1 /*
2  * Intel 5400 class Memory Controllers kernel module (Seaburg)
3  *
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Copyright (c) 2008 by:
8  *	 Ben Woodard <woodard@redhat.com>
9  *	 Mauro Carvalho Chehab
10  *
11  * Red Hat Inc. https://www.redhat.com
12  *
13  * Forked and adapted from the i5000_edac driver which was
14  * written by Douglas Thompson Linux Networx <norsk5@xmission.com>
15  *
16  * This module is based on the following document:
17  *
18  * Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet
19  * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
20  *
21  * This Memory Controller manages DDR2 FB-DIMMs. It has 2 branches, each with
22  * 2 channels operating in lockstep no-mirror mode. Each channel can have up to
23  * 4 dimm's, each with up to 8GB.
24  *
25  */
26 
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/pci.h>
30 #include <linux/pci_ids.h>
31 #include <linux/slab.h>
32 #include <linux/edac.h>
33 #include <linux/mmzone.h>
34 
35 #include "edac_module.h"
36 
37 /*
38  * Alter this version for the I5400 module when modifications are made
39  */
40 #define I5400_REVISION    " Ver: 1.0.0"
41 
42 #define EDAC_MOD_STR      "i5400_edac"
43 
44 #define i5400_printk(level, fmt, arg...) \
45 	edac_printk(level, "i5400", fmt, ##arg)
46 
47 #define i5400_mc_printk(mci, level, fmt, arg...) \
48 	edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg)
49 
50 /* Limits for i5400 */
51 #define MAX_BRANCHES		2
52 #define CHANNELS_PER_BRANCH	2
53 #define DIMMS_PER_CHANNEL	4
54 #define	MAX_CHANNELS		(MAX_BRANCHES * CHANNELS_PER_BRANCH)
55 
56 /* Device 16,
57  * Function 0: System Address
58  * Function 1: Memory Branch Map, Control, Errors Register
59  * Function 2: FSB Error Registers
60  *
61  * All 3 functions of Device 16 (0,1,2) share the SAME DID and
62  * uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2),
63  * PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1
64  * for device 21 (0,1).
65  */
66 
67 	/* OFFSETS for Function 0 */
68 #define		AMBASE			0x48 /* AMB Mem Mapped Reg Region Base */
69 #define		MAXCH			0x56 /* Max Channel Number */
70 #define		MAXDIMMPERCH		0x57 /* Max DIMM PER Channel Number */
71 
72 	/* OFFSETS for Function 1 */
73 #define		TOLM			0x6C
74 #define		REDMEMB			0x7C
75 #define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0]  indicate EVEN */
76 #define		MIR0			0x80
77 #define		MIR1			0x84
78 #define		AMIR0			0x8c
79 #define		AMIR1			0x90
80 
81 	/* Fatal error registers */
82 #define		FERR_FAT_FBD		0x98	/* also called as FERR_FAT_FB_DIMM at datasheet */
83 #define			FERR_FAT_FBDCHAN (3<<28)	/* channel index where the highest-order error occurred */
84 
85 #define		NERR_FAT_FBD		0x9c
86 #define		FERR_NF_FBD		0xa0	/* also called as FERR_NFAT_FB_DIMM at datasheet */
87 
88 	/* Non-fatal error register */
89 #define		NERR_NF_FBD		0xa4
90 
91 	/* Enable error mask */
92 #define		EMASK_FBD		0xa8
93 
94 #define		ERR0_FBD		0xac
95 #define		ERR1_FBD		0xb0
96 #define		ERR2_FBD		0xb4
97 #define		MCERR_FBD		0xb8
98 
99 	/* No OFFSETS for Device 16 Function 2 */
100 
101 /*
102  * Device 21,
103  * Function 0: Memory Map Branch 0
104  *
105  * Device 22,
106  * Function 0: Memory Map Branch 1
107  */
108 
109 	/* OFFSETS for Function 0 */
110 #define AMBPRESENT_0	0x64
111 #define AMBPRESENT_1	0x66
112 #define MTR0		0x80
113 #define MTR1		0x82
114 #define MTR2		0x84
115 #define MTR3		0x86
116 
117 	/* OFFSETS for Function 1 */
118 #define NRECFGLOG		0x74
119 #define RECFGLOG		0x78
120 #define NRECMEMA		0xbe
121 #define NRECMEMB		0xc0
122 #define NRECFB_DIMMA		0xc4
123 #define NRECFB_DIMMB		0xc8
124 #define NRECFB_DIMMC		0xcc
125 #define NRECFB_DIMMD		0xd0
126 #define NRECFB_DIMME		0xd4
127 #define NRECFB_DIMMF		0xd8
128 #define REDMEMA			0xdC
129 #define RECMEMA			0xf0
130 #define RECMEMB			0xf4
131 #define RECFB_DIMMA		0xf8
132 #define RECFB_DIMMB		0xec
133 #define RECFB_DIMMC		0xf0
134 #define RECFB_DIMMD		0xf4
135 #define RECFB_DIMME		0xf8
136 #define RECFB_DIMMF		0xfC
137 
138 /*
139  * Error indicator bits and masks
140  * Error masks are according with Table 5-17 of i5400 datasheet
141  */
142 
143 enum error_mask {
144 	EMASK_M1  = 1<<0,  /* Memory Write error on non-redundant retry */
145 	EMASK_M2  = 1<<1,  /* Memory or FB-DIMM configuration CRC read error */
146 	EMASK_M3  = 1<<2,  /* Reserved */
147 	EMASK_M4  = 1<<3,  /* Uncorrectable Data ECC on Replay */
148 	EMASK_M5  = 1<<4,  /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */
149 	EMASK_M6  = 1<<5,  /* Unsupported on i5400 */
150 	EMASK_M7  = 1<<6,  /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
151 	EMASK_M8  = 1<<7,  /* Aliased Uncorrectable Patrol Data ECC */
152 	EMASK_M9  = 1<<8,  /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */
153 	EMASK_M10 = 1<<9,  /* Unsupported on i5400 */
154 	EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC  */
155 	EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */
156 	EMASK_M13 = 1<<12, /* Memory Write error on first attempt */
157 	EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */
158 	EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */
159 	EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */
160 	EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */
