1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
45 #include <linux/unicode.h>
46 #include <linux/part_stat.h>
47 #include <linux/kthread.h>
48 #include <linux/freezer.h>
49
50 #include "ext4.h"
51 #include "ext4_extents.h" /* Needed for trace points definition */
52 #include "ext4_jbd2.h"
53 #include "xattr.h"
54 #include "acl.h"
55 #include "mballoc.h"
56 #include "fsmap.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/ext4.h>
60
61 static struct ext4_lazy_init *ext4_li_info;
62 static struct mutex ext4_li_mtx;
63 static struct ratelimit_state ext4_mount_msg_ratelimit;
64
65 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 unsigned long journal_devnum);
67 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68 static int ext4_commit_super(struct super_block *sb, int sync);
69 static int ext4_mark_recovery_complete(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_clear_journal_err(struct super_block *sb,
72 struct ext4_super_block *es);
73 static int ext4_sync_fs(struct super_block *sb, int wait);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86 static struct inode *ext4_get_journal_inode(struct super_block *sb,
87 unsigned int journal_inum);
88
89 /*
90 * Lock ordering
91 *
92 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
93 * i_mmap_rwsem (inode->i_mmap_rwsem)!
94 *
95 * page fault path:
96 * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
97 * page lock -> i_data_sem (rw)
98 *
99 * buffered write path:
100 * sb_start_write -> i_mutex -> mmap_lock
101 * sb_start_write -> i_mutex -> transaction start -> page lock ->
102 * i_data_sem (rw)
103 *
104 * truncate:
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
107 * i_data_sem (rw)
108 *
109 * direct IO:
110 * sb_start_write -> i_mutex -> mmap_lock
111 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
112 *
113 * writepages:
114 * transaction start -> page lock(s) -> i_data_sem (rw)
115 */
116
117 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
118 static struct file_system_type ext2_fs_type = {
119 .owner = THIS_MODULE,
120 .name = "ext2",
121 .mount = ext4_mount,
122 .kill_sb = kill_block_super,
123 .fs_flags = FS_REQUIRES_DEV,
124 };
125 MODULE_ALIAS_FS("ext2");
126 MODULE_ALIAS("ext2");
127 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
128 #else
129 #define IS_EXT2_SB(sb) (0)
130 #endif
131
132
133 static struct file_system_type ext3_fs_type = {
134 .owner = THIS_MODULE,
135 .name = "ext3",
136 .mount = ext4_mount,
137 .kill_sb = kill_block_super,
138 .fs_flags = FS_REQUIRES_DEV,
139 };
140 MODULE_ALIAS_FS("ext3");
141 MODULE_ALIAS("ext3");
142 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143
144
__ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)145 static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
146 bh_end_io_t *end_io)
147 {
148 /*
149 * buffer's verified bit is no longer valid after reading from
150 * disk again due to write out error, clear it to make sure we
151 * recheck the buffer contents.
152 */
153 clear_buffer_verified(bh);
154
155 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
156 get_bh(bh);
157 submit_bh(REQ_OP_READ, op_flags, bh);
158 }
159
ext4_read_bh_nowait(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)160 void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
161 bh_end_io_t *end_io)
162 {
163 BUG_ON(!buffer_locked(bh));
164
165 if (ext4_buffer_uptodate(bh)) {
166 unlock_buffer(bh);
167 return;
168 }
169 __ext4_read_bh(bh, op_flags, end_io);
170 }
171
ext4_read_bh(struct buffer_head * bh,int op_flags,bh_end_io_t * end_io)172 int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
173 {
174 BUG_ON(!buffer_locked(bh));
175
176 if (ext4_buffer_uptodate(bh)) {
177 unlock_buffer(bh);
178 return 0;
179 }
180
181 __ext4_read_bh(bh, op_flags, end_io);
182
183 wait_on_buffer(bh);
184 if (buffer_uptodate(bh))
185 return 0;
186 return -EIO;
187 }
188
ext4_read_bh_lock(struct buffer_head * bh,int op_flags,bool wait)189 int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
190 {
191 if (trylock_buffer(bh)) {
192 if (wait)
193 return ext4_read_bh(bh, op_flags, NULL);
194 ext4_read_bh_nowait(bh, op_flags, NULL);
195 return 0;
196 }
197 if (wait) {
198 wait_on_buffer(bh);
199 if (buffer_uptodate(bh))
200 return 0;
201 return -EIO;
202 }
203 return 0;
204 }
205
206 /*
207 * This works like __bread_gfp() except it uses ERR_PTR for error
208 * returns. Currently with sb_bread it's impossible to distinguish
209 * between ENOMEM and EIO situations (since both result in a NULL
210 * return.
211 */
__ext4_sb_bread_gfp(struct super_block * sb,sector_t block,int op_flags,gfp_t gfp)212 static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
213 sector_t block, int op_flags,
214 gfp_t gfp)
215 {
216 struct buffer_head *bh;
217 int ret;
218
219 bh = sb_getblk_gfp(sb, block, gfp);
220 if (bh == NULL)
221 return ERR_PTR(-ENOMEM);
222 if (ext4_buffer_uptodate(bh))
223 return bh;
224
225 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
226 if (ret) {
227 put_bh(bh);
228 return ERR_PTR(ret);
229 }
230 return bh;
231 }
232
ext4_sb_bread(struct super_block * sb,sector_t block,int op_flags)233 struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
234 int op_flags)
235 {
236 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
237 }
238
ext4_sb_bread_unmovable(struct super_block * sb,sector_t block)239 struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
240 sector_t block)
241 {
242 return __ext4_sb_bread_gfp(sb, block, 0, 0);
243 }
244
ext4_sb_breadahead_unmovable(struct super_block * sb,sector_t block)245 void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
246 {
247 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
248
249 if (likely(bh)) {
250 ext4_read_bh_lock(bh, REQ_RAHEAD, false);
251 brelse(bh);
252 }
253 }
254
ext4_verify_csum_type(struct super_block * sb,struct ext4_super_block * es)255 static int ext4_verify_csum_type(struct super_block *sb,
256 struct ext4_super_block *es)
257 {
258 if (!ext4_has_feature_metadata_csum(sb))
259 return 1;
260
261 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
262 }
263
ext4_superblock_csum(struct super_block * sb,struct ext4_super_block * es)264 static __le32 ext4_superblock_csum(struct super_block *sb,
265 struct ext4_super_block *es)
266 {
267 struct ext4_sb_info *sbi = EXT4_SB(sb);
268 int offset = offsetof(struct ext4_super_block, s_checksum);
269 __u32 csum;
270
271 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
272
273 return cpu_to_le32(csum);
274 }
275
ext4_superblock_csum_verify(struct super_block * sb,struct ext4_super_block * es)276 static int ext4_superblock_csum_verify(struct super_block *sb,
277 struct ext4_super_block *es)
278 {
279 if (!ext4_has_metadata_csum(sb))
280 return 1;
281
282 return es->s_checksum == ext4_superblock_csum(sb, es);
283 }
284
ext4_superblock_csum_set(struct super_block * sb)285 void ext4_superblock_csum_set(struct super_block *sb)
286 {
287 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
288
289 if (!ext4_has_metadata_csum(sb))
290 return;
291
292 es->s_checksum = ext4_superblock_csum(sb, es);
293 }
294
ext4_block_bitmap(struct super_block * sb,struct ext4_group_desc * bg)295 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
296 struct ext4_group_desc *bg)
297 {
298 return le32_to_cpu(bg->bg_block_bitmap_lo) |
299 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
300 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
301 }
302
ext4_inode_bitmap(struct super_block * sb,struct ext4_group_desc * bg)303 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
304 struct ext4_group_desc *bg)
305 {
306 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
307 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
308 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
309 }
310
ext4_inode_table(struct super_block * sb,struct ext4_group_desc * bg)311 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
312 struct ext4_group_desc *bg)
313 {
314 return le32_to_cpu(bg->bg_inode_table_lo) |
315 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
316 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
317 }
318
ext4_free_group_clusters(struct super_block * sb,struct ext4_group_desc * bg)319 __u32 ext4_free_group_clusters(struct super_block *sb,
320 struct ext4_group_desc *bg)
321 {
322 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
323 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
324 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
325 }
326
ext4_free_inodes_count(struct super_block * sb,struct ext4_group_desc * bg)327 __u32 ext4_free_inodes_count(struct super_block *sb,
328 struct ext4_group_desc *bg)
329 {
330 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
331 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
332 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
333 }
334
ext4_used_dirs_count(struct super_block * sb,struct ext4_group_desc * bg)335 __u32 ext4_used_dirs_count(struct super_block *sb,
336 struct ext4_group_desc *bg)
337 {
338 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
339 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
340 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
341 }
342
ext4_itable_unused_count(struct super_block * sb,struct ext4_group_desc * bg)343 __u32 ext4_itable_unused_count(struct super_block *sb,
344 struct ext4_group_desc *bg)
345 {
346 return le16_to_cpu(bg->bg_itable_unused_lo) |
347 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
348 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
349 }
350
ext4_block_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)351 void ext4_block_bitmap_set(struct super_block *sb,
352 struct ext4_group_desc *bg, ext4_fsblk_t blk)
353 {
354 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
355 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
356 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
357 }
358
ext4_inode_bitmap_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)359 void ext4_inode_bitmap_set(struct super_block *sb,
360 struct ext4_group_desc *bg, ext4_fsblk_t blk)
361 {
362 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
363 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
364 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
365 }
366
ext4_inode_table_set(struct super_block * sb,struct ext4_group_desc * bg,ext4_fsblk_t blk)367 void ext4_inode_table_set(struct super_block *sb,
368 struct ext4_group_desc *bg, ext4_fsblk_t blk)
369 {
370 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
371 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
372 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
373 }
374
ext4_free_group_clusters_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)375 void ext4_free_group_clusters_set(struct super_block *sb,
376 struct ext4_group_desc *bg, __u32 count)
377 {
378 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
379 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
380 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
381 }
382
ext4_free_inodes_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)383 void ext4_free_inodes_set(struct super_block *sb,
384 struct ext4_group_desc *bg, __u32 count)
385 {
386 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
387 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
388 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
389 }
390
ext4_used_dirs_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)391 void ext4_used_dirs_set(struct super_block *sb,
392 struct ext4_group_desc *bg, __u32 count)
393 {
394 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
395 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
396 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
397 }
398
ext4_itable_unused_set(struct super_block * sb,struct ext4_group_desc * bg,__u32 count)399 void ext4_itable_unused_set(struct super_block *sb,
400 struct ext4_group_desc *bg, __u32 count)
401 {
402 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
403 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
404 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
405 }
406
__ext4_update_tstamp(__le32 * lo,__u8 * hi)407 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
408 {
409 time64_t now = ktime_get_real_seconds();
410
411 now = clamp_val(now, 0, (1ull << 40) - 1);
412
413 *lo = cpu_to_le32(lower_32_bits(now));
414 *hi = upper_32_bits(now);
415 }
416
__ext4_get_tstamp(__le32 * lo,__u8 * hi)417 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
418 {
419 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
420 }
421 #define ext4_update_tstamp(es, tstamp) \
422 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
423 #define ext4_get_tstamp(es, tstamp) \
424 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
425
__save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)426 static void __save_error_info(struct super_block *sb, int error,
427 __u32 ino, __u64 block,
428 const char *func, unsigned int line)
429 {
430 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
431 int err;
432
433 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
434 if (bdev_read_only(sb->s_bdev))
435 return;
436 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
437 ext4_update_tstamp(es, s_last_error_time);
438 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
439 es->s_last_error_line = cpu_to_le32(line);
440 es->s_last_error_ino = cpu_to_le32(ino);
441 es->s_last_error_block = cpu_to_le64(block);
442 switch (error) {
443 case EIO:
444 err = EXT4_ERR_EIO;
445 break;
446 case ENOMEM:
447 err = EXT4_ERR_ENOMEM;
448 break;
449 case EFSBADCRC:
450 err = EXT4_ERR_EFSBADCRC;
451 break;
452 case 0:
453 case EFSCORRUPTED:
454 err = EXT4_ERR_EFSCORRUPTED;
455 break;
456 case ENOSPC:
457 err = EXT4_ERR_ENOSPC;
458 break;
459 case ENOKEY:
460 err = EXT4_ERR_ENOKEY;
461 break;
462 case EROFS:
463 err = EXT4_ERR_EROFS;
464 break;
465 case EFBIG:
466 err = EXT4_ERR_EFBIG;
467 break;
468 case EEXIST:
469 err = EXT4_ERR_EEXIST;
470 break;
471 case ERANGE:
472 err = EXT4_ERR_ERANGE;
473 break;
474 case EOVERFLOW:
475 err = EXT4_ERR_EOVERFLOW;
476 break;
477 case EBUSY:
478 err = EXT4_ERR_EBUSY;
479 break;
480 case ENOTDIR:
481 err = EXT4_ERR_ENOTDIR;
482 break;
483 case ENOTEMPTY:
484 err = EXT4_ERR_ENOTEMPTY;
485 break;
486 case ESHUTDOWN:
487 err = EXT4_ERR_ESHUTDOWN;
488 break;
489 case EFAULT:
490 err = EXT4_ERR_EFAULT;
491 break;
492 default:
493 err = EXT4_ERR_UNKNOWN;
494 }
495 es->s_last_error_errcode = err;
496 if (!es->s_first_error_time) {
497 es->s_first_error_time = es->s_last_error_time;
498 es->s_first_error_time_hi = es->s_last_error_time_hi;
499 strncpy(es->s_first_error_func, func,
500 sizeof(es->s_first_error_func));
501 es->s_first_error_line = cpu_to_le32(line);
502 es->s_first_error_ino = es->s_last_error_ino;
503 es->s_first_error_block = es->s_last_error_block;
504 es->s_first_error_errcode = es->s_last_error_errcode;
505 }
506 /*
507 * Start the daily error reporting function if it hasn't been
508 * started already
509 */
510 if (!es->s_error_count)
511 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
512 le32_add_cpu(&es->s_error_count, 1);
513 }
514
save_error_info(struct super_block * sb,int error,__u32 ino,__u64 block,const char * func,unsigned int line)515 static void save_error_info(struct super_block *sb, int error,
516 __u32 ino, __u64 block,
517 const char *func, unsigned int line)
518 {
519 __save_error_info(sb, error, ino, block, func, line);
520 if (!bdev_read_only(sb->s_bdev))
521 ext4_commit_super(sb, 1);
522 }
523
524 /*
525 * The del_gendisk() function uninitializes the disk-specific data
526 * structures, including the bdi structure, without telling anyone
527 * else. Once this happens, any attempt to call mark_buffer_dirty()
528 * (for example, by ext4_commit_super), will cause a kernel OOPS.
529 * This is a kludge to prevent these oops until we can put in a proper
530 * hook in del_gendisk() to inform the VFS and file system layers.
531 */
block_device_ejected(struct super_block * sb)532 static int block_device_ejected(struct super_block *sb)
533 {
534 struct inode *bd_inode = sb->s_bdev->bd_inode;
535 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
536
537 return bdi->dev == NULL;
538 }
539
ext4_journal_commit_callback(journal_t * journal,transaction_t * txn)540 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
541 {
542 struct super_block *sb = journal->j_private;
543 struct ext4_sb_info *sbi = EXT4_SB(sb);
544 int error = is_journal_aborted(journal);
545 struct ext4_journal_cb_entry *jce;
546
547 BUG_ON(txn->t_state == T_FINISHED);
548
549 ext4_process_freed_data(sb, txn->t_tid);
550
551 spin_lock(&sbi->s_md_lock);
552 while (!list_empty(&txn->t_private_list)) {
553 jce = list_entry(txn->t_private_list.next,
554 struct ext4_journal_cb_entry, jce_list);
555 list_del_init(&jce->jce_list);
556 spin_unlock(&sbi->s_md_lock);
557 jce->jce_func(sb, jce, error);
558 spin_lock(&sbi->s_md_lock);
559 }
560 spin_unlock(&sbi->s_md_lock);
561 }
562
563 /*
564 * This writepage callback for write_cache_pages()
565 * takes care of a few cases after page cleaning.
566 *
567 * write_cache_pages() already checks for dirty pages
568 * and calls clear_page_dirty_for_io(), which we want,
569 * to write protect the pages.
570 *
571 * However, we may have to redirty a page (see below.)
572 */
ext4_journalled_writepage_callback(struct page * page,struct writeback_control * wbc,void * data)573 static int ext4_journalled_writepage_callback(struct page *page,
574 struct writeback_control *wbc,
575 void *data)
576 {
577 transaction_t *transaction = (transaction_t *) data;
578 struct buffer_head *bh, *head;
579 struct journal_head *jh;
580
581 bh = head = page_buffers(page);
582 do {
583 /*
584 * We have to redirty a page in these cases:
585 * 1) If buffer is dirty, it means the page was dirty because it
586 * contains a buffer that needs checkpointing. So the dirty bit
587 * needs to be preserved so that checkpointing writes the buffer
588 * properly.
589 * 2) If buffer is not part of the committing transaction
590 * (we may have just accidentally come across this buffer because
591 * inode range tracking is not exact) or if the currently running
592 * transaction already contains this buffer as well, dirty bit
593 * needs to be preserved so that the buffer gets writeprotected
594 * properly on running transaction's commit.
595 */
596 jh = bh2jh(bh);
597 if (buffer_dirty(bh) ||
598 (jh && (jh->b_transaction != transaction ||
599 jh->b_next_transaction))) {
600 redirty_page_for_writepage(wbc, page);
601 goto out;
602 }
603 } while ((bh = bh->b_this_page) != head);
604
605 out:
606 return AOP_WRITEPAGE_ACTIVATE;
607 }
608
ext4_journalled_submit_inode_data_buffers(struct jbd2_inode * jinode)609 static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
610 {
611 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
612 struct writeback_control wbc = {
613 .sync_mode = WB_SYNC_ALL,
614 .nr_to_write = LONG_MAX,
615 .range_start = jinode->i_dirty_start,
616 .range_end = jinode->i_dirty_end,
617 };
618
619 return write_cache_pages(mapping, &wbc,
620 ext4_journalled_writepage_callback,
621 jinode->i_transaction);
622 }
623
ext4_journal_submit_inode_data_buffers(struct jbd2_inode * jinode)624 static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
625 {
626 int ret;
627
628 if (ext4_should_journal_data(jinode->i_vfs_inode))
629 ret = ext4_journalled_submit_inode_data_buffers(jinode);
630 else
631 ret = jbd2_journal_submit_inode_data_buffers(jinode);
632
633 return ret;
634 }
635
ext4_journal_finish_inode_data_buffers(struct jbd2_inode * jinode)636 static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
637 {
638 int ret = 0;
639
640 if (!ext4_should_journal_data(jinode->i_vfs_inode))
641 ret = jbd2_journal_finish_inode_data_buffers(jinode);
642
643 return ret;
644 }
645
system_going_down(void)646 static bool system_going_down(void)
647 {
648 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
649 || system_state == SYSTEM_RESTART;
650 }
651
652 /* Deal with the reporting of failure conditions on a filesystem such as
653 * inconsistencies detected or read IO failures.
654 *
655 * On ext2, we can store the error state of the filesystem in the
656 * superblock. That is not possible on ext4, because we may have other
657 * write ordering constraints on the superblock which prevent us from
658 * writing it out straight away; and given that the journal is about to
659 * be aborted, we can't rely on the current, or future, transactions to
660 * write out the superblock safely.
661 *
662 * We'll just use the jbd2_journal_abort() error code to record an error in
663 * the journal instead. On recovery, the journal will complain about
664 * that error until we've noted it down and cleared it.
665 */
666
ext4_handle_error(struct super_block * sb)667 static void ext4_handle_error(struct super_block *sb)
668 {
669 if (test_opt(sb, WARN_ON_ERROR))
670 WARN_ON_ONCE(1);
671
672 if (sb_rdonly(sb))
673 return;
674
675 if (!test_opt(sb, ERRORS_CONT)) {
676 journal_t *journal = EXT4_SB(sb)->s_journal;
677
678 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
679 if (journal)
680 jbd2_journal_abort(journal, -EIO);
681 }
682 /*
683 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
684 * could panic during 'reboot -f' as the underlying device got already
685 * disabled.
686 */
687 if (test_opt(sb, ERRORS_RO) || system_going_down()) {
688 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
689 /*
690 * Make sure updated value of ->s_mount_flags will be visible
691 * before ->s_flags update
692 */
693 smp_wmb();
694 sb->s_flags |= SB_RDONLY;
695 } else if (test_opt(sb, ERRORS_PANIC)) {
696 panic("EXT4-fs (device %s): panic forced after error\n",
697 sb->s_id);
698 }
699 }
700
701 #define ext4_error_ratelimit(sb) \
702 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
703 "EXT4-fs error")
704
__ext4_error(struct super_block * sb,const char * function,unsigned int line,int error,__u64 block,const char * fmt,...)705 void __ext4_error(struct super_block *sb, const char *function,
706 unsigned int line, int error, __u64 block,
707 const char *fmt, ...)
708 {
709 struct va_format vaf;
710 va_list args;
711
712 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
713 return;
714
715 trace_ext4_error(sb, function, line);
716 if (ext4_error_ratelimit(sb)) {
717 va_start(args, fmt);
718 vaf.fmt = fmt;
719 vaf.va = &args;
720 printk(KERN_CRIT
721 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
722 sb->s_id, function, line, current->comm, &vaf);
723 va_end(args);
724 }
725 save_error_info(sb, error, 0, block, function, line);
726 ext4_handle_error(sb);
727 }
728
__ext4_error_inode(struct inode * inode,const char * function,unsigned int line,ext4_fsblk_t block,int error,const char * fmt,...)729 void __ext4_error_inode(struct inode *inode, const char *function,
730 unsigned int line, ext4_fsblk_t block, int error,
731 const char *fmt, ...)
732 {
733 va_list args;
734 struct va_format vaf;
735
736 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
737 return;
738
739 trace_ext4_error(inode->i_sb, function, line);
740 if (ext4_error_ratelimit(inode->i_sb)) {
741 va_start(args, fmt);
742 vaf.fmt = fmt;
743 vaf.va = &args;
744 if (block)
745 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
746 "inode #%lu: block %llu: comm %s: %pV\n",
747 inode->i_sb->s_id, function, line, inode->i_ino,
748 block, current->comm, &vaf);
749 else
750 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
751 "inode #%lu: comm %s: %pV\n",
752 inode->i_sb->s_id, function, line, inode->i_ino,
753 current->comm, &vaf);
754 va_end(args);
755 }
756 save_error_info(inode->i_sb, error, inode->i_ino, block,
757 function, line);
758 ext4_handle_error(inode->i_sb);
759 }
760
__ext4_error_file(struct file * file,const char * function,unsigned int line,ext4_fsblk_t block,const char * fmt,...)761 void __ext4_error_file(struct file *file, const char *function,
762 unsigned int line, ext4_fsblk_t block,
763 const char *fmt, ...)
764 {
765 va_list args;
766 struct va_format vaf;
767 struct inode *inode = file_inode(file);
768 char pathname[80], *path;
769
770 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
771 return;
772
773 trace_ext4_error(inode->i_sb, function, line);
774 if (ext4_error_ratelimit(inode->i_sb)) {
775 path = file_path(file, pathname, sizeof(pathname));
776 if (IS_ERR(path))
777 path = "(unknown)";
778 va_start(args, fmt);
779 vaf.fmt = fmt;
780 vaf.va = &args;
781 if (block)
782 printk(KERN_CRIT
783 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
784 "block %llu: comm %s: path %s: %pV\n",
785 inode->i_sb->s_id, function, line, inode->i_ino,
786 block, current->comm, path, &vaf);
787 else
788 printk(KERN_CRIT
789 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
790 "comm %s: path %s: %pV\n",
791 inode->i_sb->s_id, function, line, inode->i_ino,
792 current->comm, path, &vaf);
793 va_end(args);
794 }
795 save_error_info(inode->i_sb, EFSCORRUPTED, inode->i_ino, block,
796 function, line);
797 ext4_handle_error(inode->i_sb);
798 }
799
ext4_decode_error(struct super_block * sb,int errno,char nbuf[16])800 const char *ext4_decode_error(struct super_block *sb, int errno,
801 char nbuf[16])
802 {
803 char *errstr = NULL;
804
805 switch (errno) {
806 case -EFSCORRUPTED:
807 errstr = "Corrupt filesystem";
808 break;
809 case -EFSBADCRC:
810 errstr = "Filesystem failed CRC";
811 break;
812 case -EIO:
813 errstr = "IO failure";
814 break;
815 case -ENOMEM:
816 errstr = "Out of memory";
817 break;
818 case -EROFS:
819 if (!sb || (EXT4_SB(sb)->s_journal &&
820 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
821 errstr = "Journal has aborted";
822 else
823 errstr = "Readonly filesystem";
824 break;
825 default:
826 /* If the caller passed in an extra buffer for unknown
827 * errors, textualise them now. Else we just return
828 * NULL. */
829 if (nbuf) {
830 /* Check for truncated error codes... */
831 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
832 errstr = nbuf;
833 }
834 break;
835 }
836
837 return errstr;
838 }
839
840 /* __ext4_std_error decodes expected errors from journaling functions
841 * automatically and invokes the appropriate error response. */
842
__ext4_std_error(struct super_block * sb,const char * function,unsigned int line,int errno)843 void __ext4_std_error(struct super_block *sb, const char *function,
844 unsigned int line, int errno)
845 {
846 char nbuf[16];
847 const char *errstr;
848
849 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
850 return;
851
852 /* Special case: if the error is EROFS, and we're not already
853 * inside a transaction, then there's really no point in logging
854 * an error. */
855 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
856 return;
857
858 if (ext4_error_ratelimit(sb)) {
859 errstr = ext4_decode_error(sb, errno, nbuf);
860 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
861 sb->s_id, function, line, errstr);
862 }
863
864 save_error_info(sb, -errno, 0, 0, function, line);
865 ext4_handle_error(sb);
866 }
867
868 /*
869 * ext4_abort is a much stronger failure handler than ext4_error. The
870 * abort function may be used to deal with unrecoverable failures such
871 * as journal IO errors or ENOMEM at a critical moment in log management.
872 *
873 * We unconditionally force the filesystem into an ABORT|READONLY state,
874 * unless the error response on the fs has been set to panic in which
875 * case we take the easy way out and panic immediately.
876 */
877
__ext4_abort(struct super_block * sb,const char * function,unsigned int line,int error,const char * fmt,...)878 void __ext4_abort(struct super_block *sb, const char *function,
879 unsigned int line, int error, const char *fmt, ...)
880 {
881 struct va_format vaf;
882 va_list args;
883
884 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
885 return;
886
887 save_error_info(sb, error, 0, 0, function, line);
888 va_start(args, fmt);
889 vaf.fmt = fmt;
890 vaf.va = &args;
891 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
892 sb->s_id, function, line, &vaf);
893 va_end(args);
894
895 if (sb_rdonly(sb) == 0) {
896 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
897 if (EXT4_SB(sb)->s_journal)
898 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
899
900 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
901 /*
902 * Make sure updated value of ->s_mount_flags will be visible
903 * before ->s_flags update
904 */
905 smp_wmb();
906 sb->s_flags |= SB_RDONLY;
907 }
908 if (test_opt(sb, ERRORS_PANIC) && !system_going_down())
909 panic("EXT4-fs panic from previous error\n");
910 }
911
__ext4_msg(struct super_block * sb,const char * prefix,const char * fmt,...)912 void __ext4_msg(struct super_block *sb,
913 const char *prefix, const char *fmt, ...)
