1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2014-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2013 Red Hat
5 * Author: Rob Clark <robdclark@gmail.com>
6 */
7
8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/debugfs.h>
10 #include <linux/kthread.h>
11 #include <linux/seq_file.h>
12
13 #include <drm/drm_crtc.h>
14 #include <drm/drm_file.h>
15 #include <drm/drm_probe_helper.h>
16
17 #include "msm_drv.h"
18 #include "dpu_kms.h"
19 #include "dpu_hwio.h"
20 #include "dpu_hw_catalog.h"
21 #include "dpu_hw_intf.h"
22 #include "dpu_hw_ctl.h"
23 #include "dpu_hw_dspp.h"
24 #include "dpu_formats.h"
25 #include "dpu_encoder_phys.h"
26 #include "dpu_crtc.h"
27 #include "dpu_trace.h"
28 #include "dpu_core_irq.h"
29
30 #define DPU_DEBUG_ENC(e, fmt, ...) DPU_DEBUG("enc%d " fmt,\
31 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
32
33 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
34 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
35
36 #define DPU_DEBUG_PHYS(p, fmt, ...) DPU_DEBUG("enc%d intf%d pp%d " fmt,\
37 (p) ? (p)->parent->base.id : -1, \
38 (p) ? (p)->intf_idx - INTF_0 : -1, \
39 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
40 ##__VA_ARGS__)
41
42 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
43 (p) ? (p)->parent->base.id : -1, \
44 (p) ? (p)->intf_idx - INTF_0 : -1, \
45 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
46 ##__VA_ARGS__)
47
48 /*
49 * Two to anticipate panels that can do cmd/vid dynamic switching
50 * plan is to create all possible physical encoder types, and switch between
51 * them at runtime
52 */
53 #define NUM_PHYS_ENCODER_TYPES 2
54
55 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
56 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
57
58 #define MAX_CHANNELS_PER_ENC 2
59
60 #define IDLE_SHORT_TIMEOUT 1
61
62 #define MAX_HDISPLAY_SPLIT 1080
63
64 /* timeout in frames waiting for frame done */
65 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
66
67 /**
68 * enum dpu_enc_rc_events - events for resource control state machine
69 * @DPU_ENC_RC_EVENT_KICKOFF:
70 * This event happens at NORMAL priority.
71 * Event that signals the start of the transfer. When this event is
72 * received, enable MDP/DSI core clocks. Regardless of the previous
73 * state, the resource should be in ON state at the end of this event.
74 * @DPU_ENC_RC_EVENT_FRAME_DONE:
75 * This event happens at INTERRUPT level.
76 * Event signals the end of the data transfer after the PP FRAME_DONE
77 * event. At the end of this event, a delayed work is scheduled to go to
78 * IDLE_PC state after IDLE_TIMEOUT time.
79 * @DPU_ENC_RC_EVENT_PRE_STOP:
80 * This event happens at NORMAL priority.
81 * This event, when received during the ON state, leave the RC STATE
82 * in the PRE_OFF state. It should be followed by the STOP event as
83 * part of encoder disable.
84 * If received during IDLE or OFF states, it will do nothing.
85 * @DPU_ENC_RC_EVENT_STOP:
86 * This event happens at NORMAL priority.
87 * When this event is received, disable all the MDP/DSI core clocks, and
88 * disable IRQs. It should be called from the PRE_OFF or IDLE states.
89 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
90 * PRE_OFF is expected when PRE_STOP was executed during the ON state.
91 * Resource state should be in OFF at the end of the event.
92 * @DPU_ENC_RC_EVENT_ENTER_IDLE:
93 * This event happens at NORMAL priority from a work item.
94 * Event signals that there were no frame updates for IDLE_TIMEOUT time.
95 * This would disable MDP/DSI core clocks and change the resource state
96 * to IDLE.
97 */
98 enum dpu_enc_rc_events {
99 DPU_ENC_RC_EVENT_KICKOFF = 1,
100 DPU_ENC_RC_EVENT_FRAME_DONE,
101 DPU_ENC_RC_EVENT_PRE_STOP,
102 DPU_ENC_RC_EVENT_STOP,
103 DPU_ENC_RC_EVENT_ENTER_IDLE
104 };
105
106 /*
107 * enum dpu_enc_rc_states - states that the resource control maintains
108 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
109 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
110 * @DPU_ENC_RC_STATE_ON: Resource is in ON state
111 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
112 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
113 */
114 enum dpu_enc_rc_states {
115 DPU_ENC_RC_STATE_OFF,
116 DPU_ENC_RC_STATE_PRE_OFF,
117 DPU_ENC_RC_STATE_ON,
118 DPU_ENC_RC_STATE_IDLE
119 };
120
121 /**
122 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
123 * encoders. Virtual encoder manages one "logical" display. Physical
124 * encoders manage one intf block, tied to a specific panel/sub-panel.
125 * Virtual encoder defers as much as possible to the physical encoders.
126 * Virtual encoder registers itself with the DRM Framework as the encoder.
127 * @base: drm_encoder base class for registration with DRM
128 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes
129 * @bus_scaling_client: Client handle to the bus scaling interface
130 * @enabled: True if the encoder is active, protected by enc_lock
131 * @num_phys_encs: Actual number of physical encoders contained.
132 * @phys_encs: Container of physical encoders managed.
133 * @cur_master: Pointer to the current master in this mode. Optimization
134 * Only valid after enable. Cleared as disable.
135 * @hw_pp Handle to the pingpong blocks used for the display. No.
136 * pingpong blocks can be different than num_phys_encs.
137 * @intfs_swapped Whether or not the phys_enc interfaces have been swapped
138 * for partial update right-only cases, such as pingpong
139 * split where virtual pingpong does not generate IRQs
140 * @crtc: Pointer to the currently assigned crtc. Normally you
141 * would use crtc->state->encoder_mask to determine the
142 * link between encoder/crtc. However in this case we need
143 * to track crtc in the disable() hook which is called
144 * _after_ encoder_mask is cleared.
145 * @crtc_kickoff_cb: Callback into CRTC that will flush & start
146 * all CTL paths
147 * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb
148 * @debugfs_root: Debug file system root file node
149 * @enc_lock: Lock around physical encoder
150 * create/destroy/enable/disable
151 * @frame_busy_mask: Bitmask tracking which phys_enc we are still
152 * busy processing current command.
153 * Bit0 = phys_encs[0] etc.
154 * @crtc_frame_event_cb: callback handler for frame event
155 * @crtc_frame_event_cb_data: callback handler private data
156 * @frame_done_timeout_ms: frame done timeout in ms
157 * @frame_done_timer: watchdog timer for frame done event
158 * @vsync_event_timer: vsync timer
159 * @disp_info: local copy of msm_display_info struct
160 * @idle_pc_supported: indicate if idle power collaps is supported
161 * @rc_lock: resource control mutex lock to protect
162 * virt encoder over various state changes
163 * @rc_state: resource controller state
164 * @delayed_off_work: delayed worker to schedule disabling of
165 * clks and resources after IDLE_TIMEOUT time.
