1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/uaccess.h>
43 #include <linux/iversion.h>
44 #include <linux/unicode.h>
45 #include <linux/part_stat.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
48 #include <linux/fsnotify.h>
49 #include <linux/fs_context.h>
50 #include <linux/fs_parser.h>
51
52 #include "ext4.h"
53 #include "ext4_extents.h" /* Needed for trace points definition */
54 #include "ext4_jbd2.h"
55 #include "xattr.h"
56 #include "acl.h"
57 #include "mballoc.h"
58 #include "fsmap.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/ext4.h>
62
63 static struct ext4_lazy_init *ext4_li_info;
64 static DEFINE_MUTEX(ext4_li_mtx);
65 static struct ratelimit_state ext4_mount_msg_ratelimit;
66
67 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 unsigned long journal_devnum);
69 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70 static void ext4_update_super(struct super_block *sb);
71 static int ext4_commit_super(struct super_block *sb);
72 static int ext4_mark_recovery_complete(struct super_block *sb,
73 struct ext4_super_block *es);
74 static int ext4_clear_journal_err(struct super_block *sb,
75 struct ext4_super_block *es);
76 static int ext4_sync_fs(struct super_block *sb, int wait);
77 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78 static int ext4_unfreeze(struct super_block *sb);
79 static int ext4_freeze(struct super_block *sb);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87 static int ext4_validate_options(struct fs_context *fc);
88 static int ext4_check_opt_consistency(struct fs_context *fc,
89 struct super_block *sb);
90 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92 static int ext4_get_tree(struct fs_context *fc);
93 static int ext4_reconfigure(struct fs_context *fc);
94 static void ext4_fc_free(struct fs_context *fc);
95 static int ext4_init_fs_context(struct fs_context *fc);
96 static void ext4_kill_sb(struct super_block *sb);
97 static const struct fs_parameter_spec ext4_param_specs[];
98
99 /*
100 * Lock ordering
101 *
102 * page fault path:
103 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
104 * -> page lock -> i_data_sem (rw)
105 *
106 * buffered write path:
107 * sb_start_write -> i_mutex -> mmap_lock
108 * sb_start_write -> i_mutex -> transaction start -> page lock ->
109 * i_data_sem (rw)
110 *
111 * truncate:
112 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
113 * page lock
114 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
115 * i_data_sem (rw)
116 *
117 * direct IO:
118 * sb_start_write -> i_mutex -> mmap_lock
119 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
120 *
121 * writepages:
122 * transaction start -> page lock(s) -> i_data_sem (rw)
123 */
124
125 static const struct fs_context_operations ext4_context_ops = {
126 .parse_param = ext4_parse_param,
127 .get_tree = ext4_get_tree,
128 .reconfigure = ext4_reconfigure,
129 .free = ext4_fc_free,
130 };
131
132
133 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
134 static struct file_system_type ext2_fs_type = {
135 .owner = THIS_MODULE,
136 .name = "ext2",
137 .init_fs_context = ext4_init_fs_context,
138 .parameters = ext4_param_specs,
139 .kill_sb = ext4_kill_sb,
140 .fs_flags = FS_REQUIRES_DEV,
141 };
142 MODULE_ALIAS_FS("ext2");
143 MODULE_ALIAS("ext2");
144 #define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
145 #else
146 #define IS_EXT2_SB(sb) (0)
147 #endif
148
149
150 static struct file_system_type ext3_fs_type = {
151 .owner = THIS_MODULE,
152 .name = "ext3",
153 .init_fs_context = ext4_init_fs_context,
154 .parameters = ext4_param_specs,
155 .kill_sb = ext4_kill_sb,
156 .fs_flags = FS_REQUIRES_DEV,
157 };
158 MODULE_ALIAS_FS("ext3");
159 MODULE_ALIAS("ext3");
160 #define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
161
162
__ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io)163 static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
164 bh_end_io_t *end_io)
165 {
166 /*
167 * buffer's verified bit is no longer valid after reading from
168 * disk again due to write out error, clear it to make sure we
169 * recheck the buffer contents.
170 */
171 clear_buffer_verified(bh);
172
173 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
174 get_bh(bh);
175 submit_bh(REQ_OP_READ | op_flags, bh);
176 }
177
ext4_read_bh_nowait(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io)178 void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
179 bh_end_io_t *end_io)
180 {
181 BUG_ON(!buffer_locked(bh));
182
183 if (ext4_buffer_uptodate(bh)) {
184 unlock_buffer(bh);
185 return;
186 }
187 __ext4_read_bh(bh, op_flags, end_io);
188 }
189
ext4_read_bh(struct buffer_head * bh,blk_opf_t op_flags,bh_end_io_t * end_io)190 int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
191 {
192 BUG_ON(!buffer_locked(bh));
193
194 if (ext4_buffer_uptodate(bh)) {
195 unlock_buffer(bh);
196 return 0;
197 }
198
199 __ext4_read_bh(bh, op_flags, end_io);
200
201 wait_on_buffer(bh);
202 if (buffer_uptodate(bh))
203 return 0;
204 return -EIO;
205 }
206
ext4_read_bh_lock(struct buffer_head * bh,blk_opf_t op_flags,bool wait)207 int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
208 {
209 lock_buffer(bh);
210 if (!wait) {
211 ext4_read_bh_nowait(bh, op_flags, NULL);
212 return 0;
213 }
214 return ext4_read_bh(bh, op_flags, NULL);
215 }
216
217 /*
218 * This works like __bread_gfp() except it uses ERR_PTR for error
219 * returns. Currently with sb_bread it's impossible to distinguish
220 * between ENOMEM and EIO situations (since both result in a NULL
221 * return.
222 */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,blk_opf_t op_flags,gfp_t gfp)223 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
224 sector_t block,
225 blk_opf_t op_flags, gfp_t gfp)
226 {
227 struct buffer_head *bh;
228 int ret;
229
230 bh = sb_getblk_gfp(sb, block, gfp);
231 if (bh == NULL)
232 return ERR_PTR(-ENOMEM);
233 if (ext4_buffer_uptodate(bh))
234 return bh;
235
236 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
237 if (ret) {
238 put_bh(bh);
239 return ERR_PTR(ret);
240 }
241 return bh;
242 }
243
ext4_sb_bread(struct super_block * sb,sector_t block,blk_opf_t op_flags)244 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
245 blk_opf_t op_flags)
246 {
247 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
248 }
249
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)250 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
251 sector_t block)
252 {
253 return __ext4_sb_bread_gfp(sb, block, 0, 0);
254 }
255
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)256 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
257 {
258 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
259
260 if (likely(bh)) {
261 if (trylock_buffer(bh))
262 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
263 brelse(bh);
264 }
265 }
266
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)267 static int ext4_verify_csum_type(struct super_block *sb,
268 struct ext4_super_block *es)
269 {
270 if (!ext4_has_feature_metadata_csum(sb))
271 return 1;
272
273 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
274 }
275
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)276 __le32 ext4_superblock_csum(struct super_block *sb,
277 struct ext4_super_block *es)
278 {
279 struct ext4_sb_info *sbi = EXT4_SB(sb);
280 int offset = offsetof(struct ext4_super_block, s_checksum);
281 __u32 csum;
282
283 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
284
285 return cpu_to_le32(csum);
286 }
287
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)288 static int ext4_superblock_csum_verify(struct super_block *sb,
289 struct ext4_super_block *es)
290 {
291 if (!ext4_has_metadata_csum(sb))
292 return 1;
293
294 return es->s_checksum == ext4_superblock_csum(sb, es);
295 }
296
ext4_superblock_csum_set(struct super_block * sb)297 void ext4_superblock_csum_set(struct super_block *sb)
298 {
299 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
300
301 if (!ext4_has_metadata_csum(sb))
302 return;
303
304 es->s_checksum = ext4_superblock_csum(sb, es);
305 }
306
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)307 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
308 struct ext4_group_desc *bg)
309 {
310 return le32_to_cpu(bg->bg_block_bitmap_lo) |
311 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
312 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
313 }
314
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)315 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
316 struct ext4_group_desc *bg)
317 {
318 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
319 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
320 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
321 }
322
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)323 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
324 struct ext4_group_desc *bg)
325 {
326 return le32_to_cpu(bg->bg_inode_table_lo) |
327 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
328 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
329 }
330
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)331 __u32 ext4_free_group_clusters(struct super_block *sb,
332 struct ext4_group_desc *bg)
333 {
334 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
335 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
336 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
337 }
338
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)339 __u32 ext4_free_inodes_count(struct super_block *sb,
340 struct ext4_group_desc *bg)
341 {
342 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
343 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
344 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
345 }
346
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)347 __u32 ext4_used_dirs_count(struct super_block *sb,
348 struct ext4_group_desc *bg)
349 {
350 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
351 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
352 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
353 }
354
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)355 __u32 ext4_itable_unused_count(struct super_block *sb,
356 struct ext4_group_desc *bg)
357 {
358 return le16_to_cpu(bg->bg_itable_unused_lo) |
359 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
360 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
361 }
362
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)363 void ext4_block_bitmap_set(struct super_block *sb,
364 struct ext4_group_desc *bg, ext4_fsblk_t blk)
365 {
366 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
367 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
368 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
369 }
370
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)371 void ext4_inode_bitmap_set(struct super_block *sb,
372 struct ext4_group_desc *bg, ext4_fsblk_t blk)
373 {
374 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
375 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
376 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
377 }
378
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)379 void ext4_inode_table_set(struct super_block *sb,
380 struct ext4_group_desc *bg, ext4_fsblk_t blk)
381 {
382 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
383 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
384 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
385 }
386
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)387 void ext4_free_group_clusters_set(struct super_block *sb,
388 struct ext4_group_desc *bg, __u32 count)
389 {
390 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
391 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
392 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
393 }
394
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)395 void ext4_free_inodes_set(struct super_block *sb,
396 struct ext4_group_desc *bg, __u32 count)
397 {
398 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
399 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
400 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
401 }
402
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)403 void ext4_used_dirs_set(struct super_block *sb,
404 struct ext4_group_desc *bg, __u32 count)
405 {
406 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
407 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
408 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
409 }
410
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)411 void ext4_itable_unused_set(struct super_block *sb,
412 struct ext4_group_desc *bg, __u32 count)
413 {
414 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
415 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
416 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
417 }
418
__ext4_update_tstamp(__le32 * lo,__u8 * hi,time64_t now)419 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
420 {
421 now = clamp_val(now, 0, (1ull << 40) - 1);
422
423 *lo = cpu_to_le32(lower_32_bits(now));
424 *hi = upper_32_bits(now);
425 }
426
__ext4_get_tstamp(__le32 * lo,__u8 * hi)427 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
428 {
429 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
430 }
431 #define ext4_update_tstamp(es, tstamp) \
432 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
433 ktime_get_real_seconds())
434 #define ext4_get_tstamp(es, tstamp) \
435 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
436
437 #define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
438 #define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
439
440 /*
441 * The ext4_maybe_update_superblock() function checks and updates the
442 * superblock if needed.
443 *
444 * This function is designed to update the on-disk superblock only under
445 * certain conditions to prevent excessive disk writes and unnecessary
446 * waking of the disk from sleep. The superblock will be updated if:
447 * 1. More than an hour has passed since the last superblock update, and
448 * 2. More than 16MB have been written since the last superblock update.
449 *
450 * @sb: The superblock
451 */
ext4_maybe_update_superblock(struct super_block * sb)452 static void ext4_maybe_update_superblock(struct super_block *sb)
453 {
454 struct ext4_sb_info *sbi = EXT4_SB(sb);
455 struct ext4_super_block *es = sbi->s_es;
456 journal_t *journal = sbi->s_journal;
457 time64_t now;
458 __u64 last_update;
459 __u64 lifetime_write_kbytes;
460 __u64 diff_size;
461
462 if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
463 !journal || (journal->j_flags & JBD2_UNMOUNT))
464 return;
465
466 now = ktime_get_real_seconds();
467 last_update = ext4_get_tstamp(es, s_wtime);
468
469 if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
470 return;
471
472 lifetime_write_kbytes = sbi->s_kbytes_written +
473 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
474 sbi->s_sectors_written_start) >> 1);
475
476 /* Get the number of kilobytes not written to disk to account
477 * for statistics and compare with a multiple of 16 MB. This
478 * is used to determine when the next superblock commit should
479 * occur (i.e. not more often than once per 16MB if there was
480 * less written in an hour).
481 */
482 diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
483
484 if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
485 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
486 }
487
488 /*
489 * The del_gendisk() function uninitializes the disk-specific data
490 * structures, including the bdi structure, without telling anyone
491 * else. Once this happens, any attempt to call mark_buffer_dirty()
492 * (for example, by ext4_commit_super), will cause a kernel OOPS.
493 * This is a kludge to prevent these oops until we can put in a proper
494 * hook in del_gendisk() to inform the VFS and file system layers.
495 */
block_device_ejected(struct super_block * sb)496 static int block_device_ejected(struct super_block *sb)
497 {
498 struct inode *bd_inode = sb->s_bdev->bd_inode;
499 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
500
501 return bdi->dev == NULL;
502 }
503
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)504 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
505 {
506 struct super_block *sb = journal->j_private;
507 struct ext4_sb_info *sbi = EXT4_SB(sb);
508 int error = is_journal_aborted(journal);
509 struct ext4_journal_cb_entry *jce;
510
511 BUG_ON(txn->t_state == T_FINISHED);
512
513 ext4_process_freed_data(sb, txn->t_tid);
514 ext4_maybe_update_superblock(sb);
515
516 spin_lock(&sbi->s_md_lock);
517 while (!list_empty(&txn->t_private_list)) {
518 jce = list_entry(txn->t_private_list.next,
519 struct ext4_journal_cb_entry, jce_list);
520 list_del_init(&jce->jce_list);
521 spin_unlock(&sbi->s_md_lock);
522 jce->jce_func(sb, jce, error);
523 spin_lock(&sbi->s_md_lock);
524 }
525 spin_unlock(&sbi->s_md_lock);
526 }
527
528 /*
529 * This writepage callback for write_cache_pages()
530 * takes care of a few cases after page cleaning.
531 *
532 * write_cache_pages() already checks for dirty pages
533 * and calls clear_page_dirty_for_io(), which we want,
534 * to write protect the pages.
535 *
536 * However, we may have to redirty a page (see below.)
537 */
ext4_journalled_writepage_callback(struct folio * folio,struct writeback_control * wbc,void * data)538 static int ext4_journalled_writepage_callback(struct folio *folio,
539 struct writeback_control *wbc,
540 void *data)
541 {
542 transaction_t *transaction = (transaction_t *) data;
543 struct buffer_head *bh, *head;
544 struct journal_head *jh;
545
546 bh = head = folio_buffers(folio);
547 do {
548 /*
549 * We have to redirty a page in these cases:
550 * 1) If buffer is dirty, it means the page was dirty because it
551 * contains a buffer that needs checkpointing. So the dirty bit
552 * needs to be preserved so that checkpointing writes the buffer
553 * properly.
554 * 2) If buffer is not part of the committing transaction
555 * (we may have just accidentally come across this buffer because
556 * inode range tracking is not exact) or if the currently running
557 * transaction already contains this buffer as well, dirty bit
558 * needs to be preserved so that the buffer gets writeprotected
559 * properly on running transaction's commit.
560 */
561 jh = bh2jh(bh);
562 if (buffer_dirty(bh) ||
563 (jh && (jh->b_transaction != transaction ||
564 jh->b_next_transaction))) {
565 folio_redirty_for_writepage(wbc, folio);
566 goto out;
567 }
568 } while ((bh = bh->b_this_page) != head);
569
570 out:
571 return AOP_WRITEPAGE_ACTIVATE;
572 }
573
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)574 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
575 {
576 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
577 struct writeback_control wbc = {
578 .sync_mode = WB_SYNC_ALL,
579 .nr_to_write = LONG_MAX,
580 .range_start = jinode->i_dirty_start,
581 .range_end = jinode->i_dirty_end,
582 };
583
584 return write_cache_pages(mapping, &wbc,
585 ext4_journalled_writepage_callback,
586 jinode->i_transaction);
587 }
588
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)589 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
590 {
591 int ret;
592
593 if (ext4_should_journal_data(jinode->i_vfs_inode))
594 ret = ext4_journalled_submit_inode_data_buffers(jinode);
595 else
596 ret = ext4_normal_submit_inode_data_buffers(jinode);
597 return ret;
598 }
599
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)600 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
601 {
602 int ret = 0;
603
604 if (!ext4_should_journal_data(jinode->i_vfs_inode))
605 ret = jbd2_journal_finish_inode_data_buffers(jinode);
606
607 return ret;
608 }
609
system_going_down(void)610 static bool system_going_down(void)
611 {
612 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
613 || system_state == SYSTEM_RESTART;
614 }
615
616 struct ext4_err_translation {
617 int code;
618 int errno;
619 };
620
621 #define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
622
623 static struct ext4_err_translation err_translation[] = {
624 EXT4_ERR_TRANSLATE(EIO),
625 EXT4_ERR_TRANSLATE(ENOMEM),
626 EXT4_ERR_TRANSLATE(EFSBADCRC),
627 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
628 EXT4_ERR_TRANSLATE(ENOSPC),
629 EXT4_ERR_TRANSLATE(ENOKEY),
630 EXT4_ERR_TRANSLATE(EROFS),
631 EXT4_ERR_TRANSLATE(EFBIG),
632 EXT4_ERR_TRANSLATE(EEXIST),
633 EXT4_ERR_TRANSLATE(ERANGE),
634 EXT4_ERR_TRANSLATE(EOVERFLOW),
635 EXT4_ERR_TRANSLATE(EBUSY),
636 EXT4_ERR_TRANSLATE(ENOTDIR),
637 EXT4_ERR_TRANSLATE(ENOTEMPTY),
638 EXT4_ERR_TRANSLATE(ESHUTDOWN),
639 EXT4_ERR_TRANSLATE(EFAULT),
640 };
641
ext4_errno_to_code(int errno)642 static int ext4_errno_to_code(int errno)
643 {
644 int i;
645
646 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
647 if (err_translation[i].errno == errno)
648 return err_translation[i].code;
649 return EXT4_ERR_UNKNOWN;
650 }
651
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)652 static void save_error_info(struct super_block *sb, int error,
653 __u32 ino, __u64 block,
654 const char *func, unsigned int line)
655 {
656 struct ext4_sb_info *sbi = EXT4_SB(sb);
657
658 /* We default to EFSCORRUPTED error... */
659 if (error == 0)
660 error = EFSCORRUPTED;
661
662 spin_lock(&sbi->s_error_lock);
663 sbi->s_add_error_count++;
664 sbi->s_last_error_code = error;
665 sbi->s_last_error_line = line;
666 sbi->s_last_error_ino = ino;
667 sbi->s_last_error_block = block;
668 sbi->s_last_error_func = func;
669 sbi->s_last_error_time = ktime_get_real_seconds();
670 if (!sbi->s_first_error_time) {
671 sbi->s_first_error_code = error;
672 sbi->s_first_error_line = line;
673 sbi->s_first_error_ino = ino;
674 sbi->s_first_error_block = block;
675 sbi->s_first_error_func = func;
676 sbi->s_first_error_time = sbi->s_last_error_time;
677 }
678 spin_unlock(&sbi->s_error_lock);
679 }
680
681 /* Deal with the reporting of failure conditions on a filesystem such as
682 * inconsistencies detected or read IO failures.
683 *
684 * On ext2, we can store the error state of the filesystem in the
685 * superblock. That is not possible on ext4, because we may have other
686 * write ordering constraints on the superblock which prevent us from
687 * writing it out straight away; and given that the journal is about to
688 * be aborted, we can't rely on the current, or future, transactions to
689 * write out the superblock safely.
690 *
691 * We'll just use the jbd2_journal_abort() error code to record an error in
692 * the journal instead. On recovery, the journal will complain about
693 * that error until we've noted it down and cleared it.
694 *
695 * If force_ro is set, we unconditionally force the filesystem into an
696 * ABORT|READONLY state, unless the error response on the fs has been set to
697 * panic in which case we take the easy way out and panic immediately. This is
698 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
699 * at a critical moment in log management.
700 */
ext4_handle_error(struct super_block * sb,bool force_ro,int error,__u32 ino,__u64 block,const char * func,unsigned int line)701 static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
702 __u32 ino, __u64 block,
703 const char *func, unsigned int line)
704 {
705 journal_t *journal = EXT4_SB(sb)->s_journal;
706 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
707
708 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
709 if (test_opt(sb, WARN_ON_ERROR))
710 WARN_ON_ONCE(1);
711
712 if (!continue_fs && !sb_rdonly(sb)) {
713 set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
714 if (journal)
715 jbd2_journal_abort(journal, -EIO);
716 }
717
718 if (!bdev_read_only(sb->s_bdev)) {
719 save_error_info(sb, error, ino, block, func, line);
720 /*
721 * In case the fs should keep running, we need to writeout
722 * superblock through the journal. Due to lock ordering
723 * constraints, it may not be safe to do it right here so we
724 * defer superblock flushing to a workqueue.
725 */
726 if (continue_fs && journal)
727 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
728 else
729 ext4_commit_super(sb);
730 }
731
732 /*
733 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
734 * could panic during 'reboot -f' as the underlying device got already
735 * disabled.
736 */
737 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
738 panic("EXT4-fs (device %s): panic forced after error\n",
739 sb->s_id);
740 }
741
742 if (sb_rdonly(sb) || continue_fs)
743 return;
744
745 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
746 /*
747 * Make sure updated value of ->s_mount_flags will be visible before
748 * ->s_flags update
749 */
750 smp_wmb();
751 sb->s_flags |= SB_RDONLY;
752 }
753
update_super_work(struct work_struct * work)754 static void update_super_work(struct work_struct *work)
755 {
756 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
757 s_sb_upd_work);
758 journal_t *journal = sbi->s_journal;
759 handle_t *handle;
760
761 /*
762 * If the journal is still running, we have to write out superblock
763 * through the journal to avoid collisions of other journalled sb
764 * updates.
765 *
766 * We use directly jbd2 functions here to avoid recursing back into
767 * ext4 error handling code during handling of previous errors.
768 */
769 if (!sb_rdonly(sbi->s_sb) && journal) {
770 struct buffer_head *sbh = sbi->s_sbh;
771 bool call_notify_err;
772 handle = jbd2_journal_start(journal, 1);
773 if (IS_ERR(handle))
774 goto write_directly;
775 if (jbd2_journal_get_write_access(handle, sbh)) {
776 jbd2_journal_stop(handle);
777 goto write_directly;
778 }
779
780 if (sbi->s_add_error_count > 0)
781 call_notify_err = true;
782
783 ext4_update_super(sbi->s_sb);
784 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
785 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
786 "superblock detected");
787 clear_buffer_write_io_error(sbh);
788 set_buffer_uptodate(sbh);
789 }
790
791 if (jbd2_journal_dirty_metadata(handle, sbh)) {
792 jbd2_journal_stop(handle);
793 goto write_directly;
794 }
795 jbd2_journal_stop(handle);
796
797 if (call_notify_err)
798 ext4_notify_error_sysfs(sbi);
799
800 return;
801 }
802 write_directly:
803 /*
804 * Write through journal failed. Write sb directly to get error info
805 * out and hope for the best.
806 */
807 ext4_commit_super(sbi->s_sb);
808 ext4_notify_error_sysfs(sbi);
809 }
810
811 #define ext4_error_ratelimit(sb) \
812 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
813 "EXT4-fs error")
814
__ext4_error(struct super_block * sb,const char * function,unsigned int line,bool force_ro,int error,__u64 block,const char * fmt,...)815 void __ext4_error(struct super_block *sb, const char *function,
816 unsigned int line, bool force_ro, int error, __u64 block,
817 const char *fmt, ...)
818 {
819 struct va_format vaf;
820 va_list args;
821
822 if (unlikely(ext4_forced_shutdown(sb)))
823 return;
824
825 trace_ext4_error(sb, function, line);
826 if (ext4_error_ratelimit(sb)) {
827 va_start(args, fmt);
828 vaf.fmt = fmt;
829 vaf.va = &args;
830 printk(KERN_CRIT
831 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
832 sb->s_id, function, line, current->comm, &vaf);
833 va_end(args);
834 }
835 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
836
837 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
838 }
839
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)840 void __ext4_error_inode(struct inode *inode, const char *function,
841 unsigned int line, ext4_fsblk_t block, int error,
842 const char *fmt, ...)
843 {
844 va_list args;
845 struct va_format vaf;
846
847 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
848 return;
849
850 trace_ext4_error(inode->i_sb, function, line);
851 if (ext4_error_ratelimit(inode->i_sb)) {
852 va_start(args, fmt);
853 vaf.fmt = fmt;
854 vaf.va = &args;
855 if (block)
856 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
857 "inode #%lu: block %llu: comm %s: %pV\n",
858 inode->i_sb->s_id, function, line, inode->i_ino,
859 block, current->comm, &vaf);
860 else
861 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
862 "inode #%lu: comm %s: %pV\n",
863 inode->i_sb->s_id, function, line, inode->i_ino,
864 current->comm, &vaf);
865 va_end(args);
866 }
867 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
868
869 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
870 function, line);
871 }
872
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)873 void __ext4_error_file(struct file *file, const char *function,
874 unsigned int line, ext4_fsblk_t block,
875 const char *fmt, ...)
876 {
877 va_list args;
878 struct va_format vaf;
879 struct inode *inode = file_inode(file);
880 char pathname[80], *path;
881
882 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
883 return;
884
885 trace_ext4_error(inode->i_sb, function, line);
886 if (ext4_error_ratelimit(inode->i_sb)) {
887 path = file_path(file, pathname, sizeof(pathname));
888 if (IS_ERR(path))
889 path = "(unknown)";
890 va_start(args, fmt);
891 vaf.fmt = fmt;
892 vaf.va = &args;
893 if (block)
894 printk(KERN_CRIT
895 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
896 "block %llu: comm %s: path %s: %pV\n",
897 inode->i_sb->s_id, function, line, inode->i_ino,
898 block, current->comm, path, &vaf);
899 else
900 printk(KERN_CRIT
901 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
902 "comm %s: path %s: %pV\n",
903 inode->i_sb->s_id, function, line, inode->i_ino,
904 current->comm, path, &vaf);
905 va_end(args);
906 }
907 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
908
909 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
910 function, line);
911 }
912
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])913 const char *ext4_decode_error(struct super_block *sb, int errno,
914 char nbuf[16])
915 {
916 char *errstr = NULL;
917
918 switch (errno) {
919 case -EFSCORRUPTED:
920 errstr = "Corrupt filesystem";
921 break;
922 case -EFSBADCRC:
923 errstr = "Filesystem failed CRC";
924 break;
925 case -EIO:
926 errstr = "IO failure";
927 break;
928 case -ENOMEM:
929 errstr = "Out of memory";
930 break;
931 case -EROFS:
932 if (!sb || (EXT4_SB(sb)->s_journal &&
933 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
934 errstr = "Journal has aborted";
935 else
936 errstr = "Readonly filesystem";
937 break;
938 default:
939 /* If the caller passed in an extra buffer for unknown
940 * errors, textualise them now. Else we just return
941 * NULL. */
942 if (nbuf) {
943 /* Check for truncated error codes... */
944 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
945 errstr = nbuf;
946 }
947 break;
948 }
949
950 return errstr;
951 }
952
953 /* __ext4_std_error decodes expected errors from journaling functions
954 * automatically and invokes the appropriate error response. */
955
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)956 void __ext4_std_error(struct super_block *sb, const char *function,
957 unsigned int line, int errno)
958 {
959 char nbuf[16];
960 const char *errstr;
961
962 if (unlikely(ext4_forced_shutdown(sb)))
963 return;
964
965 /* Special case: if the error is EROFS, and we're not already
966 * inside a transaction, then there's really no point in logging
967 * an error. */
968 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
969 return;
970
971 if (ext4_error_ratelimit(sb)) {
972 errstr = ext4_decode_error(sb, errno, nbuf);
973 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
974 sb->s_id, function, line, errstr);
975 }
976 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
977
978 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
979 }
980
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)981 void __ext4_msg(struct super_block *sb,
982 const char *prefix, const char *fmt, ...)
983 {
984 struct va_format vaf;
985 va_list args;
986
987 if (sb) {
988 atomic_inc(&EXT4_SB(sb)->s_msg_count);
989 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
990 "EXT4-fs"))
991 return;
992 }
993
994 va_start(args, fmt);
995 vaf.fmt = fmt;
996 vaf.va = &args;
997 if (sb)
998 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
999 else
1000 printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1001 va_end(args);
1002 }
1003
ext4_warning_ratelimit(struct super_block * sb)1004 static int ext4_warning_ratelimit(struct super_block *sb)
1005 {
1006 atomic_inc(&EXT4_SB(sb)->s_warning_count);
1007 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1008 "EXT4-fs warning");
1009 }
1010
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)1011 void __ext4_warning(struct super_block *sb, const char *function,
1012 unsigned int line, const char *fmt, ...)
1013 {
1014 struct va_format vaf;
1015 va_list args;
1016
1017 if (!ext4_warning_ratelimit(sb))
1018 return;
1019
1020 va_start(args, fmt);
1021 vaf.fmt = fmt;
1022 vaf.va = &args;
1023 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1024 sb->s_id, function, line, &vaf);
1025 va_end(args);
1026 }
1027
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)1028 void __ext4_warning_inode(const struct inode *inode, const char *function,
1029 unsigned int line, const char *fmt, ...)
1030 {
1031 struct va_format vaf;
1032 va_list args;
1033
1034 if (!ext4_warning_ratelimit(inode->i_sb))
1035 return;
1036
1037 va_start(args, fmt);
1038 vaf.fmt = fmt;
1039 vaf.va = &args;
1040 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1041 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1042 function, line, inode->i_ino, current->comm, &vaf);
1043 va_end(args);
1044 }
1045
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)1046 void __ext4_grp_locked_error(const char *function, unsigned int line,
1047 struct super_block *sb, ext4_group_t grp,
1048 unsigned long ino, ext4_fsblk_t block,
1049 const char *fmt, ...)