161 	EMASK_M18 = 1<<17, /* Unsupported on i5400 */
162 	EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */
163 	EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */
164 	EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */
165 	EMASK_M22 = 1<<21, /* SPD protocol Error */
166 	EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */
167 	EMASK_M24 = 1<<23, /* Refresh error */
168 	EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */
169 	EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */
170 	EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */
171 	EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */
172 	EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */
173 };
174 
175 /*
176  * Names to translate bit error into something useful
177  */
178 static const char *error_name[] = {
179 	[0]  = "Memory Write error on non-redundant retry",
180 	[1]  = "Memory or FB-DIMM configuration CRC read error",
181 	/* Reserved */
182 	[3]  = "Uncorrectable Data ECC on Replay",
183 	[4]  = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
184 	/* M6 Unsupported on i5400 */
185 	[6]  = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
186 	[7]  = "Aliased Uncorrectable Patrol Data ECC",
187 	[8]  = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
188 	/* M10 Unsupported on i5400 */
189 	[10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
190 	[11] = "Non-Aliased Uncorrectable Patrol Data ECC",
191 	[12] = "Memory Write error on first attempt",
192 	[13] = "FB-DIMM Configuration Write error on first attempt",
193 	[14] = "Memory or FB-DIMM configuration CRC read error",
194 	[15] = "Channel Failed-Over Occurred",
195 	[16] = "Correctable Non-Mirrored Demand Data ECC",
196 	/* M18 Unsupported on i5400 */
197 	[18] = "Correctable Resilver- or Spare-Copy Data ECC",
198 	[19] = "Correctable Patrol Data ECC",
199 	[20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status",
200 	[21] = "SPD protocol Error",
201 	[22] = "Non-Redundant Fast Reset Timeout",
202 	[23] = "Refresh error",
203 	[24] = "Memory Write error on redundant retry",
204 	[25] = "Redundant Fast Reset Timeout",
205 	[26] = "Correctable Counter Threshold Exceeded",
206 	[27] = "DIMM-Spare Copy Completed",
207 	[28] = "DIMM-Isolation Completed",
208 };
209 
210 /* Fatal errors */
211 #define ERROR_FAT_MASK		(EMASK_M1 | \
212 				 EMASK_M2 | \
213 				 EMASK_M23)
214 
215 /* Correctable errors */
216 #define ERROR_NF_CORRECTABLE	(EMASK_M27 | \
217 				 EMASK_M20 | \
218 				 EMASK_M19 | \
219 				 EMASK_M18 | \
220 				 EMASK_M17 | \
221 				 EMASK_M16)
222 #define ERROR_NF_DIMM_SPARE	(EMASK_M29 | \
223 				 EMASK_M28)
224 #define ERROR_NF_SPD_PROTOCOL	(EMASK_M22)
225 #define ERROR_NF_NORTH_CRC	(EMASK_M21)
226 
227 /* Recoverable errors */
228 #define ERROR_NF_RECOVERABLE	(EMASK_M26 | \
229 				 EMASK_M25 | \
230 				 EMASK_M24 | \
231 				 EMASK_M15 | \
232 				 EMASK_M14 | \
233 				 EMASK_M13 | \
234 				 EMASK_M12 | \
235 				 EMASK_M11 | \
236 				 EMASK_M9  | \
237 				 EMASK_M8  | \
238 				 EMASK_M7  | \
239 				 EMASK_M5)
240 
241 /* uncorrectable errors */
242 #define ERROR_NF_UNCORRECTABLE	(EMASK_M4)
243 
244 /* mask to all non-fatal errors */
245 #define ERROR_NF_MASK		(ERROR_NF_CORRECTABLE   | \
246 				 ERROR_NF_UNCORRECTABLE | \
247 				 ERROR_NF_RECOVERABLE   | \
248 				 ERROR_NF_DIMM_SPARE    | \
249 				 ERROR_NF_SPD_PROTOCOL  | \
250 				 ERROR_NF_NORTH_CRC)
251 
252 /*
253  * Define error masks for the several registers
254  */
255 
256 /* Enable all fatal and non fatal errors */
257 #define ENABLE_EMASK_ALL	(ERROR_FAT_MASK | ERROR_NF_MASK)
258 
259 /* mask for fatal error registers */
260 #define FERR_FAT_MASK ERROR_FAT_MASK
261 
262 /* masks for non-fatal error register */
to_nf_mask(unsigned int mask)263 static inline int to_nf_mask(unsigned int mask)
264 {
265 	return (mask & EMASK_M29) | (mask >> 3);
266 };
267 
from_nf_ferr(unsigned int mask)268 static inline int from_nf_ferr(unsigned int mask)
269 {
270 	return (mask & EMASK_M29) |		/* Bit 28 */
271 	       (mask & ((1 << 28) - 1) << 3);	/* Bits 0 to 27 */
272 };
273 
274 #define FERR_NF_MASK		to_nf_mask(ERROR_NF_MASK)
275 #define FERR_NF_CORRECTABLE	to_nf_mask(ERROR_NF_CORRECTABLE)
276 #define FERR_NF_DIMM_SPARE	to_nf_mask(ERROR_NF_DIMM_SPARE)
277 #define FERR_NF_SPD_PROTOCOL	to_nf_mask(ERROR_NF_SPD_PROTOCOL)
278 #define FERR_NF_NORTH_CRC	to_nf_mask(ERROR_NF_NORTH_CRC)
279 #define FERR_NF_RECOVERABLE	to_nf_mask(ERROR_NF_RECOVERABLE)
280 #define FERR_NF_UNCORRECTABLE	to_nf_mask(ERROR_NF_UNCORRECTABLE)
281 
282 /* Defines to extract the vaious fields from the
283  *	MTRx - Memory Technology Registers
284  */
285 #define MTR_DIMMS_PRESENT(mtr)		((mtr) & (1 << 10))
286 #define MTR_DIMMS_ETHROTTLE(mtr)	((mtr) & (1 << 9))
287 #define MTR_DRAM_WIDTH(mtr)		(((mtr) & (1 << 8)) ? 8 : 4)
288 #define MTR_DRAM_BANKS(mtr)		(((mtr) & (1 << 6)) ? 8 : 4)
289 #define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
290 #define MTR_DIMM_RANK(mtr)		(((mtr) >> 5) & 0x1)
291 #define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
292 #define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
293 #define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
294 #define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