166 * @vsync_event_work: worker to handle vsync event for autorefresh
167 * @topology: topology of the display
168 * @idle_timeout: idle timeout duration in milliseconds
169 */
170 struct dpu_encoder_virt {
171 struct drm_encoder base;
172 spinlock_t enc_spinlock;
173 uint32_t bus_scaling_client;
174
175 bool enabled;
176
177 unsigned int num_phys_encs;
178 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
179 struct dpu_encoder_phys *cur_master;
180 struct dpu_encoder_phys *cur_slave;
181 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
182
183 bool intfs_swapped;
184
185 struct drm_crtc *crtc;
186
187 struct dentry *debugfs_root;
188 struct mutex enc_lock;
189 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
190 void (*crtc_frame_event_cb)(void *, u32 event);
191 void *crtc_frame_event_cb_data;
192
193 atomic_t frame_done_timeout_ms;
194 struct timer_list frame_done_timer;
195 struct timer_list vsync_event_timer;
196
197 struct msm_display_info disp_info;
198
199 bool idle_pc_supported;
200 struct mutex rc_lock;
201 enum dpu_enc_rc_states rc_state;
202 struct delayed_work delayed_off_work;
203 struct kthread_work vsync_event_work;
204 struct msm_display_topology topology;
205
206 u32 idle_timeout;
207 };
208
209 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
210
211 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
212 15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
213 };
214
_dpu_encoder_setup_dither(struct dpu_hw_pingpong * hw_pp,unsigned bpc)215 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
216 {
217 struct dpu_hw_dither_cfg dither_cfg = { 0 };
218
219 if (!hw_pp->ops.setup_dither)
220 return;
221
222 switch (bpc) {
223 case 6:
224 dither_cfg.c0_bitdepth = 6;
225 dither_cfg.c1_bitdepth = 6;
226 dither_cfg.c2_bitdepth = 6;
227 dither_cfg.c3_bitdepth = 6;
228 dither_cfg.temporal_en = 0;
229 break;
230 default:
231 hw_pp->ops.setup_dither(hw_pp, NULL);
232 return;
233 }
234
235 memcpy(&dither_cfg.matrix, dither_matrix,
236 sizeof(u32) * DITHER_MATRIX_SZ);
237
238 hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
239 }
240
dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx)241 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
242 enum dpu_intr_idx intr_idx)
243 {
244 DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
245 DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
246 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
247
248 if (phys_enc->parent_ops->handle_frame_done)
249 phys_enc->parent_ops->handle_frame_done(
250 phys_enc->parent, phys_enc,
251 DPU_ENCODER_FRAME_EVENT_ERROR);
252 }
253
254 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
255 int32_t hw_id, struct dpu_encoder_wait_info *info);
256
dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx,struct dpu_encoder_wait_info * wait_info)257 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
258 enum dpu_intr_idx intr_idx,
259 struct dpu_encoder_wait_info *wait_info)
260 {
261 struct dpu_encoder_irq *irq;
262 u32 irq_status;
263 int ret;
264
265 if (!wait_info || intr_idx >= INTR_IDX_MAX) {
266 DPU_ERROR("invalid params\n");
267 return -EINVAL;
268 }
269 irq = &phys_enc->irq[intr_idx];
270
271 /* note: do master / slave checking outside */
272
273 /* return EWOULDBLOCK since we know the wait isn't necessary */
274 if (phys_enc->enable_state == DPU_ENC_DISABLED) {
275 DRM_ERROR("encoder is disabled id=%u, intr=%d, hw=%d, irq=%d",
276 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
277 irq->irq_idx);
278 return -EWOULDBLOCK;
279 }
280
281 if (irq->irq_idx < 0) {
282 DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, hw=%d, irq=%s",
283 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
284 irq->name);
285 return 0;
286 }
287
288 DRM_DEBUG_KMS("id=%u, intr=%d, hw=%d, irq=%d, pp=%d, pending_cnt=%d",
289 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
290 irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
291 atomic_read(wait_info->atomic_cnt));
292
293 ret = dpu_encoder_helper_wait_event_timeout(
294 DRMID(phys_enc->parent),
295 irq->hw_idx,
296 wait_info);
297
298 if (ret <= 0) {
299 irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
300 irq->irq_idx, true);
301 if (irq_status) {
302 unsigned long flags;
303
304 DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, "
305 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
306 DRMID(phys_enc->parent), intr_idx,
307 irq->hw_idx, irq->irq_idx,
308 phys_enc->hw_pp->idx - PINGPONG_0,
309 atomic_read(wait_info->atomic_cnt));
310 local_irq_save(flags);
311 irq->cb.func(phys_enc, irq->irq_idx);
312 local_irq_restore(flags);
313 ret = 0;
314 } else {
315 ret = -ETIMEDOUT;
316 DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, "
317 "hw=%d, irq=%d, pp=%d, atomic_cnt=%d",
318 DRMID(phys_enc->parent), intr_idx,
319 irq->hw_idx, irq->irq_idx,
320 phys_enc->hw_pp->idx - PINGPONG_0,
321 atomic_read(wait_info->atomic_cnt));
322 }
323 } else {
324 ret = 0;
325 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
326 intr_idx, irq->hw_idx, irq->irq_idx,
327 phys_enc->hw_pp->idx - PINGPONG_0,
328 atomic_read(wait_info->atomic_cnt));
329 }
330
331 return ret;
332 }
333
dpu_encoder_helper_register_irq(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx)334 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
335 enum dpu_intr_idx intr_idx)
336 {
337 struct dpu_encoder_irq *irq;
338 int ret = 0;
339
340 if (intr_idx >= INTR_IDX_MAX) {
341 DPU_ERROR("invalid params\n");
342 return -EINVAL;
343 }
344 irq = &phys_enc->irq[intr_idx];
345
346 if (irq->irq_idx >= 0) {
347 DPU_DEBUG_PHYS(phys_enc,
348 "skipping already registered irq %s type %d\n",
349 irq->name, irq->intr_type);
350 return 0;
351 }
352
353 irq->irq_idx = dpu_core_irq_idx_lookup(phys_enc->dpu_kms,
354 irq->intr_type, irq->hw_idx);
355 if (irq->irq_idx < 0) {
356 DPU_ERROR_PHYS(phys_enc,
357 "failed to lookup IRQ index for %s type:%d\n",
358 irq->name, irq->intr_type);
359 return -EINVAL;
360 }
361
362 ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
363 &irq->cb);
364 if (ret) {
365 DPU_ERROR_PHYS(phys_enc,
366 "failed to register IRQ callback for %s\n",
367 irq->name);
368 irq->irq_idx = -EINVAL;
369 return ret;
370 }
371
372 ret = dpu_core_irq_enable(phys_enc->dpu_kms, &irq->irq_idx, 1);
373 if (ret) {
374 DRM_ERROR("enable failed id=%u, intr=%d, hw=%d, irq=%d",
375 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
376 irq->irq_idx);
377 dpu_core_irq_unregister_callback(phys_enc->dpu_kms,
378 irq->irq_idx, &irq->cb);
379 irq->irq_idx = -EINVAL;
380 return ret;
381 }
382
383 trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
384 irq->hw_idx, irq->irq_idx);
385
386 return ret;
387 }
388
dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx)389 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
390 enum dpu_intr_idx intr_idx)
391 {
392 struct dpu_encoder_irq *irq;
393 int ret;
394
395 irq = &phys_enc->irq[intr_idx];
396
397 /* silently skip irqs that weren't registered */
398 if (irq->irq_idx < 0) {
399 DRM_ERROR("duplicate unregister id=%u, intr=%d, hw=%d, irq=%d",
400 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
401 irq->irq_idx);
402 return 0;
403 }
404
405 ret = dpu_core_irq_disable(phys_enc->dpu_kms, &irq->irq_idx, 1);
406 if (ret) {
407 DRM_ERROR("disable failed id=%u, intr=%d, hw=%d, irq=%d ret=%d",
408 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
409 irq->irq_idx, ret);
410 }
411
412 ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
413 &irq->cb);
414 if (ret) {
415 DRM_ERROR("unreg cb fail id=%u, intr=%d, hw=%d, irq=%d ret=%d",
416 DRMID(phys_enc->parent), intr_idx, irq->hw_idx,
417 irq->irq_idx, ret);
418 }
419
420 trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
421 irq->hw_idx, irq->irq_idx);
422
423 irq->irq_idx = -EINVAL;
424
425 return 0;
426 }
427
dpu_encoder_get_hw_resources(struct drm_encoder * drm_enc,struct dpu_encoder_hw_resources * hw_res)428 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc,
429 struct dpu_encoder_hw_resources *hw_res)
430 {
431 struct dpu_encoder_virt *dpu_enc = NULL;
432 int i = 0;
433
434 dpu_enc = to_dpu_encoder_virt(drm_enc);
435 DPU_DEBUG_ENC(dpu_enc, "\n");
436
437 /* Query resources used by phys encs, expected to be without overlap */
438 memset(hw_res, 0, sizeof(*hw_res));
439
440 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
441 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
442
443 if (phys->ops.get_hw_resources)
444 phys->ops.get_hw_resources(phys, hw_res);
445 }
446 }
447
dpu_encoder_destroy(struct drm_encoder * drm_enc)448 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
449 {
450 struct dpu_encoder_virt *dpu_enc = NULL;
451 int i = 0;
452
453 if (!drm_enc) {
454 DPU_ERROR("invalid encoder\n");
455 return;
456 }
457
458 dpu_enc = to_dpu_encoder_virt(drm_enc);
459 DPU_DEBUG_ENC(dpu_enc, "\n");
460
461 mutex_lock(&dpu_enc->enc_lock);
462
463 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
464 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
465
466 if (phys->ops.destroy) {
467 phys->ops.destroy(phys);
468 --dpu_enc->num_phys_encs;
469 dpu_enc->phys_encs[i] = NULL;
470 }
471 }
472
473 if (dpu_enc->num_phys_encs)
474 DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
475 dpu_enc->num_phys_encs);
476 dpu_enc->num_phys_encs = 0;
477 mutex_unlock(&dpu_enc->enc_lock);
478
479 drm_encoder_cleanup(drm_enc);
480 mutex_destroy(&dpu_enc->enc_lock);
481 }
482
dpu_encoder_helper_split_config(struct dpu_encoder_phys * phys_enc,enum dpu_intf interface)483 void dpu_encoder_helper_split_config(
484 struct dpu_encoder_phys *phys_enc,
485 enum dpu_intf interface)
486 {
487 struct dpu_encoder_virt *dpu_enc;
488 struct split_pipe_cfg cfg = { 0 };
489 struct dpu_hw_mdp *hw_mdptop;
490 struct msm_display_info *disp_info;
491
492 if (!phys_enc->hw_mdptop || !phys_enc->parent) {
493 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
494 return;
495 }
496
497 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
498 hw_mdptop = phys_enc->hw_mdptop;
499 disp_info = &dpu_enc->disp_info;
500
501 if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
502 return;
503
504 /**
505 * disable split modes since encoder will be operating in as the only
506 * encoder, either for the entire use case in the case of, for example,
507 * single DSI, or for this frame in the case of left/right only partial
508 * update.
