1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106
107 #include <trace/events/sched.h>
108
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111
112 /*
113 * Minimum number of threads to boot the kernel
114 */
115 #define MIN_THREADS 20
116
117 /*
118 * Maximum number of threads
119 */
120 #define MAX_THREADS FUTEX_TID_MASK
121
122 /*
123 * Protected counters by write_lock_irq(&tasklist_lock)
124 */
125 unsigned long total_forks; /* Handle normal Linux uptimes. */
126 int nr_threads; /* The idle threads do not count.. */
127
128 static int max_threads; /* tunable limit on nr_threads */
129
130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
131
132 static const char * const resident_page_types[] = {
133 NAMED_ARRAY_INDEX(MM_FILEPAGES),
134 NAMED_ARRAY_INDEX(MM_ANONPAGES),
135 NAMED_ARRAY_INDEX(MM_SWAPENTS),
136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137 };
138
139 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140
141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
142
143 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)144 int lockdep_tasklist_lock_is_held(void)
145 {
146 return lockdep_is_held(&tasklist_lock);
147 }
148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149 #endif /* #ifdef CONFIG_PROVE_RCU */
150
nr_processes(void)151 int nr_processes(void)
152 {
153 int cpu;
154 int total = 0;
155
156 for_each_possible_cpu(cpu)
157 total += per_cpu(process_counts, cpu);
158
159 return total;
160 }
161
arch_release_task_struct(struct task_struct * tsk)162 void __weak arch_release_task_struct(struct task_struct *tsk)
163 {
164 }
165
166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167 static struct kmem_cache *task_struct_cachep;
168
alloc_task_struct_node(int node)169 static inline struct task_struct *alloc_task_struct_node(int node)
170 {
171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172 }
173
free_task_struct(struct task_struct * tsk)174 static inline void free_task_struct(struct task_struct *tsk)
175 {
176 kmem_cache_free(task_struct_cachep, tsk);
177 }
178 #endif
179
180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
181
182 /*
183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184 * kmemcache based allocator.
185 */
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187
188 # ifdef CONFIG_VMAP_STACK
189 /*
190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191 * flush. Try to minimize the number of calls by caching stacks.
192 */
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195
196 struct vm_stack {
197 struct rcu_head rcu;
198 struct vm_struct *stack_vm_area;
199 };
200
try_release_thread_stack_to_cache(struct vm_struct * vm)201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
202 {
203 unsigned int i;
204
205 for (i = 0; i < NR_CACHED_STACKS; i++) {
206 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
207 continue;
208 return true;
209 }
210 return false;
211 }
212
thread_stack_free_rcu(struct rcu_head * rh)213 static void thread_stack_free_rcu(struct rcu_head *rh)
214 {
215 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
216
217 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
218 return;
219
220 vfree(vm_stack);
221 }
222
thread_stack_delayed_free(struct task_struct * tsk)223 static void thread_stack_delayed_free(struct task_struct *tsk)
224 {
225 struct vm_stack *vm_stack = tsk->stack;
226
227 vm_stack->stack_vm_area = tsk->stack_vm_area;
228 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
229 }
230
free_vm_stack_cache(unsigned int cpu)231 static int free_vm_stack_cache(unsigned int cpu)
232 {
233 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
234 int i;
235
236 for (i = 0; i < NR_CACHED_STACKS; i++) {
237 struct vm_struct *vm_stack = cached_vm_stacks[i];
238
239 if (!vm_stack)
240 continue;
241
242 vfree(vm_stack->addr);
243 cached_vm_stacks[i] = NULL;
244 }
245
246 return 0;
247 }
248
memcg_charge_kernel_stack(struct vm_struct * vm)249 static int memcg_charge_kernel_stack(struct vm_struct *vm)
250 {
251 int i;
252 int ret;
253
254 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
255 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
256
257 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
258 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
259 if (ret)
260 goto err;
261 }
262 return 0;
263 err:
264 /*
265 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
266 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
267 * ignore this page.
268 */
269 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
270 memcg_kmem_uncharge_page(vm->pages[i], 0);
271 return ret;
272 }
273
alloc_thread_stack_node(struct task_struct * tsk,int node)274 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
275 {
276 struct vm_struct *vm;
277 void *stack;
278 int i;
279
280 for (i = 0; i < NR_CACHED_STACKS; i++) {
281 struct vm_struct *s;
282
283 s = this_cpu_xchg(cached_stacks[i], NULL);
284
285 if (!s)
286 continue;
287
288 /* Reset stack metadata. */
289 kasan_unpoison_range(s->addr, THREAD_SIZE);
290
291 stack = kasan_reset_tag(s->addr);
292
293 /* Clear stale pointers from reused stack. */
294 memset(stack, 0, THREAD_SIZE);
295
296 if (memcg_charge_kernel_stack(s)) {
297 vfree(s->addr);
298 return -ENOMEM;
299 }
300
301 tsk->stack_vm_area = s;
302 tsk->stack = stack;
303 return 0;
304 }
305
306 /*
307 * Allocated stacks are cached and later reused by new threads,
308 * so memcg accounting is performed manually on assigning/releasing
309 * stacks to tasks. Drop __GFP_ACCOUNT.
310 */
311 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
312 VMALLOC_START, VMALLOC_END,
313 THREADINFO_GFP & ~__GFP_ACCOUNT,
314 PAGE_KERNEL,
315 0, node, __builtin_return_address(0));
316 if (!stack)
317 return -ENOMEM;
318
319 vm = find_vm_area(stack);
320 if (memcg_charge_kernel_stack(vm)) {
321 vfree(stack);
322 return -ENOMEM;
323 }
324 /*
325 * We can't call find_vm_area() in interrupt context, and
326 * free_thread_stack() can be called in interrupt context,
327 * so cache the vm_struct.
328 */
329 tsk->stack_vm_area = vm;
330 stack = kasan_reset_tag(stack);
331 tsk->stack = stack;
332 return 0;
333 }
334
free_thread_stack(struct task_struct * tsk)335 static void free_thread_stack(struct task_struct *tsk)
336 {
337 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
338 thread_stack_delayed_free(tsk);
339
340 tsk->stack = NULL;
341 tsk->stack_vm_area = NULL;
342 }
343
344 # else /* !CONFIG_VMAP_STACK */
345
thread_stack_free_rcu(struct rcu_head * rh)346 static void thread_stack_free_rcu(struct rcu_head *rh)
347 {
348 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
349 }
350
thread_stack_delayed_free(struct task_struct * tsk)351 static void thread_stack_delayed_free(struct task_struct *tsk)
352 {
353 struct rcu_head *rh = tsk->stack;
354
355 call_rcu(rh, thread_stack_free_rcu);
356 }
357
alloc_thread_stack_node(struct task_struct * tsk,int node)358 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
359 {
360 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
361 THREAD_SIZE_ORDER);
362
363 if (likely(page)) {
364 tsk->stack = kasan_reset_tag(page_address(page));
365 return 0;
366 }
367 return -ENOMEM;
368 }
369
free_thread_stack(struct task_struct * tsk)370 static void free_thread_stack(struct task_struct *tsk)
371 {
372 thread_stack_delayed_free(tsk);
373 tsk->stack = NULL;
374 }
375
376 # endif /* CONFIG_VMAP_STACK */
377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
378
379 static struct kmem_cache *thread_stack_cache;
380
thread_stack_free_rcu(struct rcu_head * rh)381 static void thread_stack_free_rcu(struct rcu_head *rh)
382 {
383 kmem_cache_free(thread_stack_cache, rh);
384 }
385
thread_stack_delayed_free(struct task_struct * tsk)386 static void thread_stack_delayed_free(struct task_struct *tsk)
387 {
388 struct rcu_head *rh = tsk->stack;
389
390 call_rcu(rh, thread_stack_free_rcu);
391 }
392
alloc_thread_stack_node(struct task_struct * tsk,int node)393 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
394 {
395 unsigned long *stack;
396 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
397 stack = kasan_reset_tag(stack);
398 tsk->stack = stack;
399 return stack ? 0 : -ENOMEM;
400 }
401
free_thread_stack(struct task_struct * tsk)402 static void free_thread_stack(struct task_struct *tsk)
403 {
404 thread_stack_delayed_free(tsk);
405 tsk->stack = NULL;
406 }
407
thread_stack_cache_init(void)408 void thread_stack_cache_init(void)
409 {
410 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
411 THREAD_SIZE, THREAD_SIZE, 0, 0,
412 THREAD_SIZE, NULL);
413 BUG_ON(thread_stack_cache == NULL);
414 }
415
416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
417 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
418
alloc_thread_stack_node(struct task_struct * tsk,int node)419 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
420 {
421 unsigned long *stack;
422
423 stack = arch_alloc_thread_stack_node(tsk, node);
424 tsk->stack = stack;
425 return stack ? 0 : -ENOMEM;
426 }
427
free_thread_stack(struct task_struct * tsk)428 static void free_thread_stack(struct task_struct *tsk)
429 {
430 arch_free_thread_stack(tsk);
431 tsk->stack = NULL;
432 }
433
434 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
435
436 /* SLAB cache for signal_struct structures (tsk->signal) */
437 static struct kmem_cache *signal_cachep;
438
439 /* SLAB cache for sighand_struct structures (tsk->sighand) */
440 struct kmem_cache *sighand_cachep;
441
442 /* SLAB cache for files_struct structures (tsk->files) */
443 struct kmem_cache *files_cachep;
444
445 /* SLAB cache for fs_struct structures (tsk->fs) */
446 struct kmem_cache *fs_cachep;
447
448 /* SLAB cache for vm_area_struct structures */
449 static struct kmem_cache *vm_area_cachep;
450
451 /* SLAB cache for mm_struct structures (tsk->mm) */
452 static struct kmem_cache *mm_cachep;
453
vm_area_alloc(struct mm_struct * mm)454 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
455 {
456 struct vm_area_struct *vma;
457
458 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
459 if (vma)
460 vma_init(vma, mm);
461 return vma;
462 }
463
vm_area_dup(struct vm_area_struct * orig)464 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
465 {
466 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
467
468 if (new) {
469 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
470 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
471 /*
472 * orig->shared.rb may be modified concurrently, but the clone
473 * will be reinitialized.
474 */
475 *new = data_race(*orig);
476 INIT_LIST_HEAD(&new->anon_vma_chain);
477 dup_anon_vma_name(orig, new);
478 }
479 return new;
480 }
481
vm_area_free(struct vm_area_struct * vma)482 void vm_area_free(struct vm_area_struct *vma)
483 {
484 free_anon_vma_name(vma);
485 kmem_cache_free(vm_area_cachep, vma);
486 }
487
account_kernel_stack(struct task_struct * tsk,int account)488 static void account_kernel_stack(struct task_struct *tsk, int account)
489 {
490 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
491 struct vm_struct *vm = task_stack_vm_area(tsk);
492 int i;
493
494 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
495 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
496 account * (PAGE_SIZE / 1024));
497 } else {
498 void *stack = task_stack_page(tsk);
499
500 /* All stack pages are in the same node. */
501 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
502 account * (THREAD_SIZE / 1024));
503 }
504 }
505
exit_task_stack_account(struct task_struct * tsk)506 void exit_task_stack_account(struct task_struct *tsk)
507 {
508 account_kernel_stack(tsk, -1);
509
510 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
511 struct vm_struct *vm;
512 int i;
513
514 vm = task_stack_vm_area(tsk);
515 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
516 memcg_kmem_uncharge_page(vm->pages[i], 0);
517 }
518 }
519
release_task_stack(struct task_struct * tsk)520 static void release_task_stack(struct task_struct *tsk)
521 {
522 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
523 return; /* Better to leak the stack than to free prematurely */
524
525 free_thread_stack(tsk);
526 }
527
528 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)529 void put_task_stack(struct task_struct *tsk)
530 {
531 if (refcount_dec_and_test(&tsk->stack_refcount))
532 release_task_stack(tsk);
533 }
534 #endif
535
free_task(struct task_struct * tsk)536 void free_task(struct task_struct *tsk)
537 {
538 release_user_cpus_ptr(tsk);
539 scs_release(tsk);
540
541 #ifndef CONFIG_THREAD_INFO_IN_TASK
542 /*
543 * The task is finally done with both the stack and thread_info,
544 * so free both.
545 */
546 release_task_stack(tsk);
547 #else
548 /*
549 * If the task had a separate stack allocation, it should be gone
550 * by now.