914 {
915 struct va_format vaf;
916 va_list args;
917
918 atomic_inc(&EXT4_SB(sb)->s_msg_count);
919 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
920 return;
921
922 va_start(args, fmt);
923 vaf.fmt = fmt;
924 vaf.va = &args;
925 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
926 va_end(args);
927 }
928
ext4_warning_ratelimit(struct super_block * sb)929 static int ext4_warning_ratelimit(struct super_block *sb)
930 {
931 atomic_inc(&EXT4_SB(sb)->s_warning_count);
932 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
933 "EXT4-fs warning");
934 }
935
__ext4_warning(struct super_block * sb,const char * function,unsigned int line,const char * fmt,...)936 void __ext4_warning(struct super_block *sb, const char *function,
937 unsigned int line, const char *fmt, ...)
938 {
939 struct va_format vaf;
940 va_list args;
941
942 if (!ext4_warning_ratelimit(sb))
943 return;
944
945 va_start(args, fmt);
946 vaf.fmt = fmt;
947 vaf.va = &args;
948 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
949 sb->s_id, function, line, &vaf);
950 va_end(args);
951 }
952
__ext4_warning_inode(const struct inode * inode,const char * function,unsigned int line,const char * fmt,...)953 void __ext4_warning_inode(const struct inode *inode, const char *function,
954 unsigned int line, const char *fmt, ...)
955 {
956 struct va_format vaf;
957 va_list args;
958
959 if (!ext4_warning_ratelimit(inode->i_sb))
960 return;
961
962 va_start(args, fmt);
963 vaf.fmt = fmt;
964 vaf.va = &args;
965 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
966 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
967 function, line, inode->i_ino, current->comm, &vaf);
968 va_end(args);
969 }
970
__ext4_grp_locked_error(const char * function,unsigned int line,struct super_block * sb,ext4_group_t grp,unsigned long ino,ext4_fsblk_t block,const char * fmt,...)971 void __ext4_grp_locked_error(const char *function, unsigned int line,
972 struct super_block *sb, ext4_group_t grp,
973 unsigned long ino, ext4_fsblk_t block,
974 const char *fmt, ...)
975 __releases(bitlock)
976 __acquires(bitlock)
977 {
978 struct va_format vaf;
979 va_list args;
980
981 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
982 return;
983
984 trace_ext4_error(sb, function, line);
985 __save_error_info(sb, EFSCORRUPTED, ino, block, function, line);
986
987 if (ext4_error_ratelimit(sb)) {
988 va_start(args, fmt);
989 vaf.fmt = fmt;
990 vaf.va = &args;
991 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
992 sb->s_id, function, line, grp);
993 if (ino)
994 printk(KERN_CONT "inode %lu: ", ino);
995 if (block)
996 printk(KERN_CONT "block %llu:",
997 (unsigned long long) block);
998 printk(KERN_CONT "%pV\n", &vaf);
999 va_end(args);
1000 }
1001
1002 if (test_opt(sb, WARN_ON_ERROR))
1003 WARN_ON_ONCE(1);
1004
1005 if (test_opt(sb, ERRORS_CONT)) {
1006 ext4_commit_super(sb, 0);
1007 return;
1008 }
1009
1010 ext4_unlock_group(sb, grp);
1011 ext4_commit_super(sb, 1);
1012 ext4_handle_error(sb);
1013 /*
1014 * We only get here in the ERRORS_RO case; relocking the group
1015 * may be dangerous, but nothing bad will happen since the
1016 * filesystem will have already been marked read/only and the
1017 * journal has been aborted. We return 1 as a hint to callers
1018 * who might what to use the return value from
1019 * ext4_grp_locked_error() to distinguish between the
1020 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1021 * aggressively from the ext4 function in question, with a
1022 * more appropriate error code.
1023 */
1024 ext4_lock_group(sb, grp);
1025 return;
1026 }
1027
ext4_mark_group_bitmap_corrupted(struct super_block * sb,ext4_group_t group,unsigned int flags)1028 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1029 ext4_group_t group,
1030 unsigned int flags)
1031 {
1032 struct ext4_sb_info *sbi = EXT4_SB(sb);
1033 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1034 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1035 int ret;
1036
1037 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1038 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1039 &grp->bb_state);
1040 if (!ret)
1041 percpu_counter_sub(&sbi->s_freeclusters_counter,
1042 grp->bb_free);
1043 }
1044
1045 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1046 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1047 &grp->bb_state);
1048 if (!ret && gdp) {
1049 int count;
1050
1051 count = ext4_free_inodes_count(sb, gdp);
1052 percpu_counter_sub(&sbi->s_freeinodes_counter,
1053 count);
1054 }
1055 }
1056 }
1057
ext4_update_dynamic_rev(struct super_block * sb)1058 void ext4_update_dynamic_rev(struct super_block *sb)
1059 {
1060 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1061
1062 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1063 return;
1064
1065 ext4_warning(sb,
1066 "updating to rev %d because of new feature flag, "
1067 "running e2fsck is recommended",
1068 EXT4_DYNAMIC_REV);
1069
1070 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1071 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1072 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1073 /* leave es->s_feature_*compat flags alone */
1074 /* es->s_uuid will be set by e2fsck if empty */
1075
1076 /*
1077 * The rest of the superblock fields should be zero, and if not it
1078 * means they are likely already in use, so leave them alone. We
1079 * can leave it up to e2fsck to clean up any inconsistencies there.
1080 */
1081 }
1082
1083 /*
1084 * Open the external journal device
1085 */
ext4_blkdev_get(dev_t dev,struct super_block * sb)1086 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1087 {
1088 struct block_device *bdev;
1089
1090 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1091 if (IS_ERR(bdev))
1092 goto fail;
1093 return bdev;
1094
1095 fail:
1096 ext4_msg(sb, KERN_ERR,
1097 "failed to open journal device unknown-block(%u,%u) %ld",
1098 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1099 return NULL;
1100 }
1101
1102 /*
1103 * Release the journal device
1104 */
ext4_blkdev_put(struct block_device * bdev)1105 static void ext4_blkdev_put(struct block_device *bdev)
1106 {
1107 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1108 }
1109
ext4_blkdev_remove(struct ext4_sb_info * sbi)1110 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1111 {
1112 struct block_device *bdev;
1113 bdev = sbi->s_journal_bdev;
1114 if (bdev) {
1115 ext4_blkdev_put(bdev);
1116 sbi->s_journal_bdev = NULL;
1117 }
1118 }
1119
orphan_list_entry(struct list_head * l)1120 static inline struct inode *orphan_list_entry(struct list_head *l)
1121 {
1122 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1123 }
1124
dump_orphan_list(struct super_block * sb,struct ext4_sb_info * sbi)1125 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1126 {
1127 struct list_head *l;
1128
1129 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1130 le32_to_cpu(sbi->s_es->s_last_orphan));
1131
1132 printk(KERN_ERR "sb_info orphan list:\n");
1133 list_for_each(l, &sbi->s_orphan) {
1134 struct inode *inode = orphan_list_entry(l);
1135 printk(KERN_ERR " "
1136 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1137 inode->i_sb->s_id, inode->i_ino, inode,
1138 inode->i_mode, inode->i_nlink,
1139 NEXT_ORPHAN(inode));
1140 }
1141 }
1142
1143 #ifdef CONFIG_QUOTA
1144 static int ext4_quota_off(struct super_block *sb, int type);
1145
ext4_quota_off_umount(struct super_block * sb)1146 static inline void ext4_quota_off_umount(struct super_block *sb)
1147 {
1148 int type;
1149
1150 /* Use our quota_off function to clear inode flags etc. */
1151 for (type = 0; type < EXT4_MAXQUOTAS; type++)
1152 ext4_quota_off(sb, type);
1153 }
1154
1155 /*
1156 * This is a helper function which is used in the mount/remount
1157 * codepaths (which holds s_umount) to fetch the quota file name.
1158 */
get_qf_name(struct super_block * sb,struct ext4_sb_info * sbi,int type)1159 static inline char *get_qf_name(struct super_block *sb,
1160 struct ext4_sb_info *sbi,
1161 int type)
1162 {
1163 return rcu_dereference_protected(sbi->s_qf_names[type],
1164 lockdep_is_held(&sb->s_umount));
1165 }
1166 #else
ext4_quota_off_umount(struct super_block * sb)1167 static inline void ext4_quota_off_umount(struct super_block *sb)
1168 {
1169 }
1170 #endif
1171
ext4_put_super(struct super_block * sb)1172 static void ext4_put_super(struct super_block *sb)
1173 {
1174 struct ext4_sb_info *sbi = EXT4_SB(sb);
1175 struct ext4_super_block *es = sbi->s_es;
1176 struct buffer_head **group_desc;
1177 struct flex_groups **flex_groups;
1178 int aborted = 0;
1179 int i, err;
1180
1181 ext4_unregister_li_request(sb);
1182 ext4_quota_off_umount(sb);
1183
1184 destroy_workqueue(sbi->rsv_conversion_wq);
1185
1186 /*
1187 * Unregister sysfs before destroying jbd2 journal.
1188 * Since we could still access attr_journal_task attribute via sysfs
1189 * path which could have sbi->s_journal->j_task as NULL
1190 */
1191 ext4_unregister_sysfs(sb);
1192
1193 if (sbi->s_journal) {
1194 aborted = is_journal_aborted(sbi->s_journal);
1195 err = jbd2_journal_destroy(sbi->s_journal);
1196 sbi->s_journal = NULL;
1197 if ((err < 0) && !aborted) {
1198 ext4_abort(sb, -err, "Couldn't clean up the journal");
1199 }
1200 }
1201
1202 ext4_es_unregister_shrinker(sbi);
1203 del_timer_sync(&sbi->s_err_report);
1204 ext4_release_system_zone(sb);
1205 ext4_mb_release(sb);
1206 ext4_ext_release(sb);
1207
1208 if (!sb_rdonly(sb) && !aborted) {
1209 ext4_clear_feature_journal_needs_recovery(sb);
1210 es->s_state = cpu_to_le16(sbi->s_mount_state);
1211 }
1212 if (!sb_rdonly(sb))
1213 ext4_commit_super(sb, 1);
1214
1215 rcu_read_lock();
1216 group_desc = rcu_dereference(sbi->s_group_desc);
1217 for (i = 0; i < sbi->s_gdb_count; i++)
1218 brelse(group_desc[i]);
1219 kvfree(group_desc);
1220 flex_groups = rcu_dereference(sbi->s_flex_groups);
1221 if (flex_groups) {
1222 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1223 kvfree(flex_groups[i]);
1224 kvfree(flex_groups);
1225 }
1226 rcu_read_unlock();
1227 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1228 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1229 percpu_counter_destroy(&sbi->s_dirs_counter);
1230 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1231 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1232 #ifdef CONFIG_QUOTA
1233 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1234 kfree(get_qf_name(sb, sbi, i));
1235 #endif
1236
1237 /* Debugging code just in case the in-memory inode orphan list
1238 * isn't empty. The on-disk one can be non-empty if we've
1239 * detected an error and taken the fs readonly, but the
1240 * in-memory list had better be clean by this point. */
1241 if (!list_empty(&sbi->s_orphan))
1242 dump_orphan_list(sb, sbi);
1243 J_ASSERT(list_empty(&sbi->s_orphan));
1244
1245 sync_blockdev(sb->s_bdev);
1246 invalidate_bdev(sb->s_bdev);
1247 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1248 /*
1249 * Invalidate the journal device's buffers. We don't want them
1250 * floating about in memory - the physical journal device may
1251 * hotswapped, and it breaks the `ro-after' testing code.
1252 */
1253 sync_blockdev(sbi->s_journal_bdev);
1254 invalidate_bdev(sbi->s_journal_bdev);
1255 ext4_blkdev_remove(sbi);
1256 }
1257
1258 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1259 sbi->s_ea_inode_cache = NULL;
1260
1261 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1262 sbi->s_ea_block_cache = NULL;
1263
1264 if (sbi->s_mmp_tsk)
1265 kthread_stop(sbi->s_mmp_tsk);
1266 brelse(sbi->s_sbh);
1267 sb->s_fs_info = NULL;
1268 /*
1269 * Now that we are completely done shutting down the
1270 * superblock, we need to actually destroy the kobject.
1271 */
1272 kobject_put(&sbi->s_kobj);
1273 wait_for_completion(&sbi->s_kobj_unregister);
1274 if (sbi->s_chksum_driver)
1275 crypto_free_shash(sbi->s_chksum_driver);
1276 kfree(sbi->s_blockgroup_lock);
1277 fs_put_dax(sbi->s_daxdev);
1278 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1279 #ifdef CONFIG_UNICODE
1280 utf8_unload(sb->s_encoding);
1281 #endif
1282 kfree(sbi);
1283 }
1284
1285 static struct kmem_cache *ext4_inode_cachep;
1286
1287 /*
1288 * Called inside transaction, so use GFP_NOFS
1289 */
ext4_alloc_inode(struct super_block * sb)1290 static struct inode *ext4_alloc_inode(struct super_block *sb)
1291 {
1292 struct ext4_inode_info *ei;
1293
1294 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1295 if (!ei)
1296 return NULL;
1297
1298 inode_set_iversion(&ei->vfs_inode, 1);
1299 spin_lock_init(&ei->i_raw_lock);
1300 INIT_LIST_HEAD(&ei->i_prealloc_list);
1301 atomic_set(&ei->i_prealloc_active, 0);
1302 spin_lock_init(&ei->i_prealloc_lock);
1303 ext4_es_init_tree(&ei->i_es_tree);
1304 rwlock_init(&ei->i_es_lock);
1305 INIT_LIST_HEAD(&ei->i_es_list);
1306 ei->i_es_all_nr = 0;
1307 ei->i_es_shk_nr = 0;
1308 ei->i_es_shrink_lblk = 0;
1309 ei->i_reserved_data_blocks = 0;
1310 spin_lock_init(&(ei->i_block_reservation_lock));
1311 ext4_init_pending_tree(&ei->i_pending_tree);
1312 #ifdef CONFIG_QUOTA
1313 ei->i_reserved_quota = 0;
1314 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1315 #endif
1316 ei->jinode = NULL;
1317 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1318 spin_lock_init(&ei->i_completed_io_lock);
1319 ei->i_sync_tid = 0;
1320 ei->i_datasync_tid = 0;
1321 atomic_set(&ei->i_unwritten, 0);
1322 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1323 ext4_fc_init_inode(&ei->vfs_inode);
1324 mutex_init(&ei->i_fc_lock);
1325 return &ei->vfs_inode;
1326 }
1327
ext4_drop_inode(struct inode * inode)1328 static int ext4_drop_inode(struct inode *inode)
1329 {
1330 int drop = generic_drop_inode(inode);
1331
1332 if (!drop)
1333 drop = fscrypt_drop_inode(inode);
1334
1335 trace_ext4_drop_inode(inode, drop);
1336 return drop;
1337 }
1338
ext4_free_in_core_inode(struct inode * inode)1339 static void ext4_free_in_core_inode(struct inode *inode)
1340 {
1341 fscrypt_free_inode(inode);
1342 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1343 pr_warn("%s: inode %ld still in fc list",
1344 __func__, inode->i_ino);
1345 }
1346 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1347 }
1348
ext4_destroy_inode(struct inode * inode)1349 static void ext4_destroy_inode(struct inode *inode)
1350 {
1351 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1352 ext4_msg(inode->i_sb, KERN_ERR,
1353 "Inode %lu (%p): orphan list check failed!",
1354 inode->i_ino, EXT4_I(inode));
1355 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1356 EXT4_I(inode), sizeof(struct ext4_inode_info),
1357 true);
1358 dump_stack();
1359 }
1360 }
1361
init_once(void * foo)1362 static void init_once(void *foo)
1363 {
1364 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1365
1366 INIT_LIST_HEAD(&ei->i_orphan);
1367 init_rwsem(&ei->xattr_sem);
1368 init_rwsem(&ei->i_data_sem);
1369 init_rwsem(&ei->i_mmap_sem);
1370 inode_init_once(&ei->vfs_inode);
1371 ext4_fc_init_inode(&ei->vfs_inode);
1372 }
1373
init_inodecache(void)1374 static int __init init_inodecache(void)
1375 {
1376 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1377 sizeof(struct ext4_inode_info), 0,
1378 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1379 SLAB_ACCOUNT),
1380 offsetof(struct ext4_inode_info, i_data),
1381 sizeof_field(struct ext4_inode_info, i_data),
1382 init_once);
1383 if (ext4_inode_cachep == NULL)
1384 return -ENOMEM;
1385 return 0;
1386 }
1387
destroy_inodecache(void)1388 static void destroy_inodecache(void)
1389 {
1390 /*
1391 * Make sure all delayed rcu free inodes are flushed before we
1392 * destroy cache.
1393 */
1394 rcu_barrier();
1395 kmem_cache_destroy(ext4_inode_cachep);
1396 }
1397
ext4_clear_inode(struct inode * inode)1398 void ext4_clear_inode(struct inode *inode)
1399 {
1400 ext4_fc_del(inode);
1401 invalidate_inode_buffers(inode);
1402 clear_inode(inode);
1403 ext4_discard_preallocations(inode, 0);
1404 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1405 dquot_drop(inode);
1406 if (EXT4_I(inode)->jinode) {
1407 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1408 EXT4_I(inode)->jinode);
1409 jbd2_free_inode(EXT4_I(inode)->jinode);
1410 EXT4_I(inode)->jinode = NULL;
1411 }
1412 fscrypt_put_encryption_info(inode);
1413 fsverity_cleanup_inode(inode);
1414 }
1415
ext4_nfs_get_inode(struct super_block * sb,u64 ino,u32 generation)1416 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1417 u64 ino, u32 generation)
1418 {
1419 struct inode *inode;
1420
1421 /*
1422 * Currently we don't know the generation for parent directory, so
1423 * a generation of 0 means "accept any"
1424 */
1425 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1426 if (IS_ERR(inode))
1427 return ERR_CAST(inode);
1428 if (generation && inode->i_generation != generation) {
1429 iput(inode);
1430 return ERR_PTR(-ESTALE);
1431 }
1432
1433 return inode;
1434 }
1435
ext4_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1436 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1437 int fh_len, int fh_type)
1438 {
1439 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1440 ext4_nfs_get_inode);
1441 }
1442
ext4_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)1443 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1444 int fh_len, int fh_type)
1445 {
1446 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1447 ext4_nfs_get_inode);
1448 }
1449
ext4_nfs_commit_metadata(struct inode * inode)1450 static int ext4_nfs_commit_metadata(struct inode *inode)
1451 {
1452 struct writeback_control wbc = {
1453 .sync_mode = WB_SYNC_ALL
1454 };
1455
1456 trace_ext4_nfs_commit_metadata(inode);
1457 return ext4_write_inode(inode, &wbc);
1458 }
1459
1460 /*
1461 * Try to release metadata pages (indirect blocks, directories) which are
1462 * mapped via the block device. Since these pages could have journal heads
1463 * which would prevent try_to_free_buffers() from freeing them, we must use
1464 * jbd2 layer's try_to_free_buffers() function to release them.
1465 */
bdev_try_to_free_page(struct super_block * sb,struct page * page,gfp_t wait)1466 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1467 gfp_t wait)
1468 {
1469 journal_t *journal = EXT4_SB(sb)->s_journal;
1470
1471 WARN_ON(PageChecked(page));
1472 if (!page_has_buffers(page))
1473 return 0;
1474 if (journal)
1475 return jbd2_journal_try_to_free_buffers(journal, page);
1476
1477 return try_to_free_buffers(page);
1478 }
1479
1480 #ifdef CONFIG_FS_ENCRYPTION
ext4_get_context(struct inode * inode,void * ctx,size_t len)1481 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1482 {
1483 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1484 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1485 }
1486
ext4_set_context(struct inode * inode,const void * ctx,size_t len,void * fs_data)1487 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1488 void *fs_data)
1489 {
1490 handle_t *handle = fs_data;
1491 int res, res2, credits, retries = 0;
1492
1493 /*
1494 * Encrypting the root directory is not allowed because e2fsck expects
1495 * lost+found to exist and be unencrypted, and encrypting the root
1496 * directory would imply encrypting the lost+found directory as well as
1497 * the filename "lost+found" itself.
1498 */
1499 if (inode->i_ino == EXT4_ROOT_INO)
1500 return -EPERM;
1501
1502 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1503 return -EINVAL;
1504
1505 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1506 return -EOPNOTSUPP;
1507
1508 res = ext4_convert_inline_data(inode);
1509 if (res)
1510 return res;
1511
1512 /*
1513 * If a journal handle was specified, then the encryption context is
1514 * being set on a new inode via inheritance and is part of a larger
1515 * transaction to create the inode. Otherwise the encryption context is
1516 * being set on an existing inode in its own transaction. Only in the
1517 * latter case should the "retry on ENOSPC" logic be used.
