1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/ext4/extents_status.c
4 *
5 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
6 * Modified by
7 * Allison Henderson <achender@linux.vnet.ibm.com>
8 * Hugh Dickins <hughd@google.com>
9 * Zheng Liu <wenqing.lz@taobao.com>
10 *
11 * Ext4 extents status tree core functions.
12 */
13 #include <linux/list_sort.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include "ext4.h"
17
18 #include <trace/events/ext4.h>
19
20 /*
21 * According to previous discussion in Ext4 Developer Workshop, we
22 * will introduce a new structure called io tree to track all extent
23 * status in order to solve some problems that we have met
24 * (e.g. Reservation space warning), and provide extent-level locking.
25 * Delay extent tree is the first step to achieve this goal. It is
26 * original built by Yongqiang Yang. At that time it is called delay
27 * extent tree, whose goal is only track delayed extents in memory to
28 * simplify the implementation of fiemap and bigalloc, and introduce
29 * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
30 * delay extent tree at the first commit. But for better understand
31 * what it does, it has been rename to extent status tree.
32 *
33 * Step1:
34 * Currently the first step has been done. All delayed extents are
35 * tracked in the tree. It maintains the delayed extent when a delayed
36 * allocation is issued, and the delayed extent is written out or
37 * invalidated. Therefore the implementation of fiemap and bigalloc
38 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
39 *
40 * The following comment describes the implemenmtation of extent
41 * status tree and future works.
42 *
43 * Step2:
44 * In this step all extent status are tracked by extent status tree.
45 * Thus, we can first try to lookup a block mapping in this tree before
46 * finding it in extent tree. Hence, single extent cache can be removed
47 * because extent status tree can do a better job. Extents in status
48 * tree are loaded on-demand. Therefore, the extent status tree may not
49 * contain all of the extents in a file. Meanwhile we define a shrinker
50 * to reclaim memory from extent status tree because fragmented extent
51 * tree will make status tree cost too much memory. written/unwritten/-
52 * hole extents in the tree will be reclaimed by this shrinker when we
53 * are under high memory pressure. Delayed extents will not be
54 * reclimed because fiemap, bigalloc, and seek_data/hole need it.
55 */
56
57 /*
58 * Extent status tree implementation for ext4.
59 *
60 *
61 * ==========================================================================
62 * Extent status tree tracks all extent status.
63 *
64 * 1. Why we need to implement extent status tree?
65 *
66 * Without extent status tree, ext4 identifies a delayed extent by looking
67 * up page cache, this has several deficiencies - complicated, buggy,
68 * and inefficient code.
69 *
70 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
71 * block or a range of blocks are belonged to a delayed extent.
72 *
73 * Let us have a look at how they do without extent status tree.
74 * -- FIEMAP
75 * FIEMAP looks up page cache to identify delayed allocations from holes.
76 *
77 * -- SEEK_HOLE/DATA
78 * SEEK_HOLE/DATA has the same problem as FIEMAP.
79 *
80 * -- bigalloc
81 * bigalloc looks up page cache to figure out if a block is
82 * already under delayed allocation or not to determine whether
83 * quota reserving is needed for the cluster.
84 *
85 * -- writeout
86 * Writeout looks up whole page cache to see if a buffer is
87 * mapped, If there are not very many delayed buffers, then it is
88 * time consuming.
89 *
90 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
91 * bigalloc and writeout can figure out if a block or a range of
92 * blocks is under delayed allocation(belonged to a delayed extent) or
93 * not by searching the extent tree.
94 *
95 *
96 * ==========================================================================
97 * 2. Ext4 extent status tree impelmentation
98 *
99 * -- extent
100 * A extent is a range of blocks which are contiguous logically and
101 * physically. Unlike extent in extent tree, this extent in ext4 is
102 * a in-memory struct, there is no corresponding on-disk data. There
103 * is no limit on length of extent, so an extent can contain as many
104 * blocks as they are contiguous logically and physically.
105 *
106 * -- extent status tree
107 * Every inode has an extent status tree and all allocation blocks
108 * are added to the tree with different status. The extent in the
109 * tree are ordered by logical block no.
110 *
111 * -- operations on a extent status tree
112 * There are three important operations on a delayed extent tree: find
113 * next extent, adding a extent(a range of blocks) and removing a extent.
114 *
115 * -- race on a extent status tree
116 * Extent status tree is protected by inode->i_es_lock.
117 *
118 * -- memory consumption
119 * Fragmented extent tree will make extent status tree cost too much
120 * memory. Hence, we will reclaim written/unwritten/hole extents from
121 * the tree under a heavy memory pressure.
122 *
123 *
124 * ==========================================================================
125 * 3. Performance analysis
126 *
127 * -- overhead
128 * 1. There is a cache extent for write access, so if writes are
129 * not very random, adding space operaions are in O(1) time.
130 *
131 * -- gain
132 * 2. Code is much simpler, more readable, more maintainable and
133 * more efficient.
134 *
135 *
136 * ==========================================================================
137 * 4. TODO list
138 *
139 * -- Refactor delayed space reservation
140 *
141 * -- Extent-level locking
142 */
143
144 static struct kmem_cache *ext4_es_cachep;
145 static struct kmem_cache *ext4_pending_cachep;
146
147 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
148 struct extent_status *prealloc);
149 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
150 ext4_lblk_t end, int *reserved,
151 struct extent_status *prealloc);
152 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
153 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
154 struct ext4_inode_info *locked_ei);
155 static void __revise_pending(struct inode *inode, ext4_lblk_t lblk,
156 ext4_lblk_t len);
157
ext4_init_es(void)158 int __init ext4_init_es(void)
159 {
160 ext4_es_cachep = KMEM_CACHE(extent_status, SLAB_RECLAIM_ACCOUNT);
161 if (ext4_es_cachep == NULL)
162 return -ENOMEM;
163 return 0;
164 }
165
ext4_exit_es(void)166 void ext4_exit_es(void)
167 {
168 kmem_cache_destroy(ext4_es_cachep);
169 }
170
ext4_es_init_tree(struct ext4_es_tree * tree)171 void ext4_es_init_tree(struct ext4_es_tree *tree)
172 {
173 tree->root = RB_ROOT;
174 tree->cache_es = NULL;
175 }
176
177 #ifdef ES_DEBUG__
ext4_es_print_tree(struct inode * inode)178 static void ext4_es_print_tree(struct inode *inode)
179 {
180 struct ext4_es_tree *tree;
181 struct rb_node *node;
182
183 printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
184 tree = &EXT4_I(inode)->i_es_tree;
185 node = rb_first(&tree->root);
186 while (node) {
187 struct extent_status *es;
188 es = rb_entry(node, struct extent_status, rb_node);
189 printk(KERN_DEBUG " [%u/%u) %llu %x",
190 es->es_lblk, es->es_len,
191 ext4_es_pblock(es), ext4_es_status(es));
192 node = rb_next(node);
193 }
194 printk(KERN_DEBUG "\n");
195 }
196 #else
197 #define ext4_es_print_tree(inode)
198 #endif
199
ext4_es_end(struct extent_status * es)200 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
201 {
202 BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
203 return es->es_lblk + es->es_len - 1;
204 }
205
206 /*
207 * search through the tree for an delayed extent with a given offset. If
208 * it can't be found, try to find next extent.
209 */
__es_tree_search(struct rb_root * root,ext4_lblk_t lblk)210 static struct extent_status *__es_tree_search(struct rb_root *root,
211 ext4_lblk_t lblk)
212 {
213 struct rb_node *node = root->rb_node;
214 struct extent_status *es = NULL;
215
216 while (node) {
217 es = rb_entry(node, struct extent_status, rb_node);
218 if (lblk < es->es_lblk)
219 node = node->rb_left;
220 else if (lblk > ext4_es_end(es))
221 node = node->rb_right;
222 else
223 return es;
224 }
225
226 if (es && lblk < es->es_lblk)
227 return es;
228
229 if (es && lblk > ext4_es_end(es)) {
230 node = rb_next(&es->rb_node);
231 return node ? rb_entry(node, struct extent_status, rb_node) :
232 NULL;
233 }
234
235 return NULL;
236 }
237
238 /*
239 * ext4_es_find_extent_range - find extent with specified status within block
240 * range or next extent following block range in
241 * extents status tree
242 *
243 * @inode - file containing the range
244 * @matching_fn - pointer to function that matches extents with desired status
245 * @lblk - logical block defining start of range
246 * @end - logical block defining end of range
247 * @es - extent found, if any
248 *
249 * Find the first extent within the block range specified by @lblk and @end
250 * in the extents status tree that satisfies @matching_fn. If a match
251 * is found, it's returned in @es. If not, and a matching extent is found
252 * beyond the block range, it's returned in @es. If no match is found, an
253 * extent is returned in @es whose es_lblk, es_len, and es_pblk components
254 * are 0.