1050 __releases(bitlock)
1051 __acquires(bitlock)
1052 {
1053 struct va_format vaf;
1054 va_list args;
1055
1056 if (unlikely(ext4_forced_shutdown(sb)))
1057 return;
1058
1059 trace_ext4_error(sb, function, line);
1060 if (ext4_error_ratelimit(sb)) {
1061 va_start(args, fmt);
1062 vaf.fmt = fmt;
1063 vaf.va = &args;
1064 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1065 sb->s_id, function, line, grp);
1066 if (ino)
1067 printk(KERN_CONT "inode %lu: ", ino);
1068 if (block)
1069 printk(KERN_CONT "block %llu:",
1070 (unsigned long long) block);
1071 printk(KERN_CONT "%pV\n", &vaf);
1072 va_end(args);
1073 }
1074
1075 if (test_opt(sb, ERRORS_CONT)) {
1076 if (test_opt(sb, WARN_ON_ERROR))
1077 WARN_ON_ONCE(1);
1078 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1079 if (!bdev_read_only(sb->s_bdev)) {
1080 save_error_info(sb, EFSCORRUPTED, ino, block, function,
1081 line);
1082 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1083 }
1084 return;
1085 }
1086 ext4_unlock_group(sb, grp);
1087 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1088 /*
1089 * We only get here in the ERRORS_RO case; relocking the group
1090 * may be dangerous, but nothing bad will happen since the
1091 * filesystem will have already been marked read/only and the
1092 * journal has been aborted. We return 1 as a hint to callers
1093 * who might what to use the return value from
1094 * ext4_grp_locked_error() to distinguish between the
1095 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1096 * aggressively from the ext4 function in question, with a
1097 * more appropriate error code.
1098 */
1099 ext4_lock_group(sb, grp);
1100 return;
1101 }
1102
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1103 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1104 ext4_group_t group,
1105 unsigned int flags)
1106 {
1107 struct ext4_sb_info *sbi = EXT4_SB(sb);
1108 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1109 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1110 int ret;
1111
1112 if (!grp || !gdp)
1113 return;
1114 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1115 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1116 &grp->bb_state);
1117 if (!ret)
1118 percpu_counter_sub(&sbi->s_freeclusters_counter,
1119 grp->bb_free);
1120 }
1121
1122 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1123 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1124 &grp->bb_state);
1125 if (!ret && gdp) {
1126 int count;
1127
1128 count = ext4_free_inodes_count(sb, gdp);
1129 percpu_counter_sub(&sbi->s_freeinodes_counter,
1130 count);
1131 }
1132 }
1133 }
1134
ext4_update_dynamic_rev(struct super_block * sb)1135 void ext4_update_dynamic_rev(struct super_block *sb)
1136 {
1137 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1138
1139 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1140 return;
1141
1142 ext4_warning(sb,
1143 "updating to rev %d because of new feature flag, "
1144 "running e2fsck is recommended",
1145 EXT4_DYNAMIC_REV);
1146
1147 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1148 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1149 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1150 /* leave es->s_feature_*compat flags alone */
1151 /* es->s_uuid will be set by e2fsck if empty */
1152
1153 /*
1154 * The rest of the superblock fields should be zero, and if not it
1155 * means they are likely already in use, so leave them alone. We
1156 * can leave it up to e2fsck to clean up any inconsistencies there.
1157 */
1158 }
1159
orphan_list_entry(struct list_head * l)1160 static inline struct inode *orphan_list_entry(struct list_head *l)
1161 {
1162 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1163 }
1164
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1165 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1166 {
1167 struct list_head *l;
1168
1169 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1170 le32_to_cpu(sbi->s_es->s_last_orphan));
1171
1172 printk(KERN_ERR "sb_info orphan list:\n");
1173 list_for_each(l, &sbi->s_orphan) {
1174 struct inode *inode = orphan_list_entry(l);
1175 printk(KERN_ERR " "
1176 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1177 inode->i_sb->s_id, inode->i_ino, inode,
1178 inode->i_mode, inode->i_nlink,
1179 NEXT_ORPHAN(inode));
1180 }
1181 }
1182
1183 #ifdef CONFIG_QUOTA
1184 static int ext4_quota_off(struct super_block *sb, int type);
1185
ext4_quotas_off(struct super_block * sb,int type)1186 static inline void ext4_quotas_off(struct super_block *sb, int type)
1187 {
1188 BUG_ON(type > EXT4_MAXQUOTAS);
1189
1190 /* Use our quota_off function to clear inode flags etc. */
1191 for (type--; type >= 0; type--)
1192 ext4_quota_off(sb, type);
1193 }
1194
1195 /*
1196 * This is a helper function which is used in the mount/remount
1197 * codepaths (which holds s_umount) to fetch the quota file name.
1198 */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1199 static inline char *get_qf_name(struct super_block *sb,
1200 struct ext4_sb_info *sbi,
1201 int type)
1202 {
1203 return rcu_dereference_protected(sbi->s_qf_names[type],
1204 lockdep_is_held(&sb->s_umount));
1205 }
1206 #else
ext4_quotas_off(struct super_block * sb,int type)1207 static inline void ext4_quotas_off(struct super_block *sb, int type)
1208 {
1209 }
1210 #endif
1211
ext4_percpu_param_init(struct ext4_sb_info * sbi)1212 static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1213 {
1214 ext4_fsblk_t block;
1215 int err;
1216
1217 block = ext4_count_free_clusters(sbi->s_sb);
1218 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1219 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1220 GFP_KERNEL);
1221 if (!err) {
1222 unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1223 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1224 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1225 GFP_KERNEL);
1226 }
1227 if (!err)
1228 err = percpu_counter_init(&sbi->s_dirs_counter,
1229 ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1230 if (!err)
1231 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1232 GFP_KERNEL);
1233 if (!err)
1234 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1235 GFP_KERNEL);
1236 if (!err)
1237 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1238
1239 if (err)
1240 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1241
1242 return err;
1243 }
1244
ext4_percpu_param_destroy(struct ext4_sb_info * sbi)1245 static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1246 {
1247 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1248 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1249 percpu_counter_destroy(&sbi->s_dirs_counter);
1250 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1251 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1252 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1253 }
1254
ext4_group_desc_free(struct ext4_sb_info * sbi)1255 static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1256 {
1257 struct buffer_head **group_desc;
1258 int i;
1259
1260 rcu_read_lock();
1261 group_desc = rcu_dereference(sbi->s_group_desc);
1262 for (i = 0; i < sbi->s_gdb_count; i++)
1263 brelse(group_desc[i]);
1264 kvfree(group_desc);
1265 rcu_read_unlock();
1266 }
1267
ext4_flex_groups_free(struct ext4_sb_info * sbi)1268 static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1269 {
1270 struct flex_groups **flex_groups;
1271 int i;
1272
1273 rcu_read_lock();
1274 flex_groups = rcu_dereference(sbi->s_flex_groups);
1275 if (flex_groups) {
1276 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1277 kvfree(flex_groups[i]);
1278 kvfree(flex_groups);
1279 }
1280 rcu_read_unlock();
1281 }
1282
ext4_put_super(struct super_block * sb)1283 static void ext4_put_super(struct super_block *sb)
1284 {
1285 struct ext4_sb_info *sbi = EXT4_SB(sb);
1286 struct ext4_super_block *es = sbi->s_es;
1287 int aborted = 0;
1288 int err;
1289
1290 /*
1291 * Unregister sysfs before destroying jbd2 journal.
1292 * Since we could still access attr_journal_task attribute via sysfs
1293 * path which could have sbi->s_journal->j_task as NULL
1294 * Unregister sysfs before flush sbi->s_sb_upd_work.
1295 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1296 * read metadata verify failed then will queue error work.
1297 * update_super_work will call start_this_handle may trigger
1298 * BUG_ON.
1299 */
1300 ext4_unregister_sysfs(sb);
1301
1302 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1303 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1304 &sb->s_uuid);
1305
1306 ext4_unregister_li_request(sb);
1307 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1308
1309 flush_work(&sbi->s_sb_upd_work);
1310 destroy_workqueue(sbi->rsv_conversion_wq);
1311 ext4_release_orphan_info(sb);
1312
1313 if (sbi->s_journal) {
1314 aborted = is_journal_aborted(sbi->s_journal);
1315 err = jbd2_journal_destroy(sbi->s_journal);
1316 sbi->s_journal = NULL;
1317 if ((err < 0) && !aborted) {
1318 ext4_abort(sb, -err, "Couldn't clean up the journal");
1319 }
1320 }
1321
1322 ext4_es_unregister_shrinker(sbi);
1323 timer_shutdown_sync(&sbi->s_err_report);
1324 ext4_release_system_zone(sb);
1325 ext4_mb_release(sb);
1326 ext4_ext_release(sb);
1327
1328 if (!sb_rdonly(sb) && !aborted) {
1329 ext4_clear_feature_journal_needs_recovery(sb);
1330 ext4_clear_feature_orphan_present(sb);
1331 es->s_state = cpu_to_le16(sbi->s_mount_state);
1332 }
1333 if (!sb_rdonly(sb))
1334 ext4_commit_super(sb);
1335
1336 ext4_group_desc_free(sbi);
1337 ext4_flex_groups_free(sbi);
1338 ext4_percpu_param_destroy(sbi);
1339 #ifdef CONFIG_QUOTA
1340 for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1341 kfree(get_qf_name(sb, sbi, i));
1342 #endif
1343
1344 /* Debugging code just in case the in-memory inode orphan list
1345 * isn't empty. The on-disk one can be non-empty if we've
1346 * detected an error and taken the fs readonly, but the
1347 * in-memory list had better be clean by this point. */
1348 if (!list_empty(&sbi->s_orphan))
1349 dump_orphan_list(sb, sbi);
1350 ASSERT(list_empty(&sbi->s_orphan));
1351
1352 sync_blockdev(sb->s_bdev);
1353 invalidate_bdev(sb->s_bdev);
1354 if (sbi->s_journal_bdev) {
1355 /*
1356 * Invalidate the journal device's buffers. We don't want them
1357 * floating about in memory - the physical journal device may
1358 * hotswapped, and it breaks the `ro-after' testing code.
1359 */
1360 sync_blockdev(sbi->s_journal_bdev);
1361 invalidate_bdev(sbi->s_journal_bdev);
1362 }
1363
1364 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1365 sbi->s_ea_inode_cache = NULL;
1366
1367 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1368 sbi->s_ea_block_cache = NULL;
1369
1370 ext4_stop_mmpd(sbi);
1371
1372 brelse(sbi->s_sbh);
1373 sb->s_fs_info = NULL;
1374 /*
1375 * Now that we are completely done shutting down the
1376 * superblock, we need to actually destroy the kobject.
1377 */
1378 kobject_put(&sbi->s_kobj);
1379 wait_for_completion(&sbi->s_kobj_unregister);
1380 if (sbi->s_chksum_driver)
1381 crypto_free_shash(sbi->s_chksum_driver);
1382 kfree(sbi->s_blockgroup_lock);
1383 fs_put_dax(sbi->s_daxdev, NULL);
1384 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1385 #if IS_ENABLED(CONFIG_UNICODE)
1386 utf8_unload(sb->s_encoding);
1387 #endif
1388 kfree(sbi);
1389 }
1390
1391 static struct kmem_cache *ext4_inode_cachep;
1392
1393 /*
1394 * Called inside transaction, so use GFP_NOFS
1395 */
ext4_alloc_inode(struct super_block * sb)1396 static struct inode *ext4_alloc_inode(struct super_block *sb)
1397 {
1398 struct ext4_inode_info *ei;
1399
1400 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1401 if (!ei)
1402 return NULL;
1403
1404 inode_set_iversion(&ei->vfs_inode, 1);
1405 ei->i_flags = 0;
1406 spin_lock_init(&ei->i_raw_lock);
1407 ei->i_prealloc_node = RB_ROOT;
1408 atomic_set(&ei->i_prealloc_active, 0);
1409 rwlock_init(&ei->i_prealloc_lock);
1410 ext4_es_init_tree(&ei->i_es_tree);
1411 rwlock_init(&ei->i_es_lock);
1412 INIT_LIST_HEAD(&ei->i_es_list);
1413 ei->i_es_all_nr = 0;
1414 ei->i_es_shk_nr = 0;
1415 ei->i_es_shrink_lblk = 0;
1416 ei->i_reserved_data_blocks = 0;
1417 spin_lock_init(&(ei->i_block_reservation_lock));
1418 ext4_init_pending_tree(&ei->i_pending_tree);
1419 #ifdef CONFIG_QUOTA
1420 ei->i_reserved_quota = 0;
1421 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1422 #endif
1423 ei->jinode = NULL;
1424 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1425 spin_lock_init(&ei->i_completed_io_lock);
1426 ei->i_sync_tid = 0;
1427 ei->i_datasync_tid = 0;
1428 atomic_set(&ei->i_unwritten, 0);
1429 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1430 ext4_fc_init_inode(&ei->vfs_inode);
1431 mutex_init(&ei->i_fc_lock);
1432 return &ei->vfs_inode;
1433 }
1434
ext4_drop_inode(struct inode * inode)1435 static int ext4_drop_inode(struct inode *inode)
1436 {
1437 int drop = generic_drop_inode(inode);
1438
1439 if (!drop)
1440 drop = fscrypt_drop_inode(inode);
1441
1442 trace_ext4_drop_inode(inode, drop);
1443 return drop;
1444 }
1445
ext4_free_in_core_inode(struct inode * inode)1446 static void ext4_free_in_core_inode(struct inode *inode)
1447 {
1448 fscrypt_free_inode(inode);
1449 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1450 pr_warn("%s: inode %ld still in fc list",
1451 __func__, inode->i_ino);
1452 }
1453 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1454 }
1455
ext4_destroy_inode(struct inode * inode)1456 static void ext4_destroy_inode(struct inode *inode)
1457 {
1458 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1459 ext4_msg(inode->i_sb, KERN_ERR,
1460 "Inode %lu (%p): orphan list check failed!",
1461 inode->i_ino, EXT4_I(inode));
1462 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1463 EXT4_I(inode), sizeof(struct ext4_inode_info),
1464 true);
1465 dump_stack();
1466 }
1467
1468 if (EXT4_I(inode)->i_reserved_data_blocks)
1469 ext4_msg(inode->i_sb, KERN_ERR,
1470 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1471 inode->i_ino, EXT4_I(inode),
1472 EXT4_I(inode)->i_reserved_data_blocks);
1473 }
1474
ext4_shutdown(struct super_block * sb)1475 static void ext4_shutdown(struct super_block *sb)
1476 {
1477 ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1478 }
1479
init_once(void * foo)1480 static void init_once(void *foo)
1481 {
1482 struct ext4_inode_info *ei = foo;
1483
1484 INIT_LIST_HEAD(&ei->i_orphan);
1485 init_rwsem(&ei->xattr_sem);
1486 init_rwsem(&ei->i_data_sem);
1487 inode_init_once(&ei->vfs_inode);
1488 ext4_fc_init_inode(&ei->vfs_inode);
1489 }
1490
init_inodecache(void)1491 static int __init init_inodecache(void)
1492 {
1493 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1494 sizeof(struct ext4_inode_info), 0,
1495 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1496 SLAB_ACCOUNT),
1497 offsetof(struct ext4_inode_info, i_data),
1498 sizeof_field(struct ext4_inode_info, i_data),
1499 init_once);
1500 if (ext4_inode_cachep == NULL)
1501 return -ENOMEM;
1502 return 0;
1503 }
1504
destroy_inodecache(void)1505 static void destroy_inodecache(void)
1506 {
1507 /*
1508 * Make sure all delayed rcu free inodes are flushed before we
1509 * destroy cache.
1510 */
1511 rcu_barrier();
1512 kmem_cache_destroy(ext4_inode_cachep);
1513 }
1514
ext4_clear_inode(struct inode * inode)1515 void ext4_clear_inode(struct inode *inode)
1516 {
1517 ext4_fc_del(inode);
1518 invalidate_inode_buffers(inode);
1519 clear_inode(inode);
1520 ext4_discard_preallocations(inode, 0);
1521 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1522 dquot_drop(inode);
1523 if (EXT4_I(inode)->jinode) {
1524 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1525 EXT4_I(inode)->jinode);
1526 jbd2_free_inode(EXT4_I(inode)->jinode);
1527 EXT4_I(inode)->jinode = NULL;
1528 }
1529 fscrypt_put_encryption_info(inode);
1530 fsverity_cleanup_inode(inode);
1531 }
1532
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1533 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1534 u64 ino, u32 generation)
1535 {
1536 struct inode *inode;
1537
1538 /*
1539 * Currently we don't know the generation for parent directory, so
1540 * a generation of 0 means "accept any"
1541 */
1542 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1543 if (IS_ERR(inode))
1544 return ERR_CAST(inode);
1545 if (generation && inode->i_generation != generation) {
1546 iput(inode);
1547 return ERR_PTR(-ESTALE);
1548 }
1549
1550 return inode;
1551 }
1552
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1553 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1554 int fh_len, int fh_type)
1555 {
1556 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1557 ext4_nfs_get_inode);
1558 }
1559
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1560 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1561 int fh_len, int fh_type)
1562 {
1563 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1564 ext4_nfs_get_inode);
1565 }
1566
ext4_nfs_commit_metadata(struct inode * inode)1567 static int ext4_nfs_commit_metadata(struct inode *inode)
1568 {
1569 struct writeback_control wbc = {
1570 .sync_mode = WB_SYNC_ALL
1571 };
1572
1573 trace_ext4_nfs_commit_metadata(inode);
1574 return ext4_write_inode(inode, &wbc);
1575 }
1576
1577 #ifdef CONFIG_QUOTA
1578 static const char * const quotatypes[] = INITQFNAMES;
1579 #define QTYPE2NAME(t) (quotatypes[t])
1580
1581 static int ext4_write_dquot(struct dquot *dquot);
1582 static int ext4_acquire_dquot(struct dquot *dquot);
1583 static int ext4_release_dquot(struct dquot *dquot);
1584 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1585 static int ext4_write_info(struct super_block *sb, int type);
1586 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1587 const struct path *path);
1588 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1589 size_t len, loff_t off);
1590 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1591 const char *data, size_t len, loff_t off);
1592 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1593 unsigned int flags);
1594
ext4_get_dquots(struct inode * inode)1595 static struct dquot **ext4_get_dquots(struct inode *inode)
1596 {
1597 return EXT4_I(inode)->i_dquot;
1598 }
1599
1600 static const struct dquot_operations ext4_quota_operations = {
1601 .get_reserved_space = ext4_get_reserved_space,
1602 .write_dquot = ext4_write_dquot,
1603 .acquire_dquot = ext4_acquire_dquot,
1604 .release_dquot = ext4_release_dquot,
1605 .mark_dirty = ext4_mark_dquot_dirty,
1606 .write_info = ext4_write_info,
1607 .alloc_dquot = dquot_alloc,
1608 .destroy_dquot = dquot_destroy,
1609 .get_projid = ext4_get_projid,
1610 .get_inode_usage = ext4_get_inode_usage,
1611 .get_next_id = dquot_get_next_id,
1612 };
1613
1614 static const struct quotactl_ops ext4_qctl_operations = {
1615 .quota_on = ext4_quota_on,
1616 .quota_off = ext4_quota_off,
1617 .quota_sync = dquot_quota_sync,
1618 .get_state = dquot_get_state,
1619 .set_info = dquot_set_dqinfo,
1620 .get_dqblk = dquot_get_dqblk,
1621 .set_dqblk = dquot_set_dqblk,
1622 .get_nextdqblk = dquot_get_next_dqblk,
1623 };
1624 #endif
1625
1626 static const struct super_operations ext4_sops = {
1627 .alloc_inode = ext4_alloc_inode,
1628 .free_inode = ext4_free_in_core_inode,
1629 .destroy_inode = ext4_destroy_inode,
1630 .write_inode = ext4_write_inode,
1631 .dirty_inode = ext4_dirty_inode,
1632 .drop_inode = ext4_drop_inode,
1633 .evict_inode = ext4_evict_inode,
1634 .put_super = ext4_put_super,
1635 .sync_fs = ext4_sync_fs,
1636 .freeze_fs = ext4_freeze,
1637 .unfreeze_fs = ext4_unfreeze,
1638 .statfs = ext4_statfs,
1639 .show_options = ext4_show_options,
1640 .shutdown = ext4_shutdown,
1641 #ifdef CONFIG_QUOTA
1642 .quota_read = ext4_quota_read,
1643 .quota_write = ext4_quota_write,
1644 .get_dquots = ext4_get_dquots,
1645 #endif
1646 };
1647
1648 static const struct export_operations ext4_export_ops = {
1649 .fh_to_dentry = ext4_fh_to_dentry,
1650 .fh_to_parent = ext4_fh_to_parent,
1651 .get_parent = ext4_get_parent,
1652 .commit_metadata = ext4_nfs_commit_metadata,
1653 };
1654
1655 enum {
1656 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1657 Opt_resgid, Opt_resuid, Opt_sb,
1658 Opt_nouid32, Opt_debug, Opt_removed,
1659 Opt_user_xattr, Opt_acl,
1660 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1661 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1662 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1663 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1664 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1665 Opt_inlinecrypt,
1666 Opt_usrjquota, Opt_grpjquota, Opt_quota,
1667 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1668 Opt_usrquota, Opt_grpquota, Opt_prjquota,
1669 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1670 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1671 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1672 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1673 Opt_inode_readahead_blks, Opt_journal_ioprio,
1674 Opt_dioread_nolock, Opt_dioread_lock,
1675 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1676 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1677 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1678 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1679 #ifdef CONFIG_EXT4_DEBUG
1680 Opt_fc_debug_max_replay, Opt_fc_debug_force
1681 #endif
1682 };
1683
1684 static const struct constant_table ext4_param_errors[] = {
1685 {"continue", EXT4_MOUNT_ERRORS_CONT},
1686 {"panic", EXT4_MOUNT_ERRORS_PANIC},
1687 {"remount-ro", EXT4_MOUNT_ERRORS_RO},
1688 {}
1689 };
1690
1691 static const struct constant_table ext4_param_data[] = {
1692 {"journal", EXT4_MOUNT_JOURNAL_DATA},
1693 {"ordered", EXT4_MOUNT_ORDERED_DATA},
1694 {"writeback", EXT4_MOUNT_WRITEBACK_DATA},
1695 {}
1696 };
1697
1698 static const struct constant_table ext4_param_data_err[] = {
1699 {"abort", Opt_data_err_abort},
1700 {"ignore", Opt_data_err_ignore},
1701 {}
1702 };
1703
1704 static const struct constant_table ext4_param_jqfmt[] = {
1705 {"vfsold", QFMT_VFS_OLD},
1706 {"vfsv0", QFMT_VFS_V0},
1707 {"vfsv1", QFMT_VFS_V1},
1708 {}
1709 };
1710
1711 static const struct constant_table ext4_param_dax[] = {
1712 {"always", Opt_dax_always},
1713 {"inode", Opt_dax_inode},
1714 {"never", Opt_dax_never},
1715 {}
1716 };
1717
1718 /* String parameter that allows empty argument */
1719 #define fsparam_string_empty(NAME, OPT) \
1720 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1721
1722 /*
1723 * Mount option specification
1724 * We don't use fsparam_flag_no because of the way we set the
1725 * options and the way we show them in _ext4_show_options(). To
1726 * keep the changes to a minimum, let's keep the negative options
1727 * separate for now.