1518 */
1519
1520 if (handle) {
1521 res = ext4_xattr_set_handle(handle, inode,
1522 EXT4_XATTR_INDEX_ENCRYPTION,
1523 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1524 ctx, len, 0);
1525 if (!res) {
1526 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1527 ext4_clear_inode_state(inode,
1528 EXT4_STATE_MAY_INLINE_DATA);
1529 /*
1530 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1531 * S_DAX may be disabled
1532 */
1533 ext4_set_inode_flags(inode, false);
1534 }
1535 return res;
1536 }
1537
1538 res = dquot_initialize(inode);
1539 if (res)
1540 return res;
1541 retry:
1542 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1543 &credits);
1544 if (res)
1545 return res;
1546
1547 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1548 if (IS_ERR(handle))
1549 return PTR_ERR(handle);
1550
1551 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1552 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1553 ctx, len, 0);
1554 if (!res) {
1555 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1556 /*
1557 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1558 * S_DAX may be disabled
1559 */
1560 ext4_set_inode_flags(inode, false);
1561 res = ext4_mark_inode_dirty(handle, inode);
1562 if (res)
1563 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1564 }
1565 res2 = ext4_journal_stop(handle);
1566
1567 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1568 goto retry;
1569 if (!res)
1570 res = res2;
1571 return res;
1572 }
1573
ext4_get_dummy_policy(struct super_block * sb)1574 static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1575 {
1576 return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1577 }
1578
ext4_has_stable_inodes(struct super_block * sb)1579 static bool ext4_has_stable_inodes(struct super_block *sb)
1580 {
1581 return ext4_has_feature_stable_inodes(sb);
1582 }
1583
ext4_get_ino_and_lblk_bits(struct super_block * sb,int * ino_bits_ret,int * lblk_bits_ret)1584 static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1585 int *ino_bits_ret, int *lblk_bits_ret)
1586 {
1587 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1588 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1589 }
1590
1591 static const struct fscrypt_operations ext4_cryptops = {
1592 .key_prefix = "ext4:",
1593 .get_context = ext4_get_context,
1594 .set_context = ext4_set_context,
1595 .get_dummy_policy = ext4_get_dummy_policy,
1596 .empty_dir = ext4_empty_dir,
1597 .max_namelen = EXT4_NAME_LEN,
1598 .has_stable_inodes = ext4_has_stable_inodes,
1599 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits,
1600 };
1601 #endif
1602
1603 #ifdef CONFIG_QUOTA
1604 static const char * const quotatypes[] = INITQFNAMES;
1605 #define QTYPE2NAME(t) (quotatypes[t])
1606
1607 static int ext4_write_dquot(struct dquot *dquot);
1608 static int ext4_acquire_dquot(struct dquot *dquot);
1609 static int ext4_release_dquot(struct dquot *dquot);
1610 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1611 static int ext4_write_info(struct super_block *sb, int type);
1612 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1613 const struct path *path);
1614 static int ext4_quota_on_mount(struct super_block *sb, int type);
1615 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1616 size_t len, loff_t off);
1617 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1618 const char *data, size_t len, loff_t off);
1619 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1620 unsigned int flags);
1621 static int ext4_enable_quotas(struct super_block *sb);
1622
ext4_get_dquots(struct inode * inode)1623 static struct dquot **ext4_get_dquots(struct inode *inode)
1624 {
1625 return EXT4_I(inode)->i_dquot;
1626 }
1627
1628 static const struct dquot_operations ext4_quota_operations = {
1629 .get_reserved_space = ext4_get_reserved_space,
1630 .write_dquot = ext4_write_dquot,
1631 .acquire_dquot = ext4_acquire_dquot,
1632 .release_dquot = ext4_release_dquot,
1633 .mark_dirty = ext4_mark_dquot_dirty,
1634 .write_info = ext4_write_info,
1635 .alloc_dquot = dquot_alloc,
1636 .destroy_dquot = dquot_destroy,
1637 .get_projid = ext4_get_projid,
1638 .get_inode_usage = ext4_get_inode_usage,
1639 .get_next_id = dquot_get_next_id,
1640 };
1641
1642 static const struct quotactl_ops ext4_qctl_operations = {
1643 .quota_on = ext4_quota_on,
1644 .quota_off = ext4_quota_off,
1645 .quota_sync = dquot_quota_sync,
1646 .get_state = dquot_get_state,
1647 .set_info = dquot_set_dqinfo,
1648 .get_dqblk = dquot_get_dqblk,
1649 .set_dqblk = dquot_set_dqblk,
1650 .get_nextdqblk = dquot_get_next_dqblk,
1651 };
1652 #endif
1653
1654 static const struct super_operations ext4_sops = {
1655 .alloc_inode = ext4_alloc_inode,
1656 .free_inode = ext4_free_in_core_inode,
1657 .destroy_inode = ext4_destroy_inode,
1658 .write_inode = ext4_write_inode,
1659 .dirty_inode = ext4_dirty_inode,
1660 .drop_inode = ext4_drop_inode,
1661 .evict_inode = ext4_evict_inode,
1662 .put_super = ext4_put_super,
1663 .sync_fs = ext4_sync_fs,
1664 .freeze_fs = ext4_freeze,
1665 .unfreeze_fs = ext4_unfreeze,
1666 .statfs = ext4_statfs,
1667 .remount_fs = ext4_remount,
1668 .show_options = ext4_show_options,
1669 #ifdef CONFIG_QUOTA
1670 .quota_read = ext4_quota_read,
1671 .quota_write = ext4_quota_write,
1672 .get_dquots = ext4_get_dquots,
1673 #endif
1674 .bdev_try_to_free_page = bdev_try_to_free_page,
1675 };
1676
1677 static const struct export_operations ext4_export_ops = {
1678 .fh_to_dentry = ext4_fh_to_dentry,
1679 .fh_to_parent = ext4_fh_to_parent,
1680 .get_parent = ext4_get_parent,
1681 .commit_metadata = ext4_nfs_commit_metadata,
1682 };
1683
1684 enum {
1685 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1686 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1687 Opt_nouid32, Opt_debug, Opt_removed,
1688 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1689 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1690 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1691 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1692 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1693 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1694 Opt_inlinecrypt,
1695 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1696 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1697 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1698 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1699 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1700 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1701 Opt_nowarn_on_error, Opt_mblk_io_submit,
1702 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1703 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1704 Opt_inode_readahead_blks, Opt_journal_ioprio,
1705 Opt_dioread_nolock, Opt_dioread_lock,
1706 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1707 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1708 Opt_prefetch_block_bitmaps,
1709 #ifdef CONFIG_EXT4_DEBUG
1710 Opt_fc_debug_max_replay, Opt_fc_debug_force
1711 #endif
1712 };
1713
1714 static const match_table_t tokens = {
1715 {Opt_bsd_df, "bsddf"},
1716 {Opt_minix_df, "minixdf"},
1717 {Opt_grpid, "grpid"},
1718 {Opt_grpid, "bsdgroups"},
1719 {Opt_nogrpid, "nogrpid"},
1720 {Opt_nogrpid, "sysvgroups"},
1721 {Opt_resgid, "resgid=%u"},
1722 {Opt_resuid, "resuid=%u"},
1723 {Opt_sb, "sb=%u"},
1724 {Opt_err_cont, "errors=continue"},
1725 {Opt_err_panic, "errors=panic"},
1726 {Opt_err_ro, "errors=remount-ro"},
1727 {Opt_nouid32, "nouid32"},
1728 {Opt_debug, "debug"},
1729 {Opt_removed, "oldalloc"},
1730 {Opt_removed, "orlov"},
1731 {Opt_user_xattr, "user_xattr"},
1732 {Opt_nouser_xattr, "nouser_xattr"},
1733 {Opt_acl, "acl"},
1734 {Opt_noacl, "noacl"},
1735 {Opt_noload, "norecovery"},
1736 {Opt_noload, "noload"},
1737 {Opt_removed, "nobh"},
1738 {Opt_removed, "bh"},
1739 {Opt_commit, "commit=%u"},
1740 {Opt_min_batch_time, "min_batch_time=%u"},
1741 {Opt_max_batch_time, "max_batch_time=%u"},
1742 {Opt_journal_dev, "journal_dev=%u"},
1743 {Opt_journal_path, "journal_path=%s"},
1744 {Opt_journal_checksum, "journal_checksum"},
1745 {Opt_nojournal_checksum, "nojournal_checksum"},
1746 {Opt_journal_async_commit, "journal_async_commit"},
1747 {Opt_abort, "abort"},
1748 {Opt_data_journal, "data=journal"},
1749 {Opt_data_ordered, "data=ordered"},
1750 {Opt_data_writeback, "data=writeback"},
1751 {Opt_data_err_abort, "data_err=abort"},
1752 {Opt_data_err_ignore, "data_err=ignore"},
1753 {Opt_offusrjquota, "usrjquota="},
1754 {Opt_usrjquota, "usrjquota=%s"},
1755 {Opt_offgrpjquota, "grpjquota="},
1756 {Opt_grpjquota, "grpjquota=%s"},
1757 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1758 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1759 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1760 {Opt_grpquota, "grpquota"},
1761 {Opt_noquota, "noquota"},
1762 {Opt_quota, "quota"},
1763 {Opt_usrquota, "usrquota"},
1764 {Opt_prjquota, "prjquota"},
1765 {Opt_barrier, "barrier=%u"},
1766 {Opt_barrier, "barrier"},
1767 {Opt_nobarrier, "nobarrier"},
1768 {Opt_i_version, "i_version"},
1769 {Opt_dax, "dax"},
1770 {Opt_dax_always, "dax=always"},
1771 {Opt_dax_inode, "dax=inode"},
1772 {Opt_dax_never, "dax=never"},
1773 {Opt_stripe, "stripe=%u"},
1774 {Opt_delalloc, "delalloc"},
1775 {Opt_warn_on_error, "warn_on_error"},
1776 {Opt_nowarn_on_error, "nowarn_on_error"},
1777 {Opt_lazytime, "lazytime"},
1778 {Opt_nolazytime, "nolazytime"},
1779 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1780 {Opt_nodelalloc, "nodelalloc"},
1781 {Opt_removed, "mblk_io_submit"},
1782 {Opt_removed, "nomblk_io_submit"},
1783 {Opt_block_validity, "block_validity"},
1784 {Opt_noblock_validity, "noblock_validity"},
1785 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1786 {Opt_journal_ioprio, "journal_ioprio=%u"},
1787 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1788 {Opt_auto_da_alloc, "auto_da_alloc"},
1789 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1790 {Opt_dioread_nolock, "dioread_nolock"},
1791 {Opt_dioread_lock, "nodioread_nolock"},
1792 {Opt_dioread_lock, "dioread_lock"},
1793 {Opt_discard, "discard"},
1794 {Opt_nodiscard, "nodiscard"},
1795 {Opt_init_itable, "init_itable=%u"},
1796 {Opt_init_itable, "init_itable"},
1797 {Opt_noinit_itable, "noinit_itable"},
1798 #ifdef CONFIG_EXT4_DEBUG
1799 {Opt_fc_debug_force, "fc_debug_force"},
1800 {Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1801 #endif
1802 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1803 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1804 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1805 {Opt_inlinecrypt, "inlinecrypt"},
1806 {Opt_nombcache, "nombcache"},
1807 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1808 {Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"},
1809 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1810 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1811 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1812 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1813 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1814 {Opt_err, NULL},
1815 };
1816
get_sb_block(void ** data)1817 static ext4_fsblk_t get_sb_block(void **data)
1818 {
1819 ext4_fsblk_t sb_block;
1820 char *options = (char *) *data;
1821
1822 if (!options || strncmp(options, "sb=", 3) != 0)
1823 return 1; /* Default location */
1824
1825 options += 3;
1826 /* TODO: use simple_strtoll with >32bit ext4 */
1827 sb_block = simple_strtoul(options, &options, 0);
1828 if (*options && *options != ',') {
1829 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1830 (char *) *data);
1831 return 1;
1832 }
1833 if (*options == ',')
1834 options++;
1835 *data = (void *) options;
1836
1837 return sb_block;
1838 }
1839
1840 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1841 static const char deprecated_msg[] =
1842 "Mount option \"%s\" will be removed by %s\n"
1843 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1844
1845 #ifdef CONFIG_QUOTA
set_qf_name(struct super_block * sb,int qtype,substring_t * args)1846 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1847 {
1848 struct ext4_sb_info *sbi = EXT4_SB(sb);
1849 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1850 int ret = -1;
1851
1852 if (sb_any_quota_loaded(sb) && !old_qname) {
1853 ext4_msg(sb, KERN_ERR,
1854 "Cannot change journaled "
1855 "quota options when quota turned on");
1856 return -1;
1857 }
1858 if (ext4_has_feature_quota(sb)) {
1859 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1860 "ignored when QUOTA feature is enabled");
1861 return 1;
1862 }
1863 qname = match_strdup(args);
1864 if (!qname) {
1865 ext4_msg(sb, KERN_ERR,
1866 "Not enough memory for storing quotafile name");
1867 return -1;
1868 }
1869 if (old_qname) {
1870 if (strcmp(old_qname, qname) == 0)
1871 ret = 1;
1872 else
1873 ext4_msg(sb, KERN_ERR,
1874 "%s quota file already specified",
1875 QTYPE2NAME(qtype));
1876 goto errout;
1877 }
1878 if (strchr(qname, '/')) {
1879 ext4_msg(sb, KERN_ERR,
1880 "quotafile must be on filesystem root");
1881 goto errout;
1882 }
1883 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1884 set_opt(sb, QUOTA);
1885 return 1;
1886 errout:
1887 kfree(qname);
1888 return ret;
1889 }
1890
clear_qf_name(struct super_block * sb,int qtype)1891 static int clear_qf_name(struct super_block *sb, int qtype)
1892 {
1893
1894 struct ext4_sb_info *sbi = EXT4_SB(sb);
1895 char *old_qname = get_qf_name(sb, sbi, qtype);
1896
1897 if (sb_any_quota_loaded(sb) && old_qname) {
1898 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1899 " when quota turned on");
1900 return -1;
1901 }
1902 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1903 synchronize_rcu();
1904 kfree(old_qname);
1905 return 1;
1906 }
1907 #endif
1908
1909 #define MOPT_SET 0x0001
1910 #define MOPT_CLEAR 0x0002
1911 #define MOPT_NOSUPPORT 0x0004
1912 #define MOPT_EXPLICIT 0x0008
1913 #define MOPT_CLEAR_ERR 0x0010
1914 #define MOPT_GTE0 0x0020
1915 #ifdef CONFIG_QUOTA
1916 #define MOPT_Q 0
1917 #define MOPT_QFMT 0x0040
1918 #else
1919 #define MOPT_Q MOPT_NOSUPPORT
1920 #define MOPT_QFMT MOPT_NOSUPPORT
1921 #endif
1922 #define MOPT_DATAJ 0x0080
1923 #define MOPT_NO_EXT2 0x0100
1924 #define MOPT_NO_EXT3 0x0200
1925 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1926 #define MOPT_STRING 0x0400
1927 #define MOPT_SKIP 0x0800
1928 #define MOPT_2 0x1000
1929
1930 static const struct mount_opts {
1931 int token;
1932 int mount_opt;
1933 int flags;
1934 } ext4_mount_opts[] = {
1935 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1936 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1937 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1938 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1939 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1940 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1941 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1942 MOPT_EXT4_ONLY | MOPT_SET},
1943 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1944 MOPT_EXT4_ONLY | MOPT_CLEAR},
1945 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1946 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1947 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1948 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1949 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1950 MOPT_EXT4_ONLY | MOPT_CLEAR},
1951 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1952 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1953 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1954 MOPT_EXT4_ONLY | MOPT_CLEAR},
1955 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1956 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1957 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1958 EXT4_MOUNT_JOURNAL_CHECKSUM),
1959 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1960 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1961 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1962 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1963 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1964 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1965 MOPT_NO_EXT2},
1966 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1967 MOPT_NO_EXT2},
1968 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1969 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1970 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1971 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1972 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1973 {Opt_commit, 0, MOPT_GTE0},
1974 {Opt_max_batch_time, 0, MOPT_GTE0},
1975 {Opt_min_batch_time, 0, MOPT_GTE0},
1976 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1977 {Opt_init_itable, 0, MOPT_GTE0},
1978 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1979 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1980 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1981 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1982 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1983 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1984 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1985 {Opt_stripe, 0, MOPT_GTE0},
1986 {Opt_resuid, 0, MOPT_GTE0},
1987 {Opt_resgid, 0, MOPT_GTE0},
1988 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1989 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1990 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1991 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1992 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1993 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1994 MOPT_NO_EXT2 | MOPT_DATAJ},
1995 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1996 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1997 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1998 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1999 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
2000 #else
2001 {Opt_acl, 0, MOPT_NOSUPPORT},
2002 {Opt_noacl, 0, MOPT_NOSUPPORT},
2003 #endif
2004 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
2005 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
2006 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
2007 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
2008 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
2009 MOPT_SET | MOPT_Q},
2010 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
2011 MOPT_SET | MOPT_Q},
2012 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
2013 MOPT_SET | MOPT_Q},
2014 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2015 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
2016 MOPT_CLEAR | MOPT_Q},
2017 {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
2018 {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
2019 {Opt_offusrjquota, 0, MOPT_Q},
2020 {Opt_offgrpjquota, 0, MOPT_Q},
2021 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
2022 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
2023 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
2024 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
2025 {Opt_test_dummy_encryption, 0, MOPT_STRING},
2026 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2027 {Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS,
2028 MOPT_SET},
2029 #ifdef CONFIG_EXT4_DEBUG
2030 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2031 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2032 {Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2033 #endif
2034 {Opt_err, 0, 0}
2035 };
2036
2037 #ifdef CONFIG_UNICODE
2038 static const struct ext4_sb_encodings {
2039 __u16 magic;
2040 char *name;
2041 char *version;
2042 } ext4_sb_encoding_map[] = {
2043 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2044 };
2045
ext4_sb_read_encoding(const struct ext4_super_block * es,const struct ext4_sb_encodings ** encoding,__u16 * flags)2046 static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2047 const struct ext4_sb_encodings **encoding,
2048 __u16 *flags)
2049 {
2050 __u16 magic = le16_to_cpu(es->s_encoding);
2051 int i;
2052
2053 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2054 if (magic == ext4_sb_encoding_map[i].magic)
2055 break;
2056
2057 if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2058 return -EINVAL;
2059
2060 *encoding = &ext4_sb_encoding_map[i];
2061 *flags = le16_to_cpu(es->s_encoding_flags);
2062
2063 return 0;
2064 }
2065 #endif
2066
ext4_set_test_dummy_encryption(struct super_block * sb,const char * opt,const substring_t * arg,bool is_remount)2067 static int ext4_set_test_dummy_encryption(struct super_block *sb,
2068 const char *opt,
2069 const substring_t *arg,
2070 bool is_remount)
2071 {
2072 #ifdef CONFIG_FS_ENCRYPTION
2073 struct ext4_sb_info *sbi = EXT4_SB(sb);
2074 int err;
2075
2076 /*
2077 * This mount option is just for testing, and it's not worthwhile to
2078 * implement the extra complexity (e.g. RCU protection) that would be
2079 * needed to allow it to be set or changed during remount. We do allow
2080 * it to be specified during remount, but only if there is no change.
2081 */
2082 if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2083 ext4_msg(sb, KERN_WARNING,
2084 "Can't set test_dummy_encryption on remount");
2085 return -1;
2086 }
2087 err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2088 &sbi->s_dummy_enc_policy);
2089 if (err) {
2090 if (err == -EEXIST)
2091 ext4_msg(sb, KERN_WARNING,
2092 "Can't change test_dummy_encryption on remount");
2093 else if (err == -EINVAL)
2094 ext4_msg(sb, KERN_WARNING,
2095 "Value of option \"%s\" is unrecognized", opt);
2096 else
2097 ext4_msg(sb, KERN_WARNING,
2098 "Error processing option \"%s\" [%d]",
2099 opt, err);
2100 return -1;
2101 }
2102 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2103 #else
2104 ext4_msg(sb, KERN_WARNING,
2105 "Test dummy encryption mount option ignored");
2106 #endif
2107 return 1;
2108 }
2109
handle_mount_opt(struct super_block * sb,char * opt,int token,substring_t * args,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)2110 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2111 substring_t *args, unsigned long *journal_devnum,
2112 unsigned int *journal_ioprio, int is_remount)
2113 {
2114 struct ext4_sb_info *sbi = EXT4_SB(sb);
2115 const struct mount_opts *m;
2116 kuid_t uid;
2117 kgid_t gid;
2118 int arg = 0;
2119
2120 #ifdef CONFIG_QUOTA
2121 if (token == Opt_usrjquota)
2122 return set_qf_name(sb, USRQUOTA, &args[0]);
2123 else if (token == Opt_grpjquota)
2124 return set_qf_name(sb, GRPQUOTA, &args[0]);
2125 else if (token == Opt_offusrjquota)
2126 return clear_qf_name(sb, USRQUOTA);
2127 else if (token == Opt_offgrpjquota)
2128 return clear_qf_name(sb, GRPQUOTA);
2129 #endif
2130 switch (token) {
2131 case Opt_noacl:
2132 case Opt_nouser_xattr:
2133 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2134 break;
2135 case Opt_sb:
2136 return 1; /* handled by get_sb_block() */
2137 case Opt_removed:
2138 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2139 return 1;
2140 case Opt_abort:
2141 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2142 return 1;
2143 case Opt_i_version:
2144 sb->s_flags |= SB_I_VERSION;
2145 return 1;
2146 case Opt_lazytime:
2147 sb->s_flags |= SB_LAZYTIME;
2148 return 1;
2149 case Opt_nolazytime:
2150 sb->s_flags &= ~SB_LAZYTIME;
2151 return 1;
2152 case Opt_inlinecrypt:
2153 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2154 sb->s_flags |= SB_INLINECRYPT;
2155 #else
2156 ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2157 #endif
2158 return 1;
2159 }
2160
2161 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2162 if (token == m->token)
2163 break;
2164
2165 if (m->token == Opt_err) {
2166 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2167 "or missing value", opt);
2168 return -1;
2169 }
2170
2171 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2172 ext4_msg(sb, KERN_ERR,
2173 "Mount option \"%s\" incompatible with ext2", opt);
2174 return -1;
2175 }
2176 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2177 ext4_msg(sb, KERN_ERR,
2178 "Mount option \"%s\" incompatible with ext3", opt);
2179 return -1;
2180 }
2181
2182 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2183 return -1;
2184 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2185 return -1;
2186 if (m->flags & MOPT_EXPLICIT) {
2187 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2188 set_opt2(sb, EXPLICIT_DELALLOC);
2189 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2190 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2191 } else
2192 return -1;
2193 }
2194 if (m->flags & MOPT_CLEAR_ERR)
2195 clear_opt(sb, ERRORS_MASK);
2196 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2197 ext4_msg(sb, KERN_ERR, "Cannot change quota "
2198 "options when quota turned on");
2199 return -1;
2200 }
2201
2202 if (m->flags & MOPT_NOSUPPORT) {
2203 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2204 } else if (token == Opt_commit) {
2205 if (arg == 0)
2206 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2207 else if (arg > INT_MAX / HZ) {
2208 ext4_msg(sb, KERN_ERR,
2209 "Invalid commit interval %d, "
2210 "must be smaller than %d",
2211 arg, INT_MAX / HZ);
2212 return -1;
2213 }
2214 sbi->s_commit_interval = HZ * arg;
2215 } else if (token == Opt_debug_want_extra_isize) {
2216 if ((arg & 1) ||
2217 (arg < 4) ||
2218 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2219 ext4_msg(sb, KERN_ERR,
2220 "Invalid want_extra_isize %d", arg);
2221 return -1;
2222 }
2223 sbi->s_want_extra_isize = arg;
2224 } else if (token == Opt_max_batch_time) {
2225 sbi->s_max_batch_time = arg;
2226 } else if (token == Opt_min_batch_time) {
2227 sbi->s_min_batch_time = arg;
2228 } else if (token == Opt_inode_readahead_blks) {
2229 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2230 ext4_msg(sb, KERN_ERR,
2231 "EXT4-fs: inode_readahead_blks must be "
2232 "0 or a power of 2 smaller than 2^31");
2233 return -1;
2234 }
2235 sbi->s_inode_readahead_blks = arg;
2236 } else if (token == Opt_init_itable) {
2237 set_opt(sb, INIT_INODE_TABLE);
2238 if (!args->from)
2239 arg = EXT4_DEF_LI_WAIT_MULT;
2240 sbi->s_li_wait_mult = arg;
2241 } else if (token == Opt_max_dir_size_kb) {
2242 sbi->s_max_dir_size_kb = arg;
2243 #ifdef CONFIG_EXT4_DEBUG
2244 } else if (token == Opt_fc_debug_max_replay) {
2245 sbi->s_fc_debug_max_replay = arg;
2246 #endif
2247 } else if (token == Opt_stripe) {
2248 sbi->s_stripe = arg;
2249 } else if (token == Opt_resuid) {
2250 uid = make_kuid(current_user_ns(), arg);
2251 if (!uid_valid(uid)) {
2252 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2253 return -1;
2254 }
2255 sbi->s_resuid = uid;
2256 } else if (token == Opt_resgid) {
2257 gid = make_kgid(current_user_ns(), arg);
2258 if (!gid_valid(gid)) {
2259 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2260 return -1;
2261 }
2262 sbi->s_resgid = gid;
2263 } else if (token == Opt_journal_dev) {
2264 if (is_remount) {
2265 ext4_msg(sb, KERN_ERR,
2266 "Cannot specify journal on remount");
2267 return -1;
2268 }
2269 *journal_devnum = arg;
2270 } else if (token == Opt_journal_path) {
2271 char *journal_path;
2272 struct inode *journal_inode;
2273 struct path path;
2274 int error;
2275
2276 if (is_remount) {
2277 ext4_msg(sb, KERN_ERR,
2278 "Cannot specify journal on remount");
2279 return -1;
2280 }
2281 journal_path = match_strdup(&args[0]);
2282 if (!journal_path) {
2283 ext4_msg(sb, KERN_ERR, "error: could not dup "
2284 "journal device string");
2285 return -1;
2286 }
2287
2288 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2289 if (error) {
2290 ext4_msg(sb, KERN_ERR, "error: could not find "
2291 "journal device path: error %d", error);
2292 kfree(journal_path);
2293 return -1;
2294 }
2295
2296 journal_inode = d_inode(path.dentry);
2297 if (!S_ISBLK(journal_inode->i_mode)) {
2298 ext4_msg(sb, KERN_ERR, "error: journal path %s "
2299 "is not a block device", journal_path);
2300 path_put(&path);
2301 kfree(journal_path);
2302 return -1;
2303 }
2304
2305 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
2306 path_put(&path);
2307 kfree(journal_path);
2308 } else if (token == Opt_journal_ioprio) {
2309 if (arg > 7) {
2310 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2311 " (must be 0-7)");
2312 return -1;
2313 }
2314 *journal_ioprio =
2315 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2316 } else if (token == Opt_test_dummy_encryption) {
2317 return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2318 is_remount);
2319 } else if (m->flags & MOPT_DATAJ) {
2320 if (is_remount) {
2321 if (!sbi->s_journal)
2322 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2323 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2324 ext4_msg(sb, KERN_ERR,
2325 "Cannot change data mode on remount");
2326 return -1;
2327 }
2328 } else {
2329 clear_opt(sb, DATA_FLAGS);
2330 sbi->s_mount_opt |= m->mount_opt;
2331 }
2332 #ifdef CONFIG_QUOTA
2333 } else if (m->flags & MOPT_QFMT) {
2334 if (sb_any_quota_loaded(sb) &&
2335 sbi->s_jquota_fmt != m->mount_opt) {
2336 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2337 "quota options when quota turned on");
2338 return -1;
2339 }
2340 if (ext4_has_feature_quota(sb)) {
2341 ext4_msg(sb, KERN_INFO,
2342 "Quota format mount options ignored "
2343 "when QUOTA feature is enabled");
2344 return 1;
2345 }
2346 sbi->s_jquota_fmt = m->mount_opt;
2347 #endif
2348 } else if (token == Opt_dax || token == Opt_dax_always ||
2349 token == Opt_dax_inode || token == Opt_dax_never) {
2350 #ifdef CONFIG_FS_DAX
2351 switch (token) {
2352 case Opt_dax:
2353 case Opt_dax_always:
2354 if (is_remount &&
2355 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2356 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2357 fail_dax_change_remount:
2358 ext4_msg(sb, KERN_ERR, "can't change "
2359 "dax mount option while remounting");
2360 return -1;
2361 }
2362 if (is_remount &&
2363 (test_opt(sb, DATA_FLAGS) ==
2364 EXT4_MOUNT_JOURNAL_DATA)) {
2365 ext4_msg(sb, KERN_ERR, "can't mount with "
2366 "both data=journal and dax");
2367 return -1;
2368 }
2369 ext4_msg(sb, KERN_WARNING,
2370 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2371 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2372 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2373 break;
2374 case Opt_dax_never:
2375 if (is_remount &&
2376 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2377 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2378 goto fail_dax_change_remount;
2379 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2380 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2381 break;
2382 case Opt_dax_inode:
2383 if (is_remount &&
2384 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2385 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2386 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2387 goto fail_dax_change_remount;
2388 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2389 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2390 /* Strictly for printing options */
2391 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2392 break;
2393 }
2394 #else
2395 ext4_msg(sb, KERN_INFO, "dax option not supported");
2396 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2397 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2398 return -1;
2399 #endif
2400 } else if (token == Opt_data_err_abort) {
2401 sbi->s_mount_opt |= m->mount_opt;
2402 } else if (token == Opt_data_err_ignore) {
2403 sbi->s_mount_opt &= ~m->mount_opt;
2404 } else {
2405 if (!args->from)
2406 arg = 1;
2407 if (m->flags & MOPT_CLEAR)
2408 arg = !arg;
2409 else if (unlikely(!(m->flags & MOPT_SET))) {
2410 ext4_msg(sb, KERN_WARNING,
2411 "buggy handling of option %s", opt);
2412 WARN_ON(1);
2413 return -1;
2414 }
2415 if (m->flags & MOPT_2) {
2416 if (arg != 0)
2417 sbi->s_mount_opt2 |= m->mount_opt;
2418 else
2419 sbi->s_mount_opt2 &= ~m->mount_opt;
2420 } else {
2421 if (arg != 0)
2422 sbi->s_mount_opt |= m->mount_opt;
2423 else
2424 sbi->s_mount_opt &= ~m->mount_opt;
2425 }
2426 }
2427 return 1;
2428 }
2429
parse_options(char * options,struct super_block * sb,unsigned long * journal_devnum,unsigned int * journal_ioprio,int is_remount)2430 static int parse_options(char *options, struct super_block *sb,
2431 unsigned long *journal_devnum,
2432 unsigned int *journal_ioprio,
2433 int is_remount)
2434 {
2435 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2436 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2437 substring_t args[MAX_OPT_ARGS];
2438 int token;
2439
2440 if (!options)
2441 return 1;
2442
2443 while ((p = strsep(&options, ",")) != NULL) {
2444 if (!*p)
2445 continue;
2446 /*
2447 * Initialize args struct so we know whether arg was
2448 * found; some options take optional arguments.
2449 */
2450 args[0].to = args[0].from = NULL;
2451 token = match_token(p, tokens, args);
2452 if (handle_mount_opt(sb, p, token, args, journal_devnum,
2453 journal_ioprio, is_remount) < 0)
2454 return 0;
2455 }
2456 #ifdef CONFIG_QUOTA
2457 /*
2458 * We do the test below only for project quotas. 'usrquota' and
2459 * 'grpquota' mount options are allowed even without quota feature
2460 * to support legacy quotas in quota files.