255 */
__es_find_extent_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end,struct extent_status * es)256 static void __es_find_extent_range(struct inode *inode,
257 int (*matching_fn)(struct extent_status *es),
258 ext4_lblk_t lblk, ext4_lblk_t end,
259 struct extent_status *es)
260 {
261 struct ext4_es_tree *tree = NULL;
262 struct extent_status *es1 = NULL;
263 struct rb_node *node;
264
265 WARN_ON(es == NULL);
266 WARN_ON(end < lblk);
267
268 tree = &EXT4_I(inode)->i_es_tree;
269
270 /* see if the extent has been cached */
271 es->es_lblk = es->es_len = es->es_pblk = 0;
272 es1 = READ_ONCE(tree->cache_es);
273 if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
274 es_debug("%u cached by [%u/%u) %llu %x\n",
275 lblk, es1->es_lblk, es1->es_len,
276 ext4_es_pblock(es1), ext4_es_status(es1));
277 goto out;
278 }
279
280 es1 = __es_tree_search(&tree->root, lblk);
281
282 out:
283 if (es1 && !matching_fn(es1)) {
284 while ((node = rb_next(&es1->rb_node)) != NULL) {
285 es1 = rb_entry(node, struct extent_status, rb_node);
286 if (es1->es_lblk > end) {
287 es1 = NULL;
288 break;
289 }
290 if (matching_fn(es1))
291 break;
292 }
293 }
294
295 if (es1 && matching_fn(es1)) {
296 WRITE_ONCE(tree->cache_es, es1);
297 es->es_lblk = es1->es_lblk;
298 es->es_len = es1->es_len;
299 es->es_pblk = es1->es_pblk;
300 }
301
302 }
303
304 /*
305 * Locking for __es_find_extent_range() for external use
306 */
ext4_es_find_extent_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end,struct extent_status * es)307 void ext4_es_find_extent_range(struct inode *inode,
308 int (*matching_fn)(struct extent_status *es),
309 ext4_lblk_t lblk, ext4_lblk_t end,
310 struct extent_status *es)
311 {
312 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
313 return;
314
315 trace_ext4_es_find_extent_range_enter(inode, lblk);
316
317 read_lock(&EXT4_I(inode)->i_es_lock);
318 __es_find_extent_range(inode, matching_fn, lblk, end, es);
319 read_unlock(&EXT4_I(inode)->i_es_lock);
320
321 trace_ext4_es_find_extent_range_exit(inode, es);
322 }
323
324 /*
325 * __es_scan_range - search block range for block with specified status
326 * in extents status tree
327 *
328 * @inode - file containing the range
329 * @matching_fn - pointer to function that matches extents with desired status
330 * @lblk - logical block defining start of range
331 * @end - logical block defining end of range
332 *
333 * Returns true if at least one block in the specified block range satisfies
334 * the criterion specified by @matching_fn, and false if not. If at least
335 * one extent has the specified status, then there is at least one block
336 * in the cluster with that status. Should only be called by code that has
337 * taken i_es_lock.
338 */
__es_scan_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t start,ext4_lblk_t end)339 static bool __es_scan_range(struct inode *inode,
340 int (*matching_fn)(struct extent_status *es),
341 ext4_lblk_t start, ext4_lblk_t end)
342 {
343 struct extent_status es;
344
345 __es_find_extent_range(inode, matching_fn, start, end, &es);
346 if (es.es_len == 0)
347 return false; /* no matching extent in the tree */
348 else if (es.es_lblk <= start &&
349 start < es.es_lblk + es.es_len)
350 return true;
351 else if (start <= es.es_lblk && es.es_lblk <= end)
352 return true;
353 else
354 return false;
355 }
356 /*
357 * Locking for __es_scan_range() for external use
358 */
ext4_es_scan_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end)359 bool ext4_es_scan_range(struct inode *inode,
360 int (*matching_fn)(struct extent_status *es),
361 ext4_lblk_t lblk, ext4_lblk_t end)
362 {
363 bool ret;
364
365 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
366 return false;
367
368 read_lock(&EXT4_I(inode)->i_es_lock);
369 ret = __es_scan_range(inode, matching_fn, lblk, end);
370 read_unlock(&EXT4_I(inode)->i_es_lock);
371
372 return ret;
373 }
374
375 /*
376 * __es_scan_clu - search cluster for block with specified status in
377 * extents status tree
378 *
379 * @inode - file containing the cluster
380 * @matching_fn - pointer to function that matches extents with desired status
381 * @lblk - logical block in cluster to be searched
382 *
383 * Returns true if at least one extent in the cluster containing @lblk
384 * satisfies the criterion specified by @matching_fn, and false if not. If at
385 * least one extent has the specified status, then there is at least one block
386 * in the cluster with that status. Should only be called by code that has
387 * taken i_es_lock.
388 */
__es_scan_clu(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk)389 static bool __es_scan_clu(struct inode *inode,
390 int (*matching_fn)(struct extent_status *es),
391 ext4_lblk_t lblk)
392 {
393 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
394 ext4_lblk_t lblk_start, lblk_end;
395
396 lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
397 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
398
399 return __es_scan_range(inode, matching_fn, lblk_start, lblk_end);
400 }
401
402 /*
403 * Locking for __es_scan_clu() for external use
404 */
ext4_es_scan_clu(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk)405 bool ext4_es_scan_clu(struct inode *inode,
406 int (*matching_fn)(struct extent_status *es),
407 ext4_lblk_t lblk)
408 {
409 bool ret;
410
411 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
412 return false;
413
414 read_lock(&EXT4_I(inode)->i_es_lock);
415 ret = __es_scan_clu(inode, matching_fn, lblk);
416 read_unlock(&EXT4_I(inode)->i_es_lock);
417
418 return ret;
419 }
420
ext4_es_list_add(struct inode * inode)421 static void ext4_es_list_add(struct inode *inode)
422 {
423 struct ext4_inode_info *ei = EXT4_I(inode);
424 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
425
426 if (!list_empty(&ei->i_es_list))
427 return;
428
429 spin_lock(&sbi->s_es_lock);
430 if (list_empty(&ei->i_es_list)) {
431 list_add_tail(&ei->i_es_list, &sbi->s_es_list);
432 sbi->s_es_nr_inode++;
433 }
434 spin_unlock(&sbi->s_es_lock);
435 }
436
ext4_es_list_del(struct inode * inode)437 static void ext4_es_list_del(struct inode *inode)
438 {
439 struct ext4_inode_info *ei = EXT4_I(inode);
440 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
441
442 spin_lock(&sbi->s_es_lock);
443 if (!list_empty(&ei->i_es_list)) {
444 list_del_init(&ei->i_es_list);
445 sbi->s_es_nr_inode--;
446 WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
447 }
448 spin_unlock(&sbi->s_es_lock);
449 }
450
451 /*
452 * Returns true if we cannot fail to allocate memory for this extent_status
453 * entry and cannot reclaim it until its status changes.
454 */
ext4_es_must_keep(struct extent_status * es)455 static inline bool ext4_es_must_keep(struct extent_status *es)
456 {
457 /* fiemap, bigalloc, and seek_data/hole need to use it. */
458 if (ext4_es_is_delayed(es))
459 return true;
460
461 return false;
462 }
463
__es_alloc_extent(bool nofail)464 static inline struct extent_status *__es_alloc_extent(bool nofail)
465 {
466 if (!nofail)
467 return kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
468
469 return kmem_cache_zalloc(ext4_es_cachep, GFP_KERNEL | __GFP_NOFAIL);
470 }
471
ext4_es_init_extent(struct inode * inode,struct extent_status * es,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk)472 static void ext4_es_init_extent(struct inode *inode, struct extent_status *es,
473 ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk)
474 {
475 es->es_lblk = lblk;
476 es->es_len = len;
477 es->es_pblk = pblk;
478
479 /* We never try to reclaim a must kept extent, so we don't count it. */
480 if (!ext4_es_must_keep(es)) {
481 if (!EXT4_I(inode)->i_es_shk_nr++)
482 ext4_es_list_add(inode);
483 percpu_counter_inc(&EXT4_SB(inode->i_sb)->
484 s_es_stats.es_stats_shk_cnt);
485 }
486
487 EXT4_I(inode)->i_es_all_nr++;
488 percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
489 }
490
__es_free_extent(struct extent_status * es)491 static inline void __es_free_extent(struct extent_status *es)
492 {
493 kmem_cache_free(ext4_es_cachep, es);
494 }
495
ext4_es_free_extent(struct inode * inode,struct extent_status * es)496 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
497 {
498 EXT4_I(inode)->i_es_all_nr--;
499 percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
500
501 /* Decrease the shrink counter when we can reclaim the extent. */
502 if (!ext4_es_must_keep(es)) {
503 BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
504 if (!--EXT4_I(inode)->i_es_shk_nr)
505 ext4_es_list_del(inode);
506 percpu_counter_dec(&EXT4_SB(inode->i_sb)->
507 s_es_stats.es_stats_shk_cnt);
508 }
509
510 __es_free_extent(es);
511 }
512
513 /*
514 * Check whether or not two extents can be merged
515 * Condition:
516 * - logical block number is contiguous
517 * - physical block number is contiguous
518 * - status is equal
519 */
ext4_es_can_be_merged(struct extent_status * es1,struct extent_status * es2)520 static int ext4_es_can_be_merged(struct extent_status *es1,
521 struct extent_status *es2)
522 {
523 if (ext4_es_type(es1) != ext4_es_type(es2))
524 return 0;
525
526 if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
527 pr_warn("ES assertion failed when merging extents. "
528 "The sum of lengths of es1 (%d) and es2 (%d) "
529 "is bigger than allowed file size (%d)\n",
530 es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
531 WARN_ON(1);
532 return 0;
533 }
534
535 if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
536 return 0;
537
538 if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
539 (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
540 return 1;
541
542 if (ext4_es_is_hole(es1))
543 return 1;
544
545 /* we need to check delayed extent is without unwritten status */
546 if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
547 return 1;
548
549 return 0;
550 }
551
552 static struct extent_status *
ext4_es_try_to_merge_left(struct inode * inode,struct extent_status * es)553 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
554 {
555 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
556 struct extent_status *es1;
557 struct rb_node *node;
558
559 node = rb_prev(&es->rb_node);
560 if (!node)
561 return es;
562
563 es1 = rb_entry(node, struct extent_status, rb_node);
564 if (ext4_es_can_be_merged(es1, es)) {
565 es1->es_len += es->es_len;
566 if (ext4_es_is_referenced(es))
567 ext4_es_set_referenced(es1);
568 rb_erase(&es->rb_node, &tree->root);
569 ext4_es_free_extent(inode, es);
570 es = es1;
571 }
572
573 return es;
574 }
575
576 static struct extent_status *
ext4_es_try_to_merge_right(struct inode * inode,struct extent_status * es)577 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
578 {
579 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
580 struct extent_status *es1;
581 struct rb_node *node;
582
583 node = rb_next(&es->rb_node);
584 if (!node)
585 return es;
586
587 es1 = rb_entry(node, struct extent_status, rb_node);
588 if (ext4_es_can_be_merged(es, es1)) {
589 es->es_len += es1->es_len;
590 if (ext4_es_is_referenced(es1))
591 ext4_es_set_referenced(es);
592 rb_erase(node, &tree->root);
593 ext4_es_free_extent(inode, es1);
594 }
595
596 return es;
597 }
598
599 #ifdef ES_AGGRESSIVE_TEST
600 #include "ext4_extents.h" /* Needed when ES_AGGRESSIVE_TEST is defined */
601
ext4_es_insert_extent_ext_check(struct inode * inode,struct extent_status * es)602 static void ext4_es_insert_extent_ext_check(struct inode *inode,
603 struct extent_status *es)
604 {
605 struct ext4_ext_path *path = NULL;
606 struct ext4_extent *ex;
607 ext4_lblk_t ee_block;
608 ext4_fsblk_t ee_start;
609 unsigned short ee_len;
610 int depth, ee_status, es_status;
611
612 path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
613 if (IS_ERR(path))
614 return;
615
616 depth = ext_depth(inode);
617 ex = path[depth].p_ext;
618
619 if (ex) {
620
621 ee_block = le32_to_cpu(ex->ee_block);
622 ee_start = ext4_ext_pblock(ex);
623 ee_len = ext4_ext_get_actual_len(ex);
624
625 ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
626 es_status = ext4_es_is_unwritten(es) ? 1 : 0;
627
628 /*
629 * Make sure ex and es are not overlap when we try to insert
630 * a delayed/hole extent.
