1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/namei.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/namei.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 * Directory entry file type support and forward compatibility hooks
19 * for B-tree directories by Theodore Ts'o (tytso@mit.edu), 1998
20 * Hash Tree Directory indexing (c)
21 * Daniel Phillips, 2001
22 * Hash Tree Directory indexing porting
23 * Christopher Li, 2002
24 * Hash Tree Directory indexing cleanup
25 * Theodore Ts'o, 2002
26 */
27
28 #include <linux/fs.h>
29 #include <linux/pagemap.h>
30 #include <linux/time.h>
31 #include <linux/fcntl.h>
32 #include <linux/stat.h>
33 #include <linux/string.h>
34 #include <linux/quotaops.h>
35 #include <linux/buffer_head.h>
36 #include <linux/bio.h>
37 #include <linux/iversion.h>
38 #include <linux/unicode.h>
39 #include "ext4.h"
40 #include "ext4_jbd2.h"
41
42 #include "xattr.h"
43 #include "acl.h"
44
45 #include <trace/events/ext4.h>
46 /*
47 * define how far ahead to read directories while searching them.
48 */
49 #define NAMEI_RA_CHUNKS 2
50 #define NAMEI_RA_BLOCKS 4
51 #define NAMEI_RA_SIZE (NAMEI_RA_CHUNKS * NAMEI_RA_BLOCKS)
52
ext4_append(handle_t * handle,struct inode * inode,ext4_lblk_t * block)53 static struct buffer_head *ext4_append(handle_t *handle,
54 struct inode *inode,
55 ext4_lblk_t *block)
56 {
57 struct buffer_head *bh;
58 int err;
59
60 if (unlikely(EXT4_SB(inode->i_sb)->s_max_dir_size_kb &&
61 ((inode->i_size >> 10) >=
62 EXT4_SB(inode->i_sb)->s_max_dir_size_kb)))
63 return ERR_PTR(-ENOSPC);
64
65 *block = inode->i_size >> inode->i_sb->s_blocksize_bits;
66
67 bh = ext4_bread(handle, inode, *block, EXT4_GET_BLOCKS_CREATE);
68 if (IS_ERR(bh))
69 return bh;
70 inode->i_size += inode->i_sb->s_blocksize;
71 EXT4_I(inode)->i_disksize = inode->i_size;
72 BUFFER_TRACE(bh, "get_write_access");
73 err = ext4_journal_get_write_access(handle, bh);
74 if (err) {
75 brelse(bh);
76 ext4_std_error(inode->i_sb, err);
77 return ERR_PTR(err);
78 }
79 return bh;
80 }
81
82 static int ext4_dx_csum_verify(struct inode *inode,
83 struct ext4_dir_entry *dirent);
84
85 /*
86 * Hints to ext4_read_dirblock regarding whether we expect a directory
87 * block being read to be an index block, or a block containing
88 * directory entries (and if the latter, whether it was found via a
89 * logical block in an htree index block). This is used to control
90 * what sort of sanity checkinig ext4_read_dirblock() will do on the
91 * directory block read from the storage device. EITHER will means
92 * the caller doesn't know what kind of directory block will be read,
93 * so no specific verification will be done.
94 */
95 typedef enum {
96 EITHER, INDEX, DIRENT, DIRENT_HTREE
97 } dirblock_type_t;
98
99 #define ext4_read_dirblock(inode, block, type) \
100 __ext4_read_dirblock((inode), (block), (type), __func__, __LINE__)
101
__ext4_read_dirblock(struct inode * inode,ext4_lblk_t block,dirblock_type_t type,const char * func,unsigned int line)102 static struct buffer_head *__ext4_read_dirblock(struct inode *inode,
103 ext4_lblk_t block,
104 dirblock_type_t type,
105 const char *func,
106 unsigned int line)
107 {
108 struct buffer_head *bh;
109 struct ext4_dir_entry *dirent;
110 int is_dx_block = 0;
111
112 if (ext4_simulate_fail(inode->i_sb, EXT4_SIM_DIRBLOCK_EIO))
113 bh = ERR_PTR(-EIO);
114 else
115 bh = ext4_bread(NULL, inode, block, 0);
116 if (IS_ERR(bh)) {
117 __ext4_warning(inode->i_sb, func, line,
118 "inode #%lu: lblock %lu: comm %s: "
119 "error %ld reading directory block",
120 inode->i_ino, (unsigned long)block,
121 current->comm, PTR_ERR(bh));
122
123 return bh;
124 }
125 if (!bh && (type == INDEX || type == DIRENT_HTREE)) {
126 ext4_error_inode(inode, func, line, block,
127 "Directory hole found for htree %s block",
128 (type == INDEX) ? "index" : "leaf");
129 return ERR_PTR(-EFSCORRUPTED);
130 }
131 if (!bh)
132 return NULL;
133 dirent = (struct ext4_dir_entry *) bh->b_data;
134 /* Determine whether or not we have an index block */
135 if (is_dx(inode)) {
136 if (block == 0)
137 is_dx_block = 1;
138 else if (ext4_rec_len_from_disk(dirent->rec_len,
139 inode->i_sb->s_blocksize) ==
140 inode->i_sb->s_blocksize)
141 is_dx_block = 1;
142 }
143 if (!is_dx_block && type == INDEX) {
144 ext4_error_inode(inode, func, line, block,
145 "directory leaf block found instead of index block");
146 brelse(bh);
147 return ERR_PTR(-EFSCORRUPTED);
148 }
149 if (!ext4_has_metadata_csum(inode->i_sb) ||
150 buffer_verified(bh))
151 return bh;
152
153 /*
154 * An empty leaf block can get mistaken for a index block; for
155 * this reason, we can only check the index checksum when the
156 * caller is sure it should be an index block.
157 */
158 if (is_dx_block && type == INDEX) {
159 if (ext4_dx_csum_verify(inode, dirent) &&
160 !ext4_simulate_fail(inode->i_sb, EXT4_SIM_DIRBLOCK_CRC))
161 set_buffer_verified(bh);
162 else {
163 ext4_error_inode_err(inode, func, line, block,
164 EFSBADCRC,
165 "Directory index failed checksum");
166 brelse(bh);
167 return ERR_PTR(-EFSBADCRC);
168 }
169 }
170 if (!is_dx_block) {
171 if (ext4_dirblock_csum_verify(inode, bh) &&
172 !ext4_simulate_fail(inode->i_sb, EXT4_SIM_DIRBLOCK_CRC))
173 set_buffer_verified(bh);
174 else {
175 ext4_error_inode_err(inode, func, line, block,
176 EFSBADCRC,
177 "Directory block failed checksum");
178 brelse(bh);
179 return ERR_PTR(-EFSBADCRC);
180 }
181 }
182 return bh;
183 }
184
185 #ifndef assert
186 #define assert(test) J_ASSERT(test)
187 #endif
188
189 #ifdef DX_DEBUG
190 #define dxtrace(command) command
191 #else
192 #define dxtrace(command)
193 #endif
194
195 struct fake_dirent
196 {
197 __le32 inode;
198 __le16 rec_len;
199 u8 name_len;
200 u8 file_type;
201 };
202
203 struct dx_countlimit
204 {
205 __le16 limit;
206 __le16 count;
207 };
208
209 struct dx_entry
210 {
211 __le32 hash;
212 __le32 block;
213 };
214
215 /*
216 * dx_root_info is laid out so that if it should somehow get overlaid by a
217 * dirent the two low bits of the hash version will be zero. Therefore, the
218 * hash version mod 4 should never be 0. Sincerely, the paranoia department.
219 */
220
221 struct dx_root
222 {
223 struct fake_dirent dot;
224 char dot_name[4];
225 struct fake_dirent dotdot;
226 char dotdot_name[4];
227 struct dx_root_info
228 {
229 __le32 reserved_zero;
230 u8 hash_version;
231 u8 info_length; /* 8 */
232 u8 indirect_levels;
233 u8 unused_flags;
234 }
235 info;
236 struct dx_entry entries[];
237 };
238
239 struct dx_node
240 {
241 struct fake_dirent fake;
242 struct dx_entry entries[];
243 };
244
245
246 struct dx_frame
247 {
248 struct buffer_head *bh;
249 struct dx_entry *entries;
250 struct dx_entry *at;
251 };
252
253 struct dx_map_entry
254 {
255 u32 hash;
256 u16 offs;
257 u16 size;
258 };
259
260 /*
261 * This goes at the end of each htree block.
262 */
263 struct dx_tail {
264 u32 dt_reserved;
265 __le32 dt_checksum; /* crc32c(uuid+inum+dirblock) */
266 };
267
268 static inline ext4_lblk_t dx_get_block(struct dx_entry *entry);
269 static void dx_set_block(struct dx_entry *entry, ext4_lblk_t value);
270 static inline unsigned dx_get_hash(struct dx_entry *entry);
271 static void dx_set_hash(struct dx_entry *entry, unsigned value);
272 static unsigned dx_get_count(struct dx_entry *entries);
273 static unsigned dx_get_limit(struct dx_entry *entries);
274 static void dx_set_count(struct dx_entry *entries, unsigned value);
275 static void dx_set_limit(struct dx_entry *entries, unsigned value);
276 static unsigned dx_root_limit(struct inode *dir, unsigned infosize);
277 static unsigned dx_node_limit(struct inode *dir);
278 static struct dx_frame *dx_probe(struct ext4_filename *fname,
279 struct inode *dir,
280 struct dx_hash_info *hinfo,
281 struct dx_frame *frame);
282 static void dx_release(struct dx_frame *frames);
283 static int dx_make_map(struct inode *dir, struct ext4_dir_entry_2 *de,
284 unsigned blocksize, struct dx_hash_info *hinfo,
285 struct dx_map_entry map[]);
286 static void dx_sort_map(struct dx_map_entry *map, unsigned count);
287 static struct ext4_dir_entry_2 *dx_move_dirents(char *from, char *to,
288 struct dx_map_entry *offsets, int count, unsigned blocksize);
289 static struct ext4_dir_entry_2* dx_pack_dirents(char *base, unsigned blocksize);
290 static void dx_insert_block(struct dx_frame *frame,
291 u32 hash, ext4_lblk_t block);
292 static int ext4_htree_next_block(struct inode *dir, __u32 hash,
293 struct dx_frame *frame,
294 struct dx_frame *frames,
295 __u32 *start_hash);
296 static struct buffer_head * ext4_dx_find_entry(struct inode *dir,
297 struct ext4_filename *fname,
298 struct ext4_dir_entry_2 **res_dir);
299 static int ext4_dx_add_entry(handle_t *handle, struct ext4_filename *fname,
300 struct inode *dir, struct inode *inode);
301
302 /* checksumming functions */
ext4_initialize_dirent_tail(struct buffer_head * bh,unsigned int blocksize)303 void ext4_initialize_dirent_tail(struct buffer_head *bh,
304 unsigned int blocksize)
305 {
306 struct ext4_dir_entry_tail *t = EXT4_DIRENT_TAIL(bh->b_data, blocksize);
307
308 memset(t, 0, sizeof(struct ext4_dir_entry_tail));
309 t->det_rec_len = ext4_rec_len_to_disk(
310 sizeof(struct ext4_dir_entry_tail), blocksize);
311 t->det_reserved_ft = EXT4_FT_DIR_CSUM;
312 }
313
314 /* Walk through a dirent block to find a checksum "dirent" at the tail */
get_dirent_tail(struct inode * inode,struct buffer_head * bh)315 static struct ext4_dir_entry_tail *get_dirent_tail(struct inode *inode,
316 struct buffer_head *bh)
317 {
318 struct ext4_dir_entry_tail *t;
319
320 #ifdef PARANOID
321 struct ext4_dir_entry *d, *top;
322
323 d = (struct ext4_dir_entry *)bh->b_data;
324 top = (struct ext4_dir_entry *)(bh->b_data +
325 (EXT4_BLOCK_SIZE(inode->i_sb) -
326 sizeof(struct ext4_dir_entry_tail)));
327 while (d < top && d->rec_len)
328 d = (struct ext4_dir_entry *)(((void *)d) +
329 le16_to_cpu(d->rec_len));
330
331 if (d != top)
332 return NULL;
333
334 t = (struct ext4_dir_entry_tail *)d;
335 #else
336 t = EXT4_DIRENT_TAIL(bh->b_data, EXT4_BLOCK_SIZE(inode->i_sb));
337 #endif
338
339 if (t->det_reserved_zero1 ||
340 le16_to_cpu(t->det_rec_len) != sizeof(struct ext4_dir_entry_tail) ||
341 t->det_reserved_zero2 ||
342 t->det_reserved_ft != EXT4_FT_DIR_CSUM)
343 return NULL;
344
345 return t;
346 }
347
ext4_dirblock_csum(struct inode * inode,void * dirent,int size)348 static __le32 ext4_dirblock_csum(struct inode *inode, void *dirent, int size)
349 {
350 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
351 struct ext4_inode_info *ei = EXT4_I(inode);
352 __u32 csum;
353
354 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)dirent, size);
355 return cpu_to_le32(csum);
356 }
357
358 #define warn_no_space_for_csum(inode) \
359 __warn_no_space_for_csum((inode), __func__, __LINE__)
360
__warn_no_space_for_csum(struct inode * inode,const char * func,unsigned int line)361 static void __warn_no_space_for_csum(struct inode *inode, const char *func,
362 unsigned int line)
363 {
364 __ext4_warning_inode(inode, func, line,
365 "No space for directory leaf checksum. Please run e2fsck -D.");
366 }
367
ext4_dirblock_csum_verify(struct inode * inode,struct buffer_head * bh)368 int ext4_dirblock_csum_verify(struct inode *inode, struct buffer_head *bh)
369 {
370 struct ext4_dir_entry_tail *t;
371
372 if (!ext4_has_metadata_csum(inode->i_sb))
373 return 1;
374
375 t = get_dirent_tail(inode, bh);
376 if (!t) {
377 warn_no_space_for_csum(inode);
378 return 0;
379 }
380
381 if (t->det_checksum != ext4_dirblock_csum(inode, bh->b_data,
382 (char *)t - bh->b_data))
383 return 0;
384
385 return 1;
386 }
387
ext4_dirblock_csum_set(struct inode * inode,struct buffer_head * bh)388 static void ext4_dirblock_csum_set(struct inode *inode,
389 struct buffer_head *bh)
390 {
391 struct ext4_dir_entry_tail *t;
392
393 if (!ext4_has_metadata_csum(inode->i_sb))
394 return;
395
396 t = get_dirent_tail(inode, bh);
397 if (!t) {
398 warn_no_space_for_csum(inode);
399 return;
400 }
401
402 t->det_checksum = ext4_dirblock_csum(inode, bh->b_data,
403 (char *)t - bh->b_data);
404 }
405
ext4_handle_dirty_dirblock(handle_t * handle,struct inode * inode,struct buffer_head * bh)406 int ext4_handle_dirty_dirblock(handle_t *handle,
407 struct inode *inode,
408 struct buffer_head *bh)
409 {
410 ext4_dirblock_csum_set(inode, bh);
411 return ext4_handle_dirty_metadata(handle, inode, bh);
412 }
413
get_dx_countlimit(struct inode * inode,struct ext4_dir_entry * dirent,int * offset)414 static struct dx_countlimit *get_dx_countlimit(struct inode *inode,
415 struct ext4_dir_entry *dirent,
416 int *offset)
417 {
418 struct ext4_dir_entry *dp;
419 struct dx_root_info *root;
420 int count_offset;
421
422 if (le16_to_cpu(dirent->rec_len) == EXT4_BLOCK_SIZE(inode->i_sb))
423 count_offset = 8;
424 else if (le16_to_cpu(dirent->rec_len) == 12) {
425 dp = (struct ext4_dir_entry *)(((void *)dirent) + 12);
426 if (le16_to_cpu(dp->rec_len) !=
427 EXT4_BLOCK_SIZE(inode->i_sb) - 12)
428 return NULL;
429 root = (struct dx_root_info *)(((void *)dp + 12));
430 if (root->reserved_zero ||
431 root->info_length != sizeof(struct dx_root_info))
432 return NULL;
433 count_offset = 32;
434 } else
435 return NULL;
436
437 if (offset)
438 *offset = count_offset;
439 return (struct dx_countlimit *)(((void *)dirent) + count_offset);
440 }
441
ext4_dx_csum(struct inode * inode,struct ext4_dir_entry * dirent,int count_offset,int count,struct dx_tail * t)442 static __le32 ext4_dx_csum(struct inode *inode, struct ext4_dir_entry *dirent,
443 int count_offset, int count, struct dx_tail *t)
444 {
445 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
446 struct ext4_inode_info *ei = EXT4_I(inode);
447 __u32 csum;
448 int size;
449 __u32 dummy_csum = 0;
450 int offset = offsetof(struct dx_tail, dt_checksum);
451
452 size = count_offset + (count * sizeof(struct dx_entry));
453 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)dirent, size);
454 csum = ext4_chksum(sbi, csum, (__u8 *)t, offset);
455 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, sizeof(dummy_csum));
456
457 return cpu_to_le32(csum);
458 }
459
ext4_dx_csum_verify(struct inode * inode,struct ext4_dir_entry * dirent)460 static int ext4_dx_csum_verify(struct inode *inode,
461 struct ext4_dir_entry *dirent)
462 {
463 struct dx_countlimit *c;
464 struct dx_tail *t;
465 int count_offset, limit, count;
466
467 if (!ext4_has_metadata_csum(inode->i_sb))
468 return 1;
469
470 c = get_dx_countlimit(inode, dirent, &count_offset);
471 if (!c) {
472 EXT4_ERROR_INODE(inode, "dir seems corrupt? Run e2fsck -D.");
473 return 0;
474 }
475 limit = le16_to_cpu(c->limit);
476 count = le16_to_cpu(c->count);
477 if (count_offset + (limit * sizeof(struct dx_entry)) >
478 EXT4_BLOCK_SIZE(inode->i_sb) - sizeof(struct dx_tail)) {
479 warn_no_space_for_csum(inode);
480 return 0;
481 }
482 t = (struct dx_tail *)(((struct dx_entry *)c) + limit);
483
484 if (t->dt_checksum != ext4_dx_csum(inode, dirent, count_offset,
485 count, t))
486 return 0;
487 return 1;
488 }
489
ext4_dx_csum_set(struct inode * inode,struct ext4_dir_entry * dirent)490 static void ext4_dx_csum_set(struct inode *inode, struct ext4_dir_entry *dirent)
491 {
492 struct dx_countlimit *c;
493 struct dx_tail *t;
494 int count_offset, limit, count;
495
496 if (!ext4_has_metadata_csum(inode->i_sb))
497 return;
498
499 c = get_dx_countlimit(inode, dirent, &count_offset);
500 if (!c) {
501 EXT4_ERROR_INODE(inode, "dir seems corrupt? Run e2fsck -D.");
502 return;
503 }
504 limit = le16_to_cpu(c->limit);
505 count = le16_to_cpu(c->count);
506 if (count_offset + (limit * sizeof(struct dx_entry)) >
507 EXT4_BLOCK_SIZE(inode->i_sb) - sizeof(struct dx_tail)) {
508 warn_no_space_for_csum(inode);
509 return;
510 }
511 t = (struct dx_tail *)(((struct dx_entry *)c) + limit);
512
513 t->dt_checksum = ext4_dx_csum(inode, dirent, count_offset, count, t);
514 }
515
ext4_handle_dirty_dx_node(handle_t * handle,struct inode * inode,struct buffer_head * bh)516 static inline int ext4_handle_dirty_dx_node(handle_t *handle,
517 struct inode *inode,
518 struct buffer_head *bh)
519 {
520 ext4_dx_csum_set(inode, (struct ext4_dir_entry *)bh->b_data);
521 return ext4_handle_dirty_metadata(handle, inode, bh);
522 }
523
524 /*
525 * p is at least 6 bytes before the end of page
526 */
527 static inline struct ext4_dir_entry_2 *
ext4_next_entry(struct ext4_dir_entry_2 * p,unsigned long blocksize)528 ext4_next_entry(struct ext4_dir_entry_2 *p, unsigned long blocksize)
529 {
530 return (struct ext4_dir_entry_2 *)((char *)p +
531 ext4_rec_len_from_disk(p->rec_len, blocksize));
532 }
533
534 /*
535 * Future: use high four bits of block for coalesce-on-delete flags
536 * Mask them off for now.