551 */
552 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
553 #endif
554 rt_mutex_debug_task_free(tsk);
555 ftrace_graph_exit_task(tsk);
556 arch_release_task_struct(tsk);
557 if (tsk->flags & PF_KTHREAD)
558 free_kthread_struct(tsk);
559 free_task_struct(tsk);
560 }
561 EXPORT_SYMBOL(free_task);
562
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)563 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
564 {
565 struct file *exe_file;
566
567 exe_file = get_mm_exe_file(oldmm);
568 RCU_INIT_POINTER(mm->exe_file, exe_file);
569 /*
570 * We depend on the oldmm having properly denied write access to the
571 * exe_file already.
572 */
573 if (exe_file && deny_write_access(exe_file))
574 pr_warn_once("deny_write_access() failed in %s\n", __func__);
575 }
576
577 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)578 static __latent_entropy int dup_mmap(struct mm_struct *mm,
579 struct mm_struct *oldmm)
580 {
581 struct vm_area_struct *mpnt, *tmp;
582 int retval;
583 unsigned long charge = 0;
584 LIST_HEAD(uf);
585 MA_STATE(old_mas, &oldmm->mm_mt, 0, 0);
586 MA_STATE(mas, &mm->mm_mt, 0, 0);
587
588 uprobe_start_dup_mmap();
589 if (mmap_write_lock_killable(oldmm)) {
590 retval = -EINTR;
591 goto fail_uprobe_end;
592 }
593 flush_cache_dup_mm(oldmm);
594 uprobe_dup_mmap(oldmm, mm);
595 /*
596 * Not linked in yet - no deadlock potential:
597 */
598 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
599
600 /* No ordering required: file already has been exposed. */
601 dup_mm_exe_file(mm, oldmm);
602
603 mm->total_vm = oldmm->total_vm;
604 mm->data_vm = oldmm->data_vm;
605 mm->exec_vm = oldmm->exec_vm;
606 mm->stack_vm = oldmm->stack_vm;
607
608 retval = ksm_fork(mm, oldmm);
609 if (retval)
610 goto out;
611 khugepaged_fork(mm, oldmm);
612
613 retval = mas_expected_entries(&mas, oldmm->map_count);
614 if (retval)
615 goto out;
616
617 mas_for_each(&old_mas, mpnt, ULONG_MAX) {
618 struct file *file;
619
620 if (mpnt->vm_flags & VM_DONTCOPY) {
621 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
622 continue;
623 }
624 charge = 0;
625 /*
626 * Don't duplicate many vmas if we've been oom-killed (for
627 * example)
628 */
629 if (fatal_signal_pending(current)) {
630 retval = -EINTR;
631 goto loop_out;
632 }
633 if (mpnt->vm_flags & VM_ACCOUNT) {
634 unsigned long len = vma_pages(mpnt);
635
636 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
637 goto fail_nomem;
638 charge = len;
639 }
640 tmp = vm_area_dup(mpnt);
641 if (!tmp)
642 goto fail_nomem;
643 retval = vma_dup_policy(mpnt, tmp);
644 if (retval)
645 goto fail_nomem_policy;
646 tmp->vm_mm = mm;
647 retval = dup_userfaultfd(tmp, &uf);
648 if (retval)
649 goto fail_nomem_anon_vma_fork;
650 if (tmp->vm_flags & VM_WIPEONFORK) {
651 /*
652 * VM_WIPEONFORK gets a clean slate in the child.
653 * Don't prepare anon_vma until fault since we don't
654 * copy page for current vma.
655 */
656 tmp->anon_vma = NULL;
657 } else if (anon_vma_fork(tmp, mpnt))
658 goto fail_nomem_anon_vma_fork;
659 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
660 file = tmp->vm_file;
661 if (file) {
662 struct address_space *mapping = file->f_mapping;
663
664 get_file(file);
665 i_mmap_lock_write(mapping);
666 if (tmp->vm_flags & VM_SHARED)
667 mapping_allow_writable(mapping);
668 flush_dcache_mmap_lock(mapping);
669 /* insert tmp into the share list, just after mpnt */
670 vma_interval_tree_insert_after(tmp, mpnt,
671 &mapping->i_mmap);
672 flush_dcache_mmap_unlock(mapping);
673 i_mmap_unlock_write(mapping);
674 }
675
676 /*
677 * Copy/update hugetlb private vma information.
678 */
679 if (is_vm_hugetlb_page(tmp))
680 hugetlb_dup_vma_private(tmp);
681
682 /* Link the vma into the MT */
683 mas.index = tmp->vm_start;
684 mas.last = tmp->vm_end - 1;
685 mas_store(&mas, tmp);
686 if (mas_is_err(&mas))
687 goto fail_nomem_mas_store;
688
689 mm->map_count++;
690 if (!(tmp->vm_flags & VM_WIPEONFORK))
691 retval = copy_page_range(tmp, mpnt);
692
693 if (tmp->vm_ops && tmp->vm_ops->open)
694 tmp->vm_ops->open(tmp);
695
696 if (retval)
697 goto loop_out;
698 }
699 /* a new mm has just been created */
700 retval = arch_dup_mmap(oldmm, mm);
701 loop_out:
702 mas_destroy(&mas);
703 out:
704 mmap_write_unlock(mm);
705 flush_tlb_mm(oldmm);
706 mmap_write_unlock(oldmm);
707 dup_userfaultfd_complete(&uf);
708 fail_uprobe_end:
709 uprobe_end_dup_mmap();
710 return retval;
711
712 fail_nomem_mas_store:
713 unlink_anon_vmas(tmp);
714 fail_nomem_anon_vma_fork:
715 mpol_put(vma_policy(tmp));
716 fail_nomem_policy:
717 vm_area_free(tmp);
718 fail_nomem:
719 retval = -ENOMEM;
720 vm_unacct_memory(charge);
721 goto loop_out;
722 }
723
mm_alloc_pgd(struct mm_struct * mm)724 static inline int mm_alloc_pgd(struct mm_struct *mm)
725 {
726 mm->pgd = pgd_alloc(mm);
727 if (unlikely(!mm->pgd))
728 return -ENOMEM;
729 return 0;
730 }
731
mm_free_pgd(struct mm_struct * mm)732 static inline void mm_free_pgd(struct mm_struct *mm)
733 {
734 pgd_free(mm, mm->pgd);
735 }
736 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)737 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
738 {
739 mmap_write_lock(oldmm);
740 dup_mm_exe_file(mm, oldmm);
741 mmap_write_unlock(oldmm);
742 return 0;
743 }
744 #define mm_alloc_pgd(mm) (0)
745 #define mm_free_pgd(mm)
746 #endif /* CONFIG_MMU */
747
check_mm(struct mm_struct * mm)748 static void check_mm(struct mm_struct *mm)
749 {
750 int i;
751
752 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
753 "Please make sure 'struct resident_page_types[]' is updated as well");
754
755 for (i = 0; i < NR_MM_COUNTERS; i++) {
756 long x = atomic_long_read(&mm->rss_stat.count[i]);
757
758 if (unlikely(x))
759 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
760 mm, resident_page_types[i], x);
761 }
762
763 if (mm_pgtables_bytes(mm))
764 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
765 mm_pgtables_bytes(mm));
766
767 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
768 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
769 #endif
770 }
771
772 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
773 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
774
775 /*
776 * Called when the last reference to the mm
777 * is dropped: either by a lazy thread or by
778 * mmput. Free the page directory and the mm.
779 */
__mmdrop(struct mm_struct * mm)780 void __mmdrop(struct mm_struct *mm)
781 {
782 BUG_ON(mm == &init_mm);
783 WARN_ON_ONCE(mm == current->mm);
784 WARN_ON_ONCE(mm == current->active_mm);
785 mm_free_pgd(mm);
786 destroy_context(mm);
787 mmu_notifier_subscriptions_destroy(mm);
788 check_mm(mm);
789 put_user_ns(mm->user_ns);
790 mm_pasid_drop(mm);
791 free_mm(mm);
792 }
793 EXPORT_SYMBOL_GPL(__mmdrop);
794
mmdrop_async_fn(struct work_struct * work)795 static void mmdrop_async_fn(struct work_struct *work)
796 {
797 struct mm_struct *mm;
798
799 mm = container_of(work, struct mm_struct, async_put_work);
800 __mmdrop(mm);
801 }
802
mmdrop_async(struct mm_struct * mm)803 static void mmdrop_async(struct mm_struct *mm)
804 {
805 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
806 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
807 schedule_work(&mm->async_put_work);
808 }
809 }
810
free_signal_struct(struct signal_struct * sig)811 static inline void free_signal_struct(struct signal_struct *sig)
812 {
813 taskstats_tgid_free(sig);
814 sched_autogroup_exit(sig);
815 /*
816 * __mmdrop is not safe to call from softirq context on x86 due to
817 * pgd_dtor so postpone it to the async context
818 */
819 if (sig->oom_mm)
820 mmdrop_async(sig->oom_mm);
821 kmem_cache_free(signal_cachep, sig);
822 }
823
put_signal_struct(struct signal_struct * sig)824 static inline void put_signal_struct(struct signal_struct *sig)
825 {
826 if (refcount_dec_and_test(&sig->sigcnt))
827 free_signal_struct(sig);
828 }
829
__put_task_struct(struct task_struct * tsk)830 void __put_task_struct(struct task_struct *tsk)
831 {
832 WARN_ON(!tsk->exit_state);
833 WARN_ON(refcount_read(&tsk->usage));
834 WARN_ON(tsk == current);
835
836 io_uring_free(tsk);
837 cgroup_free(tsk);
838 task_numa_free(tsk, true);
839 security_task_free(tsk);
840 bpf_task_storage_free(tsk);
841 exit_creds(tsk);
842 delayacct_tsk_free(tsk);
843 put_signal_struct(tsk->signal);
844 sched_core_free(tsk);
845 free_task(tsk);
846 }
847 EXPORT_SYMBOL_GPL(__put_task_struct);
848
arch_task_cache_init(void)849 void __init __weak arch_task_cache_init(void) { }
850
851 /*
852 * set_max_threads
853 */
set_max_threads(unsigned int max_threads_suggested)854 static void set_max_threads(unsigned int max_threads_suggested)
855 {
856 u64 threads;
857 unsigned long nr_pages = totalram_pages();
858
859 /*
860 * The number of threads shall be limited such that the thread
861 * structures may only consume a small part of the available memory.
862 */
863 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
864 threads = MAX_THREADS;
865 else
866 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
867 (u64) THREAD_SIZE * 8UL);
868
869 if (threads > max_threads_suggested)
870 threads = max_threads_suggested;
871
872 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
873 }
874
875 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
876 /* Initialized by the architecture: */
877 int arch_task_struct_size __read_mostly;
878 #endif
879
880 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)881 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
882 {
883 /* Fetch thread_struct whitelist for the architecture. */
884 arch_thread_struct_whitelist(offset, size);
885
886 /*
887 * Handle zero-sized whitelist or empty thread_struct, otherwise
888 * adjust offset to position of thread_struct in task_struct.
889 */
890 if (unlikely(*size == 0))
891 *offset = 0;
892 else
893 *offset += offsetof(struct task_struct, thread);
894 }
895 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
896
fork_init(void)897 void __init fork_init(void)
898 {
899 int i;
900 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
901 #ifndef ARCH_MIN_TASKALIGN
902 #define ARCH_MIN_TASKALIGN 0
903 #endif
904 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
905 unsigned long useroffset, usersize;
906
907 /* create a slab on which task_structs can be allocated */
908 task_struct_whitelist(&useroffset, &usersize);
909 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
910 arch_task_struct_size, align,
911 SLAB_PANIC|SLAB_ACCOUNT,
912 useroffset, usersize, NULL);
913 #endif
914
915 /* do the arch specific task caches init */
916 arch_task_cache_init();
917
918 set_max_threads(MAX_THREADS);
919
920 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
921 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
922 init_task.signal->rlim[RLIMIT_SIGPENDING] =
923 init_task.signal->rlim[RLIMIT_NPROC];
924
925 for (i = 0; i < UCOUNT_COUNTS; i++)
926 init_user_ns.ucount_max[i] = max_threads/2;
927
928 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
929 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
930 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
931 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
932
933 #ifdef CONFIG_VMAP_STACK
934 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
935 NULL, free_vm_stack_cache);
936 #endif
937
938 scs_init();
939
940 lockdep_init_task(&init_task);
941 uprobes_init();
942 }
943
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)944 int __weak arch_dup_task_struct(struct task_struct *dst,
945 struct task_struct *src)
946 {
947 *dst = *src;
948 return 0;
949 }
950
set_task_stack_end_magic(struct task_struct * tsk)951 void set_task_stack_end_magic(struct task_struct *tsk)
952 {
953 unsigned long *stackend;
954
955 stackend = end_of_stack(tsk);
956 *stackend = STACK_END_MAGIC; /* for overflow detection */
957 }
958
dup_task_struct(struct task_struct * orig,int node)959 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
960 {
961 struct task_struct *tsk;
962 int err;
963
964 if (node == NUMA_NO_NODE)
965 node = tsk_fork_get_node(orig);
966 tsk = alloc_task_struct_node(node);
967 if (!tsk)
968 return NULL;
969
970 err = arch_dup_task_struct(tsk, orig);
971 if (err)
972 goto free_tsk;
973
974 err = alloc_thread_stack_node(tsk, node);
975 if (err)
976 goto free_tsk;
977
978 #ifdef CONFIG_THREAD_INFO_IN_TASK
979 refcount_set(&tsk->stack_refcount, 1);
980 #endif
981 account_kernel_stack(tsk, 1);
982
983 err = scs_prepare(tsk, node);
984 if (err)
985 goto free_stack;
986
987 #ifdef CONFIG_SECCOMP
988 /*
989 * We must handle setting up seccomp filters once we're under
990 * the sighand lock in case orig has changed between now and
991 * then. Until then, filter must be NULL to avoid messing up
992 * the usage counts on the error path calling free_task.
