buffer_uptodate(sbh);
6073 }
6074 get_bh(sbh);
6075 /* Clear potential dirty bit if it was journalled update */
6076 clear_buffer_dirty(sbh);
6077 sbh->b_end_io = end_buffer_write_sync;
6078 submit_bh(REQ_OP_WRITE | REQ_SYNC |
6079 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6080 wait_on_buffer(sbh);
6081 if (buffer_write_io_error(sbh)) {
6082 ext4_msg(sb, KERN_ERR, "I/O error while writing "
6083 "superblock");
6084 clear_buffer_write_io_error(sbh);
6085 set_buffer_uptodate(sbh);
6086 return -EIO;
6087 }
6088 return 0;
6089 }
6090
6091 /*
6092 * Have we just finished recovery? If so, and if we are mounting (or
6093 * remounting) the filesystem readonly, then we will end up with a
6094 * consistent fs on disk. Record that fact.
6095 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)6096 static int ext4_mark_recovery_complete(struct super_block *sb,
6097 struct ext4_super_block *es)
6098 {
6099 int err;
6100 journal_t *journal = EXT4_SB(sb)->s_journal;
6101
6102 if (!ext4_has_feature_journal(sb)) {
6103 if (journal != NULL) {
6104 ext4_error(sb, "Journal got removed while the fs was "
6105 "mounted!");
6106 return -EFSCORRUPTED;
6107 }
6108 return 0;
6109 }
6110 jbd2_journal_lock_updates(journal);
6111 err = jbd2_journal_flush(journal, 0);
6112 if (err < 0)
6113 goto out;
6114
6115 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6116 ext4_has_feature_orphan_present(sb))) {
6117 if (!ext4_orphan_file_empty(sb)) {
6118 ext4_error(sb, "Orphan file not empty on read-only fs.");
6119 err = -EFSCORRUPTED;
6120 goto out;
6121 }
6122 ext4_clear_feature_journal_needs_recovery(sb);
6123 ext4_clear_feature_orphan_present(sb);
6124 ext4_commit_super(sb);
6125 }
6126 out:
6127 jbd2_journal_unlock_updates(journal);
6128 return err;
6129 }
6130
6131 /*
6132 * If we are mounting (or read-write remounting) a filesystem whose journal
6133 * has recorded an error from a previous lifetime, move that error to the
6134 * main filesystem now.
6135 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)6136 static int ext4_clear_journal_err(struct super_block *sb,
6137 struct ext4_super_block *es)
6138 {
6139 journal_t *journal;
6140 int j_errno;
6141 const char *errstr;
6142
6143 if (!ext4_has_feature_journal(sb)) {
6144 ext4_error(sb, "Journal got removed while the fs was mounted!");
6145 return -EFSCORRUPTED;
6146 }
6147
6148 journal = EXT4_SB(sb)->s_journal;
6149
6150 /*
6151 * Now check for any error status which may have been recorded in the
6152 * journal by a prior ext4_error() or ext4_abort()
6153 */
6154
6155 j_errno = jbd2_journal_errno(journal);
6156 if (j_errno) {
6157 char nbuf[16];
6158
6159 errstr = ext4_decode_error(sb, j_errno, nbuf);
6160 ext4_warning(sb, "Filesystem error recorded "
6161 "from previous mount: %s", errstr);
6162 ext4_warning(sb, "Marking fs in need of filesystem check.");
6163
6164 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6165 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6166 ext4_commit_super(sb);
6167
6168 jbd2_journal_clear_err(journal);
6169 jbd2_journal_update_sb_errno(journal);
6170 }
6171 return 0;
6172 }
6173
6174 /*
6175 * Force the running and committing transactions to commit,
6176 * and wait on the commit.
6177 */
ext4_force_commit(struct super_block * sb)6178 int ext4_force_commit(struct super_block *sb)
6179 {
6180 journal_t *journal;
6181
6182 if (sb_rdonly(sb))
6183 return 0;
6184
6185 journal = EXT4_SB(sb)->s_journal;
6186 return ext4_journal_force_commit(journal);
6187 }
6188
ext4_sync_fs(struct super_block * sb,int wait)6189 static int ext4_sync_fs(struct super_block *sb, int wait)
6190 {
6191 int ret = 0;
6192 tid_t target;
6193 bool needs_barrier = false;
6194 struct ext4_sb_info *sbi = EXT4_SB(sb);
6195
6196 if (unlikely(ext4_forced_shutdown(sbi)))
6197 return 0;
6198
6199 trace_ext4_sync_fs(sb, wait);
6200 flush_workqueue(sbi->rsv_conversion_wq);
6201 /*
6202 * Writeback quota in non-journalled quota case - journalled quota has
6203 * no dirty dquots
6204 */
6205 dquot_writeback_dquots(sb, -1);
6206 /*
6207 * Data writeback is possible w/o journal transaction, so barrier must
6208 * being sent at the end of the function. But we can skip it if
6209 * transaction_commit will do it for us.