537 */
538
dx_get_block(struct dx_entry * entry)539 static inline ext4_lblk_t dx_get_block(struct dx_entry *entry)
540 {
541 return le32_to_cpu(entry->block) & 0x0fffffff;
542 }
543
dx_set_block(struct dx_entry * entry,ext4_lblk_t value)544 static inline void dx_set_block(struct dx_entry *entry, ext4_lblk_t value)
545 {
546 entry->block = cpu_to_le32(value);
547 }
548
dx_get_hash(struct dx_entry * entry)549 static inline unsigned dx_get_hash(struct dx_entry *entry)
550 {
551 return le32_to_cpu(entry->hash);
552 }
553
dx_set_hash(struct dx_entry * entry,unsigned value)554 static inline void dx_set_hash(struct dx_entry *entry, unsigned value)
555 {
556 entry->hash = cpu_to_le32(value);
557 }
558
dx_get_count(struct dx_entry * entries)559 static inline unsigned dx_get_count(struct dx_entry *entries)
560 {
561 return le16_to_cpu(((struct dx_countlimit *) entries)->count);
562 }
563
dx_get_limit(struct dx_entry * entries)564 static inline unsigned dx_get_limit(struct dx_entry *entries)
565 {
566 return le16_to_cpu(((struct dx_countlimit *) entries)->limit);
567 }
568
dx_set_count(struct dx_entry * entries,unsigned value)569 static inline void dx_set_count(struct dx_entry *entries, unsigned value)
570 {
571 ((struct dx_countlimit *) entries)->count = cpu_to_le16(value);
572 }
573
dx_set_limit(struct dx_entry * entries,unsigned value)574 static inline void dx_set_limit(struct dx_entry *entries, unsigned value)
575 {
576 ((struct dx_countlimit *) entries)->limit = cpu_to_le16(value);
577 }
578
dx_root_limit(struct inode * dir,unsigned infosize)579 static inline unsigned dx_root_limit(struct inode *dir, unsigned infosize)
580 {
581 unsigned entry_space = dir->i_sb->s_blocksize - EXT4_DIR_REC_LEN(1) -
582 EXT4_DIR_REC_LEN(2) - infosize;
583
584 if (ext4_has_metadata_csum(dir->i_sb))
585 entry_space -= sizeof(struct dx_tail);
586 return entry_space / sizeof(struct dx_entry);
587 }
588
dx_node_limit(struct inode * dir)589 static inline unsigned dx_node_limit(struct inode *dir)
590 {
591 unsigned entry_space = dir->i_sb->s_blocksize - EXT4_DIR_REC_LEN(0);
592
593 if (ext4_has_metadata_csum(dir->i_sb))
594 entry_space -= sizeof(struct dx_tail);
595 return entry_space / sizeof(struct dx_entry);
596 }
597
598 /*
599 * Debug
600 */
601 #ifdef DX_DEBUG
dx_show_index(char * label,struct dx_entry * entries)602 static void dx_show_index(char * label, struct dx_entry *entries)
603 {
604 int i, n = dx_get_count (entries);
605 printk(KERN_DEBUG "%s index", label);
606 for (i = 0; i < n; i++) {
607 printk(KERN_CONT " %x->%lu",
608 i ? dx_get_hash(entries + i) : 0,
609 (unsigned long)dx_get_block(entries + i));
610 }
611 printk(KERN_CONT "\n");
612 }
613
614 struct stats
615 {
616 unsigned names;
617 unsigned space;
618 unsigned bcount;
619 };
620
dx_show_leaf(struct inode * dir,struct dx_hash_info * hinfo,struct ext4_dir_entry_2 * de,int size,int show_names)621 static struct stats dx_show_leaf(struct inode *dir,
622 struct dx_hash_info *hinfo,
623 struct ext4_dir_entry_2 *de,
624 int size, int show_names)
625 {
626 unsigned names = 0, space = 0;
627 char *base = (char *) de;
628 struct dx_hash_info h = *hinfo;
629
630 printk("names: ");
631 while ((char *) de < base + size)
632 {
633 if (de->inode)
634 {
635 if (show_names)
636 {
637 #ifdef CONFIG_FS_ENCRYPTION
638 int len;
639 char *name;
640 struct fscrypt_str fname_crypto_str =
641 FSTR_INIT(NULL, 0);
642 int res = 0;
643
644 name = de->name;
645 len = de->name_len;
646 if (IS_ENCRYPTED(dir))
647 res = fscrypt_get_encryption_info(dir);
648 if (res) {
649 printk(KERN_WARNING "Error setting up"
650 " fname crypto: %d\n", res);
651 }
652 if (!fscrypt_has_encryption_key(dir)) {
653 /* Directory is not encrypted */
654 ext4fs_dirhash(dir, de->name,
655 de->name_len, &h);
656 printk("%*.s:(U)%x.%u ", len,
657 name, h.hash,
658 (unsigned) ((char *) de
659 - base));
660 } else {
661 struct fscrypt_str de_name =
662 FSTR_INIT(name, len);
663
664 /* Directory is encrypted */
665 res = fscrypt_fname_alloc_buffer(
666 len, &fname_crypto_str);
667 if (res)
668 printk(KERN_WARNING "Error "
669 "allocating crypto "
670 "buffer--skipping "
671 "crypto\n");
672 res = fscrypt_fname_disk_to_usr(dir,
673 0, 0, &de_name,
674 &fname_crypto_str);
675 if (res) {
676 printk(KERN_WARNING "Error "
677 "converting filename "
678 "from disk to usr"
679 "\n");
680 name = "??";
681 len = 2;
682 } else {
683 name = fname_crypto_str.name;
684 len = fname_crypto_str.len;
685 }
686 ext4fs_dirhash(dir, de->name,
687 de->name_len, &h);
688 printk("%*.s:(E)%x.%u ", len, name,
689 h.hash, (unsigned) ((char *) de
690 - base));
691 fscrypt_fname_free_buffer(
692 &fname_crypto_str);
693 }
694 #else
695 int len = de->name_len;
696 char *name = de->name;
697 ext4fs_dirhash(dir, de->name, de->name_len, &h);
698 printk("%*.s:%x.%u ", len, name, h.hash,
699 (unsigned) ((char *) de - base));
700 #endif
701 }
702 space += EXT4_DIR_REC_LEN(de->name_len);
703 names++;
704 }
705 de = ext4_next_entry(de, size);
706 }
707 printk(KERN_CONT "(%i)\n", names);
708 return (struct stats) { names, space, 1 };
709 }
710
dx_show_entries(struct dx_hash_info * hinfo,struct inode * dir,struct dx_entry * entries,int levels)711 struct stats dx_show_entries(struct dx_hash_info *hinfo, struct inode *dir,
712 struct dx_entry *entries, int levels)
713 {
714 unsigned blocksize = dir->i_sb->s_blocksize;
715 unsigned count = dx_get_count(entries), names = 0, space = 0, i;
716 unsigned bcount = 0;
717 struct buffer_head *bh;
718 printk("%i indexed blocks...\n", count);
719 for (i = 0; i < count; i++, entries++)
720 {
721 ext4_lblk_t block = dx_get_block(entries);
722 ext4_lblk_t hash = i ? dx_get_hash(entries): 0;
723 u32 range = i < count - 1? (dx_get_hash(entries + 1) - hash): ~hash;
724 struct stats stats;
725 printk("%s%3u:%03u hash %8x/%8x ",levels?"":" ", i, block, hash, range);
726 bh = ext4_bread(NULL,dir, block, 0);
727 if (!bh || IS_ERR(bh))
728 continue;
729 stats = levels?
730 dx_show_entries(hinfo, dir, ((struct dx_node *) bh->b_data)->entries, levels - 1):
731 dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *)
732 bh->b_data, blocksize, 0);
733 names += stats.names;
734 space += stats.space;
735 bcount += stats.bcount;
736 brelse(bh);
737 }
738 if (bcount)
739 printk(KERN_DEBUG "%snames %u, fullness %u (%u%%)\n",
740 levels ? "" : " ", names, space/bcount,
741 (space/bcount)*100/blocksize);
742 return (struct stats) { names, space, bcount};
743 }
744 #endif /* DX_DEBUG */
745
746 /*
747 * Probe for a directory leaf block to search.
748 *
749 * dx_probe can return ERR_BAD_DX_DIR, which means there was a format
750 * error in the directory index, and the caller should fall back to
751 * searching the directory normally. The callers of dx_probe **MUST**
752 * check for this error code, and make sure it never gets reflected
753 * back to userspace.
754 */
755 static struct dx_frame *
dx_probe(struct ext4_filename * fname,struct inode * dir,struct dx_hash_info * hinfo,struct dx_frame * frame_in)756 dx_probe(struct ext4_filename *fname, struct inode *dir,
757 struct dx_hash_info *hinfo, struct dx_frame *frame_in)
758 {
759 unsigned count, indirect;
760 struct dx_entry *at, *entries, *p, *q, *m;
761 struct dx_root *root;
762 struct dx_frame *frame = frame_in;
763 struct dx_frame *ret_err = ERR_PTR(ERR_BAD_DX_DIR);
764 u32 hash;
765
766 memset(frame_in, 0, EXT4_HTREE_LEVEL * sizeof(frame_in[0]));
767 frame->bh = ext4_read_dirblock(dir, 0, INDEX);
768 if (IS_ERR(frame->bh))
769 return (struct dx_frame *) frame->bh;
770
771 root = (struct dx_root *) frame->bh->b_data;
772 if (root->info.hash_version != DX_HASH_TEA &&
773 root->info.hash_version != DX_HASH_HALF_MD4 &&
774 root->info.hash_version != DX_HASH_LEGACY) {
775 ext4_warning_inode(dir, "Unrecognised inode hash code %u",
776 root->info.hash_version);
777 goto fail;
778 }
779 if (fname)
780 hinfo = &fname->hinfo;
781 hinfo->hash_version = root->info.hash_version;
782 if (hinfo->hash_version <= DX_HASH_TEA)
783 hinfo->hash_version += EXT4_SB(dir->i_sb)->s_hash_unsigned;
784 hinfo->seed = EXT4_SB(dir->i_sb)->s_hash_seed;
785 if (fname && fname_name(fname))
786 ext4fs_dirhash(dir, fname_name(fname), fname_len(fname), hinfo);
787 hash = hinfo->hash;
788
789 if (root->info.unused_flags & 1) {
790 ext4_warning_inode(dir, "Unimplemented hash flags: %#06x",
791 root->info.unused_flags);
792 goto fail;
793 }
794
795 indirect = root->info.indirect_levels;
796 if (indirect >= ext4_dir_htree_level(dir->i_sb)) {
797 ext4_warning(dir->i_sb,
798 "Directory (ino: %lu) htree depth %#06x exceed"
799 "supported value", dir->i_ino,
800 ext4_dir_htree_level(dir->i_sb));
801 if (ext4_dir_htree_level(dir->i_sb) < EXT4_HTREE_LEVEL) {
802 ext4_warning(dir->i_sb, "Enable large directory "
803 "feature to access it");
804 }
805 goto fail;
806 }
807
808 entries = (struct dx_entry *)(((char *)&root->info) +
809 root->info.info_length);
810
811 if (dx_get_limit(entries) != dx_root_limit(dir,
812 root->info.info_length)) {
813 ext4_warning_inode(dir, "dx entry: limit %u != root limit %u",
814 dx_get_limit(entries),
815 dx_root_limit(dir, root->info.info_length));
816 goto fail;
817 }
818
819 dxtrace(printk("Look up %x", hash));
820 while (1) {
821 count = dx_get_count(entries);
822 if (!count || count > dx_get_limit(entries)) {
823 ext4_warning_inode(dir,
824 "dx entry: count %u beyond limit %u",
825 count, dx_get_limit(entries));
826 goto fail;
827 }
828
829 p = entries + 1;
830 q = entries + count - 1;
831 while (p <= q) {
832 m = p + (q - p) / 2;
833 dxtrace(printk(KERN_CONT "."));
834 if (dx_get_hash(m) > hash)
835 q = m - 1;
836 else
837 p = m + 1;
838 }
839
840 if (0) { // linear search cross check
841 unsigned n = count - 1;
842 at = entries;
843 while (n--)
844 {
845 dxtrace(printk(KERN_CONT ","));
846 if (dx_get_hash(++at) > hash)
847 {
848 at--;
849 break;
850 }
851 }
852 assert (at == p - 1);
853 }
854
855 at = p - 1;
856 dxtrace(printk(KERN_CONT " %x->%u\n",
857 at == entries ? 0 : dx_get_hash(at),
858 dx_get_block(at)));
859 frame->entries = entries;
860 frame->at = at;
861 if (!indirect--)
862 return frame;
863 frame++;
864 frame->bh = ext4_read_dirblock(dir, dx_get_block(at), INDEX);
865 if (IS_ERR(frame->bh)) {
866 ret_err = (struct dx_frame *) frame->bh;
867 frame->bh = NULL;
868 goto fail;
869 }
870 entries = ((struct dx_node *) frame->bh->b_data)->entries;
871
872 if (dx_get_limit(entries) != dx_node_limit(dir)) {
873 ext4_warning_inode(dir,
874 "dx entry: limit %u != node limit %u",
875 dx_get_limit(entries), dx_node_limit(dir));
876 goto fail;
877 }
878 }
879 fail:
880 while (frame >= frame_in) {
881 brelse(frame->bh);
882 frame--;
883 }
884
885 if (ret_err == ERR_PTR(ERR_BAD_DX_DIR))
886 ext4_warning_inode(dir,
887 "Corrupt directory, running e2fsck is recommended");
888 return ret_err;
889 }
890
dx_release(struct dx_frame * frames)891 static void dx_release(struct dx_frame *frames)
892 {
893 struct dx_root_info *info;
894 int i;
895 unsigned int indirect_levels;
896
897 if (frames[0].bh == NULL)
898 return;
899
900 info = &((struct dx_root *)frames[0].bh->b_data)->info;
901 /* save local copy, "info" may be freed after brelse() */
902 indirect_levels = info->indirect_levels;
903 for (i = 0; i <= indirect_levels; i++) {
904 if (frames[i].bh == NULL)
905 break;
906 brelse(frames[i].bh);
907 frames[i].bh = NULL;
908 }
909 }
910
911 /*
912 * This function increments the frame pointer to search the next leaf
913 * block, and reads in the necessary intervening nodes if the search
914 * should be necessary. Whether or not the search is necessary is
915 * controlled by the hash parameter. If the hash value is even, then
916 * the search is only continued if the next block starts with that
917 * hash value. This is used if we are searching for a specific file.
918 *
919 * If the hash value is HASH_NB_ALWAYS, then always go to the next block.
920 *
921 * This function returns 1 if the caller should continue to search,
922 * or 0 if it should not. If there is an error reading one of the
923 * index blocks, it will a negative error code.
924 *
925 * If start_hash is non-null, it will be filled in with the starting
926 * hash of the next page.
927 */
ext4_htree_next_block(struct inode * dir,__u32 hash,struct dx_frame * frame,struct dx_frame * frames,__u32 * start_hash)928 static int ext4_htree_next_block(struct inode *dir, __u32 hash,
929 struct dx_frame *frame,
930 struct dx_frame *frames,
931 __u32 *start_hash)
932 {
933 struct dx_frame *p;
934 struct buffer_head *bh;
935 int num_frames = 0;
936 __u32 bhash;
937
938 p = frame;
939 /*
940 * Find the next leaf page by incrementing the frame pointer.
941 * If we run out of entries in the interior node, loop around and
942 * increment pointer in the parent node. When we break out of
943 * this loop, num_frames indicates the number of interior
944 * nodes need to be read.
945 */
946 while (1) {
947 if (++(p->at) < p->entries + dx_get_count(p->entries))
948 break;
949 if (p == frames)
950 return 0;
951 num_frames++;
952 p--;
953 }
954
955 /*
956 * If the hash is 1, then continue only if the next page has a
957 * continuation hash of any value. This is used for readdir
958 * handling. Otherwise, check to see if the hash matches the
959 * desired contiuation hash. If it doesn't, return since
960 * there's no point to read in the successive index pages.
961 */
962 bhash = dx_get_hash(p->at);
963 if (start_hash)
964 *start_hash = bhash;
965 if ((hash & 1) == 0) {
966 if ((bhash & ~1) != hash)
967 return 0;
968 }
969 /*
970 * If the hash is HASH_NB_ALWAYS, we always go to the next
971 * block so no check is necessary
972 */
973 while (num_frames--) {
974 bh = ext4_read_dirblock(dir, dx_get_block(p->at), INDEX);
975 if (IS_ERR(bh))
976 return PTR_ERR(bh);
977 p++;
978 brelse(p->bh);
979 p->bh = bh;
980 p->at = p->entries = ((struct dx_node *) bh->b_data)->entries;
981 }
982 return 1;
983 }
984
985
986 /*
987 * This function fills a red-black tree with information from a
988 * directory block. It returns the number directory entries loaded
989 * into the tree. If there is an error it is returned in err.
990 */
htree_dirblock_to_tree(struct file * dir_file,struct inode * dir,ext4_lblk_t block,struct dx_hash_info * hinfo,__u32 start_hash,__u32 start_minor_hash)991 static int htree_dirblock_to_tree(struct file *dir_file,
992 struct inode *dir, ext4_lblk_t block,
993 struct dx_hash_info *hinfo,
994 __u32 start_hash, __u32 start_minor_hash)
995 {
996 struct buffer_head *bh;
997 struct ext4_dir_entry_2 *de, *top;
998 int err = 0, count = 0;
999 struct fscrypt_str fname_crypto_str = FSTR_INIT(NULL, 0), tmp_str;
1000
1001 dxtrace(printk(KERN_INFO "In htree dirblock_to_tree: block %lu\n",
1002 (unsigned long)block));
1003 bh = ext4_read_dirblock(dir, block, DIRENT_HTREE);
1004 if (IS_ERR(bh))
1005 return PTR_ERR(bh);
1006
1007 de = (struct ext4_dir_entry_2 *) bh->b_data;
1008 top = (struct ext4_dir_entry_2 *) ((char *) de +
1009 dir->i_sb->s_blocksize -
1010 EXT4_DIR_REC_LEN(0));
1011 /* Check if the directory is encrypted */
1012 if (IS_ENCRYPTED(dir)) {
1013 err = fscrypt_get_encryption_info(dir);
1014 if (err < 0) {
1015 brelse(bh);
1016 return err;
1017 }
1018 err = fscrypt_fname_alloc_buffer(EXT4_NAME_LEN,
1019 &fname_crypto_str);
1020 if (err < 0) {
1021 brelse(bh);
1022 return err;
1023 }
1024 }
1025
1026 for (; de < top; de = ext4_next_entry(de, dir->i_sb->s_blocksize)) {
1027 if (ext4_check_dir_entry(dir, NULL, de, bh,
1028 bh->b_data, bh->b_size,
1029 (block<<EXT4_BLOCK_SIZE_BITS(dir->i_sb))
1030 + ((char *)de - bh->b_data))) {
1031 /* silently ignore the rest of the block */
1032 break;
1033 }
1034 ext4fs_dirhash(dir, de->name, de->name_len, hinfo);
1035 if ((hinfo->hash < start_hash) ||
1036 ((hinfo->hash == start_hash) &&
1037 (hinfo->minor_hash < start_minor_hash)))
1038 continue;
1039 if (de->inode == 0)
1040 continue;
1041 if (!IS_ENCRYPTED(dir)) {
1042 tmp_str.name = de->name;
1043 tmp_str.len = de->name_len;
1044 err = ext4_htree_store_dirent(dir_file,
1045 hinfo->hash, hinfo->minor_hash, de,
1046 &tmp_str);
1047 } else {
1048 int save_len = fname_crypto_str.len;
1049 struct fscrypt_str de_name = FSTR_INIT(de->name,
1050 de->name_len);
1051
1052 /* Directory is encrypted */
1053 err = fscrypt_fname_disk_to_usr(dir, hinfo->hash,
1054 hinfo->minor_hash, &de_name,
1055 &fname_crypto_str);
1056 if (err) {
1057 count = err;
1058 goto errout;
1059 }
1060 err = ext4_htree_store_dirent(dir_file,
1061 hinfo->hash, hinfo->minor_hash, de,
1062 &fname_crypto_str);
1063 fname_crypto_str.len = save_len;
1064 }
1065 if (err != 0) {
1066 count = err;
1067 goto errout;
1068 }
1069 count++;
1070 }
1071 errout:
1072 brelse(bh);
1073 fscrypt_fname_free_buffer(&fname_crypto_str);
1074 return count;
1075 }
1076
1077
1078 /*
1079 * This function fills a red-black tree with information from a
1080 * directory. We start scanning the directory in hash order, starting
1081 * at start_hash and start_minor_hash.