509 */
510 if (phys_enc->split_role == ENC_ROLE_SOLO) {
511 if (hw_mdptop->ops.setup_split_pipe)
512 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
513 return;
514 }
515
516 cfg.en = true;
517 cfg.mode = phys_enc->intf_mode;
518 cfg.intf = interface;
519
520 if (cfg.en && phys_enc->ops.needs_single_flush &&
521 phys_enc->ops.needs_single_flush(phys_enc))
522 cfg.split_flush_en = true;
523
524 if (phys_enc->split_role == ENC_ROLE_MASTER) {
525 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
526
527 if (hw_mdptop->ops.setup_split_pipe)
528 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
529 }
530 }
531
dpu_encoder_get_topology(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct drm_display_mode * mode)532 static struct msm_display_topology dpu_encoder_get_topology(
533 struct dpu_encoder_virt *dpu_enc,
534 struct dpu_kms *dpu_kms,
535 struct drm_display_mode *mode)
536 {
537 struct msm_display_topology topology = {0};
538 int i, intf_count = 0;
539
540 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
541 if (dpu_enc->phys_encs[i])
542 intf_count++;
543
544 /* Datapath topology selection
545 *
546 * Dual display
547 * 2 LM, 2 INTF ( Split display using 2 interfaces)
548 *
549 * Single display
550 * 1 LM, 1 INTF
551 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
552 *
553 * Adding color blocks only to primary interface if available in
554 * sufficient number
555 */
556 if (intf_count == 2)
557 topology.num_lm = 2;
558 else if (!dpu_kms->catalog->caps->has_3d_merge)
559 topology.num_lm = 1;
560 else
561 topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
562
563 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI) {
564 if (dpu_kms->catalog->dspp &&
565 (dpu_kms->catalog->dspp_count >= topology.num_lm))
566 topology.num_dspp = topology.num_lm;
567 }
568
569 topology.num_enc = 0;
570 topology.num_intf = intf_count;
571
572 return topology;
573 }
dpu_encoder_virt_atomic_check(struct drm_encoder * drm_enc,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)574 static int dpu_encoder_virt_atomic_check(
575 struct drm_encoder *drm_enc,
576 struct drm_crtc_state *crtc_state,
577 struct drm_connector_state *conn_state)
578 {
579 struct dpu_encoder_virt *dpu_enc;
580 struct msm_drm_private *priv;
581 struct dpu_kms *dpu_kms;
582 const struct drm_display_mode *mode;
583 struct drm_display_mode *adj_mode;
584 struct msm_display_topology topology;
585 struct dpu_global_state *global_state;
586 int i = 0;
587 int ret = 0;
588
589 if (!drm_enc || !crtc_state || !conn_state) {
590 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
591 drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
592 return -EINVAL;
593 }
594
595 dpu_enc = to_dpu_encoder_virt(drm_enc);
596 DPU_DEBUG_ENC(dpu_enc, "\n");
597
598 priv = drm_enc->dev->dev_private;
599 dpu_kms = to_dpu_kms(priv->kms);
600 mode = &crtc_state->mode;
601 adj_mode = &crtc_state->adjusted_mode;
602 global_state = dpu_kms_get_global_state(crtc_state->state);
603 if (IS_ERR(global_state))
604 return PTR_ERR(global_state);
605
606 trace_dpu_enc_atomic_check(DRMID(drm_enc));
607
608 /* perform atomic check on the first physical encoder (master) */
609 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
610 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
611
612 if (phys->ops.atomic_check)
613 ret = phys->ops.atomic_check(phys, crtc_state,
614 conn_state);
615 else if (phys->ops.mode_fixup)
616 if (!phys->ops.mode_fixup(phys, mode, adj_mode))
617 ret = -EINVAL;
618
619 if (ret) {
620 DPU_ERROR_ENC(dpu_enc,
621 "mode unsupported, phys idx %d\n", i);
622 break;
623 }
624 }
625
626 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
627
628 /* Reserve dynamic resources now. */
629 if (!ret) {
630 /*
631 * Release and Allocate resources on every modeset
632 * Dont allocate when active is false.
633 */
634 if (drm_atomic_crtc_needs_modeset(crtc_state)) {
635 dpu_rm_release(global_state, drm_enc);
636
637 if (!crtc_state->active_changed || crtc_state->active)
638 ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
639 drm_enc, crtc_state, topology);
640 }
641 }
642
643 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
644
645 return ret;
646 }
647
_dpu_encoder_update_vsync_source(struct dpu_encoder_virt * dpu_enc,struct msm_display_info * disp_info)648 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
649 struct msm_display_info *disp_info)
650 {
651 struct dpu_vsync_source_cfg vsync_cfg = { 0 };
652 struct msm_drm_private *priv;
653 struct dpu_kms *dpu_kms;
654 struct dpu_hw_mdp *hw_mdptop;
655 struct drm_encoder *drm_enc;
656 int i;
657
658 if (!dpu_enc || !disp_info) {
659 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
660 dpu_enc != NULL, disp_info != NULL);
661 return;
662 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
663 DPU_ERROR("invalid num phys enc %d/%d\n",
664 dpu_enc->num_phys_encs,
665 (int) ARRAY_SIZE(dpu_enc->hw_pp));
666 return;
667 }
668
669 drm_enc = &dpu_enc->base;
670 /* this pointers are checked in virt_enable_helper */
671 priv = drm_enc->dev->dev_private;
672
673 dpu_kms = to_dpu_kms(priv->kms);
674 hw_mdptop = dpu_kms->hw_mdp;
675 if (!hw_mdptop) {
676 DPU_ERROR("invalid mdptop\n");
677 return;
678 }
679
680 if (hw_mdptop->ops.setup_vsync_source &&
681 disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
682 for (i = 0; i < dpu_enc->num_phys_encs; i++)
683 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
684
685 vsync_cfg.pp_count = dpu_enc->num_phys_encs;
686 if (disp_info->is_te_using_watchdog_timer)
687 vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
688 else
689 vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
690
691 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
692 }
693 }
694
_dpu_encoder_irq_control(struct drm_encoder * drm_enc,bool enable)695 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
696 {
697 struct dpu_encoder_virt *dpu_enc;
698 int i;
699
700 if (!drm_enc) {
701 DPU_ERROR("invalid encoder\n");
702 return;
703 }
704
705 dpu_enc = to_dpu_encoder_virt(drm_enc);
706
707 DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
708 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
709 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
710
711 if (phys->ops.irq_control)
712 phys->ops.irq_control(phys, enable);
713 }
714
715 }
716
_dpu_encoder_resource_control_helper(struct drm_encoder * drm_enc,bool enable)717 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
718 bool enable)
719 {
720 struct msm_drm_private *priv;
721 struct dpu_kms *dpu_kms;
722 struct dpu_encoder_virt *dpu_enc;
723
724 dpu_enc = to_dpu_encoder_virt(drm_enc);
725 priv = drm_enc->dev->dev_private;
726 dpu_kms = to_dpu_kms(priv->kms);
727
728 trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
729
730 if (!dpu_enc->cur_master) {
731 DPU_ERROR("encoder master not set\n");
732 return;
733 }
734
735 if (enable) {
736 /* enable DPU core clks */
737 pm_runtime_get_sync(&dpu_kms->pdev->dev);
738
739 /* enable all the irq */
740 _dpu_encoder_irq_control(drm_enc, true);
741
742 } else {
743 /* disable all the irq */
744 _dpu_encoder_irq_control(drm_enc, false);
745
746 /* disable DPU core clks */
747 pm_runtime_put_sync(&dpu_kms->pdev->dev);
748 }
749
750 }
751
dpu_encoder_resource_control(struct drm_encoder * drm_enc,u32 sw_event)752 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
753 u32 sw_event)
754 {
755 struct dpu_encoder_virt *dpu_enc;
756 struct msm_drm_private *priv;
757 bool is_vid_mode = false;
758
759 if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
760 DPU_ERROR("invalid parameters\n");
761 return -EINVAL;
762 }
763 dpu_enc = to_dpu_encoder_virt(drm_enc);
764 priv = drm_enc->dev->dev_private;
765 is_vid_mode = dpu_enc->disp_info.capabilities &
766 MSM_DISPLAY_CAP_VID_MODE;
767
768 /*
769 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
770 * events and return early for other events (ie wb display).