6210 */
6211 if (sbi->s_journal) {
6212 target = jbd2_get_latest_transaction(sbi->s_journal);
6213 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6214 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6215 needs_barrier = true;
6216
6217 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6218 if (wait)
6219 ret = jbd2_log_wait_commit(sbi->s_journal,
6220 target);
6221 }
6222 } else if (wait && test_opt(sb, BARRIER))
6223 needs_barrier = true;
6224 if (needs_barrier) {
6225 int err;
6226 err = blkdev_issue_flush(sb->s_bdev);
6227 if (!ret)
6228 ret = err;
6229 }
6230
6231 return ret;
6232 }
6233
6234 /*
6235 * LVM calls this function before a (read-only) snapshot is created. This
6236 * gives us a chance to flush the journal completely and mark the fs clean.
6237 *
6238 * Note that only this function cannot bring a filesystem to be in a clean
6239 * state independently. It relies on upper layer to stop all data & metadata
6240 * modifications.
6241 */
ext4_freeze(struct super_block * sb)6242 static int ext4_freeze(struct super_block *sb)
6243 {
6244 int error = 0;
6245 journal_t *journal;
6246
6247 if (sb_rdonly(sb))
6248 return 0;
6249
6250 journal = EXT4_SB(sb)->s_journal;
6251
6252 if (journal) {
6253 /* Now we set up the journal barrier. */
6254 jbd2_journal_lock_updates(journal);
6255
6256 /*
6257 * Don't clear the needs_recovery flag if we failed to
6258 * flush the journal.
6259 */
6260 error = jbd2_journal_flush(journal, 0);
6261 if (error < 0)
6262 goto out;
6263
6264 /* Journal blocked and flushed, clear needs_recovery flag. */
6265 ext4_clear_feature_journal_needs_recovery(sb);
6266 if (ext4_orphan_file_empty(sb))
6267 ext4_clear_feature_orphan_present(sb);
6268 }
6269
6270 error = ext4_commit_super(sb);
6271 out:
6272 if (journal)
6273 /* we rely on upper layer to stop further updates */
6274 jbd2_journal_unlock_updates(journal);
6275 return error;
6276 }
6277
6278 /*
6279 * Called by LVM after the snapshot is done. We need to reset the RECOVER
6280 * flag here, even though the filesystem is not technically dirty yet.
6281 */
ext4_unfreeze(struct super_block * sb)6282 static int ext4_unfreeze(struct super_block *sb)
6283 {
6284 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
6285 return 0;
6286
6287 if (EXT4_SB(sb)->s_journal) {
6288 /* Reset the needs_recovery flag before the fs is unlocked. */
6289 ext4_set_feature_journal_needs_recovery(sb);
6290 if (ext4_has_feature_orphan_file(sb))
6291 ext4_set_feature_orphan_present(sb);
6292 }
6293
6294 ext4_commit_super(sb);
6295 return 0;
6296 }
6297
6298 /*
6299 * Structure to save mount options for ext4_remount's benefit
6300 */
6301 struct ext4_mount_options {
6302 unsigned long s_mount_opt;
6303 unsigned long s_mount_opt2;
6304 kuid_t s_resuid;
6305 kgid_t s_resgid;
6306 unsigned long s_commit_interval;
6307 u32 s_min_batch_time, s_max_batch_time;
6308 #ifdef CONFIG_QUOTA
6309 int s_jquota_fmt;
6310 char *s_qf_names[EXT4_MAXQUOTAS];
6311 #endif
6312 };
6313
__ext4_remount(struct fs_context * fc,struct super_block * sb)6314 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6315 {
6316 struct ext4_fs_context *ctx = fc->fs_private;
6317 struct ext4_super_block *es;
6318 struct ext4_sb_info *sbi = EXT4_SB(sb);
6319 unsigned long old_sb_flags;
6320 struct ext4_mount_options old_opts;
6321 ext4_group_t g;
6322 int err = 0;
6323 #ifdef CONFIG_QUOTA
6324 int enable_quota = 0;
6325 int i, j;
6326 char *to_free[EXT4_MAXQUOTAS];
6327 #endif
6328
6329
6330 /* Store the original options */
6331 old_sb_flags = sb->s_flags;
6332 old_opts.s_mount_opt = sbi->s_mount_opt;
6333 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6334 old_opts.s_resuid = sbi->s_resuid;
6335 old_opts.s_resgid = sbi->s_resgid;
6336 old_opts.s_commit_interval = sbi->s_commit_interval;
6337 old_opts.s_min_batch_time = sbi->s_min_batch_time;
6338 old_opts.s_max_batch_time = sbi->s_max_batch_time;
6339 #ifdef CONFIG_QUOTA
6340 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6341 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6342 if (sbi->s_qf_names[i]) {
6343 char *qf_name = get_qf_name(sb, sbi, i);
6344
6345 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6346 if (!old_opts.s_qf_names[i]) {
6347 for (j = 0; j < i; j++)
6348 kfree(old_opts.s_qf_names[j]);
6349 return -ENOMEM;
6350 }
6351 } else
6352 old_opts.s_qf_names[i] = NULL;
6353 #endif