1082 *
1083 * This function returns the number of entries inserted into the tree,
1084 * or a negative error code.
1085 */
ext4_htree_fill_tree(struct file * dir_file,__u32 start_hash,__u32 start_minor_hash,__u32 * next_hash)1086 int ext4_htree_fill_tree(struct file *dir_file, __u32 start_hash,
1087 __u32 start_minor_hash, __u32 *next_hash)
1088 {
1089 struct dx_hash_info hinfo;
1090 struct ext4_dir_entry_2 *de;
1091 struct dx_frame frames[EXT4_HTREE_LEVEL], *frame;
1092 struct inode *dir;
1093 ext4_lblk_t block;
1094 int count = 0;
1095 int ret, err;
1096 __u32 hashval;
1097 struct fscrypt_str tmp_str;
1098
1099 dxtrace(printk(KERN_DEBUG "In htree_fill_tree, start hash: %x:%x\n",
1100 start_hash, start_minor_hash));
1101 dir = file_inode(dir_file);
1102 if (!(ext4_test_inode_flag(dir, EXT4_INODE_INDEX))) {
1103 hinfo.hash_version = EXT4_SB(dir->i_sb)->s_def_hash_version;
1104 if (hinfo.hash_version <= DX_HASH_TEA)
1105 hinfo.hash_version +=
1106 EXT4_SB(dir->i_sb)->s_hash_unsigned;
1107 hinfo.seed = EXT4_SB(dir->i_sb)->s_hash_seed;
1108 if (ext4_has_inline_data(dir)) {
1109 int has_inline_data = 1;
1110 count = ext4_inlinedir_to_tree(dir_file, dir, 0,
1111 &hinfo, start_hash,
1112 start_minor_hash,
1113 &has_inline_data);
1114 if (has_inline_data) {
1115 *next_hash = ~0;
1116 return count;
1117 }
1118 }
1119 count = htree_dirblock_to_tree(dir_file, dir, 0, &hinfo,
1120 start_hash, start_minor_hash);
1121 *next_hash = ~0;
1122 return count;
1123 }
1124 hinfo.hash = start_hash;
1125 hinfo.minor_hash = 0;
1126 frame = dx_probe(NULL, dir, &hinfo, frames);
1127 if (IS_ERR(frame))
1128 return PTR_ERR(frame);
1129
1130 /* Add '.' and '..' from the htree header */
1131 if (!start_hash && !start_minor_hash) {
1132 de = (struct ext4_dir_entry_2 *) frames[0].bh->b_data;
1133 tmp_str.name = de->name;
1134 tmp_str.len = de->name_len;
1135 err = ext4_htree_store_dirent(dir_file, 0, 0,
1136 de, &tmp_str);
1137 if (err != 0)
1138 goto errout;
1139 count++;
1140 }
1141 if (start_hash < 2 || (start_hash ==2 && start_minor_hash==0)) {
1142 de = (struct ext4_dir_entry_2 *) frames[0].bh->b_data;
1143 de = ext4_next_entry(de, dir->i_sb->s_blocksize);
1144 tmp_str.name = de->name;
1145 tmp_str.len = de->name_len;
1146 err = ext4_htree_store_dirent(dir_file, 2, 0,
1147 de, &tmp_str);
1148 if (err != 0)
1149 goto errout;
1150 count++;
1151 }
1152
1153 while (1) {
1154 if (fatal_signal_pending(current)) {
1155 err = -ERESTARTSYS;
1156 goto errout;
1157 }
1158 cond_resched();
1159 block = dx_get_block(frame->at);
1160 ret = htree_dirblock_to_tree(dir_file, dir, block, &hinfo,
1161 start_hash, start_minor_hash);
1162 if (ret < 0) {
1163 err = ret;
1164 goto errout;
1165 }
1166 count += ret;
1167 hashval = ~0;
1168 ret = ext4_htree_next_block(dir, HASH_NB_ALWAYS,
1169 frame, frames, &hashval);
1170 *next_hash = hashval;
1171 if (ret < 0) {
1172 err = ret;
1173 goto errout;
1174 }
1175 /*
1176 * Stop if: (a) there are no more entries, or
1177 * (b) we have inserted at least one entry and the
1178 * next hash value is not a continuation
1179 */
1180 if ((ret == 0) ||
1181 (count && ((hashval & 1) == 0)))
1182 break;
1183 }
1184 dx_release(frames);
1185 dxtrace(printk(KERN_DEBUG "Fill tree: returned %d entries, "
1186 "next hash: %x\n", count, *next_hash));
1187 return count;
1188 errout:
1189 dx_release(frames);
1190 return (err);
1191 }
1192
search_dirblock(struct buffer_head * bh,struct inode * dir,struct ext4_filename * fname,unsigned int offset,struct ext4_dir_entry_2 ** res_dir)1193 static inline int search_dirblock(struct buffer_head *bh,
1194 struct inode *dir,
1195 struct ext4_filename *fname,
1196 unsigned int offset,
1197 struct ext4_dir_entry_2 **res_dir)
1198 {
1199 return ext4_search_dir(bh, bh->b_data, dir->i_sb->s_blocksize, dir,
1200 fname, offset, res_dir);
1201 }
1202
1203 /*
1204 * Directory block splitting, compacting
1205 */
1206
1207 /*
1208 * Create map of hash values, offsets, and sizes, stored at end of block.
1209 * Returns number of entries mapped.
1210 */
dx_make_map(struct inode * dir,struct ext4_dir_entry_2 * de,unsigned blocksize,struct dx_hash_info * hinfo,struct dx_map_entry * map_tail)1211 static int dx_make_map(struct inode *dir, struct ext4_dir_entry_2 *de,
1212 unsigned blocksize, struct dx_hash_info *hinfo,
1213 struct dx_map_entry *map_tail)
1214 {
1215 int count = 0;
1216 char *base = (char *) de;
1217 struct dx_hash_info h = *hinfo;
1218
1219 while ((char *) de < base + blocksize) {
1220 if (de->name_len && de->inode) {
1221 ext4fs_dirhash(dir, de->name, de->name_len, &h);
1222 map_tail--;
1223 map_tail->hash = h.hash;
1224 map_tail->offs = ((char *) de - base)>>2;
1225 map_tail->size = le16_to_cpu(de->rec_len);
1226 count++;
1227 cond_resched();
1228 }
1229 /* XXX: do we need to check rec_len == 0 case? -Chris */
1230 de = ext4_next_entry(de, blocksize);
1231 }
1232 return count;
1233 }
1234
1235 /* Sort map by hash value */
dx_sort_map(struct dx_map_entry * map,unsigned count)1236 static void dx_sort_map (struct dx_map_entry *map, unsigned count)
1237 {
1238 struct dx_map_entry *p, *q, *top = map + count - 1;
1239 int more;
1240 /* Combsort until bubble sort doesn't suck */
1241 while (count > 2) {
1242 count = count*10/13;
1243 if (count - 9 < 2) /* 9, 10 -> 11 */
1244 count = 11;
1245 for (p = top, q = p - count; q >= map; p--, q--)
1246 if (p->hash < q->hash)
1247 swap(*p, *q);
1248 }
1249 /* Garden variety bubble sort */
1250 do {
1251 more = 0;
1252 q = top;
1253 while (q-- > map) {
1254 if (q[1].hash >= q[0].hash)
1255 continue;
1256 swap(*(q+1), *q);
1257 more = 1;
1258 }
1259 } while(more);
1260 }
1261
dx_insert_block(struct dx_frame * frame,u32 hash,ext4_lblk_t block)1262 static void dx_insert_block(struct dx_frame *frame, u32 hash, ext4_lblk_t block)
1263 {
1264 struct dx_entry *entries = frame->entries;
1265 struct dx_entry *old = frame->at, *new = old + 1;
1266 int count = dx_get_count(entries);
1267
1268 assert(count < dx_get_limit(entries));
1269 assert(old < entries + count);
1270 memmove(new + 1, new, (char *)(entries + count) - (char *)(new));
1271 dx_set_hash(new, hash);
1272 dx_set_block(new, block);
1273 dx_set_count(entries, count + 1);
1274 }
1275
1276 #ifdef CONFIG_UNICODE
1277 /*
1278 * Test whether a case-insensitive directory entry matches the filename
1279 * being searched for. If quick is set, assume the name being looked up
1280 * is already in the casefolded form.
1281 *
1282 * Returns: 0 if the directory entry matches, more than 0 if it
1283 * doesn't match or less than zero on error.
1284 */
ext4_ci_compare(const struct inode * parent,const struct qstr * name,const struct qstr * entry,bool quick)1285 int ext4_ci_compare(const struct inode *parent, const struct qstr *name,
1286 const struct qstr *entry, bool quick)
1287 {
1288 const struct super_block *sb = parent->i_sb;
1289 const struct unicode_map *um = sb->s_encoding;
1290 int ret;
1291
1292 if (quick)
1293 ret = utf8_strncasecmp_folded(um, name, entry);
1294 else
1295 ret = utf8_strncasecmp(um, name, entry);
1296
1297 if (ret < 0) {
1298 /* Handle invalid character sequence as either an error
1299 * or as an opaque byte sequence.
1300 */
1301 if (sb_has_strict_encoding(sb))
1302 return -EINVAL;
1303
1304 if (name->len != entry->len)
1305 return 1;
1306
1307 return !!memcmp(name->name, entry->name, name->len);
1308 }
1309
1310 return ret;
1311 }
1312
ext4_fname_setup_ci_filename(struct inode * dir,const struct qstr * iname,struct fscrypt_str * cf_name)1313 void ext4_fname_setup_ci_filename(struct inode *dir, const struct qstr *iname,
1314 struct fscrypt_str *cf_name)
1315 {
1316 int len;
1317
1318 if (!IS_CASEFOLDED(dir) || !dir->i_sb->s_encoding) {
1319 cf_name->name = NULL;
1320 return;
1321 }
1322
1323 cf_name->name = kmalloc(EXT4_NAME_LEN, GFP_NOFS);
1324 if (!cf_name->name)
1325 return;
1326
1327 len = utf8_casefold(dir->i_sb->s_encoding,
1328 iname, cf_name->name,
1329 EXT4_NAME_LEN);
1330 if (len <= 0) {
1331 kfree(cf_name->name);
1332 cf_name->name = NULL;
1333 return;
1334 }
1335 cf_name->len = (unsigned) len;
1336
1337 }
1338 #endif
1339
1340 /*
1341 * Test whether a directory entry matches the filename being searched for.
1342 *
1343 * Return: %true if the directory entry matches, otherwise %false.
1344 */
ext4_match(const struct inode * parent,const struct ext4_filename * fname,const struct ext4_dir_entry_2 * de)1345 static inline bool ext4_match(const struct inode *parent,
1346 const struct ext4_filename *fname,
1347 const struct ext4_dir_entry_2 *de)
1348 {
1349 struct fscrypt_name f;
1350 #ifdef CONFIG_UNICODE
1351 const struct qstr entry = {.name = de->name, .len = de->name_len};
1352 #endif
1353
1354 if (!de->inode)
1355 return false;
1356
1357 f.usr_fname = fname->usr_fname;
1358 f.disk_name = fname->disk_name;
1359 #ifdef CONFIG_FS_ENCRYPTION
1360 f.crypto_buf = fname->crypto_buf;
1361 #endif
1362
1363 #ifdef CONFIG_UNICODE
1364 if (parent->i_sb->s_encoding && IS_CASEFOLDED(parent)) {
1365 if (fname->cf_name.name) {
1366 struct qstr cf = {.name = fname->cf_name.name,
1367 .len = fname->cf_name.len};
1368 return !ext4_ci_compare(parent, &cf, &entry, true);
1369 }
1370 return !ext4_ci_compare(parent, fname->usr_fname, &entry,
1371 false);
1372 }
1373 #endif
1374
1375 return fscrypt_match_name(&f, de->name, de->name_len);
1376 }
1377
1378 /*
1379 * Returns 0 if not found, -1 on failure, and 1 on success
1380 */
ext4_search_dir(struct buffer_head * bh,char * search_buf,int buf_size,struct inode * dir,struct ext4_filename * fname,unsigned int offset,struct ext4_dir_entry_2 ** res_dir)1381 int ext4_search_dir(struct buffer_head *bh, char *search_buf, int buf_size,
1382 struct inode *dir, struct ext4_filename *fname,
1383 unsigned int offset, struct ext4_dir_entry_2 **res_dir)
1384 {
1385 struct ext4_dir_entry_2 * de;
1386 char * dlimit;
1387 int de_len;
1388
1389 de = (struct ext4_dir_entry_2 *)search_buf;
1390 dlimit = search_buf + buf_size;
1391 while ((char *) de < dlimit) {
1392 /* this code is executed quadratically often */
1393 /* do minimal checking `by hand' */
1394 if ((char *) de + de->name_len <= dlimit &&
1395 ext4_match(dir, fname, de)) {
1396 /* found a match - just to be sure, do
1397 * a full check */
1398 if (ext4_check_dir_entry(dir, NULL, de, bh, search_buf,
1399 buf_size, offset))
1400 return -1;
1401 *res_dir = de;
1402 return 1;
1403 }
1404 /* prevent looping on a bad block */
1405 de_len = ext4_rec_len_from_disk(de->rec_len,
1406 dir->i_sb->s_blocksize);
1407 if (de_len <= 0)
1408 return -1;
1409 offset += de_len;
1410 de = (struct ext4_dir_entry_2 *) ((char *) de + de_len);
1411 }
1412 return 0;
1413 }
1414
is_dx_internal_node(struct inode * dir,ext4_lblk_t block,struct ext4_dir_entry * de)1415 static int is_dx_internal_node(struct inode *dir, ext4_lblk_t block,
1416 struct ext4_dir_entry *de)
1417 {
1418 struct super_block *sb = dir->i_sb;
1419
1420 if (!is_dx(dir))
1421 return 0;
1422 if (block == 0)
1423 return 1;
1424 if (de->inode == 0 &&
1425 ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize) ==
1426 sb->s_blocksize)
1427 return 1;
1428 return 0;
1429 }
1430
1431 /*
1432 * __ext4_find_entry()
1433 *
1434 * finds an entry in the specified directory with the wanted name. It
1435 * returns the cache buffer in which the entry was found, and the entry
1436 * itself (as a parameter - res_dir). It does NOT read the inode of the
1437 * entry - you'll have to do that yourself if you want to.
1438 *
1439 * The returned buffer_head has ->b_count elevated. The caller is expected
1440 * to brelse() it when appropriate.
1441 */
__ext4_find_entry(struct inode * dir,struct ext4_filename * fname,struct ext4_dir_entry_2 ** res_dir,int * inlined)1442 static struct buffer_head *__ext4_find_entry(struct inode *dir,
1443 struct ext4_filename *fname,
1444 struct ext4_dir_entry_2 **res_dir,
1445 int *inlined)
1446 {
1447 struct super_block *sb;
1448 struct buffer_head *bh_use[NAMEI_RA_SIZE];
1449 struct buffer_head *bh, *ret = NULL;
1450 ext4_lblk_t start, block;
1451 const u8 *name = fname->usr_fname->name;
1452 size_t ra_max = 0; /* Number of bh's in the readahead
1453 buffer, bh_use[] */
1454 size_t ra_ptr = 0; /* Current index into readahead
1455 buffer */
1456 ext4_lblk_t nblocks;
1457 int i, namelen, retval;
1458
1459 *res_dir = NULL;
1460 sb = dir->i_sb;
1461 namelen = fname->usr_fname->len;
1462 if (namelen > EXT4_NAME_LEN)
1463 return NULL;
1464
1465 if (ext4_has_inline_data(dir)) {
1466 int has_inline_data = 1;
1467 ret = ext4_find_inline_entry(dir, fname, res_dir,
1468 &has_inline_data);
1469 if (has_inline_data) {
1470 if (inlined)
1471 *inlined = 1;
1472 goto cleanup_and_exit;
1473 }
1474 }
1475
1476 if ((namelen <= 2) && (name[0] == '.') &&
1477 (name[1] == '.' || name[1] == '\0')) {
1478 /*
1479 * "." or ".." will only be in the first block
1480 * NFS may look up ".."; "." should be handled by the VFS
1481 */
1482 block = start = 0;
1483 nblocks = 1;
1484 goto restart;
1485 }
1486 if (is_dx(dir)) {
1487 ret = ext4_dx_find_entry(dir, fname, res_dir);
1488 /*
1489 * On success, or if the error was file not found,
1490 * return. Otherwise, fall back to doing a search the
1491 * old fashioned way.
1492 */
1493 if (!IS_ERR(ret) || PTR_ERR(ret) != ERR_BAD_DX_DIR)
1494 goto cleanup_and_exit;
1495 dxtrace(printk(KERN_DEBUG "ext4_find_entry: dx failed, "
1496 "falling back\n"));
1497 ret = NULL;
1498 }
1499 nblocks = dir->i_size >> EXT4_BLOCK_SIZE_BITS(sb);
1500 if (!nblocks) {
1501 ret = NULL;
1502 goto cleanup_and_exit;
1503 }
1504 start = EXT4_I(dir)->i_dir_start_lookup;
1505 if (start >= nblocks)
1506 start = 0;
1507 block = start;
1508 restart:
1509 do {
1510 /*
1511 * We deal with the read-ahead logic here.
1512 */
1513 cond_resched();
1514 if (ra_ptr >= ra_max) {
1515 /* Refill the readahead buffer */
1516 ra_ptr = 0;
1517 if (block < start)
1518 ra_max = start - block;
1519 else
1520 ra_max = nblocks - block;
1521 ra_max = min(ra_max, ARRAY_SIZE(bh_use));
1522 retval = ext4_bread_batch(dir, block, ra_max,
1523 false /* wait */, bh_use);
1524 if (retval) {
1525 ret = ERR_PTR(retval);
1526 ra_max = 0;
1527 goto cleanup_and_exit;
1528 }
1529 }
1530 if ((bh = bh_use[ra_ptr++]) == NULL)
1531 goto next;
1532 wait_on_buffer(bh);
1533 if (!buffer_uptodate(bh)) {
1534 EXT4_ERROR_INODE_ERR(dir, EIO,
1535 "reading directory lblock %lu",
1536 (unsigned long) block);
1537 brelse(bh);
1538 ret = ERR_PTR(-EIO);
1539 goto cleanup_and_exit;
1540 }
1541 if (!buffer_verified(bh) &&
1542 !is_dx_internal_node(dir, block,
1543 (struct ext4_dir_entry *)bh->b_data) &&
1544 !ext4_dirblock_csum_verify(dir, bh)) {
1545 EXT4_ERROR_INODE_ERR(dir, EFSBADCRC,
1546 "checksumming directory "
1547 "block %lu", (unsigned long)block);
1548 brelse(bh);
1549 ret = ERR_PTR(-EFSBADCRC);
1550 goto cleanup_and_exit;
1551 }
1552 set_buffer_verified(bh);
1553 i = search_dirblock(bh, dir, fname,
1554 block << EXT4_BLOCK_SIZE_BITS(sb), res_dir);
1555 if (i == 1) {
1556 EXT4_I(dir)->i_dir_start_lookup = block;
1557 ret = bh;
1558 goto cleanup_and_exit;
1559 } else {
1560 brelse(bh);
1561 if (i < 0)
1562 goto cleanup_and_exit;
1563 }
1564 next:
1565 if (++block >= nblocks)
1566 block = 0;
1567 } while (block != start);
1568
1569 /*
1570 * If the directory has grown while we were searching, then
1571 * search the last part of the directory before giving up.