993 */
994 tsk->seccomp.filter = NULL;
995 #endif
996
997 setup_thread_stack(tsk, orig);
998 clear_user_return_notifier(tsk);
999 clear_tsk_need_resched(tsk);
1000 set_task_stack_end_magic(tsk);
1001 clear_syscall_work_syscall_user_dispatch(tsk);
1002
1003 #ifdef CONFIG_STACKPROTECTOR
1004 tsk->stack_canary = get_random_canary();
1005 #endif
1006 if (orig->cpus_ptr == &orig->cpus_mask)
1007 tsk->cpus_ptr = &tsk->cpus_mask;
1008 dup_user_cpus_ptr(tsk, orig, node);
1009
1010 /*
1011 * One for the user space visible state that goes away when reaped.
1012 * One for the scheduler.
1013 */
1014 refcount_set(&tsk->rcu_users, 2);
1015 /* One for the rcu users */
1016 refcount_set(&tsk->usage, 1);
1017 #ifdef CONFIG_BLK_DEV_IO_TRACE
1018 tsk->btrace_seq = 0;
1019 #endif
1020 tsk->splice_pipe = NULL;
1021 tsk->task_frag.page = NULL;
1022 tsk->wake_q.next = NULL;
1023 tsk->worker_private = NULL;
1024
1025 kcov_task_init(tsk);
1026 kmsan_task_create(tsk);
1027 kmap_local_fork(tsk);
1028
1029 #ifdef CONFIG_FAULT_INJECTION
1030 tsk->fail_nth = 0;
1031 #endif
1032
1033 #ifdef CONFIG_BLK_CGROUP
1034 tsk->throttle_queue = NULL;
1035 tsk->use_memdelay = 0;
1036 #endif
1037
1038 #ifdef CONFIG_IOMMU_SVA
1039 tsk->pasid_activated = 0;
1040 #endif
1041
1042 #ifdef CONFIG_MEMCG
1043 tsk->active_memcg = NULL;
1044 #endif
1045
1046 #ifdef CONFIG_CPU_SUP_INTEL
1047 tsk->reported_split_lock = 0;
1048 #endif
1049
1050 return tsk;
1051
1052 free_stack:
1053 exit_task_stack_account(tsk);
1054 free_thread_stack(tsk);
1055 free_tsk:
1056 free_task_struct(tsk);
1057 return NULL;
1058 }
1059
1060 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1061
1062 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1063
coredump_filter_setup(char * s)1064 static int __init coredump_filter_setup(char *s)
1065 {
1066 default_dump_filter =
1067 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1068 MMF_DUMP_FILTER_MASK;
1069 return 1;
1070 }
1071
1072 __setup("coredump_filter=", coredump_filter_setup);
1073
1074 #include <linux/init_task.h>
1075
mm_init_aio(struct mm_struct * mm)1076 static void mm_init_aio(struct mm_struct *mm)
1077 {
1078 #ifdef CONFIG_AIO
1079 spin_lock_init(&mm->ioctx_lock);
1080 mm->ioctx_table = NULL;
1081 #endif
1082 }
1083
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1084 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1085 struct task_struct *p)
1086 {
1087 #ifdef CONFIG_MEMCG
1088 if (mm->owner == p)
1089 WRITE_ONCE(mm->owner, NULL);
1090 #endif
1091 }
1092
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1093 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1094 {
1095 #ifdef CONFIG_MEMCG
1096 mm->owner = p;
1097 #endif
1098 }
1099
mm_init_uprobes_state(struct mm_struct * mm)1100 static void mm_init_uprobes_state(struct mm_struct *mm)
1101 {
1102 #ifdef CONFIG_UPROBES
1103 mm->uprobes_state.xol_area = NULL;
1104 #endif
1105 }
1106
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1107 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1108 struct user_namespace *user_ns)
1109 {
1110 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1111 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1112 atomic_set(&mm->mm_users, 1);
1113 atomic_set(&mm->mm_count, 1);
1114 seqcount_init(&mm->write_protect_seq);
1115 mmap_init_lock(mm);
1116 INIT_LIST_HEAD(&mm->mmlist);
1117 mm_pgtables_bytes_init(mm);
1118 mm->map_count = 0;
1119 mm->locked_vm = 0;
1120 atomic64_set(&mm->pinned_vm, 0);
1121 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1122 spin_lock_init(&mm->page_table_lock);
1123 spin_lock_init(&mm->arg_lock);
1124 mm_init_cpumask(mm);
1125 mm_init_aio(mm);
1126 mm_init_owner(mm, p);
1127 mm_pasid_init(mm);
1128 RCU_INIT_POINTER(mm->exe_file, NULL);
1129 mmu_notifier_subscriptions_init(mm);
1130 init_tlb_flush_pending(mm);
1131 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1132 mm->pmd_huge_pte = NULL;
1133 #endif
1134 mm_init_uprobes_state(mm);
1135 hugetlb_count_init(mm);
1136
1137 if (current->mm) {
1138 mm->flags = current->mm->flags & MMF_INIT_MASK;
1139 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1140 } else {
1141 mm->flags = default_dump_filter;
1142 mm->def_flags = 0;
1143 }
1144
1145 if (mm_alloc_pgd(mm))
1146 goto fail_nopgd;
1147
1148 if (init_new_context(p, mm))
1149 goto fail_nocontext;
1150
1151 mm->user_ns = get_user_ns(user_ns);
1152 lru_gen_init_mm(mm);
1153 return mm;
1154
1155 fail_nocontext:
1156 mm_free_pgd(mm);
1157 fail_nopgd:
1158 free_mm(mm);
1159 return NULL;
1160 }
1161
1162 /*
1163 * Allocate and initialize an mm_struct.
1164 */
mm_alloc(void)1165 struct mm_struct *mm_alloc(void)
1166 {
1167 struct mm_struct *mm;
1168
1169 mm = allocate_mm();
1170 if (!mm)
1171 return NULL;
1172
1173 memset(mm, 0, sizeof(*mm));
1174 return mm_init(mm, current, current_user_ns());
1175 }
1176
__mmput(struct mm_struct * mm)1177 static inline void __mmput(struct mm_struct *mm)
1178 {
1179 VM_BUG_ON(atomic_read(&mm->mm_users));
1180
1181 uprobe_clear_state(mm);
1182 exit_aio(mm);
1183 ksm_exit(mm);
1184 khugepaged_exit(mm); /* must run before exit_mmap */
1185 exit_mmap(mm);
1186 mm_put_huge_zero_page(mm);
1187 set_mm_exe_file(mm, NULL);
1188 if (!list_empty(&mm->mmlist)) {
1189 spin_lock(&mmlist_lock);
1190 list_del(&mm->mmlist);
1191 spin_unlock(&mmlist_lock);
1192 }
1193 if (mm->binfmt)
1194 module_put(mm->binfmt->module);
1195 lru_gen_del_mm(mm);
1196 mmdrop(mm);
1197 }
1198
1199 /*
1200 * Decrement the use count and release all resources for an mm.
1201 */
mmput(struct mm_struct * mm)1202 void mmput(struct mm_struct *mm)
1203 {
1204 might_sleep();
1205
1206 if (atomic_dec_and_test(&mm->mm_users))
1207 __mmput(mm);
1208 }
1209 EXPORT_SYMBOL_GPL(mmput);
1210
1211 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1212 static void mmput_async_fn(struct work_struct *work)
1213 {
1214 struct mm_struct *mm = container_of(work, struct mm_struct,
1215 async_put_work);
1216
1217 __mmput(mm);
1218 }
1219
mmput_async(struct mm_struct * mm)1220 void mmput_async(struct mm_struct *mm)
1221 {
1222 if (atomic_dec_and_test(&mm->mm_users)) {
1223 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1224 schedule_work(&mm->async_put_work);
1225 }
1226 }
1227 EXPORT_SYMBOL_GPL(mmput_async);
1228 #endif
1229
1230 /**
1231 * set_mm_exe_file - change a reference to the mm's executable file
1232 *
1233 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1234 *
1235 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1236 * invocations: in mmput() nobody alive left, in execve task is single
1237 * threaded.
1238 *
1239 * Can only fail if new_exe_file != NULL.
1240 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1241 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1242 {
1243 struct file *old_exe_file;
1244
1245 /*
1246 * It is safe to dereference the exe_file without RCU as
1247 * this function is only called if nobody else can access
1248 * this mm -- see comment above for justification.
1249 */
1250 old_exe_file = rcu_dereference_raw(mm->exe_file);
1251
1252 if (new_exe_file) {
1253 /*
1254 * We expect the caller (i.e., sys_execve) to already denied
1255 * write access, so this is unlikely to fail.
1256 */
1257 if (unlikely(deny_write_access(new_exe_file)))
1258 return -EACCES;
1259 get_file(new_exe_file);
1260 }
1261 rcu_assign_pointer(mm->exe_file, new_exe_file);
1262 if (old_exe_file) {
1263 allow_write_access(old_exe_file);
1264 fput(old_exe_file);
1265 }
1266 return 0;
1267 }
1268
1269 /**
1270 * replace_mm_exe_file - replace a reference to the mm's executable file
1271 *
1272 * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1273 * dealing with concurrent invocation and without grabbing the mmap lock in
1274 * write mode.
1275 *
1276 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1277 */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1278 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1279 {
1280 struct vm_area_struct *vma;
1281 struct file *old_exe_file;
1282 int ret = 0;
1283
1284 /* Forbid mm->exe_file change if old file still mapped. */
1285 old_exe_file = get_mm_exe_file(mm);
1286 if (old_exe_file) {
1287 VMA_ITERATOR(vmi, mm, 0);
1288 mmap_read_lock(mm);
1289 for_each_vma(vmi, vma) {
1290 if (!vma->vm_file)
1291 continue;
1292 if (path_equal(&vma->vm_file->f_path,
1293 &old_exe_file->f_path)) {
1294 ret = -EBUSY;
1295 break;
1296 }
1297 }
1298 mmap_read_unlock(mm);
1299 fput(old_exe_file);
1300 if (ret)
1301 return ret;
1302 }
1303
1304 /* set the new file, lockless */
1305 ret = deny_write_access(new_exe_file);
1306 if (ret)
1307 return -EACCES;
1308 get_file(new_exe_file);
1309
1310 old_exe_file = xchg(&mm->exe_file, new_exe_file);
1311 if (old_exe_file) {
1312 /*
1313 * Don't race with dup_mmap() getting the file and disallowing
1314 * write access while someone might open the file writable.
1315 */
1316 mmap_read_lock(mm);
1317 allow_write_access(old_exe_file);
1318 fput(old_exe_file);
1319 mmap_read_unlock(mm);
1320 }
1321 return 0;
1322 }
1323
1324 /**
1325 * get_mm_exe_file - acquire a reference to the mm's executable file
1326 *
1327 * Returns %NULL if mm has no associated executable file.
1328 * User must release file via fput().