631 */
632 if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
633 if (in_range(es->es_lblk, ee_block, ee_len)) {
634 pr_warn("ES insert assertion failed for "
635 "inode: %lu we can find an extent "
636 "at block [%d/%d/%llu/%c], but we "
637 "want to add a delayed/hole extent "
638 "[%d/%d/%llu/%x]\n",
639 inode->i_ino, ee_block, ee_len,
640 ee_start, ee_status ? 'u' : 'w',
641 es->es_lblk, es->es_len,
642 ext4_es_pblock(es), ext4_es_status(es));
643 }
644 goto out;
645 }
646
647 /*
648 * We don't check ee_block == es->es_lblk, etc. because es
649 * might be a part of whole extent, vice versa.
650 */
651 if (es->es_lblk < ee_block ||
652 ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
653 pr_warn("ES insert assertion failed for inode: %lu "
654 "ex_status [%d/%d/%llu/%c] != "
655 "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
656 ee_block, ee_len, ee_start,
657 ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
658 ext4_es_pblock(es), es_status ? 'u' : 'w');
659 goto out;
660 }
661
662 if (ee_status ^ es_status) {
663 pr_warn("ES insert assertion failed for inode: %lu "
664 "ex_status [%d/%d/%llu/%c] != "
665 "es_status [%d/%d/%llu/%c]\n", inode->i_ino,
666 ee_block, ee_len, ee_start,
667 ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
668 ext4_es_pblock(es), es_status ? 'u' : 'w');
669 }
670 } else {
671 /*
672 * We can't find an extent on disk. So we need to make sure
673 * that we don't want to add an written/unwritten extent.
674 */
675 if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
676 pr_warn("ES insert assertion failed for inode: %lu "
677 "can't find an extent at block %d but we want "
678 "to add a written/unwritten extent "
679 "[%d/%d/%llu/%x]\n", inode->i_ino,
680 es->es_lblk, es->es_lblk, es->es_len,
681 ext4_es_pblock(es), ext4_es_status(es));
682 }
683 }
684 out:
685 ext4_free_ext_path(path);
686 }
687
ext4_es_insert_extent_ind_check(struct inode * inode,struct extent_status * es)688 static void ext4_es_insert_extent_ind_check(struct inode *inode,
689 struct extent_status *es)
690 {
691 struct ext4_map_blocks map;
692 int retval;
693
694 /*
695 * Here we call ext4_ind_map_blocks to lookup a block mapping because
696 * 'Indirect' structure is defined in indirect.c. So we couldn't
697 * access direct/indirect tree from outside. It is too dirty to define
698 * this function in indirect.c file.
699 */
700
701 map.m_lblk = es->es_lblk;
702 map.m_len = es->es_len;
703
704 retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
705 if (retval > 0) {
706 if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
707 /*
708 * We want to add a delayed/hole extent but this
709 * block has been allocated.
710 */
711 pr_warn("ES insert assertion failed for inode: %lu "
712 "We can find blocks but we want to add a "
713 "delayed/hole extent [%d/%d/%llu/%x]\n",
714 inode->i_ino, es->es_lblk, es->es_len,
715 ext4_es_pblock(es), ext4_es_status(es));
716 return;
717 } else if (ext4_es_is_written(es)) {
718 if (retval != es->es_len) {
719 pr_warn("ES insert assertion failed for "
720 "inode: %lu retval %d != es_len %d\n",
721 inode->i_ino, retval, es->es_len);
722 return;
723 }
724 if (map.m_pblk != ext4_es_pblock(es)) {
725 pr_warn("ES insert assertion failed for "
726 "inode: %lu m_pblk %llu != "
727 "es_pblk %llu\n",
728 inode->i_ino, map.m_pblk,
729 ext4_es_pblock(es));
730 return;
731 }
732 } else {
733 /*
734 * We don't need to check unwritten extent because
735 * indirect-based file doesn't have it.
736 */
737 BUG();
738 }
739 } else if (retval == 0) {
740 if (ext4_es_is_written(es)) {
741 pr_warn("ES insert assertion failed for inode: %lu "
742 "We can't find the block but we want to add "
743 "a written extent [%d/%d/%llu/%x]\n",
744 inode->i_ino, es->es_lblk, es->es_len,
745 ext4_es_pblock(es), ext4_es_status(es));
746 return;
747 }
748 }
749 }
750
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)751 static inline void ext4_es_insert_extent_check(struct inode *inode,
752 struct extent_status *es)
753 {
754 /*
755 * We don't need to worry about the race condition because
756 * caller takes i_data_sem locking.
757 */
758 BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
759 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
760 ext4_es_insert_extent_ext_check(inode, es);
761 else
762 ext4_es_insert_extent_ind_check(inode, es);
763 }
764 #else
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)765 static inline void ext4_es_insert_extent_check(struct inode *inode,
766 struct extent_status *es)
767 {
768 }
769 #endif
770
__es_insert_extent(struct inode * inode,struct extent_status * newes,struct extent_status * prealloc)771 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
772 struct extent_status *prealloc)
773 {
774 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
775 struct rb_node **p = &tree->root.rb_node;
776 struct rb_node *parent = NULL;
777 struct extent_status *es;
778
779 while (*p) {
780 parent = *p;
781 es = rb_entry(parent, struct extent_status, rb_node);
782
783 if (newes->es_lblk < es->es_lblk) {
784 if (ext4_es_can_be_merged(newes, es)) {
785 /*
786 * Here we can modify es_lblk directly
787 * because it isn't overlapped.
788 */
789 es->es_lblk = newes->es_lblk;
790 es->es_len += newes->es_len;
791 if (ext4_es_is_written(es) ||
792 ext4_es_is_unwritten(es))
793 ext4_es_store_pblock(es,
794 newes->es_pblk);
795 es = ext4_es_try_to_merge_left(inode, es);
796 goto out;
797 }
798 p = &(*p)->rb_left;
799 } else if (newes->es_lblk > ext4_es_end(es)) {
800 if (ext4_es_can_be_merged(es, newes)) {
801 es->es_len += newes->es_len;
802 es = ext4_es_try_to_merge_right(inode, es);
803 goto out;
804 }
805 p = &(*p)->rb_right;
806 } else {
807 BUG();
808 return -EINVAL;
809 }
810 }
811
812 if (prealloc)
813 es = prealloc;
814 else
815 es = __es_alloc_extent(false);
816 if (!es)
817 return -ENOMEM;
818 ext4_es_init_extent(inode, es, newes->es_lblk, newes->es_len,
819 newes->es_pblk);
820
821 rb_link_node(&es->rb_node, parent, p);
822 rb_insert_color(&es->rb_node, &tree->root);
823
824 out:
825 tree->cache_es = es;
826 return 0;
827 }
828
829 /*
830 * ext4_es_insert_extent() adds information to an inode's extent
831 * status tree.