1572 */
1573 block = nblocks;
1574 nblocks = dir->i_size >> EXT4_BLOCK_SIZE_BITS(sb);
1575 if (block < nblocks) {
1576 start = 0;
1577 goto restart;
1578 }
1579
1580 cleanup_and_exit:
1581 /* Clean up the read-ahead blocks */
1582 for (; ra_ptr < ra_max; ra_ptr++)
1583 brelse(bh_use[ra_ptr]);
1584 return ret;
1585 }
1586
ext4_find_entry(struct inode * dir,const struct qstr * d_name,struct ext4_dir_entry_2 ** res_dir,int * inlined)1587 static struct buffer_head *ext4_find_entry(struct inode *dir,
1588 const struct qstr *d_name,
1589 struct ext4_dir_entry_2 **res_dir,
1590 int *inlined)
1591 {
1592 int err;
1593 struct ext4_filename fname;
1594 struct buffer_head *bh;
1595
1596 err = ext4_fname_setup_filename(dir, d_name, 1, &fname);
1597 if (err == -ENOENT)
1598 return NULL;
1599 if (err)
1600 return ERR_PTR(err);
1601
1602 bh = __ext4_find_entry(dir, &fname, res_dir, inlined);
1603
1604 ext4_fname_free_filename(&fname);
1605 return bh;
1606 }
1607
ext4_lookup_entry(struct inode * dir,struct dentry * dentry,struct ext4_dir_entry_2 ** res_dir)1608 static struct buffer_head *ext4_lookup_entry(struct inode *dir,
1609 struct dentry *dentry,
1610 struct ext4_dir_entry_2 **res_dir)
1611 {
1612 int err;
1613 struct ext4_filename fname;
1614 struct buffer_head *bh;
1615
1616 err = ext4_fname_prepare_lookup(dir, dentry, &fname);
1617 if (err == -ENOENT)
1618 return NULL;
1619 if (err)
1620 return ERR_PTR(err);
1621
1622 bh = __ext4_find_entry(dir, &fname, res_dir, NULL);
1623
1624 ext4_fname_free_filename(&fname);
1625 return bh;
1626 }
1627
ext4_dx_find_entry(struct inode * dir,struct ext4_filename * fname,struct ext4_dir_entry_2 ** res_dir)1628 static struct buffer_head * ext4_dx_find_entry(struct inode *dir,
1629 struct ext4_filename *fname,
1630 struct ext4_dir_entry_2 **res_dir)
1631 {
1632 struct super_block * sb = dir->i_sb;
1633 struct dx_frame frames[EXT4_HTREE_LEVEL], *frame;
1634 struct buffer_head *bh;
1635 ext4_lblk_t block;
1636 int retval;
1637
1638 #ifdef CONFIG_FS_ENCRYPTION
1639 *res_dir = NULL;
1640 #endif
1641 frame = dx_probe(fname, dir, NULL, frames);
1642 if (IS_ERR(frame))
1643 return (struct buffer_head *) frame;
1644 do {
1645 block = dx_get_block(frame->at);
1646 bh = ext4_read_dirblock(dir, block, DIRENT_HTREE);
1647 if (IS_ERR(bh))
1648 goto errout;
1649
1650 retval = search_dirblock(bh, dir, fname,
1651 block << EXT4_BLOCK_SIZE_BITS(sb),
1652 res_dir);
1653 if (retval == 1)
1654 goto success;
1655 brelse(bh);
1656 if (retval == -1) {
1657 bh = ERR_PTR(ERR_BAD_DX_DIR);
1658 goto errout;
1659 }
1660
1661 /* Check to see if we should continue to search */
1662 retval = ext4_htree_next_block(dir, fname->hinfo.hash, frame,
1663 frames, NULL);
1664 if (retval < 0) {
1665 ext4_warning_inode(dir,
1666 "error %d reading directory index block",
1667 retval);
1668 bh = ERR_PTR(retval);
1669 goto errout;
1670 }
1671 } while (retval == 1);
1672
1673 bh = NULL;
1674 errout:
1675 dxtrace(printk(KERN_DEBUG "%s not found\n", fname->usr_fname->name));
1676 success:
1677 dx_release(frames);
1678 return bh;
1679 }
1680
ext4_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1681 static struct dentry *ext4_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1682 {
1683 struct inode *inode;
1684 struct ext4_dir_entry_2 *de;
1685 struct buffer_head *bh;
1686
1687 if (dentry->d_name.len > EXT4_NAME_LEN)
1688 return ERR_PTR(-ENAMETOOLONG);
1689
1690 bh = ext4_lookup_entry(dir, dentry, &de);
1691 if (IS_ERR(bh))
1692 return ERR_CAST(bh);
1693 inode = NULL;
1694 if (bh) {
1695 __u32 ino = le32_to_cpu(de->inode);
1696 brelse(bh);
1697 if (!ext4_valid_inum(dir->i_sb, ino)) {
1698 EXT4_ERROR_INODE(dir, "bad inode number: %u", ino);
1699 return ERR_PTR(-EFSCORRUPTED);
1700 }
1701 if (unlikely(ino == dir->i_ino)) {
1702 EXT4_ERROR_INODE(dir, "'%pd' linked to parent dir",
1703 dentry);
1704 return ERR_PTR(-EFSCORRUPTED);
1705 }
1706 inode = ext4_iget(dir->i_sb, ino, EXT4_IGET_NORMAL);
1707 if (inode == ERR_PTR(-ESTALE)) {
1708 EXT4_ERROR_INODE(dir,
1709 "deleted inode referenced: %u",
1710 ino);
1711 return ERR_PTR(-EFSCORRUPTED);
1712 }
1713 if (!IS_ERR(inode) && IS_ENCRYPTED(dir) &&
1714 (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) &&
1715 !fscrypt_has_permitted_context(dir, inode)) {
1716 ext4_warning(inode->i_sb,
1717 "Inconsistent encryption contexts: %lu/%lu",
1718 dir->i_ino, inode->i_ino);
1719 iput(inode);
1720 return ERR_PTR(-EPERM);
1721 }
1722 }
1723
1724 #ifdef CONFIG_UNICODE
1725 if (!inode && IS_CASEFOLDED(dir)) {
1726 /* Eventually we want to call d_add_ci(dentry, NULL)
1727 * for negative dentries in the encoding case as
1728 * well. For now, prevent the negative dentry
1729 * from being cached.
1730 */
1731 return NULL;
1732 }
1733 #endif
1734 return d_splice_alias(inode, dentry);
1735 }
1736
1737
ext4_get_parent(struct dentry * child)1738 struct dentry *ext4_get_parent(struct dentry *child)
1739 {
1740 __u32 ino;
1741 static const struct qstr dotdot = QSTR_INIT("..", 2);
1742 struct ext4_dir_entry_2 * de;
1743 struct buffer_head *bh;
1744
1745 bh = ext4_find_entry(d_inode(child), &dotdot, &de, NULL);
1746 if (IS_ERR(bh))
1747 return ERR_CAST(bh);
1748 if (!bh)
1749 return ERR_PTR(-ENOENT);
1750 ino = le32_to_cpu(de->inode);
1751 brelse(bh);
1752
1753 if (!ext4_valid_inum(child->d_sb, ino)) {
1754 EXT4_ERROR_INODE(d_inode(child),
1755 "bad parent inode number: %u", ino);
1756 return ERR_PTR(-EFSCORRUPTED);
1757 }
1758
1759 return d_obtain_alias(ext4_iget(child->d_sb, ino, EXT4_IGET_NORMAL));
1760 }
1761
1762 /*
1763 * Move count entries from end of map between two memory locations.
1764 * Returns pointer to last entry moved.
1765 */
1766 static struct ext4_dir_entry_2 *
dx_move_dirents(char * from,char * to,struct dx_map_entry * map,int count,unsigned blocksize)1767 dx_move_dirents(char *from, char *to, struct dx_map_entry *map, int count,
1768 unsigned blocksize)
1769 {
1770 unsigned rec_len = 0;
1771
1772 while (count--) {
1773 struct ext4_dir_entry_2 *de = (struct ext4_dir_entry_2 *)
1774 (from + (map->offs<<2));
1775 rec_len = EXT4_DIR_REC_LEN(de->name_len);
1776 memcpy (to, de, rec_len);
1777 ((struct ext4_dir_entry_2 *) to)->rec_len =
1778 ext4_rec_len_to_disk(rec_len, blocksize);
1779 de->inode = 0;
1780 map++;
1781 to += rec_len;
1782 }
1783 return (struct ext4_dir_entry_2 *) (to - rec_len);
1784 }
1785
1786 /*
1787 * Compact each dir entry in the range to the minimal rec_len.
1788 * Returns pointer to last entry in range.
1789 */
dx_pack_dirents(char * base,unsigned blocksize)1790 static struct ext4_dir_entry_2* dx_pack_dirents(char *base, unsigned blocksize)
1791 {
1792 struct ext4_dir_entry_2 *next, *to, *prev, *de = (struct ext4_dir_entry_2 *) base;
1793 unsigned rec_len = 0;
1794
1795 prev = to = de;
1796 while ((char*)de < base + blocksize) {
1797 next = ext4_next_entry(de, blocksize);
1798 if (de->inode && de->name_len) {
1799 rec_len = EXT4_DIR_REC_LEN(de->name_len);
1800 if (de > to)
1801 memmove(to, de, rec_len);
1802 to->rec_len = ext4_rec_len_to_disk(rec_len, blocksize);
1803 prev = to;
1804 to = (struct ext4_dir_entry_2 *) (((char *) to) + rec_len);
1805 }
1806 de = next;
1807 }
1808 return prev;
1809 }
1810
1811 /*
1812 * Split a full leaf block to make room for a new dir entry.
1813 * Allocate a new block, and move entries so that they are approx. equally full.
1814 * Returns pointer to de in block into which the new entry will be inserted.
1815 */
do_split(handle_t * handle,struct inode * dir,struct buffer_head ** bh,struct dx_frame * frame,struct dx_hash_info * hinfo)1816 static struct ext4_dir_entry_2 *do_split(handle_t *handle, struct inode *dir,
1817 struct buffer_head **bh,struct dx_frame *frame,
1818 struct dx_hash_info *hinfo)
1819 {
1820 unsigned blocksize = dir->i_sb->s_blocksize;
1821 unsigned count, continued;
1822 struct buffer_head *bh2;
1823 ext4_lblk_t newblock;
1824 u32 hash2;
1825 struct dx_map_entry *map;
1826 char *data1 = (*bh)->b_data, *data2;
1827 unsigned split, move, size;
1828 struct ext4_dir_entry_2 *de = NULL, *de2;
1829 int csum_size = 0;
1830 int err = 0, i;
1831
1832 if (ext4_has_metadata_csum(dir->i_sb))
1833 csum_size = sizeof(struct ext4_dir_entry_tail);
1834
1835 bh2 = ext4_append(handle, dir, &newblock);
1836 if (IS_ERR(bh2)) {
1837 brelse(*bh);
1838 *bh = NULL;
1839 return (struct ext4_dir_entry_2 *) bh2;
1840 }
1841
1842 BUFFER_TRACE(*bh, "get_write_access");
1843 err = ext4_journal_get_write_access(handle, *bh);
1844 if (err)
1845 goto journal_error;
1846
1847 BUFFER_TRACE(frame->bh, "get_write_access");
1848 err = ext4_journal_get_write_access(handle, frame->bh);
1849 if (err)
1850 goto journal_error;
1851
1852 data2 = bh2->b_data;
1853
1854 /* create map in the end of data2 block */
1855 map = (struct dx_map_entry *) (data2 + blocksize);
1856 count = dx_make_map(dir, (struct ext4_dir_entry_2 *) data1,
1857 blocksize, hinfo, map);
1858 map -= count;
1859 dx_sort_map(map, count);
1860 /* Ensure that neither split block is over half full */
1861 size = 0;
1862 move = 0;
1863 for (i = count-1; i >= 0; i--) {
1864 /* is more than half of this entry in 2nd half of the block? */
1865 if (size + map[i].size/2 > blocksize/2)
1866 break;
1867 size += map[i].size;
1868 move++;
1869 }
1870 /*
1871 * map index at which we will split
1872 *
1873 * If the sum of active entries didn't exceed half the block size, just
1874 * split it in half by count; each resulting block will have at least
1875 * half the space free.
1876 */
1877 if (i > 0)
1878 split = count - move;
1879 else
1880 split = count/2;
1881
1882 hash2 = map[split].hash;
1883 continued = hash2 == map[split - 1].hash;
1884 dxtrace(printk(KERN_INFO "Split block %lu at %x, %i/%i\n",
1885 (unsigned long)dx_get_block(frame->at),
1886 hash2, split, count-split));
1887
1888 /* Fancy dance to stay within two buffers */
1889 de2 = dx_move_dirents(data1, data2, map + split, count - split,
1890 blocksize);
1891 de = dx_pack_dirents(data1, blocksize);
1892 de->rec_len = ext4_rec_len_to_disk(data1 + (blocksize - csum_size) -
1893 (char *) de,
1894 blocksize);
1895 de2->rec_len = ext4_rec_len_to_disk(data2 + (blocksize - csum_size) -
1896 (char *) de2,
1897 blocksize);
1898 if (csum_size) {
1899 ext4_initialize_dirent_tail(*bh, blocksize);
1900 ext4_initialize_dirent_tail(bh2, blocksize);
1901 }
1902
1903 dxtrace(dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *) data1,
1904 blocksize, 1));
1905 dxtrace(dx_show_leaf(dir, hinfo, (struct ext4_dir_entry_2 *) data2,
1906 blocksize, 1));
1907
1908 /* Which block gets the new entry? */
1909 if (hinfo->hash >= hash2) {
1910 swap(*bh, bh2);
1911 de = de2;
1912 }
1913 dx_insert_block(frame, hash2 + continued, newblock);
1914 err = ext4_handle_dirty_dirblock(handle, dir, bh2);
1915 if (err)
1916 goto journal_error;
1917 err = ext4_handle_dirty_dx_node(handle, dir, frame->bh);
1918 if (err)
1919 goto journal_error;
1920 brelse(bh2);
1921 dxtrace(dx_show_index("frame", frame->entries));
1922 return de;
1923
1924 journal_error:
1925 brelse(*bh);
1926 brelse(bh2);
1927 *bh = NULL;
1928 ext4_std_error(dir->i_sb, err);
1929 return ERR_PTR(err);
1930 }
1931
ext4_find_dest_de(struct inode * dir,struct inode * inode,struct buffer_head * bh,void * buf,int buf_size,struct ext4_filename * fname,struct ext4_dir_entry_2 ** dest_de)1932 int ext4_find_dest_de(struct inode *dir, struct inode *inode,
1933 struct buffer_head *bh,
1934 void *buf, int buf_size,
1935 struct ext4_filename *fname,
1936 struct ext4_dir_entry_2 **dest_de)
1937 {
1938 struct ext4_dir_entry_2 *de;
1939 unsigned short reclen = EXT4_DIR_REC_LEN(fname_len(fname));
1940 int nlen, rlen;
1941 unsigned int offset = 0;
1942 char *top;
1943
1944 de = (struct ext4_dir_entry_2 *)buf;
1945 top = buf + buf_size - reclen;
1946 while ((char *) de <= top) {
1947 if (ext4_check_dir_entry(dir, NULL, de, bh,
1948 buf, buf_size, offset))
1949 return -EFSCORRUPTED;
1950 if (ext4_match(dir, fname, de))
1951 return -EEXIST;
1952 nlen = EXT4_DIR_REC_LEN(de->name_len);
1953 rlen = ext4_rec_len_from_disk(de->rec_len, buf_size);
1954 if ((de->inode ? rlen - nlen : rlen) >= reclen)
1955 break;
1956 de = (struct ext4_dir_entry_2 *)((char *)de + rlen);
1957 offset += rlen;
1958 }
1959 if ((char *) de > top)
1960 return -ENOSPC;
1961
1962 *dest_de = de;
1963 return 0;
1964 }
1965
ext4_insert_dentry(struct inode * inode,struct ext4_dir_entry_2 * de,int buf_size,struct ext4_filename * fname)1966 void ext4_insert_dentry(struct inode *inode,
1967 struct ext4_dir_entry_2 *de,
1968 int buf_size,
1969 struct ext4_filename *fname)
1970 {
1971
1972 int nlen, rlen;
1973
1974 nlen = EXT4_DIR_REC_LEN(de->name_len);
1975 rlen = ext4_rec_len_from_disk(de->rec_len, buf_size);
1976 if (de->inode) {
1977 struct ext4_dir_entry_2 *de1 =
1978 (struct ext4_dir_entry_2 *)((char *)de + nlen);
1979 de1->rec_len = ext4_rec_len_to_disk(rlen - nlen, buf_size);
1980 de->rec_len = ext4_rec_len_to_disk(nlen, buf_size);
1981 de = de1;
1982 }
1983 de->file_type = EXT4_FT_UNKNOWN;
1984 de->inode = cpu_to_le32(inode->i_ino);
1985 ext4_set_de_type(inode->i_sb, de, inode->i_mode);
1986 de->name_len = fname_len(fname);
1987 memcpy(de->name, fname_name(fname), fname_len(fname));
1988 }
1989
1990 /*
1991 * Add a new entry into a directory (leaf) block. If de is non-NULL,
1992 * it points to a directory entry which is guaranteed to be large
1993 * enough for new directory entry. If de is NULL, then
1994 * add_dirent_to_buf will attempt search the directory block for
1995 * space. It will return -ENOSPC if no space is available, and -EIO
1996 * and -EEXIST if directory entry already exists.
1997 */
add_dirent_to_buf(handle_t * handle,struct ext4_filename * fname,struct inode * dir,struct inode * inode,struct ext4_dir_entry_2 * de,struct buffer_head * bh)1998 static int add_dirent_to_buf(handle_t *handle, struct ext4_filename *fname,
1999 struct inode *dir,
2000 struct inode *inode, struct ext4_dir_entry_2 *de,
2001 struct buffer_head *bh)
2002 {
2003 unsigned int blocksize = dir->i_sb->s_blocksize;
2004 int csum_size = 0;
2005 int err, err2;
2006
2007 if (ext4_has_metadata_csum(inode->i_sb))
2008 csum_size = sizeof(struct ext4_dir_entry_tail);
2009
2010 if (!de) {
2011 err = ext4_find_dest_de(dir, inode, bh, bh->b_data,
2012 blocksize - csum_size, fname, &de);
2013 if (err)
2014 return err;
2015 }
2016 BUFFER_TRACE(bh, "get_write_access");
2017 err = ext4_journal_get_write_access(handle, bh);
2018 if (err) {
2019 ext4_std_error(dir->i_sb, err);
2020 return err;
2021 }
2022
2023 /* By now the buffer is marked for journaling */
2024 ext4_insert_dentry(inode, de, blocksize, fname);
2025
2026 /*
2027 * XXX shouldn't update any times until successful
2028 * completion of syscall, but too many callers depend
2029 * on this.
2030 *
2031 * XXX similarly, too many callers depend on
2032 * ext4_new_inode() setting the times, but error
2033 * recovery deletes the inode, so the worst that can
2034 * happen is that the times are slightly out of date
2035 * and/or different from the directory change time.
2036 */
2037 dir->i_mtime = dir->i_ctime = current_time(dir);
2038 ext4_update_dx_flag(dir);
2039 inode_inc_iversion(dir);
2040 err2 = ext4_mark_inode_dirty(handle, dir);
2041 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
2042 err = ext4_handle_dirty_dirblock(handle, dir, bh);
2043 if (err)
2044 ext4_std_error(dir->i_sb, err);
2045 return err ? err : err2;
2046 }
2047
2048 /*
2049 * This converts a one block unindexed directory to a 3 block indexed
2050 * directory, and adds the dentry to the indexed directory.