1329 */
get_mm_exe_file(struct mm_struct * mm)1330 struct file *get_mm_exe_file(struct mm_struct *mm)
1331 {
1332 struct file *exe_file;
1333
1334 rcu_read_lock();
1335 exe_file = rcu_dereference(mm->exe_file);
1336 if (exe_file && !get_file_rcu(exe_file))
1337 exe_file = NULL;
1338 rcu_read_unlock();
1339 return exe_file;
1340 }
1341
1342 /**
1343 * get_task_exe_file - acquire a reference to the task's executable file
1344 *
1345 * Returns %NULL if task's mm (if any) has no associated executable file or
1346 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1347 * User must release file via fput().
1348 */
get_task_exe_file(struct task_struct * task)1349 struct file *get_task_exe_file(struct task_struct *task)
1350 {
1351 struct file *exe_file = NULL;
1352 struct mm_struct *mm;
1353
1354 task_lock(task);
1355 mm = task->mm;
1356 if (mm) {
1357 if (!(task->flags & PF_KTHREAD))
1358 exe_file = get_mm_exe_file(mm);
1359 }
1360 task_unlock(task);
1361 return exe_file;
1362 }
1363
1364 /**
1365 * get_task_mm - acquire a reference to the task's mm
1366 *
1367 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1368 * this kernel workthread has transiently adopted a user mm with use_mm,
1369 * to do its AIO) is not set and if so returns a reference to it, after
1370 * bumping up the use count. User must release the mm via mmput()
1371 * after use. Typically used by /proc and ptrace.
1372 */
get_task_mm(struct task_struct * task)1373 struct mm_struct *get_task_mm(struct task_struct *task)
1374 {
1375 struct mm_struct *mm;
1376
1377 task_lock(task);
1378 mm = task->mm;
1379 if (mm) {
1380 if (task->flags & PF_KTHREAD)
1381 mm = NULL;
1382 else
1383 mmget(mm);
1384 }
1385 task_unlock(task);
1386 return mm;
1387 }
1388 EXPORT_SYMBOL_GPL(get_task_mm);
1389
mm_access(struct task_struct * task,unsigned int mode)1390 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1391 {
1392 struct mm_struct *mm;
1393 int err;
1394
1395 err = down_read_killable(&task->signal->exec_update_lock);
1396 if (err)
1397 return ERR_PTR(err);
1398
1399 mm = get_task_mm(task);
1400 if (mm && mm != current->mm &&
1401 !ptrace_may_access(task, mode)) {
1402 mmput(mm);
1403 mm = ERR_PTR(-EACCES);
1404 }
1405 up_read(&task->signal->exec_update_lock);
1406
1407 return mm;
1408 }
1409
complete_vfork_done(struct task_struct * tsk)1410 static void complete_vfork_done(struct task_struct *tsk)
1411 {
1412 struct completion *vfork;
1413
1414 task_lock(tsk);
1415 vfork = tsk->vfork_done;
1416 if (likely(vfork)) {
1417 tsk->vfork_done = NULL;
1418 complete(vfork);
1419 }
1420 task_unlock(tsk);
1421 }
1422
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1423 static int wait_for_vfork_done(struct task_struct *child,
1424 struct completion *vfork)
1425 {
1426 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1427 int killed;
1428
1429 cgroup_enter_frozen();
1430 killed = wait_for_completion_state(vfork, state);
1431 cgroup_leave_frozen(false);
1432
1433 if (killed) {
1434 task_lock(child);
1435 child->vfork_done = NULL;
1436 task_unlock(child);
1437 }
1438
1439 put_task_struct(child);
1440 return killed;
1441 }
1442
1443 /* Please note the differences between mmput and mm_release.
1444 * mmput is called whenever we stop holding onto a mm_struct,
1445 * error success whatever.
1446 *
1447 * mm_release is called after a mm_struct has been removed
1448 * from the current process.
1449 *
1450 * This difference is important for error handling, when we
1451 * only half set up a mm_struct for a new process and need to restore
1452 * the old one. Because we mmput the new mm_struct before
1453 * restoring the old one. . .
1454 * Eric Biederman 10 January 1998
1455 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1456 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1457 {
1458 uprobe_free_utask(tsk);
1459
1460 /* Get rid of any cached register state */
1461 deactivate_mm(tsk, mm);
1462
1463 /*
1464 * Signal userspace if we're not exiting with a core dump
1465 * because we want to leave the value intact for debugging
1466 * purposes.
1467 */
1468 if (tsk->clear_child_tid) {
1469 if (atomic_read(&mm->mm_users) > 1) {
1470 /*
1471 * We don't check the error code - if userspace has
1472 * not set up a proper pointer then tough luck.
1473 */
1474 put_user(0, tsk->clear_child_tid);
1475 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1476 1, NULL, NULL, 0, 0);
1477 }
1478 tsk->clear_child_tid = NULL;
1479 }
1480
1481 /*
1482 * All done, finally we can wake up parent and return this mm to him.
1483 * Also kthread_stop() uses this completion for synchronization.
1484 */
1485 if (tsk->vfork_done)
1486 complete_vfork_done(tsk);
1487 }
1488
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1489 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1490 {
1491 futex_exit_release(tsk);
1492 mm_release(tsk, mm);
1493 }
1494
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1495 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1496 {
1497 futex_exec_release(tsk);
1498 mm_release(tsk, mm);
1499 }
1500
1501 /**
1502 * dup_mm() - duplicates an existing mm structure
1503 * @tsk: the task_struct with which the new mm will be associated.
1504 * @oldmm: the mm to duplicate.
1505 *
1506 * Allocates a new mm structure and duplicates the provided @oldmm structure
1507 * content into it.
1508 *
1509 * Return: the duplicated mm or NULL on failure.
1510 */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1511 static struct mm_struct *dup_mm(struct task_struct *tsk,
1512 struct mm_struct *oldmm)
1513 {
1514 struct mm_struct *mm;
1515 int err;
1516
1517 mm = allocate_mm();
1518 if (!mm)
1519 goto fail_nomem;
1520
1521 memcpy(mm, oldmm, sizeof(*mm));
1522
1523 if (!mm_init(mm, tsk, mm->user_ns))
1524 goto fail_nomem;
1525
1526 err = dup_mmap(mm, oldmm);
1527 if (err)
1528 goto free_pt;
1529
1530 mm->hiwater_rss = get_mm_rss(mm);
1531 mm->hiwater_vm = mm->total_vm;
1532
1533 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1534 goto free_pt;
1535
1536 return mm;
1537
1538 free_pt:
1539 /* don't put binfmt in mmput, we haven't got module yet */
1540 mm->binfmt = NULL;
1541 mm_init_owner(mm, NULL);
1542 mmput(mm);
1543
1544 fail_nomem:
1545 return NULL;
1546 }
1547
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1548 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1549 {
1550 struct mm_struct *mm, *oldmm;
1551
1552 tsk->min_flt = tsk->maj_flt = 0;
1553 tsk->nvcsw = tsk->nivcsw = 0;
1554 #ifdef CONFIG_DETECT_HUNG_TASK
1555 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1556 tsk->last_switch_time = 0;
1557 #endif
1558
1559 tsk->mm = NULL;
1560 tsk->active_mm = NULL;
1561
1562 /*
1563 * Are we cloning a kernel thread?
1564 *
1565 * We need to steal a active VM for that..
1566 */
1567 oldmm = current->mm;
1568 if (!oldmm)
1569 return 0;
1570
1571 if (clone_flags & CLONE_VM) {
1572 mmget(oldmm);
1573 mm = oldmm;
1574 } else {
1575 mm = dup_mm(tsk, current->mm);
1576 if (!mm)
1577 return -ENOMEM;
1578 }
1579
1580 tsk->mm = mm;
1581 tsk->active_mm = mm;
1582 return 0;
1583 }
1584
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1585 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1586 {
1587 struct fs_struct *fs = current->fs;
1588 if (clone_flags & CLONE_FS) {
1589 /* tsk->fs is already what we want */
1590 spin_lock(&fs->lock);
1591 if (fs->in_exec) {
1592 spin_unlock(&fs->lock);
1593 return -EAGAIN;
1594 }
1595 fs->users++;
1596 spin_unlock(&fs->lock);
1597 return 0;
1598 }
1599 tsk->fs = copy_fs_struct(fs);
1600 if (!tsk->fs)
1601 return -ENOMEM;
1602 return 0;
1603 }
1604
copy_files(unsigned long clone_flags,struct task_struct * tsk)1605 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1606 {
1607 struct files_struct *oldf, *newf;
1608 int error = 0;
1609
1610 /*
1611 * A background process may not have any files ...
1612 */
1613 oldf = current->files;
1614 if (!oldf)
1615 goto out;
1616
1617 if (clone_flags & CLONE_FILES) {
1618 atomic_inc(&oldf->count);
1619 goto out;
1620 }
1621
1622 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1623 if (!newf)
1624 goto out;
1625
1626 tsk->files = newf;
1627 error = 0;
1628 out:
1629 return error;
1630 }
1631
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1632 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1633 {
1634 struct sighand_struct *sig;
1635
1636 if (clone_flags & CLONE_SIGHAND) {
1637 refcount_inc(¤t->sighand->count);
1638 return 0;
1639 }
1640 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1641 RCU_INIT_POINTER(tsk->sighand, sig);
1642 if (!sig)
1643 return -ENOMEM;
1644
1645 refcount_set(&sig->count, 1);
1646 spin_lock_irq(¤t->sighand->siglock);
1647 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1648 spin_unlock_irq(¤t->sighand->siglock);
1649
1650 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1651 if (clone_flags & CLONE_CLEAR_SIGHAND)
1652 flush_signal_handlers(tsk, 0);
1653
1654 return 0;
1655 }
1656
__cleanup_sighand(struct sighand_struct * sighand)1657 void __cleanup_sighand(struct sighand_struct *sighand)
1658 {
1659 if (refcount_dec_and_test(&sighand->count)) {
1660 signalfd_cleanup(sighand);
1661 /*
1662 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1663 * without an RCU grace period, see __lock_task_sighand().
1664 */
1665 kmem_cache_free(sighand_cachep, sighand);
1666 }
1667 }
1668
1669 /*
1670 * Initialize POSIX timer handling for a thread group.
1671 */
posix_cpu_timers_init_group(struct signal_struct * sig)1672 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1673 {
1674 struct posix_cputimers *pct = &sig->posix_cputimers;
1675 unsigned long cpu_limit;
1676
1677 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1678 posix_cputimers_group_init(pct, cpu_limit);
1679 }
1680
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1681 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1682 {
1683 struct signal_struct *sig;
1684
1685 if (clone_flags & CLONE_THREAD)
1686 return 0;
1687
1688 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1689 tsk->signal = sig;
1690 if (!sig)
1691 return -ENOMEM;
1692
1693 sig->nr_threads = 1;
1694 sig->quick_threads = 1;
1695 atomic_set(&sig->live, 1);
1696 refcount_set(&sig->sigcnt, 1);
1697
1698 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1699 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1700 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1701
1702 init_waitqueue_head(&sig->wait_chldexit);
1703 sig->curr_target = tsk;
1704 init_sigpending(&sig->shared_pending);
1705 INIT_HLIST_HEAD(&sig->multiprocess);
1706 seqlock_init(&sig->stats_lock);
1707 prev_cputime_init(&sig->prev_cputime);
1708
1709 #ifdef CONFIG_POSIX_TIMERS
1710 INIT_LIST_HEAD(&sig->posix_timers);
1711 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1712 sig->real_timer.function = it_real_fn;
1713 #endif
1714
1715 task_lock(current->group_leader);
1716 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1717 task_unlock(current->group_leader);
1718
1719 posix_cpu_timers_init_group(sig);
1720
1721 tty_audit_fork(sig);
1722 sched_autogroup_fork(sig);
1723
1724 sig->oom_score_adj = current->signal->oom_score_adj;
1725 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1726
1727 mutex_init(&sig->cred_guard_mutex);
1728 init_rwsem(&sig->exec_update_lock);
1729
1730 return 0;
1731 }
1732
copy_seccomp(struct task_struct * p)1733 static void copy_seccomp(struct task_struct *p)
1734 {
1735 #ifdef CONFIG_SECCOMP
1736 /*
1737 * Must be called with sighand->lock held, which is common to
1738 * all threads in the group. Holding cred_guard_mutex is not
1739 * needed because this new task is not yet running and cannot
1740 * be racing exec.