2461 */
2462 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2463 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2464 "Cannot enable project quota enforcement.");
2465 return 0;
2466 }
2467 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2468 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2469 if (usr_qf_name || grp_qf_name) {
2470 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2471 clear_opt(sb, USRQUOTA);
2472
2473 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2474 clear_opt(sb, GRPQUOTA);
2475
2476 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2477 ext4_msg(sb, KERN_ERR, "old and new quota "
2478 "format mixing");
2479 return 0;
2480 }
2481
2482 if (!sbi->s_jquota_fmt) {
2483 ext4_msg(sb, KERN_ERR, "journaled quota format "
2484 "not specified");
2485 return 0;
2486 }
2487 }
2488 #endif
2489 if (test_opt(sb, DIOREAD_NOLOCK)) {
2490 int blocksize =
2491 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2492 if (blocksize < PAGE_SIZE)
2493 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2494 "experimental mount option 'dioread_nolock' "
2495 "for blocksize < PAGE_SIZE");
2496 }
2497 return 1;
2498 }
2499
ext4_show_quota_options(struct seq_file * seq,struct super_block * sb)2500 static inline void ext4_show_quota_options(struct seq_file *seq,
2501 struct super_block *sb)
2502 {
2503 #if defined(CONFIG_QUOTA)
2504 struct ext4_sb_info *sbi = EXT4_SB(sb);
2505 char *usr_qf_name, *grp_qf_name;
2506
2507 if (sbi->s_jquota_fmt) {
2508 char *fmtname = "";
2509
2510 switch (sbi->s_jquota_fmt) {
2511 case QFMT_VFS_OLD:
2512 fmtname = "vfsold";
2513 break;
2514 case QFMT_VFS_V0:
2515 fmtname = "vfsv0";
2516 break;
2517 case QFMT_VFS_V1:
2518 fmtname = "vfsv1";
2519 break;
2520 }
2521 seq_printf(seq, ",jqfmt=%s", fmtname);
2522 }
2523
2524 rcu_read_lock();
2525 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2526 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2527 if (usr_qf_name)
2528 seq_show_option(seq, "usrjquota", usr_qf_name);
2529 if (grp_qf_name)
2530 seq_show_option(seq, "grpjquota", grp_qf_name);
2531 rcu_read_unlock();
2532 #endif
2533 }
2534
token2str(int token)2535 static const char *token2str(int token)
2536 {
2537 const struct match_token *t;
2538
2539 for (t = tokens; t->token != Opt_err; t++)
2540 if (t->token == token && !strchr(t->pattern, '='))
2541 break;
2542 return t->pattern;
2543 }
2544
2545 /*
2546 * Show an option if
2547 * - it's set to a non-default value OR
2548 * - if the per-sb default is different from the global default
2549 */
_ext4_show_options(struct seq_file * seq,struct super_block * sb,int nodefs)2550 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2551 int nodefs)
2552 {
2553 struct ext4_sb_info *sbi = EXT4_SB(sb);
2554 struct ext4_super_block *es = sbi->s_es;
2555 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2556 const struct mount_opts *m;
2557 char sep = nodefs ? '\n' : ',';
2558
2559 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2560 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2561
2562 if (sbi->s_sb_block != 1)
2563 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2564
2565 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2566 int want_set = m->flags & MOPT_SET;
2567 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2568 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2569 continue;
2570 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2571 continue; /* skip if same as the default */
2572 if ((want_set &&
2573 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2574 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2575 continue; /* select Opt_noFoo vs Opt_Foo */
2576 SEQ_OPTS_PRINT("%s", token2str(m->token));
2577 }
2578
2579 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2580 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2581 SEQ_OPTS_PRINT("resuid=%u",
2582 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2583 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2584 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2585 SEQ_OPTS_PRINT("resgid=%u",
2586 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2587 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2588 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2589 SEQ_OPTS_PUTS("errors=remount-ro");
2590 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2591 SEQ_OPTS_PUTS("errors=continue");
2592 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2593 SEQ_OPTS_PUTS("errors=panic");
2594 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2595 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2596 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2597 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2598 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2599 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2600 if (sb->s_flags & SB_I_VERSION)
2601 SEQ_OPTS_PUTS("i_version");
2602 if (nodefs || sbi->s_stripe)
2603 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2604 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2605 (sbi->s_mount_opt ^ def_mount_opt)) {
2606 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2607 SEQ_OPTS_PUTS("data=journal");
2608 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2609 SEQ_OPTS_PUTS("data=ordered");
2610 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2611 SEQ_OPTS_PUTS("data=writeback");
2612 }
2613 if (nodefs ||
2614 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2615 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2616 sbi->s_inode_readahead_blks);
2617
2618 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2619 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2620 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2621 if (nodefs || sbi->s_max_dir_size_kb)
2622 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2623 if (test_opt(sb, DATA_ERR_ABORT))
2624 SEQ_OPTS_PUTS("data_err=abort");
2625
2626 fscrypt_show_test_dummy_encryption(seq, sep, sb);
2627
2628 if (sb->s_flags & SB_INLINECRYPT)
2629 SEQ_OPTS_PUTS("inlinecrypt");
2630
2631 if (test_opt(sb, DAX_ALWAYS)) {
2632 if (IS_EXT2_SB(sb))
2633 SEQ_OPTS_PUTS("dax");
2634 else
2635 SEQ_OPTS_PUTS("dax=always");
2636 } else if (test_opt2(sb, DAX_NEVER)) {
2637 SEQ_OPTS_PUTS("dax=never");
2638 } else if (test_opt2(sb, DAX_INODE)) {
2639 SEQ_OPTS_PUTS("dax=inode");
2640 }
2641 ext4_show_quota_options(seq, sb);
2642 return 0;
2643 }
2644
ext4_show_options(struct seq_file * seq,struct dentry * root)2645 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2646 {
2647 return _ext4_show_options(seq, root->d_sb, 0);
2648 }
2649
ext4_seq_options_show(struct seq_file * seq,void * offset)2650 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2651 {
2652 struct super_block *sb = seq->private;
2653 int rc;
2654
2655 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2656 rc = _ext4_show_options(seq, sb, 1);
2657 seq_puts(seq, "\n");
2658 return rc;
2659 }
2660
ext4_setup_super(struct super_block * sb,struct ext4_super_block * es,int read_only)2661 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2662 int read_only)
2663 {
2664 struct ext4_sb_info *sbi = EXT4_SB(sb);
2665 int err = 0;
2666
2667 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2668 ext4_msg(sb, KERN_ERR, "revision level too high, "
2669 "forcing read-only mode");
2670 err = -EROFS;
2671 goto done;
2672 }
2673 if (read_only)
2674 goto done;
2675 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2676 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2677 "running e2fsck is recommended");
2678 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2679 ext4_msg(sb, KERN_WARNING,
2680 "warning: mounting fs with errors, "
2681 "running e2fsck is recommended");
2682 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2683 le16_to_cpu(es->s_mnt_count) >=
2684 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2685 ext4_msg(sb, KERN_WARNING,
2686 "warning: maximal mount count reached, "
2687 "running e2fsck is recommended");
2688 else if (le32_to_cpu(es->s_checkinterval) &&
2689 (ext4_get_tstamp(es, s_lastcheck) +
2690 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2691 ext4_msg(sb, KERN_WARNING,
2692 "warning: checktime reached, "
2693 "running e2fsck is recommended");
2694 if (!sbi->s_journal)
2695 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2696 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2697 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2698 le16_add_cpu(&es->s_mnt_count, 1);
2699 ext4_update_tstamp(es, s_mtime);
2700 if (sbi->s_journal)
2701 ext4_set_feature_journal_needs_recovery(sb);
2702
2703 err = ext4_commit_super(sb, 1);
2704 done:
2705 if (test_opt(sb, DEBUG))
2706 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2707 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2708 sb->s_blocksize,
2709 sbi->s_groups_count,
2710 EXT4_BLOCKS_PER_GROUP(sb),
2711 EXT4_INODES_PER_GROUP(sb),
2712 sbi->s_mount_opt, sbi->s_mount_opt2);
2713
2714 cleancache_init_fs(sb);
2715 return err;
2716 }
2717
ext4_alloc_flex_bg_array(struct super_block * sb,ext4_group_t ngroup)2718 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2719 {
2720 struct ext4_sb_info *sbi = EXT4_SB(sb);
2721 struct flex_groups **old_groups, **new_groups;
2722 int size, i, j;
2723
2724 if (!sbi->s_log_groups_per_flex)
2725 return 0;
2726
2727 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2728 if (size <= sbi->s_flex_groups_allocated)
2729 return 0;
2730
2731 new_groups = kvzalloc(roundup_pow_of_two(size *
2732 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2733 if (!new_groups) {
2734 ext4_msg(sb, KERN_ERR,
2735 "not enough memory for %d flex group pointers", size);
2736 return -ENOMEM;
2737 }
2738 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2739 new_groups[i] = kvzalloc(roundup_pow_of_two(
2740 sizeof(struct flex_groups)),
2741 GFP_KERNEL);
2742 if (!new_groups[i]) {
2743 for (j = sbi->s_flex_groups_allocated; j < i; j++)
2744 kvfree(new_groups[j]);
2745 kvfree(new_groups);
2746 ext4_msg(sb, KERN_ERR,
2747 "not enough memory for %d flex groups", size);
2748 return -ENOMEM;
2749 }
2750 }
2751 rcu_read_lock();
2752 old_groups = rcu_dereference(sbi->s_flex_groups);
2753 if (old_groups)
2754 memcpy(new_groups, old_groups,
2755 (sbi->s_flex_groups_allocated *
2756 sizeof(struct flex_groups *)));
2757 rcu_read_unlock();
2758 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2759 sbi->s_flex_groups_allocated = size;
2760 if (old_groups)
2761 ext4_kvfree_array_rcu(old_groups);
2762 return 0;
2763 }
2764
ext4_fill_flex_info(struct super_block * sb)2765 static int ext4_fill_flex_info(struct super_block *sb)
2766 {
2767 struct ext4_sb_info *sbi = EXT4_SB(sb);
2768 struct ext4_group_desc *gdp = NULL;
2769 struct flex_groups *fg;
2770 ext4_group_t flex_group;
2771 int i, err;
2772
2773 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2774 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2775 sbi->s_log_groups_per_flex = 0;
2776 return 1;
2777 }
2778
2779 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2780 if (err)
2781 goto failed;
2782
2783 for (i = 0; i < sbi->s_groups_count; i++) {
2784 gdp = ext4_get_group_desc(sb, i, NULL);
2785
2786 flex_group = ext4_flex_group(sbi, i);
2787 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2788 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2789 atomic64_add(ext4_free_group_clusters(sb, gdp),
2790 &fg->free_clusters);
2791 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2792 }
2793
2794 return 1;
2795 failed:
2796 return 0;
2797 }
2798
ext4_group_desc_csum(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2799 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2800 struct ext4_group_desc *gdp)
2801 {
2802 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2803 __u16 crc = 0;
2804 __le32 le_group = cpu_to_le32(block_group);
2805 struct ext4_sb_info *sbi = EXT4_SB(sb);
2806
2807 if (ext4_has_metadata_csum(sbi->s_sb)) {
2808 /* Use new metadata_csum algorithm */
2809 __u32 csum32;
2810 __u16 dummy_csum = 0;
2811
2812 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2813 sizeof(le_group));
2814 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2815 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2816 sizeof(dummy_csum));
2817 offset += sizeof(dummy_csum);
2818 if (offset < sbi->s_desc_size)
2819 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2820 sbi->s_desc_size - offset);
2821
2822 crc = csum32 & 0xFFFF;
2823 goto out;
2824 }
2825
2826 /* old crc16 code */
2827 if (!ext4_has_feature_gdt_csum(sb))
2828 return 0;
2829
2830 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2831 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2832 crc = crc16(crc, (__u8 *)gdp, offset);
2833 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2834 /* for checksum of struct ext4_group_desc do the rest...*/
2835 if (ext4_has_feature_64bit(sb) &&
2836 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2837 crc = crc16(crc, (__u8 *)gdp + offset,
2838 le16_to_cpu(sbi->s_es->s_desc_size) -
2839 offset);
2840
2841 out:
2842 return cpu_to_le16(crc);
2843 }
2844
ext4_group_desc_csum_verify(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2845 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2846 struct ext4_group_desc *gdp)
2847 {
2848 if (ext4_has_group_desc_csum(sb) &&
2849 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2850 return 0;
2851
2852 return 1;
2853 }
2854
ext4_group_desc_csum_set(struct super_block * sb,__u32 block_group,struct ext4_group_desc * gdp)2855 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2856 struct ext4_group_desc *gdp)
2857 {
2858 if (!ext4_has_group_desc_csum(sb))
2859 return;
2860 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2861 }
2862
2863 /* Called at mount-time, super-block is locked */
ext4_check_descriptors(struct super_block * sb,ext4_fsblk_t sb_block,ext4_group_t * first_not_zeroed)2864 static int ext4_check_descriptors(struct super_block *sb,
2865 ext4_fsblk_t sb_block,
2866 ext4_group_t *first_not_zeroed)
2867 {
2868 struct ext4_sb_info *sbi = EXT4_SB(sb);
2869 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2870 ext4_fsblk_t last_block;
2871 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2872 ext4_fsblk_t block_bitmap;
2873 ext4_fsblk_t inode_bitmap;
2874 ext4_fsblk_t inode_table;
2875 int flexbg_flag = 0;
2876 ext4_group_t i, grp = sbi->s_groups_count;
2877
2878 if (ext4_has_feature_flex_bg(sb))
2879 flexbg_flag = 1;
2880
2881 ext4_debug("Checking group descriptors");
2882
2883 for (i = 0; i < sbi->s_groups_count; i++) {
2884 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2885
2886 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2887 last_block = ext4_blocks_count(sbi->s_es) - 1;
2888 else
2889 last_block = first_block +
2890 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2891
2892 if ((grp == sbi->s_groups_count) &&
2893 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2894 grp = i;
2895
2896 block_bitmap = ext4_block_bitmap(sb, gdp);
2897 if (block_bitmap == sb_block) {
2898 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2899 "Block bitmap for group %u overlaps "
2900 "superblock", i);
2901 if (!sb_rdonly(sb))
2902 return 0;
2903 }
2904 if (block_bitmap >= sb_block + 1 &&
2905 block_bitmap <= last_bg_block) {
2906 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2907 "Block bitmap for group %u overlaps "
2908 "block group descriptors", i);
2909 if (!sb_rdonly(sb))
2910 return 0;
2911 }
2912 if (block_bitmap < first_block || block_bitmap > last_block) {
2913 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2914 "Block bitmap for group %u not in group "
2915 "(block %llu)!", i, block_bitmap);
2916 return 0;
2917 }
2918 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2919 if (inode_bitmap == sb_block) {
2920 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2921 "Inode bitmap for group %u overlaps "
2922 "superblock", i);
2923 if (!sb_rdonly(sb))
2924 return 0;
2925 }
2926 if (inode_bitmap >= sb_block + 1 &&
2927 inode_bitmap <= last_bg_block) {
2928 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2929 "Inode bitmap for group %u overlaps "
2930 "block group descriptors", i);
2931 if (!sb_rdonly(sb))
2932 return 0;
2933 }
2934 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2935 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2936 "Inode bitmap for group %u not in group "
2937 "(block %llu)!", i, inode_bitmap);
2938 return 0;
2939 }
2940 inode_table = ext4_inode_table(sb, gdp);
2941 if (inode_table == sb_block) {
2942 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2943 "Inode table for group %u overlaps "
2944 "superblock", i);
2945 if (!sb_rdonly(sb))
2946 return 0;
2947 }
2948 if (inode_table >= sb_block + 1 &&
2949 inode_table <= last_bg_block) {
2950 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2951 "Inode table for group %u overlaps "
2952 "block group descriptors", i);
2953 if (!sb_rdonly(sb))
2954 return 0;
2955 }
2956 if (inode_table < first_block ||
2957 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2958 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2959 "Inode table for group %u not in group "
2960 "(block %llu)!", i, inode_table);
2961 return 0;
2962 }
2963 ext4_lock_group(sb, i);
2964 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2965 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2966 "Checksum for group %u failed (%u!=%u)",
2967 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2968 gdp)), le16_to_cpu(gdp->bg_checksum));
2969 if (!sb_rdonly(sb)) {
2970 ext4_unlock_group(sb, i);
2971 return 0;
2972 }
2973 }
2974 ext4_unlock_group(sb, i);
2975 if (!flexbg_flag)
2976 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2977 }
2978 if (NULL != first_not_zeroed)
2979 *first_not_zeroed = grp;
2980 return 1;
2981 }
2982
2983 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2984 * the superblock) which were deleted from all directories, but held open by
2985 * a process at the time of a crash. We walk the list and try to delete these
2986 * inodes at recovery time (only with a read-write filesystem).
2987 *
2988 * In order to keep the orphan inode chain consistent during traversal (in
2989 * case of crash during recovery), we link each inode into the superblock
2990 * orphan list_head and handle it the same way as an inode deletion during
2991 * normal operation (which journals the operations for us).
2992 *
2993 * We only do an iget() and an iput() on each inode, which is very safe if we
2994 * accidentally point at an in-use or already deleted inode. The worst that
2995 * can happen in this case is that we get a "bit already cleared" message from
2996 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2997 * e2fsck was run on this filesystem, and it must have already done the orphan
2998 * inode cleanup for us, so we can safely abort without any further action.
2999 */
ext4_orphan_cleanup(struct super_block * sb,struct ext4_super_block * es)3000 static void ext4_orphan_cleanup(struct super_block *sb,
3001 struct ext4_super_block *es)
3002 {
3003 unsigned int s_flags = sb->s_flags;
3004 int ret, nr_orphans = 0, nr_truncates = 0;
3005 #ifdef CONFIG_QUOTA
3006 int quota_update = 0;
3007 int i;
3008 #endif
3009 if (!es->s_last_orphan) {
3010 jbd_debug(4, "no orphan inodes to clean up\n");
3011 return;
3012 }
3013
3014 if (bdev_read_only(sb->s_bdev)) {
3015 ext4_msg(sb, KERN_ERR, "write access "
3016 "unavailable, skipping orphan cleanup");
3017 return;
3018 }
3019
3020 /* Check if feature set would not allow a r/w mount */
3021 if (!ext4_feature_set_ok(sb, 0)) {
3022 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
3023 "unknown ROCOMPAT features");
3024 return;
3025 }
3026
3027 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3028 /* don't clear list on RO mount w/ errors */
3029 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
3030 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
3031 "clearing orphan list.\n");
3032 es->s_last_orphan = 0;
3033 }
3034 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3035 return;
3036 }
3037
3038 if (s_flags & SB_RDONLY) {
3039 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
3040 sb->s_flags &= ~SB_RDONLY;
3041 }
3042 #ifdef CONFIG_QUOTA
3043 /* Needed for iput() to work correctly and not trash data */
3044 sb->s_flags |= SB_ACTIVE;
3045
3046 /*
3047 * Turn on quotas which were not enabled for read-only mounts if
3048 * filesystem has quota feature, so that they are updated correctly.
3049 */
3050 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
3051 int ret = ext4_enable_quotas(sb);
3052
3053 if (!ret)
3054 quota_update = 1;
3055 else
3056 ext4_msg(sb, KERN_ERR,
3057 "Cannot turn on quotas: error %d", ret);
3058 }
3059
3060 /* Turn on journaled quotas used for old sytle */
3061 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3062 if (EXT4_SB(sb)->s_qf_names[i]) {
3063 int ret = ext4_quota_on_mount(sb, i);
3064
3065 if (!ret)
3066 quota_update = 1;
3067 else
3068 ext4_msg(sb, KERN_ERR,
3069 "Cannot turn on journaled "
3070 "quota: type %d: error %d", i, ret);
3071 }
3072 }
3073 #endif
3074
3075 while (es->s_last_orphan) {
3076 struct inode *inode;
3077
3078 /*
3079 * We may have encountered an error during cleanup; if
3080 * so, skip the rest.
3081 */
3082 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3083 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3084 es->s_last_orphan = 0;
3085 break;
3086 }
3087
3088 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
3089 if (IS_ERR(inode)) {
3090 es->s_last_orphan = 0;
3091 break;
3092 }
3093
3094 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
3095 dquot_initialize(inode);
3096 if (inode->i_nlink) {
3097 if (test_opt(sb, DEBUG))
3098 ext4_msg(sb, KERN_DEBUG,
3099 "%s: truncating inode %lu to %lld bytes",
3100 __func__, inode->i_ino, inode->i_size);
3101 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
3102 inode->i_ino, inode->i_size);
3103 inode_lock(inode);
3104 truncate_inode_pages(inode->i_mapping, inode->i_size);
3105 ret = ext4_truncate(inode);
3106 if (ret)
3107 ext4_std_error(inode->i_sb, ret);
3108 inode_unlock(inode);
3109 nr_truncates++;
3110 } else {
3111 if (test_opt(sb, DEBUG))
3112 ext4_msg(sb, KERN_DEBUG,
3113 "%s: deleting unreferenced inode %lu",
3114 __func__, inode->i_ino);
3115 jbd_debug(2, "deleting unreferenced inode %lu\n",
3116 inode->i_ino);
3117 nr_orphans++;
3118 }
3119 iput(inode); /* The delete magic happens here! */
3120 }
3121
3122 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
3123
3124 if (nr_orphans)
3125 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
3126 PLURAL(nr_orphans));
3127 if (nr_truncates)
3128 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
3129 PLURAL(nr_truncates));
3130 #ifdef CONFIG_QUOTA
3131 /* Turn off quotas if they were enabled for orphan cleanup */
3132 if (quota_update) {
3133 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3134 if (sb_dqopt(sb)->files[i])
3135 dquot_quota_off(sb, i);
3136 }
3137 }
3138 #endif
3139 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
3140 }
3141
3142 /*
3143 * Maximal extent format file size.
3144 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3145 * extent format containers, within a sector_t, and within i_blocks
3146 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3147 * so that won't be a limiting factor.
3148 *
3149 * However there is other limiting factor. We do store extents in the form
3150 * of starting block and length, hence the resulting length of the extent
3151 * covering maximum file size must fit into on-disk format containers as
3152 * well. Given that length is always by 1 unit bigger than max unit (because
3153 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3154 *
3155 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3156 */
ext4_max_size(int blkbits,int has_huge_files)3157 static loff_t ext4_max_size(int blkbits, int has_huge_files)
3158 {
3159 loff_t res;
3160 loff_t upper_limit = MAX_LFS_FILESIZE;
3161
3162 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3163
3164 if (!has_huge_files) {
3165 upper_limit = (1LL << 32) - 1;
3166
3167 /* total blocks in file system block size */
3168 upper_limit >>= (blkbits - 9);
3169 upper_limit <<= blkbits;
3170 }
3171
3172 /*
3173 * 32-bit extent-start container, ee_block. We lower the maxbytes
3174 * by one fs block, so ee_len can cover the extent of maximum file
3175 * size
3176 */
3177 res = (1LL << 32) - 1;
3178 res <<= blkbits;
3179
3180 /* Sanity check against vm- & vfs- imposed limits */
3181 if (res > upper_limit)
3182 res = upper_limit;
3183
3184 return res;
3185 }
3186
3187 /*
3188 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3189 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3190 * We need to be 1 filesystem block less than the 2^48 sector limit.
3191 */
ext4_max_bitmap_size(int bits,int has_huge_files)3192 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3193 {
3194 loff_t res = EXT4_NDIR_BLOCKS;
3195 int meta_blocks;
3196 loff_t upper_limit;
3197 /* This is calculated to be the largest file size for a dense, block
3198 * mapped file such that the file's total number of 512-byte sectors,
3199 * including data and all indirect blocks, does not exceed (2^48 - 1).
3200 *
3201 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3202 * number of 512-byte sectors of the file.
3203 */
3204
3205 if (!has_huge_files) {
3206 /*
3207 * !has_huge_files or implies that the inode i_block field
3208 * represents total file blocks in 2^32 512-byte sectors ==
3209 * size of vfs inode i_blocks * 8
3210 */
3211 upper_limit = (1LL << 32) - 1;
3212
3213 /* total blocks in file system block size */
3214 upper_limit >>= (bits - 9);
3215
3216 } else {
3217 /*
3218 * We use 48 bit ext4_inode i_blocks
3219 * With EXT4_HUGE_FILE_FL set the i_blocks
3220 * represent total number of blocks in
3221 * file system block size
3222 */
3223 upper_limit = (1LL << 48) - 1;
3224
3225 }
3226
3227 /* indirect blocks */
3228 meta_blocks = 1;
3229 /* double indirect blocks */
3230 meta_blocks += 1 + (1LL << (bits-2));
3231 /* tripple indirect blocks */
3232 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3233
3234 upper_limit -= meta_blocks;
3235 upper_limit <<= bits;
3236
3237 res += 1LL << (bits-2);
3238 res += 1LL << (2*(bits-2));
3239 res += 1LL << (3*(bits-2));
3240 res <<= bits;
3241 if (res > upper_limit)
3242 res = upper_limit;
3243
3244 if (res > MAX_LFS_FILESIZE)
3245 res = MAX_LFS_FILESIZE;
3246
3247 return res;
3248 }
3249
descriptor_loc(struct super_block * sb,ext4_fsblk_t logical_sb_block,int nr)3250 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3251 ext4_fsblk_t logical_sb_block, int nr)
3252 {
3253 struct ext4_sb_info *sbi = EXT4_SB(sb);
3254 ext4_group_t bg, first_meta_bg;
3255 int has_super = 0;
3256
3257 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3258
3259 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3260 return logical_sb_block + nr + 1;
3261 bg = sbi->s_desc_per_block * nr;
3262 if (ext4_bg_has_super(sb, bg))
3263 has_super = 1;
3264
3265 /*
3266 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3267 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3268 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3269 * compensate.
3270 */
3271 if (sb->s_blocksize == 1024 && nr == 0 &&
3272 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3273 has_super++;
3274
3275 return (has_super + ext4_group_first_block_no(sb, bg));
3276 }
3277
3278 /**
3279 * ext4_get_stripe_size: Get the stripe size.
3280 * @sbi: In memory super block info
3281 *
3282 * If we have specified it via mount option, then
3283 * use the mount option value. If the value specified at mount time is
3284 * greater than the blocks per group use the super block value.
3285 * If the super block value is greater than blocks per group return 0.
3286 * Allocator needs it be less than blocks per group.
3287 *
3288 */
ext4_get_stripe_size(struct ext4_sb_info * sbi)3289 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3290 {
3291 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3292 unsigned long stripe_width =
3293 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3294 int ret;
3295
3296 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3297 ret = sbi->s_stripe;
3298 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3299 ret = stripe_width;
3300 else if (stride && stride <= sbi->s_blocks_per_group)
3301 ret = stride;
3302 else
3303 ret = 0;
3304
3305 /*
3306 * If the stripe width is 1, this makes no sense and
3307 * we set it to 0 to turn off stripe handling code.
3308 */
3309 if (ret <= 1)
3310 ret = 0;
3311
3312 return ret;
3313 }
3314
3315 /*
3316 * Check whether this filesystem can be mounted based on
3317 * the features present and the RDONLY/RDWR mount requested.
3318 * Returns 1 if this filesystem can be mounted as requested,
3319 * 0 if it cannot be.
