1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  fs/ext4/extents_status.c
4  *
5  * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
6  * Modified by
7  *	Allison Henderson <achender@linux.vnet.ibm.com>
8  *	Hugh Dickins <hughd@google.com>
9  *	Zheng Liu <wenqing.lz@taobao.com>
10  *
11  * Ext4 extents status tree core functions.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include "ext4.h"
17 
18 #include <trace/events/ext4.h>
19 
20 /*
21  * According to previous discussion in Ext4 Developer Workshop, we
22  * will introduce a new structure called io tree to track all extent
23  * status in order to solve some problems that we have met
24  * (e.g. Reservation space warning), and provide extent-level locking.
25  * Delay extent tree is the first step to achieve this goal.  It is
26  * original built by Yongqiang Yang.  At that time it is called delay
27  * extent tree, whose goal is only track delayed extents in memory to
28  * simplify the implementation of fiemap and bigalloc, and introduce
29  * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
30  * delay extent tree at the first commit.  But for better understand
31  * what it does, it has been rename to extent status tree.
32  *
33  * Step1:
34  * Currently the first step has been done.  All delayed extents are
35  * tracked in the tree.  It maintains the delayed extent when a delayed
36  * allocation is issued, and the delayed extent is written out or
37  * invalidated.  Therefore the implementation of fiemap and bigalloc
38  * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
39  *
40  * The following comment describes the implemenmtation of extent
41  * status tree and future works.
42  *
43  * Step2:
44  * In this step all extent status are tracked by extent status tree.
45  * Thus, we can first try to lookup a block mapping in this tree before
46  * finding it in extent tree.  Hence, single extent cache can be removed
47  * because extent status tree can do a better job.  Extents in status
48  * tree are loaded on-demand.  Therefore, the extent status tree may not
49  * contain all of the extents in a file.  Meanwhile we define a shrinker
50  * to reclaim memory from extent status tree because fragmented extent
51  * tree will make status tree cost too much memory.  written/unwritten/-
52  * hole extents in the tree will be reclaimed by this shrinker when we
53  * are under high memory pressure.  Delayed extents will not be
54  * reclimed because fiemap, bigalloc, and seek_data/hole need it.
55  */
56 
57 /*
58  * Extent status tree implementation for ext4.
59  *
60  *
61  * ==========================================================================
62  * Extent status tree tracks all extent status.
63  *
64  * 1. Why we need to implement extent status tree?
65  *
66  * Without extent status tree, ext4 identifies a delayed extent by looking
67  * up page cache, this has several deficiencies - complicated, buggy,
68  * and inefficient code.
69  *
70  * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
71  * block or a range of blocks are belonged to a delayed extent.
72  *
73  * Let us have a look at how they do without extent status tree.
74  *   --	FIEMAP
75  *	FIEMAP looks up page cache to identify delayed allocations from holes.
76  *
77  *   --	SEEK_HOLE/DATA
78  *	SEEK_HOLE/DATA has the same problem as FIEMAP.
79  *
80  *   --	bigalloc
81  *	bigalloc looks up page cache to figure out if a block is
82  *	already under delayed allocation or not to determine whether
83  *	quota reserving is needed for the cluster.
84  *
85  *   --	writeout
86  *	Writeout looks up whole page cache to see if a buffer is
87  *	mapped, If there are not very many delayed buffers, then it is
88  *	time consuming.
89  *
90  * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
91  * bigalloc and writeout can figure out if a block or a range of
92  * blocks is under delayed allocation(belonged to a delayed extent) or
93  * not by searching the extent tree.
94  *
95  *
96  * ==========================================================================
97  * 2. Ext4 extent status tree impelmentation
98  *
99  *   --	extent
100  *	A extent is a range of blocks which are contiguous logically and
101  *	physically.  Unlike extent in extent tree, this extent in ext4 is
102  *	a in-memory struct, there is no corresponding on-disk data.  There
103  *	is no limit on length of extent, so an extent can contain as many
104  *	blocks as they are contiguous logically and physically.
105  *
106  *   --	extent status tree
107  *	Every inode has an extent status tree and all allocation blocks
108  *	are added to the tree with different status.  The extent in the
109  *	tree are ordered by logical block no.
110  *
111  *   --	operations on a extent status tree
112  *	There are three important operations on a delayed extent tree: find
113  *	next extent, adding a extent(a range of blocks) and removing a extent.
114  *
115  *   --	race on a extent status tree
116  *	Extent status tree is protected by inode->i_es_lock.
117  *
118  *   --	memory consumption
119  *      Fragmented extent tree will make extent status tree cost too much
120  *      memory.  Hence, we will reclaim written/unwritten/hole extents from
121  *      the tree under a heavy memory pressure.
122  *
123  *
124  * ==========================================================================
125  * 3. Performance analysis
126  *
127  *   --	overhead
128  *	1. There is a cache extent for write access, so if writes are
129  *	not very random, adding space operaions are in O(1) time.
130  *
131  *   --	gain
132  *	2. Code is much simpler, more readable, more maintainable and
133  *	more efficient.
134  *
135  *
136  * ==========================================================================
137  * 4. TODO list
138  *
139  *   -- Refactor delayed space reservation
140  *
141  *   -- Extent-level locking
142  */
143 
144 static struct kmem_cache *ext4_es_cachep;
145 static struct kmem_cache *ext4_pending_cachep;
146 
147 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
148 			      struct extent_status *prealloc);
149 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
150 			      ext4_lblk_t end, int *reserved,
151 			      struct extent_status *prealloc);
152 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
153 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
154 		       struct ext4_inode_info *locked_ei);
155 static void __revise_pending(struct inode *inode, ext4_lblk_t lblk,
156 			     ext4_lblk_t len);
157 
ext4_init_es(void)158 int __init ext4_init_es(void)
159 {
160 	ext4_es_cachep = KMEM_CACHE(extent_status, SLAB_RECLAIM_ACCOUNT);
161 	if (ext4_es_cachep == NULL)
162 		return -ENOMEM;
163 	return 0;
164 }
165 
ext4_exit_es(void)166 void ext4_exit_es(void)
167 {
168 	kmem_cache_destroy(ext4_es_cachep);
169 }
170 
ext4_es_init_tree(struct ext4_es_tree * tree)171 void ext4_es_init_tree(struct ext4_es_tree *tree)
172 {
173 	tree->root = RB_ROOT;
174 	tree->cache_es = NULL;
175 }
176 
177 #ifdef ES_DEBUG__
ext4_es_print_tree(struct inode * inode)178 static void ext4_es_print_tree(struct inode *inode)
179 {
180 	struct ext4_es_tree *tree;
181 	struct rb_node *node;
182 
183 	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
184 	tree = &EXT4_I(inode)->i_es_tree;
185 	node = rb_first(&tree->root);
186 	while (node) {
187 		struct extent_status *es;
188 		es = rb_entry(node, struct extent_status, rb_node);
189 		printk(KERN_DEBUG " [%u/%u) %llu %x",
190 		       es->es_lblk, es->es_len,
191 		       ext4_es_pblock(es), ext4_es_status(es));
192 		node = rb_next(node);
193 	}
194 	printk(KERN_DEBUG "\n");
195 }
196 #else
197 #define ext4_es_print_tree(inode)
198 #endif
199 
ext4_es_end(struct extent_status * es)200 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
201 {
202 	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
203 	return es->es_lblk + es->es_len - 1;
204 }
205 
206 /*
207  * search through the tree for an delayed extent with a given offset.  If
208  * it can't be found, try to find next extent.
209  */
__es_tree_search(struct rb_root * root,ext4_lblk_t lblk)210 static struct extent_status *__es_tree_search(struct rb_root *root,
211 					      ext4_lblk_t lblk)
212 {
213 	struct rb_node *node = root->rb_node;
214 	struct extent_status *es = NULL;
215 
216 	while (node) {
217 		es = rb_entry(node, struct extent_status, rb_node);
218 		if (lblk < es->es_lblk)
219 			node = node->rb_left;
220 		else if (lblk > ext4_es_end(es))
221 			node = node->rb_right;
222 		else
223 			return es;
224 	}
225 
226 	if (es && lblk < es->es_lblk)
227 		return es;
228 
229 	if (es && lblk > ext4_es_end(es)) {
230 		node = rb_next(&es->rb_node);
231 		return node ? rb_entry(node, struct extent_status, rb_node) :
232 			      NULL;
233 	}
234 
235 	return NULL;
236 }
237 
238 /*
239  * ext4_es_find_extent_range - find extent with specified status within block
240  *                             range or next extent following block range in
241  *                             extents status tree
242  *
243  * @inode - file containing the range
244  * @matching_fn - pointer to function that matches extents with desired status
245  * @lblk - logical block defining start of range
246  * @end - logical block defining end of range
247  * @es - extent found, if any
248  *
249  * Find the first extent within the block range specified by @lblk and @end
250  * in the extents status tree that satisfies @matching_fn.  If a match
251  * is found, it's returned in @es.  If not, and a matching extent is found
252  * beyond the block range, it's returned in @es.  If no match is found, an
253  * extent is returned in @es whose es_lblk, es_len, and es_pblk components
254  * are 0.