295 #define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
296 
297 /* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */
extract_fbdchan_indx(u32 x)298 static inline int extract_fbdchan_indx(u32 x)
299 {
300 	return (x>>28) & 0x3;
301 }
302 
303 /* Device name and register DID (Device ID) */
304 struct i5400_dev_info {
305 	const char *ctl_name;	/* name for this device */
306 	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
307 };
308 
309 /* Table of devices attributes supported by this driver */
310 static const struct i5400_dev_info i5400_devs[] = {
311 	{
312 		.ctl_name = "I5400",
313 		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_5400_ERR,
314 	},
315 };
316 
317 struct i5400_dimm_info {
318 	int megabytes;		/* size, 0 means not present  */
319 };
320 
321 /* driver private data structure */
322 struct i5400_pvt {
323 	struct pci_dev *system_address;		/* 16.0 */
324 	struct pci_dev *branchmap_werrors;	/* 16.1 */
325 	struct pci_dev *fsb_error_regs;		/* 16.2 */
326 	struct pci_dev *branch_0;		/* 21.0 */
327 	struct pci_dev *branch_1;		/* 22.0 */
328 
329 	u16 tolm;				/* top of low memory */
330 	union {
331 		u64 ambase;				/* AMB BAR */
332 		struct {
333 			u32 ambase_bottom;
334 			u32 ambase_top;
335 		} u __packed;
336 	};
337 
338 	u16 mir0, mir1;
339 
340 	u16 b0_mtr[DIMMS_PER_CHANNEL];	/* Memory Technlogy Reg */
341 	u16 b0_ambpresent0;			/* Branch 0, Channel 0 */
342 	u16 b0_ambpresent1;			/* Brnach 0, Channel 1 */
343 
344 	u16 b1_mtr[DIMMS_PER_CHANNEL];	/* Memory Technlogy Reg */
345 	u16 b1_ambpresent0;			/* Branch 1, Channel 8 */
346 	u16 b1_ambpresent1;			/* Branch 1, Channel 1 */
347 
348 	/* DIMM information matrix, allocating architecture maximums */
349 	struct i5400_dimm_info dimm_info[DIMMS_PER_CHANNEL][MAX_CHANNELS];
350 
351 	/* Actual values for this controller */
352 	int maxch;				/* Max channels */
353 	int maxdimmperch;			/* Max DIMMs per channel */
354 };
355 
356 /* I5400 MCH error information retrieved from Hardware */
357 struct i5400_error_info {
358 	/* These registers are always read from the MC */
359 	u32 ferr_fat_fbd;	/* First Errors Fatal */
360 	u32 nerr_fat_fbd;	/* Next Errors Fatal */
361 	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
362 	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */
363 
364 	/* These registers are input ONLY if there was a Recoverable Error */
365 	u32 redmemb;		/* Recoverable Mem Data Error log B */
366 	u16 recmema;		/* Recoverable Mem Error log A */
367 	u32 recmemb;		/* Recoverable Mem Error log B */
368 
369 	/* These registers are input ONLY if there was a Non-Rec Error */
370 	u16 nrecmema;		/* Non-Recoverable Mem log A */
371 	u32 nrecmemb;		/* Non-Recoverable Mem log B */
372 
373 };
374 
375 /* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and
376    5400 better to use an inline function than a macro in this case */
nrec_bank(struct i5400_error_info * info)377 static inline int nrec_bank(struct i5400_error_info *info)
378 {
379 	return ((info->nrecmema) >> 12) & 0x7;
380 }
nrec_rank(struct i5400_error_info * info)381 static inline int nrec_rank(struct i5400_error_info *info)
382 {
383 	return ((info->nrecmema) >> 8) & 0xf;
384 }
nrec_buf_id(struct i5400_error_info * info)385 static inline int nrec_buf_id(struct i5400_error_info *info)
386 {
387 	return ((info->nrecmema)) & 0xff;
388 }
nrec_rdwr(struct i5400_error_info * info)389 static inline int nrec_rdwr(struct i5400_error_info *info)
390 {
391 	return (info->nrecmemb) >> 31;
392 }
393 /* This applies to both NREC and REC string so it can be used with nrec_rdwr
394    and rec_rdwr */
rdwr_str(int rdwr)395 static inline const char *rdwr_str(int rdwr)
396 {
397 	return rdwr ? "Write" : "Read";
398 }
nrec_cas(struct i5400_error_info * info)399 static inline int nrec_cas(struct i5400_error_info *info)
400 {
401 	return ((info->nrecmemb) >> 16) & 0x1fff;
402 }
nrec_ras(struct i5400_error_info * info)403 static inline int nrec_ras(struct i5400_error_info *info)
404 {
405 	return (info->nrecmemb) & 0xffff;
406 }
rec_bank(struct i5400_error_info * info)407 static inline int rec_bank(struct i5400_error_info *info)
408 {
409 	return ((info->recmema) >> 12) & 0x7;
410 }
rec_rank(struct i5400_error_info * info)411 static inline int rec_rank(struct i5400_error_info *info)
412 {
413 	return ((info->recmema) >> 8) & 0xf;
414 }
rec_rdwr(struct i5400_error_info * info)415 static inline int rec_rdwr(struct i5400_error_info *info)
416 {
417 	return (info->recmemb) >> 31;
418 }
rec_cas(struct i5400_error_info * info)419 static inline int rec_cas(struct i5400_error_info *info)
420 {
421 	return ((info->recmemb) >> 16) & 0x1fff;
422 }
rec_ras(struct i5400_error_info * info)423 static inline int rec_ras(struct i5400_error_info *info)
424 {
425 	return (info->recmemb) & 0xffff;
426 }
427 
428 static struct edac_pci_ctl_info *i5400_pci;
429 
430 /*
431  *	i5400_get_error_info	Retrieve the hardware error information from
432  *				the hardware and cache it in the 'info'
433  *				structure
434  */
i5400_get_error_info(struct mem_ctl_info * mci,struct i5400_error_info * info)435 static void i5400_get_error_info(struct mem_ctl_info *mci,
436 				 struct i5400_error_info *info)
437 {