3320 */
ext4_feature_set_ok(struct super_block * sb,int readonly)3321 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3322 {
3323 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3324 ext4_msg(sb, KERN_ERR,
3325 "Couldn't mount because of "
3326 "unsupported optional features (%x)",
3327 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3328 ~EXT4_FEATURE_INCOMPAT_SUPP));
3329 return 0;
3330 }
3331
3332 #ifndef CONFIG_UNICODE
3333 if (ext4_has_feature_casefold(sb)) {
3334 ext4_msg(sb, KERN_ERR,
3335 "Filesystem with casefold feature cannot be "
3336 "mounted without CONFIG_UNICODE");
3337 return 0;
3338 }
3339 #endif
3340
3341 if (readonly)
3342 return 1;
3343
3344 if (ext4_has_feature_readonly(sb)) {
3345 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3346 sb->s_flags |= SB_RDONLY;
3347 return 1;
3348 }
3349
3350 /* Check that feature set is OK for a read-write mount */
3351 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3352 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3353 "unsupported optional features (%x)",
3354 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3355 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3356 return 0;
3357 }
3358 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3359 ext4_msg(sb, KERN_ERR,
3360 "Can't support bigalloc feature without "
3361 "extents feature\n");
3362 return 0;
3363 }
3364
3365 #if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3366 if (!readonly && (ext4_has_feature_quota(sb) ||
3367 ext4_has_feature_project(sb))) {
3368 ext4_msg(sb, KERN_ERR,
3369 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3370 return 0;
3371 }
3372 #endif /* CONFIG_QUOTA */
3373 return 1;
3374 }
3375
3376 /*
3377 * This function is called once a day if we have errors logged
3378 * on the file system
3379 */
print_daily_error_info(struct timer_list * t)3380 static void print_daily_error_info(struct timer_list *t)
3381 {
3382 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3383 struct super_block *sb = sbi->s_sb;
3384 struct ext4_super_block *es = sbi->s_es;
3385
3386 if (es->s_error_count)
3387 /* fsck newer than v1.41.13 is needed to clean this condition. */
3388 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3389 le32_to_cpu(es->s_error_count));
3390 if (es->s_first_error_time) {
3391 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3392 sb->s_id,
3393 ext4_get_tstamp(es, s_first_error_time),
3394 (int) sizeof(es->s_first_error_func),
3395 es->s_first_error_func,
3396 le32_to_cpu(es->s_first_error_line));
3397 if (es->s_first_error_ino)
3398 printk(KERN_CONT ": inode %u",
3399 le32_to_cpu(es->s_first_error_ino));
3400 if (es->s_first_error_block)
3401 printk(KERN_CONT ": block %llu", (unsigned long long)
3402 le64_to_cpu(es->s_first_error_block));
3403 printk(KERN_CONT "\n");
3404 }
3405 if (es->s_last_error_time) {
3406 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3407 sb->s_id,
3408 ext4_get_tstamp(es, s_last_error_time),
3409 (int) sizeof(es->s_last_error_func),
3410 es->s_last_error_func,
3411 le32_to_cpu(es->s_last_error_line));
3412 if (es->s_last_error_ino)
3413 printk(KERN_CONT ": inode %u",
3414 le32_to_cpu(es->s_last_error_ino));
3415 if (es->s_last_error_block)
3416 printk(KERN_CONT ": block %llu", (unsigned long long)
3417 le64_to_cpu(es->s_last_error_block));
3418 printk(KERN_CONT "\n");
3419 }
3420 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3421 }
3422
3423 /* Find next suitable group and run ext4_init_inode_table */
ext4_run_li_request(struct ext4_li_request * elr)3424 static int ext4_run_li_request(struct ext4_li_request *elr)
3425 {
3426 struct ext4_group_desc *gdp = NULL;
3427 struct super_block *sb = elr->lr_super;
3428 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3429 ext4_group_t group = elr->lr_next_group;
3430 unsigned long timeout = 0;
3431 unsigned int prefetch_ios = 0;
3432 int ret = 0;
3433
3434 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3435 elr->lr_next_group = ext4_mb_prefetch(sb, group,
3436 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3437 if (prefetch_ios)
3438 ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3439 prefetch_ios);
3440 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3441 prefetch_ios);
3442 if (group >= elr->lr_next_group) {
3443 ret = 1;
3444 if (elr->lr_first_not_zeroed != ngroups &&
3445 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3446 elr->lr_next_group = elr->lr_first_not_zeroed;
3447 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3448 ret = 0;
3449 }
3450 }
3451 return ret;
3452 }
3453
3454 for (; group < ngroups; group++) {
3455 gdp = ext4_get_group_desc(sb, group, NULL);
3456 if (!gdp) {
3457 ret = 1;
3458 break;
3459 }
3460
3461 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3462 break;
3463 }
3464
3465 if (group >= ngroups)
3466 ret = 1;
3467
3468 if (!ret) {
3469 timeout = jiffies;
3470 ret = ext4_init_inode_table(sb, group,
3471 elr->lr_timeout ? 0 : 1);
3472 trace_ext4_lazy_itable_init(sb, group);
3473 if (elr->lr_timeout == 0) {
3474 timeout = (jiffies - timeout) *
3475 EXT4_SB(elr->lr_super)->s_li_wait_mult;
3476 elr->lr_timeout = timeout;
3477 }
3478 elr->lr_next_sched = jiffies + elr->lr_timeout;
3479 elr->lr_next_group = group + 1;
3480 }
3481 return ret;
3482 }
3483
3484 /*
3485 * Remove lr_request from the list_request and free the
3486 * request structure. Should be called with li_list_mtx held
3487 */
ext4_remove_li_request(struct ext4_li_request * elr)3488 static void ext4_remove_li_request(struct ext4_li_request *elr)
3489 {
3490 if (!elr)
3491 return;
3492
3493 list_del(&elr->lr_request);
3494 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3495 kfree(elr);
3496 }
3497
ext4_unregister_li_request(struct super_block * sb)3498 static void ext4_unregister_li_request(struct super_block *sb)
3499 {
3500 mutex_lock(&ext4_li_mtx);
3501 if (!ext4_li_info) {
3502 mutex_unlock(&ext4_li_mtx);
3503 return;
3504 }
3505
3506 mutex_lock(&ext4_li_info->li_list_mtx);
3507 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3508 mutex_unlock(&ext4_li_info->li_list_mtx);
3509 mutex_unlock(&ext4_li_mtx);
3510 }
3511
3512 static struct task_struct *ext4_lazyinit_task;
3513
3514 /*
3515 * This is the function where ext4lazyinit thread lives. It walks
3516 * through the request list searching for next scheduled filesystem.
3517 * When such a fs is found, run the lazy initialization request
3518 * (ext4_rn_li_request) and keep track of the time spend in this
3519 * function. Based on that time we compute next schedule time of
3520 * the request. When walking through the list is complete, compute
3521 * next waking time and put itself into sleep.
3522 */
ext4_lazyinit_thread(void * arg)3523 static int ext4_lazyinit_thread(void *arg)
3524 {
3525 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3526 struct list_head *pos, *n;
3527 struct ext4_li_request *elr;
3528 unsigned long next_wakeup, cur;
3529
3530 BUG_ON(NULL == eli);
3531
3532 cont_thread:
3533 while (true) {
3534 next_wakeup = MAX_JIFFY_OFFSET;
3535
3536 mutex_lock(&eli->li_list_mtx);
3537 if (list_empty(&eli->li_request_list)) {
3538 mutex_unlock(&eli->li_list_mtx);
3539 goto exit_thread;
3540 }
3541 list_for_each_safe(pos, n, &eli->li_request_list) {
3542 int err = 0;
3543 int progress = 0;
3544 elr = list_entry(pos, struct ext4_li_request,
3545 lr_request);
3546
3547 if (time_before(jiffies, elr->lr_next_sched)) {
3548 if (time_before(elr->lr_next_sched, next_wakeup))
3549 next_wakeup = elr->lr_next_sched;
3550 continue;
3551 }
3552 if (down_read_trylock(&elr->lr_super->s_umount)) {
3553 if (sb_start_write_trylock(elr->lr_super)) {
3554 progress = 1;
3555 /*
3556 * We hold sb->s_umount, sb can not
3557 * be removed from the list, it is
3558 * now safe to drop li_list_mtx
3559 */
3560 mutex_unlock(&eli->li_list_mtx);
3561 err = ext4_run_li_request(elr);
3562 sb_end_write(elr->lr_super);
3563 mutex_lock(&eli->li_list_mtx);
3564 n = pos->next;
3565 }
3566 up_read((&elr->lr_super->s_umount));
3567 }
3568 /* error, remove the lazy_init job */
3569 if (err) {
3570 ext4_remove_li_request(elr);
3571 continue;
3572 }
3573 if (!progress) {
3574 elr->lr_next_sched = jiffies +
3575 (prandom_u32()
3576 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3577 }
3578 if (time_before(elr->lr_next_sched, next_wakeup))
3579 next_wakeup = elr->lr_next_sched;
3580 }
3581 mutex_unlock(&eli->li_list_mtx);
3582
3583 try_to_freeze();
3584
3585 cur = jiffies;
3586 if ((time_after_eq(cur, next_wakeup)) ||
3587 (MAX_JIFFY_OFFSET == next_wakeup)) {
3588 cond_resched();
3589 continue;
3590 }
3591
3592 schedule_timeout_interruptible(next_wakeup - cur);
3593
3594 if (kthread_should_stop()) {
3595 ext4_clear_request_list();
3596 goto exit_thread;
3597 }
3598 }
3599
3600 exit_thread:
3601 /*
3602 * It looks like the request list is empty, but we need
3603 * to check it under the li_list_mtx lock, to prevent any
3604 * additions into it, and of course we should lock ext4_li_mtx
3605 * to atomically free the list and ext4_li_info, because at
3606 * this point another ext4 filesystem could be registering
3607 * new one.
3608 */
3609 mutex_lock(&ext4_li_mtx);
3610 mutex_lock(&eli->li_list_mtx);
3611 if (!list_empty(&eli->li_request_list)) {
3612 mutex_unlock(&eli->li_list_mtx);
3613 mutex_unlock(&ext4_li_mtx);
3614 goto cont_thread;
3615 }
3616 mutex_unlock(&eli->li_list_mtx);
3617 kfree(ext4_li_info);
3618 ext4_li_info = NULL;
3619 mutex_unlock(&ext4_li_mtx);
3620
3621 return 0;
3622 }
3623
ext4_clear_request_list(void)3624 static void ext4_clear_request_list(void)
3625 {
3626 struct list_head *pos, *n;
3627 struct ext4_li_request *elr;
3628
3629 mutex_lock(&ext4_li_info->li_list_mtx);
3630 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3631 elr = list_entry(pos, struct ext4_li_request,
3632 lr_request);
3633 ext4_remove_li_request(elr);
3634 }
3635 mutex_unlock(&ext4_li_info->li_list_mtx);
3636 }
3637
ext4_run_lazyinit_thread(void)3638 static int ext4_run_lazyinit_thread(void)
3639 {
3640 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3641 ext4_li_info, "ext4lazyinit");
3642 if (IS_ERR(ext4_lazyinit_task)) {
3643 int err = PTR_ERR(ext4_lazyinit_task);
3644 ext4_clear_request_list();
3645 kfree(ext4_li_info);
3646 ext4_li_info = NULL;
3647 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3648 "initialization thread\n",
3649 err);
3650 return err;
3651 }
3652 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3653 return 0;
3654 }
3655
3656 /*
3657 * Check whether it make sense to run itable init. thread or not.
3658 * If there is at least one uninitialized inode table, return
3659 * corresponding group number, else the loop goes through all
3660 * groups and return total number of groups.
3661 */
ext4_has_uninit_itable(struct super_block * sb)3662 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3663 {
3664 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3665 struct ext4_group_desc *gdp = NULL;
3666
3667 if (!ext4_has_group_desc_csum(sb))
3668 return ngroups;
3669
3670 for (group = 0; group < ngroups; group++) {
3671 gdp = ext4_get_group_desc(sb, group, NULL);
3672 if (!gdp)
3673 continue;
3674
3675 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3676 break;
3677 }
3678
3679 return group;
3680 }
3681
ext4_li_info_new(void)3682 static int ext4_li_info_new(void)
3683 {
3684 struct ext4_lazy_init *eli = NULL;
3685
3686 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3687 if (!eli)
3688 return -ENOMEM;
3689
3690 INIT_LIST_HEAD(&eli->li_request_list);
3691 mutex_init(&eli->li_list_mtx);
3692
3693 eli->li_state |= EXT4_LAZYINIT_QUIT;
3694
3695 ext4_li_info = eli;
3696
3697 return 0;
3698 }
3699
ext4_li_request_new(struct super_block * sb,ext4_group_t start)3700 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3701 ext4_group_t start)
3702 {
3703 struct ext4_li_request *elr;
3704
3705 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3706 if (!elr)
3707 return NULL;
3708
3709 elr->lr_super = sb;
3710 elr->lr_first_not_zeroed = start;
3711 if (test_opt(sb, PREFETCH_BLOCK_BITMAPS))
3712 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3713 else {
3714 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3715 elr->lr_next_group = start;
3716 }
3717
3718 /*
3719 * Randomize first schedule time of the request to
3720 * spread the inode table initialization requests
3721 * better.
3722 */
3723 elr->lr_next_sched = jiffies + (prandom_u32() %
3724 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3725 return elr;
3726 }
3727
ext4_register_li_request(struct super_block * sb,ext4_group_t first_not_zeroed)3728 int ext4_register_li_request(struct super_block *sb,
3729 ext4_group_t first_not_zeroed)
3730 {
3731 struct ext4_sb_info *sbi = EXT4_SB(sb);
3732 struct ext4_li_request *elr = NULL;
3733 ext4_group_t ngroups = sbi->s_groups_count;
3734 int ret = 0;
3735
3736 mutex_lock(&ext4_li_mtx);
3737 if (sbi->s_li_request != NULL) {
3738 /*
3739 * Reset timeout so it can be computed again, because
3740 * s_li_wait_mult might have changed.
3741 */
3742 sbi->s_li_request->lr_timeout = 0;
3743 goto out;
3744 }
3745
3746 if (!test_opt(sb, PREFETCH_BLOCK_BITMAPS) &&
3747 (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3748 !test_opt(sb, INIT_INODE_TABLE)))
3749 goto out;
3750
3751 elr = ext4_li_request_new(sb, first_not_zeroed);
3752 if (!elr) {
3753 ret = -ENOMEM;
3754 goto out;
3755 }
3756
3757 if (NULL == ext4_li_info) {
3758 ret = ext4_li_info_new();
3759 if (ret)
3760 goto out;
3761 }
3762
3763 mutex_lock(&ext4_li_info->li_list_mtx);
3764 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3765 mutex_unlock(&ext4_li_info->li_list_mtx);
3766
3767 sbi->s_li_request = elr;
3768 /*
3769 * set elr to NULL here since it has been inserted to
3770 * the request_list and the removal and free of it is
3771 * handled by ext4_clear_request_list from now on.
3772 */
3773 elr = NULL;
3774
3775 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3776 ret = ext4_run_lazyinit_thread();
3777 if (ret)
3778 goto out;
3779 }
3780 out:
3781 mutex_unlock(&ext4_li_mtx);
3782 if (ret)
3783 kfree(elr);
3784 return ret;
3785 }
3786
3787 /*
3788 * We do not need to lock anything since this is called on
3789 * module unload.
3790 */
ext4_destroy_lazyinit_thread(void)3791 static void ext4_destroy_lazyinit_thread(void)
3792 {
3793 /*
3794 * If thread exited earlier
3795 * there's nothing to be done.
3796 */
3797 if (!ext4_li_info || !ext4_lazyinit_task)
3798 return;
3799
3800 kthread_stop(ext4_lazyinit_task);
3801 }
3802
set_journal_csum_feature_set(struct super_block * sb)3803 static int set_journal_csum_feature_set(struct super_block *sb)
3804 {
3805 int ret = 1;
3806 int compat, incompat;
3807 struct ext4_sb_info *sbi = EXT4_SB(sb);
3808
3809 if (ext4_has_metadata_csum(sb)) {
3810 /* journal checksum v3 */
3811 compat = 0;
3812 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3813 } else {
3814 /* journal checksum v1 */
3815 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3816 incompat = 0;
3817 }
3818
3819 jbd2_journal_clear_features(sbi->s_journal,
3820 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3821 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3822 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3823 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3824 ret = jbd2_journal_set_features(sbi->s_journal,
3825 compat, 0,
3826 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3827 incompat);
3828 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3829 ret = jbd2_journal_set_features(sbi->s_journal,
3830 compat, 0,
3831 incompat);
3832 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3833 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3834 } else {
3835 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3836 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3837 }
3838
3839 return ret;
3840 }
3841
3842 /*
3843 * Note: calculating the overhead so we can be compatible with
3844 * historical BSD practice is quite difficult in the face of
3845 * clusters/bigalloc. This is because multiple metadata blocks from
3846 * different block group can end up in the same allocation cluster.
3847 * Calculating the exact overhead in the face of clustered allocation
3848 * requires either O(all block bitmaps) in memory or O(number of block
3849 * groups**2) in time. We will still calculate the superblock for
3850 * older file systems --- and if we come across with a bigalloc file
3851 * system with zero in s_overhead_clusters the estimate will be close to
3852 * correct especially for very large cluster sizes --- but for newer
3853 * file systems, it's better to calculate this figure once at mkfs
3854 * time, and store it in the superblock. If the superblock value is
3855 * present (even for non-bigalloc file systems), we will use it.
3856 */
count_overhead(struct super_block * sb,ext4_group_t grp,char * buf)3857 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3858 char *buf)
3859 {
3860 struct ext4_sb_info *sbi = EXT4_SB(sb);
3861 struct ext4_group_desc *gdp;
3862 ext4_fsblk_t first_block, last_block, b;
3863 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3864 int s, j, count = 0;
3865
3866 if (!ext4_has_feature_bigalloc(sb))
3867 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3868 sbi->s_itb_per_group + 2);
3869
3870 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3871 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3872 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3873 for (i = 0; i < ngroups; i++) {
3874 gdp = ext4_get_group_desc(sb, i, NULL);
3875 b = ext4_block_bitmap(sb, gdp);
3876 if (b >= first_block && b <= last_block) {
3877 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3878 count++;
3879 }
3880 b = ext4_inode_bitmap(sb, gdp);
3881 if (b >= first_block && b <= last_block) {
3882 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3883 count++;
3884 }
3885 b = ext4_inode_table(sb, gdp);
3886 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3887 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3888 int c = EXT4_B2C(sbi, b - first_block);
3889 ext4_set_bit(c, buf);
3890 count++;
3891 }
3892 if (i != grp)
3893 continue;
3894 s = 0;
3895 if (ext4_bg_has_super(sb, grp)) {
3896 ext4_set_bit(s++, buf);
3897 count++;
3898 }
3899 j = ext4_bg_num_gdb(sb, grp);
3900 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3901 ext4_error(sb, "Invalid number of block group "
3902 "descriptor blocks: %d", j);
3903 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3904 }
3905 count += j;
3906 for (; j > 0; j--)
3907 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3908 }
3909 if (!count)
3910 return 0;
3911 return EXT4_CLUSTERS_PER_GROUP(sb) -
3912 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3913 }
3914
3915 /*
3916 * Compute the overhead and stash it in sbi->s_overhead
3917 */
ext4_calculate_overhead(struct super_block * sb)3918 int ext4_calculate_overhead(struct super_block *sb)
3919 {
3920 struct ext4_sb_info *sbi = EXT4_SB(sb);
3921 struct ext4_super_block *es = sbi->s_es;
3922 struct inode *j_inode;
3923 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3924 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3925 ext4_fsblk_t overhead = 0;
3926 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3927
3928 if (!buf)
3929 return -ENOMEM;
3930
3931 /*
3932 * Compute the overhead (FS structures). This is constant
3933 * for a given filesystem unless the number of block groups
3934 * changes so we cache the previous value until it does.
3935 */
3936
3937 /*
3938 * All of the blocks before first_data_block are overhead
3939 */
3940 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3941
3942 /*
3943 * Add the overhead found in each block group
3944 */
3945 for (i = 0; i < ngroups; i++) {
3946 int blks;
3947
3948 blks = count_overhead(sb, i, buf);
3949 overhead += blks;
3950 if (blks)
3951 memset(buf, 0, PAGE_SIZE);
3952 cond_resched();
3953 }
3954
3955 /*
3956 * Add the internal journal blocks whether the journal has been
3957 * loaded or not
3958 */
3959 if (sbi->s_journal && !sbi->s_journal_bdev)
3960 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3961 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3962 /* j_inum for internal journal is non-zero */
3963 j_inode = ext4_get_journal_inode(sb, j_inum);
3964 if (j_inode) {
3965 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3966 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3967 iput(j_inode);
3968 } else {
3969 ext4_msg(sb, KERN_ERR, "can't get journal size");
3970 }
3971 }
3972 sbi->s_overhead = overhead;
3973 smp_wmb();
3974 free_page((unsigned long) buf);
3975 return 0;
3976 }
3977
ext4_set_resv_clusters(struct super_block * sb)3978 static void ext4_set_resv_clusters(struct super_block *sb)
3979 {
3980 ext4_fsblk_t resv_clusters;
3981 struct ext4_sb_info *sbi = EXT4_SB(sb);
3982
3983 /*
3984 * There's no need to reserve anything when we aren't using extents.
3985 * The space estimates are exact, there are no unwritten extents,
3986 * hole punching doesn't need new metadata... This is needed especially
3987 * to keep ext2/3 backward compatibility.
3988 */
3989 if (!ext4_has_feature_extents(sb))
3990 return;
3991 /*
3992 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3993 * This should cover the situations where we can not afford to run
3994 * out of space like for example punch hole, or converting
3995 * unwritten extents in delalloc path. In most cases such
3996 * allocation would require 1, or 2 blocks, higher numbers are
3997 * very rare.
3998 */
3999 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4000 sbi->s_cluster_bits);
4001
4002 do_div(resv_clusters, 50);
4003 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4004
4005 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4006 }
4007
ext4_fill_super(struct super_block * sb,void * data,int silent)4008 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
4009 {
4010 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
4011 char *orig_data = kstrdup(data, GFP_KERNEL);
4012 struct buffer_head *bh, **group_desc;
4013 struct ext4_super_block *es = NULL;
4014 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4015 struct flex_groups **flex_groups;
4016 ext4_fsblk_t block;
4017 ext4_fsblk_t sb_block = get_sb_block(&data);
4018 ext4_fsblk_t logical_sb_block;
4019 unsigned long offset = 0;
4020 unsigned long journal_devnum = 0;
4021 unsigned long def_mount_opts;
4022 struct inode *root;
4023 const char *descr;
4024 int ret = -ENOMEM;
4025 int blocksize, clustersize;
4026 unsigned int db_count;
4027 unsigned int i;
4028 int needs_recovery, has_huge_files;
4029 __u64 blocks_count;
4030 int err = 0;
4031 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4032 ext4_group_t first_not_zeroed;
4033
4034 if ((data && !orig_data) || !sbi)
4035 goto out_free_base;
4036
4037 sbi->s_daxdev = dax_dev;
4038 sbi->s_blockgroup_lock =
4039 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4040 if (!sbi->s_blockgroup_lock)
4041 goto out_free_base;
4042
4043 sb->s_fs_info = sbi;
4044 sbi->s_sb = sb;
4045 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
4046 sbi->s_sb_block = sb_block;
4047 if (sb->s_bdev->bd_part)
4048 sbi->s_sectors_written_start =
4049 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
4050
4051 /* Cleanup superblock name */
4052 strreplace(sb->s_id, '/', '!');
4053
4054 /* -EINVAL is default */
4055 ret = -EINVAL;
4056 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4057 if (!blocksize) {
4058 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4059 goto out_fail;
4060 }
4061
4062 /*
4063 * The ext4 superblock will not be buffer aligned for other than 1kB
4064 * block sizes. We need to calculate the offset from buffer start.
4065 */
4066 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4067 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4068 offset = do_div(logical_sb_block, blocksize);
4069 } else {
4070 logical_sb_block = sb_block;
4071 }
4072
4073 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4074 if (IS_ERR(bh)) {
4075 ext4_msg(sb, KERN_ERR, "unable to read superblock");
4076 ret = PTR_ERR(bh);
4077 bh = NULL;
4078 goto out_fail;
4079 }
4080 /*
4081 * Note: s_es must be initialized as soon as possible because
4082 * some ext4 macro-instructions depend on its value
4083 */
4084 es = (struct ext4_super_block *) (bh->b_data + offset);
4085 sbi->s_es = es;
4086 sb->s_magic = le16_to_cpu(es->s_magic);
4087 if (sb->s_magic != EXT4_SUPER_MAGIC)
4088 goto cantfind_ext4;
4089 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
4090
4091 /* Warn if metadata_csum and gdt_csum are both set. */
4092 if (ext4_has_feature_metadata_csum(sb) &&
4093 ext4_has_feature_gdt_csum(sb))
4094 ext4_warning(sb, "metadata_csum and uninit_bg are "
4095 "redundant flags; please run fsck.");
4096
4097 /* Check for a known checksum algorithm */
4098 if (!ext4_verify_csum_type(sb, es)) {
4099 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4100 "unknown checksum algorithm.");
4101 silent = 1;
4102 goto cantfind_ext4;
4103 }
4104
4105 /* Load the checksum driver */
4106 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4107 if (IS_ERR(sbi->s_chksum_driver)) {
4108 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4109 ret = PTR_ERR(sbi->s_chksum_driver);
4110 sbi->s_chksum_driver = NULL;
4111 goto failed_mount;
4112 }
4113
4114 /* Check superblock checksum */
4115 if (!ext4_superblock_csum_verify(sb, es)) {
4116 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4117 "invalid superblock checksum. Run e2fsck?");
4118 silent = 1;
4119 ret = -EFSBADCRC;
4120 goto cantfind_ext4;
4121 }
4122
4123 /* Precompute checksum seed for all metadata */
4124 if (ext4_has_feature_csum_seed(sb))
4125 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4126 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4127 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4128 sizeof(es->s_uuid));
4129
4130 /* Set defaults before we parse the mount options */
4131 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4132 set_opt(sb, INIT_INODE_TABLE);
4133 if (def_mount_opts & EXT4_DEFM_DEBUG)
4134 set_opt(sb, DEBUG);
4135 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4136 set_opt(sb, GRPID);
4137 if (def_mount_opts & EXT4_DEFM_UID16)
4138 set_opt(sb, NO_UID32);
4139 /* xattr user namespace & acls are now defaulted on */
4140 set_opt(sb, XATTR_USER);
4141 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4142 set_opt(sb, POSIX_ACL);
4143 #endif
4144 if (ext4_has_feature_fast_commit(sb))
4145 set_opt2(sb, JOURNAL_FAST_COMMIT);
4146 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4147 if (ext4_has_metadata_csum(sb))
4148 set_opt(sb, JOURNAL_CHECKSUM);
4149
4150 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4151 set_opt(sb, JOURNAL_DATA);
4152 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4153 set_opt(sb, ORDERED_DATA);
4154 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4155 set_opt(sb, WRITEBACK_DATA);
4156
4157 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4158 set_opt(sb, ERRORS_PANIC);
4159 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4160 set_opt(sb, ERRORS_CONT);
4161 else
4162 set_opt(sb, ERRORS_RO);
4163 /* block_validity enabled by default; disable with noblock_validity */
4164 set_opt(sb, BLOCK_VALIDITY);
4165 if (def_mount_opts & EXT4_DEFM_DISCARD)
4166 set_opt(sb, DISCARD);
4167
4168 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4169 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4170 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4171 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4172 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4173
4174 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4175 set_opt(sb, BARRIER);
4176
4177 /*
4178 * enable delayed allocation by default
4179 * Use -o nodelalloc to turn it off
4180 */
4181 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4182 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4183 set_opt(sb, DELALLOC);
4184
4185 /*
4186 * set default s_li_wait_mult for lazyinit, for the case there is
4187 * no mount option specified.