255  */
__es_find_extent_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end,struct extent_status * es)256 static void __es_find_extent_range(struct inode *inode,
257 				   int (*matching_fn)(struct extent_status *es),
258 				   ext4_lblk_t lblk, ext4_lblk_t end,
259 				   struct extent_status *es)
260 {
261 	struct ext4_es_tree *tree = NULL;
262 	struct extent_status *es1 = NULL;
263 	struct rb_node *node;
264 
265 	WARN_ON(es == NULL);
266 	WARN_ON(end < lblk);
267 
268 	tree = &EXT4_I(inode)->i_es_tree;
269 
270 	/* see if the extent has been cached */
271 	es->es_lblk = es->es_len = es->es_pblk = 0;
272 	es1 = READ_ONCE(tree->cache_es);
273 	if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
274 		es_debug("%u cached by [%u/%u) %llu %x\n",
275 			 lblk, es1->es_lblk, es1->es_len,
276 			 ext4_es_pblock(es1), ext4_es_status(es1));
277 		goto out;
278 	}
279 
280 	es1 = __es_tree_search(&tree->root, lblk);
281 
282 out:
283 	if (es1 && !matching_fn(es1)) {
284 		while ((node = rb_next(&es1->rb_node)) != NULL) {
285 			es1 = rb_entry(node, struct extent_status, rb_node);
286 			if (es1->es_lblk > end) {
287 				es1 = NULL;
288 				break;
289 			}
290 			if (matching_fn(es1))
291 				break;
292 		}
293 	}
294 
295 	if (es1 && matching_fn(es1)) {
296 		WRITE_ONCE(tree->cache_es, es1);
297 		es->es_lblk = es1->es_lblk;
298 		es->es_len = es1->es_len;
299 		es->es_pblk = es1->es_pblk;
300 	}
301 
302 }
303 
304 /*
305  * Locking for __es_find_extent_range() for external use
306  */
ext4_es_find_extent_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end,struct extent_status * es)307 void ext4_es_find_extent_range(struct inode *inode,
308 			       int (*matching_fn)(struct extent_status *es),
309 			       ext4_lblk_t lblk, ext4_lblk_t end,
310 			       struct extent_status *es)
311 {
312 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
313 		return;
314 
315 	trace_ext4_es_find_extent_range_enter(inode, lblk);
316 
317 	read_lock(&EXT4_I(inode)->i_es_lock);
318 	__es_find_extent_range(inode, matching_fn, lblk, end, es);
319 	read_unlock(&EXT4_I(inode)->i_es_lock);
320 
321 	trace_ext4_es_find_extent_range_exit(inode, es);
322 }
323 
324 /*
325  * __es_scan_range - search block range for block with specified status
326  *                   in extents status tree
327  *
328  * @inode - file containing the range
329  * @matching_fn - pointer to function that matches extents with desired status
330  * @lblk - logical block defining start of range
331  * @end - logical block defining end of range
332  *
333  * Returns true if at least one block in the specified block range satisfies
334  * the criterion specified by @matching_fn, and false if not.  If at least
335  * one extent has the specified status, then there is at least one block
336  * in the cluster with that status.  Should only be called by code that has
337  * taken i_es_lock.
338  */
__es_scan_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t start,ext4_lblk_t end)339 static bool __es_scan_range(struct inode *inode,
340 			    int (*matching_fn)(struct extent_status *es),
341 			    ext4_lblk_t start, ext4_lblk_t end)
342 {
343 	struct extent_status es;
344 
345 	__es_find_extent_range(inode, matching_fn, start, end, &es);
346 	if (es.es_len == 0)
347 		return false;   /* no matching extent in the tree */
348 	else if (es.es_lblk <= start &&
349 		 start < es.es_lblk + es.es_len)
350 		return true;
351 	else if (start <= es.es_lblk && es.es_lblk <= end)
352 		return true;
353 	else
354 		return false;
355 }
356 /*
357  * Locking for __es_scan_range() for external use
358  */
ext4_es_scan_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end)359 bool ext4_es_scan_range(struct inode *inode,
360 			int (*matching_fn)(struct extent_status *es),
361 			ext4_lblk_t lblk, ext4_lblk_t end)
362 {
363 	bool ret;
364 
365 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
366 		return false;
367 
368 	read_lock(&EXT4_I(inode)->i_es_lock);
369 	ret = __es_scan_range(inode, matching_fn, lblk, end);
370 	read_unlock(&EXT4_I(inode)->i_es_lock);
371 
372 	return ret;
373 }
374 
375 /*
376  * __es_scan_clu - search cluster for block with specified status in
377  *                 extents status tree
378  *
379  * @inode - file containing the cluster
380  * @matching_fn - pointer to function that matches extents with desired status
381  * @lblk - logical block in cluster to be searched
382  *
383  * Returns true if at least one extent in the cluster containing @lblk
384  * satisfies the criterion specified by @matching_fn, and false if not.  If at
385  * least one extent has the specified status, then there is at least one block
386  * in the cluster with that status.  Should only be called by code that has
387  * taken i_es_lock.
388  */
__es_scan_clu(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk)389 static bool __es_scan_clu(struct inode *inode,
390 			  int (*matching_fn)(struct extent_status *es),
391 			  ext4_lblk_t lblk)
392 {
393 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
394 	ext4_lblk_t lblk_start, lblk_end;
395 
396 	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
397 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
398 
399 	return __es_scan_range(inode, matching_fn, lblk_start, lblk_end);
400 }
401 
402 /*
403  * Locking for __es_scan_clu() for external use
404  */
ext4_es_scan_clu(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk)405 bool ext4_es_scan_clu(struct inode *inode,
406 		      int (*matching_fn)(struct extent_status *es),
407 		      ext4_lblk_t lblk)
408 {
409 	bool ret;
410 
411 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
412 		return false;
413 
414 	read_lock(&EXT4_I(inode)->i_es_lock);
415 	ret = __es_scan_clu(inode, matching_fn, lblk);
416 	read_unlock(&EXT4_I(inode)->i_es_lock);
417 
418 	return ret;
419 }
420 
ext4_es_list_add(struct inode * inode)421 static void ext4_es_list_add(struct inode *inode)
422 {
423 	struct ext4_inode_info *ei = EXT4_I(inode);
424 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
425 
426 	if (!list_empty(&ei->i_es_list))
427 		return;
428 
429 	spin_lock(&sbi->s_es_lock);
430 	if (list_empty(&ei->i_es_list)) {
431 		list_add_tail(&ei->i_es_list, &sbi->s_es_list);
432 		sbi->s_es_nr_inode++;
433 	}
434 	spin_unlock(&sbi->s_es_lock);
435 }
436 
ext4_es_list_del(struct inode * inode)437 static void ext4_es_list_del(struct inode *inode)
438 {
439 	struct ext4_inode_info *ei = EXT4_I(inode);
440 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
441 
442 	spin_lock(&sbi->s_es_lock);
443 	if (!list_empty(&ei->i_es_list)) {
444 		list_del_init(&ei->i_es_list);
445 		sbi->s_es_nr_inode--;
446 		WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
447 	}
448 	spin_unlock(&sbi->s_es_lock);
449 }
450 
451 /*
452  * Returns true if we cannot fail to allocate memory for this extent_status
453  * entry and cannot reclaim it until its status changes.
454  */
ext4_es_must_keep(struct extent_status * es)455 static inline bool ext4_es_must_keep(struct extent_status *es)
456 {
457 	/* fiemap, bigalloc, and seek_data/hole need to use it. */
458 	if (ext4_es_is_delayed(es))
459 		return true;
460 
461 	return false;
462 }
463 
__es_alloc_extent(bool nofail)464 static inline struct extent_status *__es_alloc_extent(bool nofail)
465 {
466 	if (!nofail)
467 		return kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
468 
469 	return kmem_cache_zalloc(ext4_es_cachep, GFP_KERNEL | __GFP_NOFAIL);
470 }
471 
ext4_es_init_extent(struct inode * inode,struct extent_status * es,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk)472 static void ext4_es_init_extent(struct inode *inode, struct extent_status *es,
473 		ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk)
474 {
475 	es->es_lblk = lblk;
476 	es->es_len = len;
477 	es->es_pblk = pblk;
478 
479 	/* We never try to reclaim a must kept extent, so we don't count it. */
480 	if (!ext4_es_must_keep(es)) {
481 		if (!EXT4_I(inode)->i_es_shk_nr++)
482 			ext4_es_list_add(inode);
483 		percpu_counter_inc(&EXT4_SB(inode->i_sb)->
484 					s_es_stats.es_stats_shk_cnt);
485 	}
486 
487 	EXT4_I(inode)->i_es_all_nr++;
488 	percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
489 }
490 
__es_free_extent(struct extent_status * es)491 static inline void __es_free_extent(struct extent_status *es)
492 {
493 	kmem_cache_free(ext4_es_cachep, es);
494 }
495 
ext4_es_free_extent(struct inode * inode,struct extent_status * es)496 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
497 {
498 	EXT4_I(inode)->i_es_all_nr--;
499 	percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
500 
501 	/* Decrease the shrink counter when we can reclaim the extent. */
502 	if (!ext4_es_must_keep(es)) {
503 		BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
504 		if (!--EXT4_I(inode)->i_es_shk_nr)
505 			ext4_es_list_del(inode);
506 		percpu_counter_dec(&EXT4_SB(inode->i_sb)->
507 					s_es_stats.es_stats_shk_cnt);
508 	}
509 
510 	__es_free_extent(es);
511 }
512 
513 /*
514  * Check whether or not two extents can be merged
515  * Condition:
516  *  - logical block number is contiguous
517  *  - physical block number is contiguous
518  *  - status is equal
519  */
ext4_es_can_be_merged(struct extent_status * es1,struct extent_status * es2)520 static int ext4_es_can_be_merged(struct extent_status *es1,
521 				 struct extent_status *es2)
522 {
523 	if (ext4_es_type(es1) != ext4_es_type(es2))
524 		return 0;
525 
526 	if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
527 		pr_warn("ES assertion failed when merging extents. "
528 			"The sum of lengths of es1 (%d) and es2 (%d) "
529 			"is bigger than allowed file size (%d)\n",
530 			es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
531 		WARN_ON(1);
532 		return 0;
533 	}
534 
535 	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
536 		return 0;
537 
538 	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
539 	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
540 		return 1;
541 
542 	if (ext4_es_is_hole(es1))
543 		return 1;
544 
545 	/* we need to check delayed extent is without unwritten status */
546 	if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
547 		return 1;
548 
549 	return 0;
550 }
551 
552 static struct extent_status *
ext4_es_try_to_merge_left(struct inode * inode,struct extent_status * es)553 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
554 {
555 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
556 	struct extent_status *es1;
557 	struct rb_node *node;
558 
559 	node = rb_prev(&es->rb_node);
560 	if (!node)
561 		return es;
562 
563 	es1 = rb_entry(node, struct extent_status, rb_node);
564 	if (ext4_es_can_be_merged(es1, es)) {
565 		es1->es_len += es->es_len;
566 		if (ext4_es_is_referenced(es))
567 			ext4_es_set_referenced(es1);
568 		rb_erase(&es->rb_node, &tree->root);
569 		ext4_es_free_extent(inode, es);
570 		es = es1;
571 	}
572 
573 	return es;
574 }
575 
576 static struct extent_status *
ext4_es_try_to_merge_right(struct inode * inode,struct extent_status * es)577 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
578 {
579 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
580 	struct extent_status *es1;
581 	struct rb_node *node;
582 
583 	node = rb_next(&es->rb_node);
584 	if (!node)
585 		return es;
586 
587 	es1 = rb_entry(node, struct extent_status, rb_node);
588 	if (ext4_es_can_be_merged(es, es1)) {
589 		es->es_len += es1->es_len;
590 		if (ext4_es_is_referenced(es1))
591 			ext4_es_set_referenced(es);
592 		rb_erase(node, &tree->root);
593 		ext4_es_free_extent(inode, es1);
594 	}
595 
596 	return es;
597 }
598 
599 #ifdef ES_AGGRESSIVE_TEST
600 #include "ext4_extents.h"	/* Needed when ES_AGGRESSIVE_TEST is defined */
601 
ext4_es_insert_extent_ext_check(struct inode * inode,struct extent_status * es)602 static void ext4_es_insert_extent_ext_check(struct inode *inode,
603 					    struct extent_status *es)
604 {
605 	struct ext4_ext_path *path = NULL;
606 	struct ext4_extent *ex;
607 	ext4_lblk_t ee_block;
608 	ext4_fsblk_t ee_start;
609 	unsigned short ee_len;
610 	int depth, ee_status, es_status;
611 
612 	path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
613 	if (IS_ERR(path))
614 		return;
615 
616 	depth = ext_depth(inode);
617 	ex = path[depth].p_ext;
618 
619 	if (ex) {
620 
621 		ee_block = le32_to_cpu(ex->ee_block);
622 		ee_start = ext4_ext_pblock(ex);
623 		ee_len = ext4_ext_get_actual_len(ex);
624 
625 		ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
626 		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
627 
628 		/*
629 		 * Make sure ex and es are not overlap when we try to insert
630 		 * a delayed/hole extent.