2051 */
make_indexed_dir(handle_t * handle,struct ext4_filename * fname,struct inode * dir,struct inode * inode,struct buffer_head * bh)2052 static int make_indexed_dir(handle_t *handle, struct ext4_filename *fname,
2053 struct inode *dir,
2054 struct inode *inode, struct buffer_head *bh)
2055 {
2056 struct buffer_head *bh2;
2057 struct dx_root *root;
2058 struct dx_frame frames[EXT4_HTREE_LEVEL], *frame;
2059 struct dx_entry *entries;
2060 struct ext4_dir_entry_2 *de, *de2;
2061 char *data2, *top;
2062 unsigned len;
2063 int retval;
2064 unsigned blocksize;
2065 ext4_lblk_t block;
2066 struct fake_dirent *fde;
2067 int csum_size = 0;
2068
2069 if (ext4_has_metadata_csum(inode->i_sb))
2070 csum_size = sizeof(struct ext4_dir_entry_tail);
2071
2072 blocksize = dir->i_sb->s_blocksize;
2073 dxtrace(printk(KERN_DEBUG "Creating index: inode %lu\n", dir->i_ino));
2074 BUFFER_TRACE(bh, "get_write_access");
2075 retval = ext4_journal_get_write_access(handle, bh);
2076 if (retval) {
2077 ext4_std_error(dir->i_sb, retval);
2078 brelse(bh);
2079 return retval;
2080 }
2081 root = (struct dx_root *) bh->b_data;
2082
2083 /* The 0th block becomes the root, move the dirents out */
2084 fde = &root->dotdot;
2085 de = (struct ext4_dir_entry_2 *)((char *)fde +
2086 ext4_rec_len_from_disk(fde->rec_len, blocksize));
2087 if ((char *) de >= (((char *) root) + blocksize)) {
2088 EXT4_ERROR_INODE(dir, "invalid rec_len for '..'");
2089 brelse(bh);
2090 return -EFSCORRUPTED;
2091 }
2092 len = ((char *) root) + (blocksize - csum_size) - (char *) de;
2093
2094 /* Allocate new block for the 0th block's dirents */
2095 bh2 = ext4_append(handle, dir, &block);
2096 if (IS_ERR(bh2)) {
2097 brelse(bh);
2098 return PTR_ERR(bh2);
2099 }
2100 ext4_set_inode_flag(dir, EXT4_INODE_INDEX);
2101 data2 = bh2->b_data;
2102
2103 memcpy(data2, de, len);
2104 de = (struct ext4_dir_entry_2 *) data2;
2105 top = data2 + len;
2106 while ((char *)(de2 = ext4_next_entry(de, blocksize)) < top)
2107 de = de2;
2108 de->rec_len = ext4_rec_len_to_disk(data2 + (blocksize - csum_size) -
2109 (char *) de, blocksize);
2110
2111 if (csum_size)
2112 ext4_initialize_dirent_tail(bh2, blocksize);
2113
2114 /* Initialize the root; the dot dirents already exist */
2115 de = (struct ext4_dir_entry_2 *) (&root->dotdot);
2116 de->rec_len = ext4_rec_len_to_disk(blocksize - EXT4_DIR_REC_LEN(2),
2117 blocksize);
2118 memset (&root->info, 0, sizeof(root->info));
2119 root->info.info_length = sizeof(root->info);
2120 root->info.hash_version = EXT4_SB(dir->i_sb)->s_def_hash_version;
2121 entries = root->entries;
2122 dx_set_block(entries, 1);
2123 dx_set_count(entries, 1);
2124 dx_set_limit(entries, dx_root_limit(dir, sizeof(root->info)));
2125
2126 /* Initialize as for dx_probe */
2127 fname->hinfo.hash_version = root->info.hash_version;
2128 if (fname->hinfo.hash_version <= DX_HASH_TEA)
2129 fname->hinfo.hash_version += EXT4_SB(dir->i_sb)->s_hash_unsigned;
2130 fname->hinfo.seed = EXT4_SB(dir->i_sb)->s_hash_seed;
2131 ext4fs_dirhash(dir, fname_name(fname), fname_len(fname), &fname->hinfo);
2132
2133 memset(frames, 0, sizeof(frames));
2134 frame = frames;
2135 frame->entries = entries;
2136 frame->at = entries;
2137 frame->bh = bh;
2138
2139 retval = ext4_handle_dirty_dx_node(handle, dir, frame->bh);
2140 if (retval)
2141 goto out_frames;
2142 retval = ext4_handle_dirty_dirblock(handle, dir, bh2);
2143 if (retval)
2144 goto out_frames;
2145
2146 de = do_split(handle,dir, &bh2, frame, &fname->hinfo);
2147 if (IS_ERR(de)) {
2148 retval = PTR_ERR(de);
2149 goto out_frames;
2150 }
2151
2152 retval = add_dirent_to_buf(handle, fname, dir, inode, de, bh2);
2153 out_frames:
2154 /*
2155 * Even if the block split failed, we have to properly write
2156 * out all the changes we did so far. Otherwise we can end up
2157 * with corrupted filesystem.
2158 */
2159 if (retval)
2160 ext4_mark_inode_dirty(handle, dir);
2161 dx_release(frames);
2162 brelse(bh2);
2163 return retval;
2164 }
2165
2166 /*
2167 * ext4_add_entry()
2168 *
2169 * adds a file entry to the specified directory, using the same
2170 * semantics as ext4_find_entry(). It returns NULL if it failed.
2171 *
2172 * NOTE!! The inode part of 'de' is left at 0 - which means you
2173 * may not sleep between calling this and putting something into
2174 * the entry, as someone else might have used it while you slept.
2175 */
ext4_add_entry(handle_t * handle,struct dentry * dentry,struct inode * inode)2176 static int ext4_add_entry(handle_t *handle, struct dentry *dentry,
2177 struct inode *inode)
2178 {
2179 struct inode *dir = d_inode(dentry->d_parent);
2180 struct buffer_head *bh = NULL;
2181 struct ext4_dir_entry_2 *de;
2182 struct super_block *sb;
2183 struct ext4_filename fname;
2184 int retval;
2185 int dx_fallback=0;
2186 unsigned blocksize;
2187 ext4_lblk_t block, blocks;
2188 int csum_size = 0;
2189
2190 if (ext4_has_metadata_csum(inode->i_sb))
2191 csum_size = sizeof(struct ext4_dir_entry_tail);
2192
2193 sb = dir->i_sb;
2194 blocksize = sb->s_blocksize;
2195 if (!dentry->d_name.len)
2196 return -EINVAL;
2197
2198 #ifdef CONFIG_UNICODE
2199 if (sb_has_strict_encoding(sb) && IS_CASEFOLDED(dir) &&
2200 sb->s_encoding && utf8_validate(sb->s_encoding, &dentry->d_name))
2201 return -EINVAL;
2202 #endif
2203
2204 retval = ext4_fname_setup_filename(dir, &dentry->d_name, 0, &fname);
2205 if (retval)
2206 return retval;
2207
2208 if (ext4_has_inline_data(dir)) {
2209 retval = ext4_try_add_inline_entry(handle, &fname, dir, inode);
2210 if (retval < 0)
2211 goto out;
2212 if (retval == 1) {
2213 retval = 0;
2214 goto out;
2215 }
2216 }
2217
2218 if (is_dx(dir)) {
2219 retval = ext4_dx_add_entry(handle, &fname, dir, inode);
2220 if (!retval || (retval != ERR_BAD_DX_DIR))
2221 goto out;
2222 /* Can we just ignore htree data? */
2223 if (ext4_has_metadata_csum(sb)) {
2224 EXT4_ERROR_INODE(dir,
2225 "Directory has corrupted htree index.");
2226 retval = -EFSCORRUPTED;
2227 goto out;
2228 }
2229 ext4_clear_inode_flag(dir, EXT4_INODE_INDEX);
2230 dx_fallback++;
2231 retval = ext4_mark_inode_dirty(handle, dir);
2232 if (unlikely(retval))
2233 goto out;
2234 }
2235 blocks = dir->i_size >> sb->s_blocksize_bits;
2236 for (block = 0; block < blocks; block++) {
2237 bh = ext4_read_dirblock(dir, block, DIRENT);
2238 if (bh == NULL) {
2239 bh = ext4_bread(handle, dir, block,
2240 EXT4_GET_BLOCKS_CREATE);
2241 goto add_to_new_block;
2242 }
2243 if (IS_ERR(bh)) {
2244 retval = PTR_ERR(bh);
2245 bh = NULL;
2246 goto out;
2247 }
2248 retval = add_dirent_to_buf(handle, &fname, dir, inode,
2249 NULL, bh);
2250 if (retval != -ENOSPC)
2251 goto out;
2252
2253 if (blocks == 1 && !dx_fallback &&
2254 ext4_has_feature_dir_index(sb)) {
2255 retval = make_indexed_dir(handle, &fname, dir,
2256 inode, bh);
2257 bh = NULL; /* make_indexed_dir releases bh */
2258 goto out;
2259 }
2260 brelse(bh);
2261 }
2262 bh = ext4_append(handle, dir, &block);
2263 add_to_new_block:
2264 if (IS_ERR(bh)) {
2265 retval = PTR_ERR(bh);
2266 bh = NULL;
2267 goto out;
2268 }
2269 de = (struct ext4_dir_entry_2 *) bh->b_data;
2270 de->inode = 0;
2271 de->rec_len = ext4_rec_len_to_disk(blocksize - csum_size, blocksize);
2272
2273 if (csum_size)
2274 ext4_initialize_dirent_tail(bh, blocksize);
2275
2276 retval = add_dirent_to_buf(handle, &fname, dir, inode, de, bh);
2277 out:
2278 ext4_fname_free_filename(&fname);
2279 brelse(bh);
2280 if (retval == 0)
2281 ext4_set_inode_state(inode, EXT4_STATE_NEWENTRY);
2282 return retval;
2283 }
2284
2285 /*
2286 * Returns 0 for success, or a negative error value
2287 */
ext4_dx_add_entry(handle_t * handle,struct ext4_filename * fname,struct inode * dir,struct inode * inode)2288 static int ext4_dx_add_entry(handle_t *handle, struct ext4_filename *fname,
2289 struct inode *dir, struct inode *inode)
2290 {
2291 struct dx_frame frames[EXT4_HTREE_LEVEL], *frame;
2292 struct dx_entry *entries, *at;
2293 struct buffer_head *bh;
2294 struct super_block *sb = dir->i_sb;
2295 struct ext4_dir_entry_2 *de;
2296 int restart;
2297 int err;
2298
2299 again:
2300 restart = 0;
2301 frame = dx_probe(fname, dir, NULL, frames);
2302 if (IS_ERR(frame))
2303 return PTR_ERR(frame);
2304 entries = frame->entries;
2305 at = frame->at;
2306 bh = ext4_read_dirblock(dir, dx_get_block(frame->at), DIRENT_HTREE);
2307 if (IS_ERR(bh)) {
2308 err = PTR_ERR(bh);
2309 bh = NULL;
2310 goto cleanup;
2311 }
2312
2313 BUFFER_TRACE(bh, "get_write_access");
2314 err = ext4_journal_get_write_access(handle, bh);
2315 if (err)
2316 goto journal_error;
2317
2318 err = add_dirent_to_buf(handle, fname, dir, inode, NULL, bh);
2319 if (err != -ENOSPC)
2320 goto cleanup;
2321
2322 err = 0;
2323 /* Block full, should compress but for now just split */
2324 dxtrace(printk(KERN_DEBUG "using %u of %u node entries\n",
2325 dx_get_count(entries), dx_get_limit(entries)));
2326 /* Need to split index? */
2327 if (dx_get_count(entries) == dx_get_limit(entries)) {
2328 ext4_lblk_t newblock;
2329 int levels = frame - frames + 1;
2330 unsigned int icount;
2331 int add_level = 1;
2332 struct dx_entry *entries2;
2333 struct dx_node *node2;
2334 struct buffer_head *bh2;
2335
2336 while (frame > frames) {
2337 if (dx_get_count((frame - 1)->entries) <
2338 dx_get_limit((frame - 1)->entries)) {
2339 add_level = 0;
2340 break;
2341 }
2342 frame--; /* split higher index block */
2343 at = frame->at;
2344 entries = frame->entries;
2345 restart = 1;
2346 }
2347 if (add_level && levels == ext4_dir_htree_level(sb)) {
2348 ext4_warning(sb, "Directory (ino: %lu) index full, "
2349 "reach max htree level :%d",
2350 dir->i_ino, levels);
2351 if (ext4_dir_htree_level(sb) < EXT4_HTREE_LEVEL) {
2352 ext4_warning(sb, "Large directory feature is "
2353 "not enabled on this "
2354 "filesystem");
2355 }
2356 err = -ENOSPC;
2357 goto cleanup;
2358 }
2359 icount = dx_get_count(entries);
2360 bh2 = ext4_append(handle, dir, &newblock);
2361 if (IS_ERR(bh2)) {
2362 err = PTR_ERR(bh2);
2363 goto cleanup;
2364 }
2365 node2 = (struct dx_node *)(bh2->b_data);
2366 entries2 = node2->entries;
2367 memset(&node2->fake, 0, sizeof(struct fake_dirent));
2368 node2->fake.rec_len = ext4_rec_len_to_disk(sb->s_blocksize,
2369 sb->s_blocksize);
2370 BUFFER_TRACE(frame->bh, "get_write_access");
2371 err = ext4_journal_get_write_access(handle, frame->bh);
2372 if (err)
2373 goto journal_error;
2374 if (!add_level) {
2375 unsigned icount1 = icount/2, icount2 = icount - icount1;
2376 unsigned hash2 = dx_get_hash(entries + icount1);
2377 dxtrace(printk(KERN_DEBUG "Split index %i/%i\n",
2378 icount1, icount2));
2379
2380 BUFFER_TRACE(frame->bh, "get_write_access"); /* index root */
2381 err = ext4_journal_get_write_access(handle,
2382 (frame - 1)->bh);
2383 if (err)
2384 goto journal_error;
2385
2386 memcpy((char *) entries2, (char *) (entries + icount1),
2387 icount2 * sizeof(struct dx_entry));
2388 dx_set_count(entries, icount1);
2389 dx_set_count(entries2, icount2);
2390 dx_set_limit(entries2, dx_node_limit(dir));
2391
2392 /* Which index block gets the new entry? */
2393 if (at - entries >= icount1) {
2394 frame->at = at = at - entries - icount1 + entries2;
2395 frame->entries = entries = entries2;
2396 swap(frame->bh, bh2);
2397 }
2398 dx_insert_block((frame - 1), hash2, newblock);
2399 dxtrace(dx_show_index("node", frame->entries));
2400 dxtrace(dx_show_index("node",
2401 ((struct dx_node *) bh2->b_data)->entries));
2402 err = ext4_handle_dirty_dx_node(handle, dir, bh2);
2403 if (err)
2404 goto journal_error;
2405 brelse (bh2);
2406 err = ext4_handle_dirty_dx_node(handle, dir,
2407 (frame - 1)->bh);
2408 if (err)
2409 goto journal_error;
2410 if (restart) {
2411 err = ext4_handle_dirty_dx_node(handle, dir,
2412 frame->bh);
2413 goto journal_error;
2414 }
2415 } else {
2416 struct dx_root *dxroot;
2417 memcpy((char *) entries2, (char *) entries,
2418 icount * sizeof(struct dx_entry));
2419 dx_set_limit(entries2, dx_node_limit(dir));
2420
2421 /* Set up root */
2422 dx_set_count(entries, 1);
2423 dx_set_block(entries + 0, newblock);
2424 dxroot = (struct dx_root *)frames[0].bh->b_data;
2425 dxroot->info.indirect_levels += 1;
2426 dxtrace(printk(KERN_DEBUG
2427 "Creating %d level index...\n",
2428 dxroot->info.indirect_levels));
2429 err = ext4_handle_dirty_dx_node(handle, dir, frame->bh);
2430 if (err)
2431 goto journal_error;
2432 err = ext4_handle_dirty_dx_node(handle, dir, bh2);
2433 brelse(bh2);
2434 restart = 1;
2435 goto journal_error;
2436 }
2437 }
2438 de = do_split(handle, dir, &bh, frame, &fname->hinfo);
2439 if (IS_ERR(de)) {
2440 err = PTR_ERR(de);
2441 goto cleanup;
2442 }
2443 err = add_dirent_to_buf(handle, fname, dir, inode, de, bh);
2444 goto cleanup;
2445
2446 journal_error:
2447 ext4_std_error(dir->i_sb, err); /* this is a no-op if err == 0 */
2448 cleanup:
2449 brelse(bh);
2450 dx_release(frames);
2451 /* @restart is true means htree-path has been changed, we need to
2452 * repeat dx_probe() to find out valid htree-path
2453 */
2454 if (restart && err == 0)
2455 goto again;
2456 return err;
2457 }
2458
2459 /*
2460 * ext4_generic_delete_entry deletes a directory entry by merging it
2461 * with the previous entry
2462 */
ext4_generic_delete_entry(struct inode * dir,struct ext4_dir_entry_2 * de_del,struct buffer_head * bh,void * entry_buf,int buf_size,int csum_size)2463 int ext4_generic_delete_entry(struct inode *dir,
2464 struct ext4_dir_entry_2 *de_del,
2465 struct buffer_head *bh,
2466 void *entry_buf,
2467 int buf_size,
2468 int csum_size)
2469 {
2470 struct ext4_dir_entry_2 *de, *pde;
2471 unsigned int blocksize = dir->i_sb->s_blocksize;
2472 int i;
2473
2474 i = 0;
2475 pde = NULL;
2476 de = (struct ext4_dir_entry_2 *)entry_buf;
2477 while (i < buf_size - csum_size) {
2478 if (ext4_check_dir_entry(dir, NULL, de, bh,
2479 entry_buf, buf_size, i))
2480 return -EFSCORRUPTED;
2481 if (de == de_del) {
2482 if (pde)
2483 pde->rec_len = ext4_rec_len_to_disk(
2484 ext4_rec_len_from_disk(pde->rec_len,
2485 blocksize) +
2486 ext4_rec_len_from_disk(de->rec_len,
2487 blocksize),
2488 blocksize);
2489 else
2490 de->inode = 0;
2491 inode_inc_iversion(dir);
2492 return 0;
2493 }
2494 i += ext4_rec_len_from_disk(de->rec_len, blocksize);
2495 pde = de;
2496 de = ext4_next_entry(de, blocksize);
2497 }
2498 return -ENOENT;
2499 }
2500
ext4_delete_entry(handle_t * handle,struct inode * dir,struct ext4_dir_entry_2 * de_del,struct buffer_head * bh)2501 static int ext4_delete_entry(handle_t *handle,
2502 struct inode *dir,
2503 struct ext4_dir_entry_2 *de_del,
2504 struct buffer_head *bh)
2505 {
2506 int err, csum_size = 0;
2507
2508 if (ext4_has_inline_data(dir)) {
2509 int has_inline_data = 1;
2510 err = ext4_delete_inline_entry(handle, dir, de_del, bh,
2511 &has_inline_data);
2512 if (has_inline_data)
2513 return err;
2514 }
2515
2516 if (ext4_has_metadata_csum(dir->i_sb))
2517 csum_size = sizeof(struct ext4_dir_entry_tail);
2518
2519 BUFFER_TRACE(bh, "get_write_access");
2520 err = ext4_journal_get_write_access(handle, bh);
2521 if (unlikely(err))
2522 goto out;
2523
2524 err = ext4_generic_delete_entry(dir, de_del, bh, bh->b_data,
2525 dir->i_sb->s_blocksize, csum_size);
2526 if (err)
2527 goto out;
2528
2529 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
2530 err = ext4_handle_dirty_dirblock(handle, dir, bh);
2531 if (unlikely(err))
2532 goto out;
2533
2534 return 0;
2535 out:
2536 if (err != -ENOENT)
2537 ext4_std_error(dir->i_sb, err);
2538 return err;
2539 }
2540
2541 /*
2542 * Set directory link count to 1 if nlinks > EXT4_LINK_MAX, or if nlinks == 2
2543 * since this indicates that nlinks count was previously 1 to avoid overflowing
2544 * the 16-bit i_links_count field on disk. Directories with i_nlink == 1 mean
2545 * that subdirectory link counts are not being maintained accurately.
2546 *
2547 * The caller has already checked for i_nlink overflow in case the DIR_LINK
2548 * feature is not enabled and returned -EMLINK. The is_dx() check is a proxy
2549 * for checking S_ISDIR(inode) (since the INODE_INDEX feature will not be set
2550 * on regular files) and to avoid creating huge/slow non-HTREE directories.
2551 */
ext4_inc_count(struct inode * inode)2552 static void ext4_inc_count(struct inode *inode)
2553 {
2554 inc_nlink(inode);
2555 if (is_dx(inode) &&
2556 (inode->i_nlink > EXT4_LINK_MAX || inode->i_nlink == 2))
2557 set_nlink(inode, 1);
2558 }
2559
2560 /*
2561 * If a directory had nlink == 1, then we should let it be 1. This indicates
2562 * directory has >EXT4_LINK_MAX subdirs.
2563 */
ext4_dec_count(struct inode * inode)2564 static void ext4_dec_count(struct inode *inode)
2565 {
2566 if (!S_ISDIR(inode->i_mode) || inode->i_nlink > 2)
2567 drop_nlink(inode);
2568 }
2569
2570
2571 /*
2572 * Add non-directory inode to a directory. On success, the inode reference is
2573 * consumed by dentry is instantiation. This is also indicated by clearing of
2574 * *inodep pointer. On failure, the caller is responsible for dropping the
2575 * inode reference in the safe context.