771 */
772 if (!dpu_enc->idle_pc_supported &&
773 (sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
774 sw_event != DPU_ENC_RC_EVENT_STOP &&
775 sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
776 return 0;
777
778 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
779 dpu_enc->rc_state, "begin");
780
781 switch (sw_event) {
782 case DPU_ENC_RC_EVENT_KICKOFF:
783 /* cancel delayed off work, if any */
784 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
785 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
786 sw_event);
787
788 mutex_lock(&dpu_enc->rc_lock);
789
790 /* return if the resource control is already in ON state */
791 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
792 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in ON state\n",
793 DRMID(drm_enc), sw_event);
794 mutex_unlock(&dpu_enc->rc_lock);
795 return 0;
796 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
797 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
798 DRM_DEBUG_KMS("id;%u, sw_event:%d, rc in state %d\n",
799 DRMID(drm_enc), sw_event,
800 dpu_enc->rc_state);
801 mutex_unlock(&dpu_enc->rc_lock);
802 return -EINVAL;
803 }
804
805 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
806 _dpu_encoder_irq_control(drm_enc, true);
807 else
808 _dpu_encoder_resource_control_helper(drm_enc, true);
809
810 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
811
812 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
813 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
814 "kickoff");
815
816 mutex_unlock(&dpu_enc->rc_lock);
817 break;
818
819 case DPU_ENC_RC_EVENT_FRAME_DONE:
820 /*
821 * mutex lock is not used as this event happens at interrupt
822 * context. And locking is not required as, the other events
823 * like KICKOFF and STOP does a wait-for-idle before executing
824 * the resource_control
825 */
826 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
827 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
828 DRMID(drm_enc), sw_event,
829 dpu_enc->rc_state);
830 return -EINVAL;
831 }
832
833 /*
834 * schedule off work item only when there are no
835 * frames pending
836 */
837 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
838 DRM_DEBUG_KMS("id:%d skip schedule work\n",
839 DRMID(drm_enc));
840 return 0;
841 }
842
843 queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
844 msecs_to_jiffies(dpu_enc->idle_timeout));
845
846 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
847 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
848 "frame done");
849 break;
850
851 case DPU_ENC_RC_EVENT_PRE_STOP:
852 /* cancel delayed off work, if any */
853 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
854 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
855 sw_event);
856
857 mutex_lock(&dpu_enc->rc_lock);
858
859 if (is_vid_mode &&
860 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
861 _dpu_encoder_irq_control(drm_enc, true);
862 }
863 /* skip if is already OFF or IDLE, resources are off already */
864 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
865 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
866 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
867 DRMID(drm_enc), sw_event,
868 dpu_enc->rc_state);
869 mutex_unlock(&dpu_enc->rc_lock);
870 return 0;
871 }
872
873 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
874
875 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
876 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
877 "pre stop");
878
879 mutex_unlock(&dpu_enc->rc_lock);
880 break;
881
882 case DPU_ENC_RC_EVENT_STOP:
883 mutex_lock(&dpu_enc->rc_lock);
884
885 /* return if the resource control is already in OFF state */
886 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
887 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
888 DRMID(drm_enc), sw_event);
889 mutex_unlock(&dpu_enc->rc_lock);
890 return 0;
891 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
892 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
893 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
894 mutex_unlock(&dpu_enc->rc_lock);
895 return -EINVAL;
896 }
897
898 /**
899 * expect to arrive here only if in either idle state or pre-off
900 * and in IDLE state the resources are already disabled
901 */
902 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
903 _dpu_encoder_resource_control_helper(drm_enc, false);
904
905 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
906
907 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
908 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
909 "stop");
910
911 mutex_unlock(&dpu_enc->rc_lock);
912 break;
913
914 case DPU_ENC_RC_EVENT_ENTER_IDLE:
915 mutex_lock(&dpu_enc->rc_lock);
916
917 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
918 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
919 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
920 mutex_unlock(&dpu_enc->rc_lock);
921 return 0;
922 }
923
924 /*
925 * if we are in ON but a frame was just kicked off,
926 * ignore the IDLE event, it's probably a stale timer event
927 */
928 if (dpu_enc->frame_busy_mask[0]) {
929 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
930 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
931 mutex_unlock(&dpu_enc->rc_lock);
932 return 0;
933 }
934
935 if (is_vid_mode)
936 _dpu_encoder_irq_control(drm_enc, false);
937 else
938 _dpu_encoder_resource_control_helper(drm_enc, false);
939
940 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
941
942 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
943 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
944 "idle");
945
946 mutex_unlock(&dpu_enc->rc_lock);
947 break;
948
949 default:
950 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
951 sw_event);
952 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
953 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
954 "error");
955 break;
956 }
957
958 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
959 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
960 "end");
961 return 0;
962 }
963
dpu_encoder_virt_mode_set(struct drm_encoder * drm_enc,struct drm_display_mode * mode,struct drm_display_mode * adj_mode)964 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc,
965 struct drm_display_mode *mode,
966 struct drm_display_mode *adj_mode)
967 {
968 struct dpu_encoder_virt *dpu_enc;
969 struct msm_drm_private *priv;
970 struct dpu_kms *dpu_kms;
971 struct list_head *connector_list;
972 struct drm_connector *conn = NULL, *conn_iter;
973 struct drm_crtc *drm_crtc;
974 struct dpu_crtc_state *cstate;
975 struct dpu_global_state *global_state;
976 struct msm_display_topology topology;
977 struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
978 struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
979 struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
980 struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
981 int num_lm, num_ctl, num_pp, num_dspp;
982 int i, j;
983
984 if (!drm_enc) {
985 DPU_ERROR("invalid encoder\n");
986 return;
987 }
988
989 dpu_enc = to_dpu_encoder_virt(drm_enc);
990 DPU_DEBUG_ENC(dpu_enc, "\n");
991
992 priv = drm_enc->dev->dev_private;
993 dpu_kms = to_dpu_kms(priv->kms);
994 connector_list = &dpu_kms->dev->mode_config.connector_list;
995
996 global_state = dpu_kms_get_existing_global_state(dpu_kms);
997 if (IS_ERR_OR_NULL(global_state)) {
998 DPU_ERROR("Failed to get global state");
999 return;
1000 }
1001
1002 trace_dpu_enc_mode_set(DRMID(drm_enc));
1003
1004 if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp)
1005 msm_dp_display_mode_set(priv->dp, drm_enc, mode, adj_mode);
1006
1007 list_for_each_entry(conn_iter, connector_list, head)
1008 if (conn_iter->encoder == drm_enc)
1009 conn = conn_iter;
1010
1011 if (!conn) {
1012 DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n");
1013 return;
1014 } else if (!conn->state) {
1015 DPU_ERROR_ENC(dpu_enc, "invalid connector state\n");
1016 return;
1017 }
1018
1019 drm_for_each_crtc(drm_crtc, drm_enc->dev)
1020 if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc))
1021 break;
1022
1023 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
1024
1025 /* Query resource that have been reserved in atomic check step. */
1026 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1027 drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1028 ARRAY_SIZE(hw_pp));
1029 num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1030 drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1031 num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1032 drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1033 num_dspp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1034 drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1035 ARRAY_SIZE(hw_dspp));
1036
1037 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1038 dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1039 : NULL;
1040
1041 cstate = to_dpu_crtc_state(drm_crtc->state);
1042
1043 for (i = 0; i < num_lm; i++) {
1044 int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1045
1046 cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1047 cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1048 cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1049 }
1050
1051 cstate->num_mixers = num_lm;
1052
1053 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1054 int num_blk;
1055 struct dpu_hw_blk *hw_blk[MAX_CHANNELS_PER_ENC];
1056 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1057
1058 if (!dpu_enc->hw_pp[i]) {
1059 DPU_ERROR_ENC(dpu_enc,
1060 "no pp block assigned at idx: %d\n", i);
1061 return;
1062 }
1063
1064 if (!hw_ctl[i]) {
1065 DPU_ERROR_ENC(dpu_enc,
1066 "no ctl block assigned at idx: %d\n", i);