631 		 */
632 		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
633 			if (in_range(es->es_lblk, ee_block, ee_len)) {
634 				pr_warn("ES insert assertion failed for "
635 					"inode: %lu we can find an extent "
636 					"at block [%d/%d/%llu/%c], but we "
637 					"want to add a delayed/hole extent "
638 					"[%d/%d/%llu/%x]\n",
639 					inode->i_ino, ee_block, ee_len,
640 					ee_start, ee_status ? 'u' : 'w',
641 					es->es_lblk, es->es_len,
642 					ext4_es_pblock(es), ext4_es_status(es));
643 			}
644 			goto out;
645 		}
646 
647 		/*
648 		 * We don't check ee_block == es->es_lblk, etc. because es
649 		 * might be a part of whole extent, vice versa.
650 		 */
651 		if (es->es_lblk < ee_block ||
652 		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
653 			pr_warn("ES insert assertion failed for inode: %lu "
654 				"ex_status [%d/%d/%llu/%c] != "
655 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
656 				ee_block, ee_len, ee_start,
657 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
658 				ext4_es_pblock(es), es_status ? 'u' : 'w');
659 			goto out;
660 		}
661 
662 		if (ee_status ^ es_status) {
663 			pr_warn("ES insert assertion failed for inode: %lu "
664 				"ex_status [%d/%d/%llu/%c] != "
665 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
666 				ee_block, ee_len, ee_start,
667 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
668 				ext4_es_pblock(es), es_status ? 'u' : 'w');
669 		}
670 	} else {
671 		/*
672 		 * We can't find an extent on disk.  So we need to make sure
673 		 * that we don't want to add an written/unwritten extent.
674 		 */
675 		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
676 			pr_warn("ES insert assertion failed for inode: %lu "
677 				"can't find an extent at block %d but we want "
678 				"to add a written/unwritten extent "
679 				"[%d/%d/%llu/%x]\n", inode->i_ino,
680 				es->es_lblk, es->es_lblk, es->es_len,
681 				ext4_es_pblock(es), ext4_es_status(es));
682 		}
683 	}
684 out:
685 	ext4_free_ext_path(path);
686 }
687 
ext4_es_insert_extent_ind_check(struct inode * inode,struct extent_status * es)688 static void ext4_es_insert_extent_ind_check(struct inode *inode,
689 					    struct extent_status *es)
690 {
691 	struct ext4_map_blocks map;
692 	int retval;
693 
694 	/*
695 	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
696 	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
697 	 * access direct/indirect tree from outside.  It is too dirty to define
698 	 * this function in indirect.c file.
699 	 */
700 
701 	map.m_lblk = es->es_lblk;
702 	map.m_len = es->es_len;
703 
704 	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
705 	if (retval > 0) {
706 		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
707 			/*
708 			 * We want to add a delayed/hole extent but this
709 			 * block has been allocated.
710 			 */
711 			pr_warn("ES insert assertion failed for inode: %lu "
712 				"We can find blocks but we want to add a "
713 				"delayed/hole extent [%d/%d/%llu/%x]\n",
714 				inode->i_ino, es->es_lblk, es->es_len,
715 				ext4_es_pblock(es), ext4_es_status(es));
716 			return;
717 		} else if (ext4_es_is_written(es)) {
718 			if (retval != es->es_len) {
719 				pr_warn("ES insert assertion failed for "
720 					"inode: %lu retval %d != es_len %d\n",
721 					inode->i_ino, retval, es->es_len);
722 				return;
723 			}
724 			if (map.m_pblk != ext4_es_pblock(es)) {
725 				pr_warn("ES insert assertion failed for "
726 					"inode: %lu m_pblk %llu != "
727 					"es_pblk %llu\n",
728 					inode->i_ino, map.m_pblk,
729 					ext4_es_pblock(es));
730 				return;
731 			}
732 		} else {
733 			/*
734 			 * We don't need to check unwritten extent because
735 			 * indirect-based file doesn't have it.
736 			 */
737 			BUG();
738 		}
739 	} else if (retval == 0) {
740 		if (ext4_es_is_written(es)) {
741 			pr_warn("ES insert assertion failed for inode: %lu "
742 				"We can't find the block but we want to add "
743 				"a written extent [%d/%d/%llu/%x]\n",
744 				inode->i_ino, es->es_lblk, es->es_len,
745 				ext4_es_pblock(es), ext4_es_status(es));
746 			return;
747 		}
748 	}
749 }
750 
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)751 static inline void ext4_es_insert_extent_check(struct inode *inode,
752 					       struct extent_status *es)
753 {
754 	/*
755 	 * We don't need to worry about the race condition because
756 	 * caller takes i_data_sem locking.
757 	 */
758 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
759 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
760 		ext4_es_insert_extent_ext_check(inode, es);
761 	else
762 		ext4_es_insert_extent_ind_check(inode, es);
763 }
764 #else
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)765 static inline void ext4_es_insert_extent_check(struct inode *inode,
766 					       struct extent_status *es)
767 {
768 }
769 #endif
770 
__es_insert_extent(struct inode * inode,struct extent_status * newes,struct extent_status * prealloc)771 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
772 			      struct extent_status *prealloc)
773 {
774 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
775 	struct rb_node **p = &tree->root.rb_node;
776 	struct rb_node *parent = NULL;
777 	struct extent_status *es;
778 
779 	while (*p) {
780 		parent = *p;
781 		es = rb_entry(parent, struct extent_status, rb_node);
782 
783 		if (newes->es_lblk < es->es_lblk) {
784 			if (ext4_es_can_be_merged(newes, es)) {
785 				/*
786 				 * Here we can modify es_lblk directly
787 				 * because it isn't overlapped.
788 				 */
789 				es->es_lblk = newes->es_lblk;
790 				es->es_len += newes->es_len;
791 				if (ext4_es_is_written(es) ||
792 				    ext4_es_is_unwritten(es))
793 					ext4_es_store_pblock(es,
794 							     newes->es_pblk);
795 				es = ext4_es_try_to_merge_left(inode, es);
796 				goto out;
797 			}
798 			p = &(*p)->rb_left;
799 		} else if (newes->es_lblk > ext4_es_end(es)) {
800 			if (ext4_es_can_be_merged(es, newes)) {
801 				es->es_len += newes->es_len;
802 				es = ext4_es_try_to_merge_right(inode, es);
803 				goto out;
804 			}
805 			p = &(*p)->rb_right;
806 		} else {
807 			BUG();
808 			return -EINVAL;
809 		}
810 	}
811 
812 	if (prealloc)
813 		es = prealloc;
814 	else
815 		es = __es_alloc_extent(false);
816 	if (!es)
817 		return -ENOMEM;
818 	ext4_es_init_extent(inode, es, newes->es_lblk, newes->es_len,
819 			    newes->es_pblk);
820 
821 	rb_link_node(&es->rb_node, parent, p);
822 	rb_insert_color(&es->rb_node, &tree->root);
823 
824 out:
825 	tree->cache_es = es;
826 	return 0;
827 }
828 
829 /*
830  * ext4_es_insert_extent() adds information to an inode's extent
831  * status tree.