1728 */
1729 static const struct fs_parameter_spec ext4_param_specs[] = {
1730 fsparam_flag ("bsddf", Opt_bsd_df),
1731 fsparam_flag ("minixdf", Opt_minix_df),
1732 fsparam_flag ("grpid", Opt_grpid),
1733 fsparam_flag ("bsdgroups", Opt_grpid),
1734 fsparam_flag ("nogrpid", Opt_nogrpid),
1735 fsparam_flag ("sysvgroups", Opt_nogrpid),
1736 fsparam_u32 ("resgid", Opt_resgid),
1737 fsparam_u32 ("resuid", Opt_resuid),
1738 fsparam_u32 ("sb", Opt_sb),
1739 fsparam_enum ("errors", Opt_errors, ext4_param_errors),
1740 fsparam_flag ("nouid32", Opt_nouid32),
1741 fsparam_flag ("debug", Opt_debug),
1742 fsparam_flag ("oldalloc", Opt_removed),
1743 fsparam_flag ("orlov", Opt_removed),
1744 fsparam_flag ("user_xattr", Opt_user_xattr),
1745 fsparam_flag ("acl", Opt_acl),
1746 fsparam_flag ("norecovery", Opt_noload),
1747 fsparam_flag ("noload", Opt_noload),
1748 fsparam_flag ("bh", Opt_removed),
1749 fsparam_flag ("nobh", Opt_removed),
1750 fsparam_u32 ("commit", Opt_commit),
1751 fsparam_u32 ("min_batch_time", Opt_min_batch_time),
1752 fsparam_u32 ("max_batch_time", Opt_max_batch_time),
1753 fsparam_u32 ("journal_dev", Opt_journal_dev),
1754 fsparam_bdev ("journal_path", Opt_journal_path),
1755 fsparam_flag ("journal_checksum", Opt_journal_checksum),
1756 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum),
1757 fsparam_flag ("journal_async_commit",Opt_journal_async_commit),
1758 fsparam_flag ("abort", Opt_abort),
1759 fsparam_enum ("data", Opt_data, ext4_param_data),
1760 fsparam_enum ("data_err", Opt_data_err,
1761 ext4_param_data_err),
1762 fsparam_string_empty
1763 ("usrjquota", Opt_usrjquota),
1764 fsparam_string_empty
1765 ("grpjquota", Opt_grpjquota),
1766 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt),
1767 fsparam_flag ("grpquota", Opt_grpquota),
1768 fsparam_flag ("quota", Opt_quota),
1769 fsparam_flag ("noquota", Opt_noquota),
1770 fsparam_flag ("usrquota", Opt_usrquota),
1771 fsparam_flag ("prjquota", Opt_prjquota),
1772 fsparam_flag ("barrier", Opt_barrier),
1773 fsparam_u32 ("barrier", Opt_barrier),
1774 fsparam_flag ("nobarrier", Opt_nobarrier),
1775 fsparam_flag ("i_version", Opt_removed),
1776 fsparam_flag ("dax", Opt_dax),
1777 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax),
1778 fsparam_u32 ("stripe", Opt_stripe),
1779 fsparam_flag ("delalloc", Opt_delalloc),
1780 fsparam_flag ("nodelalloc", Opt_nodelalloc),
1781 fsparam_flag ("warn_on_error", Opt_warn_on_error),
1782 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error),
1783 fsparam_u32 ("debug_want_extra_isize",
1784 Opt_debug_want_extra_isize),
1785 fsparam_flag ("mblk_io_submit", Opt_removed),
1786 fsparam_flag ("nomblk_io_submit", Opt_removed),
1787 fsparam_flag ("block_validity", Opt_block_validity),
1788 fsparam_flag ("noblock_validity", Opt_noblock_validity),
1789 fsparam_u32 ("inode_readahead_blks",
1790 Opt_inode_readahead_blks),
1791 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio),
1792 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc),
1793 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc),
1794 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc),
1795 fsparam_flag ("dioread_nolock", Opt_dioread_nolock),
1796 fsparam_flag ("nodioread_nolock", Opt_dioread_lock),
1797 fsparam_flag ("dioread_lock", Opt_dioread_lock),
1798 fsparam_flag ("discard", Opt_discard),
1799 fsparam_flag ("nodiscard", Opt_nodiscard),
1800 fsparam_u32 ("init_itable", Opt_init_itable),
1801 fsparam_flag ("init_itable", Opt_init_itable),
1802 fsparam_flag ("noinit_itable", Opt_noinit_itable),
1803 #ifdef CONFIG_EXT4_DEBUG
1804 fsparam_flag ("fc_debug_force", Opt_fc_debug_force),
1805 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay),
1806 #endif
1807 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb),
1808 fsparam_flag ("test_dummy_encryption",
1809 Opt_test_dummy_encryption),
1810 fsparam_string ("test_dummy_encryption",
1811 Opt_test_dummy_encryption),
1812 fsparam_flag ("inlinecrypt", Opt_inlinecrypt),
1813 fsparam_flag ("nombcache", Opt_nombcache),
1814 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */
1815 fsparam_flag ("prefetch_block_bitmaps",
1816 Opt_removed),
1817 fsparam_flag ("no_prefetch_block_bitmaps",
1818 Opt_no_prefetch_block_bitmaps),
1819 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan),
1820 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */
1821 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */
1822 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */
1823 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */
1824 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */
1825 {}
1826 };
1827
1828 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1829
1830 #define MOPT_SET 0x0001
1831 #define MOPT_CLEAR 0x0002
1832 #define MOPT_NOSUPPORT 0x0004
1833 #define MOPT_EXPLICIT 0x0008
1834 #ifdef CONFIG_QUOTA
1835 #define MOPT_Q 0
1836 #define MOPT_QFMT 0x0010
1837 #else
1838 #define MOPT_Q MOPT_NOSUPPORT
1839 #define MOPT_QFMT MOPT_NOSUPPORT
1840 #endif
1841 #define MOPT_NO_EXT2 0x0020
1842 #define MOPT_NO_EXT3 0x0040
1843 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1844 #define MOPT_SKIP 0x0080
1845 #define MOPT_2 0x0100
1846
1847 static const struct mount_opts {
1848 int token;
1849 int mount_opt;
1850 int flags;
1851 } ext4_mount_opts[] = {
1852 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1853 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1854 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1855 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1856 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1857 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1858 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1859 MOPT_EXT4_ONLY | MOPT_SET},
1860 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1861 MOPT_EXT4_ONLY | MOPT_CLEAR},
1862 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1863 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1864 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1865 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1866 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1867 MOPT_EXT4_ONLY | MOPT_CLEAR},
1868 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1869 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1870 {Opt_commit, 0, MOPT_NO_EXT2},
1871 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1872 MOPT_EXT4_ONLY | MOPT_CLEAR},
1873 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1874 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1875 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1876 EXT4_MOUNT_JOURNAL_CHECKSUM),
1877 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1878 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1879 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1880 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1881 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1882 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1883 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1884 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1885 {Opt_dax_type, 0, MOPT_EXT4_ONLY},
1886 {Opt_journal_dev, 0, MOPT_NO_EXT2},
1887 {Opt_journal_path, 0, MOPT_NO_EXT2},
1888 {Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1889 {Opt_data, 0, MOPT_NO_EXT2},
1890 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1891 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1892 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1893 #else
1894 {Opt_acl, 0, MOPT_NOSUPPORT},
1895 #endif
1896 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1897 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1898 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1899 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1900 MOPT_SET | MOPT_Q},
1901 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1902 MOPT_SET | MOPT_Q},
1903 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1904 MOPT_SET | MOPT_Q},
1905 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1906 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1907 MOPT_CLEAR | MOPT_Q},
1908 {Opt_usrjquota, 0, MOPT_Q},
1909 {Opt_grpjquota, 0, MOPT_Q},
1910 {Opt_jqfmt, 0, MOPT_QFMT},
1911 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1912 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1913 MOPT_SET},
1914 #ifdef CONFIG_EXT4_DEBUG
1915 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1916 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1917 #endif
1918 {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1919 {Opt_err, 0, 0}
1920 };
1921
1922 #if IS_ENABLED(CONFIG_UNICODE)
1923 static const struct ext4_sb_encodings {
1924 __u16 magic;
1925 char *name;
1926 unsigned int version;
1927 } ext4_sb_encoding_map[] = {
1928 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1929 };
1930
1931 static const struct ext4_sb_encodings *
ext4_sb_read_encoding(const struct ext4_super_block * es)1932 ext4_sb_read_encoding(const struct ext4_super_block *es)
1933 {
1934 __u16 magic = le16_to_cpu(es->s_encoding);
1935 int i;
1936
1937 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1938 if (magic == ext4_sb_encoding_map[i].magic)
1939 return &ext4_sb_encoding_map[i];
1940
1941 return NULL;
1942 }
1943 #endif
1944
1945 #define EXT4_SPEC_JQUOTA (1 << 0)
1946 #define EXT4_SPEC_JQFMT (1 << 1)
1947 #define EXT4_SPEC_DATAJ (1 << 2)
1948 #define EXT4_SPEC_SB_BLOCK (1 << 3)
1949 #define EXT4_SPEC_JOURNAL_DEV (1 << 4)
1950 #define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5)
1951 #define EXT4_SPEC_s_want_extra_isize (1 << 7)
1952 #define EXT4_SPEC_s_max_batch_time (1 << 8)
1953 #define EXT4_SPEC_s_min_batch_time (1 << 9)
1954 #define EXT4_SPEC_s_inode_readahead_blks (1 << 10)
1955 #define EXT4_SPEC_s_li_wait_mult (1 << 11)
1956 #define EXT4_SPEC_s_max_dir_size_kb (1 << 12)
1957 #define EXT4_SPEC_s_stripe (1 << 13)
1958 #define EXT4_SPEC_s_resuid (1 << 14)
1959 #define EXT4_SPEC_s_resgid (1 << 15)
1960 #define EXT4_SPEC_s_commit_interval (1 << 16)
1961 #define EXT4_SPEC_s_fc_debug_max_replay (1 << 17)
1962 #define EXT4_SPEC_s_sb_block (1 << 18)
1963 #define EXT4_SPEC_mb_optimize_scan (1 << 19)
1964
1965 struct ext4_fs_context {
1966 char *s_qf_names[EXT4_MAXQUOTAS];
1967 struct fscrypt_dummy_policy dummy_enc_policy;
1968 int s_jquota_fmt; /* Format of quota to use */
1969 #ifdef CONFIG_EXT4_DEBUG
1970 int s_fc_debug_max_replay;
1971 #endif
1972 unsigned short qname_spec;
1973 unsigned long vals_s_flags; /* Bits to set in s_flags */
1974 unsigned long mask_s_flags; /* Bits changed in s_flags */
1975 unsigned long journal_devnum;
1976 unsigned long s_commit_interval;
1977 unsigned long s_stripe;
1978 unsigned int s_inode_readahead_blks;
1979 unsigned int s_want_extra_isize;
1980 unsigned int s_li_wait_mult;
1981 unsigned int s_max_dir_size_kb;
1982 unsigned int journal_ioprio;
1983 unsigned int vals_s_mount_opt;
1984 unsigned int mask_s_mount_opt;
1985 unsigned int vals_s_mount_opt2;
1986 unsigned int mask_s_mount_opt2;
1987 unsigned int opt_flags; /* MOPT flags */
1988 unsigned int spec;
1989 u32 s_max_batch_time;
1990 u32 s_min_batch_time;
1991 kuid_t s_resuid;
1992 kgid_t s_resgid;
1993 ext4_fsblk_t s_sb_block;
1994 };
1995
ext4_fc_free(struct fs_context * fc)1996 static void ext4_fc_free(struct fs_context *fc)
1997 {
1998 struct ext4_fs_context *ctx = fc->fs_private;
1999 int i;
2000
2001 if (!ctx)
2002 return;
2003
2004 for (i = 0; i < EXT4_MAXQUOTAS; i++)
2005 kfree(ctx->s_qf_names[i]);
2006
2007 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2008 kfree(ctx);
2009 }
2010
ext4_init_fs_context(struct fs_context * fc)2011 int ext4_init_fs_context(struct fs_context *fc)
2012 {
2013 struct ext4_fs_context *ctx;
2014
2015 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2016 if (!ctx)
2017 return -ENOMEM;
2018
2019 fc->fs_private = ctx;
2020 fc->ops = &ext4_context_ops;
2021
2022 return 0;
2023 }
2024
2025 #ifdef CONFIG_QUOTA
2026 /*
2027 * Note the name of the specified quota file.
2028 */
note_qf_name(struct fs_context * fc,int qtype,struct fs_parameter * param)2029 static int note_qf_name(struct fs_context *fc, int qtype,
2030 struct fs_parameter *param)
2031 {
2032 struct ext4_fs_context *ctx = fc->fs_private;
2033 char *qname;
2034
2035 if (param->size < 1) {
2036 ext4_msg(NULL, KERN_ERR, "Missing quota name");
2037 return -EINVAL;
2038 }
2039 if (strchr(param->string, '/')) {
2040 ext4_msg(NULL, KERN_ERR,
2041 "quotafile must be on filesystem root");
2042 return -EINVAL;
2043 }
2044 if (ctx->s_qf_names[qtype]) {
2045 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2046 ext4_msg(NULL, KERN_ERR,
2047 "%s quota file already specified",
2048 QTYPE2NAME(qtype));
2049 return -EINVAL;
2050 }
2051 return 0;
2052 }
2053
2054 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2055 if (!qname) {
2056 ext4_msg(NULL, KERN_ERR,
2057 "Not enough memory for storing quotafile name");
2058 return -ENOMEM;
2059 }
2060 ctx->s_qf_names[qtype] = qname;
2061 ctx->qname_spec |= 1 << qtype;
2062 ctx->spec |= EXT4_SPEC_JQUOTA;
2063 return 0;
2064 }
2065
2066 /*
2067 * Clear the name of the specified quota file.
2068 */
unnote_qf_name(struct fs_context * fc,int qtype)2069 static int unnote_qf_name(struct fs_context *fc, int qtype)
2070 {
2071 struct ext4_fs_context *ctx = fc->fs_private;
2072
2073 if (ctx->s_qf_names[qtype])
2074 kfree(ctx->s_qf_names[qtype]);
2075
2076 ctx->s_qf_names[qtype] = NULL;
2077 ctx->qname_spec |= 1 << qtype;
2078 ctx->spec |= EXT4_SPEC_JQUOTA;
2079 return 0;
2080 }
2081 #endif
2082
ext4_parse_test_dummy_encryption(const struct fs_parameter * param,struct ext4_fs_context * ctx)2083 static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2084 struct ext4_fs_context *ctx)
2085 {
2086 int err;
2087
2088 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2089 ext4_msg(NULL, KERN_WARNING,
2090 "test_dummy_encryption option not supported");
2091 return -EINVAL;
2092 }
2093 err = fscrypt_parse_test_dummy_encryption(param,
2094 &ctx->dummy_enc_policy);
2095 if (err == -EINVAL) {
2096 ext4_msg(NULL, KERN_WARNING,
2097 "Value of option \"%s\" is unrecognized", param->key);
2098 } else if (err == -EEXIST) {
2099 ext4_msg(NULL, KERN_WARNING,
2100 "Conflicting test_dummy_encryption options");
2101 return -EINVAL;
2102 }
2103 return err;
2104 }
2105
2106 #define EXT4_SET_CTX(name) \
2107 static inline void ctx_set_##name(struct ext4_fs_context *ctx, \
2108 unsigned long flag) \
2109 { \
2110 ctx->mask_s_##name |= flag; \
2111 ctx->vals_s_##name |= flag; \
2112 }
2113
2114 #define EXT4_CLEAR_CTX(name) \
2115 static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \
2116 unsigned long flag) \
2117 { \
2118 ctx->mask_s_##name |= flag; \
2119 ctx->vals_s_##name &= ~flag; \
2120 }
2121
2122 #define EXT4_TEST_CTX(name) \
2123 static inline unsigned long \
2124 ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2125 { \
2126 return (ctx->vals_s_##name & flag); \
2127 }
2128
2129 EXT4_SET_CTX(flags); /* set only */
2130 EXT4_SET_CTX(mount_opt);
2131 EXT4_CLEAR_CTX(mount_opt);
2132 EXT4_TEST_CTX(mount_opt);
2133 EXT4_SET_CTX(mount_opt2);
2134 EXT4_CLEAR_CTX(mount_opt2);
2135 EXT4_TEST_CTX(mount_opt2);
2136
ext4_parse_param(struct fs_context * fc,struct fs_parameter * param)2137 static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2138 {
2139 struct ext4_fs_context *ctx = fc->fs_private;
2140 struct fs_parse_result result;
2141 const struct mount_opts *m;
2142 int is_remount;
2143 kuid_t uid;
2144 kgid_t gid;
2145 int token;
2146
2147 token = fs_parse(fc, ext4_param_specs, param, &result);
2148 if (token < 0)
2149 return token;
2150 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2151
2152 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2153 if (token == m->token)
2154 break;
2155
2156 ctx->opt_flags |= m->flags;
2157
2158 if (m->flags & MOPT_EXPLICIT) {
2159 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2160 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2161 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2162 ctx_set_mount_opt2(ctx,
2163 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2164 } else
2165 return -EINVAL;
2166 }
2167
2168 if (m->flags & MOPT_NOSUPPORT) {
2169 ext4_msg(NULL, KERN_ERR, "%s option not supported",
2170 param->key);
2171 return 0;
2172 }
2173
2174 switch (token) {
2175 #ifdef CONFIG_QUOTA
2176 case Opt_usrjquota:
2177 if (!*param->string)
2178 return unnote_qf_name(fc, USRQUOTA);
2179 else
2180 return note_qf_name(fc, USRQUOTA, param);
2181 case Opt_grpjquota:
2182 if (!*param->string)
2183 return unnote_qf_name(fc, GRPQUOTA);
2184 else
2185 return note_qf_name(fc, GRPQUOTA, param);
2186 #endif
2187 case Opt_sb:
2188 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2189 ext4_msg(NULL, KERN_WARNING,
2190 "Ignoring %s option on remount", param->key);
2191 } else {
2192 ctx->s_sb_block = result.uint_32;
2193 ctx->spec |= EXT4_SPEC_s_sb_block;
2194 }
2195 return 0;
2196 case Opt_removed:
2197 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2198 param->key);
2199 return 0;
2200 case Opt_inlinecrypt:
2201 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2202 ctx_set_flags(ctx, SB_INLINECRYPT);
2203 #else
2204 ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2205 #endif
2206 return 0;
2207 case Opt_errors:
2208 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2209 ctx_set_mount_opt(ctx, result.uint_32);
2210 return 0;
2211 #ifdef CONFIG_QUOTA
2212 case Opt_jqfmt:
2213 ctx->s_jquota_fmt = result.uint_32;
2214 ctx->spec |= EXT4_SPEC_JQFMT;
2215 return 0;
2216 #endif
2217 case Opt_data:
2218 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2219 ctx_set_mount_opt(ctx, result.uint_32);
2220 ctx->spec |= EXT4_SPEC_DATAJ;
2221 return 0;
2222 case Opt_commit:
2223 if (result.uint_32 == 0)
2224 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2225 else if (result.uint_32 > INT_MAX / HZ) {
2226 ext4_msg(NULL, KERN_ERR,
2227 "Invalid commit interval %d, "
2228 "must be smaller than %d",
2229 result.uint_32, INT_MAX / HZ);
2230 return -EINVAL;
2231 }
2232 ctx->s_commit_interval = HZ * result.uint_32;
2233 ctx->spec |= EXT4_SPEC_s_commit_interval;
2234 return 0;
2235 case Opt_debug_want_extra_isize:
2236 if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2237 ext4_msg(NULL, KERN_ERR,
2238 "Invalid want_extra_isize %d", result.uint_32);
2239 return -EINVAL;
2240 }
2241 ctx->s_want_extra_isize = result.uint_32;
2242 ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2243 return 0;
2244 case Opt_max_batch_time:
2245 ctx->s_max_batch_time = result.uint_32;
2246 ctx->spec |= EXT4_SPEC_s_max_batch_time;
2247 return 0;
2248 case Opt_min_batch_time:
2249 ctx->s_min_batch_time = result.uint_32;
2250 ctx->spec |= EXT4_SPEC_s_min_batch_time;
2251 return 0;
2252 case Opt_inode_readahead_blks:
2253 if (result.uint_32 &&
2254 (result.uint_32 > (1 << 30) ||
2255 !is_power_of_2(result.uint_32))) {
2256 ext4_msg(NULL, KERN_ERR,
2257 "EXT4-fs: inode_readahead_blks must be "
2258 "0 or a power of 2 smaller than 2^31");
2259 return -EINVAL;
2260 }
2261 ctx->s_inode_readahead_blks = result.uint_32;
2262 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2263 return 0;
2264 case Opt_init_itable:
2265 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2266 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2267 if (param->type == fs_value_is_string)
2268 ctx->s_li_wait_mult = result.uint_32;
2269 ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2270 return 0;
2271 case Opt_max_dir_size_kb:
2272 ctx->s_max_dir_size_kb = result.uint_32;
2273 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2274 return 0;
2275 #ifdef CONFIG_EXT4_DEBUG
2276 case Opt_fc_debug_max_replay:
2277 ctx->s_fc_debug_max_replay = result.uint_32;
2278 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2279 return 0;
2280 #endif
2281 case Opt_stripe:
2282 ctx->s_stripe = result.uint_32;
2283 ctx->spec |= EXT4_SPEC_s_stripe;
2284 return 0;
2285 case Opt_resuid:
2286 uid = make_kuid(current_user_ns(), result.uint_32);
2287 if (!uid_valid(uid)) {
2288 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2289 result.uint_32);
2290 return -EINVAL;
2291 }
2292 ctx->s_resuid = uid;
2293 ctx->spec |= EXT4_SPEC_s_resuid;
2294 return 0;
2295 case Opt_resgid:
2296 gid = make_kgid(current_user_ns(), result.uint_32);
2297 if (!gid_valid(gid)) {
2298 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2299 result.uint_32);
2300 return -EINVAL;
2301 }
2302 ctx->s_resgid = gid;
2303 ctx->spec |= EXT4_SPEC_s_resgid;
2304 return 0;
2305 case Opt_journal_dev:
2306 if (is_remount) {
2307 ext4_msg(NULL, KERN_ERR,
2308 "Cannot specify journal on remount");
2309 return -EINVAL;
2310 }
2311 ctx->journal_devnum = result.uint_32;
2312 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2313 return 0;
2314 case Opt_journal_path:
2315 {
2316 struct inode *journal_inode;
2317 struct path path;
2318 int error;
2319
2320 if (is_remount) {
2321 ext4_msg(NULL, KERN_ERR,
2322 "Cannot specify journal on remount");
2323 return -EINVAL;
2324 }
2325
2326 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2327 if (error) {
2328 ext4_msg(NULL, KERN_ERR, "error: could not find "
2329 "journal device path");
2330 return -EINVAL;
2331 }
2332
2333 journal_inode = d_inode(path.dentry);
2334 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2335 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2336 path_put(&path);
2337 return 0;
2338 }
2339 case Opt_journal_ioprio:
2340 if (result.uint_32 > 7) {
2341 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2342 " (must be 0-7)");
2343 return -EINVAL;
2344 }
2345 ctx->journal_ioprio =
2346 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2347 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2348 return 0;
2349 case Opt_test_dummy_encryption:
2350 return ext4_parse_test_dummy_encryption(param, ctx);
2351 case Opt_dax:
2352 case Opt_dax_type:
2353 #ifdef CONFIG_FS_DAX
2354 {
2355 int type = (token == Opt_dax) ?
2356 Opt_dax : result.uint_32;
2357
2358 switch (type) {
2359 case Opt_dax:
2360 case Opt_dax_always:
2361 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2362 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2363 break;
2364 case Opt_dax_never:
2365 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2366 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2367 break;
2368 case Opt_dax_inode:
2369 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2370 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2371 /* Strictly for printing options */
2372 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2373 break;
2374 }
2375 return 0;
2376 }
2377 #else
2378 ext4_msg(NULL, KERN_INFO, "dax option not supported");
2379 return -EINVAL;
2380 #endif
2381 case Opt_data_err:
2382 if (result.uint_32 == Opt_data_err_abort)
2383 ctx_set_mount_opt(ctx, m->mount_opt);
2384 else if (result.uint_32 == Opt_data_err_ignore)
2385 ctx_clear_mount_opt(ctx, m->mount_opt);
2386 return 0;
2387 case Opt_mb_optimize_scan:
2388 if (result.int_32 == 1) {
2389 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2390 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2391 } else if (result.int_32 == 0) {
2392 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2393 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2394 } else {
2395 ext4_msg(NULL, KERN_WARNING,
2396 "mb_optimize_scan should be set to 0 or 1.");
2397 return -EINVAL;
2398 }
2399 return 0;
2400 }
2401
2402 /*
2403 * At this point we should only be getting options requiring MOPT_SET,
2404 * or MOPT_CLEAR. Anything else is a bug
2405 */
2406 if (m->token == Opt_err) {
2407 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2408 param->key);
2409 WARN_ON(1);
2410 return -EINVAL;
2411 }
2412
2413 else {
2414 unsigned int set = 0;
2415
2416 if ((param->type == fs_value_is_flag) ||
2417 result.uint_32 > 0)
2418 set = 1;
2419
2420 if (m->flags & MOPT_CLEAR)
2421 set = !set;
2422 else if (unlikely(!(m->flags & MOPT_SET))) {
2423 ext4_msg(NULL, KERN_WARNING,
2424 "buggy handling of option %s",
2425 param->key);
2426 WARN_ON(1);
2427 return -EINVAL;
2428 }
2429 if (m->flags & MOPT_2) {
2430 if (set != 0)
2431 ctx_set_mount_opt2(ctx, m->mount_opt);
2432 else
2433 ctx_clear_mount_opt2(ctx, m->mount_opt);
2434 } else {
2435 if (set != 0)
2436 ctx_set_mount_opt(ctx, m->mount_opt);
2437 else
2438 ctx_clear_mount_opt(ctx, m->mount_opt);
2439 }
2440 }
2441
2442 return 0;
2443 }
2444
parse_options(struct fs_context * fc,char * options)2445 static int parse_options(struct fs_context *fc, char *options)
2446 {
2447 struct fs_parameter param;
2448 int ret;
2449 char *key;
2450
2451 if (!options)
2452 return 0;
2453
2454 while ((key = strsep(&options, ",")) != NULL) {
2455 if (*key) {
2456 size_t v_len = 0;
2457 char *value = strchr(key, '=');
2458
2459 param.type = fs_value_is_flag;
2460 param.string = NULL;
2461
2462 if (value) {
2463 if (value == key)
2464 continue;
2465
2466 *value++ = 0;
2467 v_len = strlen(value);
2468 param.string = kmemdup_nul(value, v_len,
2469 GFP_KERNEL);
2470 if (!param.string)
2471 return -ENOMEM;
2472 param.type = fs_value_is_string;
2473 }
2474
2475 param.key = key;
2476 param.size = v_len;
2477
2478 ret = ext4_parse_param(fc, ¶m);
2479 if (param.string)
2480 kfree(param.string);
2481 if (ret < 0)
2482 return ret;
2483 }
2484 }
2485
2486 ret = ext4_validate_options(fc);
2487 if (ret < 0)
2488 return ret;
2489
2490 return 0;
2491 }
2492
parse_apply_sb_mount_options(struct super_block * sb,struct ext4_fs_context * m_ctx)2493 static int parse_apply_sb_mount_options(struct super_block *sb,
2494 struct ext4_fs_context *m_ctx)
2495 {
2496 struct ext4_sb_info *sbi = EXT4_SB(sb);
2497 char *s_mount_opts = NULL;
2498 struct ext4_fs_context *s_ctx = NULL;
2499 struct fs_context *fc = NULL;
2500 int ret = -ENOMEM;
2501
2502 if (!sbi->s_es->s_mount_opts[0])
2503 return 0;
2504
2505 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2506 sizeof(sbi->s_es->s_mount_opts),
2507 GFP_KERNEL);
2508 if (!s_mount_opts)
2509 return ret;
2510
2511 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2512 if (!fc)
2513 goto out_free;
2514
2515 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2516 if (!s_ctx)
2517 goto out_free;
2518
2519 fc->fs_private = s_ctx;
2520 fc->s_fs_info = sbi;
2521
2522 ret = parse_options(fc, s_mount_opts);
2523 if (ret < 0)
2524 goto parse_failed;
2525
2526 ret = ext4_check_opt_consistency(fc, sb);
2527 if (ret < 0) {
2528 parse_failed:
2529 ext4_msg(sb, KERN_WARNING,
2530 "failed to parse options in superblock: %s",
2531 s_mount_opts);
2532 ret = 0;
2533 goto out_free;
2534 }
2535
2536 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2537 m_ctx->journal_devnum = s_ctx->journal_devnum;
2538 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2539 m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2540
2541 ext4_apply_options(fc, sb);
2542 ret = 0;
2543
2544 out_free:
2545 if (fc) {
2546 ext4_fc_free(fc);
2547 kfree(fc);
2548 }
2549 kfree(s_mount_opts);
2550 return ret;
2551 }
2552
ext4_apply_quota_options(struct fs_context * fc,struct super_block * sb)2553 static void ext4_apply_quota_options(struct fs_context *fc,
2554 struct super_block *sb)
2555 {
2556 #ifdef CONFIG_QUOTA
2557 bool quota_feature = ext4_has_feature_quota(sb);
2558 struct ext4_fs_context *ctx = fc->fs_private;
2559 struct ext4_sb_info *sbi = EXT4_SB(sb);
2560 char *qname;
2561 int i;
2562
2563 if (quota_feature)
2564 return;
2565
2566 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2567 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2568 if (!(ctx->qname_spec & (1 << i)))
2569 continue;
2570
2571 qname = ctx->s_qf_names[i]; /* May be NULL */
2572 if (qname)
2573 set_opt(sb, QUOTA);
2574 ctx->s_qf_names[i] = NULL;
2575 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2576 lockdep_is_held(&sb->s_umount));
2577 if (qname)
2578 kfree_rcu_mightsleep(qname);
2579 }
2580 }
2581
2582 if (ctx->spec & EXT4_SPEC_JQFMT)
2583 sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2584 #endif
2585 }
2586
2587 /*
2588 * Check quota settings consistency.
2589 */
ext4_check_quota_consistency(struct fs_context * fc,struct super_block * sb)2590 static int ext4_check_quota_consistency(struct fs_context *fc,
2591 struct super_block *sb)
2592 {
2593 #ifdef CONFIG_QUOTA
2594 struct ext4_fs_context *ctx = fc->fs_private;
2595 struct ext4_sb_info *sbi = EXT4_SB(sb);
2596 bool quota_feature = ext4_has_feature_quota(sb);
2597 bool quota_loaded = sb_any_quota_loaded(sb);
2598 bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2599 int quota_flags, i;
2600
2601 /*
2602 * We do the test below only for project quotas. 'usrquota' and
2603 * 'grpquota' mount options are allowed even without quota feature
2604 * to support legacy quotas in quota files.
2605 */
2606 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2607 !ext4_has_feature_project(sb)) {
2608 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2609 "Cannot enable project quota enforcement.");
2610 return -EINVAL;
2611 }
2612
2613 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2614 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2615 if (quota_loaded &&
2616 ctx->mask_s_mount_opt & quota_flags &&
2617 !ctx_test_mount_opt(ctx, quota_flags))
2618 goto err_quota_change;
2619
2620 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2621
2622 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2623 if (!(ctx->qname_spec & (1 << i)))
2624 continue;
2625
2626 if (quota_loaded &&
2627 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2628 goto err_jquota_change;
2629
2630 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2631 strcmp(get_qf_name(sb, sbi, i),
2632 ctx->s_qf_names[i]) != 0)
2633 goto err_jquota_specified;
2634 }
2635
2636 if (quota_feature) {
2637 ext4_msg(NULL, KERN_INFO,
2638 "Journaled quota options ignored when "
2639 "QUOTA feature is enabled");
2640 return 0;
2641 }
2642 }
2643
2644 if (ctx->spec & EXT4_SPEC_JQFMT) {
2645 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2646 goto err_jquota_change;
2647 if (quota_feature) {
2648 ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2649 "ignored when QUOTA feature is enabled");
2650 return 0;
2651 }
2652 }
2653
2654 /* Make sure we don't mix old and new quota format */
2655 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2656 ctx->s_qf_names[USRQUOTA]);
2657 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2658 ctx->s_qf_names[GRPQUOTA]);
2659
2660 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2661 test_opt(sb, USRQUOTA));
2662
2663 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2664 test_opt(sb, GRPQUOTA));
2665
2666 if (usr_qf_name) {
2667 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2668 usrquota = false;
2669 }
2670 if (grp_qf_name) {
2671 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2672 grpquota = false;
2673 }
2674
2675 if (usr_qf_name || grp_qf_name) {
2676 if (usrquota || grpquota) {
2677 ext4_msg(NULL, KERN_ERR, "old and new quota "
2678 "format mixing");
2679 return -EINVAL;
2680 }
2681
2682 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2683 ext4_msg(NULL, KERN_ERR, "journaled quota format "
2684 "not specified");
2685 return -EINVAL;
2686 }
2687 }
2688
2689 return 0;
2690
2691 err_quota_change:
2692 ext4_msg(NULL, KERN_ERR,
2693 "Cannot change quota options when quota turned on");
2694 return -EINVAL;
2695 err_jquota_change:
2696 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2697 "options when quota turned on");
2698 return -EINVAL;
2699 err_jquota_specified:
2700 ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2701 QTYPE2NAME(i));
2702 return -EINVAL;
2703 #else
2704 return 0;
2705 #endif
2706 }
2707
ext4_check_test_dummy_encryption(const struct fs_context * fc,struct super_block * sb)2708 static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2709 struct super_block *sb)
2710 {
2711 const struct ext4_fs_context *ctx = fc->fs_private;
2712 const struct ext4_sb_info *sbi = EXT4_SB(sb);
2713
2714 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2715 return 0;
2716
2717 if (!ext4_has_feature_encrypt(sb)) {
2718 ext4_msg(NULL, KERN_WARNING,
2719 "test_dummy_encryption requires encrypt feature");
2720 return -EINVAL;
2721 }
2722 /*
2723 * This mount option is just for testing, and it's not worthwhile to
2724 * implement the extra complexity (e.g. RCU protection) that would be
2725 * needed to allow it to be set or changed during remount. We do allow
2726 * it to be specified during remount, but only if there is no change.