1067 return;
1068 }
1069
1070 phys->hw_pp = dpu_enc->hw_pp[i];
1071 phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1072
1073 num_blk = dpu_rm_get_assigned_resources(&dpu_kms->rm,
1074 global_state, drm_enc->base.id, DPU_HW_BLK_INTF,
1075 hw_blk, ARRAY_SIZE(hw_blk));
1076 for (j = 0; j < num_blk; j++) {
1077 struct dpu_hw_intf *hw_intf;
1078
1079 hw_intf = to_dpu_hw_intf(hw_blk[i]);
1080 if (hw_intf->idx == phys->intf_idx)
1081 phys->hw_intf = hw_intf;
1082 }
1083
1084 if (!phys->hw_intf) {
1085 DPU_ERROR_ENC(dpu_enc,
1086 "no intf block assigned at idx: %d\n", i);
1087 return;
1088 }
1089
1090 phys->connector = conn->state->connector;
1091 if (phys->ops.mode_set)
1092 phys->ops.mode_set(phys, mode, adj_mode);
1093 }
1094 }
1095
_dpu_encoder_virt_enable_helper(struct drm_encoder * drm_enc)1096 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1097 {
1098 struct dpu_encoder_virt *dpu_enc = NULL;
1099 struct msm_drm_private *priv;
1100 int i;
1101
1102 if (!drm_enc || !drm_enc->dev) {
1103 DPU_ERROR("invalid parameters\n");
1104 return;
1105 }
1106
1107 priv = drm_enc->dev->dev_private;
1108
1109 dpu_enc = to_dpu_encoder_virt(drm_enc);
1110 if (!dpu_enc || !dpu_enc->cur_master) {
1111 DPU_ERROR("invalid dpu encoder/master\n");
1112 return;
1113 }
1114
1115
1116 if (dpu_enc->disp_info.intf_type == DRM_MODE_CONNECTOR_DisplayPort &&
1117 dpu_enc->cur_master->hw_mdptop &&
1118 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1119 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1120 dpu_enc->cur_master->hw_mdptop);
1121
1122 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1123
1124 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1125 !WARN_ON(dpu_enc->num_phys_encs == 0)) {
1126 unsigned bpc = dpu_enc->phys_encs[0]->connector->display_info.bpc;
1127 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1128 if (!dpu_enc->hw_pp[i])
1129 continue;
1130 _dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1131 }
1132 }
1133 }
1134
dpu_encoder_virt_runtime_resume(struct drm_encoder * drm_enc)1135 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1136 {
1137 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1138
1139 mutex_lock(&dpu_enc->enc_lock);
1140
1141 if (!dpu_enc->enabled)
1142 goto out;
1143
1144 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1145 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1146 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1147 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1148
1149 _dpu_encoder_virt_enable_helper(drm_enc);
1150
1151 out:
1152 mutex_unlock(&dpu_enc->enc_lock);
1153 }
1154
dpu_encoder_virt_enable(struct drm_encoder * drm_enc)1155 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1156 {
1157 struct dpu_encoder_virt *dpu_enc = NULL;
1158 int ret = 0;
1159 struct msm_drm_private *priv;
1160 struct drm_display_mode *cur_mode = NULL;
1161
1162 if (!drm_enc) {
1163 DPU_ERROR("invalid encoder\n");
1164 return;
1165 }
1166 dpu_enc = to_dpu_encoder_virt(drm_enc);
1167
1168 mutex_lock(&dpu_enc->enc_lock);
1169 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1170 priv = drm_enc->dev->dev_private;
1171
1172 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1173 cur_mode->vdisplay);
1174
1175 /* always enable slave encoder before master */
1176 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1177 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1178
1179 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1180 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1181
1182 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1183 if (ret) {
1184 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1185 ret);
1186 goto out;
1187 }
1188
1189 _dpu_encoder_virt_enable_helper(drm_enc);
1190
1191 if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp) {
1192 ret = msm_dp_display_enable(priv->dp,
1193 drm_enc);
1194 if (ret) {
1195 DPU_ERROR_ENC(dpu_enc, "dp display enable failed: %d\n",
1196 ret);
1197 goto out;
1198 }
1199 }
1200 dpu_enc->enabled = true;
1201
1202 out:
1203 mutex_unlock(&dpu_enc->enc_lock);
1204 }
1205
dpu_encoder_virt_disable(struct drm_encoder * drm_enc)1206 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1207 {
1208 struct dpu_encoder_virt *dpu_enc = NULL;
1209 struct msm_drm_private *priv;
1210 struct dpu_kms *dpu_kms;
1211 int i = 0;
1212
1213 if (!drm_enc) {
1214 DPU_ERROR("invalid encoder\n");
1215 return;
1216 } else if (!drm_enc->dev) {
1217 DPU_ERROR("invalid dev\n");
1218 return;
1219 }
1220
1221 dpu_enc = to_dpu_encoder_virt(drm_enc);
1222 DPU_DEBUG_ENC(dpu_enc, "\n");
1223
1224 mutex_lock(&dpu_enc->enc_lock);
1225 dpu_enc->enabled = false;
1226
1227 priv = drm_enc->dev->dev_private;
1228 dpu_kms = to_dpu_kms(priv->kms);
1229
1230 trace_dpu_enc_disable(DRMID(drm_enc));
1231
1232 /* wait for idle */
1233 dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1234
1235 if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp) {
1236 if (msm_dp_display_pre_disable(priv->dp, drm_enc))
1237 DPU_ERROR_ENC(dpu_enc, "dp display push idle failed\n");
1238 }
1239
1240 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1241
1242 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1243 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1244
1245 if (phys->ops.disable)
1246 phys->ops.disable(phys);
1247 }
1248
1249
1250 /* after phys waits for frame-done, should be no more frames pending */
1251 if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1252 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1253 del_timer_sync(&dpu_enc->frame_done_timer);
1254 }
1255
1256 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1257
1258 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1259 dpu_enc->phys_encs[i]->connector = NULL;
1260 }
1261
1262 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1263
1264 if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS && priv->dp) {
1265 if (msm_dp_display_disable(priv->dp, drm_enc))
1266 DPU_ERROR_ENC(dpu_enc, "dp display disable failed\n");
1267 }
1268
1269 mutex_unlock(&dpu_enc->enc_lock);
1270 }
1271
dpu_encoder_get_intf(struct dpu_mdss_cfg * catalog,enum dpu_intf_type type,u32 controller_id)1272 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
1273 enum dpu_intf_type type, u32 controller_id)
1274 {
1275 int i = 0;
1276
1277 for (i = 0; i < catalog->intf_count; i++) {
1278 if (catalog->intf[i].type == type
1279 && catalog->intf[i].controller_id == controller_id) {
1280 return catalog->intf[i].id;
1281 }
1282 }
1283
1284 return INTF_MAX;
1285 }
1286
dpu_encoder_vblank_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1287 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1288 struct dpu_encoder_phys *phy_enc)
1289 {
1290 struct dpu_encoder_virt *dpu_enc = NULL;
1291 unsigned long lock_flags;
1292
1293 if (!drm_enc || !phy_enc)
1294 return;
1295
1296 DPU_ATRACE_BEGIN("encoder_vblank_callback");
1297 dpu_enc = to_dpu_encoder_virt(drm_enc);
1298
1299 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1300 if (dpu_enc->crtc)
1301 dpu_crtc_vblank_callback(dpu_enc->crtc);
1302 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1303
1304 atomic_inc(&phy_enc->vsync_cnt);
1305 DPU_ATRACE_END("encoder_vblank_callback");
1306 }
1307
dpu_encoder_underrun_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1308 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1309 struct dpu_encoder_phys *phy_enc)
1310 {
1311 if (!phy_enc)
1312 return;
1313
1314 DPU_ATRACE_BEGIN("encoder_underrun_callback");
1315 atomic_inc(&phy_enc->underrun_cnt);
1316 trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1317 atomic_read(&phy_enc->underrun_cnt));
1318 DPU_ATRACE_END("encoder_underrun_callback");
1319 }
1320
dpu_encoder_assign_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc)1321 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1322 {
1323 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1324 unsigned long lock_flags;
1325
1326 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1327 /* crtc should always be cleared before re-assigning */
1328 WARN_ON(crtc && dpu_enc->crtc);
1329 dpu_enc->crtc = crtc;
1330 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1331 }
1332
dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc,bool enable)1333 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1334 struct drm_crtc *crtc, bool enable)
1335 {
1336 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1337 unsigned long lock_flags;
1338 int i;
1339
1340 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1341
1342 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1343 if (dpu_enc->crtc != crtc) {
1344 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1345 return;
1346 }
1347 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1348
1349 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1350 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1351
1352 if (phys->ops.control_vblank_irq)
1353 phys->ops.control_vblank_irq(phys, enable);
1354 }
1355 }
1356
dpu_encoder_register_frame_event_callback(struct drm_encoder * drm_enc,void (* frame_event_cb)(void *,u32 event),void * frame_event_cb_data)1357 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1358 void (*frame_event_cb)(void *, u32 event),
1359 void *frame_event_cb_data)
1360 {
1361 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1362 unsigned long lock_flags;
1363 bool enable;
1364
1365 enable = frame_event_cb ? true : false;
1366
1367 if (!drm_enc) {
1368 DPU_ERROR("invalid encoder\n");
1369 return;
1370 }
1371 trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1372
1373 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1374 dpu_enc->crtc_frame_event_cb = frame_event_cb;