6354 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6355 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6356 ctx->journal_ioprio =
6357 sbi->s_journal->j_task->io_context->ioprio;
6358 else
6359 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6360
6361 }
6362
6363 ext4_apply_options(fc, sb);
6364
6365 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6366 test_opt(sb, JOURNAL_CHECKSUM)) {
6367 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6368 "during remount not supported; ignoring");
6369 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6370 }
6371
6372 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6373 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6374 ext4_msg(sb, KERN_ERR, "can't mount with "
6375 "both data=journal and delalloc");
6376 err = -EINVAL;
6377 goto restore_opts;
6378 }
6379 if (test_opt(sb, DIOREAD_NOLOCK)) {
6380 ext4_msg(sb, KERN_ERR, "can't mount with "
6381 "both data=journal and dioread_nolock");
6382 err = -EINVAL;
6383 goto restore_opts;
6384 }
6385 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6386 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6387 ext4_msg(sb, KERN_ERR, "can't mount with "
6388 "journal_async_commit in data=ordered mode");
6389 err = -EINVAL;
6390 goto restore_opts;
6391 }
6392 }
6393
6394 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6395 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6396 err = -EINVAL;
6397 goto restore_opts;
6398 }
6399
6400 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
6401 ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6402
6403 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6404 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6405
6406 es = sbi->s_es;
6407
6408 if (sbi->s_journal) {
6409 ext4_init_journal_params(sb, sbi->s_journal);
6410 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6411 }
6412
6413 /* Flush outstanding errors before changing fs state */
6414 flush_work(&sbi->s_error_work);
6415
6416 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6417 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
6418 err = -EROFS;
6419 goto restore_opts;
6420 }
6421
6422 if (fc->sb_flags & SB_RDONLY) {
6423 err = sync_filesystem(sb);
6424 if (err < 0)
6425 goto restore_opts;
6426 err = dquot_suspend(sb, -1);
6427 if (err < 0)
6428 goto restore_opts;
6429
6430 /*
6431 * First of all, the unconditional stuff we have to do
6432 * to disable replay of the journal when we next remount
6433 */
6434 sb->s_flags |= SB_RDONLY;
6435
6436 /*
6437 * OK, test if we are remounting a valid rw partition
6438 * readonly, and if so set the rdonly flag and then
6439 * mark the partition as valid again.
6440 */
6441 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6442 (sbi->s_mount_state & EXT4_VALID_FS))
6443 es->s_state = cpu_to_le16(sbi->s_mount_state);
6444
6445 if (sbi->s_journal) {
6446 /*
6447 * We let remount-ro finish even if marking fs
6448 * as clean failed...
6449 */
6450 ext4_mark_recovery_complete(sb, es);
6451 }
6452 } else {
6453 /* Make sure we can mount this feature set readwrite */
6454 if (ext4_has_feature_readonly(sb) ||
6455 !ext4_feature_set_ok(sb, 0)) {
6456 err = -EROFS;
6457 goto restore_opts;
6458 }
6459 /*
6460 * Make sure the group descriptor checksums
6461 * are sane. If they aren't, refuse to remount r/w.
6462 */
6463 for (g = 0; g < sbi->s_groups_count; g++) {
6464 struct ext4_group_desc *gdp =
6465 ext4_get_group_desc(sb, g, NULL);
6466
6467 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6468 ext4_msg(sb, KERN_ERR,
6469 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6470 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6471 le16_to_cpu(gdp->bg_checksum));
6472 err = -EFSBADCRC;
6473 goto restore_opts;
6474 }
6475 }
6476
6477 /*
6478 * If we have an unprocessed orphan list hanging
6479 * around from a previously readonly bdev mount,
6480 * require a full umount/remount for now.
6481 */
6482 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6483 ext4_msg(sb, KERN_WARNING, "Couldn't "
6484 "remount RDWR because of unprocessed "
6485 "orphan inode list. Please "
6486 "umount/remount instead");
6487 err = -EINVAL;
6488 goto restore_opts;
6489 }
6490
6491 /*
6492 * Mounting a RDONLY partition read-write, so reread
6493 * and store the current valid flag. (It may have
6494 * been changed by e2fsck since we originally mounted
6495 * the partition.)