2576 */
ext4_add_nondir(handle_t * handle,struct dentry * dentry,struct inode ** inodep)2577 static int ext4_add_nondir(handle_t *handle,
2578 struct dentry *dentry, struct inode **inodep)
2579 {
2580 struct inode *dir = d_inode(dentry->d_parent);
2581 struct inode *inode = *inodep;
2582 int err = ext4_add_entry(handle, dentry, inode);
2583 if (!err) {
2584 err = ext4_mark_inode_dirty(handle, inode);
2585 if (IS_DIRSYNC(dir))
2586 ext4_handle_sync(handle);
2587 d_instantiate_new(dentry, inode);
2588 *inodep = NULL;
2589 return err;
2590 }
2591 drop_nlink(inode);
2592 ext4_orphan_add(handle, inode);
2593 unlock_new_inode(inode);
2594 return err;
2595 }
2596
2597 /*
2598 * By the time this is called, we already have created
2599 * the directory cache entry for the new file, but it
2600 * is so far negative - it has no inode.
2601 *
2602 * If the create succeeds, we fill in the inode information
2603 * with d_instantiate().
2604 */
ext4_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2605 static int ext4_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2606 bool excl)
2607 {
2608 handle_t *handle;
2609 struct inode *inode;
2610 int err, credits, retries = 0;
2611
2612 err = dquot_initialize(dir);
2613 if (err)
2614 return err;
2615
2616 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
2617 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3);
2618 retry:
2619 inode = ext4_new_inode_start_handle(dir, mode, &dentry->d_name, 0,
2620 NULL, EXT4_HT_DIR, credits);
2621 handle = ext4_journal_current_handle();
2622 err = PTR_ERR(inode);
2623 if (!IS_ERR(inode)) {
2624 inode->i_op = &ext4_file_inode_operations;
2625 inode->i_fop = &ext4_file_operations;
2626 ext4_set_aops(inode);
2627 err = ext4_add_nondir(handle, dentry, &inode);
2628 if (!err)
2629 ext4_fc_track_create(handle, dentry);
2630 }
2631 if (handle)
2632 ext4_journal_stop(handle);
2633 if (!IS_ERR_OR_NULL(inode))
2634 iput(inode);
2635 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
2636 goto retry;
2637 return err;
2638 }
2639
ext4_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)2640 static int ext4_mknod(struct inode *dir, struct dentry *dentry,
2641 umode_t mode, dev_t rdev)
2642 {
2643 handle_t *handle;
2644 struct inode *inode;
2645 int err, credits, retries = 0;
2646
2647 err = dquot_initialize(dir);
2648 if (err)
2649 return err;
2650
2651 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
2652 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3);
2653 retry:
2654 inode = ext4_new_inode_start_handle(dir, mode, &dentry->d_name, 0,
2655 NULL, EXT4_HT_DIR, credits);
2656 handle = ext4_journal_current_handle();
2657 err = PTR_ERR(inode);
2658 if (!IS_ERR(inode)) {
2659 init_special_inode(inode, inode->i_mode, rdev);
2660 inode->i_op = &ext4_special_inode_operations;
2661 err = ext4_add_nondir(handle, dentry, &inode);
2662 if (!err)
2663 ext4_fc_track_create(handle, dentry);
2664 }
2665 if (handle)
2666 ext4_journal_stop(handle);
2667 if (!IS_ERR_OR_NULL(inode))
2668 iput(inode);
2669 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
2670 goto retry;
2671 return err;
2672 }
2673
ext4_tmpfile(struct inode * dir,struct dentry * dentry,umode_t mode)2674 static int ext4_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2675 {
2676 handle_t *handle;
2677 struct inode *inode;
2678 int err, retries = 0;
2679
2680 err = dquot_initialize(dir);
2681 if (err)
2682 return err;
2683
2684 retry:
2685 inode = ext4_new_inode_start_handle(dir, mode,
2686 NULL, 0, NULL,
2687 EXT4_HT_DIR,
2688 EXT4_MAXQUOTAS_INIT_BLOCKS(dir->i_sb) +
2689 4 + EXT4_XATTR_TRANS_BLOCKS);
2690 handle = ext4_journal_current_handle();
2691 err = PTR_ERR(inode);
2692 if (!IS_ERR(inode)) {
2693 inode->i_op = &ext4_file_inode_operations;
2694 inode->i_fop = &ext4_file_operations;
2695 ext4_set_aops(inode);
2696 d_tmpfile(dentry, inode);
2697 err = ext4_orphan_add(handle, inode);
2698 if (err)
2699 goto err_unlock_inode;
2700 mark_inode_dirty(inode);
2701 unlock_new_inode(inode);
2702 }
2703 if (handle)
2704 ext4_journal_stop(handle);
2705 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
2706 goto retry;
2707 return err;
2708 err_unlock_inode:
2709 ext4_journal_stop(handle);
2710 unlock_new_inode(inode);
2711 return err;
2712 }
2713
ext4_init_dot_dotdot(struct inode * inode,struct ext4_dir_entry_2 * de,int blocksize,int csum_size,unsigned int parent_ino,int dotdot_real_len)2714 struct ext4_dir_entry_2 *ext4_init_dot_dotdot(struct inode *inode,
2715 struct ext4_dir_entry_2 *de,
2716 int blocksize, int csum_size,
2717 unsigned int parent_ino, int dotdot_real_len)
2718 {
2719 de->inode = cpu_to_le32(inode->i_ino);
2720 de->name_len = 1;
2721 de->rec_len = ext4_rec_len_to_disk(EXT4_DIR_REC_LEN(de->name_len),
2722 blocksize);
2723 strcpy(de->name, ".");
2724 ext4_set_de_type(inode->i_sb, de, S_IFDIR);
2725
2726 de = ext4_next_entry(de, blocksize);
2727 de->inode = cpu_to_le32(parent_ino);
2728 de->name_len = 2;
2729 if (!dotdot_real_len)
2730 de->rec_len = ext4_rec_len_to_disk(blocksize -
2731 (csum_size + EXT4_DIR_REC_LEN(1)),
2732 blocksize);
2733 else
2734 de->rec_len = ext4_rec_len_to_disk(
2735 EXT4_DIR_REC_LEN(de->name_len), blocksize);
2736 strcpy(de->name, "..");
2737 ext4_set_de_type(inode->i_sb, de, S_IFDIR);
2738
2739 return ext4_next_entry(de, blocksize);
2740 }
2741
ext4_init_new_dir(handle_t * handle,struct inode * dir,struct inode * inode)2742 int ext4_init_new_dir(handle_t *handle, struct inode *dir,
2743 struct inode *inode)
2744 {
2745 struct buffer_head *dir_block = NULL;
2746 struct ext4_dir_entry_2 *de;
2747 ext4_lblk_t block = 0;
2748 unsigned int blocksize = dir->i_sb->s_blocksize;
2749 int csum_size = 0;
2750 int err;
2751
2752 if (ext4_has_metadata_csum(dir->i_sb))
2753 csum_size = sizeof(struct ext4_dir_entry_tail);
2754
2755 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2756 err = ext4_try_create_inline_dir(handle, dir, inode);
2757 if (err < 0 && err != -ENOSPC)
2758 goto out;
2759 if (!err)
2760 goto out;
2761 }
2762
2763 inode->i_size = 0;
2764 dir_block = ext4_append(handle, inode, &block);
2765 if (IS_ERR(dir_block))
2766 return PTR_ERR(dir_block);
2767 de = (struct ext4_dir_entry_2 *)dir_block->b_data;
2768 ext4_init_dot_dotdot(inode, de, blocksize, csum_size, dir->i_ino, 0);
2769 set_nlink(inode, 2);
2770 if (csum_size)
2771 ext4_initialize_dirent_tail(dir_block, blocksize);
2772
2773 BUFFER_TRACE(dir_block, "call ext4_handle_dirty_metadata");
2774 err = ext4_handle_dirty_dirblock(handle, inode, dir_block);
2775 if (err)
2776 goto out;
2777 set_buffer_verified(dir_block);
2778 out:
2779 brelse(dir_block);
2780 return err;
2781 }
2782
ext4_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)2783 static int ext4_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2784 {
2785 handle_t *handle;
2786 struct inode *inode;
2787 int err, err2 = 0, credits, retries = 0;
2788
2789 if (EXT4_DIR_LINK_MAX(dir))
2790 return -EMLINK;
2791
2792 err = dquot_initialize(dir);
2793 if (err)
2794 return err;
2795
2796 credits = (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
2797 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3);
2798 retry:
2799 inode = ext4_new_inode_start_handle(dir, S_IFDIR | mode,
2800 &dentry->d_name,
2801 0, NULL, EXT4_HT_DIR, credits);
2802 handle = ext4_journal_current_handle();
2803 err = PTR_ERR(inode);
2804 if (IS_ERR(inode))
2805 goto out_stop;
2806
2807 inode->i_op = &ext4_dir_inode_operations;
2808 inode->i_fop = &ext4_dir_operations;
2809 err = ext4_init_new_dir(handle, dir, inode);
2810 if (err)
2811 goto out_clear_inode;
2812 err = ext4_mark_inode_dirty(handle, inode);
2813 if (!err)
2814 err = ext4_add_entry(handle, dentry, inode);
2815 if (err) {
2816 out_clear_inode:
2817 clear_nlink(inode);
2818 ext4_orphan_add(handle, inode);
2819 unlock_new_inode(inode);
2820 err2 = ext4_mark_inode_dirty(handle, inode);
2821 if (unlikely(err2))
2822 err = err2;
2823 ext4_journal_stop(handle);
2824 iput(inode);
2825 goto out_retry;
2826 }
2827 ext4_inc_count(dir);
2828
2829 ext4_update_dx_flag(dir);
2830 err = ext4_mark_inode_dirty(handle, dir);
2831 if (err)
2832 goto out_clear_inode;
2833 d_instantiate_new(dentry, inode);
2834 ext4_fc_track_create(handle, dentry);
2835 if (IS_DIRSYNC(dir))
2836 ext4_handle_sync(handle);
2837
2838 out_stop:
2839 if (handle)
2840 ext4_journal_stop(handle);
2841 out_retry:
2842 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
2843 goto retry;
2844 return err;
2845 }
2846
2847 /*
2848 * routine to check that the specified directory is empty (for rmdir)
2849 */
ext4_empty_dir(struct inode * inode)2850 bool ext4_empty_dir(struct inode *inode)
2851 {
2852 unsigned int offset;
2853 struct buffer_head *bh;
2854 struct ext4_dir_entry_2 *de;
2855 struct super_block *sb;
2856
2857 if (ext4_has_inline_data(inode)) {
2858 int has_inline_data = 1;
2859 int ret;
2860
2861 ret = empty_inline_dir(inode, &has_inline_data);
2862 if (has_inline_data)
2863 return ret;
2864 }
2865
2866 sb = inode->i_sb;
2867 if (inode->i_size < EXT4_DIR_REC_LEN(1) + EXT4_DIR_REC_LEN(2)) {
2868 EXT4_ERROR_INODE(inode, "invalid size");
2869 return true;
2870 }
2871 /* The first directory block must not be a hole,
2872 * so treat it as DIRENT_HTREE
2873 */
2874 bh = ext4_read_dirblock(inode, 0, DIRENT_HTREE);
2875 if (IS_ERR(bh))
2876 return true;
2877
2878 de = (struct ext4_dir_entry_2 *) bh->b_data;
2879 if (ext4_check_dir_entry(inode, NULL, de, bh, bh->b_data, bh->b_size,
2880 0) ||
2881 le32_to_cpu(de->inode) != inode->i_ino || strcmp(".", de->name)) {
2882 ext4_warning_inode(inode, "directory missing '.'");
2883 brelse(bh);
2884 return true;
2885 }
2886 offset = ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize);
2887 de = ext4_next_entry(de, sb->s_blocksize);
2888 if (ext4_check_dir_entry(inode, NULL, de, bh, bh->b_data, bh->b_size,
2889 offset) ||
2890 le32_to_cpu(de->inode) == 0 || strcmp("..", de->name)) {
2891 ext4_warning_inode(inode, "directory missing '..'");
2892 brelse(bh);
2893 return true;
2894 }
2895 offset += ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize);
2896 while (offset < inode->i_size) {
2897 if (!(offset & (sb->s_blocksize - 1))) {
2898 unsigned int lblock;
2899 brelse(bh);
2900 lblock = offset >> EXT4_BLOCK_SIZE_BITS(sb);
2901 bh = ext4_read_dirblock(inode, lblock, EITHER);
2902 if (bh == NULL) {
2903 offset += sb->s_blocksize;
2904 continue;
2905 }
2906 if (IS_ERR(bh))
2907 return true;
2908 }
2909 de = (struct ext4_dir_entry_2 *) (bh->b_data +
2910 (offset & (sb->s_blocksize - 1)));
2911 if (ext4_check_dir_entry(inode, NULL, de, bh,
2912 bh->b_data, bh->b_size, offset)) {
2913 offset = (offset | (sb->s_blocksize - 1)) + 1;
2914 continue;
2915 }
2916 if (le32_to_cpu(de->inode)) {
2917 brelse(bh);
2918 return false;
2919 }
2920 offset += ext4_rec_len_from_disk(de->rec_len, sb->s_blocksize);
2921 }
2922 brelse(bh);
2923 return true;
2924 }
2925
2926 /*
2927 * ext4_orphan_add() links an unlinked or truncated inode into a list of
2928 * such inodes, starting at the superblock, in case we crash before the
2929 * file is closed/deleted, or in case the inode truncate spans multiple
2930 * transactions and the last transaction is not recovered after a crash.
2931 *
2932 * At filesystem recovery time, we walk this list deleting unlinked
2933 * inodes and truncating linked inodes in ext4_orphan_cleanup().
2934 *
2935 * Orphan list manipulation functions must be called under i_mutex unless
2936 * we are just creating the inode or deleting it.
2937 */
ext4_orphan_add(handle_t * handle,struct inode * inode)2938 int ext4_orphan_add(handle_t *handle, struct inode *inode)
2939 {
2940 struct super_block *sb = inode->i_sb;
2941 struct ext4_sb_info *sbi = EXT4_SB(sb);
2942 struct ext4_iloc iloc;
2943 int err = 0, rc;
2944 bool dirty = false;
2945
2946 if (!sbi->s_journal || is_bad_inode(inode))
2947 return 0;
2948
2949 WARN_ON_ONCE(!(inode->i_state & (I_NEW | I_FREEING)) &&
2950 !inode_is_locked(inode));
2951 /*
2952 * Exit early if inode already is on orphan list. This is a big speedup
2953 * since we don't have to contend on the global s_orphan_lock.
2954 */
2955 if (!list_empty(&EXT4_I(inode)->i_orphan))
2956 return 0;
2957
2958 /*
2959 * Orphan handling is only valid for files with data blocks
2960 * being truncated, or files being unlinked. Note that we either
2961 * hold i_mutex, or the inode can not be referenced from outside,
2962 * so i_nlink should not be bumped due to race
2963 */
2964 J_ASSERT((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2965 S_ISLNK(inode->i_mode)) || inode->i_nlink == 0);
2966
2967 BUFFER_TRACE(sbi->s_sbh, "get_write_access");
2968 err = ext4_journal_get_write_access(handle, sbi->s_sbh);
2969 if (err)
2970 goto out;
2971
2972 err = ext4_reserve_inode_write(handle, inode, &iloc);
2973 if (err)
2974 goto out;
2975
2976 mutex_lock(&sbi->s_orphan_lock);
2977 /*
2978 * Due to previous errors inode may be already a part of on-disk
2979 * orphan list. If so skip on-disk list modification.
2980 */
2981 if (!NEXT_ORPHAN(inode) || NEXT_ORPHAN(inode) >
2982 (le32_to_cpu(sbi->s_es->s_inodes_count))) {
2983 /* Insert this inode at the head of the on-disk orphan list */
2984 NEXT_ORPHAN(inode) = le32_to_cpu(sbi->s_es->s_last_orphan);
2985 sbi->s_es->s_last_orphan = cpu_to_le32(inode->i_ino);
2986 dirty = true;
2987 }
2988 list_add(&EXT4_I(inode)->i_orphan, &sbi->s_orphan);
2989 mutex_unlock(&sbi->s_orphan_lock);
2990
2991 if (dirty) {
2992 err = ext4_handle_dirty_super(handle, sb);
2993 rc = ext4_mark_iloc_dirty(handle, inode, &iloc);
2994 if (!err)
2995 err = rc;
2996 if (err) {
2997 /*
2998 * We have to remove inode from in-memory list if
2999 * addition to on disk orphan list failed. Stray orphan
3000 * list entries can cause panics at unmount time.
3001 */
3002 mutex_lock(&sbi->s_orphan_lock);
3003 list_del_init(&EXT4_I(inode)->i_orphan);
3004 mutex_unlock(&sbi->s_orphan_lock);
3005 }
3006 } else
3007 brelse(iloc.bh);
3008
3009 jbd_debug(4, "superblock will point to %lu\n", inode->i_ino);
3010 jbd_debug(4, "orphan inode %lu will point to %d\n",
3011 inode->i_ino, NEXT_ORPHAN(inode));
3012 out:
3013 ext4_std_error(sb, err);
3014 return err;
3015 }
3016
3017 /*
3018 * ext4_orphan_del() removes an unlinked or truncated inode from the list
3019 * of such inodes stored on disk, because it is finally being cleaned up.