1375 dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1376 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1377 }
1378
dpu_encoder_frame_done_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * ready_phys,u32 event)1379 static void dpu_encoder_frame_done_callback(
1380 struct drm_encoder *drm_enc,
1381 struct dpu_encoder_phys *ready_phys, u32 event)
1382 {
1383 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1384 unsigned int i;
1385
1386 if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1387 | DPU_ENCODER_FRAME_EVENT_ERROR
1388 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1389
1390 if (!dpu_enc->frame_busy_mask[0]) {
1391 /**
1392 * suppress frame_done without waiter,
1393 * likely autorefresh
1394 */
1395 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
1396 event, ready_phys->intf_idx);
1397 return;
1398 }
1399
1400 /* One of the physical encoders has become idle */
1401 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1402 if (dpu_enc->phys_encs[i] == ready_phys) {
1403 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1404 dpu_enc->frame_busy_mask[0]);
1405 clear_bit(i, dpu_enc->frame_busy_mask);
1406 }
1407 }
1408
1409 if (!dpu_enc->frame_busy_mask[0]) {
1410 atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1411 del_timer(&dpu_enc->frame_done_timer);
1412
1413 dpu_encoder_resource_control(drm_enc,
1414 DPU_ENC_RC_EVENT_FRAME_DONE);
1415
1416 if (dpu_enc->crtc_frame_event_cb)
1417 dpu_enc->crtc_frame_event_cb(
1418 dpu_enc->crtc_frame_event_cb_data,
1419 event);
1420 }
1421 } else {
1422 if (dpu_enc->crtc_frame_event_cb)
1423 dpu_enc->crtc_frame_event_cb(
1424 dpu_enc->crtc_frame_event_cb_data, event);
1425 }
1426 }
1427
dpu_encoder_off_work(struct work_struct * work)1428 static void dpu_encoder_off_work(struct work_struct *work)
1429 {
1430 struct dpu_encoder_virt *dpu_enc = container_of(work,
1431 struct dpu_encoder_virt, delayed_off_work.work);
1432
1433 if (!dpu_enc) {
1434 DPU_ERROR("invalid dpu encoder\n");
1435 return;
1436 }
1437
1438 dpu_encoder_resource_control(&dpu_enc->base,
1439 DPU_ENC_RC_EVENT_ENTER_IDLE);
1440
1441 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1442 DPU_ENCODER_FRAME_EVENT_IDLE);
1443 }
1444
1445 /**
1446 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1447 * drm_enc: Pointer to drm encoder structure
1448 * phys: Pointer to physical encoder structure
1449 * extra_flush_bits: Additional bit mask to include in flush trigger
1450 */
_dpu_encoder_trigger_flush(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phys,uint32_t extra_flush_bits)1451 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1452 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1453 {
1454 struct dpu_hw_ctl *ctl;
1455 int pending_kickoff_cnt;
1456 u32 ret = UINT_MAX;
1457
1458 if (!phys->hw_pp) {
1459 DPU_ERROR("invalid pingpong hw\n");
1460 return;
1461 }
1462
1463 ctl = phys->hw_ctl;
1464 if (!ctl->ops.trigger_flush) {
1465 DPU_ERROR("missing trigger cb\n");
1466 return;
1467 }
1468
1469 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1470
1471 if (extra_flush_bits && ctl->ops.update_pending_flush)
1472 ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1473
1474 ctl->ops.trigger_flush(ctl);
1475
1476 if (ctl->ops.get_pending_flush)
1477 ret = ctl->ops.get_pending_flush(ctl);
1478
1479 trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
1480 pending_kickoff_cnt, ctl->idx,
1481 extra_flush_bits, ret);
1482 }
1483
1484 /**
1485 * _dpu_encoder_trigger_start - trigger start for a physical encoder
1486 * phys: Pointer to physical encoder structure
1487 */
_dpu_encoder_trigger_start(struct dpu_encoder_phys * phys)1488 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1489 {
1490 if (!phys) {
1491 DPU_ERROR("invalid argument(s)\n");
1492 return;
1493 }
1494
1495 if (!phys->hw_pp) {
1496 DPU_ERROR("invalid pingpong hw\n");
1497 return;
1498 }
1499
1500 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1501 phys->ops.trigger_start(phys);
1502 }
1503
dpu_encoder_helper_trigger_start(struct dpu_encoder_phys * phys_enc)1504 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1505 {
1506 struct dpu_hw_ctl *ctl;
1507
1508 ctl = phys_enc->hw_ctl;
1509 if (ctl->ops.trigger_start) {
1510 ctl->ops.trigger_start(ctl);
1511 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1512 }
1513 }
1514
dpu_encoder_helper_wait_event_timeout(int32_t drm_id,int32_t hw_id,struct dpu_encoder_wait_info * info)1515 static int dpu_encoder_helper_wait_event_timeout(
1516 int32_t drm_id,
1517 int32_t hw_id,
1518 struct dpu_encoder_wait_info *info)
1519 {
1520 int rc = 0;
1521 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1522 s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1523 s64 time;
1524
1525 do {
1526 rc = wait_event_timeout(*(info->wq),
1527 atomic_read(info->atomic_cnt) == 0, jiffies);
1528 time = ktime_to_ms(ktime_get());
1529
1530 trace_dpu_enc_wait_event_timeout(drm_id, hw_id, rc, time,
1531 expected_time,
1532 atomic_read(info->atomic_cnt));
1533 /* If we timed out, counter is valid and time is less, wait again */
1534 } while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1535 (time < expected_time));
1536
1537 return rc;
1538 }
1539
dpu_encoder_helper_hw_reset(struct dpu_encoder_phys * phys_enc)1540 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1541 {
1542 struct dpu_encoder_virt *dpu_enc;
1543 struct dpu_hw_ctl *ctl;
1544 int rc;
1545
1546 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1547 ctl = phys_enc->hw_ctl;
1548
1549 if (!ctl->ops.reset)
1550 return;
1551
1552 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(phys_enc->parent),
1553 ctl->idx);
1554
1555 rc = ctl->ops.reset(ctl);
1556 if (rc)
1557 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx);
1558
1559 phys_enc->enable_state = DPU_ENC_ENABLED;
1560 }
1561
1562 /**
1563 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1564 * Iterate through the physical encoders and perform consolidated flush
1565 * and/or control start triggering as needed. This is done in the virtual
1566 * encoder rather than the individual physical ones in order to handle
1567 * use cases that require visibility into multiple physical encoders at
1568 * a time.
1569 * dpu_enc: Pointer to virtual encoder structure
1570 */
_dpu_encoder_kickoff_phys(struct dpu_encoder_virt * dpu_enc)1571 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1572 {
1573 struct dpu_hw_ctl *ctl;
1574 uint32_t i, pending_flush;
1575 unsigned long lock_flags;
1576
1577 pending_flush = 0x0;
1578
1579 /* update pending counts and trigger kickoff ctl flush atomically */
1580 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1581
1582 /* don't perform flush/start operations for slave encoders */
1583 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1584 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1585
1586 if (phys->enable_state == DPU_ENC_DISABLED)
1587 continue;
1588
1589 ctl = phys->hw_ctl;
1590
1591 /*
1592 * This is cleared in frame_done worker, which isn't invoked
1593 * for async commits. So don't set this for async, since it'll
1594 * roll over to the next commit.
1595 */
1596 if (phys->split_role != ENC_ROLE_SLAVE)
1597 set_bit(i, dpu_enc->frame_busy_mask);
1598
1599 if (!phys->ops.needs_single_flush ||
1600 !phys->ops.needs_single_flush(phys))
1601 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1602 else if (ctl->ops.get_pending_flush)
1603 pending_flush |= ctl->ops.get_pending_flush(ctl);
1604 }
1605
1606 /* for split flush, combine pending flush masks and send to master */
1607 if (pending_flush && dpu_enc->cur_master) {
1608 _dpu_encoder_trigger_flush(
1609 &dpu_enc->base,
1610 dpu_enc->cur_master,
1611 pending_flush);
1612 }
1613
1614 _dpu_encoder_trigger_start(dpu_enc->cur_master);
1615
1616 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1617 }
1618
dpu_encoder_trigger_kickoff_pending(struct drm_encoder * drm_enc)1619 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1620 {
1621 struct dpu_encoder_virt *dpu_enc;
1622 struct dpu_encoder_phys *phys;
1623 unsigned int i;
1624 struct dpu_hw_ctl *ctl;
1625 struct msm_display_info *disp_info;
1626
1627 if (!drm_enc) {
1628 DPU_ERROR("invalid encoder\n");
1629 return;
1630 }
1631 dpu_enc = to_dpu_encoder_virt(drm_enc);
1632 disp_info = &dpu_enc->disp_info;
1633
1634 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1635 phys = dpu_enc->phys_encs[i];
1636
1637 ctl = phys->hw_ctl;
1638 if (ctl->ops.clear_pending_flush)
1639 ctl->ops.clear_pending_flush(ctl);
1640
1641 /* update only for command mode primary ctl */
1642 if ((phys == dpu_enc->cur_master) &&
1643 (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
1644 && ctl->ops.trigger_pending)
1645 ctl->ops.trigger_pending(ctl);
1646 }
1647 }
1648
_dpu_encoder_calculate_linetime(struct dpu_encoder_virt * dpu_enc,struct drm_display_mode * mode)1649 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1650 struct drm_display_mode *mode)
1651 {
1652 u64 pclk_rate;
1653 u32 pclk_period;
1654 u32 line_time;
1655
1656 /*
1657 * For linetime calculation, only operate on master encoder.
1658 */
1659 if (!dpu_enc->cur_master)
1660 return 0;
1661
1662 if (!dpu_enc->cur_master->ops.get_line_count) {
1663 DPU_ERROR("get_line_count function not defined\n");
1664 return 0;
1665 }
1666
1667 pclk_rate = mode->clock; /* pixel clock in kHz */
1668 if (pclk_rate == 0) {
1669 DPU_ERROR("pclk is 0, cannot calculate line time\n");
1670 return 0;
1671 }
1672
1673 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1674 if (pclk_period == 0) {
1675 DPU_ERROR("pclk period is 0\n");
1676 return 0;
1677 }
1678
1679 /*
1680 * Line time calculation based on Pixel clock and HTOTAL.
1681 * Final unit is in ns.