438 	struct i5400_pvt *pvt;
439 	u32 value;
440 
441 	pvt = mci->pvt_info;
442 
443 	/* read in the 1st FATAL error register */
444 	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
445 
446 	/* Mask only the bits that the doc says are valid
447 	 */
448 	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
449 
450 	/* If there is an error, then read in the
451 	   NEXT FATAL error register and the Memory Error Log Register A
452 	 */
453 	if (value & FERR_FAT_MASK) {
454 		info->ferr_fat_fbd = value;
455 
456 		/* harvest the various error data we need */
457 		pci_read_config_dword(pvt->branchmap_werrors,
458 				NERR_FAT_FBD, &info->nerr_fat_fbd);
459 		pci_read_config_word(pvt->branchmap_werrors,
460 				NRECMEMA, &info->nrecmema);
461 		pci_read_config_dword(pvt->branchmap_werrors,
462 				NRECMEMB, &info->nrecmemb);
463 
464 		/* Clear the error bits, by writing them back */
465 		pci_write_config_dword(pvt->branchmap_werrors,
466 				FERR_FAT_FBD, value);
467 	} else {
468 		info->ferr_fat_fbd = 0;
469 		info->nerr_fat_fbd = 0;
470 		info->nrecmema = 0;
471 		info->nrecmemb = 0;
472 	}
473 
474 	/* read in the 1st NON-FATAL error register */
475 	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
476 
477 	/* If there is an error, then read in the 1st NON-FATAL error
478 	 * register as well */
479 	if (value & FERR_NF_MASK) {
480 		info->ferr_nf_fbd = value;
481 
482 		/* harvest the various error data we need */
483 		pci_read_config_dword(pvt->branchmap_werrors,
484 				NERR_NF_FBD, &info->nerr_nf_fbd);
485 		pci_read_config_word(pvt->branchmap_werrors,
486 				RECMEMA, &info->recmema);
487 		pci_read_config_dword(pvt->branchmap_werrors,
488 				RECMEMB, &info->recmemb);
489 		pci_read_config_dword(pvt->branchmap_werrors,
490 				REDMEMB, &info->redmemb);
491 
492 		/* Clear the error bits, by writing them back */
493 		pci_write_config_dword(pvt->branchmap_werrors,
494 				FERR_NF_FBD, value);
495 	} else {
496 		info->ferr_nf_fbd = 0;
497 		info->nerr_nf_fbd = 0;
498 		info->recmema = 0;
499 		info->recmemb = 0;
500 		info->redmemb = 0;
501 	}
502 }
503 
504 /*
505  * i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
506  * 					struct i5400_error_info *info,
507  * 					int handle_errors);
508  *
509  *	handle the Intel FATAL and unrecoverable errors, if any
510  */
i5400_proccess_non_recoverable_info(struct mem_ctl_info * mci,struct i5400_error_info * info,unsigned long allErrors)511 static void i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
512 				    struct i5400_error_info *info,
513 				    unsigned long allErrors)
514 {
515 	char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
516 	int branch;
517 	int channel;
518 	int bank;
519 	int buf_id;
520 	int rank;
521 	int rdwr;
522 	int ras, cas;
523 	int errnum;
524 	char *type = NULL;
525 	enum hw_event_mc_err_type tp_event = HW_EVENT_ERR_UNCORRECTED;
526 
527 	if (!allErrors)
528 		return;		/* if no error, return now */
529 
530 	if (allErrors &  ERROR_FAT_MASK) {
531 		type = "FATAL";
532 		tp_event = HW_EVENT_ERR_FATAL;
533 	} else if (allErrors & FERR_NF_UNCORRECTABLE)
534 		type = "NON-FATAL uncorrected";
535 	else
536 		type = "NON-FATAL recoverable";
537 
538 	/* ONLY ONE of the possible error bits will be set, as per the docs */
539 
540 	branch = extract_fbdchan_indx(info->ferr_fat_fbd);
541 	channel = branch;
542 
543 	/* Use the NON-Recoverable macros to extract data */
544 	bank = nrec_bank(info);
545 	rank = nrec_rank(info);
546 	buf_id = nrec_buf_id(info);
547 	rdwr = nrec_rdwr(info);
548 	ras = nrec_ras(info);
549 	cas = nrec_cas(info);
550 
551 	edac_dbg(0, "\t\t%s DIMM= %d  Channels= %d,%d  (Branch= %d DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n",
552 		 type, rank, channel, channel + 1, branch >> 1, bank,
553 		 buf_id, rdwr_str(rdwr), ras, cas);
554 
555 	/* Only 1 bit will be on */
556 	errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
557 
558 	/* Form out message */
559 	snprintf(msg, sizeof(msg),
560 		 "Bank=%d Buffer ID = %d RAS=%d CAS=%d Err=0x%lx (%s)",
561 		 bank, buf_id, ras, cas, allErrors, error_name[errnum]);
562 
563 	edac_mc_handle_error(tp_event, mci, 1, 0, 0, 0,
564 			     branch >> 1, -1, rank,
565 			     rdwr ? "Write error" : "Read error",
566 			     msg);
567 }
568 
569 /*
570  * i5400_process_fatal_error_info(struct mem_ctl_info *mci,
571  * 				struct i5400_error_info *info,
572  * 				int handle_errors);
573  *
574  *	handle the Intel NON-FATAL errors, if any
575  */
i5400_process_nonfatal_error_info(struct mem_ctl_info * mci,struct i5400_error_info * info)576 static void i5400_process_nonfatal_error_info(struct mem_ctl_info *mci,
577 					struct i5400_error_info *info)
578 {
579 	char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
580 	unsigned long allErrors;
581 	int branch;
582 	int channel;
583 	int bank;
584 	int rank;
585 	int rdwr;
586 	int ras, cas;
587 	int errnum;
588 
589 	/* mask off the Error bits that are possible */
590 	allErrors = from_nf_ferr(info->ferr_nf_fbd & FERR_NF_MASK);
591 	if (!allErrors)
592 		return;		/* if no error, return now */
593 
594 	/* ONLY ONE of the possible error bits will be set, as per the docs */
595 
596 	if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) {