832 */
ext4_es_insert_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status)833 void ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
834 ext4_lblk_t len, ext4_fsblk_t pblk,
835 unsigned int status)
836 {
837 struct extent_status newes;
838 ext4_lblk_t end = lblk + len - 1;
839 int err1 = 0;
840 int err2 = 0;
841 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
842 struct extent_status *es1 = NULL;
843 struct extent_status *es2 = NULL;
844
845 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
846 return;
847
848 es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
849 lblk, len, pblk, status, inode->i_ino);
850
851 if (!len)
852 return;
853
854 BUG_ON(end < lblk);
855
856 if ((status & EXTENT_STATUS_DELAYED) &&
857 (status & EXTENT_STATUS_WRITTEN)) {
858 ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
859 " delayed and written which can potentially "
860 " cause data loss.", lblk, len);
861 WARN_ON(1);
862 }
863
864 newes.es_lblk = lblk;
865 newes.es_len = len;
866 ext4_es_store_pblock_status(&newes, pblk, status);
867 trace_ext4_es_insert_extent(inode, &newes);
868
869 ext4_es_insert_extent_check(inode, &newes);
870
871 retry:
872 if (err1 && !es1)
873 es1 = __es_alloc_extent(true);
874 if ((err1 || err2) && !es2)
875 es2 = __es_alloc_extent(true);
876 write_lock(&EXT4_I(inode)->i_es_lock);
877
878 err1 = __es_remove_extent(inode, lblk, end, NULL, es1);
879 if (err1 != 0)
880 goto error;
881 /* Free preallocated extent if it didn't get used. */
882 if (es1) {
883 if (!es1->es_len)
884 __es_free_extent(es1);
885 es1 = NULL;
886 }
887
888 err2 = __es_insert_extent(inode, &newes, es2);
889 if (err2 == -ENOMEM && !ext4_es_must_keep(&newes))
890 err2 = 0;
891 if (err2 != 0)
892 goto error;
893 /* Free preallocated extent if it didn't get used. */
894 if (es2) {
895 if (!es2->es_len)
896 __es_free_extent(es2);
897 es2 = NULL;
898 }
899
900 if (sbi->s_cluster_ratio > 1 && test_opt(inode->i_sb, DELALLOC) &&
901 (status & EXTENT_STATUS_WRITTEN ||
902 status & EXTENT_STATUS_UNWRITTEN))
903 __revise_pending(inode, lblk, len);
904 error:
905 write_unlock(&EXT4_I(inode)->i_es_lock);
906 if (err1 || err2)
907 goto retry;
908
909 ext4_es_print_tree(inode);
910 return;
911 }
912
913 /*
914 * ext4_es_cache_extent() inserts information into the extent status
915 * tree if and only if there isn't information about the range in
916 * question already.
917 */
ext4_es_cache_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status)918 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
919 ext4_lblk_t len, ext4_fsblk_t pblk,
920 unsigned int status)
921 {
922 struct extent_status *es;
923 struct extent_status newes;
924 ext4_lblk_t end = lblk + len - 1;
925
926 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
927 return;
928
929 newes.es_lblk = lblk;
930 newes.es_len = len;
931 ext4_es_store_pblock_status(&newes, pblk, status);
932 trace_ext4_es_cache_extent(inode, &newes);
933
934 if (!len)
935 return;
936
937 BUG_ON(end < lblk);
938
939 write_lock(&EXT4_I(inode)->i_es_lock);
940
941 es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
942 if (!es || es->es_lblk > end)
943 __es_insert_extent(inode, &newes, NULL);
944 write_unlock(&EXT4_I(inode)->i_es_lock);
945 }
946
947 /*
948 * ext4_es_lookup_extent() looks up an extent in extent status tree.
949 *
950 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
951 *
952 * Return: 1 on found, 0 on not
953 */
ext4_es_lookup_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t * next_lblk,struct extent_status * es)954 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
955 ext4_lblk_t *next_lblk,
956 struct extent_status *es)
957 {
958 struct ext4_es_tree *tree;
959 struct ext4_es_stats *stats;
960 struct extent_status *es1 = NULL;
961 struct rb_node *node;
962 int found = 0;
963
964 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
965 return 0;
966
967 trace_ext4_es_lookup_extent_enter(inode, lblk);
968 es_debug("lookup extent in block %u\n", lblk);
969
970 tree = &EXT4_I(inode)->i_es_tree;
971 read_lock(&EXT4_I(inode)->i_es_lock);
972
973 /* find extent in cache firstly */
974 es->es_lblk = es->es_len = es->es_pblk = 0;
975 es1 = READ_ONCE(tree->cache_es);
976 if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
977 es_debug("%u cached by [%u/%u)\n",
978 lblk, es1->es_lblk, es1->es_len);
979 found = 1;
980 goto out;
981 }
982
983 node = tree->root.rb_node;
984 while (node) {
985 es1 = rb_entry(node, struct extent_status, rb_node);
986 if (lblk < es1->es_lblk)
987 node = node->rb_left;
988 else if (lblk > ext4_es_end(es1))
989 node = node->rb_right;
990 else {
991 found = 1;
992 break;
993 }
994 }
995
996 out:
997 stats = &EXT4_SB(inode->i_sb)->s_es_stats;
998 if (found) {
999 BUG_ON(!es1);
1000 es->es_lblk = es1->es_lblk;
1001 es->es_len = es1->es_len;
1002 es->es_pblk = es1->es_pblk;
1003 if (!ext4_es_is_referenced(es1))
1004 ext4_es_set_referenced(es1);
1005 percpu_counter_inc(&stats->es_stats_cache_hits);
1006 if (next_lblk) {
1007 node = rb_next(&es1->rb_node);
1008 if (node) {
1009 es1 = rb_entry(node, struct extent_status,
1010 rb_node);
1011 *next_lblk = es1->es_lblk;
1012 } else
1013 *next_lblk = 0;
1014 }
1015 } else {
1016 percpu_counter_inc(&stats->es_stats_cache_misses);
1017 }
1018
1019 read_unlock(&EXT4_I(inode)->i_es_lock);
1020
1021 trace_ext4_es_lookup_extent_exit(inode, es, found);
1022 return found;
1023 }
1024
1025 struct rsvd_count {
1026 int ndelonly;
1027 bool first_do_lblk_found;
1028 ext4_lblk_t first_do_lblk;
1029 ext4_lblk_t last_do_lblk;
1030 struct extent_status *left_es;
1031 bool partial;
1032 ext4_lblk_t lclu;
1033 };
1034
1035 /*
1036 * init_rsvd - initialize reserved count data before removing block range
1037 * in file from extent status tree
1038 *
1039 * @inode - file containing range
1040 * @lblk - first block in range
1041 * @es - pointer to first extent in range
1042 * @rc - pointer to reserved count data
1043 *
1044 * Assumes es is not NULL
1045 */
init_rsvd(struct inode * inode,ext4_lblk_t lblk,struct extent_status * es,struct rsvd_count * rc)1046 static void init_rsvd(struct inode *inode, ext4_lblk_t lblk,
1047 struct extent_status *es, struct rsvd_count *rc)
1048 {
1049 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1050 struct rb_node *node;
1051
1052 rc->ndelonly = 0;
1053
1054 /*
1055 * for bigalloc, note the first delonly block in the range has not
1056 * been found, record the extent containing the block to the left of
1057 * the region to be removed, if any, and note that there's no partial
1058 * cluster to track
1059 */
1060 if (sbi->s_cluster_ratio > 1) {
1061 rc->first_do_lblk_found = false;
1062 if (lblk > es->es_lblk) {
1063 rc->left_es = es;
1064 } else {
1065 node = rb_prev(&es->rb_node);
1066 rc->left_es = node ? rb_entry(node,
1067 struct extent_status,
1068 rb_node) : NULL;
1069 }
1070 rc->partial = false;
1071 }
1072 }
1073
1074 /*
1075 * count_rsvd - count the clusters containing delayed and not unwritten
1076 * (delonly) blocks in a range within an extent and add to
1077 * the running tally in rsvd_count
1078 *
1079 * @inode - file containing extent
1080 * @lblk - first block in range
1081 * @len - length of range in blocks
1082 * @es - pointer to extent containing clusters to be counted
1083 * @rc - pointer to reserved count data
1084 *
1085 * Tracks partial clusters found at the beginning and end of extents so
1086 * they aren't overcounted when they span adjacent extents
1087 */
count_rsvd(struct inode * inode,ext4_lblk_t lblk,long len,struct extent_status * es,struct rsvd_count * rc)1088 static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len,
1089 struct extent_status *es, struct rsvd_count *rc)
1090 {
1091 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1092 ext4_lblk_t i, end, nclu;
1093
1094 if (!ext4_es_is_delonly(es))
1095 return;
1096
1097 WARN_ON(len <= 0);
1098
1099 if (sbi->s_cluster_ratio == 1) {
1100 rc->ndelonly += (int) len;
1101 return;
1102 }
1103
1104 /* bigalloc */
1105
1106 i = (lblk < es->es_lblk) ? es->es_lblk : lblk;
1107 end = lblk + (ext4_lblk_t) len - 1;
1108 end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end;
1109
1110 /* record the first block of the first delonly extent seen */
1111 if (!rc->first_do_lblk_found) {
1112 rc->first_do_lblk = i;
1113 rc->first_do_lblk_found = true;
1114 }
1115
1116 /* update the last lblk in the region seen so far */
1117 rc->last_do_lblk = end;
1118
1119 /*
1120 * if we're tracking a partial cluster and the current extent
1121 * doesn't start with it, count it and stop tracking
1122 */
1123 if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) {
1124 rc->ndelonly++;
1125 rc->partial = false;
1126 }
1127
1128 /*
1129 * if the first cluster doesn't start on a cluster boundary but
1130 * ends on one, count it
1131 */
1132 if (EXT4_LBLK_COFF(sbi, i) != 0) {
1133 if (end >= EXT4_LBLK_CFILL(sbi, i)) {
1134 rc->ndelonly++;
1135 rc->partial = false;
1136 i = EXT4_LBLK_CFILL(sbi, i) + 1;
1137 }
1138 }
1139
1140 /*
1141 * if the current cluster starts on a cluster boundary, count the
1142 * number of whole delonly clusters in the extent
1143 */
1144 if ((i + sbi->s_cluster_ratio - 1) <= end) {
1145 nclu = (end - i + 1) >> sbi->s_cluster_bits;
1146 rc->ndelonly += nclu;
1147 i += nclu << sbi->s_cluster_bits;
1148 }
1149
1150 /*
1151 * start tracking a partial cluster if there's a partial at the end
1152 * of the current extent and we're not already tracking one
1153 */
1154 if (!rc->partial && i <= end) {
1155 rc->partial = true;
1156 rc->lclu = EXT4_B2C(sbi, i);
1157 }
1158 }
1159
1160 /*
1161 * __pr_tree_search - search for a pending cluster reservation
1162 *
1163 * @root - root of pending reservation tree
1164 * @lclu - logical cluster to search for
1165 *
1166 * Returns the pending reservation for the cluster identified by @lclu
1167 * if found. If not, returns a reservation for the next cluster if any,
1168 * and if not, returns NULL.