832  */
ext4_es_insert_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status)833 void ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
834 			   ext4_lblk_t len, ext4_fsblk_t pblk,
835 			   unsigned int status)
836 {
837 	struct extent_status newes;
838 	ext4_lblk_t end = lblk + len - 1;
839 	int err1 = 0;
840 	int err2 = 0;
841 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
842 	struct extent_status *es1 = NULL;
843 	struct extent_status *es2 = NULL;
844 
845 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
846 		return;
847 
848 	es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
849 		 lblk, len, pblk, status, inode->i_ino);
850 
851 	if (!len)
852 		return;
853 
854 	BUG_ON(end < lblk);
855 
856 	if ((status & EXTENT_STATUS_DELAYED) &&
857 	    (status & EXTENT_STATUS_WRITTEN)) {
858 		ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
859 				" delayed and written which can potentially "
860 				" cause data loss.", lblk, len);
861 		WARN_ON(1);
862 	}
863 
864 	newes.es_lblk = lblk;
865 	newes.es_len = len;
866 	ext4_es_store_pblock_status(&newes, pblk, status);
867 	trace_ext4_es_insert_extent(inode, &newes);
868 
869 	ext4_es_insert_extent_check(inode, &newes);
870 
871 retry:
872 	if (err1 && !es1)
873 		es1 = __es_alloc_extent(true);
874 	if ((err1 || err2) && !es2)
875 		es2 = __es_alloc_extent(true);
876 	write_lock(&EXT4_I(inode)->i_es_lock);
877 
878 	err1 = __es_remove_extent(inode, lblk, end, NULL, es1);
879 	if (err1 != 0)
880 		goto error;
881 	/* Free preallocated extent if it didn't get used. */
882 	if (es1) {
883 		if (!es1->es_len)
884 			__es_free_extent(es1);
885 		es1 = NULL;
886 	}
887 
888 	err2 = __es_insert_extent(inode, &newes, es2);
889 	if (err2 == -ENOMEM && !ext4_es_must_keep(&newes))
890 		err2 = 0;
891 	if (err2 != 0)
892 		goto error;
893 	/* Free preallocated extent if it didn't get used. */
894 	if (es2) {
895 		if (!es2->es_len)
896 			__es_free_extent(es2);
897 		es2 = NULL;
898 	}
899 
900 	if (sbi->s_cluster_ratio > 1 && test_opt(inode->i_sb, DELALLOC) &&
901 	    (status & EXTENT_STATUS_WRITTEN ||
902 	     status & EXTENT_STATUS_UNWRITTEN))
903 		__revise_pending(inode, lblk, len);
904 error:
905 	write_unlock(&EXT4_I(inode)->i_es_lock);
906 	if (err1 || err2)
907 		goto retry;
908 
909 	ext4_es_print_tree(inode);
910 	return;
911 }
912 
913 /*
914  * ext4_es_cache_extent() inserts information into the extent status
915  * tree if and only if there isn't information about the range in
916  * question already.
917  */
ext4_es_cache_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status)918 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
919 			  ext4_lblk_t len, ext4_fsblk_t pblk,
920 			  unsigned int status)
921 {
922 	struct extent_status *es;
923 	struct extent_status newes;
924 	ext4_lblk_t end = lblk + len - 1;
925 
926 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
927 		return;
928 
929 	newes.es_lblk = lblk;
930 	newes.es_len = len;
931 	ext4_es_store_pblock_status(&newes, pblk, status);
932 	trace_ext4_es_cache_extent(inode, &newes);
933 
934 	if (!len)
935 		return;
936 
937 	BUG_ON(end < lblk);
938 
939 	write_lock(&EXT4_I(inode)->i_es_lock);
940 
941 	es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
942 	if (!es || es->es_lblk > end)
943 		__es_insert_extent(inode, &newes, NULL);
944 	write_unlock(&EXT4_I(inode)->i_es_lock);
945 }
946 
947 /*
948  * ext4_es_lookup_extent() looks up an extent in extent status tree.
949  *
950  * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
951  *
952  * Return: 1 on found, 0 on not
953  */
ext4_es_lookup_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t * next_lblk,struct extent_status * es)954 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
955 			  ext4_lblk_t *next_lblk,
956 			  struct extent_status *es)
957 {
958 	struct ext4_es_tree *tree;
959 	struct ext4_es_stats *stats;
960 	struct extent_status *es1 = NULL;
961 	struct rb_node *node;
962 	int found = 0;
963 
964 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
965 		return 0;
966 
967 	trace_ext4_es_lookup_extent_enter(inode, lblk);
968 	es_debug("lookup extent in block %u\n", lblk);
969 
970 	tree = &EXT4_I(inode)->i_es_tree;
971 	read_lock(&EXT4_I(inode)->i_es_lock);
972 
973 	/* find extent in cache firstly */
974 	es->es_lblk = es->es_len = es->es_pblk = 0;
975 	es1 = READ_ONCE(tree->cache_es);
976 	if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
977 		es_debug("%u cached by [%u/%u)\n",
978 			 lblk, es1->es_lblk, es1->es_len);
979 		found = 1;
980 		goto out;
981 	}
982 
983 	node = tree->root.rb_node;
984 	while (node) {
985 		es1 = rb_entry(node, struct extent_status, rb_node);
986 		if (lblk < es1->es_lblk)
987 			node = node->rb_left;
988 		else if (lblk > ext4_es_end(es1))
989 			node = node->rb_right;
990 		else {
991 			found = 1;
992 			break;
993 		}
994 	}
995 
996 out:
997 	stats = &EXT4_SB(inode->i_sb)->s_es_stats;
998 	if (found) {
999 		BUG_ON(!es1);
1000 		es->es_lblk = es1->es_lblk;
1001 		es->es_len = es1->es_len;
1002 		es->es_pblk = es1->es_pblk;
1003 		if (!ext4_es_is_referenced(es1))
1004 			ext4_es_set_referenced(es1);
1005 		percpu_counter_inc(&stats->es_stats_cache_hits);
1006 		if (next_lblk) {
1007 			node = rb_next(&es1->rb_node);
1008 			if (node) {
1009 				es1 = rb_entry(node, struct extent_status,
1010 					       rb_node);
1011 				*next_lblk = es1->es_lblk;
1012 			} else
1013 				*next_lblk = 0;
1014 		}
1015 	} else {
1016 		percpu_counter_inc(&stats->es_stats_cache_misses);
1017 	}
1018 
1019 	read_unlock(&EXT4_I(inode)->i_es_lock);
1020 
1021 	trace_ext4_es_lookup_extent_exit(inode, es, found);
1022 	return found;
1023 }
1024 
1025 struct rsvd_count {
1026 	int ndelonly;
1027 	bool first_do_lblk_found;
1028 	ext4_lblk_t first_do_lblk;
1029 	ext4_lblk_t last_do_lblk;
1030 	struct extent_status *left_es;
1031 	bool partial;
1032 	ext4_lblk_t lclu;
1033 };
1034 
1035 /*
1036  * init_rsvd - initialize reserved count data before removing block range
1037  *	       in file from extent status tree
1038  *
1039  * @inode - file containing range
1040  * @lblk - first block in range
1041  * @es - pointer to first extent in range
1042  * @rc - pointer to reserved count data
1043  *
1044  * Assumes es is not NULL
1045  */
init_rsvd(struct inode * inode,ext4_lblk_t lblk,struct extent_status * es,struct rsvd_count * rc)1046 static void init_rsvd(struct inode *inode, ext4_lblk_t lblk,
1047 		      struct extent_status *es, struct rsvd_count *rc)
1048 {
1049 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1050 	struct rb_node *node;
1051 
1052 	rc->ndelonly = 0;
1053 
1054 	/*
1055 	 * for bigalloc, note the first delonly block in the range has not
1056 	 * been found, record the extent containing the block to the left of
1057 	 * the region to be removed, if any, and note that there's no partial
1058 	 * cluster to track
1059 	 */
1060 	if (sbi->s_cluster_ratio > 1) {
1061 		rc->first_do_lblk_found = false;
1062 		if (lblk > es->es_lblk) {
1063 			rc->left_es = es;
1064 		} else {
1065 			node = rb_prev(&es->rb_node);
1066 			rc->left_es = node ? rb_entry(node,
1067 						      struct extent_status,
1068 						      rb_node) : NULL;
1069 		}
1070 		rc->partial = false;
1071 	}
1072 }
1073 
1074 /*
1075  * count_rsvd - count the clusters containing delayed and not unwritten
1076  *		(delonly) blocks in a range within an extent and add to
1077  *	        the running tally in rsvd_count
1078  *
1079  * @inode - file containing extent
1080  * @lblk - first block in range
1081  * @len - length of range in blocks
1082  * @es - pointer to extent containing clusters to be counted
1083  * @rc - pointer to reserved count data
1084  *
1085  * Tracks partial clusters found at the beginning and end of extents so
1086  * they aren't overcounted when they span adjacent extents
1087  */
count_rsvd(struct inode * inode,ext4_lblk_t lblk,long len,struct extent_status * es,struct rsvd_count * rc)1088 static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len,
1089 		       struct extent_status *es, struct rsvd_count *rc)
1090 {
1091 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1092 	ext4_lblk_t i, end, nclu;
1093 
1094 	if (!ext4_es_is_delonly(es))
1095 		return;
1096 
1097 	WARN_ON(len <= 0);
1098 
1099 	if (sbi->s_cluster_ratio == 1) {
1100 		rc->ndelonly += (int) len;
1101 		return;
1102 	}
1103 
1104 	/* bigalloc */
1105 
1106 	i = (lblk < es->es_lblk) ? es->es_lblk : lblk;
1107 	end = lblk + (ext4_lblk_t) len - 1;
1108 	end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end;
1109 
1110 	/* record the first block of the first delonly extent seen */
1111 	if (!rc->first_do_lblk_found) {
1112 		rc->first_do_lblk = i;
1113 		rc->first_do_lblk_found = true;
1114 	}
1115 
1116 	/* update the last lblk in the region seen so far */
1117 	rc->last_do_lblk = end;
1118 
1119 	/*
1120 	 * if we're tracking a partial cluster and the current extent
1121 	 * doesn't start with it, count it and stop tracking
1122 	 */
1123 	if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) {
1124 		rc->ndelonly++;
1125 		rc->partial = false;
1126 	}
1127 
1128 	/*
1129 	 * if the first cluster doesn't start on a cluster boundary but
1130 	 * ends on one, count it
1131 	 */
1132 	if (EXT4_LBLK_COFF(sbi, i) != 0) {
1133 		if (end >= EXT4_LBLK_CFILL(sbi, i)) {
1134 			rc->ndelonly++;
1135 			rc->partial = false;
1136 			i = EXT4_LBLK_CFILL(sbi, i) + 1;
1137 		}
1138 	}
1139 
1140 	/*
1141 	 * if the current cluster starts on a cluster boundary, count the
1142 	 * number of whole delonly clusters in the extent
1143 	 */
1144 	if ((i + sbi->s_cluster_ratio - 1) <= end) {
1145 		nclu = (end - i + 1) >> sbi->s_cluster_bits;
1146 		rc->ndelonly += nclu;
1147 		i += nclu << sbi->s_cluster_bits;
1148 	}
1149 
1150 	/*
1151 	 * start tracking a partial cluster if there's a partial at the end
1152 	 * of the current extent and we're not already tracking one
1153 	 */
1154 	if (!rc->partial && i <= end) {
1155 		rc->partial = true;
1156 		rc->lclu = EXT4_B2C(sbi, i);
1157 	}
1158 }
1159 
1160 /*
1161  * __pr_tree_search - search for a pending cluster reservation
1162  *
1163  * @root - root of pending reservation tree
1164  * @lclu - logical cluster to search for
1165  *
1166  * Returns the pending reservation for the cluster identified by @lclu
1167  * if found.  If not, returns a reservation for the next cluster if any,
1168  * and if not, returns NULL.
