1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Ethernet-type device handling.
8 *
9 * Version: @(#)eth.c 1.0.7 05/25/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Florian La Roche, <rzsfl@rz.uni-sb.de>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 *
17 * Fixes:
18 * Mr Linux : Arp problems
19 * Alan Cox : Generic queue tidyup (very tiny here)
20 * Alan Cox : eth_header ntohs should be htons
21 * Alan Cox : eth_rebuild_header missing an htons and
22 * minor other things.
23 * Tegge : Arp bug fixes.
24 * Florian : Removed many unnecessary functions, code cleanup
25 * and changes for new arp and skbuff.
26 * Alan Cox : Redid header building to reflect new format.
27 * Alan Cox : ARP only when compiled with CONFIG_INET
28 * Greg Page : 802.2 and SNAP stuff.
29 * Alan Cox : MAC layer pointers/new format.
30 * Paul Gortmaker : eth_copy_and_sum shouldn't csum padding.
31 * Alan Cox : Protect against forwarding explosions with
32 * older network drivers and IFF_ALLMULTI.
33 * Christer Weinigel : Better rebuild header message.
34 * Andrew Morton : 26Feb01: kill ether_setup() - use netdev_boot_setup().
35 */
36 #include <linux/module.h>
37 #include <linux/types.h>
38 #include <linux/kernel.h>
39 #include <linux/string.h>
40 #include <linux/mm.h>
41 #include <linux/socket.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/ip.h>
45 #include <linux/netdevice.h>
46 #include <linux/nvmem-consumer.h>
47 #include <linux/etherdevice.h>
48 #include <linux/skbuff.h>
49 #include <linux/errno.h>
50 #include <linux/init.h>
51 #include <linux/if_ether.h>
52 #include <linux/of_net.h>
53 #include <linux/pci.h>
54 #include <net/dst.h>
55 #include <net/arp.h>
56 #include <net/sock.h>
57 #include <net/ipv6.h>
58 #include <net/ip.h>
59 #include <net/dsa.h>
60 #include <net/flow_dissector.h>
61 #include <linux/uaccess.h>
62 #include <net/pkt_sched.h>
63
64 __setup("ether=", netdev_boot_setup);
65
66 /**
67 * eth_header - create the Ethernet header
68 * @skb: buffer to alter
69 * @dev: source device
70 * @type: Ethernet type field
71 * @daddr: destination address (NULL leave destination address)
72 * @saddr: source address (NULL use device source address)
73 * @len: packet length (<= skb->len)
74 *
75 *
76 * Set the protocol type. For a packet of type ETH_P_802_3/2 we put the length
77 * in here instead.
78 */
eth_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)79 int eth_header(struct sk_buff *skb, struct net_device *dev,
80 unsigned short type,
81 const void *daddr, const void *saddr, unsigned int len)
82 {
83 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
84
85 if (type != ETH_P_802_3 && type != ETH_P_802_2)
86 eth->h_proto = htons(type);
87 else
88 eth->h_proto = htons(len);
89
90 /*
91 * Set the source hardware address.
92 */
93
94 if (!saddr)
95 saddr = dev->dev_addr;
96 memcpy(eth->h_source, saddr, ETH_ALEN);
97
98 if (daddr) {
99 memcpy(eth->h_dest, daddr, ETH_ALEN);
100 return ETH_HLEN;
101 }
102
103 /*
104 * Anyway, the loopback-device should never use this function...
105 */
106
107 if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
108 eth_zero_addr(eth->h_dest);
109 return ETH_HLEN;
110 }
111
112 return -ETH_HLEN;
113 }
114 EXPORT_SYMBOL(eth_header);
115
116 /**
117 * eth_get_headlen - determine the length of header for an ethernet frame
118 * @dev: pointer to network device
119 * @data: pointer to start of frame
120 * @len: total length of frame
121 *
122 * Make a best effort attempt to pull the length for all of the headers for
123 * a given frame in a linear buffer.