6496 */
6497 if (sbi->s_journal) {
6498 err = ext4_clear_journal_err(sb, es);
6499 if (err)
6500 goto restore_opts;
6501 }
6502 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6503 ~EXT4_FC_REPLAY);
6504
6505 err = ext4_setup_super(sb, es, 0);
6506 if (err)
6507 goto restore_opts;
6508
6509 sb->s_flags &= ~SB_RDONLY;
6510 if (ext4_has_feature_mmp(sb))
6511 if (ext4_multi_mount_protect(sb,
6512 le64_to_cpu(es->s_mmp_block))) {
6513 err = -EROFS;
6514 goto restore_opts;
6515 }
6516 #ifdef CONFIG_QUOTA
6517 enable_quota = 1;
6518 #endif
6519 }
6520 }
6521
6522 /*
6523 * Reinitialize lazy itable initialization thread based on
6524 * current settings
6525 */
6526 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6527 ext4_unregister_li_request(sb);
6528 else {
6529 ext4_group_t first_not_zeroed;
6530 first_not_zeroed = ext4_has_uninit_itable(sb);
6531 ext4_register_li_request(sb, first_not_zeroed);
6532 }
6533
6534 /*
6535 * Handle creation of system zone data early because it can fail.
6536 * Releasing of existing data is done when we are sure remount will
6537 * succeed.
6538 */
6539 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6540 err = ext4_setup_system_zone(sb);
6541 if (err)
6542 goto restore_opts;
6543 }
6544
6545 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6546 err = ext4_commit_super(sb);
6547 if (err)
6548 goto restore_opts;
6549 }
6550
6551 #ifdef CONFIG_QUOTA
6552 /* Release old quota file names */
6553 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6554 kfree(old_opts.s_qf_names[i]);
6555 if (enable_quota) {
6556 if (sb_any_quota_suspended(sb))
6557 dquot_resume(sb, -1);
6558 else if (ext4_has_feature_quota(sb)) {
6559 err = ext4_enable_quotas(sb);
6560 if (err)
6561 goto restore_opts;
6562 }
6563 }
6564 #endif
6565 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6566 ext4_release_system_zone(sb);
6567
6568 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6569 ext4_stop_mmpd(sbi);
6570
6571 return 0;
6572
6573 restore_opts:
6574 sb->s_flags = old_sb_flags;
6575 sbi->s_mount_opt = old_opts.s_mount_opt;
6576 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6577 sbi->s_resuid = old_opts.s_resuid;
6578 sbi->s_resgid = old_opts.s_resgid;
6579 sbi->s_commit_interval = old_opts.s_commit_interval;
6580 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6581 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6582 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6583 ext4_release_system_zone(sb);
6584 #ifdef CONFIG_QUOTA
6585 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6586 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6587 to_free[i] = get_qf_name(sb, sbi, i);
6588 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6589 }
6590 synchronize_rcu();
6591 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6592 kfree(to_free[i]);
6593 #endif
6594 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6595 ext4_stop_mmpd(sbi);
6596 return err;
6597 }
6598
ext4_reconfigure(struct fs_context * fc)6599 static int ext4_reconfigure(struct fs_context *fc)
6600 {
6601 struct super_block *sb = fc->root->d_sb;
6602 int ret;
6603
6604 fc->s_fs_info = EXT4_SB(sb);
6605
6606 ret = ext4_check_opt_consistency(fc, sb);
6607 if (ret < 0)
6608 return ret;
6609
6610 ret = __ext4_remount(fc, sb);
6611 if (ret < 0)
6612 return ret;
6613
6614 ext4_msg(sb, KERN_INFO, "re-mounted. Quota mode: %s.",
6615 ext4_quota_mode(sb));
6616
6617 return 0;
6618 }
6619
6620 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6621 static int ext4_statfs_project(struct super_block *sb,
6622 kprojid_t projid, struct kstatfs *buf)
6623 {
6624 struct kqid qid;
6625 struct dquot *dquot;
6626 u64 limit;
6627 u64 curblock;
6628
6629 qid = make_kqid_projid(projid);
6630 dquot = dqget(sb, qid);
6631 if (IS_ERR(dquot))
6632 return PTR_ERR(dquot);
6633 spin_lock(&dquot->dq_dqb_lock);
6634
6635 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6636 dquot->dq_dqb.dqb_bhardlimit);
6637 limit >>= sb->s_blocksize_bits;
6638
6639 if (limit && buf->f_blocks > limit) {
6640 curblock = (dquot->dq_dqb.dqb_curspace +
6641 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6642 buf->f_blocks = limit;
6643 buf->f_bfree = buf->f_bavail =
6644 (buf->f_blocks > curblock) ?