1741 */
1742 assert_spin_locked(¤t->sighand->siglock);
1743
1744 /* Ref-count the new filter user, and assign it. */
1745 get_seccomp_filter(current);
1746 p->seccomp = current->seccomp;
1747
1748 /*
1749 * Explicitly enable no_new_privs here in case it got set
1750 * between the task_struct being duplicated and holding the
1751 * sighand lock. The seccomp state and nnp must be in sync.
1752 */
1753 if (task_no_new_privs(current))
1754 task_set_no_new_privs(p);
1755
1756 /*
1757 * If the parent gained a seccomp mode after copying thread
1758 * flags and between before we held the sighand lock, we have
1759 * to manually enable the seccomp thread flag here.
1760 */
1761 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1762 set_task_syscall_work(p, SECCOMP);
1763 #endif
1764 }
1765
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1766 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1767 {
1768 current->clear_child_tid = tidptr;
1769
1770 return task_pid_vnr(current);
1771 }
1772
rt_mutex_init_task(struct task_struct * p)1773 static void rt_mutex_init_task(struct task_struct *p)
1774 {
1775 raw_spin_lock_init(&p->pi_lock);
1776 #ifdef CONFIG_RT_MUTEXES
1777 p->pi_waiters = RB_ROOT_CACHED;
1778 p->pi_top_task = NULL;
1779 p->pi_blocked_on = NULL;
1780 #endif
1781 }
1782
init_task_pid_links(struct task_struct * task)1783 static inline void init_task_pid_links(struct task_struct *task)
1784 {
1785 enum pid_type type;
1786
1787 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1788 INIT_HLIST_NODE(&task->pid_links[type]);
1789 }
1790
1791 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1792 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1793 {
1794 if (type == PIDTYPE_PID)
1795 task->thread_pid = pid;
1796 else
1797 task->signal->pids[type] = pid;
1798 }
1799
rcu_copy_process(struct task_struct * p)1800 static inline void rcu_copy_process(struct task_struct *p)
1801 {
1802 #ifdef CONFIG_PREEMPT_RCU
1803 p->rcu_read_lock_nesting = 0;
1804 p->rcu_read_unlock_special.s = 0;
1805 p->rcu_blocked_node = NULL;
1806 INIT_LIST_HEAD(&p->rcu_node_entry);
1807 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1808 #ifdef CONFIG_TASKS_RCU
1809 p->rcu_tasks_holdout = false;
1810 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1811 p->rcu_tasks_idle_cpu = -1;
1812 #endif /* #ifdef CONFIG_TASKS_RCU */
1813 #ifdef CONFIG_TASKS_TRACE_RCU
1814 p->trc_reader_nesting = 0;
1815 p->trc_reader_special.s = 0;
1816 INIT_LIST_HEAD(&p->trc_holdout_list);
1817 INIT_LIST_HEAD(&p->trc_blkd_node);
1818 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1819 }
1820
pidfd_pid(const struct file * file)1821 struct pid *pidfd_pid(const struct file *file)
1822 {
1823 if (file->f_op == &pidfd_fops)
1824 return file->private_data;
1825
1826 return ERR_PTR(-EBADF);
1827 }
1828
pidfd_release(struct inode * inode,struct file * file)1829 static int pidfd_release(struct inode *inode, struct file *file)
1830 {
1831 struct pid *pid = file->private_data;
1832
1833 file->private_data = NULL;
1834 put_pid(pid);
1835 return 0;
1836 }
1837
1838 #ifdef CONFIG_PROC_FS
1839 /**
1840 * pidfd_show_fdinfo - print information about a pidfd
1841 * @m: proc fdinfo file
1842 * @f: file referencing a pidfd
1843 *
1844 * Pid:
1845 * This function will print the pid that a given pidfd refers to in the
1846 * pid namespace of the procfs instance.
1847 * If the pid namespace of the process is not a descendant of the pid
1848 * namespace of the procfs instance 0 will be shown as its pid. This is
1849 * similar to calling getppid() on a process whose parent is outside of
1850 * its pid namespace.
1851 *
1852 * NSpid:
1853 * If pid namespaces are supported then this function will also print
1854 * the pid of a given pidfd refers to for all descendant pid namespaces
1855 * starting from the current pid namespace of the instance, i.e. the
1856 * Pid field and the first entry in the NSpid field will be identical.
1857 * If the pid namespace of the process is not a descendant of the pid
1858 * namespace of the procfs instance 0 will be shown as its first NSpid
1859 * entry and no others will be shown.
1860 * Note that this differs from the Pid and NSpid fields in
1861 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1862 * the pid namespace of the procfs instance. The difference becomes
1863 * obvious when sending around a pidfd between pid namespaces from a
1864 * different branch of the tree, i.e. where no ancestral relation is
1865 * present between the pid namespaces:
1866 * - create two new pid namespaces ns1 and ns2 in the initial pid
1867 * namespace (also take care to create new mount namespaces in the
1868 * new pid namespace and mount procfs)
1869 * - create a process with a pidfd in ns1
1870 * - send pidfd from ns1 to ns2
1871 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1872 * have exactly one entry, which is 0
1873 */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)1874 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1875 {
1876 struct pid *pid = f->private_data;
1877 struct pid_namespace *ns;
1878 pid_t nr = -1;
1879
1880 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1881 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1882 nr = pid_nr_ns(pid, ns);
1883 }
1884
1885 seq_put_decimal_ll(m, "Pid:\t", nr);
1886
1887 #ifdef CONFIG_PID_NS
1888 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1889 if (nr > 0) {
1890 int i;
1891
1892 /* If nr is non-zero it means that 'pid' is valid and that
1893 * ns, i.e. the pid namespace associated with the procfs
1894 * instance, is in the pid namespace hierarchy of pid.
1895 * Start at one below the already printed level.
1896 */
1897 for (i = ns->level + 1; i <= pid->level; i++)
1898 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1899 }
1900 #endif
1901 seq_putc(m, '\n');
1902 }
1903 #endif
1904
1905 /*
1906 * Poll support for process exit notification.
1907 */
pidfd_poll(struct file * file,struct poll_table_struct * pts)1908 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1909 {
1910 struct pid *pid = file->private_data;
1911 __poll_t poll_flags = 0;
1912
1913 poll_wait(file, &pid->wait_pidfd, pts);
1914
1915 /*
1916 * Inform pollers only when the whole thread group exits.
1917 * If the thread group leader exits before all other threads in the
1918 * group, then poll(2) should block, similar to the wait(2) family.
1919 */
1920 if (thread_group_exited(pid))
1921 poll_flags = EPOLLIN | EPOLLRDNORM;
1922
1923 return poll_flags;
1924 }
1925
1926 const struct file_operations pidfd_fops = {
1927 .release = pidfd_release,
1928 .poll = pidfd_poll,
1929 #ifdef CONFIG_PROC_FS
1930 .show_fdinfo = pidfd_show_fdinfo,
1931 #endif
1932 };
1933
__delayed_free_task(struct rcu_head * rhp)1934 static void __delayed_free_task(struct rcu_head *rhp)
1935 {
1936 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1937
1938 free_task(tsk);
1939 }
1940
delayed_free_task(struct task_struct * tsk)1941 static __always_inline void delayed_free_task(struct task_struct *tsk)
1942 {
1943 if (IS_ENABLED(CONFIG_MEMCG))
1944 call_rcu(&tsk->rcu, __delayed_free_task);
1945 else
1946 free_task(tsk);
1947 }
1948
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)1949 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1950 {
1951 /* Skip if kernel thread */
1952 if (!tsk->mm)
1953 return;
1954
1955 /* Skip if spawning a thread or using vfork */
1956 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1957 return;
1958
1959 /* We need to synchronize with __set_oom_adj */
1960 mutex_lock(&oom_adj_mutex);
1961 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1962 /* Update the values in case they were changed after copy_signal */
1963 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1964 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1965 mutex_unlock(&oom_adj_mutex);
1966 }
1967
1968 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)1969 static void rv_task_fork(struct task_struct *p)
1970 {
1971 int i;
1972
1973 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
1974 p->rv[i].da_mon.monitoring = false;
1975 }
1976 #else
1977 #define rv_task_fork(p) do {} while (0)
1978 #endif
1979
1980 /*
1981 * This creates a new process as a copy of the old one,
1982 * but does not actually start it yet.
1983 *
1984 * It copies the registers, and all the appropriate
1985 * parts of the process environment (as per the clone
1986 * flags). The actual kick-off is left to the caller.
1987 */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)1988 static __latent_entropy struct task_struct *copy_process(
1989 struct pid *pid,
1990 int trace,
1991 int node,
1992 struct kernel_clone_args *args)
1993 {
1994 int pidfd = -1, retval;
1995 struct task_struct *p;
1996 struct multiprocess_signals delayed;
1997 struct file *pidfile = NULL;
1998 const u64 clone_flags = args->flags;
1999 struct nsproxy *nsp = current->nsproxy;
2000
2001 /*
2002 * Don't allow sharing the root directory with processes in a different
2003 * namespace
2004 */
2005 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2006 return ERR_PTR(-EINVAL);
2007
2008 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2009 return ERR_PTR(-EINVAL);
2010
2011 /*
2012 * Thread groups must share signals as well, and detached threads
2013 * can only be started up within the thread group.
2014 */
2015 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2016 return ERR_PTR(-EINVAL);
2017
2018 /*
2019 * Shared signal handlers imply shared VM. By way of the above,
2020 * thread groups also imply shared VM. Blocking this case allows
2021 * for various simplifications in other code.
2022 */
2023 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2024 return ERR_PTR(-EINVAL);
2025
2026 /*
2027 * Siblings of global init remain as zombies on exit since they are
2028 * not reaped by their parent (swapper). To solve this and to avoid
2029 * multi-rooted process trees, prevent global and container-inits
2030 * from creating siblings.
2031 */
2032 if ((clone_flags & CLONE_PARENT) &&
2033 current->signal->flags & SIGNAL_UNKILLABLE)
2034 return ERR_PTR(-EINVAL);
2035
2036 /*
2037 * If the new process will be in a different pid or user namespace
2038 * do not allow it to share a thread group with the forking task.
2039 */
2040 if (clone_flags & CLONE_THREAD) {
2041 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2042 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2043 return ERR_PTR(-EINVAL);
2044 }
2045
2046 /*
2047 * If the new process will be in a different time namespace
2048 * do not allow it to share VM or a thread group with the forking task.
2049 */
2050 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
2051 if (nsp->time_ns != nsp->time_ns_for_children)
2052 return ERR_PTR(-EINVAL);
2053 }
2054
2055 if (clone_flags & CLONE_PIDFD) {
2056 /*
2057 * - CLONE_DETACHED is blocked so that we can potentially
2058 * reuse it later for CLONE_PIDFD.
2059 * - CLONE_THREAD is blocked until someone really needs it.
2060 */
2061 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2062 return ERR_PTR(-EINVAL);
2063 }
2064
2065 /*
2066 * Force any signals received before this point to be delivered
2067 * before the fork happens. Collect up signals sent to multiple
2068 * processes that happen during the fork and delay them so that
2069 * they appear to happen after the fork.
2070 */
2071 sigemptyset(&delayed.signal);
2072 INIT_HLIST_NODE(&delayed.node);
2073
2074 spin_lock_irq(¤t->sighand->siglock);
2075 if (!(clone_flags & CLONE_THREAD))
2076 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
2077 recalc_sigpending();
2078 spin_unlock_irq(¤t->sighand->siglock);
2079 retval = -ERESTARTNOINTR;
2080 if (task_sigpending(current))
2081 goto fork_out;
2082
2083 retval = -ENOMEM;
2084 p = dup_task_struct(current, node);
2085 if (!p)
2086 goto fork_out;
2087 p->flags &= ~PF_KTHREAD;
2088 if (args->kthread)
2089 p->flags |= PF_KTHREAD;
2090 if (args->io_thread) {
2091 /*
2092 * Mark us an IO worker, and block any signal that isn't
2093 * fatal or STOP
2094 */
2095 p->flags |= PF_IO_WORKER;
2096 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2097 }
2098
2099 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2100 /*
2101 * Clear TID on mm_release()?
2102 */
2103 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2104
2105 ftrace_graph_init_task(p);
2106
2107 rt_mutex_init_task(p);
2108
2109 lockdep_assert_irqs_enabled();
2110 #ifdef CONFIG_PROVE_LOCKING
2111 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2112 #endif
2113 retval = copy_creds(p, clone_flags);
2114 if (retval < 0)
2115 goto bad_fork_free;
2116
2117 retval = -EAGAIN;
2118 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2119 if (p->real_cred->user != INIT_USER &&
2120 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2121 goto bad_fork_cleanup_count;
2122 }
2123 current->flags &= ~PF_NPROC_EXCEEDED;
2124
2125 /*
2126 * If multiple threads are within copy_process(), then this check
2127 * triggers too late. This doesn't hurt, the check is only there
2128 * to stop root fork bombs.