124 */
eth_get_headlen(const struct net_device * dev,void * data,unsigned int len)125 u32 eth_get_headlen(const struct net_device *dev, void *data, unsigned int len)
126 {
127 const unsigned int flags = FLOW_DISSECTOR_F_PARSE_1ST_FRAG;
128 const struct ethhdr *eth = (const struct ethhdr *)data;
129 struct flow_keys_basic keys;
130
131 /* this should never happen, but better safe than sorry */
132 if (unlikely(len < sizeof(*eth)))
133 return len;
134
135 /* parse any remaining L2/L3 headers, check for L4 */
136 if (!skb_flow_dissect_flow_keys_basic(dev_net(dev), NULL, &keys, data,
137 eth->h_proto, sizeof(*eth),
138 len, flags))
139 return max_t(u32, keys.control.thoff, sizeof(*eth));
140
141 /* parse for any L4 headers */
142 return min_t(u32, __skb_get_poff(NULL, data, &keys, len), len);
143 }
144 EXPORT_SYMBOL(eth_get_headlen);
145
146 /**
147 * eth_type_trans - determine the packet's protocol ID.
148 * @skb: received socket data
149 * @dev: receiving network device
150 *
151 * The rule here is that we
152 * assume 802.3 if the type field is short enough to be a length.
153 * This is normal practice and works for any 'now in use' protocol.
154 */
eth_type_trans(struct sk_buff * skb,struct net_device * dev)155 __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev)
156 {
157 unsigned short _service_access_point;
158 const unsigned short *sap;
159 const struct ethhdr *eth;
160
161 skb->dev = dev;
162 skb_reset_mac_header(skb);
163
164 eth = (struct ethhdr *)skb->data;
165 skb_pull_inline(skb, ETH_HLEN);
166
167 if (unlikely(!ether_addr_equal_64bits(eth->h_dest,
168 dev->dev_addr))) {
169 if (unlikely(is_multicast_ether_addr_64bits(eth->h_dest))) {
170 if (ether_addr_equal_64bits(eth->h_dest, dev->broadcast))
171 skb->pkt_type = PACKET_BROADCAST;
172 else
173 skb->pkt_type = PACKET_MULTICAST;
174 } else {
175 skb->pkt_type = PACKET_OTHERHOST;
176 }
177 }
178
179 /*
180 * Some variants of DSA tagging don't have an ethertype field
181 * at all, so we check here whether one of those tagging
182 * variants has been configured on the receiving interface,
183 * and if so, set skb->protocol without looking at the packet.
184 * The DSA tagging protocol may be able to decode some but not all
185 * traffic (for example only for management). In that case give it the
186 * option to filter the packets from which it can decode source port
187 * information.
188 */
189 if (unlikely(netdev_uses_dsa(dev)) && dsa_can_decode(skb, dev))
190 return htons(ETH_P_XDSA);
191
192 if (likely(eth_proto_is_802_3(eth->h_proto)))
193 return eth->h_proto;
194
195 /*
196 * This is a magic hack to spot IPX packets. Older Novell breaks
197 * the protocol design and runs IPX over 802.3 without an 802.2 LLC
198 * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
199 * won't work for fault tolerant netware but does for the rest.
200 */
201 sap = skb_header_pointer(skb, 0, sizeof(*sap), &_service_access_point);
202 if (sap && *sap == 0xFFFF)
203 return htons(ETH_P_802_3);
204
205 /*
206 * Real 802.2 LLC
207 */
208 return htons(ETH_P_802_2);
209 }
210 EXPORT_SYMBOL(eth_type_trans);
211
212 /**
213 * eth_header_parse - extract hardware address from packet
214 * @skb: packet to extract header from
215 * @haddr: destination buffer
216 */
eth_header_parse(const struct sk_buff * skb,unsigned char * haddr)217 int eth_header_parse(const struct sk_buff *skb, unsigned char *haddr)
218 {
219 const struct ethhdr *eth = eth_hdr(skb);
220 memcpy(haddr, eth->h_source, ETH_ALEN);
221 return ETH_ALEN;
222 }
223 EXPORT_SYMBOL(eth_header_parse);
224
225 /**
226 * eth_header_cache - fill cache entry from neighbour
227 * @neigh: source neighbour
228 * @hh: destination cache entry
229 * @type: Ethernet type field
230 *
231 * Create an Ethernet header template from the neighbour.