1682 */
1683 line_time = (pclk_period * mode->htotal) / 1000;
1684 if (line_time == 0) {
1685 DPU_ERROR("line time calculation is 0\n");
1686 return 0;
1687 }
1688
1689 DPU_DEBUG_ENC(dpu_enc,
1690 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1691 pclk_rate, pclk_period, line_time);
1692
1693 return line_time;
1694 }
1695
dpu_encoder_vsync_time(struct drm_encoder * drm_enc,ktime_t * wakeup_time)1696 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1697 {
1698 struct drm_display_mode *mode;
1699 struct dpu_encoder_virt *dpu_enc;
1700 u32 cur_line;
1701 u32 line_time;
1702 u32 vtotal, time_to_vsync;
1703 ktime_t cur_time;
1704
1705 dpu_enc = to_dpu_encoder_virt(drm_enc);
1706
1707 if (!drm_enc->crtc || !drm_enc->crtc->state) {
1708 DPU_ERROR("crtc/crtc state object is NULL\n");
1709 return -EINVAL;
1710 }
1711 mode = &drm_enc->crtc->state->adjusted_mode;
1712
1713 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1714 if (!line_time)
1715 return -EINVAL;
1716
1717 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1718
1719 vtotal = mode->vtotal;
1720 if (cur_line >= vtotal)
1721 time_to_vsync = line_time * vtotal;
1722 else
1723 time_to_vsync = line_time * (vtotal - cur_line);
1724
1725 if (time_to_vsync == 0) {
1726 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1727 vtotal);
1728 return -EINVAL;
1729 }
1730
1731 cur_time = ktime_get();
1732 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1733
1734 DPU_DEBUG_ENC(dpu_enc,
1735 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1736 cur_line, vtotal, time_to_vsync,
1737 ktime_to_ms(cur_time),
1738 ktime_to_ms(*wakeup_time));
1739 return 0;
1740 }
1741
dpu_encoder_vsync_event_handler(struct timer_list * t)1742 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1743 {
1744 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1745 vsync_event_timer);
1746 struct drm_encoder *drm_enc = &dpu_enc->base;
1747 struct msm_drm_private *priv;
1748 struct msm_drm_thread *event_thread;
1749
1750 if (!drm_enc->dev || !drm_enc->crtc) {
1751 DPU_ERROR("invalid parameters\n");
1752 return;
1753 }
1754
1755 priv = drm_enc->dev->dev_private;
1756
1757 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1758 DPU_ERROR("invalid crtc index\n");
1759 return;
1760 }
1761 event_thread = &priv->event_thread[drm_enc->crtc->index];
1762 if (!event_thread) {
1763 DPU_ERROR("event_thread not found for crtc:%d\n",
1764 drm_enc->crtc->index);
1765 return;
1766 }
1767
1768 del_timer(&dpu_enc->vsync_event_timer);
1769 }
1770
dpu_encoder_vsync_event_work_handler(struct kthread_work * work)1771 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1772 {
1773 struct dpu_encoder_virt *dpu_enc = container_of(work,
1774 struct dpu_encoder_virt, vsync_event_work);
1775 ktime_t wakeup_time;
1776
1777 if (!dpu_enc) {
1778 DPU_ERROR("invalid dpu encoder\n");
1779 return;
1780 }
1781
1782 if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time))
1783 return;
1784
1785 trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1786 mod_timer(&dpu_enc->vsync_event_timer,
1787 nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1788 }
1789
dpu_encoder_prepare_for_kickoff(struct drm_encoder * drm_enc)1790 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1791 {
1792 struct dpu_encoder_virt *dpu_enc;
1793 struct dpu_encoder_phys *phys;
1794 bool needs_hw_reset = false;
1795 unsigned int i;
1796
1797 dpu_enc = to_dpu_encoder_virt(drm_enc);
1798
1799 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1800
1801 /* prepare for next kickoff, may include waiting on previous kickoff */
1802 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1803 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1804 phys = dpu_enc->phys_encs[i];
1805 if (phys->ops.prepare_for_kickoff)
1806 phys->ops.prepare_for_kickoff(phys);
1807 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1808 needs_hw_reset = true;
1809 }
1810 DPU_ATRACE_END("enc_prepare_for_kickoff");
1811
1812 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1813
1814 /* if any phys needs reset, reset all phys, in-order */
1815 if (needs_hw_reset) {
1816 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1817 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1818 dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1819 }
1820 }
1821 }
1822
dpu_encoder_kickoff(struct drm_encoder * drm_enc)1823 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1824 {
1825 struct dpu_encoder_virt *dpu_enc;
1826 struct dpu_encoder_phys *phys;
1827 ktime_t wakeup_time;
1828 unsigned long timeout_ms;
1829 unsigned int i;
1830
1831 DPU_ATRACE_BEGIN("encoder_kickoff");
1832 dpu_enc = to_dpu_encoder_virt(drm_enc);
1833
1834 trace_dpu_enc_kickoff(DRMID(drm_enc));
1835
1836 timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1837 drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1838
1839 atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1840 mod_timer(&dpu_enc->frame_done_timer,
1841 jiffies + msecs_to_jiffies(timeout_ms));
1842
1843 /* All phys encs are ready to go, trigger the kickoff */
1844 _dpu_encoder_kickoff_phys(dpu_enc);
1845
1846 /* allow phys encs to handle any post-kickoff business */
1847 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1848 phys = dpu_enc->phys_encs[i];
1849 if (phys->ops.handle_post_kickoff)
1850 phys->ops.handle_post_kickoff(phys);
1851 }
1852
1853 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1854 !dpu_encoder_vsync_time(drm_enc, &wakeup_time)) {
1855 trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1856 ktime_to_ms(wakeup_time));
1857 mod_timer(&dpu_enc->vsync_event_timer,
1858 nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1859 }
1860
1861 DPU_ATRACE_END("encoder_kickoff");
1862 }
1863
dpu_encoder_prepare_commit(struct drm_encoder * drm_enc)1864 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
1865 {
1866 struct dpu_encoder_virt *dpu_enc;
1867 struct dpu_encoder_phys *phys;
1868 int i;
1869
1870 if (!drm_enc) {
1871 DPU_ERROR("invalid encoder\n");
1872 return;
1873 }
1874 dpu_enc = to_dpu_encoder_virt(drm_enc);
1875
1876 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1877 phys = dpu_enc->phys_encs[i];
1878 if (phys->ops.prepare_commit)
1879 phys->ops.prepare_commit(phys);
1880 }
1881 }
1882
1883 #ifdef CONFIG_DEBUG_FS
_dpu_encoder_status_show(struct seq_file * s,void * data)1884 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
1885 {
1886 struct dpu_encoder_virt *dpu_enc = s->private;
1887 int i;
1888
1889 mutex_lock(&dpu_enc->enc_lock);
1890 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1891 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1892
1893 seq_printf(s, "intf:%d vsync:%8d underrun:%8d ",
1894 phys->intf_idx - INTF_0,
1895 atomic_read(&phys->vsync_cnt),
1896 atomic_read(&phys->underrun_cnt));
1897
1898 switch (phys->intf_mode) {
1899 case INTF_MODE_VIDEO:
1900 seq_puts(s, "mode: video\n");
1901 break;
1902 case INTF_MODE_CMD:
1903 seq_puts(s, "mode: command\n");
1904 break;
1905 default:
1906 seq_puts(s, "mode: ???\n");
1907 break;
1908 }
1909 }
1910 mutex_unlock(&dpu_enc->enc_lock);
1911
1912 return 0;
1913 }
1914
1915 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
1916
_dpu_encoder_init_debugfs(struct drm_encoder * drm_enc)1917 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1918 {
1919 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1920 int i;
1921
1922 char name[DPU_NAME_SIZE];
1923
1924 if (!drm_enc->dev) {
1925 DPU_ERROR("invalid encoder or kms\n");
1926 return -EINVAL;
1927 }
1928
1929 snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
1930
1931 /* create overall sub-directory for the encoder */
1932 dpu_enc->debugfs_root = debugfs_create_dir(name,
1933 drm_enc->dev->primary->debugfs_root);
1934
1935 /* don't error check these */
1936 debugfs_create_file("status", 0600,
1937 dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops);
1938
1939 for (i = 0; i < dpu_enc->num_phys_encs; i++)
1940 if (dpu_enc->phys_encs[i]->ops.late_register)
1941 dpu_enc->phys_encs[i]->ops.late_register(
1942 dpu_enc->phys_encs[i],
1943 dpu_enc->debugfs_root);
1944
1945 return 0;
1946 }
1947 #else
_dpu_encoder_init_debugfs(struct drm_encoder * drm_enc)1948 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1949 {
1950 return 0;
1951 }
1952 #endif
1953
dpu_encoder_late_register(struct drm_encoder * encoder)1954 static int dpu_encoder_late_register(struct drm_encoder *encoder)
1955 {
1956 return _dpu_encoder_init_debugfs(encoder);
1957 }
1958
dpu_encoder_early_unregister(struct drm_encoder * encoder)1959 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
1960 {
1961 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
1962
1963 debugfs_remove_recursive(dpu_enc->debugfs_root);
1964 }
1965
dpu_encoder_virt_add_phys_encs(u32 display_caps,struct dpu_encoder_virt * dpu_enc,struct dpu_enc_phys_init_params * params)1966 static int dpu_encoder_virt_add_phys_encs(
1967 u32 display_caps,
1968 struct dpu_encoder_virt *dpu_enc,
1969 struct dpu_enc_phys_init_params *params)
1970 {
1971 struct dpu_encoder_phys *enc = NULL;
1972
1973 DPU_DEBUG_ENC(dpu_enc, "\n");
1974
1975 /*
1976 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
1977 * in this function, check up-front.