2129 */
2130 retval = -EAGAIN;
2131 if (data_race(nr_threads >= max_threads))
2132 goto bad_fork_cleanup_count;
2133
2134 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2135 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2136 p->flags |= PF_FORKNOEXEC;
2137 INIT_LIST_HEAD(&p->children);
2138 INIT_LIST_HEAD(&p->sibling);
2139 rcu_copy_process(p);
2140 p->vfork_done = NULL;
2141 spin_lock_init(&p->alloc_lock);
2142
2143 init_sigpending(&p->pending);
2144
2145 p->utime = p->stime = p->gtime = 0;
2146 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2147 p->utimescaled = p->stimescaled = 0;
2148 #endif
2149 prev_cputime_init(&p->prev_cputime);
2150
2151 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2152 seqcount_init(&p->vtime.seqcount);
2153 p->vtime.starttime = 0;
2154 p->vtime.state = VTIME_INACTIVE;
2155 #endif
2156
2157 #ifdef CONFIG_IO_URING
2158 p->io_uring = NULL;
2159 #endif
2160
2161 #if defined(SPLIT_RSS_COUNTING)
2162 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2163 #endif
2164
2165 p->default_timer_slack_ns = current->timer_slack_ns;
2166
2167 #ifdef CONFIG_PSI
2168 p->psi_flags = 0;
2169 #endif
2170
2171 task_io_accounting_init(&p->ioac);
2172 acct_clear_integrals(p);
2173
2174 posix_cputimers_init(&p->posix_cputimers);
2175
2176 p->io_context = NULL;
2177 audit_set_context(p, NULL);
2178 cgroup_fork(p);
2179 if (args->kthread) {
2180 if (!set_kthread_struct(p))
2181 goto bad_fork_cleanup_delayacct;
2182 }
2183 #ifdef CONFIG_NUMA
2184 p->mempolicy = mpol_dup(p->mempolicy);
2185 if (IS_ERR(p->mempolicy)) {
2186 retval = PTR_ERR(p->mempolicy);
2187 p->mempolicy = NULL;
2188 goto bad_fork_cleanup_delayacct;
2189 }
2190 #endif
2191 #ifdef CONFIG_CPUSETS
2192 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2193 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2194 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2195 #endif
2196 #ifdef CONFIG_TRACE_IRQFLAGS
2197 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2198 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2199 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2200 p->softirqs_enabled = 1;
2201 p->softirq_context = 0;
2202 #endif
2203
2204 p->pagefault_disabled = 0;
2205
2206 #ifdef CONFIG_LOCKDEP
2207 lockdep_init_task(p);
2208 #endif
2209
2210 #ifdef CONFIG_DEBUG_MUTEXES
2211 p->blocked_on = NULL; /* not blocked yet */
2212 #endif
2213 #ifdef CONFIG_BCACHE
2214 p->sequential_io = 0;
2215 p->sequential_io_avg = 0;
2216 #endif
2217 #ifdef CONFIG_BPF_SYSCALL
2218 RCU_INIT_POINTER(p->bpf_storage, NULL);
2219 p->bpf_ctx = NULL;
2220 #endif
2221
2222 /* Perform scheduler related setup. Assign this task to a CPU. */
2223 retval = sched_fork(clone_flags, p);
2224 if (retval)
2225 goto bad_fork_cleanup_policy;
2226
2227 retval = perf_event_init_task(p, clone_flags);
2228 if (retval)
2229 goto bad_fork_cleanup_policy;
2230 retval = audit_alloc(p);
2231 if (retval)
2232 goto bad_fork_cleanup_perf;
2233 /* copy all the process information */
2234 shm_init_task(p);
2235 retval = security_task_alloc(p, clone_flags);
2236 if (retval)
2237 goto bad_fork_cleanup_audit;
2238 retval = copy_semundo(clone_flags, p);
2239 if (retval)
2240 goto bad_fork_cleanup_security;
2241 retval = copy_files(clone_flags, p);
2242 if (retval)
2243 goto bad_fork_cleanup_semundo;
2244 retval = copy_fs(clone_flags, p);
2245 if (retval)
2246 goto bad_fork_cleanup_files;
2247 retval = copy_sighand(clone_flags, p);
2248 if (retval)
2249 goto bad_fork_cleanup_fs;
2250 retval = copy_signal(clone_flags, p);
2251 if (retval)
2252 goto bad_fork_cleanup_sighand;
2253 retval = copy_mm(clone_flags, p);
2254 if (retval)
2255 goto bad_fork_cleanup_signal;
2256 retval = copy_namespaces(clone_flags, p);
2257 if (retval)
2258 goto bad_fork_cleanup_mm;
2259 retval = copy_io(clone_flags, p);
2260 if (retval)
2261 goto bad_fork_cleanup_namespaces;
2262 retval = copy_thread(p, args);
2263 if (retval)
2264 goto bad_fork_cleanup_io;
2265
2266 stackleak_task_init(p);
2267
2268 if (pid != &init_struct_pid) {
2269 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2270 args->set_tid_size);
2271 if (IS_ERR(pid)) {
2272 retval = PTR_ERR(pid);
2273 goto bad_fork_cleanup_thread;
2274 }
2275 }
2276
2277 /*
2278 * This has to happen after we've potentially unshared the file
2279 * descriptor table (so that the pidfd doesn't leak into the child
2280 * if the fd table isn't shared).
2281 */
2282 if (clone_flags & CLONE_PIDFD) {
2283 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2284 if (retval < 0)
2285 goto bad_fork_free_pid;
2286
2287 pidfd = retval;
2288
2289 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2290 O_RDWR | O_CLOEXEC);
2291 if (IS_ERR(pidfile)) {
2292 put_unused_fd(pidfd);
2293 retval = PTR_ERR(pidfile);
2294 goto bad_fork_free_pid;
2295 }
2296 get_pid(pid); /* held by pidfile now */
2297
2298 retval = put_user(pidfd, args->pidfd);
2299 if (retval)
2300 goto bad_fork_put_pidfd;
2301 }
2302
2303 #ifdef CONFIG_BLOCK
2304 p->plug = NULL;
2305 #endif
2306 futex_init_task(p);
2307
2308 /*
2309 * sigaltstack should be cleared when sharing the same VM
2310 */
2311 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2312 sas_ss_reset(p);
2313
2314 /*
2315 * Syscall tracing and stepping should be turned off in the
2316 * child regardless of CLONE_PTRACE.
2317 */
2318 user_disable_single_step(p);
2319 clear_task_syscall_work(p, SYSCALL_TRACE);
2320 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2321 clear_task_syscall_work(p, SYSCALL_EMU);
2322 #endif
2323 clear_tsk_latency_tracing(p);
2324
2325 /* ok, now we should be set up.. */
2326 p->pid = pid_nr(pid);
2327 if (clone_flags & CLONE_THREAD) {
2328 p->group_leader = current->group_leader;
2329 p->tgid = current->tgid;
2330 } else {
2331 p->group_leader = p;
2332 p->tgid = p->pid;
2333 }
2334
2335 p->nr_dirtied = 0;
2336 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2337 p->dirty_paused_when = 0;
2338
2339 p->pdeath_signal = 0;
2340 INIT_LIST_HEAD(&p->thread_group);
2341 p->task_works = NULL;
2342 clear_posix_cputimers_work(p);
2343
2344 #ifdef CONFIG_KRETPROBES
2345 p->kretprobe_instances.first = NULL;
2346 #endif
2347 #ifdef CONFIG_RETHOOK
2348 p->rethooks.first = NULL;
2349 #endif
2350
2351 /*
2352 * Ensure that the cgroup subsystem policies allow the new process to be
2353 * forked. It should be noted that the new process's css_set can be changed
2354 * between here and cgroup_post_fork() if an organisation operation is in
2355 * progress.
2356 */
2357 retval = cgroup_can_fork(p, args);
2358 if (retval)
2359 goto bad_fork_put_pidfd;
2360
2361 /*
2362 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2363 * the new task on the correct runqueue. All this *before* the task
2364 * becomes visible.
2365 *
2366 * This isn't part of ->can_fork() because while the re-cloning is
2367 * cgroup specific, it unconditionally needs to place the task on a
2368 * runqueue.
2369 */
2370 sched_cgroup_fork(p, args);
2371
2372 /*
2373 * From this point on we must avoid any synchronous user-space
2374 * communication until we take the tasklist-lock. In particular, we do
2375 * not want user-space to be able to predict the process start-time by
2376 * stalling fork(2) after we recorded the start_time but before it is
2377 * visible to the system.
2378 */
2379
2380 p->start_time = ktime_get_ns();
2381 p->start_boottime = ktime_get_boottime_ns();
2382
2383 /*
2384 * Make it visible to the rest of the system, but dont wake it up yet.
2385 * Need tasklist lock for parent etc handling!
2386 */
2387 write_lock_irq(&tasklist_lock);
2388
2389 /* CLONE_PARENT re-uses the old parent */
2390 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2391 p->real_parent = current->real_parent;
2392 p->parent_exec_id = current->parent_exec_id;
2393 if (clone_flags & CLONE_THREAD)
2394 p->exit_signal = -1;
2395 else
2396 p->exit_signal = current->group_leader->exit_signal;
2397 } else {
2398 p->real_parent = current;
2399 p->parent_exec_id = current->self_exec_id;
2400 p->exit_signal = args->exit_signal;
2401 }
2402
2403 klp_copy_process(p);
2404
2405 sched_core_fork(p);
2406
2407 spin_lock(¤t->sighand->siglock);
2408
2409 /*
2410 * Copy seccomp details explicitly here, in case they were changed
2411 * before holding sighand lock.
2412 */
2413 copy_seccomp(p);
2414
2415 rv_task_fork(p);
2416
2417 rseq_fork(p, clone_flags);
2418
2419 /* Don't start children in a dying pid namespace */
2420 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2421 retval = -ENOMEM;
2422 goto bad_fork_cancel_cgroup;
2423 }
2424
2425 /* Let kill terminate clone/fork in the middle */
2426 if (fatal_signal_pending(current)) {
2427 retval = -EINTR;
2428 goto bad_fork_cancel_cgroup;
2429 }
2430
2431 init_task_pid_links(p);
2432 if (likely(p->pid)) {
2433 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2434
2435 init_task_pid(p, PIDTYPE_PID, pid);
2436 if (thread_group_leader(p)) {
2437 init_task_pid(p, PIDTYPE_TGID, pid);
2438 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2439 init_task_pid(p, PIDTYPE_SID, task_session(current));
2440
2441 if (is_child_reaper(pid)) {
2442 ns_of_pid(pid)->child_reaper = p;
2443 p->signal->flags |= SIGNAL_UNKILLABLE;
2444 }
2445 p->signal->shared_pending.signal = delayed.signal;
2446 p->signal->tty = tty_kref_get(current->signal->tty);
2447 /*
2448 * Inherit has_child_subreaper flag under the same
2449 * tasklist_lock with adding child to the process tree
2450 * for propagate_has_child_subreaper optimization.