6645 (buf->f_blocks - curblock) : 0;
6646 }
6647
6648 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6649 dquot->dq_dqb.dqb_ihardlimit);
6650 if (limit && buf->f_files > limit) {
6651 buf->f_files = limit;
6652 buf->f_ffree =
6653 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6654 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6655 }
6656
6657 spin_unlock(&dquot->dq_dqb_lock);
6658 dqput(dquot);
6659 return 0;
6660 }
6661 #endif
6662
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6663 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6664 {
6665 struct super_block *sb = dentry->d_sb;
6666 struct ext4_sb_info *sbi = EXT4_SB(sb);
6667 struct ext4_super_block *es = sbi->s_es;
6668 ext4_fsblk_t overhead = 0, resv_blocks;
6669 s64 bfree;
6670 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6671
6672 if (!test_opt(sb, MINIX_DF))
6673 overhead = sbi->s_overhead;
6674
6675 buf->f_type = EXT4_SUPER_MAGIC;
6676 buf->f_bsize = sb->s_blocksize;
6677 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6678 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6679 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6680 /* prevent underflow in case that few free space is available */
6681 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6682 buf->f_bavail = buf->f_bfree -
6683 (ext4_r_blocks_count(es) + resv_blocks);
6684 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6685 buf->f_bavail = 0;
6686 buf->f_files = le32_to_cpu(es->s_inodes_count);
6687 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6688 buf->f_namelen = EXT4_NAME_LEN;
6689 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6690
6691 #ifdef CONFIG_QUOTA
6692 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6693 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6694 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6695 #endif
6696 return 0;
6697 }
6698
6699
6700 #ifdef CONFIG_QUOTA
6701
6702 /*
6703 * Helper functions so that transaction is started before we acquire dqio_sem
6704 * to keep correct lock ordering of transaction > dqio_sem
6705 */
dquot_to_inode(struct dquot * dquot)6706 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6707 {
6708 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6709 }
6710
ext4_write_dquot(struct dquot * dquot)6711 static int ext4_write_dquot(struct dquot *dquot)
6712 {
6713 int ret, err;
6714 handle_t *handle;
6715 struct inode *inode;
6716
6717 inode = dquot_to_inode(dquot);
6718 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6719 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6720 if (IS_ERR(handle))
6721 return PTR_ERR(handle);
6722 ret = dquot_commit(dquot);
6723 err = ext4_journal_stop(handle);
6724 if (!ret)
6725 ret = err;
6726 return ret;
6727 }
6728
ext4_acquire_dquot(struct dquot * dquot)6729 static int ext4_acquire_dquot(struct dquot *dquot)
6730 {
6731 int ret, err;
6732 handle_t *handle;
6733
6734 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6735 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6736 if (IS_ERR(handle))
6737 return PTR_ERR(handle);
6738 ret = dquot_acquire(dquot);
6739 err = ext4_journal_stop(handle);
6740 if (!ret)
6741 ret = err;
6742 return ret;
6743 }
6744
ext4_release_dquot(struct dquot * dquot)6745 static int ext4_release_dquot(struct dquot *dquot)
6746 {
6747 int ret, err;
6748 handle_t *handle;
6749
6750 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6751 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6752 if (IS_ERR(handle)) {
6753 /* Release dquot anyway to avoid endless cycle in dqput() */
6754 dquot_release(dquot);
6755 return PTR_ERR(handle);
6756 }
6757 ret = dquot_release(dquot);
6758 err = ext4_journal_stop(handle);
6759 if (!ret)
6760 ret = err;
6761 return ret;
6762 }
6763
ext4_mark_dquot_dirty(struct dquot * dquot)6764 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6765 {
6766 struct super_block *sb = dquot->dq_sb;
6767
6768 if (ext4_is_quota_journalled(sb)) {
6769 dquot_mark_dquot_dirty(dquot);
6770 return ext4_write_dquot(dquot);
6771 } else {
6772 return dquot_mark_dquot_dirty(dquot);
6773 }
6774 }
6775
ext4_write_info(struct super_block * sb,int type)6776 static int ext4_write_info(struct super_block *sb, int type)
6777 {
6778 int ret, err;
6779 handle_t *handle;
6780
6781 /* Data block + inode block */
6782 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6783 if (IS_ERR(handle))
6784 return PTR_ERR(handle);
6785 ret = dquot_commit_info(sb, type);
6786 err = ext4_journal_stop(handle);
6787 if (!ret)
6788 ret = err;
6789 return ret;
6790 }
6791
lockdep_set_quota_inode(struct inode * inode,int subclass)6792 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6793 {
6794 struct ext4_inode_info *ei = EXT4_I(inode);
6795
6796 /* The first argument of lockdep_set_subclass has to be
6797 * *exactly* the same as the argument to init_rwsem() --- in
6798 * this case, in init_once() --- or lockdep gets unhappy
6799 * because the name of the lock is set using the
6800 * stringification of the argument to init_rwsem().