3020 */
ext4_orphan_del(handle_t * handle,struct inode * inode)3021 int ext4_orphan_del(handle_t *handle, struct inode *inode)
3022 {
3023 struct list_head *prev;
3024 struct ext4_inode_info *ei = EXT4_I(inode);
3025 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3026 __u32 ino_next;
3027 struct ext4_iloc iloc;
3028 int err = 0;
3029
3030 if (!sbi->s_journal && !(sbi->s_mount_state & EXT4_ORPHAN_FS))
3031 return 0;
3032
3033 WARN_ON_ONCE(!(inode->i_state & (I_NEW | I_FREEING)) &&
3034 !inode_is_locked(inode));
3035 /* Do this quick check before taking global s_orphan_lock. */
3036 if (list_empty(&ei->i_orphan))
3037 return 0;
3038
3039 if (handle) {
3040 /* Grab inode buffer early before taking global s_orphan_lock */
3041 err = ext4_reserve_inode_write(handle, inode, &iloc);
3042 }
3043
3044 mutex_lock(&sbi->s_orphan_lock);
3045 jbd_debug(4, "remove inode %lu from orphan list\n", inode->i_ino);
3046
3047 prev = ei->i_orphan.prev;
3048 list_del_init(&ei->i_orphan);
3049
3050 /* If we're on an error path, we may not have a valid
3051 * transaction handle with which to update the orphan list on
3052 * disk, but we still need to remove the inode from the linked
3053 * list in memory. */
3054 if (!handle || err) {
3055 mutex_unlock(&sbi->s_orphan_lock);
3056 goto out_err;
3057 }
3058
3059 ino_next = NEXT_ORPHAN(inode);
3060 if (prev == &sbi->s_orphan) {
3061 jbd_debug(4, "superblock will point to %u\n", ino_next);
3062 BUFFER_TRACE(sbi->s_sbh, "get_write_access");
3063 err = ext4_journal_get_write_access(handle, sbi->s_sbh);
3064 if (err) {
3065 mutex_unlock(&sbi->s_orphan_lock);
3066 goto out_brelse;
3067 }
3068 sbi->s_es->s_last_orphan = cpu_to_le32(ino_next);
3069 mutex_unlock(&sbi->s_orphan_lock);
3070 err = ext4_handle_dirty_super(handle, inode->i_sb);
3071 } else {
3072 struct ext4_iloc iloc2;
3073 struct inode *i_prev =
3074 &list_entry(prev, struct ext4_inode_info, i_orphan)->vfs_inode;
3075
3076 jbd_debug(4, "orphan inode %lu will point to %u\n",
3077 i_prev->i_ino, ino_next);
3078 err = ext4_reserve_inode_write(handle, i_prev, &iloc2);
3079 if (err) {
3080 mutex_unlock(&sbi->s_orphan_lock);
3081 goto out_brelse;
3082 }
3083 NEXT_ORPHAN(i_prev) = ino_next;
3084 err = ext4_mark_iloc_dirty(handle, i_prev, &iloc2);
3085 mutex_unlock(&sbi->s_orphan_lock);
3086 }
3087 if (err)
3088 goto out_brelse;
3089 NEXT_ORPHAN(inode) = 0;
3090 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3091 out_err:
3092 ext4_std_error(inode->i_sb, err);
3093 return err;
3094
3095 out_brelse:
3096 brelse(iloc.bh);
3097 goto out_err;
3098 }
3099
ext4_rmdir(struct inode * dir,struct dentry * dentry)3100 static int ext4_rmdir(struct inode *dir, struct dentry *dentry)
3101 {
3102 int retval;
3103 struct inode *inode;
3104 struct buffer_head *bh;
3105 struct ext4_dir_entry_2 *de;
3106 handle_t *handle = NULL;
3107
3108 if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb))))
3109 return -EIO;
3110
3111 /* Initialize quotas before so that eventual writes go in
3112 * separate transaction */
3113 retval = dquot_initialize(dir);
3114 if (retval)
3115 return retval;
3116 retval = dquot_initialize(d_inode(dentry));
3117 if (retval)
3118 return retval;
3119
3120 retval = -ENOENT;
3121 bh = ext4_find_entry(dir, &dentry->d_name, &de, NULL);
3122 if (IS_ERR(bh))
3123 return PTR_ERR(bh);
3124 if (!bh)
3125 goto end_rmdir;
3126
3127 inode = d_inode(dentry);
3128
3129 retval = -EFSCORRUPTED;
3130 if (le32_to_cpu(de->inode) != inode->i_ino)
3131 goto end_rmdir;
3132
3133 retval = -ENOTEMPTY;
3134 if (!ext4_empty_dir(inode))
3135 goto end_rmdir;
3136
3137 handle = ext4_journal_start(dir, EXT4_HT_DIR,
3138 EXT4_DATA_TRANS_BLOCKS(dir->i_sb));
3139 if (IS_ERR(handle)) {
3140 retval = PTR_ERR(handle);
3141 handle = NULL;
3142 goto end_rmdir;
3143 }
3144
3145 if (IS_DIRSYNC(dir))
3146 ext4_handle_sync(handle);
3147
3148 retval = ext4_delete_entry(handle, dir, de, bh);
3149 if (retval)
3150 goto end_rmdir;
3151 if (!EXT4_DIR_LINK_EMPTY(inode))
3152 ext4_warning_inode(inode,
3153 "empty directory '%.*s' has too many links (%u)",
3154 dentry->d_name.len, dentry->d_name.name,
3155 inode->i_nlink);
3156 inode_inc_iversion(inode);
3157 clear_nlink(inode);
3158 /* There's no need to set i_disksize: the fact that i_nlink is
3159 * zero will ensure that the right thing happens during any
3160 * recovery. */
3161 inode->i_size = 0;
3162 ext4_orphan_add(handle, inode);
3163 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3164 retval = ext4_mark_inode_dirty(handle, inode);
3165 if (retval)
3166 goto end_rmdir;
3167 ext4_dec_count(dir);
3168 ext4_update_dx_flag(dir);
3169 ext4_fc_track_unlink(handle, dentry);
3170 retval = ext4_mark_inode_dirty(handle, dir);
3171
3172 #ifdef CONFIG_UNICODE
3173 /* VFS negative dentries are incompatible with Encoding and
3174 * Case-insensitiveness. Eventually we'll want avoid
3175 * invalidating the dentries here, alongside with returning the
3176 * negative dentries at ext4_lookup(), when it is better
3177 * supported by the VFS for the CI case.
3178 */
3179 if (IS_CASEFOLDED(dir))
3180 d_invalidate(dentry);
3181 #endif
3182
3183 end_rmdir:
3184 brelse(bh);
3185 if (handle)
3186 ext4_journal_stop(handle);
3187 return retval;
3188 }
3189
__ext4_unlink(handle_t * handle,struct inode * dir,const struct qstr * d_name,struct inode * inode)3190 int __ext4_unlink(handle_t *handle, struct inode *dir, const struct qstr *d_name,
3191 struct inode *inode)
3192 {
3193 int retval = -ENOENT;
3194 struct buffer_head *bh;
3195 struct ext4_dir_entry_2 *de;
3196 int skip_remove_dentry = 0;
3197
3198 bh = ext4_find_entry(dir, d_name, &de, NULL);
3199 if (IS_ERR(bh))
3200 return PTR_ERR(bh);
3201
3202 if (!bh)
3203 return -ENOENT;
3204
3205 if (le32_to_cpu(de->inode) != inode->i_ino) {
3206 /*
3207 * It's okay if we find dont find dentry which matches
3208 * the inode. That's because it might have gotten
3209 * renamed to a different inode number
3210 */
3211 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
3212 skip_remove_dentry = 1;
3213 else
3214 goto out;
3215 }
3216
3217 if (IS_DIRSYNC(dir))
3218 ext4_handle_sync(handle);
3219
3220 if (!skip_remove_dentry) {
3221 retval = ext4_delete_entry(handle, dir, de, bh);
3222 if (retval)
3223 goto out;
3224 dir->i_ctime = dir->i_mtime = current_time(dir);
3225 ext4_update_dx_flag(dir);
3226 retval = ext4_mark_inode_dirty(handle, dir);
3227 if (retval)
3228 goto out;
3229 } else {
3230 retval = 0;
3231 }
3232 if (inode->i_nlink == 0)
3233 ext4_warning_inode(inode, "Deleting file '%.*s' with no links",
3234 d_name->len, d_name->name);
3235 else
3236 drop_nlink(inode);
3237 if (!inode->i_nlink)
3238 ext4_orphan_add(handle, inode);
3239 inode->i_ctime = current_time(inode);
3240 retval = ext4_mark_inode_dirty(handle, inode);
3241
3242 out:
3243 brelse(bh);
3244 return retval;
3245 }
3246
ext4_unlink(struct inode * dir,struct dentry * dentry)3247 static int ext4_unlink(struct inode *dir, struct dentry *dentry)
3248 {
3249 handle_t *handle;
3250 int retval;
3251
3252 if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb))))
3253 return -EIO;
3254
3255 trace_ext4_unlink_enter(dir, dentry);
3256 /*
3257 * Initialize quotas before so that eventual writes go
3258 * in separate transaction
3259 */
3260 retval = dquot_initialize(dir);
3261 if (retval)
3262 goto out_trace;
3263 retval = dquot_initialize(d_inode(dentry));
3264 if (retval)
3265 goto out_trace;
3266
3267 handle = ext4_journal_start(dir, EXT4_HT_DIR,
3268 EXT4_DATA_TRANS_BLOCKS(dir->i_sb));
3269 if (IS_ERR(handle)) {
3270 retval = PTR_ERR(handle);
3271 goto out_trace;
3272 }
3273
3274 retval = __ext4_unlink(handle, dir, &dentry->d_name, d_inode(dentry));
3275 if (!retval)
3276 ext4_fc_track_unlink(handle, dentry);
3277 #ifdef CONFIG_UNICODE
3278 /* VFS negative dentries are incompatible with Encoding and
3279 * Case-insensitiveness. Eventually we'll want avoid
3280 * invalidating the dentries here, alongside with returning the
3281 * negative dentries at ext4_lookup(), when it is better
3282 * supported by the VFS for the CI case.
3283 */
3284 if (IS_CASEFOLDED(dir))
3285 d_invalidate(dentry);
3286 #endif
3287 if (handle)
3288 ext4_journal_stop(handle);
3289
3290 out_trace:
3291 trace_ext4_unlink_exit(dentry, retval);
3292 return retval;
3293 }
3294
ext4_symlink(struct inode * dir,struct dentry * dentry,const char * symname)3295 static int ext4_symlink(struct inode *dir,
3296 struct dentry *dentry, const char *symname)
3297 {
3298 handle_t *handle;
3299 struct inode *inode;
3300 int err, len = strlen(symname);
3301 int credits;
3302 struct fscrypt_str disk_link;
3303
3304 if (unlikely(ext4_forced_shutdown(EXT4_SB(dir->i_sb))))
3305 return -EIO;
3306
3307 err = fscrypt_prepare_symlink(dir, symname, len, dir->i_sb->s_blocksize,
3308 &disk_link);
3309 if (err)
3310 return err;
3311
3312 err = dquot_initialize(dir);
3313 if (err)
3314 return err;
3315
3316 if ((disk_link.len > EXT4_N_BLOCKS * 4)) {
3317 /*
3318 * For non-fast symlinks, we just allocate inode and put it on
3319 * orphan list in the first transaction => we need bitmap,
3320 * group descriptor, sb, inode block, quota blocks, and
3321 * possibly selinux xattr blocks.
3322 */
3323 credits = 4 + EXT4_MAXQUOTAS_INIT_BLOCKS(dir->i_sb) +
3324 EXT4_XATTR_TRANS_BLOCKS;
3325 } else {
3326 /*
3327 * Fast symlink. We have to add entry to directory
3328 * (EXT4_DATA_TRANS_BLOCKS + EXT4_INDEX_EXTRA_TRANS_BLOCKS),
3329 * allocate new inode (bitmap, group descriptor, inode block,
3330 * quota blocks, sb is already counted in previous macros).
3331 */
3332 credits = EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
3333 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 3;
3334 }
3335
3336 inode = ext4_new_inode_start_handle(dir, S_IFLNK|S_IRWXUGO,
3337 &dentry->d_name, 0, NULL,
3338 EXT4_HT_DIR, credits);
3339 handle = ext4_journal_current_handle();
3340 if (IS_ERR(inode)) {
3341 if (handle)
3342 ext4_journal_stop(handle);
3343 return PTR_ERR(inode);
3344 }
3345
3346 if (IS_ENCRYPTED(inode)) {
3347 err = fscrypt_encrypt_symlink(inode, symname, len, &disk_link);
3348 if (err)
3349 goto err_drop_inode;
3350 inode->i_op = &ext4_encrypted_symlink_inode_operations;
3351 }
3352
3353 if ((disk_link.len > EXT4_N_BLOCKS * 4)) {
3354 if (!IS_ENCRYPTED(inode))
3355 inode->i_op = &ext4_symlink_inode_operations;
3356 inode_nohighmem(inode);
3357 ext4_set_aops(inode);
3358 /*
3359 * We cannot call page_symlink() with transaction started
3360 * because it calls into ext4_write_begin() which can wait
3361 * for transaction commit if we are running out of space
3362 * and thus we deadlock. So we have to stop transaction now
3363 * and restart it when symlink contents is written.
3364 *
3365 * To keep fs consistent in case of crash, we have to put inode
3366 * to orphan list in the mean time.
3367 */
3368 drop_nlink(inode);
3369 err = ext4_orphan_add(handle, inode);
3370 if (handle)
3371 ext4_journal_stop(handle);
3372 handle = NULL;
3373 if (err)
3374 goto err_drop_inode;
3375 err = __page_symlink(inode, disk_link.name, disk_link.len, 1);
3376 if (err)
3377 goto err_drop_inode;
3378 /*
3379 * Now inode is being linked into dir (EXT4_DATA_TRANS_BLOCKS
3380 * + EXT4_INDEX_EXTRA_TRANS_BLOCKS), inode is also modified
3381 */
3382 handle = ext4_journal_start(dir, EXT4_HT_DIR,
3383 EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
3384 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 1);
3385 if (IS_ERR(handle)) {
3386 err = PTR_ERR(handle);
3387 handle = NULL;
3388 goto err_drop_inode;
3389 }
3390 set_nlink(inode, 1);
3391 err = ext4_orphan_del(handle, inode);
3392 if (err)
3393 goto err_drop_inode;
3394 } else {
3395 /* clear the extent format for fast symlink */
3396 ext4_clear_inode_flag(inode, EXT4_INODE_EXTENTS);
3397 if (!IS_ENCRYPTED(inode)) {
3398 inode->i_op = &ext4_fast_symlink_inode_operations;
3399 inode->i_link = (char *)&EXT4_I(inode)->i_data;
3400 }
3401 memcpy((char *)&EXT4_I(inode)->i_data, disk_link.name,
3402 disk_link.len);
3403 inode->i_size = disk_link.len - 1;
3404 }
3405 EXT4_I(inode)->i_disksize = inode->i_size;
3406 err = ext4_add_nondir(handle, dentry, &inode);
3407 if (handle)
3408 ext4_journal_stop(handle);
3409 if (inode)
3410 iput(inode);
3411 goto out_free_encrypted_link;
3412
3413 err_drop_inode:
3414 if (handle)
3415 ext4_journal_stop(handle);
3416 clear_nlink(inode);
3417 unlock_new_inode(inode);
3418 iput(inode);
3419 out_free_encrypted_link:
3420 if (disk_link.name != (unsigned char *)symname)
3421 kfree(disk_link.name);
3422 return err;
3423 }
3424
__ext4_link(struct inode * dir,struct inode * inode,struct dentry * dentry)3425 int __ext4_link(struct inode *dir, struct inode *inode, struct dentry *dentry)
3426 {
3427 handle_t *handle;
3428 int err, retries = 0;
3429 retry:
3430 handle = ext4_journal_start(dir, EXT4_HT_DIR,
3431 (EXT4_DATA_TRANS_BLOCKS(dir->i_sb) +
3432 EXT4_INDEX_EXTRA_TRANS_BLOCKS) + 1);
3433 if (IS_ERR(handle))
3434 return PTR_ERR(handle);
3435
3436 if (IS_DIRSYNC(dir))
3437 ext4_handle_sync(handle);
3438
3439 inode->i_ctime = current_time(inode);
3440 ext4_inc_count(inode);
3441 ihold(inode);
3442
3443 err = ext4_add_entry(handle, dentry, inode);
3444 if (!err) {
3445 err = ext4_mark_inode_dirty(handle, inode);
3446 /* this can happen only for tmpfile being
3447 * linked the first time
3448 */
3449 if (inode->i_nlink == 1)
3450 ext4_orphan_del(handle, inode);
3451 d_instantiate(dentry, inode);
3452 ext4_fc_track_link(handle, dentry);
3453 } else {
3454 drop_nlink(inode);
3455 iput(inode);
3456 }
3457 ext4_journal_stop(handle);
3458 if (err == -ENOSPC && ext4_should_retry_alloc(dir->i_sb, &retries))
3459 goto retry;
3460 return err;
3461 }
3462
ext4_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)3463 static int ext4_link(struct dentry *old_dentry,
3464 struct inode *dir, struct dentry *dentry)
3465 {
3466 struct inode *inode = d_inode(old_dentry);
3467 int err;
3468
3469 if (inode->i_nlink >= EXT4_LINK_MAX)
3470 return -EMLINK;
3471
3472 err = fscrypt_prepare_link(old_dentry, dir, dentry);
3473 if (err)
3474 return err;
3475
3476 if ((ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT)) &&
3477 (!projid_eq(EXT4_I(dir)->i_projid,
3478 EXT4_I(old_dentry->d_inode)->i_projid)))
3479 return -EXDEV;
3480
3481 err = dquot_initialize(dir);
3482 if (err)
3483 return err;
3484 return __ext4_link(dir, inode, dentry);
3485 }
3486
3487 /*
3488 * Try to find buffer head where contains the parent block.
3489 * It should be the inode block if it is inlined or the 1st block
3490 * if it is a normal dir.
3491 */
ext4_get_first_dir_block(handle_t * handle,struct inode * inode,int * retval,struct ext4_dir_entry_2 ** parent_de,int * inlined)3492 static struct buffer_head *ext4_get_first_dir_block(handle_t *handle,
3493 struct inode *inode,
3494 int *retval,
3495 struct ext4_dir_entry_2 **parent_de,
3496 int *inlined)
3497 {
3498 struct buffer_head *bh;
3499
3500 if (!ext4_has_inline_data(inode)) {
3501 /* The first directory block must not be a hole, so
3502 * treat it as DIRENT_HTREE
3503 */
3504 bh = ext4_read_dirblock(inode, 0, DIRENT_HTREE);
3505 if (IS_ERR(bh)) {
3506 *retval = PTR_ERR(bh);
3507 return NULL;
3508 }
3509 *parent_de = ext4_next_entry(
3510 (struct ext4_dir_entry_2 *)bh->b_data,
3511 inode->i_sb->s_blocksize);
3512 return bh;
3513 }
3514
3515 *inlined = 1;
3516 return ext4_get_first_inline_block(inode, parent_de, retval);
3517 }
3518
3519 struct ext4_renament {
3520 struct inode *dir;
3521 struct dentry *dentry;
3522 struct inode *inode;
3523 bool is_dir;
3524 int dir_nlink_delta;
3525
3526 /* entry for "dentry" */
3527 struct buffer_head *bh;
3528 struct ext4_dir_entry_2 *de;
3529 int inlined;
3530
3531 /* entry for ".." in inode if it's a directory */
3532 struct buffer_head *dir_bh;
3533 struct ext4_dir_entry_2 *parent_de;
3534 int dir_inlined;
3535 };
3536
ext4_rename_dir_prepare(handle_t * handle,struct ext4_renament * ent)3537 static int ext4_rename_dir_prepare(handle_t *handle, struct ext4_renament *ent)
3538 {
3539 int retval;
3540
3541 ent->dir_bh = ext4_get_first_dir_block(handle, ent->inode,
3542 &retval, &ent->parent_de,
3543 &ent->dir_inlined);
3544 if (!ent->dir_bh)
3545 return retval;
3546 if (le32_to_cpu(ent->parent_de->inode) != ent->dir->i_ino)
3547 return -EFSCORRUPTED;
3548 BUFFER_TRACE(ent->dir_bh, "get_write_access");
3549 return ext4_journal_get_write_access(handle, ent->dir_bh);
3550 }
3551
ext4_rename_dir_finish(handle_t * handle,struct ext4_renament * ent,unsigned dir_ino)3552 static int ext4_rename_dir_finish(handle_t *handle, struct ext4_renament *ent,
3553 unsigned dir_ino)
3554 {
3555 int retval;
3556
3557 ent->parent_de->inode = cpu_to_le32(dir_ino);
3558 BUFFER_TRACE(ent->dir_bh, "call ext4_handle_dirty_metadata");
3559 if (!ent->dir_inlined) {
3560 if (is_dx(ent->inode)) {
3561 retval = ext4_handle_dirty_dx_node(handle,
3562 ent->inode,
3563 ent->dir_bh);
3564 } else {
3565 retval = ext4_handle_dirty_dirblock(handle, ent->inode,
3566 ent->dir_bh);
3567 }
3568 } else {
3569 retval = ext4_mark_inode_dirty(handle, ent->inode);
3570 }
3571 if (retval) {
3572 ext4_std_error(ent->dir->i_sb, retval);
3573 return retval;
3574 }
3575 return 0;
3576 }
3577
ext4_setent(handle_t * handle,struct ext4_renament * ent,unsigned ino,unsigned file_type)3578 static int ext4_setent(handle_t *handle, struct ext4_renament *ent,
3579 unsigned ino, unsigned file_type)
3580 {
3581 int retval, retval2;
3582
3583 BUFFER_TRACE(ent->bh, "get write access");
3584 retval = ext4_journal_get_write_access(handle, ent->bh);
3585 if (retval)
3586 return retval;
3587 ent->de->inode = cpu_to_le32(ino);
3588 if (ext4_has_feature_filetype(ent->dir->i_sb))
3589 ent->de->file_type = file_type;
3590 inode_inc_iversion(ent->dir);
3591 ent->dir->i_ctime = ent->dir->i_mtime =
3592 current_time(ent->dir);
3593 retval = ext4_mark_inode_dirty(handle, ent->dir);
3594 BUFFER_TRACE(ent->bh, "call ext4_handle_dirty_metadata");
3595 if (!ent->inlined) {
3596 retval2 = ext4_handle_dirty_dirblock(handle, ent->dir, ent->bh);
3597 if (unlikely(retval2)) {
3598 ext4_std_error(ent->dir->i_sb, retval2);
3599 return retval2;
3600 }
3601 }
3602 brelse(ent->bh);
3603 ent->bh = NULL;
3604
3605 return retval;
3606 }
3607
ext4_find_delete_entry(handle_t * handle,struct inode * dir,const struct qstr * d_name)3608 static int ext4_find_delete_entry(handle_t *handle, struct inode *dir,
3609 const struct qstr *d_name)
3610 {
3611 int retval = -ENOENT;
3612 struct buffer_head *bh;
3613 struct ext4_dir_entry_2 *de;
3614
3615 bh = ext4_find_entry(dir, d_name, &de, NULL);
3616 if (IS_ERR(bh))
3617 return PTR_ERR(bh);
3618 if (bh) {
3619 retval = ext4_delete_entry(handle, dir, de, bh);
3620 brelse(bh);
3621 }
3622 return retval;
3623 }
3624
ext4_rename_delete(handle_t * handle,struct ext4_renament * ent,int force_reread)3625 static void ext4_rename_delete(handle_t *handle, struct ext4_renament *ent,
3626 int force_reread)
3627 {
3628 int retval;
3629 /*
3630 * ent->de could have moved from under us during htree split, so make
3631 * sure that we are deleting the right entry. We might also be pointing
3632 * to a stale entry in the unused part of ent->bh so just checking inum
3633 * and the name isn't enough.