1169  */
__pr_tree_search(struct rb_root * root,ext4_lblk_t lclu)1170 static struct pending_reservation *__pr_tree_search(struct rb_root *root,
1171 						    ext4_lblk_t lclu)
1172 {
1173 	struct rb_node *node = root->rb_node;
1174 	struct pending_reservation *pr = NULL;
1175 
1176 	while (node) {
1177 		pr = rb_entry(node, struct pending_reservation, rb_node);
1178 		if (lclu < pr->lclu)
1179 			node = node->rb_left;
1180 		else if (lclu > pr->lclu)
1181 			node = node->rb_right;
1182 		else
1183 			return pr;
1184 	}
1185 	if (pr && lclu < pr->lclu)
1186 		return pr;
1187 	if (pr && lclu > pr->lclu) {
1188 		node = rb_next(&pr->rb_node);
1189 		return node ? rb_entry(node, struct pending_reservation,
1190 				       rb_node) : NULL;
1191 	}
1192 	return NULL;
1193 }
1194 
1195 /*
1196  * get_rsvd - calculates and returns the number of cluster reservations to be
1197  *	      released when removing a block range from the extent status tree
1198  *	      and releases any pending reservations within the range
1199  *
1200  * @inode - file containing block range
1201  * @end - last block in range
1202  * @right_es - pointer to extent containing next block beyond end or NULL
1203  * @rc - pointer to reserved count data
1204  *
1205  * The number of reservations to be released is equal to the number of
1206  * clusters containing delayed and not unwritten (delonly) blocks within
1207  * the range, minus the number of clusters still containing delonly blocks
1208  * at the ends of the range, and minus the number of pending reservations
1209  * within the range.
1210  */
get_rsvd(struct inode * inode,ext4_lblk_t end,struct extent_status * right_es,struct rsvd_count * rc)1211 static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end,
1212 			     struct extent_status *right_es,
1213 			     struct rsvd_count *rc)
1214 {
1215 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1216 	struct pending_reservation *pr;
1217 	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1218 	struct rb_node *node;
1219 	ext4_lblk_t first_lclu, last_lclu;
1220 	bool left_delonly, right_delonly, count_pending;
1221 	struct extent_status *es;
1222 
1223 	if (sbi->s_cluster_ratio > 1) {
1224 		/* count any remaining partial cluster */
1225 		if (rc->partial)
1226 			rc->ndelonly++;
1227 
1228 		if (rc->ndelonly == 0)
1229 			return 0;
1230 
1231 		first_lclu = EXT4_B2C(sbi, rc->first_do_lblk);
1232 		last_lclu = EXT4_B2C(sbi, rc->last_do_lblk);
1233 
1234 		/*
1235 		 * decrease the delonly count by the number of clusters at the
1236 		 * ends of the range that still contain delonly blocks -
1237 		 * these clusters still need to be reserved
1238 		 */
1239 		left_delonly = right_delonly = false;
1240 
1241 		es = rc->left_es;
1242 		while (es && ext4_es_end(es) >=
1243 		       EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) {
1244 			if (ext4_es_is_delonly(es)) {
1245 				rc->ndelonly--;
1246 				left_delonly = true;
1247 				break;
1248 			}
1249 			node = rb_prev(&es->rb_node);
1250 			if (!node)
1251 				break;
1252 			es = rb_entry(node, struct extent_status, rb_node);
1253 		}
1254 		if (right_es && (!left_delonly || first_lclu != last_lclu)) {
1255 			if (end < ext4_es_end(right_es)) {
1256 				es = right_es;
1257 			} else {
1258 				node = rb_next(&right_es->rb_node);
1259 				es = node ? rb_entry(node, struct extent_status,
1260 						     rb_node) : NULL;
1261 			}
1262 			while (es && es->es_lblk <=
1263 			       EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) {
1264 				if (ext4_es_is_delonly(es)) {
1265 					rc->ndelonly--;
1266 					right_delonly = true;
1267 					break;
1268 				}
1269 				node = rb_next(&es->rb_node);
1270 				if (!node)
1271 					break;
1272 				es = rb_entry(node, struct extent_status,
1273 					      rb_node);
1274 			}
1275 		}
1276 
1277 		/*
1278 		 * Determine the block range that should be searched for
1279 		 * pending reservations, if any.  Clusters on the ends of the
1280 		 * original removed range containing delonly blocks are
1281 		 * excluded.  They've already been accounted for and it's not
1282 		 * possible to determine if an associated pending reservation
1283 		 * should be released with the information available in the
1284 		 * extents status tree.
1285 		 */
1286 		if (first_lclu == last_lclu) {
1287 			if (left_delonly | right_delonly)
1288 				count_pending = false;
1289 			else
1290 				count_pending = true;
1291 		} else {
1292 			if (left_delonly)
1293 				first_lclu++;
1294 			if (right_delonly)
1295 				last_lclu--;
1296 			if (first_lclu <= last_lclu)
1297 				count_pending = true;
1298 			else
1299 				count_pending = false;
1300 		}
1301 
1302 		/*
1303 		 * a pending reservation found between first_lclu and last_lclu
1304 		 * represents an allocated cluster that contained at least one
1305 		 * delonly block, so the delonly total must be reduced by one
1306 		 * for each pending reservation found and released
1307 		 */
1308 		if (count_pending) {
1309 			pr = __pr_tree_search(&tree->root, first_lclu);
1310 			while (pr && pr->lclu <= last_lclu) {
1311 				rc->ndelonly--;
1312 				node = rb_next(&pr->rb_node);
1313 				rb_erase(&pr->rb_node, &tree->root);
1314 				kmem_cache_free(ext4_pending_cachep, pr);
1315 				if (!node)
1316 					break;
1317 				pr = rb_entry(node, struct pending_reservation,
1318 					      rb_node);
1319 			}
1320 		}
1321 	}
1322 	return rc->ndelonly;
1323 }
1324 
1325 
1326 /*
1327  * __es_remove_extent - removes block range from extent status tree
1328  *
1329  * @inode - file containing range
1330  * @lblk - first block in range
1331  * @end - last block in range
1332  * @reserved - number of cluster reservations released
1333  * @prealloc - pre-allocated es to avoid memory allocation failures
1334  *
1335  * If @reserved is not NULL and delayed allocation is enabled, counts
1336  * block/cluster reservations freed by removing range and if bigalloc
1337  * enabled cancels pending reservations as needed. Returns 0 on success,
1338  * error code on failure.
1339  */
__es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t end,int * reserved,struct extent_status * prealloc)1340 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1341 			      ext4_lblk_t end, int *reserved,
1342 			      struct extent_status *prealloc)
1343 {
1344 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
1345 	struct rb_node *node;
1346 	struct extent_status *es;
1347 	struct extent_status orig_es;
1348 	ext4_lblk_t len1, len2;
1349 	ext4_fsblk_t block;
1350 	int err = 0;
1351 	bool count_reserved = true;
1352 	struct rsvd_count rc;
1353 
1354 	if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC))
1355 		count_reserved = false;
1356 
1357 	es = __es_tree_search(&tree->root, lblk);
1358 	if (!es)
1359 		goto out;
1360 	if (es->es_lblk > end)
1361 		goto out;
1362 
1363 	/* Simply invalidate cache_es. */
1364 	tree->cache_es = NULL;
1365 	if (count_reserved)
1366 		init_rsvd(inode, lblk, es, &rc);
1367 
1368 	orig_es.es_lblk = es->es_lblk;
1369 	orig_es.es_len = es->es_len;
1370 	orig_es.es_pblk = es->es_pblk;
1371 
1372 	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
1373 	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
1374 	if (len1 > 0)
1375 		es->es_len = len1;
1376 	if (len2 > 0) {
1377 		if (len1 > 0) {
1378 			struct extent_status newes;
1379 
1380 			newes.es_lblk = end + 1;
1381 			newes.es_len = len2;
1382 			block = 0x7FDEADBEEFULL;
1383 			if (ext4_es_is_written(&orig_es) ||
1384 			    ext4_es_is_unwritten(&orig_es))
1385 				block = ext4_es_pblock(&orig_es) +
1386 					orig_es.es_len - len2;
1387 			ext4_es_store_pblock_status(&newes, block,
1388 						    ext4_es_status(&orig_es));
1389 			err = __es_insert_extent(inode, &newes, prealloc);
1390 			if (err) {
1391 				if (!ext4_es_must_keep(&newes))
1392 					return 0;
1393 
1394 				es->es_lblk = orig_es.es_lblk;
1395 				es->es_len = orig_es.es_len;
1396 				goto out;
1397 			}
1398 		} else {
1399 			es->es_lblk = end + 1;
1400 			es->es_len = len2;
1401 			if (ext4_es_is_written(es) ||
1402 			    ext4_es_is_unwritten(es)) {
1403 				block = orig_es.es_pblk + orig_es.es_len - len2;
1404 				ext4_es_store_pblock(es, block);
1405 			}
1406 		}
1407 		if (count_reserved)
1408 			count_rsvd(inode, lblk, orig_es.es_len - len1 - len2,
1409 				   &orig_es, &rc);
1410 		goto out_get_reserved;
1411 	}
1412 
1413 	if (len1 > 0) {
1414 		if (count_reserved)
1415 			count_rsvd(inode, lblk, orig_es.es_len - len1,
1416 				   &orig_es, &rc);
1417 		node = rb_next(&es->rb_node);
1418 		if (node)
1419 			es = rb_entry(node, struct extent_status, rb_node);
1420 		else
1421 			es = NULL;
1422 	}
1423 
1424 	while (es && ext4_es_end(es) <= end) {
1425 		if (count_reserved)
1426 			count_rsvd(inode, es->es_lblk, es->es_len, es, &rc);
1427 		node = rb_next(&es->rb_node);
1428 		rb_erase(&es->rb_node, &tree->root);
1429 		ext4_es_free_extent(inode, es);
1430 		if (!node) {
1431 			es = NULL;
1432 			break;
1433 		}
1434 		es = rb_entry(node, struct extent_status, rb_node);
1435 	}
1436 
1437 	if (es && es->es_lblk < end + 1) {
1438 		ext4_lblk_t orig_len = es->es_len;
1439 
1440 		len1 = ext4_es_end(es) - end;
1441 		if (count_reserved)
1442 			count_rsvd(inode, es->es_lblk, orig_len - len1,
1443 				   es, &rc);
1444 		es->es_lblk = end + 1;
1445 		es->es_len = len1;
1446 		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
1447 			block = es->es_pblk + orig_len - len1;
1448 			ext4_es_store_pblock(es, block);
1449 		}
1450 	}
1451 
1452 out_get_reserved:
1453 	if (count_reserved)
1454 		*reserved = get_rsvd(inode, end, es, &rc);
1455 out:
1456 	return err;
1457 }
1458 
1459 /*
1460  * ext4_es_remove_extent - removes block range from extent status tree
1461  *
1462  * @inode - file containing range
1463  * @lblk - first block in range
1464  * @len - number of blocks to remove
1465  *
1466  * Reduces block/cluster reservation count and for bigalloc cancels pending
1467  * reservations as needed.