2727 */
2728 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2729 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2730 &ctx->dummy_enc_policy))
2731 return 0;
2732 ext4_msg(NULL, KERN_WARNING,
2733 "Can't set or change test_dummy_encryption on remount");
2734 return -EINVAL;
2735 }
2736 /* Also make sure s_mount_opts didn't contain a conflicting value. */
2737 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2738 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2739 &ctx->dummy_enc_policy))
2740 return 0;
2741 ext4_msg(NULL, KERN_WARNING,
2742 "Conflicting test_dummy_encryption options");
2743 return -EINVAL;
2744 }
2745 return 0;
2746 }
2747
ext4_apply_test_dummy_encryption(struct ext4_fs_context * ctx,struct super_block * sb)2748 static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2749 struct super_block *sb)
2750 {
2751 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2752 /* if already set, it was already verified to be the same */
2753 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2754 return;
2755 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2756 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2757 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2758 }
2759
ext4_check_opt_consistency(struct fs_context * fc,struct super_block * sb)2760 static int ext4_check_opt_consistency(struct fs_context *fc,
2761 struct super_block *sb)
2762 {
2763 struct ext4_fs_context *ctx = fc->fs_private;
2764 struct ext4_sb_info *sbi = fc->s_fs_info;
2765 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2766 int err;
2767
2768 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2769 ext4_msg(NULL, KERN_ERR,
2770 "Mount option(s) incompatible with ext2");
2771 return -EINVAL;
2772 }
2773 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2774 ext4_msg(NULL, KERN_ERR,
2775 "Mount option(s) incompatible with ext3");
2776 return -EINVAL;
2777 }
2778
2779 if (ctx->s_want_extra_isize >
2780 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2781 ext4_msg(NULL, KERN_ERR,
2782 "Invalid want_extra_isize %d",
2783 ctx->s_want_extra_isize);
2784 return -EINVAL;
2785 }
2786
2787 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
2788 int blocksize =
2789 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2790 if (blocksize < PAGE_SIZE)
2791 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
2792 "experimental mount option 'dioread_nolock' "
2793 "for blocksize < PAGE_SIZE");
2794 }
2795
2796 err = ext4_check_test_dummy_encryption(fc, sb);
2797 if (err)
2798 return err;
2799
2800 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2801 if (!sbi->s_journal) {
2802 ext4_msg(NULL, KERN_WARNING,
2803 "Remounting file system with no journal "
2804 "so ignoring journalled data option");
2805 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2806 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2807 test_opt(sb, DATA_FLAGS)) {
2808 ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2809 "on remount");
2810 return -EINVAL;
2811 }
2812 }
2813
2814 if (is_remount) {
2815 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2816 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2817 ext4_msg(NULL, KERN_ERR, "can't mount with "
2818 "both data=journal and dax");
2819 return -EINVAL;
2820 }
2821
2822 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2823 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2824 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2825 fail_dax_change_remount:
2826 ext4_msg(NULL, KERN_ERR, "can't change "
2827 "dax mount option while remounting");
2828 return -EINVAL;
2829 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2830 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2831 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2832 goto fail_dax_change_remount;
2833 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2834 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2835 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2836 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2837 goto fail_dax_change_remount;
2838 }
2839 }
2840
2841 return ext4_check_quota_consistency(fc, sb);
2842 }
2843
ext4_apply_options(struct fs_context * fc,struct super_block * sb)2844 static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2845 {
2846 struct ext4_fs_context *ctx = fc->fs_private;
2847 struct ext4_sb_info *sbi = fc->s_fs_info;
2848
2849 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2850 sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2851 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2852 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2853 sb->s_flags &= ~ctx->mask_s_flags;
2854 sb->s_flags |= ctx->vals_s_flags;
2855
2856 #define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2857 APPLY(s_commit_interval);
2858 APPLY(s_stripe);
2859 APPLY(s_max_batch_time);
2860 APPLY(s_min_batch_time);
2861 APPLY(s_want_extra_isize);
2862 APPLY(s_inode_readahead_blks);
2863 APPLY(s_max_dir_size_kb);
2864 APPLY(s_li_wait_mult);
2865 APPLY(s_resgid);
2866 APPLY(s_resuid);
2867
2868 #ifdef CONFIG_EXT4_DEBUG
2869 APPLY(s_fc_debug_max_replay);
2870 #endif
2871
2872 ext4_apply_quota_options(fc, sb);
2873 ext4_apply_test_dummy_encryption(ctx, sb);
2874 }
2875
2876
ext4_validate_options(struct fs_context * fc)2877 static int ext4_validate_options(struct fs_context *fc)
2878 {
2879 #ifdef CONFIG_QUOTA
2880 struct ext4_fs_context *ctx = fc->fs_private;
2881 char *usr_qf_name, *grp_qf_name;
2882
2883 usr_qf_name = ctx->s_qf_names[USRQUOTA];
2884 grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2885
2886 if (usr_qf_name || grp_qf_name) {
2887 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2888 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2889
2890 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2891 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2892
2893 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2894 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2895 ext4_msg(NULL, KERN_ERR, "old and new quota "
2896 "format mixing");
2897 return -EINVAL;
2898 }
2899 }
2900 #endif
2901 return 1;
2902 }
2903
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2904 static inline void ext4_show_quota_options(struct seq_file *seq,
2905 struct super_block *sb)
2906 {
2907 #if defined(CONFIG_QUOTA)
2908 struct ext4_sb_info *sbi = EXT4_SB(sb);
2909 char *usr_qf_name, *grp_qf_name;
2910
2911 if (sbi->s_jquota_fmt) {
2912 char *fmtname = "";
2913
2914 switch (sbi->s_jquota_fmt) {
2915 case QFMT_VFS_OLD:
2916 fmtname = "vfsold";
2917 break;
2918 case QFMT_VFS_V0:
2919 fmtname = "vfsv0";
2920 break;
2921 case QFMT_VFS_V1:
2922 fmtname = "vfsv1";
2923 break;
2924 }
2925 seq_printf(seq, ",jqfmt=%s", fmtname);
2926 }
2927
2928 rcu_read_lock();
2929 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2930 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2931 if (usr_qf_name)
2932 seq_show_option(seq, "usrjquota", usr_qf_name);
2933 if (grp_qf_name)
2934 seq_show_option(seq, "grpjquota", grp_qf_name);
2935 rcu_read_unlock();
2936 #endif
2937 }
2938
token2str(int token)2939 static const char *token2str(int token)
2940 {
2941 const struct fs_parameter_spec *spec;
2942
2943 for (spec = ext4_param_specs; spec->name != NULL; spec++)
2944 if (spec->opt == token && !spec->type)
2945 break;
2946 return spec->name;
2947 }
2948
2949 /*
2950 * Show an option if
2951 * - it's set to a non-default value OR
2952 * - if the per-sb default is different from the global default
2953 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2954 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2955 int nodefs)
2956 {
2957 struct ext4_sb_info *sbi = EXT4_SB(sb);
2958 struct ext4_super_block *es = sbi->s_es;
2959 int def_errors;
2960 const struct mount_opts *m;
2961 char sep = nodefs ? '\n' : ',';
2962
2963 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2964 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2965
2966 if (sbi->s_sb_block != 1)
2967 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2968
2969 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2970 int want_set = m->flags & MOPT_SET;
2971 int opt_2 = m->flags & MOPT_2;
2972 unsigned int mount_opt, def_mount_opt;
2973
2974 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2975 m->flags & MOPT_SKIP)
2976 continue;
2977
2978 if (opt_2) {
2979 mount_opt = sbi->s_mount_opt2;
2980 def_mount_opt = sbi->s_def_mount_opt2;
2981 } else {
2982 mount_opt = sbi->s_mount_opt;
2983 def_mount_opt = sbi->s_def_mount_opt;
2984 }
2985 /* skip if same as the default */
2986 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2987 continue;
2988 /* select Opt_noFoo vs Opt_Foo */
2989 if ((want_set &&
2990 (mount_opt & m->mount_opt) != m->mount_opt) ||
2991 (!want_set && (mount_opt & m->mount_opt)))
2992 continue;
2993 SEQ_OPTS_PRINT("%s", token2str(m->token));
2994 }
2995
2996 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2997 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2998 SEQ_OPTS_PRINT("resuid=%u",
2999 from_kuid_munged(&init_user_ns, sbi->s_resuid));
3000 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
3001 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
3002 SEQ_OPTS_PRINT("resgid=%u",
3003 from_kgid_munged(&init_user_ns, sbi->s_resgid));
3004 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
3005 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
3006 SEQ_OPTS_PUTS("errors=remount-ro");
3007 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
3008 SEQ_OPTS_PUTS("errors=continue");
3009 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
3010 SEQ_OPTS_PUTS("errors=panic");
3011 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
3012 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
3013 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
3014 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
3015 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
3016 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
3017 if (nodefs || sbi->s_stripe)
3018 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
3019 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
3020 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3021 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3022 SEQ_OPTS_PUTS("data=journal");
3023 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3024 SEQ_OPTS_PUTS("data=ordered");
3025 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3026 SEQ_OPTS_PUTS("data=writeback");
3027 }
3028 if (nodefs ||
3029 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3030 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3031 sbi->s_inode_readahead_blks);
3032
3033 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3034 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3035 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3036 if (nodefs || sbi->s_max_dir_size_kb)
3037 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3038 if (test_opt(sb, DATA_ERR_ABORT))
3039 SEQ_OPTS_PUTS("data_err=abort");
3040
3041 fscrypt_show_test_dummy_encryption(seq, sep, sb);
3042
3043 if (sb->s_flags & SB_INLINECRYPT)
3044 SEQ_OPTS_PUTS("inlinecrypt");
3045
3046 if (test_opt(sb, DAX_ALWAYS)) {
3047 if (IS_EXT2_SB(sb))
3048 SEQ_OPTS_PUTS("dax");
3049 else
3050 SEQ_OPTS_PUTS("dax=always");
3051 } else if (test_opt2(sb, DAX_NEVER)) {
3052 SEQ_OPTS_PUTS("dax=never");
3053 } else if (test_opt2(sb, DAX_INODE)) {
3054 SEQ_OPTS_PUTS("dax=inode");
3055 }
3056
3057 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3058 !test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3059 SEQ_OPTS_PUTS("mb_optimize_scan=0");
3060 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3061 test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3062 SEQ_OPTS_PUTS("mb_optimize_scan=1");
3063 }
3064
3065 ext4_show_quota_options(seq, sb);
3066 return 0;
3067 }
3068
ext4_show_options(struct seq_file * seq,struct dentry * root)3069 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3070 {
3071 return _ext4_show_options(seq, root->d_sb, 0);
3072 }
3073
ext4_seq_options_show(struct seq_file * seq,void * offset)3074 int ext4_seq_options_show(struct seq_file *seq, void *offset)
3075 {
3076 struct super_block *sb = seq->private;
3077 int rc;
3078
3079 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3080 rc = _ext4_show_options(seq, sb, 1);
3081 seq_puts(seq, "\n");
3082 return rc;
3083 }
3084
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)3085 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3086 int read_only)
3087 {
3088 struct ext4_sb_info *sbi = EXT4_SB(sb);
3089 int err = 0;
3090
3091 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3092 ext4_msg(sb, KERN_ERR, "revision level too high, "
3093 "forcing read-only mode");
3094 err = -EROFS;
3095 goto done;
3096 }
3097 if (read_only)
3098 goto done;
3099 if (!(sbi->s_mount_state & EXT4_VALID_FS))
3100 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3101 "running e2fsck is recommended");
3102 else if (sbi->s_mount_state & EXT4_ERROR_FS)
3103 ext4_msg(sb, KERN_WARNING,
3104 "warning: mounting fs with errors, "
3105 "running e2fsck is recommended");
3106 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3107 le16_to_cpu(es->s_mnt_count) >=
3108 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3109 ext4_msg(sb, KERN_WARNING,
3110 "warning: maximal mount count reached, "
3111 "running e2fsck is recommended");
3112 else if (le32_to_cpu(es->s_checkinterval) &&
3113 (ext4_get_tstamp(es, s_lastcheck) +
3114 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3115 ext4_msg(sb, KERN_WARNING,
3116 "warning: checktime reached, "
3117 "running e2fsck is recommended");
3118 if (!sbi->s_journal)
3119 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3120 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3121 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3122 le16_add_cpu(&es->s_mnt_count, 1);
3123 ext4_update_tstamp(es, s_mtime);
3124 if (sbi->s_journal) {
3125 ext4_set_feature_journal_needs_recovery(sb);
3126 if (ext4_has_feature_orphan_file(sb))
3127 ext4_set_feature_orphan_present(sb);
3128 }
3129
3130 err = ext4_commit_super(sb);
3131 done:
3132 if (test_opt(sb, DEBUG))
3133 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3134 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3135 sb->s_blocksize,
3136 sbi->s_groups_count,
3137 EXT4_BLOCKS_PER_GROUP(sb),
3138 EXT4_INODES_PER_GROUP(sb),
3139 sbi->s_mount_opt, sbi->s_mount_opt2);
3140 return err;
3141 }
3142
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)3143 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3144 {
3145 struct ext4_sb_info *sbi = EXT4_SB(sb);
3146 struct flex_groups **old_groups, **new_groups;
3147 int size, i, j;
3148
3149 if (!sbi->s_log_groups_per_flex)
3150 return 0;
3151
3152 size = ext4_flex_group(sbi, ngroup - 1) + 1;
3153 if (size <= sbi->s_flex_groups_allocated)
3154 return 0;
3155
3156 new_groups = kvzalloc(roundup_pow_of_two(size *
3157 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3158 if (!new_groups) {
3159 ext4_msg(sb, KERN_ERR,
3160 "not enough memory for %d flex group pointers", size);
3161 return -ENOMEM;
3162 }
3163 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3164 new_groups[i] = kvzalloc(roundup_pow_of_two(
3165 sizeof(struct flex_groups)),
3166 GFP_KERNEL);
3167 if (!new_groups[i]) {
3168 for (j = sbi->s_flex_groups_allocated; j < i; j++)
3169 kvfree(new_groups[j]);
3170 kvfree(new_groups);
3171 ext4_msg(sb, KERN_ERR,
3172 "not enough memory for %d flex groups", size);
3173 return -ENOMEM;
3174 }
3175 }
3176 rcu_read_lock();
3177 old_groups = rcu_dereference(sbi->s_flex_groups);
3178 if (old_groups)
3179 memcpy(new_groups, old_groups,
3180 (sbi->s_flex_groups_allocated *
3181 sizeof(struct flex_groups *)));
3182 rcu_read_unlock();
3183 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3184 sbi->s_flex_groups_allocated = size;
3185 if (old_groups)
3186 ext4_kvfree_array_rcu(old_groups);
3187 return 0;
3188 }
3189
ext4_fill_flex_info(struct super_block * sb)3190 static int ext4_fill_flex_info(struct super_block *sb)
3191 {
3192 struct ext4_sb_info *sbi = EXT4_SB(sb);
3193 struct ext4_group_desc *gdp = NULL;
3194 struct flex_groups *fg;
3195 ext4_group_t flex_group;
3196 int i, err;
3197
3198 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3199 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3200 sbi->s_log_groups_per_flex = 0;
3201 return 1;
3202 }
3203
3204 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3205 if (err)
3206 goto failed;
3207
3208 for (i = 0; i < sbi->s_groups_count; i++) {
3209 gdp = ext4_get_group_desc(sb, i, NULL);
3210
3211 flex_group = ext4_flex_group(sbi, i);
3212 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3213 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3214 atomic64_add(ext4_free_group_clusters(sb, gdp),
3215 &fg->free_clusters);
3216 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3217 }
3218
3219 return 1;
3220 failed:
3221 return 0;
3222 }
3223
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3224 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3225 struct ext4_group_desc *gdp)
3226 {
3227 int offset = offsetof(struct ext4_group_desc, bg_checksum);
3228 __u16 crc = 0;
3229 __le32 le_group = cpu_to_le32(block_group);
3230 struct ext4_sb_info *sbi = EXT4_SB(sb);
3231
3232 if (ext4_has_metadata_csum(sbi->s_sb)) {
3233 /* Use new metadata_csum algorithm */
3234 __u32 csum32;
3235 __u16 dummy_csum = 0;
3236
3237 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3238 sizeof(le_group));
3239 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3240 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3241 sizeof(dummy_csum));
3242 offset += sizeof(dummy_csum);
3243 if (offset < sbi->s_desc_size)
3244 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3245 sbi->s_desc_size - offset);
3246
3247 crc = csum32 & 0xFFFF;
3248 goto out;
3249 }
3250
3251 /* old crc16 code */
3252 if (!ext4_has_feature_gdt_csum(sb))
3253 return 0;
3254
3255 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3256 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3257 crc = crc16(crc, (__u8 *)gdp, offset);
3258 offset += sizeof(gdp->bg_checksum); /* skip checksum */
3259 /* for checksum of struct ext4_group_desc do the rest...*/
3260 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3261 crc = crc16(crc, (__u8 *)gdp + offset,
3262 sbi->s_desc_size - offset);
3263
3264 out:
3265 return cpu_to_le16(crc);
3266 }
3267
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3268 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3269 struct ext4_group_desc *gdp)
3270 {
3271 if (ext4_has_group_desc_csum(sb) &&
3272 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3273 return 0;
3274
3275 return 1;
3276 }
3277
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)3278 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3279 struct ext4_group_desc *gdp)
3280 {
3281 if (!ext4_has_group_desc_csum(sb))
3282 return;
3283 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3284 }
3285
3286 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)3287 static int ext4_check_descriptors(struct super_block *sb,
3288 ext4_fsblk_t sb_block,
3289 ext4_group_t *first_not_zeroed)
3290 {
3291 struct ext4_sb_info *sbi = EXT4_SB(sb);
3292 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3293 ext4_fsblk_t last_block;
3294 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3295 ext4_fsblk_t block_bitmap;
3296 ext4_fsblk_t inode_bitmap;
3297 ext4_fsblk_t inode_table;
3298 int flexbg_flag = 0;
3299 ext4_group_t i, grp = sbi->s_groups_count;
3300
3301 if (ext4_has_feature_flex_bg(sb))
3302 flexbg_flag = 1;
3303
3304 ext4_debug("Checking group descriptors");
3305
3306 for (i = 0; i < sbi->s_groups_count; i++) {
3307 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3308
3309 if (i == sbi->s_groups_count - 1 || flexbg_flag)
3310 last_block = ext4_blocks_count(sbi->s_es) - 1;
3311 else
3312 last_block = first_block +
3313 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
3314
3315 if ((grp == sbi->s_groups_count) &&
3316 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3317 grp = i;
3318
3319 block_bitmap = ext4_block_bitmap(sb, gdp);
3320 if (block_bitmap == sb_block) {
3321 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3322 "Block bitmap for group %u overlaps "
3323 "superblock", i);
3324 if (!sb_rdonly(sb))
3325 return 0;
3326 }
3327 if (block_bitmap >= sb_block + 1 &&
3328 block_bitmap <= last_bg_block) {
3329 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3330 "Block bitmap for group %u overlaps "
3331 "block group descriptors", i);
3332 if (!sb_rdonly(sb))
3333 return 0;
3334 }
3335 if (block_bitmap < first_block || block_bitmap > last_block) {
3336 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3337 "Block bitmap for group %u not in group "
3338 "(block %llu)!", i, block_bitmap);
3339 return 0;
3340 }
3341 inode_bitmap = ext4_inode_bitmap(sb, gdp);
3342 if (inode_bitmap == sb_block) {
3343 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3344 "Inode bitmap for group %u overlaps "
3345 "superblock", i);
3346 if (!sb_rdonly(sb))
3347 return 0;
3348 }
3349 if (inode_bitmap >= sb_block + 1 &&
3350 inode_bitmap <= last_bg_block) {
3351 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3352 "Inode bitmap for group %u overlaps "
3353 "block group descriptors", i);
3354 if (!sb_rdonly(sb))
3355 return 0;
3356 }
3357 if (inode_bitmap < first_block || inode_bitmap > last_block) {
3358 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3359 "Inode bitmap for group %u not in group "
3360 "(block %llu)!", i, inode_bitmap);
3361 return 0;
3362 }
3363 inode_table = ext4_inode_table(sb, gdp);
3364 if (inode_table == sb_block) {
3365 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3366 "Inode table for group %u overlaps "
3367 "superblock", i);
3368 if (!sb_rdonly(sb))
3369 return 0;
3370 }
3371 if (inode_table >= sb_block + 1 &&
3372 inode_table <= last_bg_block) {
3373 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3374 "Inode table for group %u overlaps "
3375 "block group descriptors", i);
3376 if (!sb_rdonly(sb))
3377 return 0;
3378 }
3379 if (inode_table < first_block ||
3380 inode_table + sbi->s_itb_per_group - 1 > last_block) {
3381 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3382 "Inode table for group %u not in group "
3383 "(block %llu)!", i, inode_table);
3384 return 0;
3385 }
3386 ext4_lock_group(sb, i);
3387 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3388 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3389 "Checksum for group %u failed (%u!=%u)",
3390 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3391 gdp)), le16_to_cpu(gdp->bg_checksum));
3392 if (!sb_rdonly(sb)) {
3393 ext4_unlock_group(sb, i);
3394 return 0;
3395 }
3396 }
3397 ext4_unlock_group(sb, i);
3398 if (!flexbg_flag)
3399 first_block += EXT4_BLOCKS_PER_GROUP(sb);
3400 }
3401 if (NULL != first_not_zeroed)
3402 *first_not_zeroed = grp;
3403 return 1;
3404 }
3405
3406 /*
3407 * Maximal extent format file size.
3408 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3409 * extent format containers, within a sector_t, and within i_blocks
3410 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3411 * so that won't be a limiting factor.
3412 *
3413 * However there is other limiting factor. We do store extents in the form
3414 * of starting block and length, hence the resulting length of the extent
3415 * covering maximum file size must fit into on-disk format containers as
3416 * well. Given that length is always by 1 unit bigger than max unit (because
3417 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3418 *
3419 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3420 */
ext4_max_size(int blkbits,int has_huge_files)3421 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3422 {
3423 loff_t res;
3424 loff_t upper_limit = MAX_LFS_FILESIZE;
3425
3426 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3427
3428 if (!has_huge_files) {
3429 upper_limit = (1LL << 32) - 1;
3430
3431 /* total blocks in file system block size */
3432 upper_limit >>= (blkbits - 9);
3433 upper_limit <<= blkbits;
3434 }
3435
3436 /*
3437 * 32-bit extent-start container, ee_block. We lower the maxbytes
3438 * by one fs block, so ee_len can cover the extent of maximum file
3439 * size
3440 */
3441 res = (1LL << 32) - 1;
3442 res <<= blkbits;
3443
3444 /* Sanity check against vm- & vfs- imposed limits */
3445 if (res > upper_limit)
3446 res = upper_limit;
3447
3448 return res;
3449 }
3450
3451 /*
3452 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3453 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3454 * We need to be 1 filesystem block less than the 2^48 sector limit.
3455 */
ext4_max_bitmap_size(int bits,int has_huge_files)3456 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3457 {
3458 loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3459 int meta_blocks;
3460 unsigned int ppb = 1 << (bits - 2);
3461
3462 /*
3463 * This is calculated to be the largest file size for a dense, block
3464 * mapped file such that the file's total number of 512-byte sectors,
3465 * including data and all indirect blocks, does not exceed (2^48 - 1).
3466 *
3467 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3468 * number of 512-byte sectors of the file.
3469 */
3470 if (!has_huge_files) {
3471 /*
3472 * !has_huge_files or implies that the inode i_block field
3473 * represents total file blocks in 2^32 512-byte sectors ==
3474 * size of vfs inode i_blocks * 8
3475 */
3476 upper_limit = (1LL << 32) - 1;
3477
3478 /* total blocks in file system block size */
3479 upper_limit >>= (bits - 9);
3480
3481 } else {
3482 /*
3483 * We use 48 bit ext4_inode i_blocks
3484 * With EXT4_HUGE_FILE_FL set the i_blocks
3485 * represent total number of blocks in
3486 * file system block size
3487 */
3488 upper_limit = (1LL << 48) - 1;
3489
3490 }
3491
3492 /* Compute how many blocks we can address by block tree */
3493 res += ppb;
3494 res += ppb * ppb;
3495 res += ((loff_t)ppb) * ppb * ppb;
3496 /* Compute how many metadata blocks are needed */
3497 meta_blocks = 1;
3498 meta_blocks += 1 + ppb;
3499 meta_blocks += 1 + ppb + ppb * ppb;
3500 /* Does block tree limit file size? */
3501 if (res + meta_blocks <= upper_limit)
3502 goto check_lfs;
3503
3504 res = upper_limit;
3505 /* How many metadata blocks are needed for addressing upper_limit? */
3506 upper_limit -= EXT4_NDIR_BLOCKS;
3507 /* indirect blocks */
3508 meta_blocks = 1;
3509 upper_limit -= ppb;
3510 /* double indirect blocks */
3511 if (upper_limit < ppb * ppb) {
3512 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3513 res -= meta_blocks;
3514 goto check_lfs;
3515 }
3516 meta_blocks += 1 + ppb;
3517 upper_limit -= ppb * ppb;
3518 /* tripple indirect blocks for the rest */
3519 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3520 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3521 res -= meta_blocks;
3522 check_lfs:
3523 res <<= bits;
3524 if (res > MAX_LFS_FILESIZE)
3525 res = MAX_LFS_FILESIZE;
3526
3527 return res;
3528 }
3529
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3530 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3531 ext4_fsblk_t logical_sb_block, int nr)
3532 {
3533 struct ext4_sb_info *sbi = EXT4_SB(sb);
3534 ext4_group_t bg, first_meta_bg;
3535 int has_super = 0;
3536
3537 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3538
3539 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3540 return logical_sb_block + nr + 1;
3541 bg = sbi->s_desc_per_block * nr;
3542 if (ext4_bg_has_super(sb, bg))
3543 has_super = 1;
3544
3545 /*
3546 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3547 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3548 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3549 * compensate.
3550 */
3551 if (sb->s_blocksize == 1024 && nr == 0 &&
3552 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3553 has_super++;
3554
3555 return (has_super + ext4_group_first_block_no(sb, bg));
3556 }
3557
3558 /**
3559 * ext4_get_stripe_size: Get the stripe size.
3560 * @sbi: In memory super block info
3561 *
3562 * If we have specified it via mount option, then
3563 * use the mount option value. If the value specified at mount time is
3564 * greater than the blocks per group use the super block value.
3565 * If the super block value is greater than blocks per group return 0.
3566 * Allocator needs it be less than blocks per group.
3567 *
3568 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3569 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3570 {
3571 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3572 unsigned long stripe_width =
3573 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3574 int ret;
3575
3576 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3577 ret = sbi->s_stripe;
3578 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3579 ret = stripe_width;
3580 else if (stride && stride <= sbi->s_blocks_per_group)
3581 ret = stride;
3582 else
3583 ret = 0;
3584
3585 /*
3586 * If the stripe width is 1, this makes no sense and
3587 * we set it to 0 to turn off stripe handling code.
3588 */
3589 if (ret <= 1)
3590 ret = 0;
3591
3592 return ret;
3593 }
3594
3595 /*
3596 * Check whether this filesystem can be mounted based on
3597 * the features present and the RDONLY/RDWR mount requested.
3598 * Returns 1 if this filesystem can be mounted as requested,
3599 * 0 if it cannot be.
3600 */
ext4_feature_set_ok(struct super_block * sb,int readonly)3601 int ext4_feature_set_ok(struct super_block *sb, int readonly)
3602 {
3603 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3604 ext4_msg(sb, KERN_ERR,
3605 "Couldn't mount because of "
3606 "unsupported optional features (%x)",
3607 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3608 ~EXT4_FEATURE_INCOMPAT_SUPP));
3609 return 0;
3610 }
3611
3612 #if !IS_ENABLED(CONFIG_UNICODE)
3613 if (ext4_has_feature_casefold(sb)) {
3614 ext4_msg(sb, KERN_ERR,
3615 "Filesystem with casefold feature cannot be "
3616 "mounted without CONFIG_UNICODE");
3617 return 0;
3618 }
3619 #endif
3620
3621 if (readonly)
3622 return 1;
3623
3624 if (ext4_has_feature_readonly(sb)) {
3625 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3626 sb->s_flags |= SB_RDONLY;
3627 return 1;
3628 }
3629
3630 /* Check that feature set is OK for a read-write mount */
3631 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3632 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3633 "unsupported optional features (%x)",
3634 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3635 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3636 return 0;
3637 }
3638 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3639 ext4_msg(sb, KERN_ERR,
3640 "Can't support bigalloc feature without "
3641 "extents feature\n");
3642 return 0;
3643 }
3644
3645 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3646 if (!readonly && (ext4_has_feature_quota(sb) ||
3647 ext4_has_feature_project(sb))) {
3648 ext4_msg(sb, KERN_ERR,
3649 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3650 return 0;
3651 }
3652 #endif /* CONFIG_QUOTA */
3653 return 1;
3654 }
3655
3656 /*
3657 * This function is called once a day if we have errors logged
3658 * on the file system
3659 */
print_daily_error_info(struct timer_list * t)3660 static void print_daily_error_info(struct timer_list *t)
3661 {
3662 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3663 struct super_block *sb = sbi->s_sb;
3664 struct ext4_super_block *es = sbi->s_es;
3665
3666 if (es->s_error_count)
3667 /* fsck newer than v1.41.13 is needed to clean this condition. */
3668 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3669 le32_to_cpu(es->s_error_count));
3670 if (es->s_first_error_time) {
3671 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3672 sb->s_id,
3673 ext4_get_tstamp(es, s_first_error_time),
3674 (int) sizeof(es->s_first_error_func),
3675 es->s_first_error_func,
3676 le32_to_cpu(es->s_first_error_line));
3677 if (es->s_first_error_ino)
3678 printk(KERN_CONT ": inode %u",
3679 le32_to_cpu(es->s_first_error_ino));
3680 if (es->s_first_error_block)
3681 printk(KERN_CONT ": block %llu", (unsigned long long)
3682 le64_to_cpu(es->s_first_error_block));
3683 printk(KERN_CONT "\n");
3684 }
3685 if (es->s_last_error_time) {
3686 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3687 sb->s_id,
3688 ext4_get_tstamp(es, s_last_error_time),
3689 (int) sizeof(es->s_last_error_func),
3690 es->s_last_error_func,
3691 le32_to_cpu(es->s_last_error_line));
3692 if (es->s_last_error_ino)
3693 printk(KERN_CONT ": inode %u",
3694 le32_to_cpu(es->s_last_error_ino));
3695 if (es->s_last_error_block)
3696 printk(KERN_CONT ": block %llu", (unsigned long long)
3697 le64_to_cpu(es->s_last_error_block));
3698 printk(KERN_CONT "\n");
3699 }
3700 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3701 }
3702
3703 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3704 static int ext4_run_li_request(struct ext4_li_request *elr)
3705 {
3706 struct ext4_group_desc *gdp = NULL;
3707 struct super_block *sb = elr->lr_super;
3708 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3709 ext4_group_t group = elr->lr_next_group;
3710 unsigned int prefetch_ios = 0;
3711 int ret = 0;
3712 int nr = EXT4_SB(sb)->s_mb_prefetch;
3713 u64 start_time;
3714
3715 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3716 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3717 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3718 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3719 if (group >= elr->lr_next_group) {
3720 ret = 1;
3721 if (elr->lr_first_not_zeroed != ngroups &&
3722 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3723 elr->lr_next_group = elr->lr_first_not_zeroed;
3724 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3725 ret = 0;
3726 }
3727 }
3728 return ret;
3729 }
3730
3731 for (; group < ngroups; group++) {
3732 gdp = ext4_get_group_desc(sb, group, NULL);
3733 if (!gdp) {
3734 ret = 1;
3735 break;
3736 }
3737
3738 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3739 break;
3740 }
3741
3742 if (group >= ngroups)
3743 ret = 1;
3744
3745 if (!ret) {
3746 start_time = ktime_get_real_ns();
3747 ret = ext4_init_inode_table(sb, group,
3748 elr->lr_timeout ? 0 : 1);
3749 trace_ext4_lazy_itable_init(sb, group);
3750 if (elr->lr_timeout == 0) {
3751 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3752 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3753 }
3754 elr->lr_next_sched = jiffies + elr->lr_timeout;
3755 elr->lr_next_group = group + 1;
3756 }
3757 return ret;
3758 }
3759
3760 /*
3761 * Remove lr_request from the list_request and free the
3762 * request structure. Should be called with li_list_mtx held
3763 */
ext4_remove_li_request(struct ext4_li_request * elr)3764 static void ext4_remove_li_request(struct ext4_li_request *elr)
3765 {
3766 if (!elr)
3767 return;
3768
3769 list_del(&elr->lr_request);
3770 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3771 kfree(elr);
3772 }
3773
ext4_unregister_li_request(struct super_block * sb)3774 static void ext4_unregister_li_request(struct super_block *sb)
3775 {
3776 mutex_lock(&ext4_li_mtx);
3777 if (!ext4_li_info) {
3778 mutex_unlock(&ext4_li_mtx);
3779 return;
3780 }
3781
3782 mutex_lock(&ext4_li_info->li_list_mtx);
3783 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3784 mutex_unlock(&ext4_li_info->li_list_mtx);
3785 mutex_unlock(&ext4_li_mtx);
3786 }
3787
3788 static struct task_struct *ext4_lazyinit_task;
3789
3790 /*
3791 * This is the function where ext4lazyinit thread lives. It walks
3792 * through the request list searching for next scheduled filesystem.