232 */
eth_header_cache(const struct neighbour * neigh,struct hh_cache * hh,__be16 type)233 int eth_header_cache(const struct neighbour *neigh, struct hh_cache *hh, __be16 type)
234 {
235 struct ethhdr *eth;
236 const struct net_device *dev = neigh->dev;
237
238 eth = (struct ethhdr *)
239 (((u8 *) hh->hh_data) + (HH_DATA_OFF(sizeof(*eth))));
240
241 if (type == htons(ETH_P_802_3))
242 return -1;
243
244 eth->h_proto = type;
245 memcpy(eth->h_source, dev->dev_addr, ETH_ALEN);
246 memcpy(eth->h_dest, neigh->ha, ETH_ALEN);
247
248 /* Pairs with READ_ONCE() in neigh_resolve_output(),
249 * neigh_hh_output() and neigh_update_hhs().
250 */
251 smp_store_release(&hh->hh_len, ETH_HLEN);
252
253 return 0;
254 }
255 EXPORT_SYMBOL(eth_header_cache);
256
257 /**
258 * eth_header_cache_update - update cache entry
259 * @hh: destination cache entry
260 * @dev: network device
261 * @haddr: new hardware address
262 *
263 * Called by Address Resolution module to notify changes in address.
264 */
eth_header_cache_update(struct hh_cache * hh,const struct net_device * dev,const unsigned char * haddr)265 void eth_header_cache_update(struct hh_cache *hh,
266 const struct net_device *dev,
267 const unsigned char *haddr)
268 {
269 memcpy(((u8 *) hh->hh_data) + HH_DATA_OFF(sizeof(struct ethhdr)),
270 haddr, ETH_ALEN);
271 }
272 EXPORT_SYMBOL(eth_header_cache_update);
273
274 /**
275 * eth_header_parser_protocol - extract protocol from L2 header
276 * @skb: packet to extract protocol from
277 */
eth_header_parse_protocol(const struct sk_buff * skb)278 __be16 eth_header_parse_protocol(const struct sk_buff *skb)
279 {
280 const struct ethhdr *eth = eth_hdr(skb);
281
282 return eth->h_proto;
283 }
284 EXPORT_SYMBOL(eth_header_parse_protocol);
285
286 /**
287 * eth_prepare_mac_addr_change - prepare for mac change
288 * @dev: network device
289 * @p: socket address
290 */
eth_prepare_mac_addr_change(struct net_device * dev,void * p)291 int eth_prepare_mac_addr_change(struct net_device *dev, void *p)
292 {
293 struct sockaddr *addr = p;
294
295 if (!(dev->priv_flags & IFF_LIVE_ADDR_CHANGE) && netif_running(dev))
296 return -EBUSY;
297 if (!is_valid_ether_addr(addr->sa_data))
298 return -EADDRNOTAVAIL;
299 return 0;
300 }
301 EXPORT_SYMBOL(eth_prepare_mac_addr_change);
302
303 /**
304 * eth_commit_mac_addr_change - commit mac change
305 * @dev: network device
306 * @p: socket address
307 */
eth_commit_mac_addr_change(struct net_device * dev,void * p)308 void eth_commit_mac_addr_change(struct net_device *dev, void *p)
309 {
310 struct sockaddr *addr = p;
311
312 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
313 }
314 EXPORT_SYMBOL(eth_commit_mac_addr_change);
315
316 /**
317 * eth_mac_addr - set new Ethernet hardware address
318 * @dev: network device
319 * @p: socket address
320 *
321 * Change hardware address of device.
322 *
323 * This doesn't change hardware matching, so needs to be overridden
324 * for most real devices.