1468  */
ext4_es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)1469 void ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1470 			   ext4_lblk_t len)
1471 {
1472 	ext4_lblk_t end;
1473 	int err = 0;
1474 	int reserved = 0;
1475 	struct extent_status *es = NULL;
1476 
1477 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1478 		return;
1479 
1480 	trace_ext4_es_remove_extent(inode, lblk, len);
1481 	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
1482 		 lblk, len, inode->i_ino);
1483 
1484 	if (!len)
1485 		return;
1486 
1487 	end = lblk + len - 1;
1488 	BUG_ON(end < lblk);
1489 
1490 retry:
1491 	if (err && !es)
1492 		es = __es_alloc_extent(true);
1493 	/*
1494 	 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
1495 	 * so that we are sure __es_shrink() is done with the inode before it
1496 	 * is reclaimed.
1497 	 */
1498 	write_lock(&EXT4_I(inode)->i_es_lock);
1499 	err = __es_remove_extent(inode, lblk, end, &reserved, es);
1500 	/* Free preallocated extent if it didn't get used. */
1501 	if (es) {
1502 		if (!es->es_len)
1503 			__es_free_extent(es);
1504 		es = NULL;
1505 	}
1506 	write_unlock(&EXT4_I(inode)->i_es_lock);
1507 	if (err)
1508 		goto retry;
1509 
1510 	ext4_es_print_tree(inode);
1511 	ext4_da_release_space(inode, reserved);
1512 	return;
1513 }
1514 
__es_shrink(struct ext4_sb_info * sbi,int nr_to_scan,struct ext4_inode_info * locked_ei)1515 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
1516 		       struct ext4_inode_info *locked_ei)
1517 {
1518 	struct ext4_inode_info *ei;
1519 	struct ext4_es_stats *es_stats;
1520 	ktime_t start_time;
1521 	u64 scan_time;
1522 	int nr_to_walk;
1523 	int nr_shrunk = 0;
1524 	int retried = 0, nr_skipped = 0;
1525 
1526 	es_stats = &sbi->s_es_stats;
1527 	start_time = ktime_get();
1528 
1529 retry:
1530 	spin_lock(&sbi->s_es_lock);
1531 	nr_to_walk = sbi->s_es_nr_inode;
1532 	while (nr_to_walk-- > 0) {
1533 		if (list_empty(&sbi->s_es_list)) {
1534 			spin_unlock(&sbi->s_es_lock);
1535 			goto out;
1536 		}
1537 		ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
1538 				      i_es_list);
1539 		/* Move the inode to the tail */
1540 		list_move_tail(&ei->i_es_list, &sbi->s_es_list);
1541 
1542 		/*
1543 		 * Normally we try hard to avoid shrinking precached inodes,
1544 		 * but we will as a last resort.
1545 		 */
1546 		if (!retried && ext4_test_inode_state(&ei->vfs_inode,
1547 						EXT4_STATE_EXT_PRECACHED)) {
1548 			nr_skipped++;
1549 			continue;
1550 		}
1551 
1552 		if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
1553 			nr_skipped++;
1554 			continue;
1555 		}
1556 		/*
1557 		 * Now we hold i_es_lock which protects us from inode reclaim
1558 		 * freeing inode under us
1559 		 */
1560 		spin_unlock(&sbi->s_es_lock);
1561 
1562 		nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
1563 		write_unlock(&ei->i_es_lock);
1564 
1565 		if (nr_to_scan <= 0)
1566 			goto out;
1567 		spin_lock(&sbi->s_es_lock);
1568 	}
1569 	spin_unlock(&sbi->s_es_lock);
1570 
1571 	/*
1572 	 * If we skipped any inodes, and we weren't able to make any
1573 	 * forward progress, try again to scan precached inodes.
1574 	 */
1575 	if ((nr_shrunk == 0) && nr_skipped && !retried) {
1576 		retried++;
1577 		goto retry;
1578 	}
1579 
1580 	if (locked_ei && nr_shrunk == 0)
1581 		nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
1582 
1583 out:
1584 	scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1585 	if (likely(es_stats->es_stats_scan_time))
1586 		es_stats->es_stats_scan_time = (scan_time +
1587 				es_stats->es_stats_scan_time*3) / 4;
1588 	else
1589 		es_stats->es_stats_scan_time = scan_time;
1590 	if (scan_time > es_stats->es_stats_max_scan_time)
1591 		es_stats->es_stats_max_scan_time = scan_time;
1592 	if (likely(es_stats->es_stats_shrunk))
1593 		es_stats->es_stats_shrunk = (nr_shrunk +
1594 				es_stats->es_stats_shrunk*3) / 4;
1595 	else
1596 		es_stats->es_stats_shrunk = nr_shrunk;
1597 
1598 	trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1599 			     nr_skipped, retried);
1600 	return nr_shrunk;
1601 }
1602 
ext4_es_count(struct shrinker * shrink,struct shrink_control * sc)1603 static unsigned long ext4_es_count(struct shrinker *shrink,
1604 				   struct shrink_control *sc)
1605 {
1606 	unsigned long nr;
1607 	struct ext4_sb_info *sbi;
1608 
1609 	sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1610 	nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1611 	trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1612 	return nr;
1613 }
1614 
ext4_es_scan(struct shrinker * shrink,struct shrink_control * sc)1615 static unsigned long ext4_es_scan(struct shrinker *shrink,
1616 				  struct shrink_control *sc)
1617 {
1618 	struct ext4_sb_info *sbi = container_of(shrink,
1619 					struct ext4_sb_info, s_es_shrinker);
1620 	int nr_to_scan = sc->nr_to_scan;
1621 	int ret, nr_shrunk;
1622 
1623 	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1624 	trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1625 
1626 	nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1627 
1628 	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1629 	trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1630 	return nr_shrunk;
1631 }
1632 
ext4_seq_es_shrinker_info_show(struct seq_file * seq,void * v)1633 int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
1634 {
1635 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
1636 	struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1637 	struct ext4_inode_info *ei, *max = NULL;
1638 	unsigned int inode_cnt = 0;
1639 
1640 	if (v != SEQ_START_TOKEN)
1641 		return 0;
1642 
1643 	/* here we just find an inode that has the max nr. of objects */
1644 	spin_lock(&sbi->s_es_lock);
1645 	list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1646 		inode_cnt++;
1647 		if (max && max->i_es_all_nr < ei->i_es_all_nr)
1648 			max = ei;
1649 		else if (!max)
1650 			max = ei;
1651 	}
1652 	spin_unlock(&sbi->s_es_lock);
1653 
1654 	seq_printf(seq, "stats:\n  %lld objects\n  %lld reclaimable objects\n",
1655 		   percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1656 		   percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1657 	seq_printf(seq, "  %lld/%lld cache hits/misses\n",
1658 		   percpu_counter_sum_positive(&es_stats->es_stats_cache_hits),
1659 		   percpu_counter_sum_positive(&es_stats->es_stats_cache_misses));
1660 	if (inode_cnt)
1661 		seq_printf(seq, "  %d inodes on list\n", inode_cnt);
1662 
1663 	seq_printf(seq, "average:\n  %llu us scan time\n",
1664 	    div_u64(es_stats->es_stats_scan_time, 1000));
1665 	seq_printf(seq, "  %lu shrunk objects\n", es_stats->es_stats_shrunk);
1666 	if (inode_cnt)
1667 		seq_printf(seq,
1668 		    "maximum:\n  %lu inode (%u objects, %u reclaimable)\n"
1669 		    "  %llu us max scan time\n",
1670 		    max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1671 		    div_u64(es_stats->es_stats_max_scan_time, 1000));
1672 
1673 	return 0;
1674 }
1675 
ext4_es_register_shrinker(struct ext4_sb_info * sbi)1676 int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1677 {
1678 	int err;
1679 
1680 	/* Make sure we have enough bits for physical block number */
1681 	BUILD_BUG_ON(ES_SHIFT < 48);
1682 	INIT_LIST_HEAD(&sbi->s_es_list);
1683 	sbi->s_es_nr_inode = 0;
1684 	spin_lock_init(&sbi->s_es_lock);
1685 	sbi->s_es_stats.es_stats_shrunk = 0;
1686 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0,
1687 				  GFP_KERNEL);
1688 	if (err)
1689 		return err;
1690 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0,
1691 				  GFP_KERNEL);
1692 	if (err)
1693 		goto err1;
1694 	sbi->s_es_stats.es_stats_scan_time = 0;
1695 	sbi->s_es_stats.es_stats_max_scan_time = 0;
1696 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1697 	if (err)
1698 		goto err2;
1699 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1700 	if (err)
1701 		goto err3;
1702 
1703 	sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1704 	sbi->s_es_shrinker.count_objects = ext4_es_count;
1705 	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1706 	err = register_shrinker(&sbi->s_es_shrinker, "ext4-es:%s",
1707 				sbi->s_sb->s_id);
1708 	if (err)
1709 		goto err4;
1710 
1711 	return 0;
1712 err4:
1713 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1714 err3:
1715 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1716 err2:
1717 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1718 err1:
1719 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1720 	return err;
1721 }
1722 
ext4_es_unregister_shrinker(struct ext4_sb_info * sbi)1723 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1724 {
1725 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1726 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1727 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1728 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1729 	unregister_shrinker(&sbi->s_es_shrinker);
1730 }
1731 
1732 /*
1733  * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1734  * most *nr_to_scan extents, update *nr_to_scan accordingly.