597 		i5400_proccess_non_recoverable_info(mci, info, allErrors);
598 		return;
599 	}
600 
601 	/* Correctable errors */
602 	if (allErrors & ERROR_NF_CORRECTABLE) {
603 		edac_dbg(0, "\tCorrected bits= 0x%lx\n", allErrors);
604 
605 		branch = extract_fbdchan_indx(info->ferr_nf_fbd);
606 
607 		channel = 0;
608 		if (REC_ECC_LOCATOR_ODD(info->redmemb))
609 			channel = 1;
610 
611 		/* Convert channel to be based from zero, instead of
612 		 * from branch base of 0 */
613 		channel += branch;
614 
615 		bank = rec_bank(info);
616 		rank = rec_rank(info);
617 		rdwr = rec_rdwr(info);
618 		ras = rec_ras(info);
619 		cas = rec_cas(info);
620 
621 		/* Only 1 bit will be on */
622 		errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
623 
624 		edac_dbg(0, "\t\tDIMM= %d Channel= %d  (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
625 			 rank, channel, branch >> 1, bank,
626 			 rdwr_str(rdwr), ras, cas);
627 
628 		/* Form out message */
629 		snprintf(msg, sizeof(msg),
630 			 "Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s "
631 			 "RAS=%d CAS=%d, CE Err=0x%lx (%s))",
632 			 branch >> 1, bank, rdwr_str(rdwr), ras, cas,
633 			 allErrors, error_name[errnum]);
634 
635 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
636 				     branch >> 1, channel % 2, rank,
637 				     rdwr ? "Write error" : "Read error",
638 				     msg);
639 
640 		return;
641 	}
642 
643 	/* Miscellaneous errors */
644 	errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
645 
646 	branch = extract_fbdchan_indx(info->ferr_nf_fbd);
647 
648 	i5400_mc_printk(mci, KERN_EMERG,
649 			"Non-Fatal misc error (Branch=%d Err=%#lx (%s))",
650 			branch >> 1, allErrors, error_name[errnum]);
651 }
652 
653 /*
654  *	i5400_process_error_info	Process the error info that is
655  *	in the 'info' structure, previously retrieved from hardware
656  */
i5400_process_error_info(struct mem_ctl_info * mci,struct i5400_error_info * info)657 static void i5400_process_error_info(struct mem_ctl_info *mci,
658 				struct i5400_error_info *info)
659 {	u32 allErrors;
660 
661 	/* First handle any fatal errors that occurred */
662 	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
663 	i5400_proccess_non_recoverable_info(mci, info, allErrors);
664 
665 	/* now handle any non-fatal errors that occurred */
666 	i5400_process_nonfatal_error_info(mci, info);
667 }
668 
669 /*
670  *	i5400_clear_error	Retrieve any error from the hardware
671  *				but do NOT process that error.
672  *				Used for 'clearing' out of previous errors
673  *				Called by the Core module.
674  */
i5400_clear_error(struct mem_ctl_info * mci)675 static void i5400_clear_error(struct mem_ctl_info *mci)
676 {
677 	struct i5400_error_info info;
678 
679 	i5400_get_error_info(mci, &info);
680 }
681 
682 /*
683  *	i5400_check_error	Retrieve and process errors reported by the
684  *				hardware. Called by the Core module.
685  */
i5400_check_error(struct mem_ctl_info * mci)686 static void i5400_check_error(struct mem_ctl_info *mci)
687 {
688 	struct i5400_error_info info;
689 
690 	i5400_get_error_info(mci, &info);
691 	i5400_process_error_info(mci, &info);
692 }
693 
694 /*
695  *	i5400_put_devices	'put' all the devices that we have
696  *				reserved via 'get'
697  */
i5400_put_devices(struct mem_ctl_info * mci)698 static void i5400_put_devices(struct mem_ctl_info *mci)
699 {
700 	struct i5400_pvt *pvt;
701 
702 	pvt = mci->pvt_info;
703 
704 	/* Decrement usage count for devices */
705 	pci_dev_put(pvt->branch_1);
706 	pci_dev_put(pvt->branch_0);
707 	pci_dev_put(pvt->fsb_error_regs);
708 	pci_dev_put(pvt->branchmap_werrors);
709 }
710 
711 /*
712  *	i5400_get_devices	Find and perform 'get' operation on the MCH's
713  *			device/functions we want to reference for this driver
714  *
715  *			Need to 'get' device 16 func 1 and func 2
716  */
i5400_get_devices(struct mem_ctl_info * mci,int dev_idx)717 static int i5400_get_devices(struct mem_ctl_info *mci, int dev_idx)
718 {
719 	struct i5400_pvt *pvt;
720 	struct pci_dev *pdev;
721 
722 	pvt = mci->pvt_info;
723 	pvt->branchmap_werrors = NULL;
724 	pvt->fsb_error_regs = NULL;
725 	pvt->branch_0 = NULL;
726 	pvt->branch_1 = NULL;
727 
728 	/* Attempt to 'get' the MCH register we want */
729 	pdev = NULL;
730 	while (1) {
731 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
732 				      PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
733 		if (!pdev) {
734 			/* End of list, leave */
735 			i5400_printk(KERN_ERR,
736 				"'system address,Process Bus' "
737 				"device not found:"
738 				"vendor 0x%x device 0x%x ERR func 1 "
739 				"(broken BIOS?)\n",
740 				PCI_VENDOR_ID_INTEL,
741 				PCI_DEVICE_ID_INTEL_5400_ERR);
742 			return -ENODEV;
743 		}
744 
745 		/* Store device 16 func 1 */
746 		if (PCI_FUNC(pdev->devfn) == 1)
747 			break;
748 	}
749 	pvt->branchmap_werrors = pdev;
750 
751 	pdev = NULL;
752 	while (1) {
753 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
754 				      PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
755 		if (!pdev) {
756 			/* End of list, leave */
757 			i5400_printk(KERN_ERR,
758 				"'system address,Process Bus' "
759 				"device not found:"
760 				"vendor 0x%x device 0x%x ERR func 2 "
761 				"(broken BIOS?)\n",