4188 */
4189 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4190
4191 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4192
4193 if (blocksize == PAGE_SIZE)
4194 set_opt(sb, DIOREAD_NOLOCK);
4195
4196 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
4197 blocksize > EXT4_MAX_BLOCK_SIZE) {
4198 ext4_msg(sb, KERN_ERR,
4199 "Unsupported filesystem blocksize %d (%d log_block_size)",
4200 blocksize, le32_to_cpu(es->s_log_block_size));
4201 goto failed_mount;
4202 }
4203
4204 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4205 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4206 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4207 } else {
4208 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4209 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4210 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4211 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4212 sbi->s_first_ino);
4213 goto failed_mount;
4214 }
4215 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4216 (!is_power_of_2(sbi->s_inode_size)) ||
4217 (sbi->s_inode_size > blocksize)) {
4218 ext4_msg(sb, KERN_ERR,
4219 "unsupported inode size: %d",
4220 sbi->s_inode_size);
4221 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4222 goto failed_mount;
4223 }
4224 /*
4225 * i_atime_extra is the last extra field available for
4226 * [acm]times in struct ext4_inode. Checking for that
4227 * field should suffice to ensure we have extra space
4228 * for all three.
4229 */
4230 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4231 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4232 sb->s_time_gran = 1;
4233 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4234 } else {
4235 sb->s_time_gran = NSEC_PER_SEC;
4236 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4237 }
4238 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4239 }
4240 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4241 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4242 EXT4_GOOD_OLD_INODE_SIZE;
4243 if (ext4_has_feature_extra_isize(sb)) {
4244 unsigned v, max = (sbi->s_inode_size -
4245 EXT4_GOOD_OLD_INODE_SIZE);
4246
4247 v = le16_to_cpu(es->s_want_extra_isize);
4248 if (v > max) {
4249 ext4_msg(sb, KERN_ERR,
4250 "bad s_want_extra_isize: %d", v);
4251 goto failed_mount;
4252 }
4253 if (sbi->s_want_extra_isize < v)
4254 sbi->s_want_extra_isize = v;
4255
4256 v = le16_to_cpu(es->s_min_extra_isize);
4257 if (v > max) {
4258 ext4_msg(sb, KERN_ERR,
4259 "bad s_min_extra_isize: %d", v);
4260 goto failed_mount;
4261 }
4262 if (sbi->s_want_extra_isize < v)
4263 sbi->s_want_extra_isize = v;
4264 }
4265 }
4266
4267 if (sbi->s_es->s_mount_opts[0]) {
4268 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4269 sizeof(sbi->s_es->s_mount_opts),
4270 GFP_KERNEL);
4271 if (!s_mount_opts)
4272 goto failed_mount;
4273 if (!parse_options(s_mount_opts, sb, &journal_devnum,
4274 &journal_ioprio, 0)) {
4275 ext4_msg(sb, KERN_WARNING,
4276 "failed to parse options in superblock: %s",
4277 s_mount_opts);
4278 }
4279 kfree(s_mount_opts);
4280 }
4281 sbi->s_def_mount_opt = sbi->s_mount_opt;
4282 if (!parse_options((char *) data, sb, &journal_devnum,
4283 &journal_ioprio, 0))
4284 goto failed_mount;
4285
4286 #ifdef CONFIG_UNICODE
4287 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4288 const struct ext4_sb_encodings *encoding_info;
4289 struct unicode_map *encoding;
4290 __u16 encoding_flags;
4291
4292 if (ext4_has_feature_encrypt(sb)) {
4293 ext4_msg(sb, KERN_ERR,
4294 "Can't mount with encoding and encryption");
4295 goto failed_mount;
4296 }
4297
4298 if (ext4_sb_read_encoding(es, &encoding_info,
4299 &encoding_flags)) {
4300 ext4_msg(sb, KERN_ERR,
4301 "Encoding requested by superblock is unknown");
4302 goto failed_mount;
4303 }
4304
4305 encoding = utf8_load(encoding_info->version);
4306 if (IS_ERR(encoding)) {
4307 ext4_msg(sb, KERN_ERR,
4308 "can't mount with superblock charset: %s-%s "
4309 "not supported by the kernel. flags: 0x%x.",
4310 encoding_info->name, encoding_info->version,
4311 encoding_flags);
4312 goto failed_mount;
4313 }
4314 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4315 "%s-%s with flags 0x%hx", encoding_info->name,
4316 encoding_info->version?:"\b", encoding_flags);
4317
4318 sb->s_encoding = encoding;
4319 sb->s_encoding_flags = encoding_flags;
4320 }
4321 #endif
4322
4323 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4324 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4325 /* can't mount with both data=journal and dioread_nolock. */
4326 clear_opt(sb, DIOREAD_NOLOCK);
4327 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4328 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4329 ext4_msg(sb, KERN_ERR, "can't mount with "
4330 "both data=journal and delalloc");
4331 goto failed_mount;
4332 }
4333 if (test_opt(sb, DAX_ALWAYS)) {
4334 ext4_msg(sb, KERN_ERR, "can't mount with "
4335 "both data=journal and dax");
4336 goto failed_mount;
4337 }
4338 if (ext4_has_feature_encrypt(sb)) {
4339 ext4_msg(sb, KERN_WARNING,
4340 "encrypted files will use data=ordered "
4341 "instead of data journaling mode");
4342 }
4343 if (test_opt(sb, DELALLOC))
4344 clear_opt(sb, DELALLOC);
4345 } else {
4346 sb->s_iflags |= SB_I_CGROUPWB;
4347 }
4348
4349 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4350 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4351
4352 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4353 (ext4_has_compat_features(sb) ||
4354 ext4_has_ro_compat_features(sb) ||
4355 ext4_has_incompat_features(sb)))
4356 ext4_msg(sb, KERN_WARNING,
4357 "feature flags set on rev 0 fs, "
4358 "running e2fsck is recommended");
4359
4360 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4361 set_opt2(sb, HURD_COMPAT);
4362 if (ext4_has_feature_64bit(sb)) {
4363 ext4_msg(sb, KERN_ERR,
4364 "The Hurd can't support 64-bit file systems");
4365 goto failed_mount;
4366 }
4367
4368 /*
4369 * ea_inode feature uses l_i_version field which is not
4370 * available in HURD_COMPAT mode.
4371 */
4372 if (ext4_has_feature_ea_inode(sb)) {
4373 ext4_msg(sb, KERN_ERR,
4374 "ea_inode feature is not supported for Hurd");
4375 goto failed_mount;
4376 }
4377 }
4378
4379 if (IS_EXT2_SB(sb)) {
4380 if (ext2_feature_set_ok(sb))
4381 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4382 "using the ext4 subsystem");
4383 else {
4384 /*
4385 * If we're probing be silent, if this looks like
4386 * it's actually an ext[34] filesystem.
4387 */
4388 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4389 goto failed_mount;
4390 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4391 "to feature incompatibilities");
4392 goto failed_mount;
4393 }
4394 }
4395
4396 if (IS_EXT3_SB(sb)) {
4397 if (ext3_feature_set_ok(sb))
4398 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4399 "using the ext4 subsystem");
4400 else {
4401 /*
4402 * If we're probing be silent, if this looks like
4403 * it's actually an ext4 filesystem.
4404 */
4405 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4406 goto failed_mount;
4407 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4408 "to feature incompatibilities");
4409 goto failed_mount;
4410 }
4411 }
4412
4413 /*
4414 * Check feature flags regardless of the revision level, since we
4415 * previously didn't change the revision level when setting the flags,
4416 * so there is a chance incompat flags are set on a rev 0 filesystem.
4417 */
4418 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4419 goto failed_mount;
4420
4421 if (le32_to_cpu(es->s_log_block_size) >
4422 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4423 ext4_msg(sb, KERN_ERR,
4424 "Invalid log block size: %u",
4425 le32_to_cpu(es->s_log_block_size));
4426 goto failed_mount;
4427 }
4428 if (le32_to_cpu(es->s_log_cluster_size) >
4429 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4430 ext4_msg(sb, KERN_ERR,
4431 "Invalid log cluster size: %u",
4432 le32_to_cpu(es->s_log_cluster_size));
4433 goto failed_mount;
4434 }
4435
4436 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4437 ext4_msg(sb, KERN_ERR,
4438 "Number of reserved GDT blocks insanely large: %d",
4439 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4440 goto failed_mount;
4441 }
4442
4443 if (bdev_dax_supported(sb->s_bdev, blocksize))
4444 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4445
4446 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4447 if (ext4_has_feature_inline_data(sb)) {
4448 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4449 " that may contain inline data");
4450 goto failed_mount;
4451 }
4452 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4453 ext4_msg(sb, KERN_ERR,
4454 "DAX unsupported by block device.");
4455 goto failed_mount;
4456 }
4457 }
4458
4459 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4460 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4461 es->s_encryption_level);
4462 goto failed_mount;
4463 }
4464
4465 if (sb->s_blocksize != blocksize) {
4466 /* Validate the filesystem blocksize */
4467 if (!sb_set_blocksize(sb, blocksize)) {
4468 ext4_msg(sb, KERN_ERR, "bad block size %d",
4469 blocksize);
4470 goto failed_mount;
4471 }
4472
4473 brelse(bh);
4474 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4475 offset = do_div(logical_sb_block, blocksize);
4476 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4477 if (IS_ERR(bh)) {
4478 ext4_msg(sb, KERN_ERR,
4479 "Can't read superblock on 2nd try");
4480 ret = PTR_ERR(bh);
4481 bh = NULL;
4482 goto failed_mount;
4483 }
4484 es = (struct ext4_super_block *)(bh->b_data + offset);
4485 sbi->s_es = es;
4486 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4487 ext4_msg(sb, KERN_ERR,
4488 "Magic mismatch, very weird!");
4489 goto failed_mount;
4490 }
4491 }
4492
4493 has_huge_files = ext4_has_feature_huge_file(sb);
4494 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4495 has_huge_files);
4496 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4497
4498 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4499 if (ext4_has_feature_64bit(sb)) {
4500 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4501 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4502 !is_power_of_2(sbi->s_desc_size)) {
4503 ext4_msg(sb, KERN_ERR,
4504 "unsupported descriptor size %lu",
4505 sbi->s_desc_size);
4506 goto failed_mount;
4507 }
4508 } else
4509 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4510
4511 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4512 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4513
4514 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4515 if (sbi->s_inodes_per_block == 0)
4516 goto cantfind_ext4;
4517 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4518 sbi->s_inodes_per_group > blocksize * 8) {
4519 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4520 sbi->s_inodes_per_group);
4521 goto failed_mount;
4522 }
4523 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4524 sbi->s_inodes_per_block;
4525 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4526 sbi->s_sbh = bh;
4527 sbi->s_mount_state = le16_to_cpu(es->s_state);
4528 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4529 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4530
4531 for (i = 0; i < 4; i++)
4532 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4533 sbi->s_def_hash_version = es->s_def_hash_version;
4534 if (ext4_has_feature_dir_index(sb)) {
4535 i = le32_to_cpu(es->s_flags);
4536 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4537 sbi->s_hash_unsigned = 3;
4538 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4539 #ifdef __CHAR_UNSIGNED__
4540 if (!sb_rdonly(sb))
4541 es->s_flags |=
4542 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4543 sbi->s_hash_unsigned = 3;
4544 #else
4545 if (!sb_rdonly(sb))
4546 es->s_flags |=
4547 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4548 #endif
4549 }
4550 }
4551
4552 /* Handle clustersize */
4553 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4554 if (ext4_has_feature_bigalloc(sb)) {
4555 if (clustersize < blocksize) {
4556 ext4_msg(sb, KERN_ERR,
4557 "cluster size (%d) smaller than "
4558 "block size (%d)", clustersize, blocksize);
4559 goto failed_mount;
4560 }
4561 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4562 le32_to_cpu(es->s_log_block_size);
4563 sbi->s_clusters_per_group =
4564 le32_to_cpu(es->s_clusters_per_group);
4565 if (sbi->s_clusters_per_group > blocksize * 8) {
4566 ext4_msg(sb, KERN_ERR,
4567 "#clusters per group too big: %lu",
4568 sbi->s_clusters_per_group);
4569 goto failed_mount;
4570 }
4571 if (sbi->s_blocks_per_group !=
4572 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4573 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4574 "clusters per group (%lu) inconsistent",
4575 sbi->s_blocks_per_group,
4576 sbi->s_clusters_per_group);
4577 goto failed_mount;
4578 }
4579 } else {
4580 if (clustersize != blocksize) {
4581 ext4_msg(sb, KERN_ERR,
4582 "fragment/cluster size (%d) != "
4583 "block size (%d)", clustersize, blocksize);
4584 goto failed_mount;
4585 }
4586 if (sbi->s_blocks_per_group > blocksize * 8) {
4587 ext4_msg(sb, KERN_ERR,
4588 "#blocks per group too big: %lu",
4589 sbi->s_blocks_per_group);
4590 goto failed_mount;
4591 }
4592 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4593 sbi->s_cluster_bits = 0;
4594 }
4595 sbi->s_cluster_ratio = clustersize / blocksize;
4596
4597 /* Do we have standard group size of clustersize * 8 blocks ? */
4598 if (sbi->s_blocks_per_group == clustersize << 3)
4599 set_opt2(sb, STD_GROUP_SIZE);
4600
4601 /*
4602 * Test whether we have more sectors than will fit in sector_t,
4603 * and whether the max offset is addressable by the page cache.
4604 */
4605 err = generic_check_addressable(sb->s_blocksize_bits,
4606 ext4_blocks_count(es));
4607 if (err) {
4608 ext4_msg(sb, KERN_ERR, "filesystem"
4609 " too large to mount safely on this system");
4610 goto failed_mount;
4611 }
4612
4613 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4614 goto cantfind_ext4;
4615
4616 /* check blocks count against device size */
4617 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4618 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4619 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4620 "exceeds size of device (%llu blocks)",
4621 ext4_blocks_count(es), blocks_count);
4622 goto failed_mount;
4623 }
4624
4625 /*
4626 * It makes no sense for the first data block to be beyond the end
4627 * of the filesystem.
4628 */
4629 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4630 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4631 "block %u is beyond end of filesystem (%llu)",
4632 le32_to_cpu(es->s_first_data_block),
4633 ext4_blocks_count(es));
4634 goto failed_mount;
4635 }
4636 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4637 (sbi->s_cluster_ratio == 1)) {
4638 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4639 "block is 0 with a 1k block and cluster size");
4640 goto failed_mount;
4641 }
4642
4643 blocks_count = (ext4_blocks_count(es) -
4644 le32_to_cpu(es->s_first_data_block) +
4645 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4646 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4647 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4648 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4649 "(block count %llu, first data block %u, "
4650 "blocks per group %lu)", blocks_count,
4651 ext4_blocks_count(es),
4652 le32_to_cpu(es->s_first_data_block),
4653 EXT4_BLOCKS_PER_GROUP(sb));
4654 goto failed_mount;
4655 }
4656 sbi->s_groups_count = blocks_count;
4657 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4658 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4659 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4660 le32_to_cpu(es->s_inodes_count)) {
4661 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4662 le32_to_cpu(es->s_inodes_count),
4663 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4664 ret = -EINVAL;
4665 goto failed_mount;
4666 }
4667 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4668 EXT4_DESC_PER_BLOCK(sb);
4669 if (ext4_has_feature_meta_bg(sb)) {
4670 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4671 ext4_msg(sb, KERN_WARNING,
4672 "first meta block group too large: %u "
4673 "(group descriptor block count %u)",
4674 le32_to_cpu(es->s_first_meta_bg), db_count);
4675 goto failed_mount;
4676 }
4677 }
4678 rcu_assign_pointer(sbi->s_group_desc,
4679 kvmalloc_array(db_count,
4680 sizeof(struct buffer_head *),
4681 GFP_KERNEL));
4682 if (sbi->s_group_desc == NULL) {
4683 ext4_msg(sb, KERN_ERR, "not enough memory");
4684 ret = -ENOMEM;
4685 goto failed_mount;
4686 }
4687
4688 bgl_lock_init(sbi->s_blockgroup_lock);
4689
4690 /* Pre-read the descriptors into the buffer cache */
4691 for (i = 0; i < db_count; i++) {
4692 block = descriptor_loc(sb, logical_sb_block, i);
4693 ext4_sb_breadahead_unmovable(sb, block);
4694 }
4695
4696 for (i = 0; i < db_count; i++) {
4697 struct buffer_head *bh;
4698
4699 block = descriptor_loc(sb, logical_sb_block, i);
4700 bh = ext4_sb_bread_unmovable(sb, block);
4701 if (IS_ERR(bh)) {
4702 ext4_msg(sb, KERN_ERR,
4703 "can't read group descriptor %d", i);
4704 db_count = i;
4705 ret = PTR_ERR(bh);
4706 bh = NULL;
4707 goto failed_mount2;
4708 }
4709 rcu_read_lock();
4710 rcu_dereference(sbi->s_group_desc)[i] = bh;
4711 rcu_read_unlock();
4712 }
4713 sbi->s_gdb_count = db_count;
4714 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4715 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4716 ret = -EFSCORRUPTED;
4717 goto failed_mount2;
4718 }
4719
4720 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4721
4722 /* Register extent status tree shrinker */
4723 if (ext4_es_register_shrinker(sbi))
4724 goto failed_mount3;
4725
4726 sbi->s_stripe = ext4_get_stripe_size(sbi);
4727 sbi->s_extent_max_zeroout_kb = 32;
4728
4729 /*
4730 * set up enough so that it can read an inode
4731 */
4732 sb->s_op = &ext4_sops;
4733 sb->s_export_op = &ext4_export_ops;
4734 sb->s_xattr = ext4_xattr_handlers;
4735 #ifdef CONFIG_FS_ENCRYPTION
4736 sb->s_cop = &ext4_cryptops;
4737 #endif
4738 #ifdef CONFIG_FS_VERITY
4739 sb->s_vop = &ext4_verityops;
4740 #endif
4741 #ifdef CONFIG_QUOTA
4742 sb->dq_op = &ext4_quota_operations;
4743 if (ext4_has_feature_quota(sb))
4744 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4745 else
4746 sb->s_qcop = &ext4_qctl_operations;
4747 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4748 #endif
4749 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4750
4751 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4752 mutex_init(&sbi->s_orphan_lock);
4753
4754 /* Initialize fast commit stuff */
4755 atomic_set(&sbi->s_fc_subtid, 0);
4756 atomic_set(&sbi->s_fc_ineligible_updates, 0);
4757 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4758 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4759 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4760 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4761 sbi->s_fc_bytes = 0;
4762 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4763 ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
4764 spin_lock_init(&sbi->s_fc_lock);
4765 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4766 sbi->s_fc_replay_state.fc_regions = NULL;
4767 sbi->s_fc_replay_state.fc_regions_size = 0;
4768 sbi->s_fc_replay_state.fc_regions_used = 0;
4769 sbi->s_fc_replay_state.fc_regions_valid = 0;
4770 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4771 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4772 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4773
4774 sb->s_root = NULL;
4775
4776 needs_recovery = (es->s_last_orphan != 0 ||
4777 ext4_has_feature_journal_needs_recovery(sb));
4778
4779 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4780 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4781 goto failed_mount3a;
4782
4783 /*
4784 * The first inode we look at is the journal inode. Don't try
4785 * root first: it may be modified in the journal!
4786 */
4787 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4788 err = ext4_load_journal(sb, es, journal_devnum);
4789 if (err)
4790 goto failed_mount3a;
4791 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4792 ext4_has_feature_journal_needs_recovery(sb)) {
4793 ext4_msg(sb, KERN_ERR, "required journal recovery "
4794 "suppressed and not mounted read-only");
4795 goto failed_mount_wq;
4796 } else {
4797 /* Nojournal mode, all journal mount options are illegal */
4798 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4799 ext4_msg(sb, KERN_ERR, "can't mount with "
4800 "journal_checksum, fs mounted w/o journal");
4801 goto failed_mount_wq;
4802 }
4803 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4804 ext4_msg(sb, KERN_ERR, "can't mount with "
4805 "journal_async_commit, fs mounted w/o journal");
4806 goto failed_mount_wq;
4807 }
4808 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4809 ext4_msg(sb, KERN_ERR, "can't mount with "
4810 "commit=%lu, fs mounted w/o journal",
4811 sbi->s_commit_interval / HZ);
4812 goto failed_mount_wq;
4813 }
4814 if (EXT4_MOUNT_DATA_FLAGS &
4815 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4816 ext4_msg(sb, KERN_ERR, "can't mount with "
4817 "data=, fs mounted w/o journal");
4818 goto failed_mount_wq;
4819 }
4820 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4821 clear_opt(sb, JOURNAL_CHECKSUM);
4822 clear_opt(sb, DATA_FLAGS);
4823 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4824 sbi->s_journal = NULL;
4825 needs_recovery = 0;
4826 goto no_journal;
4827 }
4828
4829 if (ext4_has_feature_64bit(sb) &&
4830 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4831 JBD2_FEATURE_INCOMPAT_64BIT)) {
4832 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4833 goto failed_mount_wq;
4834 }
4835
4836 if (!set_journal_csum_feature_set(sb)) {
4837 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4838 "feature set");
4839 goto failed_mount_wq;
4840 }
4841
4842 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4843 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4844 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4845 ext4_msg(sb, KERN_ERR,
4846 "Failed to set fast commit journal feature");
4847 goto failed_mount_wq;
4848 }
4849
4850 /* We have now updated the journal if required, so we can
4851 * validate the data journaling mode. */
4852 switch (test_opt(sb, DATA_FLAGS)) {
4853 case 0:
4854 /* No mode set, assume a default based on the journal
4855 * capabilities: ORDERED_DATA if the journal can
4856 * cope, else JOURNAL_DATA
4857 */
4858 if (jbd2_journal_check_available_features
4859 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4860 set_opt(sb, ORDERED_DATA);
4861 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4862 } else {
4863 set_opt(sb, JOURNAL_DATA);
4864 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4865 }
4866 break;
4867
4868 case EXT4_MOUNT_ORDERED_DATA:
4869 case EXT4_MOUNT_WRITEBACK_DATA:
4870 if (!jbd2_journal_check_available_features
4871 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4872 ext4_msg(sb, KERN_ERR, "Journal does not support "
4873 "requested data journaling mode");
4874 goto failed_mount_wq;
4875 }
4876 default:
4877 break;
4878 }
4879
4880 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4881 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4882 ext4_msg(sb, KERN_ERR, "can't mount with "
4883 "journal_async_commit in data=ordered mode");
4884 goto failed_mount_wq;
4885 }
4886
4887 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4888
4889 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4890 sbi->s_journal->j_submit_inode_data_buffers =
4891 ext4_journal_submit_inode_data_buffers;
4892 sbi->s_journal->j_finish_inode_data_buffers =
4893 ext4_journal_finish_inode_data_buffers;
4894
4895 no_journal:
4896 if (!test_opt(sb, NO_MBCACHE)) {
4897 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4898 if (!sbi->s_ea_block_cache) {
4899 ext4_msg(sb, KERN_ERR,
4900 "Failed to create ea_block_cache");
4901 goto failed_mount_wq;
4902 }
4903
4904 if (ext4_has_feature_ea_inode(sb)) {
4905 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4906 if (!sbi->s_ea_inode_cache) {
4907 ext4_msg(sb, KERN_ERR,
4908 "Failed to create ea_inode_cache");
4909 goto failed_mount_wq;
4910 }
4911 }
4912 }
4913
4914 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4915 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4916 goto failed_mount_wq;
4917 }
4918
4919 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4920 !ext4_has_feature_encrypt(sb)) {
4921 ext4_set_feature_encrypt(sb);
4922 ext4_commit_super(sb, 1);
4923 }
4924
4925 /*
4926 * Get the # of file system overhead blocks from the
4927 * superblock if present.
4928 */
4929 if (es->s_overhead_clusters)
4930 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4931 else {
4932 err = ext4_calculate_overhead(sb);
4933 if (err)
4934 goto failed_mount_wq;
4935 }
4936
4937 /*
4938 * The maximum number of concurrent works can be high and
4939 * concurrency isn't really necessary. Limit it to 1.
4940 */
4941 EXT4_SB(sb)->rsv_conversion_wq =
4942 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4943 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4944 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4945 ret = -ENOMEM;
4946 goto failed_mount4;
4947 }
4948
4949 /*
4950 * The jbd2_journal_load will have done any necessary log recovery,
4951 * so we can safely mount the rest of the filesystem now.
4952 */
4953
4954 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4955 if (IS_ERR(root)) {
4956 ext4_msg(sb, KERN_ERR, "get root inode failed");
4957 ret = PTR_ERR(root);
4958 root = NULL;
4959 goto failed_mount4;
4960 }
4961 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4962 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4963 iput(root);
4964 goto failed_mount4;
4965 }
4966
4967 #ifdef CONFIG_UNICODE
4968 if (sb->s_encoding)
4969 sb->s_d_op = &ext4_dentry_ops;
4970 #endif
4971
4972 sb->s_root = d_make_root(root);
4973 if (!sb->s_root) {
4974 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4975 ret = -ENOMEM;
4976 goto failed_mount4;
4977 }
4978
4979 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4980 if (ret == -EROFS) {
4981 sb->s_flags |= SB_RDONLY;
4982 ret = 0;
4983 } else if (ret)
4984 goto failed_mount4a;
4985
4986 ext4_set_resv_clusters(sb);
4987
4988 if (test_opt(sb, BLOCK_VALIDITY)) {
4989 err = ext4_setup_system_zone(sb);
4990 if (err) {
4991 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4992 "zone (%d)", err);
4993 goto failed_mount4a;
4994 }
4995 }
4996 ext4_fc_replay_cleanup(sb);
4997
4998 ext4_ext_init(sb);
4999 err = ext4_mb_init(sb);
5000 if (err) {
5001 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5002 err);
5003 goto failed_mount5;
5004 }
5005
5006 block = ext4_count_free_clusters(sb);
5007 ext4_free_blocks_count_set(sbi->s_es,
5008 EXT4_C2B(sbi, block));
5009 ext4_superblock_csum_set(sb);
5010 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5011 GFP_KERNEL);
5012 if (!err) {
5013 unsigned long freei = ext4_count_free_inodes(sb);
5014 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5015 ext4_superblock_csum_set(sb);
5016 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5017 GFP_KERNEL);
5018 }
5019 if (!err)
5020 err = percpu_counter_init(&sbi->s_dirs_counter,
5021 ext4_count_dirs(sb), GFP_KERNEL);
5022 if (!err)
5023 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5024 GFP_KERNEL);
5025 if (!err)
5026 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5027
5028 if (err) {
5029 ext4_msg(sb, KERN_ERR, "insufficient memory");
5030 goto failed_mount6;
5031 }
5032
5033 if (ext4_has_feature_flex_bg(sb))
5034 if (!ext4_fill_flex_info(sb)) {
5035 ext4_msg(sb, KERN_ERR,
5036 "unable to initialize "
5037 "flex_bg meta info!");
5038 goto failed_mount6;
5039 }
5040
5041 err = ext4_register_li_request(sb, first_not_zeroed);
5042 if (err)
5043 goto failed_mount6;
5044
5045 err = ext4_register_sysfs(sb);
5046 if (err)
5047 goto failed_mount7;
5048
5049 #ifdef CONFIG_QUOTA
5050 /* Enable quota usage during mount. */
5051 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5052 err = ext4_enable_quotas(sb);
5053 if (err)
5054 goto failed_mount8;
5055 }
5056 #endif /* CONFIG_QUOTA */
5057
5058 /*
5059 * Save the original bdev mapping's wb_err value which could be
5060 * used to detect the metadata async write error.