6801 */
6802 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6803 lockdep_set_subclass(&ei->i_data_sem, subclass);
6804 }
6805
6806 /*
6807 * Standard function to be called on quota_on
6808 */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)6809 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6810 const struct path *path)
6811 {
6812 int err;
6813
6814 if (!test_opt(sb, QUOTA))
6815 return -EINVAL;
6816
6817 /* Quotafile not on the same filesystem? */
6818 if (path->dentry->d_sb != sb)
6819 return -EXDEV;
6820
6821 /* Quota already enabled for this file? */
6822 if (IS_NOQUOTA(d_inode(path->dentry)))
6823 return -EBUSY;
6824
6825 /* Journaling quota? */
6826 if (EXT4_SB(sb)->s_qf_names[type]) {
6827 /* Quotafile not in fs root? */
6828 if (path->dentry->d_parent != sb->s_root)
6829 ext4_msg(sb, KERN_WARNING,
6830 "Quota file not on filesystem root. "
6831 "Journaled quota will not work");
6832 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6833 } else {
6834 /*
6835 * Clear the flag just in case mount options changed since
6836 * last time.
6837 */
6838 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6839 }
6840
6841 /*
6842 * When we journal data on quota file, we have to flush journal to see
6843 * all updates to the file when we bypass pagecache...
6844 */
6845 if (EXT4_SB(sb)->s_journal &&
6846 ext4_should_journal_data(d_inode(path->dentry))) {
6847 /*
6848 * We don't need to lock updates but journal_flush() could
6849 * otherwise be livelocked...
6850 */
6851 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6852 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
6853 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6854 if (err)
6855 return err;
6856 }
6857
6858 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6859 err = dquot_quota_on(sb, type, format_id, path);
6860 if (!err) {
6861 struct inode *inode = d_inode(path->dentry);
6862 handle_t *handle;
6863
6864 /*
6865 * Set inode flags to prevent userspace from messing with quota
6866 * files. If this fails, we return success anyway since quotas
6867 * are already enabled and this is not a hard failure.
6868 */
6869 inode_lock(inode);
6870 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6871 if (IS_ERR(handle))
6872 goto unlock_inode;
6873 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6874 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6875 S_NOATIME | S_IMMUTABLE);
6876 err = ext4_mark_inode_dirty(handle, inode);
6877 ext4_journal_stop(handle);
6878 unlock_inode:
6879 inode_unlock(inode);
6880 if (err)
6881 dquot_quota_off(sb, type);
6882 }
6883 if (err)
6884 lockdep_set_quota_inode(path->dentry->d_inode,
6885 I_DATA_SEM_NORMAL);
6886 return err;
6887 }
6888
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)6889 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6890 unsigned int flags)
6891 {
6892 int err;
6893 struct inode *qf_inode;
6894 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6895 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6896 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6897 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6898 };
6899
6900 BUG_ON(!ext4_has_feature_quota(sb));
6901
6902 if (!qf_inums[type])
6903 return -EPERM;
6904
6905 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6906 if (IS_ERR(qf_inode)) {
6907 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
6908 return PTR_ERR(qf_inode);
6909 }
6910
6911 /* Don't account quota for quota files to avoid recursion */
6912 qf_inode->i_flags |= S_NOQUOTA;
6913 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6914 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6915 if (err)
6916 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6917 iput(qf_inode);
6918
6919 return err;
6920 }
6921
6922 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)6923 int ext4_enable_quotas(struct super_block *sb)
6924 {
6925 int type, err = 0;
6926 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6927 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6928 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6929 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6930 };
6931 bool quota_mopt[EXT4_MAXQUOTAS] = {
6932 test_opt(sb, USRQUOTA),
6933 test_opt(sb, GRPQUOTA),
6934 test_opt(sb, PRJQUOTA),
6935 };
6936
6937 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6938 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6939 if (qf_inums[type]) {
6940 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6941 DQUOT_USAGE_ENABLED |
6942 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6943 if (err) {
6944 ext4_warning(sb,
6945 "Failed to enable quota tracking "
6946 "(type=%d, err=%d). Please run "
6947 "e2fsck to fix.", type, err);
6948 for (type--; type >= 0; type--) {
6949 struct inode *inode;
6950
6951 inode = sb_dqopt(sb)->files[type];
6952 if (inode)
6953 inode = igrab(inode);
6954 dquot_quota_off(sb, type);
6955 if (inode) {
6956 lockdep_set_quota_inode(inode,
6957 I_DATA_SEM_NORMAL);
6958 iput(inode);
6959 }
6960 }
6961
6962 return err;
6963 }
6964 }
6965 }
6966 return 0;
6967 }
6968
ext4_quota_off(struct super_block * sb,int type)6969 static int ext4_quota_off(struct super_block *sb, int type)
6970 {
6971 struct inode *inode = sb_dqopt(sb)->files[type];
6972 handle_t *handle;
6973 int err;
6974
6975 /* Force all delayed allocation blocks to be allocated.