762 				PCI_VENDOR_ID_INTEL,
763 				PCI_DEVICE_ID_INTEL_5400_ERR);
764 
765 			pci_dev_put(pvt->branchmap_werrors);
766 			return -ENODEV;
767 		}
768 
769 		/* Store device 16 func 2 */
770 		if (PCI_FUNC(pdev->devfn) == 2)
771 			break;
772 	}
773 	pvt->fsb_error_regs = pdev;
774 
775 	edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
776 		 pci_name(pvt->system_address),
777 		 pvt->system_address->vendor, pvt->system_address->device);
778 	edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
779 		 pci_name(pvt->branchmap_werrors),
780 		 pvt->branchmap_werrors->vendor,
781 		 pvt->branchmap_werrors->device);
782 	edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
783 		 pci_name(pvt->fsb_error_regs),
784 		 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
785 
786 	pvt->branch_0 = pci_get_device(PCI_VENDOR_ID_INTEL,
787 				       PCI_DEVICE_ID_INTEL_5400_FBD0, NULL);
788 	if (!pvt->branch_0) {
789 		i5400_printk(KERN_ERR,
790 			"MC: 'BRANCH 0' device not found:"
791 			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
792 			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD0);
793 
794 		pci_dev_put(pvt->fsb_error_regs);
795 		pci_dev_put(pvt->branchmap_werrors);
796 		return -ENODEV;
797 	}
798 
799 	/* If this device claims to have more than 2 channels then
800 	 * fetch Branch 1's information
801 	 */
802 	if (pvt->maxch < CHANNELS_PER_BRANCH)
803 		return 0;
804 
805 	pvt->branch_1 = pci_get_device(PCI_VENDOR_ID_INTEL,
806 				       PCI_DEVICE_ID_INTEL_5400_FBD1, NULL);
807 	if (!pvt->branch_1) {
808 		i5400_printk(KERN_ERR,
809 			"MC: 'BRANCH 1' device not found:"
810 			"vendor 0x%x device 0x%x Func 0 "
811 			"(broken BIOS?)\n",
812 			PCI_VENDOR_ID_INTEL,
813 			PCI_DEVICE_ID_INTEL_5400_FBD1);
814 
815 		pci_dev_put(pvt->branch_0);
816 		pci_dev_put(pvt->fsb_error_regs);
817 		pci_dev_put(pvt->branchmap_werrors);
818 		return -ENODEV;
819 	}
820 
821 	return 0;
822 }
823 
824 /*
825  *	determine_amb_present
826  *
827  *		the information is contained in DIMMS_PER_CHANNEL different
828  *		registers determining which of the DIMMS_PER_CHANNEL requires
829  *              knowing which channel is in question
830  *
831  *	2 branches, each with 2 channels
832  *		b0_ambpresent0 for channel '0'
833  *		b0_ambpresent1 for channel '1'
834  *		b1_ambpresent0 for channel '2'
835  *		b1_ambpresent1 for channel '3'
836  */
determine_amb_present_reg(struct i5400_pvt * pvt,int channel)837 static int determine_amb_present_reg(struct i5400_pvt *pvt, int channel)
838 {
839 	int amb_present;
840 
841 	if (channel < CHANNELS_PER_BRANCH) {
842 		if (channel & 0x1)
843 			amb_present = pvt->b0_ambpresent1;
844 		else
845 			amb_present = pvt->b0_ambpresent0;
846 	} else {
847 		if (channel & 0x1)
848 			amb_present = pvt->b1_ambpresent1;
849 		else
850 			amb_present = pvt->b1_ambpresent0;
851 	}
852 
853 	return amb_present;
854 }
855 
856 /*
857  * determine_mtr(pvt, dimm, channel)
858  *
859  * return the proper MTR register as determine by the dimm and desired channel
860  */
determine_mtr(struct i5400_pvt * pvt,int dimm,int channel)861 static int determine_mtr(struct i5400_pvt *pvt, int dimm, int channel)
862 {
863 	int mtr;
864 	int n;
865 
866 	/* There is one MTR for each slot pair of FB-DIMMs,
867 	   Each slot pair may be at branch 0 or branch 1.
868 	 */
869 	n = dimm;
870 
871 	if (n >= DIMMS_PER_CHANNEL) {
872 		edac_dbg(0, "ERROR: trying to access an invalid dimm: %d\n",
873 			 dimm);
874 		return 0;
875 	}
876 
877 	if (channel < CHANNELS_PER_BRANCH)
878 		mtr = pvt->b0_mtr[n];
879 	else
880 		mtr = pvt->b1_mtr[n];
881 
882 	return mtr;
883 }
884 
885 /*
886  */
decode_mtr(int slot_row,u16 mtr)887 static void decode_mtr(int slot_row, u16 mtr)
888 {
889 	int ans;
890 
891 	ans = MTR_DIMMS_PRESENT(mtr);
892 
893 	edac_dbg(2, "\tMTR%d=0x%x:  DIMMs are %sPresent\n",
894 		 slot_row, mtr, ans ? "" : "NOT ");
895 	if (!ans)
896 		return;
897 
898 	edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
899 
900 	edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n",
901 		 MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
902 
903 	edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
904 	edac_dbg(2, "\t\tNUMRANK: %s\n",
905 		 MTR_DIMM_RANK(mtr) ? "double" : "single");
906 	edac_dbg(2, "\t\tNUMROW: %s\n",
907 		 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
908 		 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
909 		 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
910 		 "65,536 - 16 rows");
911 	edac_dbg(2, "\t\tNUMCOL: %s\n",
912 		 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
913 		 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
914 		 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
915 		 "reserved");
916 }
917 
handle_channel(struct i5400_pvt * pvt,int dimm,int channel,struct i5400_dimm_info * dinfo)918 static void handle_channel(struct i5400_pvt *pvt, int dimm, int channel,
919 			struct i5400_dimm_info *dinfo)
920 {
921 	int mtr;
922 	int amb_present_reg;
923 	int addrBits;
924 
925 	mtr = determine_mtr(pvt, dimm, channel);
926 	if (MTR_DIMMS_PRESENT(mtr)) {
927 		amb_present_reg = determine_amb_present_reg(pvt, channel);
928 