1169 */
__pr_tree_search(struct rb_root * root,ext4_lblk_t lclu)1170 static struct pending_reservation *__pr_tree_search(struct rb_root *root,
1171 ext4_lblk_t lclu)
1172 {
1173 struct rb_node *node = root->rb_node;
1174 struct pending_reservation *pr = NULL;
1175
1176 while (node) {
1177 pr = rb_entry(node, struct pending_reservation, rb_node);
1178 if (lclu < pr->lclu)
1179 node = node->rb_left;
1180 else if (lclu > pr->lclu)
1181 node = node->rb_right;
1182 else
1183 return pr;
1184 }
1185 if (pr && lclu < pr->lclu)
1186 return pr;
1187 if (pr && lclu > pr->lclu) {
1188 node = rb_next(&pr->rb_node);
1189 return node ? rb_entry(node, struct pending_reservation,
1190 rb_node) : NULL;
1191 }
1192 return NULL;
1193 }
1194
1195 /*
1196 * get_rsvd - calculates and returns the number of cluster reservations to be
1197 * released when removing a block range from the extent status tree
1198 * and releases any pending reservations within the range
1199 *
1200 * @inode - file containing block range
1201 * @end - last block in range
1202 * @right_es - pointer to extent containing next block beyond end or NULL
1203 * @rc - pointer to reserved count data
1204 *
1205 * The number of reservations to be released is equal to the number of
1206 * clusters containing delayed and not unwritten (delonly) blocks within
1207 * the range, minus the number of clusters still containing delonly blocks
1208 * at the ends of the range, and minus the number of pending reservations
1209 * within the range.
1210 */
get_rsvd(struct inode * inode,ext4_lblk_t end,struct extent_status * right_es,struct rsvd_count * rc)1211 static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end,
1212 struct extent_status *right_es,
1213 struct rsvd_count *rc)
1214 {
1215 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1216 struct pending_reservation *pr;
1217 struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1218 struct rb_node *node;
1219 ext4_lblk_t first_lclu, last_lclu;
1220 bool left_delonly, right_delonly, count_pending;
1221 struct extent_status *es;
1222
1223 if (sbi->s_cluster_ratio > 1) {
1224 /* count any remaining partial cluster */
1225 if (rc->partial)
1226 rc->ndelonly++;
1227
1228 if (rc->ndelonly == 0)
1229 return 0;
1230
1231 first_lclu = EXT4_B2C(sbi, rc->first_do_lblk);
1232 last_lclu = EXT4_B2C(sbi, rc->last_do_lblk);
1233
1234 /*
1235 * decrease the delonly count by the number of clusters at the
1236 * ends of the range that still contain delonly blocks -
1237 * these clusters still need to be reserved
1238 */
1239 left_delonly = right_delonly = false;
1240
1241 es = rc->left_es;
1242 while (es && ext4_es_end(es) >=
1243 EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) {
1244 if (ext4_es_is_delonly(es)) {
1245 rc->ndelonly--;
1246 left_delonly = true;
1247 break;
1248 }
1249 node = rb_prev(&es->rb_node);
1250 if (!node)
1251 break;
1252 es = rb_entry(node, struct extent_status, rb_node);
1253 }
1254 if (right_es && (!left_delonly || first_lclu != last_lclu)) {
1255 if (end < ext4_es_end(right_es)) {
1256 es = right_es;
1257 } else {
1258 node = rb_next(&right_es->rb_node);
1259 es = node ? rb_entry(node, struct extent_status,
1260 rb_node) : NULL;
1261 }
1262 while (es && es->es_lblk <=
1263 EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) {
1264 if (ext4_es_is_delonly(es)) {
1265 rc->ndelonly--;
1266 right_delonly = true;
1267 break;
1268 }
1269 node = rb_next(&es->rb_node);
1270 if (!node)
1271 break;
1272 es = rb_entry(node, struct extent_status,
1273 rb_node);
1274 }
1275 }
1276
1277 /*
1278 * Determine the block range that should be searched for
1279 * pending reservations, if any. Clusters on the ends of the
1280 * original removed range containing delonly blocks are
1281 * excluded. They've already been accounted for and it's not
1282 * possible to determine if an associated pending reservation
1283 * should be released with the information available in the
1284 * extents status tree.
1285 */
1286 if (first_lclu == last_lclu) {
1287 if (left_delonly | right_delonly)
1288 count_pending = false;
1289 else
1290 count_pending = true;
1291 } else {
1292 if (left_delonly)
1293 first_lclu++;
1294 if (right_delonly)
1295 last_lclu--;
1296 if (first_lclu <= last_lclu)
1297 count_pending = true;
1298 else
1299 count_pending = false;
1300 }
1301
1302 /*
1303 * a pending reservation found between first_lclu and last_lclu
1304 * represents an allocated cluster that contained at least one
1305 * delonly block, so the delonly total must be reduced by one
1306 * for each pending reservation found and released
1307 */
1308 if (count_pending) {
1309 pr = __pr_tree_search(&tree->root, first_lclu);
1310 while (pr && pr->lclu <= last_lclu) {
1311 rc->ndelonly--;
1312 node = rb_next(&pr->rb_node);
1313 rb_erase(&pr->rb_node, &tree->root);
1314 kmem_cache_free(ext4_pending_cachep, pr);
1315 if (!node)
1316 break;
1317 pr = rb_entry(node, struct pending_reservation,
1318 rb_node);
1319 }
1320 }
1321 }
1322 return rc->ndelonly;
1323 }
1324
1325
1326 /*
1327 * __es_remove_extent - removes block range from extent status tree
1328 *
1329 * @inode - file containing range
1330 * @lblk - first block in range
1331 * @end - last block in range
1332 * @reserved - number of cluster reservations released
1333 * @prealloc - pre-allocated es to avoid memory allocation failures
1334 *
1335 * If @reserved is not NULL and delayed allocation is enabled, counts
1336 * block/cluster reservations freed by removing range and if bigalloc
1337 * enabled cancels pending reservations as needed. Returns 0 on success,
1338 * error code on failure.
1339 */
__es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t end,int * reserved,struct extent_status * prealloc)1340 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1341 ext4_lblk_t end, int *reserved,
1342 struct extent_status *prealloc)
1343 {
1344 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
1345 struct rb_node *node;
1346 struct extent_status *es;
1347 struct extent_status orig_es;
1348 ext4_lblk_t len1, len2;
1349 ext4_fsblk_t block;
1350 int err = 0;
1351 bool count_reserved = true;
1352 struct rsvd_count rc;
1353
1354 if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC))
1355 count_reserved = false;
1356
1357 es = __es_tree_search(&tree->root, lblk);
1358 if (!es)
1359 goto out;
1360 if (es->es_lblk > end)
1361 goto out;
1362
1363 /* Simply invalidate cache_es. */
1364 tree->cache_es = NULL;
1365 if (count_reserved)
1366 init_rsvd(inode, lblk, es, &rc);
1367
1368 orig_es.es_lblk = es->es_lblk;
1369 orig_es.es_len = es->es_len;
1370 orig_es.es_pblk = es->es_pblk;
1371
1372 len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
1373 len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
1374 if (len1 > 0)
1375 es->es_len = len1;
1376 if (len2 > 0) {
1377 if (len1 > 0) {
1378 struct extent_status newes;
1379
1380 newes.es_lblk = end + 1;
1381 newes.es_len = len2;
1382 block = 0x7FDEADBEEFULL;
1383 if (ext4_es_is_written(&orig_es) ||
1384 ext4_es_is_unwritten(&orig_es))
1385 block = ext4_es_pblock(&orig_es) +
1386 orig_es.es_len - len2;
1387 ext4_es_store_pblock_status(&newes, block,
1388 ext4_es_status(&orig_es));
1389 err = __es_insert_extent(inode, &newes, prealloc);
1390 if (err) {
1391 if (!ext4_es_must_keep(&newes))
1392 return 0;
1393
1394 es->es_lblk = orig_es.es_lblk;
1395 es->es_len = orig_es.es_len;
1396 goto out;
1397 }
1398 } else {
1399 es->es_lblk = end + 1;
1400 es->es_len = len2;
1401 if (ext4_es_is_written(es) ||
1402 ext4_es_is_unwritten(es)) {
1403 block = orig_es.es_pblk + orig_es.es_len - len2;
1404 ext4_es_store_pblock(es, block);
1405 }
1406 }
1407 if (count_reserved)
1408 count_rsvd(inode, lblk, orig_es.es_len - len1 - len2,
1409 &orig_es, &rc);
1410 goto out_get_reserved;
1411 }
1412
1413 if (len1 > 0) {
1414 if (count_reserved)
1415 count_rsvd(inode, lblk, orig_es.es_len - len1,
1416 &orig_es, &rc);
1417 node = rb_next(&es->rb_node);
1418 if (node)
1419 es = rb_entry(node, struct extent_status, rb_node);
1420 else
1421 es = NULL;
1422 }
1423
1424 while (es && ext4_es_end(es) <= end) {
1425 if (count_reserved)
1426 count_rsvd(inode, es->es_lblk, es->es_len, es, &rc);
1427 node = rb_next(&es->rb_node);
1428 rb_erase(&es->rb_node, &tree->root);
1429 ext4_es_free_extent(inode, es);
1430 if (!node) {
1431 es = NULL;
1432 break;
1433 }
1434 es = rb_entry(node, struct extent_status, rb_node);
1435 }
1436
1437 if (es && es->es_lblk < end + 1) {
1438 ext4_lblk_t orig_len = es->es_len;
1439
1440 len1 = ext4_es_end(es) - end;
1441 if (count_reserved)
1442 count_rsvd(inode, es->es_lblk, orig_len - len1,
1443 es, &rc);
1444 es->es_lblk = end + 1;
1445 es->es_len = len1;
1446 if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
1447 block = es->es_pblk + orig_len - len1;
1448 ext4_es_store_pblock(es, block);
1449 }
1450 }
1451
1452 out_get_reserved:
1453 if (count_reserved)
1454 *reserved = get_rsvd(inode, end, es, &rc);
1455 out:
1456 return err;
1457 }
1458
1459 /*
1460 * ext4_es_remove_extent - removes block range from extent status tree
1461 *
1462 * @inode - file containing range
1463 * @lblk - first block in range
1464 * @len - number of blocks to remove
1465 *
1466 * Reduces block/cluster reservation count and for bigalloc cancels pending
1467 * reservations as needed.