325 */
eth_mac_addr(struct net_device * dev,void * p)326 int eth_mac_addr(struct net_device *dev, void *p)
327 {
328 int ret;
329
330 ret = eth_prepare_mac_addr_change(dev, p);
331 if (ret < 0)
332 return ret;
333 eth_commit_mac_addr_change(dev, p);
334 return 0;
335 }
336 EXPORT_SYMBOL(eth_mac_addr);
337
eth_validate_addr(struct net_device * dev)338 int eth_validate_addr(struct net_device *dev)
339 {
340 if (!is_valid_ether_addr(dev->dev_addr))
341 return -EADDRNOTAVAIL;
342
343 return 0;
344 }
345 EXPORT_SYMBOL(eth_validate_addr);
346
347 const struct header_ops eth_header_ops ____cacheline_aligned = {
348 .create = eth_header,
349 .parse = eth_header_parse,
350 .cache = eth_header_cache,
351 .cache_update = eth_header_cache_update,
352 .parse_protocol = eth_header_parse_protocol,
353 };
354
355 /**
356 * ether_setup - setup Ethernet network device
357 * @dev: network device
358 *
359 * Fill in the fields of the device structure with Ethernet-generic values.
360 */
ether_setup(struct net_device * dev)361 void ether_setup(struct net_device *dev)
362 {
363 dev->header_ops = ð_header_ops;
364 dev->type = ARPHRD_ETHER;
365 dev->hard_header_len = ETH_HLEN;
366 dev->min_header_len = ETH_HLEN;
367 dev->mtu = ETH_DATA_LEN;
368 dev->min_mtu = ETH_MIN_MTU;
369 dev->max_mtu = ETH_DATA_LEN;
370 dev->addr_len = ETH_ALEN;
371 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
372 dev->flags = IFF_BROADCAST|IFF_MULTICAST;
373 dev->priv_flags |= IFF_TX_SKB_SHARING;
374
375 eth_broadcast_addr(dev->broadcast);
376
377 }
378 EXPORT_SYMBOL(ether_setup);
379
380 /**
381 * alloc_etherdev_mqs - Allocates and sets up an Ethernet device
382 * @sizeof_priv: Size of additional driver-private structure to be allocated
383 * for this Ethernet device
384 * @txqs: The number of TX queues this device has.
385 * @rxqs: The number of RX queues this device has.
386 *
387 * Fill in the fields of the device structure with Ethernet-generic
388 * values. Basically does everything except registering the device.
389 *
390 * Constructs a new net device, complete with a private data area of
391 * size (sizeof_priv). A 32-byte (not bit) alignment is enforced for
392 * this private data area.
393 */
394
alloc_etherdev_mqs(int sizeof_priv,unsigned int txqs,unsigned int rxqs)395 struct net_device *alloc_etherdev_mqs(int sizeof_priv, unsigned int txqs,
396 unsigned int rxqs)
397 {
398 return alloc_netdev_mqs(sizeof_priv, "eth%d", NET_NAME_UNKNOWN,
399 ether_setup, txqs, rxqs);
400 }
401 EXPORT_SYMBOL(alloc_etherdev_mqs);
402
sysfs_format_mac(char * buf,const unsigned char * addr,int len)403 ssize_t sysfs_format_mac(char *buf, const unsigned char *addr, int len)
404 {
405 return scnprintf(buf, PAGE_SIZE, "%*phC\n", len, addr);
406 }
407 EXPORT_SYMBOL(sysfs_format_mac);
408
eth_gro_receive(struct list_head * head,struct sk_buff * skb)409 struct sk_buff *eth_gro_receive(struct list_head *head, struct sk_buff *skb)
410 {
411 const struct packet_offload *ptype;
412 unsigned int hlen, off_eth;
413 struct sk_buff *pp = NULL;
414 struct ethhdr *eh, *eh2;
415 struct sk_buff *p;
416 __be16 type;
417 int flush = 1;
418
419 off_eth = skb_gro_offset(skb);
420 hlen = off_eth + sizeof(*eh);
421 eh = skb_gro_header_fast(skb, off_eth);
422 if (skb_gro_header_hard(skb, hlen)) {
423 eh = skb_gro_header_slow(skb, hlen, off_eth);
424 if (unlikely(!eh))
425 goto out;