2451 */
2452 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2453 p->real_parent->signal->is_child_subreaper;
2454 list_add_tail(&p->sibling, &p->real_parent->children);
2455 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2456 attach_pid(p, PIDTYPE_TGID);
2457 attach_pid(p, PIDTYPE_PGID);
2458 attach_pid(p, PIDTYPE_SID);
2459 __this_cpu_inc(process_counts);
2460 } else {
2461 current->signal->nr_threads++;
2462 current->signal->quick_threads++;
2463 atomic_inc(¤t->signal->live);
2464 refcount_inc(¤t->signal->sigcnt);
2465 task_join_group_stop(p);
2466 list_add_tail_rcu(&p->thread_group,
2467 &p->group_leader->thread_group);
2468 list_add_tail_rcu(&p->thread_node,
2469 &p->signal->thread_head);
2470 }
2471 attach_pid(p, PIDTYPE_PID);
2472 nr_threads++;
2473 }
2474 total_forks++;
2475 hlist_del_init(&delayed.node);
2476 spin_unlock(¤t->sighand->siglock);
2477 syscall_tracepoint_update(p);
2478 write_unlock_irq(&tasklist_lock);
2479
2480 if (pidfile)
2481 fd_install(pidfd, pidfile);
2482
2483 proc_fork_connector(p);
2484 sched_post_fork(p);
2485 cgroup_post_fork(p, args);
2486 perf_event_fork(p);
2487
2488 trace_task_newtask(p, clone_flags);
2489 uprobe_copy_process(p, clone_flags);
2490
2491 copy_oom_score_adj(clone_flags, p);
2492
2493 return p;
2494
2495 bad_fork_cancel_cgroup:
2496 sched_core_free(p);
2497 spin_unlock(¤t->sighand->siglock);
2498 write_unlock_irq(&tasklist_lock);
2499 cgroup_cancel_fork(p, args);
2500 bad_fork_put_pidfd:
2501 if (clone_flags & CLONE_PIDFD) {
2502 fput(pidfile);
2503 put_unused_fd(pidfd);
2504 }
2505 bad_fork_free_pid:
2506 if (pid != &init_struct_pid)
2507 free_pid(pid);
2508 bad_fork_cleanup_thread:
2509 exit_thread(p);
2510 bad_fork_cleanup_io:
2511 if (p->io_context)
2512 exit_io_context(p);
2513 bad_fork_cleanup_namespaces:
2514 exit_task_namespaces(p);
2515 bad_fork_cleanup_mm:
2516 if (p->mm) {
2517 mm_clear_owner(p->mm, p);
2518 mmput(p->mm);
2519 }
2520 bad_fork_cleanup_signal:
2521 if (!(clone_flags & CLONE_THREAD))
2522 free_signal_struct(p->signal);
2523 bad_fork_cleanup_sighand:
2524 __cleanup_sighand(p->sighand);
2525 bad_fork_cleanup_fs:
2526 exit_fs(p); /* blocking */
2527 bad_fork_cleanup_files:
2528 exit_files(p); /* blocking */
2529 bad_fork_cleanup_semundo:
2530 exit_sem(p);
2531 bad_fork_cleanup_security:
2532 security_task_free(p);
2533 bad_fork_cleanup_audit:
2534 audit_free(p);
2535 bad_fork_cleanup_perf:
2536 perf_event_free_task(p);
2537 bad_fork_cleanup_policy:
2538 lockdep_free_task(p);
2539 #ifdef CONFIG_NUMA
2540 mpol_put(p->mempolicy);
2541 #endif
2542 bad_fork_cleanup_delayacct:
2543 delayacct_tsk_free(p);
2544 bad_fork_cleanup_count:
2545 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2546 exit_creds(p);
2547 bad_fork_free:
2548 WRITE_ONCE(p->__state, TASK_DEAD);
2549 exit_task_stack_account(p);
2550 put_task_stack(p);
2551 delayed_free_task(p);
2552 fork_out:
2553 spin_lock_irq(¤t->sighand->siglock);
2554 hlist_del_init(&delayed.node);
2555 spin_unlock_irq(¤t->sighand->siglock);
2556 return ERR_PTR(retval);
2557 }
2558
init_idle_pids(struct task_struct * idle)2559 static inline void init_idle_pids(struct task_struct *idle)
2560 {
2561 enum pid_type type;
2562
2563 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2564 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2565 init_task_pid(idle, type, &init_struct_pid);
2566 }
2567 }
2568
idle_dummy(void * dummy)2569 static int idle_dummy(void *dummy)
2570 {
2571 /* This function is never called */
2572 return 0;
2573 }
2574
fork_idle(int cpu)2575 struct task_struct * __init fork_idle(int cpu)
2576 {
2577 struct task_struct *task;
2578 struct kernel_clone_args args = {
2579 .flags = CLONE_VM,
2580 .fn = &idle_dummy,
2581 .fn_arg = NULL,
2582 .kthread = 1,
2583 .idle = 1,
2584 };
2585
2586 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2587 if (!IS_ERR(task)) {
2588 init_idle_pids(task);
2589 init_idle(task, cpu);
2590 }
2591
2592 return task;
2593 }
2594
copy_init_mm(void)2595 struct mm_struct *copy_init_mm(void)
2596 {
2597 return dup_mm(NULL, &init_mm);
2598 }
2599
2600 /*
2601 * This is like kernel_clone(), but shaved down and tailored to just
2602 * creating io_uring workers. It returns a created task, or an error pointer.
2603 * The returned task is inactive, and the caller must fire it up through
2604 * wake_up_new_task(p). All signals are blocked in the created task.
2605 */
create_io_thread(int (* fn)(void *),void * arg,int node)2606 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2607 {
2608 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2609 CLONE_IO;
2610 struct kernel_clone_args args = {
2611 .flags = ((lower_32_bits(flags) | CLONE_VM |
2612 CLONE_UNTRACED) & ~CSIGNAL),
2613 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2614 .fn = fn,
2615 .fn_arg = arg,
2616 .io_thread = 1,
2617 };
2618
2619 return copy_process(NULL, 0, node, &args);
2620 }
2621
2622 /*
2623 * Ok, this is the main fork-routine.
2624 *
2625 * It copies the process, and if successful kick-starts
2626 * it and waits for it to finish using the VM if required.
2627 *
2628 * args->exit_signal is expected to be checked for sanity by the caller.
2629 */
kernel_clone(struct kernel_clone_args * args)2630 pid_t kernel_clone(struct kernel_clone_args *args)
2631 {
2632 u64 clone_flags = args->flags;
2633 struct completion vfork;
2634 struct pid *pid;
2635 struct task_struct *p;
2636 int trace = 0;
2637 pid_t nr;
2638
2639 /*
2640 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2641 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2642 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2643 * field in struct clone_args and it still doesn't make sense to have
2644 * them both point at the same memory location. Performing this check
2645 * here has the advantage that we don't need to have a separate helper
2646 * to check for legacy clone().
2647 */
2648 if ((args->flags & CLONE_PIDFD) &&
2649 (args->flags & CLONE_PARENT_SETTID) &&
2650 (args->pidfd == args->parent_tid))
2651 return -EINVAL;
2652
2653 /*
2654 * Determine whether and which event to report to ptracer. When
2655 * called from kernel_thread or CLONE_UNTRACED is explicitly
2656 * requested, no event is reported; otherwise, report if the event
2657 * for the type of forking is enabled.
2658 */
2659 if (!(clone_flags & CLONE_UNTRACED)) {
2660 if (clone_flags & CLONE_VFORK)
2661 trace = PTRACE_EVENT_VFORK;
2662 else if (args->exit_signal != SIGCHLD)
2663 trace = PTRACE_EVENT_CLONE;
2664 else
2665 trace = PTRACE_EVENT_FORK;
2666
2667 if (likely(!ptrace_event_enabled(current, trace)))
2668 trace = 0;
2669 }
2670
2671 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2672 add_latent_entropy();
2673
2674 if (IS_ERR(p))
2675 return PTR_ERR(p);
2676
2677 /*
2678 * Do this prior waking up the new thread - the thread pointer
2679 * might get invalid after that point, if the thread exits quickly.
2680 */
2681 trace_sched_process_fork(current, p);
2682
2683 pid = get_task_pid(p, PIDTYPE_PID);
2684 nr = pid_vnr(pid);
2685
2686 if (clone_flags & CLONE_PARENT_SETTID)
2687 put_user(nr, args->parent_tid);
2688
2689 if (clone_flags & CLONE_VFORK) {
2690 p->vfork_done = &vfork;
2691 init_completion(&vfork);
2692 get_task_struct(p);
2693 }
2694
2695 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2696 /* lock the task to synchronize with memcg migration */
2697 task_lock(p);
2698 lru_gen_add_mm(p->mm);
2699 task_unlock(p);
2700 }
2701
2702 wake_up_new_task(p);
2703
2704 /* forking complete and child started to run, tell ptracer */
2705 if (unlikely(trace))
2706 ptrace_event_pid(trace, pid);
2707
2708 if (clone_flags & CLONE_VFORK) {
2709 if (!wait_for_vfork_done(p, &vfork))
2710 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2711 }
2712
2713 put_pid(pid);
2714 return nr;
2715 }
2716
2717 /*
2718 * Create a kernel thread.
2719 */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)2720 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2721 {
2722 struct kernel_clone_args args = {
2723 .flags = ((lower_32_bits(flags) | CLONE_VM |
2724 CLONE_UNTRACED) & ~CSIGNAL),
2725 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2726 .fn = fn,
2727 .fn_arg = arg,
2728 .kthread = 1,
2729 };
2730
2731 return kernel_clone(&args);
2732 }
2733
2734 /*
2735 * Create a user mode thread.
2736 */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2737 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2738 {
2739 struct kernel_clone_args args = {
2740 .flags = ((lower_32_bits(flags) | CLONE_VM |
2741 CLONE_UNTRACED) & ~CSIGNAL),
2742 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2743 .fn = fn,
2744 .fn_arg = arg,
2745 };
2746
2747 return kernel_clone(&args);
2748 }
2749
2750 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2751 SYSCALL_DEFINE0(fork)
2752 {
2753 #ifdef CONFIG_MMU
2754 struct kernel_clone_args args = {
2755 .exit_signal = SIGCHLD,
2756 };
2757
2758 return kernel_clone(&args);
2759 #else
2760 /* can not support in nommu mode */
2761 return -EINVAL;
2762 #endif
2763 }
2764 #endif
2765
2766 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2767 SYSCALL_DEFINE0(vfork)
2768 {
2769 struct kernel_clone_args args = {
2770 .flags = CLONE_VFORK | CLONE_VM,
2771 .exit_signal = SIGCHLD,
2772 };
2773
2774 return kernel_clone(&args);
2775 }
2776 #endif
2777
2778 #ifdef __ARCH_WANT_SYS_CLONE
2779 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2780 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2781 int __user *, parent_tidptr,
2782 unsigned long, tls,
2783 int __user *, child_tidptr)
2784 #elif defined(CONFIG_CLONE_BACKWARDS2)
2785 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2786 int __user *, parent_tidptr,
2787 int __user *, child_tidptr,
2788 unsigned long, tls)
2789 #elif defined(CONFIG_CLONE_BACKWARDS3)
2790 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2791 int, stack_size,
2792 int __user *, parent_tidptr,
2793 int __user *, child_tidptr,
2794 unsigned long, tls)
2795 #else
2796 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2797 int __user *, parent_tidptr,
2798 int __user *, child_tidptr,
2799 unsigned long, tls)
2800 #endif
2801 {
2802 struct kernel_clone_args args = {
2803 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2804 .pidfd = parent_tidptr,
2805 .child_tid = child_tidptr,
2806 .parent_tid = parent_tidptr,
2807 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2808 .stack = newsp,
2809 .tls = tls,
2810 };
2811
2812 return kernel_clone(&args);
2813 }
2814 #endif
2815
2816 #ifdef __ARCH_WANT_SYS_CLONE3
2817
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2818 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2819 struct clone_args __user *uargs,
2820 size_t usize)
2821 {
2822 int err;
2823 struct clone_args args;
2824 pid_t *kset_tid = kargs->set_tid;
2825
2826 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2827 CLONE_ARGS_SIZE_VER0);
2828 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2829 CLONE_ARGS_SIZE_VER1);
2830 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2831 CLONE_ARGS_SIZE_VER2);
2832 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2833
2834 if (unlikely(usize > PAGE_SIZE))
2835 return -E2BIG;
2836 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2837 return -EINVAL;
2838
2839 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2840 if (err)
2841 return err;
2842
2843 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2844 return -EINVAL;
2845
2846 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2847 return -EINVAL;
2848
2849 if (unlikely(args.set_tid && args.set_tid_size == 0))
2850 return -EINVAL;
2851
2852 /*
2853 * Verify that higher 32bits of exit_signal are unset and that
2854 * it is a valid signal
2855 */
2856 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2857 !valid_signal(args.exit_signal)))
2858 return -EINVAL;
2859
2860 if ((args.flags & CLONE_INTO_CGROUP) &&
2861 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2862 return -EINVAL;
2863
2864 *kargs = (struct kernel_clone_args){
2865 .flags = args.flags,
2866 .pidfd = u64_to_user_ptr(args.pidfd),
2867 .child_tid = u64_to_user_ptr(args.child_tid),
2868 .parent_tid = u64_to_user_ptr(args.parent_tid),
2869 .exit_signal = args.exit_signal,
2870 .stack = args.stack,
2871 .stack_size = args.stack_size,
2872 .tls = args.tls,
2873 .set_tid_size = args.set_tid_size,
2874 .cgroup = args.cgroup,
2875 };
2876
2877 if (args.set_tid &&
2878 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2879 (kargs->set_tid_size * sizeof(pid_t))))
2880 return -EFAULT;
2881
2882 kargs->set_tid = kset_tid;
2883
2884 return 0;
2885 }
2886
2887 /**
2888 * clone3_stack_valid - check and prepare stack
2889 * @kargs: kernel clone args
2890 *
2891 * Verify that the stack arguments userspace gave us are sane.