3793 * When such a fs is found, run the lazy initialization request
3794 * (ext4_rn_li_request) and keep track of the time spend in this
3795 * function. Based on that time we compute next schedule time of
3796 * the request. When walking through the list is complete, compute
3797 * next waking time and put itself into sleep.
3798 */
ext4_lazyinit_thread(void * arg)3799 static int ext4_lazyinit_thread(void *arg)
3800 {
3801 struct ext4_lazy_init *eli = arg;
3802 struct list_head *pos, *n;
3803 struct ext4_li_request *elr;
3804 unsigned long next_wakeup, cur;
3805
3806 BUG_ON(NULL == eli);
3807 set_freezable();
3808
3809 cont_thread:
3810 while (true) {
3811 next_wakeup = MAX_JIFFY_OFFSET;
3812
3813 mutex_lock(&eli->li_list_mtx);
3814 if (list_empty(&eli->li_request_list)) {
3815 mutex_unlock(&eli->li_list_mtx);
3816 goto exit_thread;
3817 }
3818 list_for_each_safe(pos, n, &eli->li_request_list) {
3819 int err = 0;
3820 int progress = 0;
3821 elr = list_entry(pos, struct ext4_li_request,
3822 lr_request);
3823
3824 if (time_before(jiffies, elr->lr_next_sched)) {
3825 if (time_before(elr->lr_next_sched, next_wakeup))
3826 next_wakeup = elr->lr_next_sched;
3827 continue;
3828 }
3829 if (down_read_trylock(&elr->lr_super->s_umount)) {
3830 if (sb_start_write_trylock(elr->lr_super)) {
3831 progress = 1;
3832 /*
3833 * We hold sb->s_umount, sb can not
3834 * be removed from the list, it is
3835 * now safe to drop li_list_mtx
3836 */
3837 mutex_unlock(&eli->li_list_mtx);
3838 err = ext4_run_li_request(elr);
3839 sb_end_write(elr->lr_super);
3840 mutex_lock(&eli->li_list_mtx);
3841 n = pos->next;
3842 }
3843 up_read((&elr->lr_super->s_umount));
3844 }
3845 /* error, remove the lazy_init job */
3846 if (err) {
3847 ext4_remove_li_request(elr);
3848 continue;
3849 }
3850 if (!progress) {
3851 elr->lr_next_sched = jiffies +
3852 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3853 }
3854 if (time_before(elr->lr_next_sched, next_wakeup))
3855 next_wakeup = elr->lr_next_sched;
3856 }
3857 mutex_unlock(&eli->li_list_mtx);
3858
3859 try_to_freeze();
3860
3861 cur = jiffies;
3862 if ((time_after_eq(cur, next_wakeup)) ||
3863 (MAX_JIFFY_OFFSET == next_wakeup)) {
3864 cond_resched();
3865 continue;
3866 }
3867
3868 schedule_timeout_interruptible(next_wakeup - cur);
3869
3870 if (kthread_should_stop()) {
3871 ext4_clear_request_list();
3872 goto exit_thread;
3873 }
3874 }
3875
3876 exit_thread:
3877 /*
3878 * It looks like the request list is empty, but we need
3879 * to check it under the li_list_mtx lock, to prevent any
3880 * additions into it, and of course we should lock ext4_li_mtx
3881 * to atomically free the list and ext4_li_info, because at
3882 * this point another ext4 filesystem could be registering
3883 * new one.
3884 */
3885 mutex_lock(&ext4_li_mtx);
3886 mutex_lock(&eli->li_list_mtx);
3887 if (!list_empty(&eli->li_request_list)) {
3888 mutex_unlock(&eli->li_list_mtx);
3889 mutex_unlock(&ext4_li_mtx);
3890 goto cont_thread;
3891 }
3892 mutex_unlock(&eli->li_list_mtx);
3893 kfree(ext4_li_info);
3894 ext4_li_info = NULL;
3895 mutex_unlock(&ext4_li_mtx);
3896
3897 return 0;
3898 }
3899
ext4_clear_request_list(void)3900 static void ext4_clear_request_list(void)
3901 {
3902 struct list_head *pos, *n;
3903 struct ext4_li_request *elr;
3904
3905 mutex_lock(&ext4_li_info->li_list_mtx);
3906 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3907 elr = list_entry(pos, struct ext4_li_request,
3908 lr_request);
3909 ext4_remove_li_request(elr);
3910 }
3911 mutex_unlock(&ext4_li_info->li_list_mtx);
3912 }
3913
ext4_run_lazyinit_thread(void)3914 static int ext4_run_lazyinit_thread(void)
3915 {
3916 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3917 ext4_li_info, "ext4lazyinit");
3918 if (IS_ERR(ext4_lazyinit_task)) {
3919 int err = PTR_ERR(ext4_lazyinit_task);
3920 ext4_clear_request_list();
3921 kfree(ext4_li_info);
3922 ext4_li_info = NULL;
3923 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3924 "initialization thread\n",
3925 err);
3926 return err;
3927 }
3928 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3929 return 0;
3930 }
3931
3932 /*
3933 * Check whether it make sense to run itable init. thread or not.
3934 * If there is at least one uninitialized inode table, return
3935 * corresponding group number, else the loop goes through all
3936 * groups and return total number of groups.
3937 */
ext4_has_uninit_itable(struct super_block * sb)3938 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3939 {
3940 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3941 struct ext4_group_desc *gdp = NULL;
3942
3943 if (!ext4_has_group_desc_csum(sb))
3944 return ngroups;
3945
3946 for (group = 0; group < ngroups; group++) {
3947 gdp = ext4_get_group_desc(sb, group, NULL);
3948 if (!gdp)
3949 continue;
3950
3951 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3952 break;
3953 }
3954
3955 return group;
3956 }
3957
ext4_li_info_new(void)3958 static int ext4_li_info_new(void)
3959 {
3960 struct ext4_lazy_init *eli = NULL;
3961
3962 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3963 if (!eli)
3964 return -ENOMEM;
3965
3966 INIT_LIST_HEAD(&eli->li_request_list);
3967 mutex_init(&eli->li_list_mtx);
3968
3969 eli->li_state |= EXT4_LAZYINIT_QUIT;
3970
3971 ext4_li_info = eli;
3972
3973 return 0;
3974 }
3975
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3976 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3977 ext4_group_t start)
3978 {
3979 struct ext4_li_request *elr;
3980
3981 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3982 if (!elr)
3983 return NULL;
3984
3985 elr->lr_super = sb;
3986 elr->lr_first_not_zeroed = start;
3987 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3988 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3989 elr->lr_next_group = start;
3990 } else {
3991 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3992 }
3993
3994 /*
3995 * Randomize first schedule time of the request to
3996 * spread the inode table initialization requests
3997 * better.
3998 */
3999 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
4000 return elr;
4001 }
4002
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)4003 int ext4_register_li_request(struct super_block *sb,
4004 ext4_group_t first_not_zeroed)
4005 {
4006 struct ext4_sb_info *sbi = EXT4_SB(sb);
4007 struct ext4_li_request *elr = NULL;
4008 ext4_group_t ngroups = sbi->s_groups_count;
4009 int ret = 0;
4010
4011 mutex_lock(&ext4_li_mtx);
4012 if (sbi->s_li_request != NULL) {
4013 /*
4014 * Reset timeout so it can be computed again, because
4015 * s_li_wait_mult might have changed.
4016 */
4017 sbi->s_li_request->lr_timeout = 0;
4018 goto out;
4019 }
4020
4021 if (sb_rdonly(sb) ||
4022 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4023 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4024 goto out;
4025
4026 elr = ext4_li_request_new(sb, first_not_zeroed);
4027 if (!elr) {
4028 ret = -ENOMEM;
4029 goto out;
4030 }
4031
4032 if (NULL == ext4_li_info) {
4033 ret = ext4_li_info_new();
4034 if (ret)
4035 goto out;
4036 }
4037
4038 mutex_lock(&ext4_li_info->li_list_mtx);
4039 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4040 mutex_unlock(&ext4_li_info->li_list_mtx);
4041
4042 sbi->s_li_request = elr;
4043 /*
4044 * set elr to NULL here since it has been inserted to
4045 * the request_list and the removal and free of it is
4046 * handled by ext4_clear_request_list from now on.
4047 */
4048 elr = NULL;
4049
4050 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4051 ret = ext4_run_lazyinit_thread();
4052 if (ret)
4053 goto out;
4054 }
4055 out:
4056 mutex_unlock(&ext4_li_mtx);
4057 if (ret)
4058 kfree(elr);
4059 return ret;
4060 }
4061
4062 /*
4063 * We do not need to lock anything since this is called on
4064 * module unload.
4065 */
ext4_destroy_lazyinit_thread(void)4066 static void ext4_destroy_lazyinit_thread(void)
4067 {
4068 /*
4069 * If thread exited earlier
4070 * there's nothing to be done.
4071 */
4072 if (!ext4_li_info || !ext4_lazyinit_task)
4073 return;
4074
4075 kthread_stop(ext4_lazyinit_task);
4076 }
4077
set_journal_csum_feature_set(struct super_block * sb)4078 static int set_journal_csum_feature_set(struct super_block *sb)
4079 {
4080 int ret = 1;
4081 int compat, incompat;
4082 struct ext4_sb_info *sbi = EXT4_SB(sb);
4083
4084 if (ext4_has_metadata_csum(sb)) {
4085 /* journal checksum v3 */
4086 compat = 0;
4087 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4088 } else {
4089 /* journal checksum v1 */
4090 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4091 incompat = 0;
4092 }
4093
4094 jbd2_journal_clear_features(sbi->s_journal,
4095 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4096 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4097 JBD2_FEATURE_INCOMPAT_CSUM_V2);
4098 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4099 ret = jbd2_journal_set_features(sbi->s_journal,
4100 compat, 0,
4101 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4102 incompat);
4103 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4104 ret = jbd2_journal_set_features(sbi->s_journal,
4105 compat, 0,
4106 incompat);
4107 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4108 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4109 } else {
4110 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4111 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4112 }
4113
4114 return ret;
4115 }
4116
4117 /*
4118 * Note: calculating the overhead so we can be compatible with
4119 * historical BSD practice is quite difficult in the face of
4120 * clusters/bigalloc. This is because multiple metadata blocks from
4121 * different block group can end up in the same allocation cluster.
4122 * Calculating the exact overhead in the face of clustered allocation
4123 * requires either O(all block bitmaps) in memory or O(number of block
4124 * groups**2) in time. We will still calculate the superblock for
4125 * older file systems --- and if we come across with a bigalloc file
4126 * system with zero in s_overhead_clusters the estimate will be close to
4127 * correct especially for very large cluster sizes --- but for newer
4128 * file systems, it's better to calculate this figure once at mkfs
4129 * time, and store it in the superblock. If the superblock value is
4130 * present (even for non-bigalloc file systems), we will use it.
4131 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)4132 static int count_overhead(struct super_block *sb, ext4_group_t grp,
4133 char *buf)
4134 {
4135 struct ext4_sb_info *sbi = EXT4_SB(sb);
4136 struct ext4_group_desc *gdp;
4137 ext4_fsblk_t first_block, last_block, b;
4138 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4139 int s, j, count = 0;
4140 int has_super = ext4_bg_has_super(sb, grp);
4141
4142 if (!ext4_has_feature_bigalloc(sb))
4143 return (has_super + ext4_bg_num_gdb(sb, grp) +
4144 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4145 sbi->s_itb_per_group + 2);
4146
4147 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4148 (grp * EXT4_BLOCKS_PER_GROUP(sb));
4149 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4150 for (i = 0; i < ngroups; i++) {
4151 gdp = ext4_get_group_desc(sb, i, NULL);
4152 b = ext4_block_bitmap(sb, gdp);
4153 if (b >= first_block && b <= last_block) {
4154 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4155 count++;
4156 }
4157 b = ext4_inode_bitmap(sb, gdp);
4158 if (b >= first_block && b <= last_block) {
4159 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4160 count++;
4161 }
4162 b = ext4_inode_table(sb, gdp);
4163 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4164 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4165 int c = EXT4_B2C(sbi, b - first_block);
4166 ext4_set_bit(c, buf);
4167 count++;
4168 }
4169 if (i != grp)
4170 continue;
4171 s = 0;
4172 if (ext4_bg_has_super(sb, grp)) {
4173 ext4_set_bit(s++, buf);
4174 count++;
4175 }
4176 j = ext4_bg_num_gdb(sb, grp);
4177 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4178 ext4_error(sb, "Invalid number of block group "
4179 "descriptor blocks: %d", j);
4180 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4181 }
4182 count += j;
4183 for (; j > 0; j--)
4184 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4185 }
4186 if (!count)
4187 return 0;
4188 return EXT4_CLUSTERS_PER_GROUP(sb) -
4189 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4190 }
4191
4192 /*
4193 * Compute the overhead and stash it in sbi->s_overhead
4194 */
ext4_calculate_overhead(struct super_block * sb)4195 int ext4_calculate_overhead(struct super_block *sb)
4196 {
4197 struct ext4_sb_info *sbi = EXT4_SB(sb);
4198 struct ext4_super_block *es = sbi->s_es;
4199 struct inode *j_inode;
4200 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4201 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4202 ext4_fsblk_t overhead = 0;
4203 char *buf = (char *) get_zeroed_page(GFP_NOFS);
4204
4205 if (!buf)
4206 return -ENOMEM;
4207
4208 /*
4209 * Compute the overhead (FS structures). This is constant
4210 * for a given filesystem unless the number of block groups
4211 * changes so we cache the previous value until it does.
4212 */
4213
4214 /*
4215 * All of the blocks before first_data_block are overhead
4216 */
4217 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4218
4219 /*
4220 * Add the overhead found in each block group
4221 */
4222 for (i = 0; i < ngroups; i++) {
4223 int blks;
4224
4225 blks = count_overhead(sb, i, buf);
4226 overhead += blks;
4227 if (blks)
4228 memset(buf, 0, PAGE_SIZE);
4229 cond_resched();
4230 }
4231
4232 /*
4233 * Add the internal journal blocks whether the journal has been
4234 * loaded or not
4235 */
4236 if (sbi->s_journal && !sbi->s_journal_bdev)
4237 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4238 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4239 /* j_inum for internal journal is non-zero */
4240 j_inode = ext4_get_journal_inode(sb, j_inum);
4241 if (!IS_ERR(j_inode)) {
4242 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4243 overhead += EXT4_NUM_B2C(sbi, j_blocks);
4244 iput(j_inode);
4245 } else {
4246 ext4_msg(sb, KERN_ERR, "can't get journal size");
4247 }
4248 }
4249 sbi->s_overhead = overhead;
4250 smp_wmb();
4251 free_page((unsigned long) buf);
4252 return 0;
4253 }
4254
ext4_set_resv_clusters(struct super_block * sb)4255 static void ext4_set_resv_clusters(struct super_block *sb)
4256 {
4257 ext4_fsblk_t resv_clusters;
4258 struct ext4_sb_info *sbi = EXT4_SB(sb);
4259
4260 /*
4261 * There's no need to reserve anything when we aren't using extents.
4262 * The space estimates are exact, there are no unwritten extents,
4263 * hole punching doesn't need new metadata... This is needed especially
4264 * to keep ext2/3 backward compatibility.
4265 */
4266 if (!ext4_has_feature_extents(sb))
4267 return;
4268 /*
4269 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4270 * This should cover the situations where we can not afford to run
4271 * out of space like for example punch hole, or converting
4272 * unwritten extents in delalloc path. In most cases such
4273 * allocation would require 1, or 2 blocks, higher numbers are
4274 * very rare.
4275 */
4276 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4277 sbi->s_cluster_bits);
4278
4279 do_div(resv_clusters, 50);
4280 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4281
4282 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4283 }
4284
ext4_quota_mode(struct super_block * sb)4285 static const char *ext4_quota_mode(struct super_block *sb)
4286 {
4287 #ifdef CONFIG_QUOTA
4288 if (!ext4_quota_capable(sb))
4289 return "none";
4290
4291 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4292 return "journalled";
4293 else
4294 return "writeback";
4295 #else
4296 return "disabled";
4297 #endif
4298 }
4299
ext4_setup_csum_trigger(struct super_block * sb,enum ext4_journal_trigger_type type,void (* trigger)(struct jbd2_buffer_trigger_type * type,struct buffer_head * bh,void * mapped_data,size_t size))4300 static void ext4_setup_csum_trigger(struct super_block *sb,
4301 enum ext4_journal_trigger_type type,
4302 void (*trigger)(
4303 struct jbd2_buffer_trigger_type *type,
4304 struct buffer_head *bh,
4305 void *mapped_data,
4306 size_t size))
4307 {
4308 struct ext4_sb_info *sbi = EXT4_SB(sb);
4309
4310 sbi->s_journal_triggers[type].sb = sb;
4311 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4312 }
4313
ext4_free_sbi(struct ext4_sb_info * sbi)4314 static void ext4_free_sbi(struct ext4_sb_info *sbi)
4315 {
4316 if (!sbi)
4317 return;
4318
4319 kfree(sbi->s_blockgroup_lock);
4320 fs_put_dax(sbi->s_daxdev, NULL);
4321 kfree(sbi);
4322 }
4323
ext4_alloc_sbi(struct super_block * sb)4324 static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4325 {
4326 struct ext4_sb_info *sbi;
4327
4328 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4329 if (!sbi)
4330 return NULL;
4331
4332 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4333 NULL, NULL);
4334
4335 sbi->s_blockgroup_lock =
4336 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4337
4338 if (!sbi->s_blockgroup_lock)
4339 goto err_out;
4340
4341 sb->s_fs_info = sbi;
4342 sbi->s_sb = sb;
4343 return sbi;
4344 err_out:
4345 fs_put_dax(sbi->s_daxdev, NULL);
4346 kfree(sbi);
4347 return NULL;
4348 }
4349
ext4_set_def_opts(struct super_block * sb,struct ext4_super_block * es)4350 static void ext4_set_def_opts(struct super_block *sb,
4351 struct ext4_super_block *es)
4352 {
4353 unsigned long def_mount_opts;
4354
4355 /* Set defaults before we parse the mount options */
4356 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4357 set_opt(sb, INIT_INODE_TABLE);
4358 if (def_mount_opts & EXT4_DEFM_DEBUG)
4359 set_opt(sb, DEBUG);
4360 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4361 set_opt(sb, GRPID);
4362 if (def_mount_opts & EXT4_DEFM_UID16)
4363 set_opt(sb, NO_UID32);
4364 /* xattr user namespace & acls are now defaulted on */
4365 set_opt(sb, XATTR_USER);
4366 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4367 set_opt(sb, POSIX_ACL);
4368 #endif
4369 if (ext4_has_feature_fast_commit(sb))
4370 set_opt2(sb, JOURNAL_FAST_COMMIT);
4371 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4372 if (ext4_has_metadata_csum(sb))
4373 set_opt(sb, JOURNAL_CHECKSUM);
4374
4375 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4376 set_opt(sb, JOURNAL_DATA);
4377 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4378 set_opt(sb, ORDERED_DATA);
4379 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4380 set_opt(sb, WRITEBACK_DATA);
4381
4382 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4383 set_opt(sb, ERRORS_PANIC);
4384 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4385 set_opt(sb, ERRORS_CONT);
4386 else
4387 set_opt(sb, ERRORS_RO);
4388 /* block_validity enabled by default; disable with noblock_validity */
4389 set_opt(sb, BLOCK_VALIDITY);
4390 if (def_mount_opts & EXT4_DEFM_DISCARD)
4391 set_opt(sb, DISCARD);
4392
4393 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4394 set_opt(sb, BARRIER);
4395
4396 /*
4397 * enable delayed allocation by default
4398 * Use -o nodelalloc to turn it off
4399 */
4400 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4401 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4402 set_opt(sb, DELALLOC);
4403
4404 if (sb->s_blocksize == PAGE_SIZE)
4405 set_opt(sb, DIOREAD_NOLOCK);
4406 }
4407
ext4_handle_clustersize(struct super_block * sb)4408 static int ext4_handle_clustersize(struct super_block *sb)
4409 {
4410 struct ext4_sb_info *sbi = EXT4_SB(sb);
4411 struct ext4_super_block *es = sbi->s_es;
4412 int clustersize;
4413
4414 /* Handle clustersize */
4415 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4416 if (ext4_has_feature_bigalloc(sb)) {
4417 if (clustersize < sb->s_blocksize) {
4418 ext4_msg(sb, KERN_ERR,
4419 "cluster size (%d) smaller than "
4420 "block size (%lu)", clustersize, sb->s_blocksize);
4421 return -EINVAL;
4422 }
4423 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4424 le32_to_cpu(es->s_log_block_size);
4425 sbi->s_clusters_per_group =
4426 le32_to_cpu(es->s_clusters_per_group);
4427 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4428 ext4_msg(sb, KERN_ERR,
4429 "#clusters per group too big: %lu",
4430 sbi->s_clusters_per_group);
4431 return -EINVAL;
4432 }
4433 if (sbi->s_blocks_per_group !=
4434 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4435 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4436 "clusters per group (%lu) inconsistent",
4437 sbi->s_blocks_per_group,
4438 sbi->s_clusters_per_group);
4439 return -EINVAL;
4440 }
4441 } else {
4442 if (clustersize != sb->s_blocksize) {
4443 ext4_msg(sb, KERN_ERR,
4444 "fragment/cluster size (%d) != "
4445 "block size (%lu)", clustersize, sb->s_blocksize);
4446 return -EINVAL;
4447 }
4448 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4449 ext4_msg(sb, KERN_ERR,
4450 "#blocks per group too big: %lu",
4451 sbi->s_blocks_per_group);
4452 return -EINVAL;
4453 }
4454 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4455 sbi->s_cluster_bits = 0;
4456 }
4457 sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4458
4459 /* Do we have standard group size of clustersize * 8 blocks ? */
4460 if (sbi->s_blocks_per_group == clustersize << 3)
4461 set_opt2(sb, STD_GROUP_SIZE);
4462
4463 return 0;
4464 }
4465
ext4_fast_commit_init(struct super_block * sb)4466 static void ext4_fast_commit_init(struct super_block *sb)
4467 {
4468 struct ext4_sb_info *sbi = EXT4_SB(sb);
4469
4470 /* Initialize fast commit stuff */
4471 atomic_set(&sbi->s_fc_subtid, 0);
4472 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4473 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4474 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4475 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4476 sbi->s_fc_bytes = 0;
4477 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4478 sbi->s_fc_ineligible_tid = 0;
4479 spin_lock_init(&sbi->s_fc_lock);
4480 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4481 sbi->s_fc_replay_state.fc_regions = NULL;
4482 sbi->s_fc_replay_state.fc_regions_size = 0;
4483 sbi->s_fc_replay_state.fc_regions_used = 0;
4484 sbi->s_fc_replay_state.fc_regions_valid = 0;
4485 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4486 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4487 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4488 }
4489
ext4_inode_info_init(struct super_block * sb,struct ext4_super_block * es)4490 static int ext4_inode_info_init(struct super_block *sb,
4491 struct ext4_super_block *es)
4492 {
4493 struct ext4_sb_info *sbi = EXT4_SB(sb);
4494
4495 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4496 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4497 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4498 } else {
4499 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4500 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4501 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4502 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4503 sbi->s_first_ino);
4504 return -EINVAL;
4505 }
4506 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4507 (!is_power_of_2(sbi->s_inode_size)) ||
4508 (sbi->s_inode_size > sb->s_blocksize)) {
4509 ext4_msg(sb, KERN_ERR,
4510 "unsupported inode size: %d",
4511 sbi->s_inode_size);
4512 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4513 return -EINVAL;
4514 }
4515 /*
4516 * i_atime_extra is the last extra field available for
4517 * [acm]times in struct ext4_inode. Checking for that
4518 * field should suffice to ensure we have extra space
4519 * for all three.
4520 */
4521 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4522 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4523 sb->s_time_gran = 1;
4524 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4525 } else {
4526 sb->s_time_gran = NSEC_PER_SEC;
4527 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4528 }
4529 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4530 }
4531
4532 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4533 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4534 EXT4_GOOD_OLD_INODE_SIZE;
4535 if (ext4_has_feature_extra_isize(sb)) {
4536 unsigned v, max = (sbi->s_inode_size -
4537 EXT4_GOOD_OLD_INODE_SIZE);
4538
4539 v = le16_to_cpu(es->s_want_extra_isize);
4540 if (v > max) {
4541 ext4_msg(sb, KERN_ERR,
4542 "bad s_want_extra_isize: %d", v);
4543 return -EINVAL;
4544 }
4545 if (sbi->s_want_extra_isize < v)
4546 sbi->s_want_extra_isize = v;
4547
4548 v = le16_to_cpu(es->s_min_extra_isize);
4549 if (v > max) {
4550 ext4_msg(sb, KERN_ERR,
4551 "bad s_min_extra_isize: %d", v);
4552 return -EINVAL;
4553 }
4554 if (sbi->s_want_extra_isize < v)
4555 sbi->s_want_extra_isize = v;
4556 }
4557 }
4558
4559 return 0;
4560 }
4561
4562 #if IS_ENABLED(CONFIG_UNICODE)
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4563 static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4564 {
4565 const struct ext4_sb_encodings *encoding_info;
4566 struct unicode_map *encoding;
4567 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4568
4569 if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4570 return 0;
4571
4572 encoding_info = ext4_sb_read_encoding(es);
4573 if (!encoding_info) {
4574 ext4_msg(sb, KERN_ERR,
4575 "Encoding requested by superblock is unknown");
4576 return -EINVAL;
4577 }
4578
4579 encoding = utf8_load(encoding_info->version);
4580 if (IS_ERR(encoding)) {
4581 ext4_msg(sb, KERN_ERR,
4582 "can't mount with superblock charset: %s-%u.%u.%u "
4583 "not supported by the kernel. flags: 0x%x.",
4584 encoding_info->name,
4585 unicode_major(encoding_info->version),
4586 unicode_minor(encoding_info->version),
4587 unicode_rev(encoding_info->version),
4588 encoding_flags);
4589 return -EINVAL;
4590 }
4591 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4592 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4593 unicode_major(encoding_info->version),
4594 unicode_minor(encoding_info->version),
4595 unicode_rev(encoding_info->version),
4596 encoding_flags);
4597
4598 sb->s_encoding = encoding;
4599 sb->s_encoding_flags = encoding_flags;
4600
4601 return 0;
4602 }
4603 #else
ext4_encoding_init(struct super_block * sb,struct ext4_super_block * es)4604 static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4605 {
4606 return 0;
4607 }
4608 #endif
4609
ext4_init_metadata_csum(struct super_block * sb,struct ext4_super_block * es)4610 static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4611 {
4612 struct ext4_sb_info *sbi = EXT4_SB(sb);
4613
4614 /* Warn if metadata_csum and gdt_csum are both set. */
4615 if (ext4_has_feature_metadata_csum(sb) &&
4616 ext4_has_feature_gdt_csum(sb))
4617 ext4_warning(sb, "metadata_csum and uninit_bg are "
4618 "redundant flags; please run fsck.");
4619
4620 /* Check for a known checksum algorithm */
4621 if (!ext4_verify_csum_type(sb, es)) {
4622 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4623 "unknown checksum algorithm.");
4624 return -EINVAL;
4625 }
4626 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4627 ext4_orphan_file_block_trigger);
4628
4629 /* Load the checksum driver */
4630 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4631 if (IS_ERR(sbi->s_chksum_driver)) {
4632 int ret = PTR_ERR(sbi->s_chksum_driver);
4633 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4634 sbi->s_chksum_driver = NULL;
4635 return ret;
4636 }
4637
4638 /* Check superblock checksum */
4639 if (!ext4_superblock_csum_verify(sb, es)) {
4640 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4641 "invalid superblock checksum. Run e2fsck?");
4642 return -EFSBADCRC;
4643 }
4644
4645 /* Precompute checksum seed for all metadata */
4646 if (ext4_has_feature_csum_seed(sb))
4647 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4648 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4649 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4650 sizeof(es->s_uuid));
4651 return 0;
4652 }
4653
ext4_check_feature_compatibility(struct super_block * sb,struct ext4_super_block * es,int silent)4654 static int ext4_check_feature_compatibility(struct super_block *sb,
4655 struct ext4_super_block *es,
4656 int silent)
4657 {
4658 struct ext4_sb_info *sbi = EXT4_SB(sb);
4659
4660 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4661 (ext4_has_compat_features(sb) ||
4662 ext4_has_ro_compat_features(sb) ||
4663 ext4_has_incompat_features(sb)))
4664 ext4_msg(sb, KERN_WARNING,
4665 "feature flags set on rev 0 fs, "
4666 "running e2fsck is recommended");
4667
4668 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4669 set_opt2(sb, HURD_COMPAT);
4670 if (ext4_has_feature_64bit(sb)) {
4671 ext4_msg(sb, KERN_ERR,
4672 "The Hurd can't support 64-bit file systems");
4673 return -EINVAL;
4674 }
4675
4676 /*
4677 * ea_inode feature uses l_i_version field which is not
4678 * available in HURD_COMPAT mode.