1735  *
1736  * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1737  * Increment *nr_shrunk by the number of reclaimed extents. Also update
1738  * ei->i_es_shrink_lblk to where we should continue scanning.
1739  */
es_do_reclaim_extents(struct ext4_inode_info * ei,ext4_lblk_t end,int * nr_to_scan,int * nr_shrunk)1740 static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
1741 				 int *nr_to_scan, int *nr_shrunk)
1742 {
1743 	struct inode *inode = &ei->vfs_inode;
1744 	struct ext4_es_tree *tree = &ei->i_es_tree;
1745 	struct extent_status *es;
1746 	struct rb_node *node;
1747 
1748 	es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
1749 	if (!es)
1750 		goto out_wrap;
1751 
1752 	while (*nr_to_scan > 0) {
1753 		if (es->es_lblk > end) {
1754 			ei->i_es_shrink_lblk = end + 1;
1755 			return 0;
1756 		}
1757 
1758 		(*nr_to_scan)--;
1759 		node = rb_next(&es->rb_node);
1760 
1761 		if (ext4_es_must_keep(es))
1762 			goto next;
1763 		if (ext4_es_is_referenced(es)) {
1764 			ext4_es_clear_referenced(es);
1765 			goto next;
1766 		}
1767 
1768 		rb_erase(&es->rb_node, &tree->root);
1769 		ext4_es_free_extent(inode, es);
1770 		(*nr_shrunk)++;
1771 next:
1772 		if (!node)
1773 			goto out_wrap;
1774 		es = rb_entry(node, struct extent_status, rb_node);
1775 	}
1776 	ei->i_es_shrink_lblk = es->es_lblk;
1777 	return 1;
1778 out_wrap:
1779 	ei->i_es_shrink_lblk = 0;
1780 	return 0;
1781 }
1782 
es_reclaim_extents(struct ext4_inode_info * ei,int * nr_to_scan)1783 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
1784 {
1785 	struct inode *inode = &ei->vfs_inode;
1786 	int nr_shrunk = 0;
1787 	ext4_lblk_t start = ei->i_es_shrink_lblk;
1788 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1789 				      DEFAULT_RATELIMIT_BURST);
1790 
1791 	if (ei->i_es_shk_nr == 0)
1792 		return 0;
1793 
1794 	if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1795 	    __ratelimit(&_rs))
1796 		ext4_warning(inode->i_sb, "forced shrink of precached extents");
1797 
1798 	if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
1799 	    start != 0)
1800 		es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
1801 
1802 	ei->i_es_tree.cache_es = NULL;
1803 	return nr_shrunk;
1804 }
1805 
1806 /*
1807  * Called to support EXT4_IOC_CLEAR_ES_CACHE.  We can only remove
1808  * discretionary entries from the extent status cache.  (Some entries
1809  * must be present for proper operations.)
1810  */
ext4_clear_inode_es(struct inode * inode)1811 void ext4_clear_inode_es(struct inode *inode)
1812 {
1813 	struct ext4_inode_info *ei = EXT4_I(inode);
1814 	struct extent_status *es;
1815 	struct ext4_es_tree *tree;
1816 	struct rb_node *node;
1817 
1818 	write_lock(&ei->i_es_lock);
1819 	tree = &EXT4_I(inode)->i_es_tree;
1820 	tree->cache_es = NULL;
1821 	node = rb_first(&tree->root);
1822 	while (node) {
1823 		es = rb_entry(node, struct extent_status, rb_node);
1824 		node = rb_next(node);
1825 		if (!ext4_es_must_keep(es)) {
1826 			rb_erase(&es->rb_node, &tree->root);
1827 			ext4_es_free_extent(inode, es);
1828 		}
1829 	}
1830 	ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
1831 	write_unlock(&ei->i_es_lock);
1832 }
1833 
1834 #ifdef ES_DEBUG__
ext4_print_pending_tree(struct inode * inode)1835 static void ext4_print_pending_tree(struct inode *inode)
1836 {
1837 	struct ext4_pending_tree *tree;
1838 	struct rb_node *node;
1839 	struct pending_reservation *pr;
1840 
1841 	printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino);
1842 	tree = &EXT4_I(inode)->i_pending_tree;
1843 	node = rb_first(&tree->root);
1844 	while (node) {
1845 		pr = rb_entry(node, struct pending_reservation, rb_node);
1846 		printk(KERN_DEBUG " %u", pr->lclu);
1847 		node = rb_next(node);
1848 	}
1849 	printk(KERN_DEBUG "\n");
1850 }
1851 #else
1852 #define ext4_print_pending_tree(inode)
1853 #endif
1854 
ext4_init_pending(void)1855 int __init ext4_init_pending(void)
1856 {
1857 	ext4_pending_cachep = KMEM_CACHE(pending_reservation, SLAB_RECLAIM_ACCOUNT);
1858 	if (ext4_pending_cachep == NULL)
1859 		return -ENOMEM;
1860 	return 0;
1861 }
1862 
ext4_exit_pending(void)1863 void ext4_exit_pending(void)
1864 {
1865 	kmem_cache_destroy(ext4_pending_cachep);
1866 }
1867 
ext4_init_pending_tree(struct ext4_pending_tree * tree)1868 void ext4_init_pending_tree(struct ext4_pending_tree *tree)
1869 {
1870 	tree->root = RB_ROOT;
1871 }
1872 
1873 /*
1874  * __get_pending - retrieve a pointer to a pending reservation
1875  *
1876  * @inode - file containing the pending cluster reservation
1877  * @lclu - logical cluster of interest
1878  *
1879  * Returns a pointer to a pending reservation if it's a member of
1880  * the set, and NULL if not.  Must be called holding i_es_lock.
1881  */
__get_pending(struct inode * inode,ext4_lblk_t lclu)1882 static struct pending_reservation *__get_pending(struct inode *inode,
1883 						 ext4_lblk_t lclu)
1884 {
1885 	struct ext4_pending_tree *tree;
1886 	struct rb_node *node;
1887 	struct pending_reservation *pr = NULL;
1888 
1889 	tree = &EXT4_I(inode)->i_pending_tree;
1890 	node = (&tree->root)->rb_node;
1891 
1892 	while (node) {
1893 		pr = rb_entry(node, struct pending_reservation, rb_node);
1894 		if (lclu < pr->lclu)
1895 			node = node->rb_left;
1896 		else if (lclu > pr->lclu)
1897 			node = node->rb_right;
1898 		else if (lclu == pr->lclu)
1899 			return pr;
1900 	}
1901 	return NULL;
1902 }
1903 
1904 /*
1905  * __insert_pending - adds a pending cluster reservation to the set of
1906  *                    pending reservations
1907  *
1908  * @inode - file containing the cluster
1909  * @lblk - logical block in the cluster to be added
1910  *
1911  * Returns 0 on successful insertion and -ENOMEM on failure.  If the
1912  * pending reservation is already in the set, returns successfully.
1913  */
__insert_pending(struct inode * inode,ext4_lblk_t lblk)1914 static int __insert_pending(struct inode *inode, ext4_lblk_t lblk)
1915 {
1916 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1917 	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1918 	struct rb_node **p = &tree->root.rb_node;
1919 	struct rb_node *parent = NULL;
1920 	struct pending_reservation *pr;
1921 	ext4_lblk_t lclu;
1922 	int ret = 0;
1923 
1924 	lclu = EXT4_B2C(sbi, lblk);
1925 	/* search to find parent for insertion */
1926 	while (*p) {
1927 		parent = *p;
1928 		pr = rb_entry(parent, struct pending_reservation, rb_node);
1929 
1930 		if (lclu < pr->lclu) {
1931 			p = &(*p)->rb_left;
1932 		} else if (lclu > pr->lclu) {
1933 			p = &(*p)->rb_right;
1934 		} else {
1935 			/* pending reservation already inserted */
1936 			goto out;
1937 		}
1938 	}
1939 
1940 	pr = kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC);
1941 	if (pr == NULL) {
1942 		ret = -ENOMEM;
1943 		goto out;
1944 	}
1945 	pr->lclu = lclu;
1946 
1947 	rb_link_node(&pr->rb_node, parent, p);
1948 	rb_insert_color(&pr->rb_node, &tree->root);
1949 
1950 out:
1951 	return ret;
1952 }
1953 
1954 /*
1955  * __remove_pending - removes a pending cluster reservation from the set
1956  *                    of pending reservations
1957  *
1958  * @inode - file containing the cluster
1959  * @lblk - logical block in the pending cluster reservation to be removed
1960  *
1961  * Returns successfully if pending reservation is not a member of the set.
1962  */
__remove_pending(struct inode * inode,ext4_lblk_t lblk)1963 static void __remove_pending(struct inode *inode, ext4_lblk_t lblk)
1964 {
1965 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1966 	struct pending_reservation *pr;
1967 	struct ext4_pending_tree *tree;
1968 
1969 	pr = __get_pending(inode, EXT4_B2C(sbi, lblk));
1970 	if (pr != NULL) {
1971 		tree = &EXT4_I(inode)->i_pending_tree;
1972 		rb_erase(&pr->rb_node, &tree->root);
1973 		kmem_cache_free(ext4_pending_cachep, pr);
1974 	}
1975 }
1976 
1977 /*
1978  * ext4_remove_pending - removes a pending cluster reservation from the set
1979  *                       of pending reservations
1980  *
1981  * @inode - file containing the cluster
1982  * @lblk - logical block in the pending cluster reservation to be removed
1983  *
1984  * Locking for external use of __remove_pending.