5061 */
5062 spin_lock_init(&sbi->s_bdev_wb_lock);
5063 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5064 &sbi->s_bdev_wb_err);
5065 sb->s_bdev->bd_super = sb;
5066 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5067 ext4_orphan_cleanup(sb, es);
5068 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5069 if (needs_recovery) {
5070 ext4_msg(sb, KERN_INFO, "recovery complete");
5071 err = ext4_mark_recovery_complete(sb, es);
5072 if (err)
5073 goto failed_mount8;
5074 }
5075 if (EXT4_SB(sb)->s_journal) {
5076 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5077 descr = " journalled data mode";
5078 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5079 descr = " ordered data mode";
5080 else
5081 descr = " writeback data mode";
5082 } else
5083 descr = "out journal";
5084
5085 if (test_opt(sb, DISCARD)) {
5086 struct request_queue *q = bdev_get_queue(sb->s_bdev);
5087 if (!blk_queue_discard(q))
5088 ext4_msg(sb, KERN_WARNING,
5089 "mounting with \"discard\" option, but "
5090 "the device does not support discard");
5091 }
5092
5093 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5094 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5095 "Opts: %.*s%s%s", descr,
5096 (int) sizeof(sbi->s_es->s_mount_opts),
5097 sbi->s_es->s_mount_opts,
5098 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
5099
5100 if (es->s_error_count)
5101 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5102
5103 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5104 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5105 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5106 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5107 atomic_set(&sbi->s_warning_count, 0);
5108 atomic_set(&sbi->s_msg_count, 0);
5109
5110 kfree(orig_data);
5111 return 0;
5112
5113 cantfind_ext4:
5114 if (!silent)
5115 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5116 goto failed_mount;
5117
5118 failed_mount8:
5119 ext4_unregister_sysfs(sb);
5120 kobject_put(&sbi->s_kobj);
5121 failed_mount7:
5122 ext4_unregister_li_request(sb);
5123 failed_mount6:
5124 ext4_mb_release(sb);
5125 rcu_read_lock();
5126 flex_groups = rcu_dereference(sbi->s_flex_groups);
5127 if (flex_groups) {
5128 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5129 kvfree(flex_groups[i]);
5130 kvfree(flex_groups);
5131 }
5132 rcu_read_unlock();
5133 percpu_counter_destroy(&sbi->s_freeclusters_counter);
5134 percpu_counter_destroy(&sbi->s_freeinodes_counter);
5135 percpu_counter_destroy(&sbi->s_dirs_counter);
5136 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5137 percpu_free_rwsem(&sbi->s_writepages_rwsem);
5138 failed_mount5:
5139 ext4_ext_release(sb);
5140 ext4_release_system_zone(sb);
5141 failed_mount4a:
5142 dput(sb->s_root);
5143 sb->s_root = NULL;
5144 failed_mount4:
5145 ext4_msg(sb, KERN_ERR, "mount failed");
5146 if (EXT4_SB(sb)->rsv_conversion_wq)
5147 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5148 failed_mount_wq:
5149 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5150 sbi->s_ea_inode_cache = NULL;
5151
5152 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5153 sbi->s_ea_block_cache = NULL;
5154
5155 if (sbi->s_journal) {
5156 jbd2_journal_destroy(sbi->s_journal);
5157 sbi->s_journal = NULL;
5158 }
5159 failed_mount3a:
5160 ext4_es_unregister_shrinker(sbi);
5161 failed_mount3:
5162 del_timer_sync(&sbi->s_err_report);
5163 if (sbi->s_mmp_tsk)
5164 kthread_stop(sbi->s_mmp_tsk);
5165 failed_mount2:
5166 rcu_read_lock();
5167 group_desc = rcu_dereference(sbi->s_group_desc);
5168 for (i = 0; i < db_count; i++)
5169 brelse(group_desc[i]);
5170 kvfree(group_desc);
5171 rcu_read_unlock();
5172 failed_mount:
5173 if (sbi->s_chksum_driver)
5174 crypto_free_shash(sbi->s_chksum_driver);
5175
5176 #ifdef CONFIG_UNICODE
5177 utf8_unload(sb->s_encoding);
5178 #endif
5179
5180 #ifdef CONFIG_QUOTA
5181 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5182 kfree(get_qf_name(sb, sbi, i));
5183 #endif
5184 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5185 ext4_blkdev_remove(sbi);
5186 brelse(bh);
5187 out_fail:
5188 sb->s_fs_info = NULL;
5189 kfree(sbi->s_blockgroup_lock);
5190 out_free_base:
5191 kfree(sbi);
5192 kfree(orig_data);
5193 fs_put_dax(dax_dev);
5194 return err ? err : ret;
5195 }
5196
5197 /*
5198 * Setup any per-fs journal parameters now. We'll do this both on
5199 * initial mount, once the journal has been initialised but before we've
5200 * done any recovery; and again on any subsequent remount.
5201 */
ext4_init_journal_params(struct super_block * sb,journal_t * journal)5202 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5203 {
5204 struct ext4_sb_info *sbi = EXT4_SB(sb);
5205
5206 journal->j_commit_interval = sbi->s_commit_interval;
5207 journal->j_min_batch_time = sbi->s_min_batch_time;
5208 journal->j_max_batch_time = sbi->s_max_batch_time;
5209 ext4_fc_init(sb, journal);
5210
5211 write_lock(&journal->j_state_lock);
5212 if (test_opt(sb, BARRIER))
5213 journal->j_flags |= JBD2_BARRIER;
5214 else
5215 journal->j_flags &= ~JBD2_BARRIER;
5216 if (test_opt(sb, DATA_ERR_ABORT))
5217 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5218 else
5219 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5220 write_unlock(&journal->j_state_lock);
5221 }
5222
ext4_get_journal_inode(struct super_block * sb,unsigned int journal_inum)5223 static struct inode *ext4_get_journal_inode(struct super_block *sb,
5224 unsigned int journal_inum)
5225 {
5226 struct inode *journal_inode;
5227
5228 /*
5229 * Test for the existence of a valid inode on disk. Bad things
5230 * happen if we iget() an unused inode, as the subsequent iput()
5231 * will try to delete it.
5232 */
5233 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5234 if (IS_ERR(journal_inode)) {
5235 ext4_msg(sb, KERN_ERR, "no journal found");
5236 return NULL;
5237 }
5238 if (!journal_inode->i_nlink) {
5239 make_bad_inode(journal_inode);
5240 iput(journal_inode);
5241 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5242 return NULL;
5243 }
5244
5245 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5246 journal_inode, journal_inode->i_size);
5247 if (!S_ISREG(journal_inode->i_mode)) {
5248 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5249 iput(journal_inode);
5250 return NULL;
5251 }
5252 return journal_inode;
5253 }
5254
ext4_get_journal(struct super_block * sb,unsigned int journal_inum)5255 static journal_t *ext4_get_journal(struct super_block *sb,
5256 unsigned int journal_inum)
5257 {
5258 struct inode *journal_inode;
5259 journal_t *journal;
5260
5261 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5262 return NULL;
5263
5264 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5265 if (!journal_inode)
5266 return NULL;
5267
5268 journal = jbd2_journal_init_inode(journal_inode);
5269 if (!journal) {
5270 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5271 iput(journal_inode);
5272 return NULL;
5273 }
5274 journal->j_private = sb;
5275 ext4_init_journal_params(sb, journal);
5276 return journal;
5277 }
5278
ext4_get_dev_journal(struct super_block * sb,dev_t j_dev)5279 static journal_t *ext4_get_dev_journal(struct super_block *sb,
5280 dev_t j_dev)
5281 {
5282 struct buffer_head *bh;
5283 journal_t *journal;
5284 ext4_fsblk_t start;
5285 ext4_fsblk_t len;
5286 int hblock, blocksize;
5287 ext4_fsblk_t sb_block;
5288 unsigned long offset;
5289 struct ext4_super_block *es;
5290 struct block_device *bdev;
5291
5292 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5293 return NULL;
5294
5295 bdev = ext4_blkdev_get(j_dev, sb);
5296 if (bdev == NULL)
5297 return NULL;
5298
5299 blocksize = sb->s_blocksize;
5300 hblock = bdev_logical_block_size(bdev);
5301 if (blocksize < hblock) {
5302 ext4_msg(sb, KERN_ERR,
5303 "blocksize too small for journal device");
5304 goto out_bdev;
5305 }
5306
5307 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5308 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5309 set_blocksize(bdev, blocksize);
5310 if (!(bh = __bread(bdev, sb_block, blocksize))) {
5311 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5312 "external journal");
5313 goto out_bdev;
5314 }
5315
5316 es = (struct ext4_super_block *) (bh->b_data + offset);
5317 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5318 !(le32_to_cpu(es->s_feature_incompat) &
5319 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5320 ext4_msg(sb, KERN_ERR, "external journal has "
5321 "bad superblock");
5322 brelse(bh);
5323 goto out_bdev;
5324 }
5325
5326 if ((le32_to_cpu(es->s_feature_ro_compat) &
5327 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5328 es->s_checksum != ext4_superblock_csum(sb, es)) {
5329 ext4_msg(sb, KERN_ERR, "external journal has "
5330 "corrupt superblock");
5331 brelse(bh);
5332 goto out_bdev;
5333 }
5334
5335 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5336 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5337 brelse(bh);
5338 goto out_bdev;
5339 }
5340
5341 len = ext4_blocks_count(es);
5342 start = sb_block + 1;
5343 brelse(bh); /* we're done with the superblock */
5344
5345 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5346 start, len, blocksize);
5347 if (!journal) {
5348 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5349 goto out_bdev;
5350 }
5351 journal->j_private = sb;
5352 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5353 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5354 goto out_journal;
5355 }
5356 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5357 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5358 "user (unsupported) - %d",
5359 be32_to_cpu(journal->j_superblock->s_nr_users));
5360 goto out_journal;
5361 }
5362 EXT4_SB(sb)->s_journal_bdev = bdev;
5363 ext4_init_journal_params(sb, journal);
5364 return journal;
5365
5366 out_journal:
5367 jbd2_journal_destroy(journal);
5368 out_bdev:
5369 ext4_blkdev_put(bdev);
5370 return NULL;
5371 }
5372
ext4_load_journal(struct super_block * sb,struct ext4_super_block * es,unsigned long journal_devnum)5373 static int ext4_load_journal(struct super_block *sb,
5374 struct ext4_super_block *es,
5375 unsigned long journal_devnum)
5376 {
5377 journal_t *journal;
5378 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5379 dev_t journal_dev;
5380 int err = 0;
5381 int really_read_only;
5382 int journal_dev_ro;
5383
5384 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5385 return -EFSCORRUPTED;
5386
5387 if (journal_devnum &&
5388 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5389 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5390 "numbers have changed");
5391 journal_dev = new_decode_dev(journal_devnum);
5392 } else
5393 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5394
5395 if (journal_inum && journal_dev) {
5396 ext4_msg(sb, KERN_ERR,
5397 "filesystem has both journal inode and journal device!");
5398 return -EINVAL;
5399 }
5400
5401 if (journal_inum) {
5402 journal = ext4_get_journal(sb, journal_inum);
5403 if (!journal)
5404 return -EINVAL;
5405 } else {
5406 journal = ext4_get_dev_journal(sb, journal_dev);
5407 if (!journal)
5408 return -EINVAL;
5409 }
5410
5411 journal_dev_ro = bdev_read_only(journal->j_dev);
5412 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5413
5414 if (journal_dev_ro && !sb_rdonly(sb)) {
5415 ext4_msg(sb, KERN_ERR,
5416 "journal device read-only, try mounting with '-o ro'");
5417 err = -EROFS;
5418 goto err_out;
5419 }
5420
5421 /*
5422 * Are we loading a blank journal or performing recovery after a
5423 * crash? For recovery, we need to check in advance whether we
5424 * can get read-write access to the device.
5425 */
5426 if (ext4_has_feature_journal_needs_recovery(sb)) {
5427 if (sb_rdonly(sb)) {
5428 ext4_msg(sb, KERN_INFO, "INFO: recovery "
5429 "required on readonly filesystem");
5430 if (really_read_only) {
5431 ext4_msg(sb, KERN_ERR, "write access "
5432 "unavailable, cannot proceed "
5433 "(try mounting with noload)");
5434 err = -EROFS;
5435 goto err_out;
5436 }
5437 ext4_msg(sb, KERN_INFO, "write access will "
5438 "be enabled during recovery");
5439 }
5440 }
5441
5442 if (!(journal->j_flags & JBD2_BARRIER))
5443 ext4_msg(sb, KERN_INFO, "barriers disabled");
5444
5445 if (!ext4_has_feature_journal_needs_recovery(sb))
5446 err = jbd2_journal_wipe(journal, !really_read_only);
5447 if (!err) {
5448 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5449 if (save)
5450 memcpy(save, ((char *) es) +
5451 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5452 err = jbd2_journal_load(journal);
5453 if (save)
5454 memcpy(((char *) es) + EXT4_S_ERR_START,
5455 save, EXT4_S_ERR_LEN);
5456 kfree(save);
5457 }
5458
5459 if (err) {
5460 ext4_msg(sb, KERN_ERR, "error loading journal");
5461 goto err_out;
5462 }
5463
5464 EXT4_SB(sb)->s_journal = journal;
5465 err = ext4_clear_journal_err(sb, es);
5466 if (err) {
5467 EXT4_SB(sb)->s_journal = NULL;
5468 jbd2_journal_destroy(journal);
5469 return err;
5470 }
5471
5472 if (!really_read_only && journal_devnum &&
5473 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5474 es->s_journal_dev = cpu_to_le32(journal_devnum);
5475
5476 /* Make sure we flush the recovery flag to disk. */
5477 ext4_commit_super(sb, 1);
5478 }
5479
5480 return 0;
5481
5482 err_out:
5483 jbd2_journal_destroy(journal);
5484 return err;
5485 }
5486
ext4_commit_super(struct super_block * sb,int sync)5487 static int ext4_commit_super(struct super_block *sb, int sync)
5488 {
5489 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5490 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5491 int error = 0;
5492
5493 if (!sbh || block_device_ejected(sb))
5494 return error;
5495
5496 /*
5497 * If the file system is mounted read-only, don't update the
5498 * superblock write time. This avoids updating the superblock
5499 * write time when we are mounting the root file system
5500 * read/only but we need to replay the journal; at that point,
5501 * for people who are east of GMT and who make their clock
5502 * tick in localtime for Windows bug-for-bug compatibility,
5503 * the clock is set in the future, and this will cause e2fsck
5504 * to complain and force a full file system check.
5505 */
5506 if (!(sb->s_flags & SB_RDONLY))
5507 ext4_update_tstamp(es, s_wtime);
5508 if (sb->s_bdev->bd_part)
5509 es->s_kbytes_written =
5510 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
5511 ((part_stat_read(sb->s_bdev->bd_part,
5512 sectors[STAT_WRITE]) -
5513 EXT4_SB(sb)->s_sectors_written_start) >> 1));
5514 else
5515 es->s_kbytes_written =
5516 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
5517 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
5518 ext4_free_blocks_count_set(es,
5519 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
5520 &EXT4_SB(sb)->s_freeclusters_counter)));
5521 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
5522 es->s_free_inodes_count =
5523 cpu_to_le32(percpu_counter_sum_positive(
5524 &EXT4_SB(sb)->s_freeinodes_counter));
5525 BUFFER_TRACE(sbh, "marking dirty");
5526 ext4_superblock_csum_set(sb);
5527 if (sync)
5528 lock_buffer(sbh);
5529 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5530 /*
5531 * Oh, dear. A previous attempt to write the
5532 * superblock failed. This could happen because the
5533 * USB device was yanked out. Or it could happen to
5534 * be a transient write error and maybe the block will
5535 * be remapped. Nothing we can do but to retry the
5536 * write and hope for the best.
5537 */
5538 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5539 "superblock detected");
5540 clear_buffer_write_io_error(sbh);
5541 set_buffer_uptodate(sbh);
5542 }
5543 mark_buffer_dirty(sbh);
5544 if (sync) {
5545 unlock_buffer(sbh);
5546 error = __sync_dirty_buffer(sbh,
5547 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5548 if (buffer_write_io_error(sbh)) {
5549 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5550 "superblock");
5551 clear_buffer_write_io_error(sbh);
5552 set_buffer_uptodate(sbh);
5553 }
5554 }
5555 return error;
5556 }
5557
5558 /*
5559 * Have we just finished recovery? If so, and if we are mounting (or
5560 * remounting) the filesystem readonly, then we will end up with a
5561 * consistent fs on disk. Record that fact.
5562 */
ext4_mark_recovery_complete(struct super_block * sb,struct ext4_super_block * es)5563 static int ext4_mark_recovery_complete(struct super_block *sb,
5564 struct ext4_super_block *es)
5565 {
5566 int err;
5567 journal_t *journal = EXT4_SB(sb)->s_journal;
5568
5569 if (!ext4_has_feature_journal(sb)) {
5570 if (journal != NULL) {
5571 ext4_error(sb, "Journal got removed while the fs was "
5572 "mounted!");
5573 return -EFSCORRUPTED;
5574 }
5575 return 0;
5576 }
5577 jbd2_journal_lock_updates(journal);
5578 err = jbd2_journal_flush(journal);
5579 if (err < 0)
5580 goto out;
5581
5582 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5583 ext4_clear_feature_journal_needs_recovery(sb);
5584 ext4_commit_super(sb, 1);
5585 }
5586 out:
5587 jbd2_journal_unlock_updates(journal);
5588 return err;
5589 }
5590
5591 /*
5592 * If we are mounting (or read-write remounting) a filesystem whose journal
5593 * has recorded an error from a previous lifetime, move that error to the
5594 * main filesystem now.
5595 */
ext4_clear_journal_err(struct super_block * sb,struct ext4_super_block * es)5596 static int ext4_clear_journal_err(struct super_block *sb,
5597 struct ext4_super_block *es)
5598 {
5599 journal_t *journal;
5600 int j_errno;
5601 const char *errstr;
5602
5603 if (!ext4_has_feature_journal(sb)) {
5604 ext4_error(sb, "Journal got removed while the fs was mounted!");
5605 return -EFSCORRUPTED;
5606 }
5607
5608 journal = EXT4_SB(sb)->s_journal;
5609
5610 /*
5611 * Now check for any error status which may have been recorded in the
5612 * journal by a prior ext4_error() or ext4_abort()
5613 */
5614
5615 j_errno = jbd2_journal_errno(journal);
5616 if (j_errno) {
5617 char nbuf[16];
5618
5619 errstr = ext4_decode_error(sb, j_errno, nbuf);
5620 ext4_warning(sb, "Filesystem error recorded "
5621 "from previous mount: %s", errstr);
5622 ext4_warning(sb, "Marking fs in need of filesystem check.");
5623
5624 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5625 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5626 ext4_commit_super(sb, 1);
5627
5628 jbd2_journal_clear_err(journal);
5629 jbd2_journal_update_sb_errno(journal);
5630 }
5631 return 0;
5632 }
5633
5634 /*
5635 * Force the running and committing transactions to commit,
5636 * and wait on the commit.
5637 */
ext4_force_commit(struct super_block * sb)5638 int ext4_force_commit(struct super_block *sb)
5639 {
5640 journal_t *journal;
5641
5642 if (sb_rdonly(sb))
5643 return 0;
5644
5645 journal = EXT4_SB(sb)->s_journal;
5646 return ext4_journal_force_commit(journal);
5647 }
5648
ext4_sync_fs(struct super_block * sb,int wait)5649 static int ext4_sync_fs(struct super_block *sb, int wait)
5650 {
5651 int ret = 0;
5652 tid_t target;
5653 bool needs_barrier = false;
5654 struct ext4_sb_info *sbi = EXT4_SB(sb);
5655
5656 if (unlikely(ext4_forced_shutdown(sbi)))
5657 return 0;
5658
5659 trace_ext4_sync_fs(sb, wait);
5660 flush_workqueue(sbi->rsv_conversion_wq);
5661 /*
5662 * Writeback quota in non-journalled quota case - journalled quota has
5663 * no dirty dquots
5664 */
5665 dquot_writeback_dquots(sb, -1);
5666 /*
5667 * Data writeback is possible w/o journal transaction, so barrier must
5668 * being sent at the end of the function. But we can skip it if
5669 * transaction_commit will do it for us.
5670 */
5671 if (sbi->s_journal) {
5672 target = jbd2_get_latest_transaction(sbi->s_journal);
5673 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5674 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5675 needs_barrier = true;
5676
5677 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5678 if (wait)
5679 ret = jbd2_log_wait_commit(sbi->s_journal,
5680 target);
5681 }
5682 } else if (wait && test_opt(sb, BARRIER))
5683 needs_barrier = true;
5684 if (needs_barrier) {
5685 int err;
5686 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL);
5687 if (!ret)
5688 ret = err;
5689 }
5690
5691 return ret;
5692 }
5693
5694 /*
5695 * LVM calls this function before a (read-only) snapshot is created. This
5696 * gives us a chance to flush the journal completely and mark the fs clean.
5697 *
5698 * Note that only this function cannot bring a filesystem to be in a clean
5699 * state independently. It relies on upper layer to stop all data & metadata
5700 * modifications.
5701 */
ext4_freeze(struct super_block * sb)5702 static int ext4_freeze(struct super_block *sb)
5703 {
5704 int error = 0;
5705 journal_t *journal;
5706
5707 if (sb_rdonly(sb))
5708 return 0;
5709
5710 journal = EXT4_SB(sb)->s_journal;
5711
5712 if (journal) {
5713 /* Now we set up the journal barrier. */
5714 jbd2_journal_lock_updates(journal);
5715
5716 /*
5717 * Don't clear the needs_recovery flag if we failed to
5718 * flush the journal.
5719 */
5720 error = jbd2_journal_flush(journal);
5721 if (error < 0)
5722 goto out;
5723
5724 /* Journal blocked and flushed, clear needs_recovery flag. */
5725 ext4_clear_feature_journal_needs_recovery(sb);
5726 }
5727
5728 error = ext4_commit_super(sb, 1);
5729 out:
5730 if (journal)
5731 /* we rely on upper layer to stop further updates */
5732 jbd2_journal_unlock_updates(journal);
5733 return error;
5734 }
5735
5736 /*
5737 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5738 * flag here, even though the filesystem is not technically dirty yet.
5739 */
ext4_unfreeze(struct super_block * sb)5740 static int ext4_unfreeze(struct super_block *sb)
5741 {
5742 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5743 return 0;
5744
5745 if (EXT4_SB(sb)->s_journal) {
5746 /* Reset the needs_recovery flag before the fs is unlocked. */
5747 ext4_set_feature_journal_needs_recovery(sb);
5748 }
5749
5750 ext4_commit_super(sb, 1);
5751 return 0;
5752 }
5753
5754 /*
5755 * Structure to save mount options for ext4_remount's benefit
5756 */
5757 struct ext4_mount_options {
5758 unsigned long s_mount_opt;
5759 unsigned long s_mount_opt2;
5760 kuid_t s_resuid;
5761 kgid_t s_resgid;
5762 unsigned long s_commit_interval;
5763 u32 s_min_batch_time, s_max_batch_time;
5764 #ifdef CONFIG_QUOTA
5765 int s_jquota_fmt;
5766 char *s_qf_names[EXT4_MAXQUOTAS];
5767 #endif
5768 };
5769
ext4_remount(struct super_block * sb,int * flags,char * data)5770 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5771 {
5772 struct ext4_super_block *es;
5773 struct ext4_sb_info *sbi = EXT4_SB(sb);
5774 unsigned long old_sb_flags, vfs_flags;
5775 struct ext4_mount_options old_opts;
5776 int enable_quota = 0;
5777 ext4_group_t g;
5778 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5779 int err = 0;
5780 #ifdef CONFIG_QUOTA
5781 int i, j;
5782 char *to_free[EXT4_MAXQUOTAS];
5783 #endif
5784 char *orig_data = kstrdup(data, GFP_KERNEL);
5785
5786 if (data && !orig_data)
5787 return -ENOMEM;
5788
5789 /* Store the original options */
5790 old_sb_flags = sb->s_flags;
5791 old_opts.s_mount_opt = sbi->s_mount_opt;
5792 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5793 old_opts.s_resuid = sbi->s_resuid;
5794 old_opts.s_resgid = sbi->s_resgid;
5795 old_opts.s_commit_interval = sbi->s_commit_interval;
5796 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5797 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5798 #ifdef CONFIG_QUOTA
5799 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5800 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5801 if (sbi->s_qf_names[i]) {
5802 char *qf_name = get_qf_name(sb, sbi, i);
5803
5804 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5805 if (!old_opts.s_qf_names[i]) {
5806 for (j = 0; j < i; j++)
5807 kfree(old_opts.s_qf_names[j]);
5808 kfree(orig_data);
5809 return -ENOMEM;
5810 }
5811 } else
5812 old_opts.s_qf_names[i] = NULL;
5813 #endif
5814 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5815 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5816
5817 /*
5818 * Some options can be enabled by ext4 and/or by VFS mount flag
5819 * either way we need to make sure it matches in both *flags and
5820 * s_flags. Copy those selected flags from *flags to s_flags
5821 */
5822 vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5823 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5824
5825 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5826 err = -EINVAL;
5827 goto restore_opts;
5828 }
5829
5830 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5831 test_opt(sb, JOURNAL_CHECKSUM)) {
5832 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5833 "during remount not supported; ignoring");
5834 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5835 }
5836
5837 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5838 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5839 ext4_msg(sb, KERN_ERR, "can't mount with "
5840 "both data=journal and delalloc");
5841 err = -EINVAL;
5842 goto restore_opts;
5843 }
5844 if (test_opt(sb, DIOREAD_NOLOCK)) {
5845 ext4_msg(sb, KERN_ERR, "can't mount with "
5846 "both data=journal and dioread_nolock");
5847 err = -EINVAL;
5848 goto restore_opts;
5849 }
5850 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5851 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5852 ext4_msg(sb, KERN_ERR, "can't mount with "
5853 "journal_async_commit in data=ordered mode");
5854 err = -EINVAL;
5855 goto restore_opts;
5856 }
5857 }
5858
5859 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5860 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5861 err = -EINVAL;
5862 goto restore_opts;
5863 }
5864
5865 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5866 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5867
5868 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5869 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5870
5871 es = sbi->s_es;
5872
5873 if (sbi->s_journal) {
5874 ext4_init_journal_params(sb, sbi->s_journal);
5875 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5876 }
5877
5878 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5879 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5880 err = -EROFS;
5881 goto restore_opts;
5882 }
5883
5884 if (*flags & SB_RDONLY) {
5885 err = sync_filesystem(sb);
5886 if (err < 0)
5887 goto restore_opts;
5888 err = dquot_suspend(sb, -1);
5889 if (err < 0)
5890 goto restore_opts;
5891
5892 /*
5893 * First of all, the unconditional stuff we have to do
5894 * to disable replay of the journal when we next remount
5895 */
5896 sb->s_flags |= SB_RDONLY;
5897
5898 /*
5899 * OK, test if we are remounting a valid rw partition
5900 * readonly, and if so set the rdonly flag and then
5901 * mark the partition as valid again.