426 }
427
428 flush = 0;
429
430 list_for_each_entry(p, head, list) {
431 if (!NAPI_GRO_CB(p)->same_flow)
432 continue;
433
434 eh2 = (struct ethhdr *)(p->data + off_eth);
435 if (compare_ether_header(eh, eh2)) {
436 NAPI_GRO_CB(p)->same_flow = 0;
437 continue;
438 }
439 }
440
441 type = eh->h_proto;
442
443 rcu_read_lock();
444 ptype = gro_find_receive_by_type(type);
445 if (ptype == NULL) {
446 flush = 1;
447 goto out_unlock;
448 }
449
450 skb_gro_pull(skb, sizeof(*eh));
451 skb_gro_postpull_rcsum(skb, eh, sizeof(*eh));
452 pp = call_gro_receive(ptype->callbacks.gro_receive, head, skb);
453
454 out_unlock:
455 rcu_read_unlock();
456 out:
457 skb_gro_flush_final(skb, pp, flush);
458
459 return pp;
460 }
461 EXPORT_SYMBOL(eth_gro_receive);
462
eth_gro_complete(struct sk_buff * skb,int nhoff)463 int eth_gro_complete(struct sk_buff *skb, int nhoff)
464 {
465 struct ethhdr *eh = (struct ethhdr *)(skb->data + nhoff);
466 __be16 type = eh->h_proto;
467 struct packet_offload *ptype;
468 int err = -ENOSYS;
469
470 if (skb->encapsulation)
471 skb_set_inner_mac_header(skb, nhoff);
472
473 rcu_read_lock();
474 ptype = gro_find_complete_by_type(type);
475 if (ptype != NULL)
476 err = ptype->callbacks.gro_complete(skb, nhoff +
477 sizeof(struct ethhdr));
478
479 rcu_read_unlock();
480 return err;
481 }
482 EXPORT_SYMBOL(eth_gro_complete);
483
484 static struct packet_offload eth_packet_offload __read_mostly = {
485 .type = cpu_to_be16(ETH_P_TEB),
486 .priority = 10,
487 .callbacks = {
488 .gro_receive = eth_gro_receive,
489 .gro_complete = eth_gro_complete,
490 },
491 };
492
eth_offload_init(void)493 static int __init eth_offload_init(void)
494 {
495 dev_add_offload(ð_packet_offload);
496
497 return 0;
498 }
499
500 fs_initcall(eth_offload_init);
501
arch_get_platform_mac_address(void)502 unsigned char * __weak arch_get_platform_mac_address(void)
503 {
504 return NULL;
505 }
506
eth_platform_get_mac_address(struct device * dev,u8 * mac_addr)507 int eth_platform_get_mac_address(struct device *dev, u8 *mac_addr)
508 {
509 const unsigned char *addr = NULL;
510
511 if (dev->of_node)
512 addr = of_get_mac_address(dev->of_node);
513 if (IS_ERR_OR_NULL(addr))
514 addr = arch_get_platform_mac_address();
515
516 if (!addr)
517 return -ENODEV;
518
519 ether_addr_copy(mac_addr, addr);
520
521 return 0;
522 }
523 EXPORT_SYMBOL(eth_platform_get_mac_address);
524
525 /**
526 * Obtain the MAC address from an nvmem cell named 'mac-address' associated
527 * with given device.
528 *
529 * @dev: Device with which the mac-address cell is associated.
530 * @addrbuf: Buffer to which the MAC address will be copied on success.
531 *
532 * Returns 0 on success or a negative error number on failure.
533 */
nvmem_get_mac_address(struct device * dev,void * addrbuf)534 int nvmem_get_mac_address(struct device *dev, void *addrbuf)
535 {
536 struct nvmem_cell *cell;
537 const void *mac;
538 size_t len;
539
540 cell = nvmem_cell_get(dev, "mac-address");
541 if (IS_ERR(cell))
542 return PTR_ERR(cell);
543
544 mac = nvmem_cell_read(cell, &len);
545 nvmem_cell_put(cell);
546
547 if (IS_ERR(mac))
548 return PTR_ERR(mac);
549
550 if (len != ETH_ALEN || !is_valid_ether_addr(mac)) {
551 kfree(mac);
552 return -EINVAL;
553 }
554
555 ether_addr_copy(addrbuf, mac);
556 kfree(mac);
557
558 return 0;
559 }
560 EXPORT_SYMBOL(nvmem_get_mac_address);
561