1468 */
ext4_es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)1469 void ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1470 ext4_lblk_t len)
1471 {
1472 ext4_lblk_t end;
1473 int err = 0;
1474 int reserved = 0;
1475 struct extent_status *es = NULL;
1476
1477 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1478 return;
1479
1480 trace_ext4_es_remove_extent(inode, lblk, len);
1481 es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
1482 lblk, len, inode->i_ino);
1483
1484 if (!len)
1485 return;
1486
1487 end = lblk + len - 1;
1488 BUG_ON(end < lblk);
1489
1490 retry:
1491 if (err && !es)
1492 es = __es_alloc_extent(true);
1493 /*
1494 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
1495 * so that we are sure __es_shrink() is done with the inode before it
1496 * is reclaimed.
1497 */
1498 write_lock(&EXT4_I(inode)->i_es_lock);
1499 err = __es_remove_extent(inode, lblk, end, &reserved, es);
1500 /* Free preallocated extent if it didn't get used. */
1501 if (es) {
1502 if (!es->es_len)
1503 __es_free_extent(es);
1504 es = NULL;
1505 }
1506 write_unlock(&EXT4_I(inode)->i_es_lock);
1507 if (err)
1508 goto retry;
1509
1510 ext4_es_print_tree(inode);
1511 ext4_da_release_space(inode, reserved);
1512 return;
1513 }
1514
__es_shrink(struct ext4_sb_info * sbi,int nr_to_scan,struct ext4_inode_info * locked_ei)1515 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
1516 struct ext4_inode_info *locked_ei)
1517 {
1518 struct ext4_inode_info *ei;
1519 struct ext4_es_stats *es_stats;
1520 ktime_t start_time;
1521 u64 scan_time;
1522 int nr_to_walk;
1523 int nr_shrunk = 0;
1524 int retried = 0, nr_skipped = 0;
1525
1526 es_stats = &sbi->s_es_stats;
1527 start_time = ktime_get();
1528
1529 retry:
1530 spin_lock(&sbi->s_es_lock);
1531 nr_to_walk = sbi->s_es_nr_inode;
1532 while (nr_to_walk-- > 0) {
1533 if (list_empty(&sbi->s_es_list)) {
1534 spin_unlock(&sbi->s_es_lock);
1535 goto out;
1536 }
1537 ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
1538 i_es_list);
1539 /* Move the inode to the tail */
1540 list_move_tail(&ei->i_es_list, &sbi->s_es_list);
1541
1542 /*
1543 * Normally we try hard to avoid shrinking precached inodes,
1544 * but we will as a last resort.
1545 */
1546 if (!retried && ext4_test_inode_state(&ei->vfs_inode,
1547 EXT4_STATE_EXT_PRECACHED)) {
1548 nr_skipped++;
1549 continue;
1550 }
1551
1552 if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
1553 nr_skipped++;
1554 continue;
1555 }
1556 /*
1557 * Now we hold i_es_lock which protects us from inode reclaim
1558 * freeing inode under us
1559 */
1560 spin_unlock(&sbi->s_es_lock);
1561
1562 nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
1563 write_unlock(&ei->i_es_lock);
1564
1565 if (nr_to_scan <= 0)
1566 goto out;
1567 spin_lock(&sbi->s_es_lock);
1568 }
1569 spin_unlock(&sbi->s_es_lock);
1570
1571 /*
1572 * If we skipped any inodes, and we weren't able to make any
1573 * forward progress, try again to scan precached inodes.
1574 */
1575 if ((nr_shrunk == 0) && nr_skipped && !retried) {
1576 retried++;
1577 goto retry;
1578 }
1579
1580 if (locked_ei && nr_shrunk == 0)
1581 nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
1582
1583 out:
1584 scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1585 if (likely(es_stats->es_stats_scan_time))
1586 es_stats->es_stats_scan_time = (scan_time +
1587 es_stats->es_stats_scan_time*3) / 4;
1588 else
1589 es_stats->es_stats_scan_time = scan_time;
1590 if (scan_time > es_stats->es_stats_max_scan_time)
1591 es_stats->es_stats_max_scan_time = scan_time;
1592 if (likely(es_stats->es_stats_shrunk))
1593 es_stats->es_stats_shrunk = (nr_shrunk +
1594 es_stats->es_stats_shrunk*3) / 4;
1595 else
1596 es_stats->es_stats_shrunk = nr_shrunk;
1597
1598 trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1599 nr_skipped, retried);
1600 return nr_shrunk;
1601 }
1602
ext4_es_count(struct shrinker * shrink,struct shrink_control * sc)1603 static unsigned long ext4_es_count(struct shrinker *shrink,
1604 struct shrink_control *sc)
1605 {
1606 unsigned long nr;
1607 struct ext4_sb_info *sbi;
1608
1609 sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1610 nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1611 trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1612 return nr;
1613 }
1614
ext4_es_scan(struct shrinker * shrink,struct shrink_control * sc)1615 static unsigned long ext4_es_scan(struct shrinker *shrink,
1616 struct shrink_control *sc)
1617 {
1618 struct ext4_sb_info *sbi = container_of(shrink,
1619 struct ext4_sb_info, s_es_shrinker);
1620 int nr_to_scan = sc->nr_to_scan;
1621 int ret, nr_shrunk;
1622
1623 ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1624 trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1625
1626 nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1627
1628 ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1629 trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1630 return nr_shrunk;
1631 }
1632
ext4_seq_es_shrinker_info_show(struct seq_file * seq,void * v)1633 int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
1634 {
1635 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
1636 struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1637 struct ext4_inode_info *ei, *max = NULL;
1638 unsigned int inode_cnt = 0;
1639
1640 if (v != SEQ_START_TOKEN)
1641 return 0;
1642
1643 /* here we just find an inode that has the max nr. of objects */
1644 spin_lock(&sbi->s_es_lock);
1645 list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1646 inode_cnt++;
1647 if (max && max->i_es_all_nr < ei->i_es_all_nr)
1648 max = ei;
1649 else if (!max)
1650 max = ei;
1651 }
1652 spin_unlock(&sbi->s_es_lock);
1653
1654 seq_printf(seq, "stats:\n %lld objects\n %lld reclaimable objects\n",
1655 percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1656 percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1657 seq_printf(seq, " %lld/%lld cache hits/misses\n",
1658 percpu_counter_sum_positive(&es_stats->es_stats_cache_hits),
1659 percpu_counter_sum_positive(&es_stats->es_stats_cache_misses));
1660 if (inode_cnt)
1661 seq_printf(seq, " %d inodes on list\n", inode_cnt);
1662
1663 seq_printf(seq, "average:\n %llu us scan time\n",
1664 div_u64(es_stats->es_stats_scan_time, 1000));
1665 seq_printf(seq, " %lu shrunk objects\n", es_stats->es_stats_shrunk);
1666 if (inode_cnt)
1667 seq_printf(seq,
1668 "maximum:\n %lu inode (%u objects, %u reclaimable)\n"
1669 " %llu us max scan time\n",
1670 max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1671 div_u64(es_stats->es_stats_max_scan_time, 1000));
1672
1673 return 0;
1674 }
1675
ext4_es_register_shrinker(struct ext4_sb_info * sbi)1676 int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1677 {
1678 int err;
1679
1680 /* Make sure we have enough bits for physical block number */
1681 BUILD_BUG_ON(ES_SHIFT < 48);
1682 INIT_LIST_HEAD(&sbi->s_es_list);
1683 sbi->s_es_nr_inode = 0;
1684 spin_lock_init(&sbi->s_es_lock);
1685 sbi->s_es_stats.es_stats_shrunk = 0;
1686 err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0,
1687 GFP_KERNEL);
1688 if (err)
1689 return err;
1690 err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0,
1691 GFP_KERNEL);
1692 if (err)
1693 goto err1;
1694 sbi->s_es_stats.es_stats_scan_time = 0;
1695 sbi->s_es_stats.es_stats_max_scan_time = 0;
1696 err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1697 if (err)
1698 goto err2;
1699 err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1700 if (err)
1701 goto err3;
1702
1703 sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1704 sbi->s_es_shrinker.count_objects = ext4_es_count;
1705 sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1706 err = register_shrinker(&sbi->s_es_shrinker, "ext4-es:%s",
1707 sbi->s_sb->s_id);
1708 if (err)
1709 goto err4;
1710
1711 return 0;
1712 err4:
1713 percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1714 err3:
1715 percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1716 err2:
1717 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1718 err1:
1719 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1720 return err;
1721 }
1722
ext4_es_unregister_shrinker(struct ext4_sb_info * sbi)1723 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1724 {
1725 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1726 percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1727 percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1728 percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1729 unregister_shrinker(&sbi->s_es_shrinker);
1730 }
1731
1732 /*
1733 * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1734 * most *nr_to_scan extents, update *nr_to_scan accordingly.