6976 * Caller already holds s_umount sem */
6977 if (test_opt(sb, DELALLOC))
6978 sync_filesystem(sb);
6979
6980 if (!inode || !igrab(inode))
6981 goto out;
6982
6983 err = dquot_quota_off(sb, type);
6984 if (err || ext4_has_feature_quota(sb))
6985 goto out_put;
6986
6987 inode_lock(inode);
6988 /*
6989 * Update modification times of quota files when userspace can
6990 * start looking at them. If we fail, we return success anyway since
6991 * this is not a hard failure and quotas are already disabled.
6992 */
6993 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6994 if (IS_ERR(handle)) {
6995 err = PTR_ERR(handle);
6996 goto out_unlock;
6997 }
6998 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6999 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7000 inode->i_mtime = inode->i_ctime = current_time(inode);
7001 err = ext4_mark_inode_dirty(handle, inode);
7002 ext4_journal_stop(handle);
7003 out_unlock:
7004 inode_unlock(inode);
7005 out_put:
7006 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7007 iput(inode);
7008 return err;
7009 out:
7010 return dquot_quota_off(sb, type);
7011 }
7012
7013 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7014 * acquiring the locks... As quota files are never truncated and quota code
7015 * itself serializes the operations (and no one else should touch the files)
7016 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)7017 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7018 size_t len, loff_t off)
7019 {
7020 struct inode *inode = sb_dqopt(sb)->files[type];
7021 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7022 int offset = off & (sb->s_blocksize - 1);
7023 int tocopy;
7024 size_t toread;
7025 struct buffer_head *bh;
7026 loff_t i_size = i_size_read(inode);
7027
7028 if (off > i_size)
7029 return 0;
7030 if (off+len > i_size)
7031 len = i_size-off;
7032 toread = len;
7033 while (toread > 0) {
7034 tocopy = sb->s_blocksize - offset < toread ?
7035 sb->s_blocksize - offset : toread;
7036 bh = ext4_bread(NULL, inode, blk, 0);
7037 if (IS_ERR(bh))
7038 return PTR_ERR(bh);
7039 if (!bh) /* A hole? */
7040 memset(data, 0, tocopy);
7041 else
7042 memcpy(data, bh->b_data+offset, tocopy);
7043 brelse(bh);
7044 offset = 0;
7045 toread -= tocopy;
7046 data += tocopy;
7047 blk++;
7048 }
7049 return len;
7050 }
7051
7052 /* Write to quotafile (we know the transaction is already started and has
7053 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)7054 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7055 const char *data, size_t len, loff_t off)
7056 {
7057 struct inode *inode = sb_dqopt(sb)->files[type];
7058 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7059 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7060 int retries = 0;
7061 struct buffer_head *bh;
7062 handle_t *handle = journal_current_handle();
7063
7064 if (!handle) {
7065 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7066 " cancelled because transaction is not started",
7067 (unsigned long long)off, (unsigned long long)len);
7068 return -EIO;
7069 }
7070 /*
7071 * Since we account only one data block in transaction credits,
7072 * then it is impossible to cross a block boundary.
7073 */
7074 if (sb->s_blocksize - offset < len) {
7075 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7076 " cancelled because not block aligned",
7077 (unsigned long long)off, (unsigned long long)len);
7078 return -EIO;
7079 }
7080
7081 do {
7082 bh = ext4_bread(handle, inode, blk,
7083 EXT4_GET_BLOCKS_CREATE |
7084 EXT4_GET_BLOCKS_METADATA_NOFAIL);
7085 } while (PTR_ERR(bh) == -ENOSPC &&
7086 ext4_should_retry_alloc(inode->i_sb, &retries));
7087 if (IS_ERR(bh))
7088 return PTR_ERR(bh);
7089 if (!bh)
7090 goto out;
7091 BUFFER_TRACE(bh, "get write access");
7092 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7093 if (err) {
7094 brelse(bh);
7095 return err;
7096 }
7097 lock_buffer(bh);
7098 memcpy(bh->b_data+offset, data, len);
7099 flush_dcache_page(bh->b_page);
7100 unlock_buffer(bh);
7101 err = ext4_handle_dirty_metadata(handle, NULL, bh);
7102 brelse(bh);
7103 out:
7104 if (inode->i_size < off + len) {
7105 i_size_write(inode, off + len);
7106 EXT4_I(inode)->i_disksize = inode->i_size;
7107 err2 = ext4_mark_inode_dirty(handle, inode);
7108 if (unlikely(err2 && !err))
7109 err = err2;
7110 }
7111 return err ? err : len;
7112 }
7113 #endif
7114