3634 */
3635 if (le32_to_cpu(ent->de->inode) != ent->inode->i_ino ||
3636 ent->de->name_len != ent->dentry->d_name.len ||
3637 strncmp(ent->de->name, ent->dentry->d_name.name,
3638 ent->de->name_len) ||
3639 force_reread) {
3640 retval = ext4_find_delete_entry(handle, ent->dir,
3641 &ent->dentry->d_name);
3642 } else {
3643 retval = ext4_delete_entry(handle, ent->dir, ent->de, ent->bh);
3644 if (retval == -ENOENT) {
3645 retval = ext4_find_delete_entry(handle, ent->dir,
3646 &ent->dentry->d_name);
3647 }
3648 }
3649
3650 if (retval) {
3651 ext4_warning_inode(ent->dir,
3652 "Deleting old file: nlink %d, error=%d",
3653 ent->dir->i_nlink, retval);
3654 }
3655 }
3656
ext4_update_dir_count(handle_t * handle,struct ext4_renament * ent)3657 static void ext4_update_dir_count(handle_t *handle, struct ext4_renament *ent)
3658 {
3659 if (ent->dir_nlink_delta) {
3660 if (ent->dir_nlink_delta == -1)
3661 ext4_dec_count(ent->dir);
3662 else
3663 ext4_inc_count(ent->dir);
3664 ext4_mark_inode_dirty(handle, ent->dir);
3665 }
3666 }
3667
ext4_whiteout_for_rename(struct ext4_renament * ent,int credits,handle_t ** h)3668 static struct inode *ext4_whiteout_for_rename(struct ext4_renament *ent,
3669 int credits, handle_t **h)
3670 {
3671 struct inode *wh;
3672 handle_t *handle;
3673 int retries = 0;
3674
3675 /*
3676 * for inode block, sb block, group summaries,
3677 * and inode bitmap
3678 */
3679 credits += (EXT4_MAXQUOTAS_TRANS_BLOCKS(ent->dir->i_sb) +
3680 EXT4_XATTR_TRANS_BLOCKS + 4);
3681 retry:
3682 wh = ext4_new_inode_start_handle(ent->dir, S_IFCHR | WHITEOUT_MODE,
3683 &ent->dentry->d_name, 0, NULL,
3684 EXT4_HT_DIR, credits);
3685
3686 handle = ext4_journal_current_handle();
3687 if (IS_ERR(wh)) {
3688 if (handle)
3689 ext4_journal_stop(handle);
3690 if (PTR_ERR(wh) == -ENOSPC &&
3691 ext4_should_retry_alloc(ent->dir->i_sb, &retries))
3692 goto retry;
3693 } else {
3694 *h = handle;
3695 init_special_inode(wh, wh->i_mode, WHITEOUT_DEV);
3696 wh->i_op = &ext4_special_inode_operations;
3697 }
3698 return wh;
3699 }
3700
3701 /*
3702 * Anybody can rename anything with this: the permission checks are left to the
3703 * higher-level routines.
3704 *
3705 * n.b. old_{dentry,inode) refers to the source dentry/inode
3706 * while new_{dentry,inode) refers to the destination dentry/inode
3707 * This comes from rename(const char *oldpath, const char *newpath)
3708 */
ext4_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)3709 static int ext4_rename(struct inode *old_dir, struct dentry *old_dentry,
3710 struct inode *new_dir, struct dentry *new_dentry,
3711 unsigned int flags)
3712 {
3713 handle_t *handle = NULL;
3714 struct ext4_renament old = {
3715 .dir = old_dir,
3716 .dentry = old_dentry,
3717 .inode = d_inode(old_dentry),
3718 };
3719 struct ext4_renament new = {
3720 .dir = new_dir,
3721 .dentry = new_dentry,
3722 .inode = d_inode(new_dentry),
3723 };
3724 int force_reread;
3725 int retval;
3726 struct inode *whiteout = NULL;
3727 int credits;
3728 u8 old_file_type;
3729
3730 if (new.inode && new.inode->i_nlink == 0) {
3731 EXT4_ERROR_INODE(new.inode,
3732 "target of rename is already freed");
3733 return -EFSCORRUPTED;
3734 }
3735
3736 if ((ext4_test_inode_flag(new_dir, EXT4_INODE_PROJINHERIT)) &&
3737 (!projid_eq(EXT4_I(new_dir)->i_projid,
3738 EXT4_I(old_dentry->d_inode)->i_projid)))
3739 return -EXDEV;
3740
3741 retval = dquot_initialize(old.dir);
3742 if (retval)
3743 return retval;
3744 retval = dquot_initialize(new.dir);
3745 if (retval)
3746 return retval;
3747
3748 /* Initialize quotas before so that eventual writes go
3749 * in separate transaction */
3750 if (new.inode) {
3751 retval = dquot_initialize(new.inode);
3752 if (retval)
3753 return retval;
3754 }
3755
3756 old.bh = ext4_find_entry(old.dir, &old.dentry->d_name, &old.de, NULL);
3757 if (IS_ERR(old.bh))
3758 return PTR_ERR(old.bh);
3759 /*
3760 * Check for inode number is _not_ due to possible IO errors.
3761 * We might rmdir the source, keep it as pwd of some process
3762 * and merrily kill the link to whatever was created under the
3763 * same name. Goodbye sticky bit ;-<
3764 */
3765 retval = -ENOENT;
3766 if (!old.bh || le32_to_cpu(old.de->inode) != old.inode->i_ino)
3767 goto end_rename;
3768
3769 new.bh = ext4_find_entry(new.dir, &new.dentry->d_name,
3770 &new.de, &new.inlined);
3771 if (IS_ERR(new.bh)) {
3772 retval = PTR_ERR(new.bh);
3773 new.bh = NULL;
3774 goto end_rename;
3775 }
3776 if (new.bh) {
3777 if (!new.inode) {
3778 brelse(new.bh);
3779 new.bh = NULL;
3780 }
3781 }
3782 if (new.inode && !test_opt(new.dir->i_sb, NO_AUTO_DA_ALLOC))
3783 ext4_alloc_da_blocks(old.inode);
3784
3785 credits = (2 * EXT4_DATA_TRANS_BLOCKS(old.dir->i_sb) +
3786 EXT4_INDEX_EXTRA_TRANS_BLOCKS + 2);
3787 if (!(flags & RENAME_WHITEOUT)) {
3788 handle = ext4_journal_start(old.dir, EXT4_HT_DIR, credits);
3789 if (IS_ERR(handle)) {
3790 retval = PTR_ERR(handle);
3791 handle = NULL;
3792 goto end_rename;
3793 }
3794 } else {
3795 whiteout = ext4_whiteout_for_rename(&old, credits, &handle);
3796 if (IS_ERR(whiteout)) {
3797 retval = PTR_ERR(whiteout);
3798 whiteout = NULL;
3799 goto end_rename;
3800 }
3801 }
3802
3803 if (IS_DIRSYNC(old.dir) || IS_DIRSYNC(new.dir))
3804 ext4_handle_sync(handle);
3805
3806 if (S_ISDIR(old.inode->i_mode)) {
3807 if (new.inode) {
3808 retval = -ENOTEMPTY;
3809 if (!ext4_empty_dir(new.inode))
3810 goto end_rename;
3811 } else {
3812 retval = -EMLINK;
3813 if (new.dir != old.dir && EXT4_DIR_LINK_MAX(new.dir))
3814 goto end_rename;
3815 }
3816 retval = ext4_rename_dir_prepare(handle, &old);
3817 if (retval)
3818 goto end_rename;
3819 }
3820 /*
3821 * If we're renaming a file within an inline_data dir and adding or
3822 * setting the new dirent causes a conversion from inline_data to
3823 * extents/blockmap, we need to force the dirent delete code to
3824 * re-read the directory, or else we end up trying to delete a dirent
3825 * from what is now the extent tree root (or a block map).
3826 */
3827 force_reread = (new.dir->i_ino == old.dir->i_ino &&
3828 ext4_test_inode_flag(new.dir, EXT4_INODE_INLINE_DATA));
3829
3830 old_file_type = old.de->file_type;
3831 if (whiteout) {
3832 /*
3833 * Do this before adding a new entry, so the old entry is sure
3834 * to be still pointing to the valid old entry.
3835 */
3836 retval = ext4_setent(handle, &old, whiteout->i_ino,
3837 EXT4_FT_CHRDEV);
3838 if (retval)
3839 goto end_rename;
3840 retval = ext4_mark_inode_dirty(handle, whiteout);
3841 if (unlikely(retval))
3842 goto end_rename;
3843 }
3844 if (!new.bh) {
3845 retval = ext4_add_entry(handle, new.dentry, old.inode);
3846 if (retval)
3847 goto end_rename;
3848 } else {
3849 retval = ext4_setent(handle, &new,
3850 old.inode->i_ino, old_file_type);
3851 if (retval)
3852 goto end_rename;
3853 }
3854 if (force_reread)
3855 force_reread = !ext4_test_inode_flag(new.dir,
3856 EXT4_INODE_INLINE_DATA);
3857
3858 /*
3859 * Like most other Unix systems, set the ctime for inodes on a
3860 * rename.
3861 */
3862 old.inode->i_ctime = current_time(old.inode);
3863 retval = ext4_mark_inode_dirty(handle, old.inode);
3864 if (unlikely(retval))
3865 goto end_rename;
3866
3867 if (!whiteout) {
3868 /*
3869 * ok, that's it
3870 */
3871 ext4_rename_delete(handle, &old, force_reread);
3872 }
3873
3874 if (new.inode) {
3875 ext4_dec_count(new.inode);
3876 new.inode->i_ctime = current_time(new.inode);
3877 }
3878 old.dir->i_ctime = old.dir->i_mtime = current_time(old.dir);
3879 ext4_update_dx_flag(old.dir);
3880 if (old.dir_bh) {
3881 retval = ext4_rename_dir_finish(handle, &old, new.dir->i_ino);
3882 if (retval)
3883 goto end_rename;
3884
3885 ext4_dec_count(old.dir);
3886 if (new.inode) {
3887 /* checked ext4_empty_dir above, can't have another
3888 * parent, ext4_dec_count() won't work for many-linked
3889 * dirs */
3890 clear_nlink(new.inode);
3891 } else {
3892 ext4_inc_count(new.dir);
3893 ext4_update_dx_flag(new.dir);
3894 retval = ext4_mark_inode_dirty(handle, new.dir);
3895 if (unlikely(retval))
3896 goto end_rename;
3897 }
3898 }
3899 retval = ext4_mark_inode_dirty(handle, old.dir);
3900 if (unlikely(retval))
3901 goto end_rename;
3902
3903 if (S_ISDIR(old.inode->i_mode)) {
3904 /*
3905 * We disable fast commits here that's because the
3906 * replay code is not yet capable of changing dot dot
3907 * dirents in directories.
3908 */
3909 ext4_fc_mark_ineligible(old.inode->i_sb,
3910 EXT4_FC_REASON_RENAME_DIR);
3911 } else {
3912 if (new.inode)
3913 ext4_fc_track_unlink(handle, new.dentry);
3914 __ext4_fc_track_link(handle, old.inode, new.dentry);
3915 __ext4_fc_track_unlink(handle, old.inode, old.dentry);
3916 }
3917
3918 if (new.inode) {
3919 retval = ext4_mark_inode_dirty(handle, new.inode);
3920 if (unlikely(retval))
3921 goto end_rename;
3922 if (!new.inode->i_nlink)
3923 ext4_orphan_add(handle, new.inode);
3924 }
3925 retval = 0;
3926
3927 end_rename:
3928 brelse(old.dir_bh);
3929 brelse(old.bh);
3930 brelse(new.bh);
3931 if (whiteout) {
3932 if (retval)
3933 drop_nlink(whiteout);
3934 unlock_new_inode(whiteout);
3935 iput(whiteout);
3936 }
3937 if (handle)
3938 ext4_journal_stop(handle);
3939 return retval;
3940 }
3941
ext4_cross_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)3942 static int ext4_cross_rename(struct inode *old_dir, struct dentry *old_dentry,
3943 struct inode *new_dir, struct dentry *new_dentry)
3944 {
3945 handle_t *handle = NULL;
3946 struct ext4_renament old = {
3947 .dir = old_dir,
3948 .dentry = old_dentry,
3949 .inode = d_inode(old_dentry),
3950 };
3951 struct ext4_renament new = {
3952 .dir = new_dir,
3953 .dentry = new_dentry,
3954 .inode = d_inode(new_dentry),
3955 };
3956 u8 new_file_type;
3957 int retval;
3958 struct timespec64 ctime;
3959
3960 if ((ext4_test_inode_flag(new_dir, EXT4_INODE_PROJINHERIT) &&
3961 !projid_eq(EXT4_I(new_dir)->i_projid,
3962 EXT4_I(old_dentry->d_inode)->i_projid)) ||
3963 (ext4_test_inode_flag(old_dir, EXT4_INODE_PROJINHERIT) &&
3964 !projid_eq(EXT4_I(old_dir)->i_projid,
3965 EXT4_I(new_dentry->d_inode)->i_projid)))
3966 return -EXDEV;
3967
3968 retval = dquot_initialize(old.dir);
3969 if (retval)
3970 return retval;
3971 retval = dquot_initialize(new.dir);
3972 if (retval)
3973 return retval;
3974
3975 old.bh = ext4_find_entry(old.dir, &old.dentry->d_name,
3976 &old.de, &old.inlined);
3977 if (IS_ERR(old.bh))
3978 return PTR_ERR(old.bh);
3979 /*
3980 * Check for inode number is _not_ due to possible IO errors.
3981 * We might rmdir the source, keep it as pwd of some process
3982 * and merrily kill the link to whatever was created under the
3983 * same name. Goodbye sticky bit ;-<
3984 */
3985 retval = -ENOENT;
3986 if (!old.bh || le32_to_cpu(old.de->inode) != old.inode->i_ino)
3987 goto end_rename;
3988
3989 new.bh = ext4_find_entry(new.dir, &new.dentry->d_name,
3990 &new.de, &new.inlined);
3991 if (IS_ERR(new.bh)) {
3992 retval = PTR_ERR(new.bh);
3993 new.bh = NULL;
3994 goto end_rename;
3995 }
3996
3997 /* RENAME_EXCHANGE case: old *and* new must both exist */
3998 if (!new.bh || le32_to_cpu(new.de->inode) != new.inode->i_ino)
3999 goto end_rename;
4000
4001 handle = ext4_journal_start(old.dir, EXT4_HT_DIR,
4002 (2 * EXT4_DATA_TRANS_BLOCKS(old.dir->i_sb) +
4003 2 * EXT4_INDEX_EXTRA_TRANS_BLOCKS + 2));
4004 if (IS_ERR(handle)) {
4005 retval = PTR_ERR(handle);
4006 handle = NULL;
4007 goto end_rename;
4008 }
4009
4010 if (IS_DIRSYNC(old.dir) || IS_DIRSYNC(new.dir))
4011 ext4_handle_sync(handle);
4012
4013 if (S_ISDIR(old.inode->i_mode)) {
4014 old.is_dir = true;
4015 retval = ext4_rename_dir_prepare(handle, &old);
4016 if (retval)
4017 goto end_rename;
4018 }
4019 if (S_ISDIR(new.inode->i_mode)) {
4020 new.is_dir = true;
4021 retval = ext4_rename_dir_prepare(handle, &new);
4022 if (retval)
4023 goto end_rename;
4024 }
4025
4026 /*
4027 * Other than the special case of overwriting a directory, parents'
4028 * nlink only needs to be modified if this is a cross directory rename.
4029 */
4030 if (old.dir != new.dir && old.is_dir != new.is_dir) {
4031 old.dir_nlink_delta = old.is_dir ? -1 : 1;
4032 new.dir_nlink_delta = -old.dir_nlink_delta;
4033 retval = -EMLINK;
4034 if ((old.dir_nlink_delta > 0 && EXT4_DIR_LINK_MAX(old.dir)) ||
4035 (new.dir_nlink_delta > 0 && EXT4_DIR_LINK_MAX(new.dir)))
4036 goto end_rename;
4037 }
4038
4039 new_file_type = new.de->file_type;
4040 retval = ext4_setent(handle, &new, old.inode->i_ino, old.de->file_type);
4041 if (retval)
4042 goto end_rename;
4043
4044 retval = ext4_setent(handle, &old, new.inode->i_ino, new_file_type);
4045 if (retval)
4046 goto end_rename;
4047
4048 /*
4049 * Like most other Unix systems, set the ctime for inodes on a
4050 * rename.
4051 */
4052 ctime = current_time(old.inode);
4053 old.inode->i_ctime = ctime;
4054 new.inode->i_ctime = ctime;
4055 retval = ext4_mark_inode_dirty(handle, old.inode);
4056 if (unlikely(retval))
4057 goto end_rename;
4058 retval = ext4_mark_inode_dirty(handle, new.inode);
4059 if (unlikely(retval))
4060 goto end_rename;
4061 ext4_fc_mark_ineligible(new.inode->i_sb,
4062 EXT4_FC_REASON_CROSS_RENAME);
4063 if (old.dir_bh) {
4064 retval = ext4_rename_dir_finish(handle, &old, new.dir->i_ino);
4065 if (retval)
4066 goto end_rename;
4067 }
4068 if (new.dir_bh) {
4069 retval = ext4_rename_dir_finish(handle, &new, old.dir->i_ino);
4070 if (retval)
4071 goto end_rename;
4072 }
4073 ext4_update_dir_count(handle, &old);
4074 ext4_update_dir_count(handle, &new);
4075 retval = 0;
4076
4077 end_rename:
4078 brelse(old.dir_bh);
4079 brelse(new.dir_bh);
4080 brelse(old.bh);
4081 brelse(new.bh);
4082 if (handle)
4083 ext4_journal_stop(handle);
4084 return retval;
4085 }
4086
ext4_rename2(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)4087 static int ext4_rename2(struct inode *old_dir, struct dentry *old_dentry,
4088 struct inode *new_dir, struct dentry *new_dentry,
4089 unsigned int flags)
4090 {
4091 int err;
4092
4093 if (unlikely(ext4_forced_shutdown(EXT4_SB(old_dir->i_sb))))
4094 return -EIO;
4095
4096 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4097 return -EINVAL;
4098
4099 err = fscrypt_prepare_rename(old_dir, old_dentry, new_dir, new_dentry,
4100 flags);
4101 if (err)
4102 return err;
4103
4104 if (flags & RENAME_EXCHANGE) {
4105 return ext4_cross_rename(old_dir, old_dentry,
4106 new_dir, new_dentry);
4107 }
4108
4109 return ext4_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
4110 }
4111
4112 /*
4113 * directories can handle most operations...
4114 */
4115 const struct inode_operations ext4_dir_inode_operations = {
4116 .create = ext4_create,
4117 .lookup = ext4_lookup,
4118 .link = ext4_link,
4119 .unlink = ext4_unlink,
4120 .symlink = ext4_symlink,
4121 .mkdir = ext4_mkdir,
4122 .rmdir = ext4_rmdir,
4123 .mknod = ext4_mknod,
4124 .tmpfile = ext4_tmpfile,
4125 .rename = ext4_rename2,
4126 .setattr = ext4_setattr,
4127 .getattr = ext4_getattr,
4128 .listxattr = ext4_listxattr,
4129 .get_acl = ext4_get_acl,
4130 .set_acl = ext4_set_acl,
4131 .fiemap = ext4_fiemap,
4132 };
4133
4134 const struct inode_operations ext4_special_inode_operations = {
4135 .setattr = ext4_setattr,
4136 .getattr = ext4_getattr,
4137 .listxattr = ext4_listxattr,
4138 .get_acl = ext4_get_acl,
4139 .set_acl = ext4_set_acl,
4140 };
4141