929 		/* Determine if there is a DIMM present in this DIMM slot */
930 		if (amb_present_reg & (1 << dimm)) {
931 			/* Start with the number of bits for a Bank
932 			 * on the DRAM */
933 			addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
934 			/* Add thenumber of ROW bits */
935 			addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
936 			/* add the number of COLUMN bits */
937 			addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
938 			/* add the number of RANK bits */
939 			addrBits += MTR_DIMM_RANK(mtr);
940 
941 			addrBits += 6;	/* add 64 bits per DIMM */
942 			addrBits -= 20;	/* divide by 2^^20 */
943 			addrBits -= 3;	/* 8 bits per bytes */
944 
945 			dinfo->megabytes = 1 << addrBits;
946 		}
947 	}
948 }
949 
950 /*
951  *	calculate_dimm_size
952  *
953  *	also will output a DIMM matrix map, if debug is enabled, for viewing
954  *	how the DIMMs are populated
955  */
calculate_dimm_size(struct i5400_pvt * pvt)956 static void calculate_dimm_size(struct i5400_pvt *pvt)
957 {
958 	struct i5400_dimm_info *dinfo;
959 	int dimm, max_dimms;
960 	char *p, *mem_buffer;
961 	int space, n;
962 	int channel, branch;
963 
964 	/* ================= Generate some debug output ================= */
965 	space = PAGE_SIZE;
966 	mem_buffer = p = kmalloc(space, GFP_KERNEL);
967 	if (p == NULL) {
968 		i5400_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
969 			__FILE__, __func__);
970 		return;
971 	}
972 
973 	/* Scan all the actual DIMMS
974 	 * and calculate the information for each DIMM
975 	 * Start with the highest dimm first, to display it first
976 	 * and work toward the 0th dimm
977 	 */
978 	max_dimms = pvt->maxdimmperch;
979 	for (dimm = max_dimms - 1; dimm >= 0; dimm--) {
980 
981 		/* on an odd dimm, first output a 'boundary' marker,
982 		 * then reset the message buffer  */
983 		if (dimm & 0x1) {
984 			n = snprintf(p, space, "---------------------------"
985 					"-------------------------------");
986 			p += n;
987 			space -= n;
988 			edac_dbg(2, "%s\n", mem_buffer);
989 			p = mem_buffer;
990 			space = PAGE_SIZE;
991 		}
992 		n = snprintf(p, space, "dimm %2d    ", dimm);
993 		p += n;
994 		space -= n;
995 
996 		for (channel = 0; channel < pvt->maxch; channel++) {
997 			dinfo = &pvt->dimm_info[dimm][channel];
998 			handle_channel(pvt, dimm, channel, dinfo);
999 			n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
1000 			p += n;
1001 			space -= n;
1002 		}
1003 		edac_dbg(2, "%s\n", mem_buffer);
1004 		p = mem_buffer;
1005 		space = PAGE_SIZE;
1006 	}
1007 
1008 	/* Output the last bottom 'boundary' marker */
1009 	n = snprintf(p, space, "---------------------------"
1010 			"-------------------------------");
1011 	p += n;
1012 	space -= n;
1013 	edac_dbg(2, "%s\n", mem_buffer);
1014 	p = mem_buffer;
1015 	space = PAGE_SIZE;
1016 
1017 	/* now output the 'channel' labels */
1018 	n = snprintf(p, space, "           ");
1019 	p += n;
1020 	space -= n;
1021 	for (channel = 0; channel < pvt->maxch; channel++) {
1022 		n = snprintf(p, space, "channel %d | ", channel);
1023 		p += n;
1024 		space -= n;
1025 	}
1026 
1027 	space -= n;
1028 	edac_dbg(2, "%s\n", mem_buffer);
1029 	p = mem_buffer;
1030 	space = PAGE_SIZE;
1031 
1032 	n = snprintf(p, space, "           ");
1033 	p += n;
1034 	for (branch = 0; branch < MAX_BRANCHES; branch++) {
1035 		n = snprintf(p, space, "       branch %d       | ", branch);
1036 		p += n;
1037 		space -= n;
1038 	}
1039 
1040 	/* output the last message and free buffer */
1041 	edac_dbg(2, "%s\n", mem_buffer);
1042 	kfree(mem_buffer);
1043 }
1044 
1045 /*
1046  *	i5400_get_mc_regs	read in the necessary registers and
1047  *				cache locally
1048  *
1049  *			Fills in the private data members
1050  */
i5400_get_mc_regs(struct mem_ctl_info * mci)1051 static void i5400_get_mc_regs(struct mem_ctl_info *mci)
1052 {
1053 	struct i5400_pvt *pvt;
1054 	u32 actual_tolm;
1055 	u16 limit;
1056 	int slot_row;
1057 	int way0, way1;
1058 
1059 	pvt = mci->pvt_info;
1060 
1061 	pci_read_config_dword(pvt->system_address, AMBASE,
1062 			&pvt->u.ambase_bottom);
1063 	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1064 			&pvt->u.ambase_top);
1065 
1066 	edac_dbg(2, "AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
1067 		 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1068 
1069 	/* Get the Branch Map regs */
1070 	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1071 	pvt->tolm >>= 12;
1072 	edac_dbg(2, "\nTOLM (number of 256M regions) =%u (0x%x)\n",
1073 		 pvt->tolm, pvt->tolm);
1074 
1075 	actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
1076 	edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
1077 		 actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
1078 
1079 	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1080 	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1081 
1082 	/* Get the MIR[0-1] regs */
1083 	limit = (pvt->mir0 >> 4) & 0x0fff;
1084 	way0 = pvt->mir0 & 0x1;
1085 	way1 = pvt->mir0 & 0x2;
1086 	edac_dbg(2, "MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1087 		 limit, way1, way0);
1088 	limit = (pvt->mir1 >> 4) & 0xfff;
1089 	way0 = pvt->mir1 & 0x1;
1090 	way1 = pvt->mir1 & 0x2;
1091 	edac_dbg(2, "MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1092 		 limit, way1, way0);