1735 *
1736 * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1737 * Increment *nr_shrunk by the number of reclaimed extents. Also update
1738 * ei->i_es_shrink_lblk to where we should continue scanning.
1739 */
es_do_reclaim_extents(struct ext4_inode_info * ei,ext4_lblk_t end,int * nr_to_scan,int * nr_shrunk)1740 static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
1741 int *nr_to_scan, int *nr_shrunk)
1742 {
1743 struct inode *inode = &ei->vfs_inode;
1744 struct ext4_es_tree *tree = &ei->i_es_tree;
1745 struct extent_status *es;
1746 struct rb_node *node;
1747
1748 es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
1749 if (!es)
1750 goto out_wrap;
1751
1752 while (*nr_to_scan > 0) {
1753 if (es->es_lblk > end) {
1754 ei->i_es_shrink_lblk = end + 1;
1755 return 0;
1756 }
1757
1758 (*nr_to_scan)--;
1759 node = rb_next(&es->rb_node);
1760
1761 if (ext4_es_must_keep(es))
1762 goto next;
1763 if (ext4_es_is_referenced(es)) {
1764 ext4_es_clear_referenced(es);
1765 goto next;
1766 }
1767
1768 rb_erase(&es->rb_node, &tree->root);
1769 ext4_es_free_extent(inode, es);
1770 (*nr_shrunk)++;
1771 next:
1772 if (!node)
1773 goto out_wrap;
1774 es = rb_entry(node, struct extent_status, rb_node);
1775 }
1776 ei->i_es_shrink_lblk = es->es_lblk;
1777 return 1;
1778 out_wrap:
1779 ei->i_es_shrink_lblk = 0;
1780 return 0;
1781 }
1782
es_reclaim_extents(struct ext4_inode_info * ei,int * nr_to_scan)1783 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
1784 {
1785 struct inode *inode = &ei->vfs_inode;
1786 int nr_shrunk = 0;
1787 ext4_lblk_t start = ei->i_es_shrink_lblk;
1788 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1789 DEFAULT_RATELIMIT_BURST);
1790
1791 if (ei->i_es_shk_nr == 0)
1792 return 0;
1793
1794 if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1795 __ratelimit(&_rs))
1796 ext4_warning(inode->i_sb, "forced shrink of precached extents");
1797
1798 if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
1799 start != 0)
1800 es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
1801
1802 ei->i_es_tree.cache_es = NULL;
1803 return nr_shrunk;
1804 }
1805
1806 /*
1807 * Called to support EXT4_IOC_CLEAR_ES_CACHE. We can only remove
1808 * discretionary entries from the extent status cache. (Some entries
1809 * must be present for proper operations.)
1810 */
ext4_clear_inode_es(struct inode * inode)1811 void ext4_clear_inode_es(struct inode *inode)
1812 {
1813 struct ext4_inode_info *ei = EXT4_I(inode);
1814 struct extent_status *es;
1815 struct ext4_es_tree *tree;
1816 struct rb_node *node;
1817
1818 write_lock(&ei->i_es_lock);
1819 tree = &EXT4_I(inode)->i_es_tree;
1820 tree->cache_es = NULL;
1821 node = rb_first(&tree->root);
1822 while (node) {
1823 es = rb_entry(node, struct extent_status, rb_node);
1824 node = rb_next(node);
1825 if (!ext4_es_must_keep(es)) {
1826 rb_erase(&es->rb_node, &tree->root);
1827 ext4_es_free_extent(inode, es);
1828 }
1829 }
1830 ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
1831 write_unlock(&ei->i_es_lock);
1832 }
1833
1834 #ifdef ES_DEBUG__
ext4_print_pending_tree(struct inode * inode)1835 static void ext4_print_pending_tree(struct inode *inode)
1836 {
1837 struct ext4_pending_tree *tree;
1838 struct rb_node *node;
1839 struct pending_reservation *pr;
1840
1841 printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino);
1842 tree = &EXT4_I(inode)->i_pending_tree;
1843 node = rb_first(&tree->root);
1844 while (node) {
1845 pr = rb_entry(node, struct pending_reservation, rb_node);
1846 printk(KERN_DEBUG " %u", pr->lclu);
1847 node = rb_next(node);
1848 }
1849 printk(KERN_DEBUG "\n");
1850 }
1851 #else
1852 #define ext4_print_pending_tree(inode)
1853 #endif
1854
ext4_init_pending(void)1855 int __init ext4_init_pending(void)
1856 {
1857 ext4_pending_cachep = KMEM_CACHE(pending_reservation, SLAB_RECLAIM_ACCOUNT);
1858 if (ext4_pending_cachep == NULL)
1859 return -ENOMEM;
1860 return 0;
1861 }
1862
ext4_exit_pending(void)1863 void ext4_exit_pending(void)
1864 {
1865 kmem_cache_destroy(ext4_pending_cachep);
1866 }
1867
ext4_init_pending_tree(struct ext4_pending_tree * tree)1868 void ext4_init_pending_tree(struct ext4_pending_tree *tree)
1869 {
1870 tree->root = RB_ROOT;
1871 }
1872
1873 /*
1874 * __get_pending - retrieve a pointer to a pending reservation
1875 *
1876 * @inode - file containing the pending cluster reservation
1877 * @lclu - logical cluster of interest
1878 *
1879 * Returns a pointer to a pending reservation if it's a member of
1880 * the set, and NULL if not. Must be called holding i_es_lock.
1881 */
__get_pending(struct inode * inode,ext4_lblk_t lclu)1882 static struct pending_reservation *__get_pending(struct inode *inode,
1883 ext4_lblk_t lclu)
1884 {
1885 struct ext4_pending_tree *tree;
1886 struct rb_node *node;
1887 struct pending_reservation *pr = NULL;
1888
1889 tree = &EXT4_I(inode)->i_pending_tree;
1890 node = (&tree->root)->rb_node;
1891
1892 while (node) {
1893 pr = rb_entry(node, struct pending_reservation, rb_node);
1894 if (lclu < pr->lclu)
1895 node = node->rb_left;
1896 else if (lclu > pr->lclu)
1897 node = node->rb_right;
1898 else if (lclu == pr->lclu)
1899 return pr;
1900 }
1901 return NULL;
1902 }
1903
1904 /*
1905 * __insert_pending - adds a pending cluster reservation to the set of
1906 * pending reservations
1907 *
1908 * @inode - file containing the cluster
1909 * @lblk - logical block in the cluster to be added
1910 *
1911 * Returns 0 on successful insertion and -ENOMEM on failure. If the
1912 * pending reservation is already in the set, returns successfully.
1913 */
__insert_pending(struct inode * inode,ext4_lblk_t lblk)1914 static int __insert_pending(struct inode *inode, ext4_lblk_t lblk)
1915 {
1916 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1917 struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1918 struct rb_node **p = &tree->root.rb_node;
1919 struct rb_node *parent = NULL;
1920 struct pending_reservation *pr;
1921 ext4_lblk_t lclu;
1922 int ret = 0;
1923
1924 lclu = EXT4_B2C(sbi, lblk);
1925 /* search to find parent for insertion */
1926 while (*p) {
1927 parent = *p;
1928 pr = rb_entry(parent, struct pending_reservation, rb_node);
1929
1930 if (lclu < pr->lclu) {
1931 p = &(*p)->rb_left;
1932 } else if (lclu > pr->lclu) {
1933 p = &(*p)->rb_right;
1934 } else {
1935 /* pending reservation already inserted */
1936 goto out;
1937 }
1938 }
1939
1940 pr = kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC);
1941 if (pr == NULL) {
1942 ret = -ENOMEM;
1943 goto out;
1944 }
1945 pr->lclu = lclu;
1946
1947 rb_link_node(&pr->rb_node, parent, p);
1948 rb_insert_color(&pr->rb_node, &tree->root);
1949
1950 out:
1951 return ret;
1952 }
1953
1954 /*
1955 * __remove_pending - removes a pending cluster reservation from the set
1956 * of pending reservations
1957 *
1958 * @inode - file containing the cluster
1959 * @lblk - logical block in the pending cluster reservation to be removed
1960 *
1961 * Returns successfully if pending reservation is not a member of the set.