4679 */
4680 if (ext4_has_feature_ea_inode(sb)) {
4681 ext4_msg(sb, KERN_ERR,
4682 "ea_inode feature is not supported for Hurd");
4683 return -EINVAL;
4684 }
4685 }
4686
4687 if (IS_EXT2_SB(sb)) {
4688 if (ext2_feature_set_ok(sb))
4689 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4690 "using the ext4 subsystem");
4691 else {
4692 /*
4693 * If we're probing be silent, if this looks like
4694 * it's actually an ext[34] filesystem.
4695 */
4696 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4697 return -EINVAL;
4698 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4699 "to feature incompatibilities");
4700 return -EINVAL;
4701 }
4702 }
4703
4704 if (IS_EXT3_SB(sb)) {
4705 if (ext3_feature_set_ok(sb))
4706 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4707 "using the ext4 subsystem");
4708 else {
4709 /*
4710 * If we're probing be silent, if this looks like
4711 * it's actually an ext4 filesystem.
4712 */
4713 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4714 return -EINVAL;
4715 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4716 "to feature incompatibilities");
4717 return -EINVAL;
4718 }
4719 }
4720
4721 /*
4722 * Check feature flags regardless of the revision level, since we
4723 * previously didn't change the revision level when setting the flags,
4724 * so there is a chance incompat flags are set on a rev 0 filesystem.
4725 */
4726 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4727 return -EINVAL;
4728
4729 if (sbi->s_daxdev) {
4730 if (sb->s_blocksize == PAGE_SIZE)
4731 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4732 else
4733 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4734 }
4735
4736 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4737 if (ext4_has_feature_inline_data(sb)) {
4738 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4739 " that may contain inline data");
4740 return -EINVAL;
4741 }
4742 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4743 ext4_msg(sb, KERN_ERR,
4744 "DAX unsupported by block device.");
4745 return -EINVAL;
4746 }
4747 }
4748
4749 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4750 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4751 es->s_encryption_level);
4752 return -EINVAL;
4753 }
4754
4755 return 0;
4756 }
4757
ext4_check_geometry(struct super_block * sb,struct ext4_super_block * es)4758 static int ext4_check_geometry(struct super_block *sb,
4759 struct ext4_super_block *es)
4760 {
4761 struct ext4_sb_info *sbi = EXT4_SB(sb);
4762 __u64 blocks_count;
4763 int err;
4764
4765 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4766 ext4_msg(sb, KERN_ERR,
4767 "Number of reserved GDT blocks insanely large: %d",
4768 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4769 return -EINVAL;
4770 }
4771 /*
4772 * Test whether we have more sectors than will fit in sector_t,
4773 * and whether the max offset is addressable by the page cache.
4774 */
4775 err = generic_check_addressable(sb->s_blocksize_bits,
4776 ext4_blocks_count(es));
4777 if (err) {
4778 ext4_msg(sb, KERN_ERR, "filesystem"
4779 " too large to mount safely on this system");
4780 return err;
4781 }
4782
4783 /* check blocks count against device size */
4784 blocks_count = sb_bdev_nr_blocks(sb);
4785 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4786 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4787 "exceeds size of device (%llu blocks)",
4788 ext4_blocks_count(es), blocks_count);
4789 return -EINVAL;
4790 }
4791
4792 /*
4793 * It makes no sense for the first data block to be beyond the end
4794 * of the filesystem.
4795 */
4796 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4797 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4798 "block %u is beyond end of filesystem (%llu)",
4799 le32_to_cpu(es->s_first_data_block),
4800 ext4_blocks_count(es));
4801 return -EINVAL;
4802 }
4803 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4804 (sbi->s_cluster_ratio == 1)) {
4805 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4806 "block is 0 with a 1k block and cluster size");
4807 return -EINVAL;
4808 }
4809
4810 blocks_count = (ext4_blocks_count(es) -
4811 le32_to_cpu(es->s_first_data_block) +
4812 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4813 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4814 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4815 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4816 "(block count %llu, first data block %u, "
4817 "blocks per group %lu)", blocks_count,
4818 ext4_blocks_count(es),
4819 le32_to_cpu(es->s_first_data_block),
4820 EXT4_BLOCKS_PER_GROUP(sb));
4821 return -EINVAL;
4822 }
4823 sbi->s_groups_count = blocks_count;
4824 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4825 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4826 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4827 le32_to_cpu(es->s_inodes_count)) {
4828 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4829 le32_to_cpu(es->s_inodes_count),
4830 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4831 return -EINVAL;
4832 }
4833
4834 return 0;
4835 }
4836
ext4_group_desc_init(struct super_block * sb,struct ext4_super_block * es,ext4_fsblk_t logical_sb_block,ext4_group_t * first_not_zeroed)4837 static int ext4_group_desc_init(struct super_block *sb,
4838 struct ext4_super_block *es,
4839 ext4_fsblk_t logical_sb_block,
4840 ext4_group_t *first_not_zeroed)
4841 {
4842 struct ext4_sb_info *sbi = EXT4_SB(sb);
4843 unsigned int db_count;
4844 ext4_fsblk_t block;
4845 int i;
4846
4847 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4848 EXT4_DESC_PER_BLOCK(sb);
4849 if (ext4_has_feature_meta_bg(sb)) {
4850 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4851 ext4_msg(sb, KERN_WARNING,
4852 "first meta block group too large: %u "
4853 "(group descriptor block count %u)",
4854 le32_to_cpu(es->s_first_meta_bg), db_count);
4855 return -EINVAL;
4856 }
4857 }
4858 rcu_assign_pointer(sbi->s_group_desc,
4859 kvmalloc_array(db_count,
4860 sizeof(struct buffer_head *),
4861 GFP_KERNEL));
4862 if (sbi->s_group_desc == NULL) {
4863 ext4_msg(sb, KERN_ERR, "not enough memory");
4864 return -ENOMEM;
4865 }
4866
4867 bgl_lock_init(sbi->s_blockgroup_lock);
4868
4869 /* Pre-read the descriptors into the buffer cache */
4870 for (i = 0; i < db_count; i++) {
4871 block = descriptor_loc(sb, logical_sb_block, i);
4872 ext4_sb_breadahead_unmovable(sb, block);
4873 }
4874
4875 for (i = 0; i < db_count; i++) {
4876 struct buffer_head *bh;
4877
4878 block = descriptor_loc(sb, logical_sb_block, i);
4879 bh = ext4_sb_bread_unmovable(sb, block);
4880 if (IS_ERR(bh)) {
4881 ext4_msg(sb, KERN_ERR,
4882 "can't read group descriptor %d", i);
4883 sbi->s_gdb_count = i;
4884 return PTR_ERR(bh);
4885 }
4886 rcu_read_lock();
4887 rcu_dereference(sbi->s_group_desc)[i] = bh;
4888 rcu_read_unlock();
4889 }
4890 sbi->s_gdb_count = db_count;
4891 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4892 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4893 return -EFSCORRUPTED;
4894 }
4895
4896 return 0;
4897 }
4898
ext4_load_and_init_journal(struct super_block * sb,struct ext4_super_block * es,struct ext4_fs_context * ctx)4899 static int ext4_load_and_init_journal(struct super_block *sb,
4900 struct ext4_super_block *es,
4901 struct ext4_fs_context *ctx)
4902 {
4903 struct ext4_sb_info *sbi = EXT4_SB(sb);
4904 int err;
4905
4906 err = ext4_load_journal(sb, es, ctx->journal_devnum);
4907 if (err)
4908 return err;
4909
4910 if (ext4_has_feature_64bit(sb) &&
4911 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4912 JBD2_FEATURE_INCOMPAT_64BIT)) {
4913 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4914 goto out;
4915 }
4916
4917 if (!set_journal_csum_feature_set(sb)) {
4918 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4919 "feature set");
4920 goto out;
4921 }
4922
4923 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4924 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4925 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4926 ext4_msg(sb, KERN_ERR,
4927 "Failed to set fast commit journal feature");
4928 goto out;
4929 }
4930
4931 /* We have now updated the journal if required, so we can
4932 * validate the data journaling mode. */
4933 switch (test_opt(sb, DATA_FLAGS)) {
4934 case 0:
4935 /* No mode set, assume a default based on the journal
4936 * capabilities: ORDERED_DATA if the journal can
4937 * cope, else JOURNAL_DATA
4938 */
4939 if (jbd2_journal_check_available_features
4940 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4941 set_opt(sb, ORDERED_DATA);
4942 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4943 } else {
4944 set_opt(sb, JOURNAL_DATA);
4945 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4946 }
4947 break;
4948
4949 case EXT4_MOUNT_ORDERED_DATA:
4950 case EXT4_MOUNT_WRITEBACK_DATA:
4951 if (!jbd2_journal_check_available_features
4952 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4953 ext4_msg(sb, KERN_ERR, "Journal does not support "
4954 "requested data journaling mode");
4955 goto out;
4956 }
4957 break;
4958 default:
4959 break;
4960 }
4961
4962 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4963 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4964 ext4_msg(sb, KERN_ERR, "can't mount with "
4965 "journal_async_commit in data=ordered mode");
4966 goto out;
4967 }
4968
4969 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4970
4971 sbi->s_journal->j_submit_inode_data_buffers =
4972 ext4_journal_submit_inode_data_buffers;
4973 sbi->s_journal->j_finish_inode_data_buffers =
4974 ext4_journal_finish_inode_data_buffers;
4975
4976 return 0;
4977
4978 out:
4979 /* flush s_sb_upd_work before destroying the journal. */
4980 flush_work(&sbi->s_sb_upd_work);
4981 jbd2_journal_destroy(sbi->s_journal);
4982 sbi->s_journal = NULL;
4983 return -EINVAL;
4984 }
4985
ext4_check_journal_data_mode(struct super_block * sb)4986 static int ext4_check_journal_data_mode(struct super_block *sb)
4987 {
4988 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4989 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4990 "data=journal disables delayed allocation, "
4991 "dioread_nolock, O_DIRECT and fast_commit support!\n");
4992 /* can't mount with both data=journal and dioread_nolock. */
4993 clear_opt(sb, DIOREAD_NOLOCK);
4994 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4995 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4996 ext4_msg(sb, KERN_ERR, "can't mount with "
4997 "both data=journal and delalloc");
4998 return -EINVAL;
4999 }
5000 if (test_opt(sb, DAX_ALWAYS)) {
5001 ext4_msg(sb, KERN_ERR, "can't mount with "
5002 "both data=journal and dax");
5003 return -EINVAL;
5004 }
5005 if (ext4_has_feature_encrypt(sb)) {
5006 ext4_msg(sb, KERN_WARNING,
5007 "encrypted files will use data=ordered "
5008 "instead of data journaling mode");
5009 }
5010 if (test_opt(sb, DELALLOC))
5011 clear_opt(sb, DELALLOC);
5012 } else {
5013 sb->s_iflags |= SB_I_CGROUPWB;
5014 }
5015
5016 return 0;
5017 }
5018
ext4_load_super(struct super_block * sb,ext4_fsblk_t * lsb,int silent)5019 static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5020 int silent)
5021 {
5022 struct ext4_sb_info *sbi = EXT4_SB(sb);
5023 struct ext4_super_block *es;
5024 ext4_fsblk_t logical_sb_block;
5025 unsigned long offset = 0;
5026 struct buffer_head *bh;
5027 int ret = -EINVAL;
5028 int blocksize;
5029
5030 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5031 if (!blocksize) {
5032 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5033 return -EINVAL;
5034 }
5035
5036 /*
5037 * The ext4 superblock will not be buffer aligned for other than 1kB
5038 * block sizes. We need to calculate the offset from buffer start.
5039 */
5040 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5041 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5042 offset = do_div(logical_sb_block, blocksize);
5043 } else {
5044 logical_sb_block = sbi->s_sb_block;
5045 }
5046
5047 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5048 if (IS_ERR(bh)) {
5049 ext4_msg(sb, KERN_ERR, "unable to read superblock");
5050 return PTR_ERR(bh);
5051 }
5052 /*
5053 * Note: s_es must be initialized as soon as possible because
5054 * some ext4 macro-instructions depend on its value
5055 */
5056 es = (struct ext4_super_block *) (bh->b_data + offset);
5057 sbi->s_es = es;
5058 sb->s_magic = le16_to_cpu(es->s_magic);
5059 if (sb->s_magic != EXT4_SUPER_MAGIC) {
5060 if (!silent)
5061 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5062 goto out;
5063 }
5064
5065 if (le32_to_cpu(es->s_log_block_size) >
5066 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5067 ext4_msg(sb, KERN_ERR,
5068 "Invalid log block size: %u",
5069 le32_to_cpu(es->s_log_block_size));
5070 goto out;
5071 }
5072 if (le32_to_cpu(es->s_log_cluster_size) >
5073 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5074 ext4_msg(sb, KERN_ERR,
5075 "Invalid log cluster size: %u",
5076 le32_to_cpu(es->s_log_cluster_size));
5077 goto out;
5078 }
5079
5080 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5081
5082 /*
5083 * If the default block size is not the same as the real block size,
5084 * we need to reload it.
5085 */
5086 if (sb->s_blocksize == blocksize) {
5087 *lsb = logical_sb_block;
5088 sbi->s_sbh = bh;
5089 return 0;
5090 }
5091
5092 /*
5093 * bh must be released before kill_bdev(), otherwise
5094 * it won't be freed and its page also. kill_bdev()
5095 * is called by sb_set_blocksize().
5096 */
5097 brelse(bh);
5098 /* Validate the filesystem blocksize */
5099 if (!sb_set_blocksize(sb, blocksize)) {
5100 ext4_msg(sb, KERN_ERR, "bad block size %d",
5101 blocksize);
5102 bh = NULL;
5103 goto out;
5104 }
5105
5106 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5107 offset = do_div(logical_sb_block, blocksize);
5108 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5109 if (IS_ERR(bh)) {
5110 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5111 ret = PTR_ERR(bh);
5112 bh = NULL;
5113 goto out;
5114 }
5115 es = (struct ext4_super_block *)(bh->b_data + offset);
5116 sbi->s_es = es;
5117 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5118 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5119 goto out;
5120 }
5121 *lsb = logical_sb_block;
5122 sbi->s_sbh = bh;
5123 return 0;
5124 out:
5125 brelse(bh);
5126 return ret;
5127 }
5128
ext4_hash_info_init(struct super_block * sb)5129 static void ext4_hash_info_init(struct super_block *sb)
5130 {
5131 struct ext4_sb_info *sbi = EXT4_SB(sb);
5132 struct ext4_super_block *es = sbi->s_es;
5133 unsigned int i;
5134
5135 for (i = 0; i < 4; i++)
5136 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5137
5138 sbi->s_def_hash_version = es->s_def_hash_version;
5139 if (ext4_has_feature_dir_index(sb)) {
5140 i = le32_to_cpu(es->s_flags);
5141 if (i & EXT2_FLAGS_UNSIGNED_HASH)
5142 sbi->s_hash_unsigned = 3;
5143 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5144 #ifdef __CHAR_UNSIGNED__
5145 if (!sb_rdonly(sb))
5146 es->s_flags |=
5147 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5148 sbi->s_hash_unsigned = 3;
5149 #else
5150 if (!sb_rdonly(sb))
5151 es->s_flags |=
5152 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5153 #endif
5154 }
5155 }
5156 }
5157
ext4_block_group_meta_init(struct super_block * sb,int silent)5158 static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5159 {
5160 struct ext4_sb_info *sbi = EXT4_SB(sb);
5161 struct ext4_super_block *es = sbi->s_es;
5162 int has_huge_files;
5163
5164 has_huge_files = ext4_has_feature_huge_file(sb);
5165 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5166 has_huge_files);
5167 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5168
5169 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5170 if (ext4_has_feature_64bit(sb)) {
5171 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5172 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5173 !is_power_of_2(sbi->s_desc_size)) {
5174 ext4_msg(sb, KERN_ERR,
5175 "unsupported descriptor size %lu",
5176 sbi->s_desc_size);
5177 return -EINVAL;
5178 }
5179 } else
5180 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5181
5182 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5183 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5184
5185 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5186 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5187 if (!silent)
5188 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5189 return -EINVAL;
5190 }
5191 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5192 sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5193 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5194 sbi->s_inodes_per_group);
5195 return -EINVAL;
5196 }
5197 sbi->s_itb_per_group = sbi->s_inodes_per_group /
5198 sbi->s_inodes_per_block;
5199 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5200 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5201 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5202 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5203
5204 return 0;
5205 }
5206
__ext4_fill_super(struct fs_context * fc,struct super_block * sb)5207 static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5208 {
5209 struct ext4_super_block *es = NULL;
5210 struct ext4_sb_info *sbi = EXT4_SB(sb);
5211 ext4_fsblk_t logical_sb_block;
5212 struct inode *root;
5213 int needs_recovery;
5214 int err;
5215 ext4_group_t first_not_zeroed;
5216 struct ext4_fs_context *ctx = fc->fs_private;
5217 int silent = fc->sb_flags & SB_SILENT;
5218
5219 /* Set defaults for the variables that will be set during parsing */
5220 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5221 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5222
5223 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5224 sbi->s_sectors_written_start =
5225 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5226
5227 err = ext4_load_super(sb, &logical_sb_block, silent);
5228 if (err)
5229 goto out_fail;
5230
5231 es = sbi->s_es;
5232 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5233
5234 err = ext4_init_metadata_csum(sb, es);
5235 if (err)
5236 goto failed_mount;
5237
5238 ext4_set_def_opts(sb, es);
5239
5240 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5241 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5242 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5243 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5244 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5245
5246 /*
5247 * set default s_li_wait_mult for lazyinit, for the case there is
5248 * no mount option specified.
5249 */
5250 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5251
5252 err = ext4_inode_info_init(sb, es);
5253 if (err)
5254 goto failed_mount;
5255
5256 err = parse_apply_sb_mount_options(sb, ctx);
5257 if (err < 0)
5258 goto failed_mount;
5259
5260 sbi->s_def_mount_opt = sbi->s_mount_opt;
5261 sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5262
5263 err = ext4_check_opt_consistency(fc, sb);
5264 if (err < 0)
5265 goto failed_mount;
5266
5267 ext4_apply_options(fc, sb);
5268
5269 err = ext4_encoding_init(sb, es);
5270 if (err)
5271 goto failed_mount;
5272
5273 err = ext4_check_journal_data_mode(sb);
5274 if (err)
5275 goto failed_mount;
5276
5277 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5278 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5279
5280 /* i_version is always enabled now */
5281 sb->s_flags |= SB_I_VERSION;
5282
5283 err = ext4_check_feature_compatibility(sb, es, silent);
5284 if (err)
5285 goto failed_mount;
5286
5287 err = ext4_block_group_meta_init(sb, silent);
5288 if (err)
5289 goto failed_mount;
5290
5291 ext4_hash_info_init(sb);
5292
5293 err = ext4_handle_clustersize(sb);
5294 if (err)
5295 goto failed_mount;
5296
5297 err = ext4_check_geometry(sb, es);
5298 if (err)
5299 goto failed_mount;
5300
5301 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5302 spin_lock_init(&sbi->s_error_lock);
5303 INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5304
5305 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5306 if (err)
5307 goto failed_mount3;
5308
5309 err = ext4_es_register_shrinker(sbi);
5310 if (err)
5311 goto failed_mount3;
5312
5313 sbi->s_stripe = ext4_get_stripe_size(sbi);
5314 /*
5315 * It's hard to get stripe aligned blocks if stripe is not aligned with
5316 * cluster, just disable stripe and alert user to simpfy code and avoid
5317 * stripe aligned allocation which will rarely successes.
5318 */
5319 if (sbi->s_stripe > 0 && sbi->s_cluster_ratio > 1 &&
5320 sbi->s_stripe % sbi->s_cluster_ratio != 0) {
5321 ext4_msg(sb, KERN_WARNING,
5322 "stripe (%lu) is not aligned with cluster size (%u), "
5323 "stripe is disabled",
5324 sbi->s_stripe, sbi->s_cluster_ratio);
5325 sbi->s_stripe = 0;
5326 }
5327 sbi->s_extent_max_zeroout_kb = 32;
5328
5329 /*
5330 * set up enough so that it can read an inode
5331 */
5332 sb->s_op = &ext4_sops;
5333 sb->s_export_op = &ext4_export_ops;
5334 sb->s_xattr = ext4_xattr_handlers;
5335 #ifdef CONFIG_FS_ENCRYPTION
5336 sb->s_cop = &ext4_cryptops;
5337 #endif
5338 #ifdef CONFIG_FS_VERITY
5339 sb->s_vop = &ext4_verityops;
5340 #endif
5341 #ifdef CONFIG_QUOTA
5342 sb->dq_op = &ext4_quota_operations;
5343 if (ext4_has_feature_quota(sb))
5344 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5345 else
5346 sb->s_qcop = &ext4_qctl_operations;
5347 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5348 #endif
5349 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5350
5351 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5352 mutex_init(&sbi->s_orphan_lock);
5353
5354 ext4_fast_commit_init(sb);
5355
5356 sb->s_root = NULL;
5357
5358 needs_recovery = (es->s_last_orphan != 0 ||
5359 ext4_has_feature_orphan_present(sb) ||
5360 ext4_has_feature_journal_needs_recovery(sb));
5361
5362 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5363 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5364 if (err)
5365 goto failed_mount3a;
5366 }
5367
5368 err = -EINVAL;
5369 /*
5370 * The first inode we look at is the journal inode. Don't try
5371 * root first: it may be modified in the journal!
5372 */
5373 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5374 err = ext4_load_and_init_journal(sb, es, ctx);
5375 if (err)
5376 goto failed_mount3a;
5377 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5378 ext4_has_feature_journal_needs_recovery(sb)) {
5379 ext4_msg(sb, KERN_ERR, "required journal recovery "
5380 "suppressed and not mounted read-only");
5381 goto failed_mount3a;
5382 } else {
5383 /* Nojournal mode, all journal mount options are illegal */
5384 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5385 ext4_msg(sb, KERN_ERR, "can't mount with "
5386 "journal_async_commit, fs mounted w/o journal");
5387 goto failed_mount3a;
5388 }
5389
5390 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5391 ext4_msg(sb, KERN_ERR, "can't mount with "
5392 "journal_checksum, fs mounted w/o journal");
5393 goto failed_mount3a;
5394 }
5395 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5396 ext4_msg(sb, KERN_ERR, "can't mount with "
5397 "commit=%lu, fs mounted w/o journal",
5398 sbi->s_commit_interval / HZ);
5399 goto failed_mount3a;
5400 }
5401 if (EXT4_MOUNT_DATA_FLAGS &
5402 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5403 ext4_msg(sb, KERN_ERR, "can't mount with "
5404 "data=, fs mounted w/o journal");
5405 goto failed_mount3a;
5406 }
5407 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5408 clear_opt(sb, JOURNAL_CHECKSUM);
5409 clear_opt(sb, DATA_FLAGS);
5410 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5411 sbi->s_journal = NULL;
5412 needs_recovery = 0;
5413 }
5414
5415 if (!test_opt(sb, NO_MBCACHE)) {
5416 sbi->s_ea_block_cache = ext4_xattr_create_cache();
5417 if (!sbi->s_ea_block_cache) {
5418 ext4_msg(sb, KERN_ERR,
5419 "Failed to create ea_block_cache");
5420 err = -EINVAL;
5421 goto failed_mount_wq;
5422 }
5423
5424 if (ext4_has_feature_ea_inode(sb)) {
5425 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5426 if (!sbi->s_ea_inode_cache) {
5427 ext4_msg(sb, KERN_ERR,
5428 "Failed to create ea_inode_cache");
5429 err = -EINVAL;
5430 goto failed_mount_wq;
5431 }
5432 }
5433 }
5434
5435 /*
5436 * Get the # of file system overhead blocks from the
5437 * superblock if present.
5438 */
5439 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5440 /* ignore the precalculated value if it is ridiculous */
5441 if (sbi->s_overhead > ext4_blocks_count(es))
5442 sbi->s_overhead = 0;
5443 /*
5444 * If the bigalloc feature is not enabled recalculating the
5445 * overhead doesn't take long, so we might as well just redo
5446 * it to make sure we are using the correct value.
5447 */
5448 if (!ext4_has_feature_bigalloc(sb))
5449 sbi->s_overhead = 0;
5450 if (sbi->s_overhead == 0) {
5451 err = ext4_calculate_overhead(sb);
5452 if (err)
5453 goto failed_mount_wq;
5454 }
5455
5456 /*
5457 * The maximum number of concurrent works can be high and
5458 * concurrency isn't really necessary. Limit it to 1.
5459 */
5460 EXT4_SB(sb)->rsv_conversion_wq =
5461 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5462 if (!EXT4_SB(sb)->rsv_conversion_wq) {
5463 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5464 err = -ENOMEM;
5465 goto failed_mount4;
5466 }
5467
5468 /*
5469 * The jbd2_journal_load will have done any necessary log recovery,
5470 * so we can safely mount the rest of the filesystem now.
5471 */
5472
5473 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5474 if (IS_ERR(root)) {
5475 ext4_msg(sb, KERN_ERR, "get root inode failed");
5476 err = PTR_ERR(root);
5477 root = NULL;
5478 goto failed_mount4;
5479 }
5480 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5481 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5482 iput(root);
5483 err = -EFSCORRUPTED;
5484 goto failed_mount4;
5485 }
5486
5487 sb->s_root = d_make_root(root);
5488 if (!sb->s_root) {
5489 ext4_msg(sb, KERN_ERR, "get root dentry failed");
5490 err = -ENOMEM;
5491 goto failed_mount4;
5492 }
5493
5494 err = ext4_setup_super(sb, es, sb_rdonly(sb));
5495 if (err == -EROFS) {
5496 sb->s_flags |= SB_RDONLY;
5497 } else if (err)
5498 goto failed_mount4a;
5499
5500 ext4_set_resv_clusters(sb);
5501
5502 if (test_opt(sb, BLOCK_VALIDITY)) {
5503 err = ext4_setup_system_zone(sb);
5504 if (err) {
5505 ext4_msg(sb, KERN_ERR, "failed to initialize system "
5506 "zone (%d)", err);
5507 goto failed_mount4a;
5508 }
5509 }
5510 ext4_fc_replay_cleanup(sb);
5511
5512 ext4_ext_init(sb);
5513
5514 /*
5515 * Enable optimize_scan if number of groups is > threshold. This can be
5516 * turned off by passing "mb_optimize_scan=0". This can also be
5517 * turned on forcefully by passing "mb_optimize_scan=1".
5518 */
5519 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5520 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5521 set_opt2(sb, MB_OPTIMIZE_SCAN);
5522 else
5523 clear_opt2(sb, MB_OPTIMIZE_SCAN);
5524 }
5525
5526 err = ext4_mb_init(sb);
5527 if (err) {
5528 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5529 err);
5530 goto failed_mount5;
5531 }
5532
5533 /*
5534 * We can only set up the journal commit callback once
5535 * mballoc is initialized
5536 */
5537 if (sbi->s_journal)
5538 sbi->s_journal->j_commit_callback =
5539 ext4_journal_commit_callback;
5540
5541 err = ext4_percpu_param_init(sbi);
5542 if (err)
5543 goto failed_mount6;
5544
5545 if (ext4_has_feature_flex_bg(sb))
5546 if (!ext4_fill_flex_info(sb)) {
5547 ext4_msg(sb, KERN_ERR,
5548 "unable to initialize "
5549 "flex_bg meta info!");
5550 err = -ENOMEM;
5551 goto failed_mount6;
5552 }
5553
5554 err = ext4_register_li_request(sb, first_not_zeroed);
5555 if (err)
5556 goto failed_mount6;
5557
5558 err = ext4_register_sysfs(sb);
5559 if (err)
5560 goto failed_mount7;
5561
5562 err = ext4_init_orphan_info(sb);
5563 if (err)
5564 goto failed_mount8;
5565 #ifdef CONFIG_QUOTA
5566 /* Enable quota usage during mount. */
5567 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5568 err = ext4_enable_quotas(sb);
5569 if (err)
5570 goto failed_mount9;
5571 }
5572 #endif /* CONFIG_QUOTA */
5573
5574 /*
5575 * Save the original bdev mapping's wb_err value which could be
5576 * used to detect the metadata async write error.