1978 */
1979 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
1980 ARRAY_SIZE(dpu_enc->phys_encs)) {
1981 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
1982 dpu_enc->num_phys_encs);
1983 return -EINVAL;
1984 }
1985
1986 if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
1987 enc = dpu_encoder_phys_vid_init(params);
1988
1989 if (IS_ERR_OR_NULL(enc)) {
1990 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
1991 PTR_ERR(enc));
1992 return enc == NULL ? -EINVAL : PTR_ERR(enc);
1993 }
1994
1995 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
1996 ++dpu_enc->num_phys_encs;
1997 }
1998
1999 if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
2000 enc = dpu_encoder_phys_cmd_init(params);
2001
2002 if (IS_ERR_OR_NULL(enc)) {
2003 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2004 PTR_ERR(enc));
2005 return enc == NULL ? -EINVAL : PTR_ERR(enc);
2006 }
2007
2008 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2009 ++dpu_enc->num_phys_encs;
2010 }
2011
2012 if (params->split_role == ENC_ROLE_SLAVE)
2013 dpu_enc->cur_slave = enc;
2014 else
2015 dpu_enc->cur_master = enc;
2016
2017 return 0;
2018 }
2019
2020 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
2021 .handle_vblank_virt = dpu_encoder_vblank_callback,
2022 .handle_underrun_virt = dpu_encoder_underrun_callback,
2023 .handle_frame_done = dpu_encoder_frame_done_callback,
2024 };
2025
dpu_encoder_setup_display(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct msm_display_info * disp_info)2026 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2027 struct dpu_kms *dpu_kms,
2028 struct msm_display_info *disp_info)
2029 {
2030 int ret = 0;
2031 int i = 0;
2032 enum dpu_intf_type intf_type = INTF_NONE;
2033 struct dpu_enc_phys_init_params phys_params;
2034
2035 if (!dpu_enc) {
2036 DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2037 return -EINVAL;
2038 }
2039
2040 dpu_enc->cur_master = NULL;
2041
2042 memset(&phys_params, 0, sizeof(phys_params));
2043 phys_params.dpu_kms = dpu_kms;
2044 phys_params.parent = &dpu_enc->base;
2045 phys_params.parent_ops = &dpu_encoder_parent_ops;
2046 phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2047
2048 DPU_DEBUG("\n");
2049
2050 switch (disp_info->intf_type) {
2051 case DRM_MODE_ENCODER_DSI:
2052 intf_type = INTF_DSI;
2053 break;
2054 case DRM_MODE_ENCODER_TMDS:
2055 intf_type = INTF_DP;
2056 break;
2057 }
2058
2059 WARN_ON(disp_info->num_of_h_tiles < 1);
2060
2061 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2062
2063 if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
2064 (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
2065 dpu_enc->idle_pc_supported =
2066 dpu_kms->catalog->caps->has_idle_pc;
2067
2068 mutex_lock(&dpu_enc->enc_lock);
2069 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2070 /*
2071 * Left-most tile is at index 0, content is controller id
2072 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2073 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2074 */
2075 u32 controller_id = disp_info->h_tile_instance[i];
2076
2077 if (disp_info->num_of_h_tiles > 1) {
2078 if (i == 0)
2079 phys_params.split_role = ENC_ROLE_MASTER;
2080 else
2081 phys_params.split_role = ENC_ROLE_SLAVE;
2082 } else {
2083 phys_params.split_role = ENC_ROLE_SOLO;
2084 }
2085
2086 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2087 i, controller_id, phys_params.split_role);
2088
2089 phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2090 intf_type,
2091 controller_id);
2092 if (phys_params.intf_idx == INTF_MAX) {
2093 DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
2094 intf_type, controller_id);
2095 ret = -EINVAL;
2096 }
2097
2098 if (!ret) {
2099 ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
2100 dpu_enc,
2101 &phys_params);
2102 if (ret)
2103 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2104 }
2105 }
2106
2107 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2108 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2109 atomic_set(&phys->vsync_cnt, 0);
2110 atomic_set(&phys->underrun_cnt, 0);
2111 }
2112 mutex_unlock(&dpu_enc->enc_lock);
2113
2114 return ret;
2115 }
2116
dpu_encoder_frame_done_timeout(struct timer_list * t)2117 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2118 {
2119 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2120 frame_done_timer);
2121 struct drm_encoder *drm_enc = &dpu_enc->base;
2122 u32 event;
2123
2124 if (!drm_enc->dev) {
2125 DPU_ERROR("invalid parameters\n");
2126 return;
2127 }
2128
2129 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2130 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2131 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2132 return;
2133 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2134 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2135 return;
2136 }
2137
2138 DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2139
2140 event = DPU_ENCODER_FRAME_EVENT_ERROR;
2141 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2142 dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2143 }
2144
2145 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2146 .mode_set = dpu_encoder_virt_mode_set,
2147 .disable = dpu_encoder_virt_disable,
2148 .enable = dpu_kms_encoder_enable,
2149 .atomic_check = dpu_encoder_virt_atomic_check,
2150
2151 /* This is called by dpu_kms_encoder_enable */
2152 .commit = dpu_encoder_virt_enable,
2153 };
2154
2155 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2156 .destroy = dpu_encoder_destroy,
2157 .late_register = dpu_encoder_late_register,
2158 .early_unregister = dpu_encoder_early_unregister,
2159 };
2160
dpu_encoder_setup(struct drm_device * dev,struct drm_encoder * enc,struct msm_display_info * disp_info)2161 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2162 struct msm_display_info *disp_info)
2163 {
2164 struct msm_drm_private *priv = dev->dev_private;
2165 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2166 struct drm_encoder *drm_enc = NULL;
2167 struct dpu_encoder_virt *dpu_enc = NULL;
2168 int ret = 0;
2169
2170 dpu_enc = to_dpu_encoder_virt(enc);
2171
2172 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2173 if (ret)
2174 goto fail;
2175
2176 atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2177 timer_setup(&dpu_enc->frame_done_timer,
2178 dpu_encoder_frame_done_timeout, 0);
2179
2180 if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2181 timer_setup(&dpu_enc->vsync_event_timer,
2182 dpu_encoder_vsync_event_handler,
2183 0);
2184
2185
2186 INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2187 dpu_encoder_off_work);
2188 dpu_enc->idle_timeout = IDLE_TIMEOUT;
2189
2190 kthread_init_work(&dpu_enc->vsync_event_work,
2191 dpu_encoder_vsync_event_work_handler);
2192
2193 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2194
2195 DPU_DEBUG_ENC(dpu_enc, "created\n");
2196
2197 return ret;
2198
2199 fail:
2200 DPU_ERROR("failed to create encoder\n");
2201 if (drm_enc)
2202 dpu_encoder_destroy(drm_enc);
2203
2204 return ret;
2205
2206
2207 }
2208
dpu_encoder_init(struct drm_device * dev,int drm_enc_mode)2209 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2210 int drm_enc_mode)
2211 {
2212 struct dpu_encoder_virt *dpu_enc = NULL;
2213 int rc = 0;
2214
2215 dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2216 if (!dpu_enc)
2217 return ERR_PTR(-ENOMEM);
2218
2219 rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2220 drm_enc_mode, NULL);
2221 if (rc) {
2222 devm_kfree(dev->dev, dpu_enc);
2223 return ERR_PTR(rc);
2224 }
2225
2226 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2227
2228 spin_lock_init(&dpu_enc->enc_spinlock);
2229 dpu_enc->enabled = false;
2230 mutex_init(&dpu_enc->enc_lock);
2231 mutex_init(&dpu_enc->rc_lock);
2232
2233 return &dpu_enc->base;
2234 }
2235
dpu_encoder_wait_for_event(struct drm_encoder * drm_enc,enum msm_event_wait event)2236 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2237 enum msm_event_wait event)
2238 {
2239 int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2240 struct dpu_encoder_virt *dpu_enc = NULL;
2241 int i, ret = 0;
2242
2243 if (!drm_enc) {
2244 DPU_ERROR("invalid encoder\n");
2245 return -EINVAL;
2246 }
2247 dpu_enc = to_dpu_encoder_virt(drm_enc);
2248 DPU_DEBUG_ENC(dpu_enc, "\n");
2249
2250 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2251 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2252
2253 switch (event) {
2254 case MSM_ENC_COMMIT_DONE:
2255 fn_wait = phys->ops.wait_for_commit_done;
2256 break;
2257 case MSM_ENC_TX_COMPLETE:
2258 fn_wait = phys->ops.wait_for_tx_complete;
2259 break;
2260 case MSM_ENC_VBLANK:
2261 fn_wait = phys->ops.wait_for_vblank;
2262 break;
2263 default:
2264 DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2265 event);
2266 return -EINVAL;
2267 }
2268
2269 if (fn_wait) {
2270 DPU_ATRACE_BEGIN("wait_for_completion_event");
2271 ret = fn_wait(phys);
2272 DPU_ATRACE_END("wait_for_completion_event");
2273 if (ret)
2274 return ret;
2275 }
2276 }
2277
2278 return ret;
2279 }
2280
dpu_encoder_get_intf_mode(struct drm_encoder * encoder)2281 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2282 {
2283 struct dpu_encoder_virt *dpu_enc = NULL;
2284
2285 if (!encoder) {
2286 DPU_ERROR("invalid encoder\n");
2287 return INTF_MODE_NONE;
2288 }
2289 dpu_enc = to_dpu_encoder_virt(encoder);
2290
2291 if (dpu_enc->cur_master)
2292 return dpu_enc->cur_master->intf_mode;
2293
2294 if (dpu_enc->num_phys_encs)
2295 return dpu_enc->phys_encs[0]->intf_mode;
2296
2297 return INTF_MODE_NONE;
2298 }
2299