1985  */
ext4_remove_pending(struct inode * inode,ext4_lblk_t lblk)1986 void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk)
1987 {
1988 	struct ext4_inode_info *ei = EXT4_I(inode);
1989 
1990 	write_lock(&ei->i_es_lock);
1991 	__remove_pending(inode, lblk);
1992 	write_unlock(&ei->i_es_lock);
1993 }
1994 
1995 /*
1996  * ext4_is_pending - determine whether a cluster has a pending reservation
1997  *                   on it
1998  *
1999  * @inode - file containing the cluster
2000  * @lblk - logical block in the cluster
2001  *
2002  * Returns true if there's a pending reservation for the cluster in the
2003  * set of pending reservations, and false if not.
2004  */
ext4_is_pending(struct inode * inode,ext4_lblk_t lblk)2005 bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk)
2006 {
2007 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2008 	struct ext4_inode_info *ei = EXT4_I(inode);
2009 	bool ret;
2010 
2011 	read_lock(&ei->i_es_lock);
2012 	ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL);
2013 	read_unlock(&ei->i_es_lock);
2014 
2015 	return ret;
2016 }
2017 
2018 /*
2019  * ext4_es_insert_delayed_block - adds a delayed block to the extents status
2020  *                                tree, adding a pending reservation where
2021  *                                needed
2022  *
2023  * @inode - file containing the newly added block
2024  * @lblk - logical block to be added
2025  * @allocated - indicates whether a physical cluster has been allocated for
2026  *              the logical cluster that contains the block
2027  */
ext4_es_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk,bool allocated)2028 void ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk,
2029 				  bool allocated)
2030 {
2031 	struct extent_status newes;
2032 	int err1 = 0;
2033 	int err2 = 0;
2034 	struct extent_status *es1 = NULL;
2035 	struct extent_status *es2 = NULL;
2036 
2037 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
2038 		return;
2039 
2040 	es_debug("add [%u/1) delayed to extent status tree of inode %lu\n",
2041 		 lblk, inode->i_ino);
2042 
2043 	newes.es_lblk = lblk;
2044 	newes.es_len = 1;
2045 	ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED);
2046 	trace_ext4_es_insert_delayed_block(inode, &newes, allocated);
2047 
2048 	ext4_es_insert_extent_check(inode, &newes);
2049 
2050 retry:
2051 	if (err1 && !es1)
2052 		es1 = __es_alloc_extent(true);
2053 	if ((err1 || err2) && !es2)
2054 		es2 = __es_alloc_extent(true);
2055 	write_lock(&EXT4_I(inode)->i_es_lock);
2056 
2057 	err1 = __es_remove_extent(inode, lblk, lblk, NULL, es1);
2058 	if (err1 != 0)
2059 		goto error;
2060 	/* Free preallocated extent if it didn't get used. */
2061 	if (es1) {
2062 		if (!es1->es_len)
2063 			__es_free_extent(es1);
2064 		es1 = NULL;
2065 	}
2066 
2067 	err2 = __es_insert_extent(inode, &newes, es2);
2068 	if (err2 != 0)
2069 		goto error;
2070 	/* Free preallocated extent if it didn't get used. */
2071 	if (es2) {
2072 		if (!es2->es_len)
2073 			__es_free_extent(es2);
2074 		es2 = NULL;
2075 	}
2076 
2077 	if (allocated)
2078 		__insert_pending(inode, lblk);
2079 error:
2080 	write_unlock(&EXT4_I(inode)->i_es_lock);
2081 	if (err1 || err2)
2082 		goto retry;
2083 
2084 	ext4_es_print_tree(inode);
2085 	ext4_print_pending_tree(inode);
2086 	return;
2087 }
2088 
2089 /*
2090  * __es_delayed_clu - count number of clusters containing blocks that
2091  *                    are delayed only
2092  *
2093  * @inode - file containing block range
2094  * @start - logical block defining start of range
2095  * @end - logical block defining end of range
2096  *
2097  * Returns the number of clusters containing only delayed (not delayed
2098  * and unwritten) blocks in the range specified by @start and @end.  Any
2099  * cluster or part of a cluster within the range and containing a delayed
2100  * and not unwritten block within the range is counted as a whole cluster.
2101  */
__es_delayed_clu(struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)2102 static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start,
2103 				     ext4_lblk_t end)
2104 {
2105 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
2106 	struct extent_status *es;
2107 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2108 	struct rb_node *node;
2109 	ext4_lblk_t first_lclu, last_lclu;
2110 	unsigned long long last_counted_lclu;
2111 	unsigned int n = 0;
2112 
2113 	/* guaranteed to be unequal to any ext4_lblk_t value */
2114 	last_counted_lclu = ~0ULL;
2115 
2116 	es = __es_tree_search(&tree->root, start);
2117 
2118 	while (es && (es->es_lblk <= end)) {
2119 		if (ext4_es_is_delonly(es)) {
2120 			if (es->es_lblk <= start)
2121 				first_lclu = EXT4_B2C(sbi, start);
2122 			else
2123 				first_lclu = EXT4_B2C(sbi, es->es_lblk);
2124 
2125 			if (ext4_es_end(es) >= end)
2126 				last_lclu = EXT4_B2C(sbi, end);
2127 			else
2128 				last_lclu = EXT4_B2C(sbi, ext4_es_end(es));
2129 
2130 			if (first_lclu == last_counted_lclu)
2131 				n += last_lclu - first_lclu;
2132 			else
2133 				n += last_lclu - first_lclu + 1;
2134 			last_counted_lclu = last_lclu;
2135 		}
2136 		node = rb_next(&es->rb_node);
2137 		if (!node)
2138 			break;
2139 		es = rb_entry(node, struct extent_status, rb_node);
2140 	}
2141 
2142 	return n;
2143 }
2144 
2145 /*
2146  * ext4_es_delayed_clu - count number of clusters containing blocks that
2147  *                       are both delayed and unwritten
2148  *
2149  * @inode - file containing block range
2150  * @lblk - logical block defining start of range
2151  * @len - number of blocks in range
2152  *
2153  * Locking for external use of __es_delayed_clu().
2154  */
ext4_es_delayed_clu(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)2155 unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk,
2156 				 ext4_lblk_t len)
2157 {
2158 	struct ext4_inode_info *ei = EXT4_I(inode);
2159 	ext4_lblk_t end;
2160 	unsigned int n;
2161 
2162 	if (len == 0)
2163 		return 0;
2164 
2165 	end = lblk + len - 1;
2166 	WARN_ON(end < lblk);
2167 
2168 	read_lock(&ei->i_es_lock);
2169 
2170 	n = __es_delayed_clu(inode, lblk, end);
2171 
2172 	read_unlock(&ei->i_es_lock);
2173 
2174 	return n;
2175 }
2176 
2177 /*
2178  * __revise_pending - makes, cancels, or leaves unchanged pending cluster
2179  *                    reservations for a specified block range depending
2180  *                    upon the presence or absence of delayed blocks
2181  *                    outside the range within clusters at the ends of the
2182  *                    range
2183  *
2184  * @inode - file containing the range
2185  * @lblk - logical block defining the start of range
2186  * @len  - length of range in blocks
2187  *
2188  * Used after a newly allocated extent is added to the extents status tree.
2189  * Requires that the extents in the range have either written or unwritten
2190  * status.  Must be called while holding i_es_lock.
2191  */
__revise_pending(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)2192 static void __revise_pending(struct inode *inode, ext4_lblk_t lblk,
2193 			     ext4_lblk_t len)
2194 {
2195 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2196 	ext4_lblk_t end = lblk + len - 1;
2197 	ext4_lblk_t first, last;
2198 	bool f_del = false, l_del = false;
2199 
2200 	if (len == 0)
2201 		return;
2202 
2203 	/*
2204 	 * Two cases - block range within single cluster and block range
2205 	 * spanning two or more clusters.  Note that a cluster belonging
2206 	 * to a range starting and/or ending on a cluster boundary is treated
2207 	 * as if it does not contain a delayed extent.  The new range may
2208 	 * have allocated space for previously delayed blocks out to the
2209 	 * cluster boundary, requiring that any pre-existing pending
2210 	 * reservation be canceled.  Because this code only looks at blocks
2211 	 * outside the range, it should revise pending reservations
2212 	 * correctly even if the extent represented by the range can't be
2213 	 * inserted in the extents status tree due to ENOSPC.
2214 	 */
2215 
2216 	if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) {
2217 		first = EXT4_LBLK_CMASK(sbi, lblk);
2218 		if (first != lblk)
2219 			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2220 						first, lblk - 1);
2221 		if (f_del) {
2222 			__insert_pending(inode, first);
2223 		} else {
2224 			last = EXT4_LBLK_CMASK(sbi, end) +
2225 			       sbi->s_cluster_ratio - 1;
2226 			if (last != end)
2227 				l_del = __es_scan_range(inode,
2228 							&ext4_es_is_delonly,
2229 							end + 1, last);
2230 			if (l_del)
2231 				__insert_pending(inode, last);
2232 			else
2233 				__remove_pending(inode, last);
2234 		}
2235 	} else {
2236 		first = EXT4_LBLK_CMASK(sbi, lblk);
2237 		if (first != lblk)
2238 			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2239 						first, lblk - 1);
2240 		if (f_del)
2241 			__insert_pending(inode, first);
2242 		else
2243 			__remove_pending(inode, first);
2244 
2245 		last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1;
2246 		if (last != end)
2247 			l_del = __es_scan_range(inode, &ext4_es_is_delonly,
2248 						end + 1, last);
2249 		if (l_del)
2250 			__insert_pending(inode, last);
2251 		else
2252 			__remove_pending(inode, last);
2253 	}
2254 }
2255