5577 */
5578 spin_lock_init(&sbi->s_bdev_wb_lock);
5579 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5580 &sbi->s_bdev_wb_err);
5581 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5582 ext4_orphan_cleanup(sb, es);
5583 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5584 /*
5585 * Update the checksum after updating free space/inode counters and
5586 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5587 * checksum in the buffer cache until it is written out and
5588 * e2fsprogs programs trying to open a file system immediately
5589 * after it is mounted can fail.
5590 */
5591 ext4_superblock_csum_set(sb);
5592 if (needs_recovery) {
5593 ext4_msg(sb, KERN_INFO, "recovery complete");
5594 err = ext4_mark_recovery_complete(sb, es);
5595 if (err)
5596 goto failed_mount10;
5597 }
5598
5599 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5600 ext4_msg(sb, KERN_WARNING,
5601 "mounting with \"discard\" option, but the device does not support discard");
5602
5603 if (es->s_error_count)
5604 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5605
5606 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5607 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5608 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5609 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5610 atomic_set(&sbi->s_warning_count, 0);
5611 atomic_set(&sbi->s_msg_count, 0);
5612
5613 return 0;
5614
5615 failed_mount10:
5616 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5617 failed_mount9: __maybe_unused
5618 ext4_release_orphan_info(sb);
5619 failed_mount8:
5620 ext4_unregister_sysfs(sb);
5621 kobject_put(&sbi->s_kobj);
5622 failed_mount7:
5623 ext4_unregister_li_request(sb);
5624 failed_mount6:
5625 ext4_mb_release(sb);
5626 ext4_flex_groups_free(sbi);
5627 ext4_percpu_param_destroy(sbi);
5628 failed_mount5:
5629 ext4_ext_release(sb);
5630 ext4_release_system_zone(sb);
5631 failed_mount4a:
5632 dput(sb->s_root);
5633 sb->s_root = NULL;
5634 failed_mount4:
5635 ext4_msg(sb, KERN_ERR, "mount failed");
5636 if (EXT4_SB(sb)->rsv_conversion_wq)
5637 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5638 failed_mount_wq:
5639 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5640 sbi->s_ea_inode_cache = NULL;
5641
5642 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5643 sbi->s_ea_block_cache = NULL;
5644
5645 if (sbi->s_journal) {
5646 /* flush s_sb_upd_work before journal destroy. */
5647 flush_work(&sbi->s_sb_upd_work);
5648 jbd2_journal_destroy(sbi->s_journal);
5649 sbi->s_journal = NULL;
5650 }
5651 failed_mount3a:
5652 ext4_es_unregister_shrinker(sbi);
5653 failed_mount3:
5654 /* flush s_sb_upd_work before sbi destroy */
5655 flush_work(&sbi->s_sb_upd_work);
5656 del_timer_sync(&sbi->s_err_report);
5657 ext4_stop_mmpd(sbi);
5658 ext4_group_desc_free(sbi);
5659 failed_mount:
5660 if (sbi->s_chksum_driver)
5661 crypto_free_shash(sbi->s_chksum_driver);
5662
5663 #if IS_ENABLED(CONFIG_UNICODE)
5664 utf8_unload(sb->s_encoding);
5665 #endif
5666
5667 #ifdef CONFIG_QUOTA
5668 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5669 kfree(get_qf_name(sb, sbi, i));
5670 #endif
5671 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5672 brelse(sbi->s_sbh);
5673 if (sbi->s_journal_bdev) {
5674 invalidate_bdev(sbi->s_journal_bdev);
5675 blkdev_put(sbi->s_journal_bdev, sb);
5676 }
5677 out_fail:
5678 invalidate_bdev(sb->s_bdev);
5679 sb->s_fs_info = NULL;
5680 return err;
5681 }
5682
ext4_fill_super(struct super_block * sb,struct fs_context * fc)5683 static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5684 {
5685 struct ext4_fs_context *ctx = fc->fs_private;
5686 struct ext4_sb_info *sbi;
5687 const char *descr;
5688 int ret;
5689
5690 sbi = ext4_alloc_sbi(sb);
5691 if (!sbi)
5692 return -ENOMEM;
5693
5694 fc->s_fs_info = sbi;
5695
5696 /* Cleanup superblock name */
5697 strreplace(sb->s_id, '/', '!');
5698
5699 sbi->s_sb_block = 1; /* Default super block location */
5700 if (ctx->spec & EXT4_SPEC_s_sb_block)
5701 sbi->s_sb_block = ctx->s_sb_block;
5702
5703 ret = __ext4_fill_super(fc, sb);
5704 if (ret < 0)
5705 goto free_sbi;
5706
5707 if (sbi->s_journal) {
5708 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5709 descr = " journalled data mode";
5710 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5711 descr = " ordered data mode";
5712 else
5713 descr = " writeback data mode";
5714 } else
5715 descr = "out journal";
5716
5717 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5718 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5719 "Quota mode: %s.", &sb->s_uuid,
5720 sb_rdonly(sb) ? "ro" : "r/w", descr,
5721 ext4_quota_mode(sb));
5722
5723 /* Update the s_overhead_clusters if necessary */
5724 ext4_update_overhead(sb, false);
5725 return 0;
5726
5727 free_sbi:
5728 ext4_free_sbi(sbi);
5729 fc->s_fs_info = NULL;
5730 return ret;
5731 }
5732
ext4_get_tree(struct fs_context * fc)5733 static int ext4_get_tree(struct fs_context *fc)
5734 {
5735 return get_tree_bdev(fc, ext4_fill_super);
5736 }
5737
5738 /*
5739 * Setup any per-fs journal parameters now. We'll do this both on
5740 * initial mount, once the journal has been initialised but before we've
5741 * done any recovery; and again on any subsequent remount.
5742 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5743 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5744 {
5745 struct ext4_sb_info *sbi = EXT4_SB(sb);
5746
5747 journal->j_commit_interval = sbi->s_commit_interval;
5748 journal->j_min_batch_time = sbi->s_min_batch_time;
5749 journal->j_max_batch_time = sbi->s_max_batch_time;
5750 ext4_fc_init(sb, journal);
5751
5752 write_lock(&journal->j_state_lock);
5753 if (test_opt(sb, BARRIER))
5754 journal->j_flags |= JBD2_BARRIER;
5755 else
5756 journal->j_flags &= ~JBD2_BARRIER;
5757 if (test_opt(sb, DATA_ERR_ABORT))
5758 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5759 else
5760 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5761 /*
5762 * Always enable journal cycle record option, letting the journal
5763 * records log transactions continuously between each mount.
5764 */
5765 journal->j_flags |= JBD2_CYCLE_RECORD;
5766 write_unlock(&journal->j_state_lock);
5767 }
5768
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5769 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5770 unsigned int journal_inum)
5771 {
5772 struct inode *journal_inode;
5773
5774 /*
5775 * Test for the existence of a valid inode on disk. Bad things
5776 * happen if we iget() an unused inode, as the subsequent iput()
5777 * will try to delete it.
5778 */
5779 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5780 if (IS_ERR(journal_inode)) {
5781 ext4_msg(sb, KERN_ERR, "no journal found");
5782 return ERR_CAST(journal_inode);
5783 }
5784 if (!journal_inode->i_nlink) {
5785 make_bad_inode(journal_inode);
5786 iput(journal_inode);
5787 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5788 return ERR_PTR(-EFSCORRUPTED);
5789 }
5790 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5791 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5792 iput(journal_inode);
5793 return ERR_PTR(-EFSCORRUPTED);
5794 }
5795
5796 ext4_debug("Journal inode found at %p: %lld bytes\n",
5797 journal_inode, journal_inode->i_size);
5798 return journal_inode;
5799 }
5800
ext4_journal_bmap(journal_t * journal,sector_t * block)5801 static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5802 {
5803 struct ext4_map_blocks map;
5804 int ret;
5805
5806 if (journal->j_inode == NULL)
5807 return 0;
5808
5809 map.m_lblk = *block;
5810 map.m_len = 1;
5811 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5812 if (ret <= 0) {
5813 ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5814 "journal bmap failed: block %llu ret %d\n",
5815 *block, ret);
5816 jbd2_journal_abort(journal, ret ? ret : -EIO);
5817 return ret;
5818 }
5819 *block = map.m_pblk;
5820 return 0;
5821 }
5822
ext4_open_inode_journal(struct super_block * sb,unsigned int journal_inum)5823 static journal_t *ext4_open_inode_journal(struct super_block *sb,
5824 unsigned int journal_inum)
5825 {
5826 struct inode *journal_inode;
5827 journal_t *journal;
5828
5829 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5830 if (IS_ERR(journal_inode))
5831 return ERR_CAST(journal_inode);
5832
5833 journal = jbd2_journal_init_inode(journal_inode);
5834 if (IS_ERR(journal)) {
5835 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5836 iput(journal_inode);
5837 return ERR_CAST(journal);
5838 }
5839 journal->j_private = sb;
5840 journal->j_bmap = ext4_journal_bmap;
5841 ext4_init_journal_params(sb, journal);
5842 return journal;
5843 }
5844
ext4_get_journal_blkdev(struct super_block * sb,dev_t j_dev,ext4_fsblk_t * j_start,ext4_fsblk_t * j_len)5845 static struct block_device *ext4_get_journal_blkdev(struct super_block *sb,
5846 dev_t j_dev, ext4_fsblk_t *j_start,
5847 ext4_fsblk_t *j_len)
5848 {
5849 struct buffer_head *bh;
5850 struct block_device *bdev;
5851 int hblock, blocksize;
5852 ext4_fsblk_t sb_block;
5853 unsigned long offset;
5854 struct ext4_super_block *es;
5855 int errno;
5856
5857 /* see get_tree_bdev why this is needed and safe */
5858 up_write(&sb->s_umount);
5859 bdev = blkdev_get_by_dev(j_dev, BLK_OPEN_READ | BLK_OPEN_WRITE, sb,
5860 &fs_holder_ops);
5861 down_write(&sb->s_umount);
5862 if (IS_ERR(bdev)) {
5863 ext4_msg(sb, KERN_ERR,
5864 "failed to open journal device unknown-block(%u,%u) %ld",
5865 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev));
5866 return ERR_CAST(bdev);
5867 }
5868
5869 blocksize = sb->s_blocksize;
5870 hblock = bdev_logical_block_size(bdev);
5871 if (blocksize < hblock) {
5872 ext4_msg(sb, KERN_ERR,
5873 "blocksize too small for journal device");
5874 errno = -EINVAL;
5875 goto out_bdev;
5876 }
5877
5878 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5879 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5880 set_blocksize(bdev, blocksize);
5881 bh = __bread(bdev, sb_block, blocksize);
5882 if (!bh) {
5883 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5884 "external journal");
5885 errno = -EINVAL;
5886 goto out_bdev;
5887 }
5888
5889 es = (struct ext4_super_block *) (bh->b_data + offset);
5890 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5891 !(le32_to_cpu(es->s_feature_incompat) &
5892 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5893 ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5894 errno = -EFSCORRUPTED;
5895 goto out_bh;
5896 }
5897
5898 if ((le32_to_cpu(es->s_feature_ro_compat) &
5899 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5900 es->s_checksum != ext4_superblock_csum(sb, es)) {
5901 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5902 errno = -EFSCORRUPTED;
5903 goto out_bh;
5904 }
5905
5906 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5907 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5908 errno = -EFSCORRUPTED;
5909 goto out_bh;
5910 }
5911
5912 *j_start = sb_block + 1;
5913 *j_len = ext4_blocks_count(es);
5914 brelse(bh);
5915 return bdev;
5916
5917 out_bh:
5918 brelse(bh);
5919 out_bdev:
5920 blkdev_put(bdev, sb);
5921 return ERR_PTR(errno);
5922 }
5923
ext4_open_dev_journal(struct super_block * sb,dev_t j_dev)5924 static journal_t *ext4_open_dev_journal(struct super_block *sb,
5925 dev_t j_dev)
5926 {
5927 journal_t *journal;
5928 ext4_fsblk_t j_start;
5929 ext4_fsblk_t j_len;
5930 struct block_device *journal_bdev;
5931 int errno = 0;
5932
5933 journal_bdev = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5934 if (IS_ERR(journal_bdev))
5935 return ERR_CAST(journal_bdev);
5936
5937 journal = jbd2_journal_init_dev(journal_bdev, sb->s_bdev, j_start,
5938 j_len, sb->s_blocksize);
5939 if (IS_ERR(journal)) {
5940 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5941 errno = PTR_ERR(journal);
5942 goto out_bdev;
5943 }
5944 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5945 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5946 "user (unsupported) - %d",
5947 be32_to_cpu(journal->j_superblock->s_nr_users));
5948 errno = -EINVAL;
5949 goto out_journal;
5950 }
5951 journal->j_private = sb;
5952 EXT4_SB(sb)->s_journal_bdev = journal_bdev;
5953 ext4_init_journal_params(sb, journal);
5954 return journal;
5955
5956 out_journal:
5957 jbd2_journal_destroy(journal);
5958 out_bdev:
5959 blkdev_put(journal_bdev, sb);
5960 return ERR_PTR(errno);
5961 }
5962
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5963 static int ext4_load_journal(struct super_block *sb,
5964 struct ext4_super_block *es,
5965 unsigned long journal_devnum)
5966 {
5967 journal_t *journal;
5968 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5969 dev_t journal_dev;
5970 int err = 0;
5971 int really_read_only;
5972 int journal_dev_ro;
5973
5974 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5975 return -EFSCORRUPTED;
5976
5977 if (journal_devnum &&
5978 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5979 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5980 "numbers have changed");
5981 journal_dev = new_decode_dev(journal_devnum);
5982 } else
5983 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5984
5985 if (journal_inum && journal_dev) {
5986 ext4_msg(sb, KERN_ERR,
5987 "filesystem has both journal inode and journal device!");
5988 return -EINVAL;
5989 }
5990
5991 if (journal_inum) {
5992 journal = ext4_open_inode_journal(sb, journal_inum);
5993 if (IS_ERR(journal))
5994 return PTR_ERR(journal);
5995 } else {
5996 journal = ext4_open_dev_journal(sb, journal_dev);
5997 if (IS_ERR(journal))
5998 return PTR_ERR(journal);
5999 }
6000
6001 journal_dev_ro = bdev_read_only(journal->j_dev);
6002 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6003
6004 if (journal_dev_ro && !sb_rdonly(sb)) {
6005 ext4_msg(sb, KERN_ERR,
6006 "journal device read-only, try mounting with '-o ro'");
6007 err = -EROFS;
6008 goto err_out;
6009 }
6010
6011 /*
6012 * Are we loading a blank journal or performing recovery after a
6013 * crash? For recovery, we need to check in advance whether we
6014 * can get read-write access to the device.
6015 */
6016 if (ext4_has_feature_journal_needs_recovery(sb)) {
6017 if (sb_rdonly(sb)) {
6018 ext4_msg(sb, KERN_INFO, "INFO: recovery "
6019 "required on readonly filesystem");
6020 if (really_read_only) {
6021 ext4_msg(sb, KERN_ERR, "write access "
6022 "unavailable, cannot proceed "
6023 "(try mounting with noload)");
6024 err = -EROFS;
6025 goto err_out;
6026 }
6027 ext4_msg(sb, KERN_INFO, "write access will "
6028 "be enabled during recovery");
6029 }
6030 }
6031
6032 if (!(journal->j_flags & JBD2_BARRIER))
6033 ext4_msg(sb, KERN_INFO, "barriers disabled");
6034
6035 if (!ext4_has_feature_journal_needs_recovery(sb))
6036 err = jbd2_journal_wipe(journal, !really_read_only);
6037 if (!err) {
6038 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6039 __le16 orig_state;
6040 bool changed = false;
6041
6042 if (save)
6043 memcpy(save, ((char *) es) +
6044 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6045 err = jbd2_journal_load(journal);
6046 if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6047 save, EXT4_S_ERR_LEN)) {
6048 memcpy(((char *) es) + EXT4_S_ERR_START,
6049 save, EXT4_S_ERR_LEN);
6050 changed = true;
6051 }
6052 kfree(save);
6053 orig_state = es->s_state;
6054 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6055 EXT4_ERROR_FS);
6056 if (orig_state != es->s_state)
6057 changed = true;
6058 /* Write out restored error information to the superblock */
6059 if (changed && !really_read_only) {
6060 int err2;
6061 err2 = ext4_commit_super(sb);
6062 err = err ? : err2;
6063 }
6064 }
6065
6066 if (err) {
6067 ext4_msg(sb, KERN_ERR, "error loading journal");
6068 goto err_out;
6069 }
6070
6071 EXT4_SB(sb)->s_journal = journal;
6072 err = ext4_clear_journal_err(sb, es);
6073 if (err) {
6074 EXT4_SB(sb)->s_journal = NULL;
6075 jbd2_journal_destroy(journal);
6076 return err;
6077 }
6078
6079 if (!really_read_only && journal_devnum &&
6080 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6081 es->s_journal_dev = cpu_to_le32(journal_devnum);
6082 ext4_commit_super(sb);
6083 }
6084 if (!really_read_only && journal_inum &&
6085 journal_inum != le32_to_cpu(es->s_journal_inum)) {
6086 es->s_journal_inum = cpu_to_le32(journal_inum);
6087 ext4_commit_super(sb);
6088 }
6089
6090 return 0;
6091
6092 err_out:
6093 jbd2_journal_destroy(journal);
6094 return err;
6095 }
6096
6097 /* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
ext4_update_super(struct super_block * sb)6098 static void ext4_update_super(struct super_block *sb)
6099 {
6100 struct ext4_sb_info *sbi = EXT4_SB(sb);
6101 struct ext4_super_block *es = sbi->s_es;
6102 struct buffer_head *sbh = sbi->s_sbh;
6103
6104 lock_buffer(sbh);
6105 /*
6106 * If the file system is mounted read-only, don't update the
6107 * superblock write time. This avoids updating the superblock
6108 * write time when we are mounting the root file system
6109 * read/only but we need to replay the journal; at that point,
6110 * for people who are east of GMT and who make their clock
6111 * tick in localtime for Windows bug-for-bug compatibility,
6112 * the clock is set in the future, and this will cause e2fsck
6113 * to complain and force a full file system check.
6114 */
6115 if (!sb_rdonly(sb))
6116 ext4_update_tstamp(es, s_wtime);
6117 es->s_kbytes_written =
6118 cpu_to_le64(sbi->s_kbytes_written +
6119 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6120 sbi->s_sectors_written_start) >> 1));
6121 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6122 ext4_free_blocks_count_set(es,
6123 EXT4_C2B(sbi, percpu_counter_sum_positive(
6124 &sbi->s_freeclusters_counter)));
6125 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6126 es->s_free_inodes_count =
6127 cpu_to_le32(percpu_counter_sum_positive(
6128 &sbi->s_freeinodes_counter));
6129 /* Copy error information to the on-disk superblock */
6130 spin_lock(&sbi->s_error_lock);
6131 if (sbi->s_add_error_count > 0) {
6132 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6133 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6134 __ext4_update_tstamp(&es->s_first_error_time,
6135 &es->s_first_error_time_hi,
6136 sbi->s_first_error_time);
6137 strncpy(es->s_first_error_func, sbi->s_first_error_func,
6138 sizeof(es->s_first_error_func));
6139 es->s_first_error_line =
6140 cpu_to_le32(sbi->s_first_error_line);
6141 es->s_first_error_ino =
6142 cpu_to_le32(sbi->s_first_error_ino);
6143 es->s_first_error_block =
6144 cpu_to_le64(sbi->s_first_error_block);
6145 es->s_first_error_errcode =
6146 ext4_errno_to_code(sbi->s_first_error_code);
6147 }
6148 __ext4_update_tstamp(&es->s_last_error_time,
6149 &es->s_last_error_time_hi,
6150 sbi->s_last_error_time);
6151 strncpy(es->s_last_error_func, sbi->s_last_error_func,
6152 sizeof(es->s_last_error_func));
6153 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6154 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6155 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6156 es->s_last_error_errcode =
6157 ext4_errno_to_code(sbi->s_last_error_code);
6158 /*
6159 * Start the daily error reporting function if it hasn't been
6160 * started already
6161 */
6162 if (!es->s_error_count)
6163 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6164 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6165 sbi->s_add_error_count = 0;
6166 }
6167 spin_unlock(&sbi->s_error_lock);
6168
6169 ext4_superblock_csum_set(sb);
6170 unlock_buffer(sbh);
6171 }
6172
ext4_commit_super(struct super_block * sb)6173 static int ext4_commit_super(struct super_block *sb)
6174 {
6175 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6176
6177 if (!sbh)
6178 return -EINVAL;
6179 if (block_device_ejected(sb))
6180 return -ENODEV;
6181
6182 ext4_update_super(sb);
6183
6184 lock_buffer(sbh);
6185 /* Buffer got discarded which means block device got invalidated */
6186 if (!buffer_mapped(sbh)) {
6187 unlock_buffer(sbh);
6188 return -EIO;
6189 }
6190
6191 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6192 /*
6193 * Oh, dear. A previous attempt to write the
6194 * superblock failed. This could happen because the
6195 * USB device was yanked out. Or it could happen to
6196 * be a transient write error and maybe the block will
6197 * be remapped. Nothing we can do but to retry the
6198 * write and hope for the best.
6199 */
6200 ext4_msg(sb, KERN_ERR, "previous I/O error to "
6201 "superblock detected");
6202 clear_buffer_write_io_error(sbh);
6203 set_buffer_uptodate(sbh);
6204 }
6205 get_bh(sbh);
6206 /* Clear potential dirty bit if it was journalled update */
6207 clear_buffer_dirty(sbh);
6208 sbh->b_end_io = end_buffer_write_sync;
6209 submit_bh(REQ_OP_WRITE | REQ_SYNC |
6210 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6211 wait_on_buffer(sbh);
6212 if (buffer_write_io_error(sbh)) {
6213 ext4_msg(sb, KERN_ERR, "I/O error while writing "
6214 "superblock");
6215 clear_buffer_write_io_error(sbh);
6216 set_buffer_uptodate(sbh);
6217 return -EIO;
6218 }
6219 return 0;
6220 }
6221
6222 /*
6223 * Have we just finished recovery? If so, and if we are mounting (or
6224 * remounting) the filesystem readonly, then we will end up with a
6225 * consistent fs on disk. Record that fact.
6226 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)6227 static int ext4_mark_recovery_complete(struct super_block *sb,
6228 struct ext4_super_block *es)
6229 {
6230 int err;
6231 journal_t *journal = EXT4_SB(sb)->s_journal;
6232
6233 if (!ext4_has_feature_journal(sb)) {
6234 if (journal != NULL) {
6235 ext4_error(sb, "Journal got removed while the fs was "
6236 "mounted!");
6237 return -EFSCORRUPTED;
6238 }
6239 return 0;
6240 }
6241 jbd2_journal_lock_updates(journal);
6242 err = jbd2_journal_flush(journal, 0);
6243 if (err < 0)
6244 goto out;
6245
6246 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6247 ext4_has_feature_orphan_present(sb))) {
6248 if (!ext4_orphan_file_empty(sb)) {
6249 ext4_error(sb, "Orphan file not empty on read-only fs.");
6250 err = -EFSCORRUPTED;
6251 goto out;
6252 }
6253 ext4_clear_feature_journal_needs_recovery(sb);
6254 ext4_clear_feature_orphan_present(sb);
6255 ext4_commit_super(sb);
6256 }
6257 out:
6258 jbd2_journal_unlock_updates(journal);
6259 return err;
6260 }
6261
6262 /*
6263 * If we are mounting (or read-write remounting) a filesystem whose journal
6264 * has recorded an error from a previous lifetime, move that error to the
6265 * main filesystem now.
6266 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)6267 static int ext4_clear_journal_err(struct super_block *sb,
6268 struct ext4_super_block *es)
6269 {
6270 journal_t *journal;
6271 int j_errno;
6272 const char *errstr;
6273
6274 if (!ext4_has_feature_journal(sb)) {
6275 ext4_error(sb, "Journal got removed while the fs was mounted!");
6276 return -EFSCORRUPTED;
6277 }
6278
6279 journal = EXT4_SB(sb)->s_journal;
6280
6281 /*
6282 * Now check for any error status which may have been recorded in the
6283 * journal by a prior ext4_error() or ext4_abort()
6284 */
6285
6286 j_errno = jbd2_journal_errno(journal);
6287 if (j_errno) {
6288 char nbuf[16];
6289
6290 errstr = ext4_decode_error(sb, j_errno, nbuf);
6291 ext4_warning(sb, "Filesystem error recorded "
6292 "from previous mount: %s", errstr);
6293
6294 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6295 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6296 j_errno = ext4_commit_super(sb);
6297 if (j_errno)
6298 return j_errno;
6299 ext4_warning(sb, "Marked fs in need of filesystem check.");
6300
6301 jbd2_journal_clear_err(journal);
6302 jbd2_journal_update_sb_errno(journal);
6303 }
6304 return 0;
6305 }
6306
6307 /*
6308 * Force the running and committing transactions to commit,
6309 * and wait on the commit.
6310 */
ext4_force_commit(struct super_block * sb)6311 int ext4_force_commit(struct super_block *sb)
6312 {
6313 return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6314 }
6315
ext4_sync_fs(struct super_block * sb,int wait)6316 static int ext4_sync_fs(struct super_block *sb, int wait)
6317 {
6318 int ret = 0;
6319 tid_t target;
6320 bool needs_barrier = false;
6321 struct ext4_sb_info *sbi = EXT4_SB(sb);
6322
6323 if (unlikely(ext4_forced_shutdown(sb)))
6324 return 0;
6325
6326 trace_ext4_sync_fs(sb, wait);
6327 flush_workqueue(sbi->rsv_conversion_wq);
6328 /*
6329 * Writeback quota in non-journalled quota case - journalled quota has
6330 * no dirty dquots
6331 */
6332 dquot_writeback_dquots(sb, -1);
6333 /*
6334 * Data writeback is possible w/o journal transaction, so barrier must
6335 * being sent at the end of the function. But we can skip it if
6336 * transaction_commit will do it for us.
6337 */
6338 if (sbi->s_journal) {
6339 target = jbd2_get_latest_transaction(sbi->s_journal);
6340 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6341 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6342 needs_barrier = true;
6343
6344 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6345 if (wait)
6346 ret = jbd2_log_wait_commit(sbi->s_journal,
6347 target);
6348 }
6349 } else if (wait && test_opt(sb, BARRIER))
6350 needs_barrier = true;
6351 if (needs_barrier) {
6352 int err;
6353 err = blkdev_issue_flush(sb->s_bdev);
6354 if (!ret)
6355 ret = err;
6356 }
6357
6358 return ret;
6359 }
6360
6361 /*
6362 * LVM calls this function before a (read-only) snapshot is created. This
6363 * gives us a chance to flush the journal completely and mark the fs clean.
6364 *
6365 * Note that only this function cannot bring a filesystem to be in a clean
6366 * state independently. It relies on upper layer to stop all data & metadata
6367 * modifications.
6368 */
ext4_freeze(struct super_block * sb)6369 static int ext4_freeze(struct super_block *sb)
6370 {
6371 int error = 0;
6372 journal_t *journal = EXT4_SB(sb)->s_journal;
6373
6374 if (journal) {
6375 /* Now we set up the journal barrier. */
6376 jbd2_journal_lock_updates(journal);
6377
6378 /*
6379 * Don't clear the needs_recovery flag if we failed to
6380 * flush the journal.
6381 */
6382 error = jbd2_journal_flush(journal, 0);
6383 if (error < 0)
6384 goto out;
6385
6386 /* Journal blocked and flushed, clear needs_recovery flag. */
6387 ext4_clear_feature_journal_needs_recovery(sb);
6388 if (ext4_orphan_file_empty(sb))
6389 ext4_clear_feature_orphan_present(sb);
6390 }
6391
6392 error = ext4_commit_super(sb);
6393 out:
6394 if (journal)
6395 /* we rely on upper layer to stop further updates */
6396 jbd2_journal_unlock_updates(journal);
6397 return error;
6398 }
6399
6400 /*
6401 * Called by LVM after the snapshot is done. We need to reset the RECOVER
6402 * flag here, even though the filesystem is not technically dirty yet.