5902 */
5903 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5904 (sbi->s_mount_state & EXT4_VALID_FS))
5905 es->s_state = cpu_to_le16(sbi->s_mount_state);
5906
5907 if (sbi->s_journal) {
5908 /*
5909 * We let remount-ro finish even if marking fs
5910 * as clean failed...
5911 */
5912 ext4_mark_recovery_complete(sb, es);
5913 }
5914 if (sbi->s_mmp_tsk)
5915 kthread_stop(sbi->s_mmp_tsk);
5916 } else {
5917 /* Make sure we can mount this feature set readwrite */
5918 if (ext4_has_feature_readonly(sb) ||
5919 !ext4_feature_set_ok(sb, 0)) {
5920 err = -EROFS;
5921 goto restore_opts;
5922 }
5923 /*
5924 * Make sure the group descriptor checksums
5925 * are sane. If they aren't, refuse to remount r/w.
5926 */
5927 for (g = 0; g < sbi->s_groups_count; g++) {
5928 struct ext4_group_desc *gdp =
5929 ext4_get_group_desc(sb, g, NULL);
5930
5931 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5932 ext4_msg(sb, KERN_ERR,
5933 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5934 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5935 le16_to_cpu(gdp->bg_checksum));
5936 err = -EFSBADCRC;
5937 goto restore_opts;
5938 }
5939 }
5940
5941 /*
5942 * If we have an unprocessed orphan list hanging
5943 * around from a previously readonly bdev mount,
5944 * require a full umount/remount for now.
5945 */
5946 if (es->s_last_orphan) {
5947 ext4_msg(sb, KERN_WARNING, "Couldn't "
5948 "remount RDWR because of unprocessed "
5949 "orphan inode list. Please "
5950 "umount/remount instead");
5951 err = -EINVAL;
5952 goto restore_opts;
5953 }
5954
5955 /*
5956 * Mounting a RDONLY partition read-write, so reread
5957 * and store the current valid flag. (It may have
5958 * been changed by e2fsck since we originally mounted
5959 * the partition.)
5960 */
5961 if (sbi->s_journal) {
5962 err = ext4_clear_journal_err(sb, es);
5963 if (err)
5964 goto restore_opts;
5965 }
5966 sbi->s_mount_state = le16_to_cpu(es->s_state);
5967
5968 err = ext4_setup_super(sb, es, 0);
5969 if (err)
5970 goto restore_opts;
5971
5972 sb->s_flags &= ~SB_RDONLY;
5973 if (ext4_has_feature_mmp(sb))
5974 if (ext4_multi_mount_protect(sb,
5975 le64_to_cpu(es->s_mmp_block))) {
5976 err = -EROFS;
5977 goto restore_opts;
5978 }
5979 enable_quota = 1;
5980 }
5981 }
5982
5983 /*
5984 * Reinitialize lazy itable initialization thread based on
5985 * current settings
5986 */
5987 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5988 ext4_unregister_li_request(sb);
5989 else {
5990 ext4_group_t first_not_zeroed;
5991 first_not_zeroed = ext4_has_uninit_itable(sb);
5992 ext4_register_li_request(sb, first_not_zeroed);
5993 }
5994
5995 /*
5996 * Handle creation of system zone data early because it can fail.
5997 * Releasing of existing data is done when we are sure remount will
5998 * succeed.
5999 */
6000 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6001 err = ext4_setup_system_zone(sb);
6002 if (err)
6003 goto restore_opts;
6004 }
6005
6006 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6007 err = ext4_commit_super(sb, 1);
6008 if (err)
6009 goto restore_opts;
6010 }
6011
6012 #ifdef CONFIG_QUOTA
6013 /* Release old quota file names */
6014 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6015 kfree(old_opts.s_qf_names[i]);
6016 if (enable_quota) {
6017 if (sb_any_quota_suspended(sb))
6018 dquot_resume(sb, -1);
6019 else if (ext4_has_feature_quota(sb)) {
6020 err = ext4_enable_quotas(sb);
6021 if (err)
6022 goto restore_opts;
6023 }
6024 }
6025 #endif
6026 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6027 ext4_release_system_zone(sb);
6028
6029 /*
6030 * Some options can be enabled by ext4 and/or by VFS mount flag
6031 * either way we need to make sure it matches in both *flags and
6032 * s_flags. Copy those selected flags from s_flags to *flags
6033 */
6034 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
6035
6036 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
6037 kfree(orig_data);
6038 return 0;
6039
6040 restore_opts:
6041 sb->s_flags = old_sb_flags;
6042 sbi->s_mount_opt = old_opts.s_mount_opt;
6043 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6044 sbi->s_resuid = old_opts.s_resuid;
6045 sbi->s_resgid = old_opts.s_resgid;
6046 sbi->s_commit_interval = old_opts.s_commit_interval;
6047 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6048 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6049 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6050 ext4_release_system_zone(sb);
6051 #ifdef CONFIG_QUOTA
6052 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6053 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6054 to_free[i] = get_qf_name(sb, sbi, i);
6055 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6056 }
6057 synchronize_rcu();
6058 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6059 kfree(to_free[i]);
6060 #endif
6061 kfree(orig_data);
6062 return err;
6063 }
6064
6065 #ifdef CONFIG_QUOTA
ext4_statfs_project(struct super_block * sb,kprojid_t projid,struct kstatfs * buf)6066 static int ext4_statfs_project(struct super_block *sb,
6067 kprojid_t projid, struct kstatfs *buf)
6068 {
6069 struct kqid qid;
6070 struct dquot *dquot;
6071 u64 limit;
6072 u64 curblock;
6073
6074 qid = make_kqid_projid(projid);
6075 dquot = dqget(sb, qid);
6076 if (IS_ERR(dquot))
6077 return PTR_ERR(dquot);
6078 spin_lock(&dquot->dq_dqb_lock);
6079
6080 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6081 dquot->dq_dqb.dqb_bhardlimit);
6082 limit >>= sb->s_blocksize_bits;
6083
6084 if (limit && buf->f_blocks > limit) {
6085 curblock = (dquot->dq_dqb.dqb_curspace +
6086 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6087 buf->f_blocks = limit;
6088 buf->f_bfree = buf->f_bavail =
6089 (buf->f_blocks > curblock) ?
6090 (buf->f_blocks - curblock) : 0;
6091 }
6092
6093 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6094 dquot->dq_dqb.dqb_ihardlimit);
6095 if (limit && buf->f_files > limit) {
6096 buf->f_files = limit;
6097 buf->f_ffree =
6098 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6099 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6100 }
6101
6102 spin_unlock(&dquot->dq_dqb_lock);
6103 dqput(dquot);
6104 return 0;
6105 }
6106 #endif
6107
ext4_statfs(struct dentry * dentry,struct kstatfs * buf)6108 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6109 {
6110 struct super_block *sb = dentry->d_sb;
6111 struct ext4_sb_info *sbi = EXT4_SB(sb);
6112 struct ext4_super_block *es = sbi->s_es;
6113 ext4_fsblk_t overhead = 0, resv_blocks;
6114 u64 fsid;
6115 s64 bfree;
6116 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6117
6118 if (!test_opt(sb, MINIX_DF))
6119 overhead = sbi->s_overhead;
6120
6121 buf->f_type = EXT4_SUPER_MAGIC;
6122 buf->f_bsize = sb->s_blocksize;
6123 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6124 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6125 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6126 /* prevent underflow in case that few free space is available */
6127 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6128 buf->f_bavail = buf->f_bfree -
6129 (ext4_r_blocks_count(es) + resv_blocks);
6130 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6131 buf->f_bavail = 0;
6132 buf->f_files = le32_to_cpu(es->s_inodes_count);
6133 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6134 buf->f_namelen = EXT4_NAME_LEN;
6135 fsid = le64_to_cpup((void *)es->s_uuid) ^
6136 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
6137 buf->f_fsid = u64_to_fsid(fsid);
6138
6139 #ifdef CONFIG_QUOTA
6140 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6141 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6142 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6143 #endif
6144 return 0;
6145 }
6146
6147
6148 #ifdef CONFIG_QUOTA
6149
6150 /*
6151 * Helper functions so that transaction is started before we acquire dqio_sem
6152 * to keep correct lock ordering of transaction > dqio_sem
6153 */
dquot_to_inode(struct dquot * dquot)6154 static inline struct inode *dquot_to_inode(struct dquot *dquot)
6155 {
6156 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6157 }
6158
ext4_write_dquot(struct dquot * dquot)6159 static int ext4_write_dquot(struct dquot *dquot)
6160 {
6161 int ret, err;
6162 handle_t *handle;
6163 struct inode *inode;
6164
6165 inode = dquot_to_inode(dquot);
6166 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6167 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6168 if (IS_ERR(handle))
6169 return PTR_ERR(handle);
6170 ret = dquot_commit(dquot);
6171 err = ext4_journal_stop(handle);
6172 if (!ret)
6173 ret = err;
6174 return ret;
6175 }
6176
ext4_acquire_dquot(struct dquot * dquot)6177 static int ext4_acquire_dquot(struct dquot *dquot)
6178 {
6179 int ret, err;
6180 handle_t *handle;
6181
6182 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6183 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6184 if (IS_ERR(handle))
6185 return PTR_ERR(handle);
6186 ret = dquot_acquire(dquot);
6187 err = ext4_journal_stop(handle);
6188 if (!ret)
6189 ret = err;
6190 return ret;
6191 }
6192
ext4_release_dquot(struct dquot * dquot)6193 static int ext4_release_dquot(struct dquot *dquot)
6194 {
6195 int ret, err;
6196 handle_t *handle;
6197
6198 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6199 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6200 if (IS_ERR(handle)) {
6201 /* Release dquot anyway to avoid endless cycle in dqput() */
6202 dquot_release(dquot);
6203 return PTR_ERR(handle);
6204 }
6205 ret = dquot_release(dquot);
6206 err = ext4_journal_stop(handle);
6207 if (!ret)
6208 ret = err;
6209 return ret;
6210 }
6211
ext4_mark_dquot_dirty(struct dquot * dquot)6212 static int ext4_mark_dquot_dirty(struct dquot *dquot)
6213 {
6214 struct super_block *sb = dquot->dq_sb;
6215 struct ext4_sb_info *sbi = EXT4_SB(sb);
6216
6217 /* Are we journaling quotas? */
6218 if (ext4_has_feature_quota(sb) ||
6219 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
6220 dquot_mark_dquot_dirty(dquot);
6221 return ext4_write_dquot(dquot);
6222 } else {
6223 return dquot_mark_dquot_dirty(dquot);
6224 }
6225 }
6226
ext4_write_info(struct super_block * sb,int type)6227 static int ext4_write_info(struct super_block *sb, int type)
6228 {
6229 int ret, err;
6230 handle_t *handle;
6231
6232 /* Data block + inode block */
6233 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
6234 if (IS_ERR(handle))
6235 return PTR_ERR(handle);
6236 ret = dquot_commit_info(sb, type);
6237 err = ext4_journal_stop(handle);
6238 if (!ret)
6239 ret = err;
6240 return ret;
6241 }
6242
6243 /*
6244 * Turn on quotas during mount time - we need to find
6245 * the quota file and such...
6246 */
ext4_quota_on_mount(struct super_block * sb,int type)6247 static int ext4_quota_on_mount(struct super_block *sb, int type)
6248 {
6249 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
6250 EXT4_SB(sb)->s_jquota_fmt, type);
6251 }
6252
lockdep_set_quota_inode(struct inode * inode,int subclass)6253 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6254 {
6255 struct ext4_inode_info *ei = EXT4_I(inode);
6256
6257 /* The first argument of lockdep_set_subclass has to be
6258 * *exactly* the same as the argument to init_rwsem() --- in
6259 * this case, in init_once() --- or lockdep gets unhappy
6260 * because the name of the lock is set using the
6261 * stringification of the argument to init_rwsem().
6262 */
6263 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6264 lockdep_set_subclass(&ei->i_data_sem, subclass);
6265 }
6266
6267 /*
6268 * Standard function to be called on quota_on
6269 */
ext4_quota_on(struct super_block * sb,int type,int format_id,const struct path * path)6270 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6271 const struct path *path)
6272 {
6273 int err;
6274
6275 if (!test_opt(sb, QUOTA))
6276 return -EINVAL;
6277
6278 /* Quotafile not on the same filesystem? */
6279 if (path->dentry->d_sb != sb)
6280 return -EXDEV;
6281
6282 /* Quota already enabled for this file? */
6283 if (IS_NOQUOTA(d_inode(path->dentry)))
6284 return -EBUSY;
6285
6286 /* Journaling quota? */
6287 if (EXT4_SB(sb)->s_qf_names[type]) {
6288 /* Quotafile not in fs root? */
6289 if (path->dentry->d_parent != sb->s_root)
6290 ext4_msg(sb, KERN_WARNING,
6291 "Quota file not on filesystem root. "
6292 "Journaled quota will not work");
6293 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6294 } else {
6295 /*
6296 * Clear the flag just in case mount options changed since
6297 * last time.
6298 */
6299 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6300 }
6301
6302 /*
6303 * When we journal data on quota file, we have to flush journal to see
6304 * all updates to the file when we bypass pagecache...
6305 */
6306 if (EXT4_SB(sb)->s_journal &&
6307 ext4_should_journal_data(d_inode(path->dentry))) {
6308 /*
6309 * We don't need to lock updates but journal_flush() could
6310 * otherwise be livelocked...
6311 */
6312 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6313 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
6314 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6315 if (err)
6316 return err;
6317 }
6318
6319 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6320 err = dquot_quota_on(sb, type, format_id, path);
6321 if (err) {
6322 lockdep_set_quota_inode(path->dentry->d_inode,
6323 I_DATA_SEM_NORMAL);
6324 } else {
6325 struct inode *inode = d_inode(path->dentry);
6326 handle_t *handle;
6327
6328 /*
6329 * Set inode flags to prevent userspace from messing with quota
6330 * files. If this fails, we return success anyway since quotas
6331 * are already enabled and this is not a hard failure.
6332 */
6333 inode_lock(inode);
6334 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6335 if (IS_ERR(handle))
6336 goto unlock_inode;
6337 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6338 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6339 S_NOATIME | S_IMMUTABLE);
6340 err = ext4_mark_inode_dirty(handle, inode);
6341 ext4_journal_stop(handle);
6342 unlock_inode:
6343 inode_unlock(inode);
6344 }
6345 return err;
6346 }
6347
ext4_quota_enable(struct super_block * sb,int type,int format_id,unsigned int flags)6348 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6349 unsigned int flags)
6350 {
6351 int err;
6352 struct inode *qf_inode;
6353 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6354 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6355 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6356 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6357 };
6358
6359 BUG_ON(!ext4_has_feature_quota(sb));
6360
6361 if (!qf_inums[type])
6362 return -EPERM;
6363
6364 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6365 if (IS_ERR(qf_inode)) {
6366 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
6367 return PTR_ERR(qf_inode);
6368 }
6369
6370 /* Don't account quota for quota files to avoid recursion */
6371 qf_inode->i_flags |= S_NOQUOTA;
6372 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6373 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6374 if (err)
6375 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6376 iput(qf_inode);
6377
6378 return err;
6379 }
6380
6381 /* Enable usage tracking for all quota types. */
ext4_enable_quotas(struct super_block * sb)6382 static int ext4_enable_quotas(struct super_block *sb)
6383 {
6384 int type, err = 0;
6385 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6386 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6387 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6388 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6389 };
6390 bool quota_mopt[EXT4_MAXQUOTAS] = {
6391 test_opt(sb, USRQUOTA),
6392 test_opt(sb, GRPQUOTA),
6393 test_opt(sb, PRJQUOTA),
6394 };
6395
6396 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6397 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6398 if (qf_inums[type]) {
6399 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6400 DQUOT_USAGE_ENABLED |
6401 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6402 if (err) {
6403 ext4_warning(sb,
6404 "Failed to enable quota tracking "
6405 "(type=%d, err=%d). Please run "
6406 "e2fsck to fix.", type, err);
6407 for (type--; type >= 0; type--)
6408 dquot_quota_off(sb, type);
6409
6410 return err;
6411 }
6412 }
6413 }
6414 return 0;
6415 }
6416
ext4_quota_off(struct super_block * sb,int type)6417 static int ext4_quota_off(struct super_block *sb, int type)
6418 {
6419 struct inode *inode = sb_dqopt(sb)->files[type];
6420 handle_t *handle;
6421 int err;
6422
6423 /* Force all delayed allocation blocks to be allocated.
6424 * Caller already holds s_umount sem */
6425 if (test_opt(sb, DELALLOC))
6426 sync_filesystem(sb);
6427
6428 if (!inode || !igrab(inode))
6429 goto out;
6430
6431 err = dquot_quota_off(sb, type);
6432 if (err || ext4_has_feature_quota(sb))
6433 goto out_put;
6434
6435 inode_lock(inode);
6436 /*
6437 * Update modification times of quota files when userspace can
6438 * start looking at them. If we fail, we return success anyway since
6439 * this is not a hard failure and quotas are already disabled.
6440 */
6441 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6442 if (IS_ERR(handle)) {
6443 err = PTR_ERR(handle);
6444 goto out_unlock;
6445 }
6446 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6447 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6448 inode->i_mtime = inode->i_ctime = current_time(inode);
6449 err = ext4_mark_inode_dirty(handle, inode);
6450 ext4_journal_stop(handle);
6451 out_unlock:
6452 inode_unlock(inode);
6453 out_put:
6454 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6455 iput(inode);
6456 return err;
6457 out:
6458 return dquot_quota_off(sb, type);
6459 }
6460
6461 /* Read data from quotafile - avoid pagecache and such because we cannot afford
6462 * acquiring the locks... As quota files are never truncated and quota code
6463 * itself serializes the operations (and no one else should touch the files)
6464 * we don't have to be afraid of races */
ext4_quota_read(struct super_block * sb,int type,char * data,size_t len,loff_t off)6465 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6466 size_t len, loff_t off)
6467 {
6468 struct inode *inode = sb_dqopt(sb)->files[type];
6469 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6470 int offset = off & (sb->s_blocksize - 1);
6471 int tocopy;
6472 size_t toread;
6473 struct buffer_head *bh;
6474 loff_t i_size = i_size_read(inode);
6475
6476 if (off > i_size)
6477 return 0;
6478 if (off+len > i_size)
6479 len = i_size-off;
6480 toread = len;
6481 while (toread > 0) {
6482 tocopy = sb->s_blocksize - offset < toread ?
6483 sb->s_blocksize - offset : toread;
6484 bh = ext4_bread(NULL, inode, blk, 0);
6485 if (IS_ERR(bh))
6486 return PTR_ERR(bh);
6487 if (!bh) /* A hole? */
6488 memset(data, 0, tocopy);
6489 else
6490 memcpy(data, bh->b_data+offset, tocopy);
6491 brelse(bh);
6492 offset = 0;
6493 toread -= tocopy;
6494 data += tocopy;
6495 blk++;
6496 }
6497 return len;
6498 }
6499
6500 /* Write to quotafile (we know the transaction is already started and has
6501 * enough credits) */
ext4_quota_write(struct super_block * sb,int type,const char * data,size_t len,loff_t off)6502 static ssize_t ext4_quota_write(struct super_block *sb, int type,
6503 const char *data, size_t len, loff_t off)
6504 {
6505 struct inode *inode = sb_dqopt(sb)->files[type];
6506 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6507 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6508 int retries = 0;
6509 struct buffer_head *bh;
6510 handle_t *handle = journal_current_handle();
6511
6512 if (EXT4_SB(sb)->s_journal && !handle) {
6513 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6514 " cancelled because transaction is not started",
6515 (unsigned long long)off, (unsigned long long)len);
6516 return -EIO;
6517 }
6518 /*
6519 * Since we account only one data block in transaction credits,
6520 * then it is impossible to cross a block boundary.
6521 */
6522 if (sb->s_blocksize - offset < len) {
6523 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6524 " cancelled because not block aligned",
6525 (unsigned long long)off, (unsigned long long)len);
6526 return -EIO;
6527 }
6528
6529 do {
6530 bh = ext4_bread(handle, inode, blk,
6531 EXT4_GET_BLOCKS_CREATE |
6532 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6533 } while (PTR_ERR(bh) == -ENOSPC &&
6534 ext4_should_retry_alloc(inode->i_sb, &retries));
6535 if (IS_ERR(bh))
6536 return PTR_ERR(bh);
6537 if (!bh)
6538 goto out;
6539 BUFFER_TRACE(bh, "get write access");
6540 err = ext4_journal_get_write_access(handle, bh);
6541 if (err) {
6542 brelse(bh);
6543 return err;
6544 }
6545 lock_buffer(bh);
6546 memcpy(bh->b_data+offset, data, len);
6547 flush_dcache_page(bh->b_page);
6548 unlock_buffer(bh);
6549 err = ext4_handle_dirty_metadata(handle, NULL, bh);
6550 brelse(bh);
6551 out:
6552 if (inode->i_size < off + len) {
6553 i_size_write(inode, off + len);
6554 EXT4_I(inode)->i_disksize = inode->i_size;
6555 err2 = ext4_mark_inode_dirty(handle, inode);
6556 if (unlikely(err2 && !err))
6557 err = err2;
6558 }
6559 return err ? err : len;
6560 }
6561 #endif
6562
ext4_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)6563 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6564 const char *dev_name, void *data)
6565 {
6566 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6567 }
6568
6569 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
register_as_ext2(void)6570 static inline void register_as_ext2(void)
6571 {
6572 int err = register_filesystem(&ext2_fs_type);
6573 if (err)
6574 printk(KERN_WARNING
6575 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6576 }
6577
unregister_as_ext2(void)6578 static inline void unregister_as_ext2(void)
6579 {
6580 unregister_filesystem(&ext2_fs_type);
6581 }
6582
ext2_feature_set_ok(struct super_block * sb)6583 static inline int ext2_feature_set_ok(struct super_block *sb)
6584 {
6585 if (ext4_has_unknown_ext2_incompat_features(sb))
6586 return 0;
6587 if (sb_rdonly(sb))
6588 return 1;
6589 if (ext4_has_unknown_ext2_ro_compat_features(sb))
6590 return 0;
6591 return 1;
6592 }
6593 #else
register_as_ext2(void)6594 static inline void register_as_ext2(void) { }
unregister_as_ext2(void)6595 static inline void unregister_as_ext2(void) { }
ext2_feature_set_ok(struct super_block * sb)6596 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6597 #endif
6598
register_as_ext3(void)6599 static inline void register_as_ext3(void)
6600 {
6601 int err = register_filesystem(&ext3_fs_type);
6602 if (err)
6603 printk(KERN_WARNING
6604 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6605 }
6606
unregister_as_ext3(void)6607 static inline void unregister_as_ext3(void)
6608 {
6609 unregister_filesystem(&ext3_fs_type);
6610 }
6611
ext3_feature_set_ok(struct super_block * sb)6612 static inline int ext3_feature_set_ok(struct super_block *sb)
6613 {
6614 if (ext4_has_unknown_ext3_incompat_features(sb))
6615 return 0;
6616 if (!ext4_has_feature_journal(sb))
6617 return 0;
6618 if (sb_rdonly(sb))
6619 return 1;
6620 if (ext4_has_unknown_ext3_ro_compat_features(sb))
6621 return 0;
6622 return 1;
6623 }
6624
6625 static struct file_system_type ext4_fs_type = {
6626 .owner = THIS_MODULE,
6627 .name = "ext4",
6628 .mount = ext4_mount,
6629 .kill_sb = kill_block_super,
6630 .fs_flags = FS_REQUIRES_DEV,
6631 };
6632 MODULE_ALIAS_FS("ext4");
6633
6634 /* Shared across all ext4 file systems */
6635 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6636
ext4_init_fs(void)6637 static int __init ext4_init_fs(void)
6638 {
6639 int i, err;
6640
6641 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6642 ext4_li_info = NULL;
6643 mutex_init(&ext4_li_mtx);
6644
6645 /* Build-time check for flags consistency */
6646 ext4_check_flag_values();
6647
6648 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6649 init_waitqueue_head(&ext4__ioend_wq[i]);
6650
6651 err = ext4_init_es();
6652 if (err)
6653 return err;
6654
6655 err = ext4_init_pending();
6656 if (err)
6657 goto out7;
6658
6659 err = ext4_init_post_read_processing();
6660 if (err)
6661 goto out6;
6662
6663 err = ext4_init_pageio();
6664 if (err)
6665 goto out5;
6666
6667 err = ext4_init_system_zone();
6668 if (err)
6669 goto out4;
6670
6671 err = ext4_init_sysfs();
6672 if (err)
6673 goto out3;
6674
6675 err = ext4_init_mballoc();
6676 if (err)
6677 goto out2;
6678 err = init_inodecache();
6679 if (err)
6680 goto out1;
6681
6682 err = ext4_fc_init_dentry_cache();
6683 if (err)
6684 goto out05;
6685
6686 register_as_ext3();
6687 register_as_ext2();
6688 err = register_filesystem(&ext4_fs_type);
6689 if (err)
6690 goto out;
6691
6692 return 0;
6693 out:
6694 unregister_as_ext2();
6695 unregister_as_ext3();
6696 out05:
6697 destroy_inodecache();
6698 out1:
6699 ext4_exit_mballoc();
6700 out2:
6701 ext4_exit_sysfs();
6702 out3:
6703 ext4_exit_system_zone();
6704 out4:
6705 ext4_exit_pageio();
6706 out5:
6707 ext4_exit_post_read_processing();
6708 out6:
6709 ext4_exit_pending();
6710 out7:
6711 ext4_exit_es();
6712
6713 return err;
6714 }
6715
ext4_exit_fs(void)6716 static void __exit ext4_exit_fs(void)
6717 {
6718 ext4_destroy_lazyinit_thread();
6719 unregister_as_ext2();
6720 unregister_as_ext3();
6721 unregister_filesystem(&ext4_fs_type);
6722 destroy_inodecache();
6723 ext4_exit_mballoc();
6724 ext4_exit_sysfs();
6725 ext4_exit_system_zone();
6726 ext4_exit_pageio();
6727 ext4_exit_post_read_processing();
6728 ext4_exit_es();
6729 ext4_exit_pending();
6730 }
6731
6732 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6733 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6734 MODULE_LICENSE("GPL");
6735 MODULE_SOFTDEP("pre: crc32c");
6736 module_init(ext4_init_fs)
6737 module_exit(ext4_exit_fs)
6738