1962 */
__remove_pending(struct inode * inode,ext4_lblk_t lblk)1963 static void __remove_pending(struct inode *inode, ext4_lblk_t lblk)
1964 {
1965 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1966 struct pending_reservation *pr;
1967 struct ext4_pending_tree *tree;
1968
1969 pr = __get_pending(inode, EXT4_B2C(sbi, lblk));
1970 if (pr != NULL) {
1971 tree = &EXT4_I(inode)->i_pending_tree;
1972 rb_erase(&pr->rb_node, &tree->root);
1973 kmem_cache_free(ext4_pending_cachep, pr);
1974 }
1975 }
1976
1977 /*
1978 * ext4_remove_pending - removes a pending cluster reservation from the set
1979 * of pending reservations
1980 *
1981 * @inode - file containing the cluster
1982 * @lblk - logical block in the pending cluster reservation to be removed
1983 *
1984 * Locking for external use of __remove_pending.
1985 */
ext4_remove_pending(struct inode * inode,ext4_lblk_t lblk)1986 void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk)
1987 {
1988 struct ext4_inode_info *ei = EXT4_I(inode);
1989
1990 write_lock(&ei->i_es_lock);
1991 __remove_pending(inode, lblk);
1992 write_unlock(&ei->i_es_lock);
1993 }
1994
1995 /*
1996 * ext4_is_pending - determine whether a cluster has a pending reservation
1997 * on it
1998 *
1999 * @inode - file containing the cluster
2000 * @lblk - logical block in the cluster
2001 *
2002 * Returns true if there's a pending reservation for the cluster in the
2003 * set of pending reservations, and false if not.
2004 */
ext4_is_pending(struct inode * inode,ext4_lblk_t lblk)2005 bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk)
2006 {
2007 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2008 struct ext4_inode_info *ei = EXT4_I(inode);
2009 bool ret;
2010
2011 read_lock(&ei->i_es_lock);
2012 ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL);
2013 read_unlock(&ei->i_es_lock);
2014
2015 return ret;
2016 }
2017
2018 /*
2019 * ext4_es_insert_delayed_block - adds a delayed block to the extents status
2020 * tree, adding a pending reservation where
2021 * needed
2022 *
2023 * @inode - file containing the newly added block
2024 * @lblk - logical block to be added
2025 * @allocated - indicates whether a physical cluster has been allocated for
2026 * the logical cluster that contains the block
2027 */
ext4_es_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk,bool allocated)2028 void ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk,
2029 bool allocated)
2030 {
2031 struct extent_status newes;
2032 int err1 = 0;
2033 int err2 = 0;
2034 struct extent_status *es1 = NULL;
2035 struct extent_status *es2 = NULL;
2036
2037 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
2038 return;
2039
2040 es_debug("add [%u/1) delayed to extent status tree of inode %lu\n",
2041 lblk, inode->i_ino);
2042
2043 newes.es_lblk = lblk;
2044 newes.es_len = 1;
2045 ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED);
2046 trace_ext4_es_insert_delayed_block(inode, &newes, allocated);
2047
2048 ext4_es_insert_extent_check(inode, &newes);
2049
2050 retry:
2051 if (err1 && !es1)
2052 es1 = __es_alloc_extent(true);
2053 if ((err1 || err2) && !es2)
2054 es2 = __es_alloc_extent(true);
2055 write_lock(&EXT4_I(inode)->i_es_lock);
2056
2057 err1 = __es_remove_extent(inode, lblk, lblk, NULL, es1);
2058 if (err1 != 0)
2059 goto error;
2060 /* Free preallocated extent if it didn't get used. */
2061 if (es1) {
2062 if (!es1->es_len)
2063 __es_free_extent(es1);
2064 es1 = NULL;
2065 }
2066
2067 err2 = __es_insert_extent(inode, &newes, es2);
2068 if (err2 != 0)
2069 goto error;
2070 /* Free preallocated extent if it didn't get used. */
2071 if (es2) {
2072 if (!es2->es_len)
2073 __es_free_extent(es2);
2074 es2 = NULL;
2075 }
2076
2077 if (allocated)
2078 __insert_pending(inode, lblk);
2079 error:
2080 write_unlock(&EXT4_I(inode)->i_es_lock);
2081 if (err1 || err2)
2082 goto retry;
2083
2084 ext4_es_print_tree(inode);
2085 ext4_print_pending_tree(inode);
2086 return;
2087 }
2088
2089 /*
2090 * __es_delayed_clu - count number of clusters containing blocks that
2091 * are delayed only
2092 *
2093 * @inode - file containing block range
2094 * @start - logical block defining start of range
2095 * @end - logical block defining end of range
2096 *
2097 * Returns the number of clusters containing only delayed (not delayed
2098 * and unwritten) blocks in the range specified by @start and @end. Any
2099 * cluster or part of a cluster within the range and containing a delayed
2100 * and not unwritten block within the range is counted as a whole cluster.
2101 */
__es_delayed_clu(struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)2102 static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start,
2103 ext4_lblk_t end)
2104 {
2105 struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
2106 struct extent_status *es;
2107 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2108 struct rb_node *node;
2109 ext4_lblk_t first_lclu, last_lclu;
2110 unsigned long long last_counted_lclu;
2111 unsigned int n = 0;
2112
2113 /* guaranteed to be unequal to any ext4_lblk_t value */
2114 last_counted_lclu = ~0ULL;
2115
2116 es = __es_tree_search(&tree->root, start);
2117
2118 while (es && (es->es_lblk <= end)) {
2119 if (ext4_es_is_delonly(es)) {
2120 if (es->es_lblk <= start)
2121 first_lclu = EXT4_B2C(sbi, start);
2122 else
2123 first_lclu = EXT4_B2C(sbi, es->es_lblk);
2124
2125 if (ext4_es_end(es) >= end)
2126 last_lclu = EXT4_B2C(sbi, end);
2127 else
2128 last_lclu = EXT4_B2C(sbi, ext4_es_end(es));
2129
2130 if (first_lclu == last_counted_lclu)
2131 n += last_lclu - first_lclu;
2132 else
2133 n += last_lclu - first_lclu + 1;
2134 last_counted_lclu = last_lclu;
2135 }
2136 node = rb_next(&es->rb_node);
2137 if (!node)
2138 break;
2139 es = rb_entry(node, struct extent_status, rb_node);
2140 }
2141
2142 return n;
2143 }
2144
2145 /*
2146 * ext4_es_delayed_clu - count number of clusters containing blocks that
2147 * are both delayed and unwritten
2148 *
2149 * @inode - file containing block range
2150 * @lblk - logical block defining start of range
2151 * @len - number of blocks in range
2152 *
2153 * Locking for external use of __es_delayed_clu().
2154 */
ext4_es_delayed_clu(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)2155 unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk,
2156 ext4_lblk_t len)
2157 {
2158 struct ext4_inode_info *ei = EXT4_I(inode);
2159 ext4_lblk_t end;
2160 unsigned int n;
2161
2162 if (len == 0)
2163 return 0;
2164
2165 end = lblk + len - 1;
2166 WARN_ON(end < lblk);
2167
2168 read_lock(&ei->i_es_lock);
2169
2170 n = __es_delayed_clu(inode, lblk, end);
2171
2172 read_unlock(&ei->i_es_lock);
2173
2174 return n;
2175 }
2176
2177 /*
2178 * __revise_pending - makes, cancels, or leaves unchanged pending cluster
2179 * reservations for a specified block range depending
2180 * upon the presence or absence of delayed blocks
2181 * outside the range within clusters at the ends of the
2182 * range
2183 *
2184 * @inode - file containing the range
2185 * @lblk - logical block defining the start of range
2186 * @len - length of range in blocks
2187 *
2188 * Used after a newly allocated extent is added to the extents status tree.
2189 * Requires that the extents in the range have either written or unwritten
2190 * status. Must be called while holding i_es_lock.
2191 */
__revise_pending(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)2192 static void __revise_pending(struct inode *inode, ext4_lblk_t lblk,
2193 ext4_lblk_t len)
2194 {
2195 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2196 ext4_lblk_t end = lblk + len - 1;
2197 ext4_lblk_t first, last;
2198 bool f_del = false, l_del = false;
2199
2200 if (len == 0)
2201 return;
2202
2203 /*
2204 * Two cases - block range within single cluster and block range
2205 * spanning two or more clusters. Note that a cluster belonging
2206 * to a range starting and/or ending on a cluster boundary is treated
2207 * as if it does not contain a delayed extent. The new range may
2208 * have allocated space for previously delayed blocks out to the
2209 * cluster boundary, requiring that any pre-existing pending
2210 * reservation be canceled. Because this code only looks at blocks
2211 * outside the range, it should revise pending reservations
2212 * correctly even if the extent represented by the range can't be
2213 * inserted in the extents status tree due to ENOSPC.
2214 */
2215
2216 if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) {
2217 first = EXT4_LBLK_CMASK(sbi, lblk);
2218 if (first != lblk)
2219 f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2220 first, lblk - 1);
2221 if (f_del) {
2222 __insert_pending(inode, first);
2223 } else {
2224 last = EXT4_LBLK_CMASK(sbi, end) +
2225 sbi->s_cluster_ratio - 1;
2226 if (last != end)
2227 l_del = __es_scan_range(inode,
2228 &ext4_es_is_delonly,
2229 end + 1, last);
2230 if (l_del)
2231 __insert_pending(inode, last);
2232 else
2233 __remove_pending(inode, last);
2234 }
2235 } else {
2236 first = EXT4_LBLK_CMASK(sbi, lblk);
2237 if (first != lblk)
2238 f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2239 first, lblk - 1);
2240 if (f_del)
2241 __insert_pending(inode, first);
2242 else
2243 __remove_pending(inode, first);
2244
2245 last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1;
2246 if (last != end)
2247 l_del = __es_scan_range(inode, &ext4_es_is_delonly,
2248 end + 1, last);
2249 if (l_del)
2250 __insert_pending(inode, last);
2251 else
2252 __remove_pending(inode, last);
2253 }
2254 }
2255