6403 */
ext4_unfreeze(struct super_block * sb)6404 static int ext4_unfreeze(struct super_block *sb)
6405 {
6406 if (ext4_forced_shutdown(sb))
6407 return 0;
6408
6409 if (EXT4_SB(sb)->s_journal) {
6410 /* Reset the needs_recovery flag before the fs is unlocked. */
6411 ext4_set_feature_journal_needs_recovery(sb);
6412 if (ext4_has_feature_orphan_file(sb))
6413 ext4_set_feature_orphan_present(sb);
6414 }
6415
6416 ext4_commit_super(sb);
6417 return 0;
6418 }
6419
6420 /*
6421 * Structure to save mount options for ext4_remount's benefit
6422 */
6423 struct ext4_mount_options {
6424 unsigned long s_mount_opt;
6425 unsigned long s_mount_opt2;
6426 kuid_t s_resuid;
6427 kgid_t s_resgid;
6428 unsigned long s_commit_interval;
6429 u32 s_min_batch_time, s_max_batch_time;
6430 #ifdef CONFIG_QUOTA
6431 int s_jquota_fmt;
6432 char *s_qf_names[EXT4_MAXQUOTAS];
6433 #endif
6434 };
6435
__ext4_remount(struct fs_context * fc,struct super_block * sb)6436 static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6437 {
6438 struct ext4_fs_context *ctx = fc->fs_private;
6439 struct ext4_super_block *es;
6440 struct ext4_sb_info *sbi = EXT4_SB(sb);
6441 unsigned long old_sb_flags;
6442 struct ext4_mount_options old_opts;
6443 ext4_group_t g;
6444 int err = 0;
6445 #ifdef CONFIG_QUOTA
6446 int enable_quota = 0;
6447 int i, j;
6448 char *to_free[EXT4_MAXQUOTAS];
6449 #endif
6450
6451
6452 /* Store the original options */
6453 old_sb_flags = sb->s_flags;
6454 old_opts.s_mount_opt = sbi->s_mount_opt;
6455 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6456 old_opts.s_resuid = sbi->s_resuid;
6457 old_opts.s_resgid = sbi->s_resgid;
6458 old_opts.s_commit_interval = sbi->s_commit_interval;
6459 old_opts.s_min_batch_time = sbi->s_min_batch_time;
6460 old_opts.s_max_batch_time = sbi->s_max_batch_time;
6461 #ifdef CONFIG_QUOTA
6462 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6463 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6464 if (sbi->s_qf_names[i]) {
6465 char *qf_name = get_qf_name(sb, sbi, i);
6466
6467 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6468 if (!old_opts.s_qf_names[i]) {
6469 for (j = 0; j < i; j++)
6470 kfree(old_opts.s_qf_names[j]);
6471 return -ENOMEM;
6472 }
6473 } else
6474 old_opts.s_qf_names[i] = NULL;
6475 #endif
6476 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6477 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6478 ctx->journal_ioprio =
6479 sbi->s_journal->j_task->io_context->ioprio;
6480 else
6481 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6482
6483 }
6484
6485 ext4_apply_options(fc, sb);
6486
6487 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6488 test_opt(sb, JOURNAL_CHECKSUM)) {
6489 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6490 "during remount not supported; ignoring");
6491 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6492 }
6493
6494 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6495 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6496 ext4_msg(sb, KERN_ERR, "can't mount with "
6497 "both data=journal and delalloc");
6498 err = -EINVAL;
6499 goto restore_opts;
6500 }
6501 if (test_opt(sb, DIOREAD_NOLOCK)) {
6502 ext4_msg(sb, KERN_ERR, "can't mount with "
6503 "both data=journal and dioread_nolock");
6504 err = -EINVAL;
6505 goto restore_opts;
6506 }
6507 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6508 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6509 ext4_msg(sb, KERN_ERR, "can't mount with "
6510 "journal_async_commit in data=ordered mode");
6511 err = -EINVAL;
6512 goto restore_opts;
6513 }
6514 }
6515
6516 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6517 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6518 err = -EINVAL;
6519 goto restore_opts;
6520 }
6521
6522 if (test_opt2(sb, ABORT))
6523 ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6524
6525 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6526 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6527
6528 es = sbi->s_es;
6529
6530 if (sbi->s_journal) {
6531 ext4_init_journal_params(sb, sbi->s_journal);
6532 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6533 }
6534
6535 /* Flush outstanding errors before changing fs state */
6536 flush_work(&sbi->s_sb_upd_work);
6537
6538 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6539 if (ext4_forced_shutdown(sb)) {
6540 err = -EROFS;
6541 goto restore_opts;
6542 }
6543
6544 if (fc->sb_flags & SB_RDONLY) {
6545 err = sync_filesystem(sb);
6546 if (err < 0)
6547 goto restore_opts;
6548 err = dquot_suspend(sb, -1);
6549 if (err < 0)
6550 goto restore_opts;
6551
6552 /*
6553 * First of all, the unconditional stuff we have to do
6554 * to disable replay of the journal when we next remount
6555 */
6556 sb->s_flags |= SB_RDONLY;
6557
6558 /*
6559 * OK, test if we are remounting a valid rw partition
6560 * readonly, and if so set the rdonly flag and then
6561 * mark the partition as valid again.
6562 */
6563 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6564 (sbi->s_mount_state & EXT4_VALID_FS))
6565 es->s_state = cpu_to_le16(sbi->s_mount_state);
6566
6567 if (sbi->s_journal) {
6568 /*
6569 * We let remount-ro finish even if marking fs
6570 * as clean failed...
6571 */
6572 ext4_mark_recovery_complete(sb, es);
6573 }
6574 } else {
6575 /* Make sure we can mount this feature set readwrite */
6576 if (ext4_has_feature_readonly(sb) ||
6577 !ext4_feature_set_ok(sb, 0)) {
6578 err = -EROFS;
6579 goto restore_opts;
6580 }
6581 /*
6582 * Make sure the group descriptor checksums
6583 * are sane. If they aren't, refuse to remount r/w.
6584 */
6585 for (g = 0; g < sbi->s_groups_count; g++) {
6586 struct ext4_group_desc *gdp =
6587 ext4_get_group_desc(sb, g, NULL);
6588
6589 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6590 ext4_msg(sb, KERN_ERR,
6591 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6592 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6593 le16_to_cpu(gdp->bg_checksum));
6594 err = -EFSBADCRC;
6595 goto restore_opts;
6596 }
6597 }
6598
6599 /*
6600 * If we have an unprocessed orphan list hanging
6601 * around from a previously readonly bdev mount,
6602 * require a full umount/remount for now.
6603 */
6604 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6605 ext4_msg(sb, KERN_WARNING, "Couldn't "
6606 "remount RDWR because of unprocessed "
6607 "orphan inode list. Please "
6608 "umount/remount instead");
6609 err = -EINVAL;
6610 goto restore_opts;
6611 }
6612
6613 /*
6614 * Mounting a RDONLY partition read-write, so reread
6615 * and store the current valid flag. (It may have
6616 * been changed by e2fsck since we originally mounted
6617 * the partition.)
6618 */
6619 if (sbi->s_journal) {
6620 err = ext4_clear_journal_err(sb, es);
6621 if (err)
6622 goto restore_opts;
6623 }
6624 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6625 ~EXT4_FC_REPLAY);
6626
6627 err = ext4_setup_super(sb, es, 0);
6628 if (err)
6629 goto restore_opts;
6630
6631 sb->s_flags &= ~SB_RDONLY;
6632 if (ext4_has_feature_mmp(sb)) {
6633 err = ext4_multi_mount_protect(sb,
6634 le64_to_cpu(es->s_mmp_block));
6635 if (err)
6636 goto restore_opts;
6637 }
6638 #ifdef CONFIG_QUOTA
6639 enable_quota = 1;
6640 #endif
6641 }
6642 }
6643
6644 /*
6645 * Handle creation of system zone data early because it can fail.
6646 * Releasing of existing data is done when we are sure remount will
6647 * succeed.
6648 */
6649 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6650 err = ext4_setup_system_zone(sb);
6651 if (err)
6652 goto restore_opts;
6653 }
6654
6655 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6656 err = ext4_commit_super(sb);
6657 if (err)
6658 goto restore_opts;
6659 }
6660
6661 #ifdef CONFIG_QUOTA
6662 if (enable_quota) {
6663 if (sb_any_quota_suspended(sb))
6664 dquot_resume(sb, -1);
6665 else if (ext4_has_feature_quota(sb)) {
6666 err = ext4_enable_quotas(sb);
6667 if (err)
6668 goto restore_opts;
6669 }
6670 }
6671 /* Release old quota file names */
6672 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6673 kfree(old_opts.s_qf_names[i]);
6674 #endif
6675 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6676 ext4_release_system_zone(sb);
6677
6678 /*
6679 * Reinitialize lazy itable initialization thread based on
6680 * current settings
6681 */
6682 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6683 ext4_unregister_li_request(sb);
6684 else {
6685 ext4_group_t first_not_zeroed;
6686 first_not_zeroed = ext4_has_uninit_itable(sb);
6687 ext4_register_li_request(sb, first_not_zeroed);
6688 }
6689
6690 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6691 ext4_stop_mmpd(sbi);
6692
6693 return 0;
6694
6695 restore_opts:
6696 /*
6697 * If there was a failing r/w to ro transition, we may need to
6698 * re-enable quota
6699 */
6700 if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6701 sb_any_quota_suspended(sb))
6702 dquot_resume(sb, -1);
6703 sb->s_flags = old_sb_flags;
6704 sbi->s_mount_opt = old_opts.s_mount_opt;
6705 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6706 sbi->s_resuid = old_opts.s_resuid;
6707 sbi->s_resgid = old_opts.s_resgid;
6708 sbi->s_commit_interval = old_opts.s_commit_interval;
6709 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6710 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6711 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6712 ext4_release_system_zone(sb);
6713 #ifdef CONFIG_QUOTA
6714 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6715 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6716 to_free[i] = get_qf_name(sb, sbi, i);
6717 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6718 }
6719 synchronize_rcu();
6720 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6721 kfree(to_free[i]);
6722 #endif
6723 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6724 ext4_stop_mmpd(sbi);
6725 return err;
6726 }
6727
ext4_reconfigure(struct fs_context * fc)6728 static int ext4_reconfigure(struct fs_context *fc)
6729 {
6730 struct super_block *sb = fc->root->d_sb;
6731 int ret;
6732
6733 fc->s_fs_info = EXT4_SB(sb);
6734
6735 ret = ext4_check_opt_consistency(fc, sb);
6736 if (ret < 0)
6737 return ret;
6738
6739 ret = __ext4_remount(fc, sb);
6740 if (ret < 0)
6741 return ret;
6742
6743 ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.",
6744 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w",
6745 ext4_quota_mode(sb));
6746
6747 return 0;
6748 }
6749
6750 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6751 static int ext4_statfs_project(struct super_block *sb,
6752 kprojid_t projid, struct kstatfs *buf)
6753 {
6754 struct kqid qid;
6755 struct dquot *dquot;
6756 u64 limit;
6757 u64 curblock;
6758
6759 qid = make_kqid_projid(projid);
6760 dquot = dqget(sb, qid);
6761 if (IS_ERR(dquot))
6762 return PTR_ERR(dquot);
6763 spin_lock(&dquot->dq_dqb_lock);
6764
6765 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6766 dquot->dq_dqb.dqb_bhardlimit);
6767 limit >>= sb->s_blocksize_bits;
6768
6769 if (limit && buf->f_blocks > limit) {
6770 curblock = (dquot->dq_dqb.dqb_curspace +
6771 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6772 buf->f_blocks = limit;
6773 buf->f_bfree = buf->f_bavail =
6774 (buf->f_blocks > curblock) ?
6775 (buf->f_blocks - curblock) : 0;
6776 }
6777
6778 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6779 dquot->dq_dqb.dqb_ihardlimit);
6780 if (limit && buf->f_files > limit) {
6781 buf->f_files = limit;
6782 buf->f_ffree =
6783 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6784 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6785 }
6786
6787 spin_unlock(&dquot->dq_dqb_lock);
6788 dqput(dquot);
6789 return 0;
6790 }
6791 #endif
6792
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6793 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6794 {
6795 struct super_block *sb = dentry->d_sb;
6796 struct ext4_sb_info *sbi = EXT4_SB(sb);
6797 struct ext4_super_block *es = sbi->s_es;
6798 ext4_fsblk_t overhead = 0, resv_blocks;
6799 s64 bfree;
6800 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6801
6802 if (!test_opt(sb, MINIX_DF))
6803 overhead = sbi->s_overhead;
6804
6805 buf->f_type = EXT4_SUPER_MAGIC;
6806 buf->f_bsize = sb->s_blocksize;
6807 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6808 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6809 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6810 /* prevent underflow in case that few free space is available */
6811 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6812 buf->f_bavail = buf->f_bfree -
6813 (ext4_r_blocks_count(es) + resv_blocks);
6814 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6815 buf->f_bavail = 0;
6816 buf->f_files = le32_to_cpu(es->s_inodes_count);
6817 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6818 buf->f_namelen = EXT4_NAME_LEN;
6819 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6820
6821 #ifdef CONFIG_QUOTA
6822 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6823 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6824 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6825 #endif
6826 return 0;
6827 }
6828
6829
6830 #ifdef CONFIG_QUOTA
6831
6832 /*
6833 * Helper functions so that transaction is started before we acquire dqio_sem
6834 * to keep correct lock ordering of transaction > dqio_sem
6835 */
dquot_to_inode(struct dquot * dquot)6836 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6837 {
6838 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6839 }
6840
ext4_write_dquot(struct dquot * dquot)6841 static int ext4_write_dquot(struct dquot *dquot)
6842 {
6843 int ret, err;
6844 handle_t *handle;
6845 struct inode *inode;
6846
6847 inode = dquot_to_inode(dquot);
6848 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6849 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6850 if (IS_ERR(handle))
6851 return PTR_ERR(handle);
6852 ret = dquot_commit(dquot);
6853 err = ext4_journal_stop(handle);
6854 if (!ret)
6855 ret = err;
6856 return ret;
6857 }
6858
ext4_acquire_dquot(struct dquot * dquot)6859 static int ext4_acquire_dquot(struct dquot *dquot)
6860 {
6861 int ret, err;
6862 handle_t *handle;
6863
6864 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6865 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6866 if (IS_ERR(handle))
6867 return PTR_ERR(handle);
6868 ret = dquot_acquire(dquot);
6869 err = ext4_journal_stop(handle);
6870 if (!ret)
6871 ret = err;
6872 return ret;
6873 }
6874
ext4_release_dquot(struct dquot * dquot)6875 static int ext4_release_dquot(struct dquot *dquot)
6876 {
6877 int ret, err;
6878 handle_t *handle;
6879
6880 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6881 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6882 if (IS_ERR(handle)) {
6883 /* Release dquot anyway to avoid endless cycle in dqput() */
6884 dquot_release(dquot);
6885 return PTR_ERR(handle);
6886 }
6887 ret = dquot_release(dquot);
6888 err = ext4_journal_stop(handle);
6889 if (!ret)
6890 ret = err;
6891 return ret;
6892 }
6893
ext4_mark_dquot_dirty(struct dquot * dquot)6894 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6895 {
6896 struct super_block *sb = dquot->dq_sb;
6897
6898 if (ext4_is_quota_journalled(sb)) {
6899 dquot_mark_dquot_dirty(dquot);
6900 return ext4_write_dquot(dquot);
6901 } else {
6902 return dquot_mark_dquot_dirty(dquot);
6903 }
6904 }
6905
ext4_write_info(struct super_block * sb,int type)6906 static int ext4_write_info(struct super_block *sb, int type)
6907 {
6908 int ret, err;
6909 handle_t *handle;
6910
6911 /* Data block + inode block */
6912 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6913 if (IS_ERR(handle))
6914 return PTR_ERR(handle);
6915 ret = dquot_commit_info(sb, type);
6916 err = ext4_journal_stop(handle);
6917 if (!ret)
6918 ret = err;
6919 return ret;
6920 }
6921
lockdep_set_quota_inode(struct inode * inode,int subclass)6922 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6923 {
6924 struct ext4_inode_info *ei = EXT4_I(inode);
6925
6926 /* The first argument of lockdep_set_subclass has to be
6927 * *exactly* the same as the argument to init_rwsem() --- in
6928 * this case, in init_once() --- or lockdep gets unhappy
6929 * because the name of the lock is set using the
6930 * stringification of the argument to init_rwsem().
6931 */
6932 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6933 lockdep_set_subclass(&ei->i_data_sem, subclass);
6934 }
6935
6936 /*
6937 * Standard function to be called on quota_on
6938 */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)6939 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6940 const struct path *path)
6941 {
6942 int err;
6943
6944 if (!test_opt(sb, QUOTA))
6945 return -EINVAL;
6946
6947 /* Quotafile not on the same filesystem? */
6948 if (path->dentry->d_sb != sb)
6949 return -EXDEV;
6950
6951 /* Quota already enabled for this file? */
6952 if (IS_NOQUOTA(d_inode(path->dentry)))
6953 return -EBUSY;
6954
6955 /* Journaling quota? */
6956 if (EXT4_SB(sb)->s_qf_names[type]) {
6957 /* Quotafile not in fs root? */
6958 if (path->dentry->d_parent != sb->s_root)
6959 ext4_msg(sb, KERN_WARNING,
6960 "Quota file not on filesystem root. "
6961 "Journaled quota will not work");
6962 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6963 } else {
6964 /*
6965 * Clear the flag just in case mount options changed since
6966 * last time.
6967 */
6968 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6969 }
6970
6971 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6972 err = dquot_quota_on(sb, type, format_id, path);
6973 if (!err) {
6974 struct inode *inode = d_inode(path->dentry);
6975 handle_t *handle;
6976
6977 /*
6978 * Set inode flags to prevent userspace from messing with quota
6979 * files. If this fails, we return success anyway since quotas
6980 * are already enabled and this is not a hard failure.
6981 */
6982 inode_lock(inode);
6983 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6984 if (IS_ERR(handle))
6985 goto unlock_inode;
6986 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6987 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6988 S_NOATIME | S_IMMUTABLE);
6989 err = ext4_mark_inode_dirty(handle, inode);
6990 ext4_journal_stop(handle);
6991 unlock_inode:
6992 inode_unlock(inode);
6993 if (err)
6994 dquot_quota_off(sb, type);
6995 }
6996 if (err)
6997 lockdep_set_quota_inode(path->dentry->d_inode,
6998 I_DATA_SEM_NORMAL);
6999 return err;
7000 }
7001
ext4_check_quota_inum(int type,unsigned long qf_inum)7002 static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7003 {
7004 switch (type) {
7005 case USRQUOTA:
7006 return qf_inum == EXT4_USR_QUOTA_INO;
7007 case GRPQUOTA:
7008 return qf_inum == EXT4_GRP_QUOTA_INO;
7009 case PRJQUOTA:
7010 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7011 default:
7012 BUG();
7013 }
7014 }
7015
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)7016 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7017 unsigned int flags)
7018 {
7019 int err;
7020 struct inode *qf_inode;
7021 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7022 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7023 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7024 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7025 };
7026
7027 BUG_ON(!ext4_has_feature_quota(sb));
7028
7029 if (!qf_inums[type])
7030 return -EPERM;
7031
7032 if (!ext4_check_quota_inum(type, qf_inums[type])) {
7033 ext4_error(sb, "Bad quota inum: %lu, type: %d",
7034 qf_inums[type], type);
7035 return -EUCLEAN;
7036 }
7037
7038 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7039 if (IS_ERR(qf_inode)) {
7040 ext4_error(sb, "Bad quota inode: %lu, type: %d",
7041 qf_inums[type], type);
7042 return PTR_ERR(qf_inode);
7043 }
7044
7045 /* Don't account quota for quota files to avoid recursion */
7046 qf_inode->i_flags |= S_NOQUOTA;
7047 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7048 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7049 if (err)
7050 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7051 iput(qf_inode);
7052
7053 return err;
7054 }
7055
7056 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)7057 int ext4_enable_quotas(struct super_block *sb)
7058 {
7059 int type, err = 0;
7060 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7061 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7062 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7063 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7064 };
7065 bool quota_mopt[EXT4_MAXQUOTAS] = {
7066 test_opt(sb, USRQUOTA),
7067 test_opt(sb, GRPQUOTA),
7068 test_opt(sb, PRJQUOTA),
7069 };
7070
7071 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7072 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7073 if (qf_inums[type]) {
7074 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7075 DQUOT_USAGE_ENABLED |
7076 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7077 if (err) {
7078 ext4_warning(sb,
7079 "Failed to enable quota tracking "
7080 "(type=%d, err=%d, ino=%lu). "
7081 "Please run e2fsck to fix.", type,
7082 err, qf_inums[type]);
7083
7084 ext4_quotas_off(sb, type);
7085 return err;
7086 }
7087 }
7088 }
7089 return 0;
7090 }
7091
ext4_quota_off(struct super_block * sb,int type)7092 static int ext4_quota_off(struct super_block *sb, int type)
7093 {
7094 struct inode *inode = sb_dqopt(sb)->files[type];
7095 handle_t *handle;
7096 int err;
7097
7098 /* Force all delayed allocation blocks to be allocated.
7099 * Caller already holds s_umount sem */
7100 if (test_opt(sb, DELALLOC))
7101 sync_filesystem(sb);
7102
7103 if (!inode || !igrab(inode))
7104 goto out;
7105
7106 err = dquot_quota_off(sb, type);
7107 if (err || ext4_has_feature_quota(sb))
7108 goto out_put;
7109 /*
7110 * When the filesystem was remounted read-only first, we cannot cleanup
7111 * inode flags here. Bad luck but people should be using QUOTA feature
7112 * these days anyway.
7113 */
7114 if (sb_rdonly(sb))
7115 goto out_put;
7116
7117 inode_lock(inode);
7118 /*
7119 * Update modification times of quota files when userspace can
7120 * start looking at them. If we fail, we return success anyway since
7121 * this is not a hard failure and quotas are already disabled.
7122 */
7123 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7124 if (IS_ERR(handle)) {
7125 err = PTR_ERR(handle);
7126 goto out_unlock;
7127 }
7128 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7129 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7130 inode->i_mtime = inode_set_ctime_current(inode);
7131 err = ext4_mark_inode_dirty(handle, inode);
7132 ext4_journal_stop(handle);
7133 out_unlock:
7134 inode_unlock(inode);
7135 out_put:
7136 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7137 iput(inode);
7138 return err;
7139 out:
7140 return dquot_quota_off(sb, type);
7141 }
7142
7143 /* Read data from quotafile - avoid pagecache and such because we cannot afford
7144 * acquiring the locks... As quota files are never truncated and quota code
7145 * itself serializes the operations (and no one else should touch the files)
7146 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)7147 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7148 size_t len, loff_t off)
7149 {
7150 struct inode *inode = sb_dqopt(sb)->files[type];
7151 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7152 int offset = off & (sb->s_blocksize - 1);
7153 int tocopy;
7154 size_t toread;
7155 struct buffer_head *bh;
7156 loff_t i_size = i_size_read(inode);
7157
7158 if (off > i_size)
7159 return 0;
7160 if (off+len > i_size)
7161 len = i_size-off;
7162 toread = len;
7163 while (toread > 0) {
7164 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7165 bh = ext4_bread(NULL, inode, blk, 0);
7166 if (IS_ERR(bh))
7167 return PTR_ERR(bh);
7168 if (!bh) /* A hole? */
7169 memset(data, 0, tocopy);
7170 else
7171 memcpy(data, bh->b_data+offset, tocopy);
7172 brelse(bh);
7173 offset = 0;
7174 toread -= tocopy;
7175 data += tocopy;
7176 blk++;
7177 }
7178 return len;
7179 }
7180
7181 /* Write to quotafile (we know the transaction is already started and has
7182 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)7183 static ssize_t ext4_quota_write(struct super_block *sb, int type,
7184 const char *data, size_t len, loff_t off)
7185 {
7186 struct inode *inode = sb_dqopt(sb)->files[type];
7187 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7188 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7189 int retries = 0;
7190 struct buffer_head *bh;
7191 handle_t *handle = journal_current_handle();
7192
7193 if (!handle) {
7194 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7195 " cancelled because transaction is not started",
7196 (unsigned long long)off, (unsigned long long)len);
7197 return -EIO;
7198 }
7199 /*
7200 * Since we account only one data block in transaction credits,
7201 * then it is impossible to cross a block boundary.
7202 */
7203 if (sb->s_blocksize - offset < len) {
7204 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7205 " cancelled because not block aligned",
7206 (unsigned long long)off, (unsigned long long)len);
7207 return -EIO;
7208 }
7209
7210 do {
7211 bh = ext4_bread(handle, inode, blk,
7212 EXT4_GET_BLOCKS_CREATE |
7213 EXT4_GET_BLOCKS_METADATA_NOFAIL);
7214 } while (PTR_ERR(bh) == -ENOSPC &&
7215 ext4_should_retry_alloc(inode->i_sb, &retries));
7216 if (IS_ERR(bh))
7217 return PTR_ERR(bh);
7218 if (!bh)
7219 goto out;
7220 BUFFER_TRACE(bh, "get write access");
7221 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7222 if (err) {
7223 brelse(bh);
7224 return err;
7225 }
7226 lock_buffer(bh);
7227 memcpy(bh->b_data+offset, data, len);
7228 flush_dcache_page(bh->b_page);
7229 unlock_buffer(bh);
7230 err = ext4_handle_dirty_metadata(handle, NULL, bh);
7231 brelse(bh);
7232 out:
7233 if (inode->i_size < off + len) {
7234 i_size_write(inode, off + len);
7235 EXT4_I(inode)->i_disksize = inode->i_size;
7236 err2 = ext4_mark_inode_dirty(handle, inode);
7237 if (unlikely(err2 && !err))
7238 err = err2;
7239 }
7240 return err ? err : len;
7241 }
7242 #endif
7243
7244 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)7245 static inline void register_as_ext2(void)
7246 {
7247 int err = register_filesystem(&ext2_fs_type);
7248 if (err)
7249 printk(KERN_WARNING
7250 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7251 }
7252
unregister_as_ext2(void)7253 static inline void unregister_as_ext2(void)
7254 {
7255 unregister_filesystem(&ext2_fs_type);
7256 }
7257
ext2_feature_set_ok(struct super_block * sb)7258 static inline int ext2_feature_set_ok(struct super_block *sb)
7259 {
7260 if (ext4_has_unknown_ext2_incompat_features(sb))
7261 return 0;
7262 if (sb_rdonly(sb))
7263 return 1;
7264 if (ext4_has_unknown_ext2_ro_compat_features(sb))
7265 return 0;
7266 return 1;
7267 }
7268 #else
register_as_ext2(void)7269 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)7270 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)7271 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7272 #endif
7273
register_as_ext3(void)7274 static inline void register_as_ext3(void)
7275 {
7276 int err = register_filesystem(&ext3_fs_type);
7277 if (err)
7278 printk(KERN_WARNING
7279 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7280 }
7281
unregister_as_ext3(void)7282 static inline void unregister_as_ext3(void)
7283 {
7284 unregister_filesystem(&ext3_fs_type);
7285 }
7286
ext3_feature_set_ok(struct super_block * sb)7287 static inline int ext3_feature_set_ok(struct super_block *sb)
7288 {
7289 if (ext4_has_unknown_ext3_incompat_features(sb))
7290 return 0;
7291 if (!ext4_has_feature_journal(sb))
7292 return 0;
7293 if (sb_rdonly(sb))
7294 return 1;
7295 if (ext4_has_unknown_ext3_ro_compat_features(sb))
7296 return 0;
7297 return 1;
7298 }
7299
ext4_kill_sb(struct super_block * sb)7300 static void ext4_kill_sb(struct super_block *sb)
7301 {
7302 struct ext4_sb_info *sbi = EXT4_SB(sb);
7303 struct block_device *journal_bdev = sbi ? sbi->s_journal_bdev : NULL;
7304
7305 kill_block_super(sb);
7306
7307 if (journal_bdev)
7308 blkdev_put(journal_bdev, sb);
7309 }
7310
7311 static struct file_system_type ext4_fs_type = {
7312 .owner = THIS_MODULE,
7313 .name = "ext4",
7314 .init_fs_context = ext4_init_fs_context,
7315 .parameters = ext4_param_specs,
7316 .kill_sb = ext4_kill_sb,
7317 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7318 };
7319 MODULE_ALIAS_FS("ext4");
7320
7321 /* Shared across all ext4 file systems */
7322 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7323
ext4_init_fs(void)7324 static int __init ext4_init_fs(void)
7325 {
7326 int i, err;
7327
7328 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7329 ext4_li_info = NULL;
7330
7331 /* Build-time check for flags consistency */
7332 ext4_check_flag_values();
7333
7334 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7335 init_waitqueue_head(&ext4__ioend_wq[i]);
7336
7337 err = ext4_init_es();
7338 if (err)
7339 return err;
7340
7341 err = ext4_init_pending();
7342 if (err)
7343 goto out7;
7344
7345 err = ext4_init_post_read_processing();
7346 if (err)
7347 goto out6;
7348
7349 err = ext4_init_pageio();
7350 if (err)
7351 goto out5;
7352
7353 err = ext4_init_system_zone();
7354 if (err)
7355 goto out4;
7356
7357 err = ext4_init_sysfs();
7358 if (err)
7359 goto out3;
7360
7361 err = ext4_init_mballoc();
7362 if (err)
7363 goto out2;
7364 err = init_inodecache();
7365 if (err)
7366 goto out1;
7367
7368 err = ext4_fc_init_dentry_cache();
7369 if (err)
7370 goto out05;
7371
7372 register_as_ext3();
7373 register_as_ext2();
7374 err = register_filesystem(&ext4_fs_type);
7375 if (err)
7376 goto out;
7377
7378 return 0;
7379 out:
7380 unregister_as_ext2();
7381 unregister_as_ext3();
7382 ext4_fc_destroy_dentry_cache();
7383 out05:
7384 destroy_inodecache();
7385 out1:
7386 ext4_exit_mballoc();
7387 out2:
7388 ext4_exit_sysfs();
7389 out3:
7390 ext4_exit_system_zone();
7391 out4:
7392 ext4_exit_pageio();
7393 out5:
7394 ext4_exit_post_read_processing();
7395 out6:
7396 ext4_exit_pending();
7397 out7:
7398 ext4_exit_es();
7399
7400 return err;
7401 }
7402
ext4_exit_fs(void)7403 static void __exit ext4_exit_fs(void)
7404 {
7405 ext4_destroy_lazyinit_thread();
7406 unregister_as_ext2();
7407 unregister_as_ext3();
7408 unregister_filesystem(&ext4_fs_type);
7409 ext4_fc_destroy_dentry_cache();
7410 destroy_inodecache();
7411 ext4_exit_mballoc();
7412 ext4_exit_sysfs();
7413 ext4_exit_system_zone();
7414 ext4_exit_pageio();
7415 ext4_exit_post_read_processing();
7416 ext4_exit_es();
7417 ext4_exit_pending();
7418 }
7419
7420 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7421 MODULE_DESCRIPTION("Fourth Extended Filesystem");
7422 MODULE_LICENSE("GPL");
7423 MODULE_SOFTDEP("pre: crc32c");
7424 module_init(ext4_init_fs)
7425 module_exit(ext4_exit_fs)
7426