2892 * In addition, set the stack direction for userspace since it's easy for us to
2893 * determine.
2894 */
clone3_stack_valid(struct kernel_clone_args * kargs)2895 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2896 {
2897 if (kargs->stack == 0) {
2898 if (kargs->stack_size > 0)
2899 return false;
2900 } else {
2901 if (kargs->stack_size == 0)
2902 return false;
2903
2904 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2905 return false;
2906
2907 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2908 kargs->stack += kargs->stack_size;
2909 #endif
2910 }
2911
2912 return true;
2913 }
2914
clone3_args_valid(struct kernel_clone_args * kargs)2915 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2916 {
2917 /* Verify that no unknown flags are passed along. */
2918 if (kargs->flags &
2919 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2920 return false;
2921
2922 /*
2923 * - make the CLONE_DETACHED bit reusable for clone3
2924 * - make the CSIGNAL bits reusable for clone3
2925 */
2926 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2927 return false;
2928
2929 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2930 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2931 return false;
2932
2933 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2934 kargs->exit_signal)
2935 return false;
2936
2937 if (!clone3_stack_valid(kargs))
2938 return false;
2939
2940 return true;
2941 }
2942
2943 /**
2944 * clone3 - create a new process with specific properties
2945 * @uargs: argument structure
2946 * @size: size of @uargs
2947 *
2948 * clone3() is the extensible successor to clone()/clone2().
2949 * It takes a struct as argument that is versioned by its size.
2950 *
2951 * Return: On success, a positive PID for the child process.
2952 * On error, a negative errno number.
2953 */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)2954 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2955 {
2956 int err;
2957
2958 struct kernel_clone_args kargs;
2959 pid_t set_tid[MAX_PID_NS_LEVEL];
2960
2961 kargs.set_tid = set_tid;
2962
2963 err = copy_clone_args_from_user(&kargs, uargs, size);
2964 if (err)
2965 return err;
2966
2967 if (!clone3_args_valid(&kargs))
2968 return -EINVAL;
2969
2970 return kernel_clone(&kargs);
2971 }
2972 #endif
2973
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2974 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2975 {
2976 struct task_struct *leader, *parent, *child;
2977 int res;
2978
2979 read_lock(&tasklist_lock);
2980 leader = top = top->group_leader;
2981 down:
2982 for_each_thread(leader, parent) {
2983 list_for_each_entry(child, &parent->children, sibling) {
2984 res = visitor(child, data);
2985 if (res) {
2986 if (res < 0)
2987 goto out;
2988 leader = child;
2989 goto down;
2990 }
2991 up:
2992 ;
2993 }
2994 }
2995
2996 if (leader != top) {
2997 child = leader;
2998 parent = child->real_parent;
2999 leader = parent->group_leader;
3000 goto up;
3001 }
3002 out:
3003 read_unlock(&tasklist_lock);
3004 }
3005
3006 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3007 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3008 #endif
3009
sighand_ctor(void * data)3010 static void sighand_ctor(void *data)
3011 {
3012 struct sighand_struct *sighand = data;
3013
3014 spin_lock_init(&sighand->siglock);
3015 init_waitqueue_head(&sighand->signalfd_wqh);
3016 }
3017
proc_caches_init(void)3018 void __init proc_caches_init(void)
3019 {
3020 unsigned int mm_size;
3021
3022 sighand_cachep = kmem_cache_create("sighand_cache",
3023 sizeof(struct sighand_struct), 0,
3024 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3025 SLAB_ACCOUNT, sighand_ctor);
3026 signal_cachep = kmem_cache_create("signal_cache",
3027 sizeof(struct signal_struct), 0,
3028 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3029 NULL);
3030 files_cachep = kmem_cache_create("files_cache",
3031 sizeof(struct files_struct), 0,
3032 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3033 NULL);
3034 fs_cachep = kmem_cache_create("fs_cache",
3035 sizeof(struct fs_struct), 0,
3036 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3037 NULL);
3038
3039 /*
3040 * The mm_cpumask is located at the end of mm_struct, and is
3041 * dynamically sized based on the maximum CPU number this system
3042 * can have, taking hotplug into account (nr_cpu_ids).
3043 */
3044 mm_size = sizeof(struct mm_struct) + cpumask_size();
3045
3046 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3047 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3048 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3049 offsetof(struct mm_struct, saved_auxv),
3050 sizeof_field(struct mm_struct, saved_auxv),
3051 NULL);
3052 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3053 mmap_init();
3054 nsproxy_cache_init();
3055 }
3056
3057 /*
3058 * Check constraints on flags passed to the unshare system call.
3059 */
check_unshare_flags(unsigned long unshare_flags)3060 static int check_unshare_flags(unsigned long unshare_flags)
3061 {
3062 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3063 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3064 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3065 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3066 CLONE_NEWTIME))
3067 return -EINVAL;
3068 /*
3069 * Not implemented, but pretend it works if there is nothing
3070 * to unshare. Note that unsharing the address space or the
3071 * signal handlers also need to unshare the signal queues (aka
3072 * CLONE_THREAD).
3073 */
3074 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3075 if (!thread_group_empty(current))
3076 return -EINVAL;
3077 }
3078 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3079 if (refcount_read(¤t->sighand->count) > 1)
3080 return -EINVAL;
3081 }
3082 if (unshare_flags & CLONE_VM) {
3083 if (!current_is_single_threaded())
3084 return -EINVAL;
3085 }
3086
3087 return 0;
3088 }
3089
3090 /*
3091 * Unshare the filesystem structure if it is being shared
3092 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3093 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3094 {
3095 struct fs_struct *fs = current->fs;
3096
3097 if (!(unshare_flags & CLONE_FS) || !fs)
3098 return 0;
3099
3100 /* don't need lock here; in the worst case we'll do useless copy */
3101 if (fs->users == 1)
3102 return 0;
3103
3104 *new_fsp = copy_fs_struct(fs);
3105 if (!*new_fsp)
3106 return -ENOMEM;
3107
3108 return 0;
3109 }
3110
3111 /*
3112 * Unshare file descriptor table if it is being shared
3113 */
unshare_fd(unsigned long unshare_flags,unsigned int max_fds,struct files_struct ** new_fdp)3114 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3115 struct files_struct **new_fdp)
3116 {
3117 struct files_struct *fd = current->files;
3118 int error = 0;
3119
3120 if ((unshare_flags & CLONE_FILES) &&
3121 (fd && atomic_read(&fd->count) > 1)) {
3122 *new_fdp = dup_fd(fd, max_fds, &error);
3123 if (!*new_fdp)
3124 return error;
3125 }
3126
3127 return 0;
3128 }
3129
3130 /*
3131 * unshare allows a process to 'unshare' part of the process
3132 * context which was originally shared using clone. copy_*
3133 * functions used by kernel_clone() cannot be used here directly
3134 * because they modify an inactive task_struct that is being
3135 * constructed. Here we are modifying the current, active,
3136 * task_struct.
3137 */
ksys_unshare(unsigned long unshare_flags)3138 int ksys_unshare(unsigned long unshare_flags)
3139 {
3140 struct fs_struct *fs, *new_fs = NULL;
3141 struct files_struct *new_fd = NULL;
3142 struct cred *new_cred = NULL;
3143 struct nsproxy *new_nsproxy = NULL;
3144 int do_sysvsem = 0;
3145 int err;
3146
3147 /*
3148 * If unsharing a user namespace must also unshare the thread group
3149 * and unshare the filesystem root and working directories.
3150 */
3151 if (unshare_flags & CLONE_NEWUSER)
3152 unshare_flags |= CLONE_THREAD | CLONE_FS;
3153 /*
3154 * If unsharing vm, must also unshare signal handlers.
3155 */
3156 if (unshare_flags & CLONE_VM)
3157 unshare_flags |= CLONE_SIGHAND;
3158 /*
3159 * If unsharing a signal handlers, must also unshare the signal queues.
3160 */
3161 if (unshare_flags & CLONE_SIGHAND)
3162 unshare_flags |= CLONE_THREAD;
3163 /*
3164 * If unsharing namespace, must also unshare filesystem information.
3165 */
3166 if (unshare_flags & CLONE_NEWNS)
3167 unshare_flags |= CLONE_FS;
3168
3169 err = check_unshare_flags(unshare_flags);
3170 if (err)
3171 goto bad_unshare_out;
3172 /*
3173 * CLONE_NEWIPC must also detach from the undolist: after switching
3174 * to a new ipc namespace, the semaphore arrays from the old
3175 * namespace are unreachable.
3176 */
3177 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3178 do_sysvsem = 1;
3179 err = unshare_fs(unshare_flags, &new_fs);
3180 if (err)
3181 goto bad_unshare_out;
3182 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3183 if (err)
3184 goto bad_unshare_cleanup_fs;
3185 err = unshare_userns(unshare_flags, &new_cred);
3186 if (err)
3187 goto bad_unshare_cleanup_fd;
3188 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3189 new_cred, new_fs);
3190 if (err)
3191 goto bad_unshare_cleanup_cred;
3192
3193 if (new_cred) {
3194 err = set_cred_ucounts(new_cred);
3195 if (err)
3196 goto bad_unshare_cleanup_cred;
3197 }
3198
3199 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3200 if (do_sysvsem) {
3201 /*
3202 * CLONE_SYSVSEM is equivalent to sys_exit().
3203 */
3204 exit_sem(current);
3205 }
3206 if (unshare_flags & CLONE_NEWIPC) {
3207 /* Orphan segments in old ns (see sem above). */
3208 exit_shm(current);
3209 shm_init_task(current);
3210 }
3211
3212 if (new_nsproxy)
3213 switch_task_namespaces(current, new_nsproxy);
3214
3215 task_lock(current);
3216
3217 if (new_fs) {
3218 fs = current->fs;
3219 spin_lock(&fs->lock);
3220 current->fs = new_fs;
3221 if (--fs->users)
3222 new_fs = NULL;
3223 else
3224 new_fs = fs;
3225 spin_unlock(&fs->lock);
3226 }
3227
3228 if (new_fd)
3229 swap(current->files, new_fd);
3230
3231 task_unlock(current);
3232
3233 if (new_cred) {
3234 /* Install the new user namespace */
3235 commit_creds(new_cred);
3236 new_cred = NULL;
3237 }
3238 }
3239
3240 perf_event_namespaces(current);
3241
3242 bad_unshare_cleanup_cred:
3243 if (new_cred)
3244 put_cred(new_cred);
3245 bad_unshare_cleanup_fd:
3246 if (new_fd)
3247 put_files_struct(new_fd);
3248
3249 bad_unshare_cleanup_fs:
3250 if (new_fs)
3251 free_fs_struct(new_fs);
3252
3253 bad_unshare_out:
3254 return err;
3255 }
3256
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3257 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3258 {
3259 return ksys_unshare(unshare_flags);
3260 }
3261
3262 /*
3263 * Helper to unshare the files of the current task.
3264 * We don't want to expose copy_files internals to
3265 * the exec layer of the kernel.
3266 */
3267
unshare_files(void)3268 int unshare_files(void)
3269 {
3270 struct task_struct *task = current;
3271 struct files_struct *old, *copy = NULL;
3272 int error;
3273
3274 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©);
3275 if (error || !copy)
3276 return error;
3277
3278 old = task->files;
3279 task_lock(task);
3280 task->files = copy;
3281 task_unlock(task);
3282 put_files_struct(old);
3283 return 0;
3284 }
3285
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3286 int sysctl_max_threads(struct ctl_table *table, int write,
3287 void *buffer, size_t *lenp, loff_t *ppos)
3288 {
3289 struct ctl_table t;
3290 int ret;
3291 int threads = max_threads;
3292 int min = 1;
3293 int max = MAX_THREADS;
3294
3295 t = *table;
3296 t.data = &threads;
3297 t.extra1 = &min;
3298 t.extra2 = &max;
3299
3300 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3301 if (ret || !write)
3302 return ret;
3303
3304 max_threads = threads;
3305
3306 return 0;
3307 }
3308