7115 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)7116 static inline void register_as_ext2(void)
7117 {
7118 int err = register_filesystem(&ext2_fs_type);
7119 if (err)
7120 printk(KERN_WARNING
7121 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7122 }
7123
unregister_as_ext2(void)7124 static inline void unregister_as_ext2(void)
7125 {
7126 unregister_filesystem(&ext2_fs_type);
7127 }
7128
ext2_feature_set_ok(struct super_block * sb)7129 static inline int ext2_feature_set_ok(struct super_block *sb)
7130 {
7131 if (ext4_has_unknown_ext2_incompat_features(sb))
7132 return 0;
7133 if (sb_rdonly(sb))
7134 return 1;
7135 if (ext4_has_unknown_ext2_ro_compat_features(sb))
7136 return 0;
7137 return 1;
7138 }
7139 #else
register_as_ext2(void)7140 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)7141 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)7142 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7143 #endif
7144
register_as_ext3(void)7145 static inline void register_as_ext3(void)
7146 {
7147 int err = register_filesystem(&ext3_fs_type);
7148 if (err)
7149 printk(KERN_WARNING
7150 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7151 }
7152
unregister_as_ext3(void)7153 static inline void unregister_as_ext3(void)
7154 {
7155 unregister_filesystem(&ext3_fs_type);
7156 }
7157
ext3_feature_set_ok(struct super_block * sb)7158 static inline int ext3_feature_set_ok(struct super_block *sb)
7159 {
7160 if (ext4_has_unknown_ext3_incompat_features(sb))
7161 return 0;
7162 if (!ext4_has_feature_journal(sb))
7163 return 0;
7164 if (sb_rdonly(sb))
7165 return 1;
7166 if (ext4_has_unknown_ext3_ro_compat_features(sb))
7167 return 0;
7168 return 1;
7169 }
7170
7171 static struct file_system_type ext4_fs_type = {
7172 .owner = THIS_MODULE,
7173 .name = "ext4",
7174 .init_fs_context = ext4_init_fs_context,
7175 .parameters = ext4_param_specs,
7176 .kill_sb = kill_block_super,
7177 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7178 };
7179 MODULE_ALIAS_FS("ext4");
7180
7181 /* Shared across all ext4 file systems */
7182 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7183
ext4_init_fs(void)7184 static int __init ext4_init_fs(void)
7185 {
7186 int i, err;
7187
7188 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7189 ext4_li_info = NULL;
7190
7191 /* Build-time check for flags consistency */
7192 ext4_check_flag_values();
7193
7194 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7195 init_waitqueue_head(&ext4__ioend_wq[i]);
7196
7197 err = ext4_init_es();
7198 if (err)
7199 return err;
7200
7201 err = ext4_init_pending();
7202 if (err)
7203 goto out7;
7204
7205 err = ext4_init_post_read_processing();
7206 if (err)
7207 goto out6;
7208
7209 err = ext4_init_pageio();
7210 if (err)
7211 goto out5;
7212
7213 err = ext4_init_system_zone();
7214 if (err)
7215 goto out4;
7216
7217 err = ext4_init_sysfs();
7218 if (err)
7219 goto out3;
7220
7221 err = ext4_init_mballoc();
7222 if (err)
7223 goto out2;
7224 err = init_inodecache();
7225 if (err)
7226 goto out1;
7227
7228 err = ext4_fc_init_dentry_cache();
7229 if (err)
7230 goto out05;
7231
7232 register_as_ext3();
7233 register_as_ext2();
7234 err = register_filesystem(&ext4_fs_type);
7235 if (err)
7236 goto out;
7237
7238 return 0;
7239 out:
7240 unregister_as_ext2();
7241 unregister_as_ext3();
7242 ext4_fc_destroy_dentry_cache();
7243 out05:
7244 destroy_inodecache();
7245 out1:
7246 ext4_exit_mballoc();
7247 out2:
7248 ext4_exit_sysfs();
7249 out3:
7250 ext4_exit_system_zone();
7251 out4:
7252 ext4_exit_pageio();
7253 out5:
7254 ext4_exit_post_read_processing();
7255 out6:
7256 ext4_exit_pending();
7257 out7:
7258 ext4_exit_es();
7259
7260 return err;
7261 }
7262
ext4_exit_fs(void)7263 static void __exit ext4_exit_fs(void)
7264 {
7265 ext4_destroy_lazyinit_thread();
7266 unregister_as_ext2();
7267 unregister_as_ext3();
7268 unregister_filesystem(&ext4_fs_type);
7269 ext4_fc_destroy_dentry_cache();
7270 destroy_inodecache();
7271 ext4_exit_mballoc();
7272 ext4_exit_sysfs();
7273 ext4_exit_system_zone();
7274 ext4_exit_pageio();
7275 ext4_exit_post_read_processing();
7276 ext4_exit_es();
7277 ext4_exit_pending();
7278 }
7279
7280 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7281 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7282 MODULE_LICENSE("GPL");
7283 MODULE_SOFTDEP("pre: crc32c");
7284 module_init(ext4_init_fs)
7285 module_exit(ext4_exit_fs)
7286