1093 
1094 	/* Get the set of MTR[0-3] regs by each branch */
1095 	for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++) {
1096 		int where = MTR0 + (slot_row * sizeof(u16));
1097 
1098 		/* Branch 0 set of MTR registers */
1099 		pci_read_config_word(pvt->branch_0, where,
1100 				&pvt->b0_mtr[slot_row]);
1101 
1102 		edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
1103 			 slot_row, where, pvt->b0_mtr[slot_row]);
1104 
1105 		if (pvt->maxch < CHANNELS_PER_BRANCH) {
1106 			pvt->b1_mtr[slot_row] = 0;
1107 			continue;
1108 		}
1109 
1110 		/* Branch 1 set of MTR registers */
1111 		pci_read_config_word(pvt->branch_1, where,
1112 				&pvt->b1_mtr[slot_row]);
1113 		edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
1114 			 slot_row, where, pvt->b1_mtr[slot_row]);
1115 	}
1116 
1117 	/* Read and dump branch 0's MTRs */
1118 	edac_dbg(2, "Memory Technology Registers:\n");
1119 	edac_dbg(2, "   Branch 0:\n");
1120 	for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
1121 		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1122 
1123 	pci_read_config_word(pvt->branch_0, AMBPRESENT_0,
1124 			&pvt->b0_ambpresent0);
1125 	edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1126 	pci_read_config_word(pvt->branch_0, AMBPRESENT_1,
1127 			&pvt->b0_ambpresent1);
1128 	edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1129 
1130 	/* Only if we have 2 branchs (4 channels) */
1131 	if (pvt->maxch < CHANNELS_PER_BRANCH) {
1132 		pvt->b1_ambpresent0 = 0;
1133 		pvt->b1_ambpresent1 = 0;
1134 	} else {
1135 		/* Read and dump  branch 1's MTRs */
1136 		edac_dbg(2, "   Branch 1:\n");
1137 		for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
1138 			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1139 
1140 		pci_read_config_word(pvt->branch_1, AMBPRESENT_0,
1141 				&pvt->b1_ambpresent0);
1142 		edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
1143 			 pvt->b1_ambpresent0);
1144 		pci_read_config_word(pvt->branch_1, AMBPRESENT_1,
1145 				&pvt->b1_ambpresent1);
1146 		edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
1147 			 pvt->b1_ambpresent1);
1148 	}
1149 
1150 	/* Go and determine the size of each DIMM and place in an
1151 	 * orderly matrix */
1152 	calculate_dimm_size(pvt);
1153 }
1154 
1155 /*
1156  *	i5400_init_dimms	Initialize the 'dimms' table within
1157  *				the mci control	structure with the
1158  *				addressing of memory.
1159  *
1160  *	return:
1161  *		0	success
1162  *		1	no actual memory found on this MC
1163  */
i5400_init_dimms(struct mem_ctl_info * mci)1164 static int i5400_init_dimms(struct mem_ctl_info *mci)
1165 {
1166 	struct i5400_pvt *pvt;
1167 	struct dimm_info *dimm;
1168 	int ndimms;
1169 	int mtr;
1170 	int size_mb;
1171 	int  channel, slot;
1172 
1173 	pvt = mci->pvt_info;
1174 
1175 	ndimms = 0;
1176 
1177 	/*
1178 	 * FIXME: remove  pvt->dimm_info[slot][channel] and use the 3
1179 	 * layers here.
1180 	 */
1181 	for (channel = 0; channel < mci->layers[0].size * mci->layers[1].size;
1182 	     channel++) {
1183 		for (slot = 0; slot < mci->layers[2].size; slot++) {
1184 			mtr = determine_mtr(pvt, slot, channel);
1185 
1186 			/* if no DIMMS on this slot, continue */
1187 			if (!MTR_DIMMS_PRESENT(mtr))
1188 				continue;
1189 
1190 			dimm = edac_get_dimm(mci, channel / 2, channel % 2, slot);
1191 
1192 			size_mb =  pvt->dimm_info[slot][channel].megabytes;
1193 
1194 			edac_dbg(2, "dimm (branch %d channel %d slot %d): %d.%03d GB\n",
1195 				 channel / 2, channel % 2, slot,
1196 				 size_mb / 1000, size_mb % 1000);
1197 
1198 			dimm->nr_pages = size_mb << 8;
1199 			dimm->grain = 8;
1200 			dimm->dtype = MTR_DRAM_WIDTH(mtr) == 8 ?
1201 				      DEV_X8 : DEV_X4;
1202 			dimm->mtype = MEM_FB_DDR2;
1203 			/*
1204 			 * The eccc mechanism is SDDC (aka SECC), with
1205 			 * is similar to Chipkill.
1206 			 */
1207 			dimm->edac_mode = MTR_DRAM_WIDTH(mtr) == 8 ?
1208 					  EDAC_S8ECD8ED : EDAC_S4ECD4ED;
1209 			ndimms++;
1210 		}
1211 	}
1212 
1213 	/*
1214 	 * When just one memory is provided, it should be at location (0,0,0).
1215 	 * With such single-DIMM mode, the SDCC algorithm degrades to SECDEC+.
1216 	 */
1217 	if (ndimms == 1)
1218 		mci->dimms[0]->edac_mode = EDAC_SECDED;
1219 
1220 	return (ndimms == 0);
1221 }
1222 
1223 /*
1224  *	i5400_enable_error_reporting
1225  *			Turn on the memory reporting features of the hardware
1226  */
i5400_enable_error_reporting(struct mem_ctl_info * mci)1227 static void i5400_enable_error_reporting(struct mem_ctl_info *mci)
1228 {
1229 	struct i5400_pvt *pvt;
1230 	u32 fbd_error_mask;
1231 
1232 	pvt = mci->pvt_info;
1233 
1234 	/* Read the FBD Error Mask Register */
1235 	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1236 			&fbd_error_mask);
1237 
1238 	/* Enable with a '0' */
1239 	fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1240 
1241 	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1242 			fbd_error_mask);
1243 }
1244 
1245 /*
1246  *	i5400_probe1	Probe for ONE instance of device to see if it is
1247  *			present.
1248  *	return:
1249  *		0 for FOUND a device
1250  *		< 0 for error code
1251  */
i5400_probe1(struct pci_dev * pdev,int dev_idx)1252 static int i5400_probe1(struct pci_dev *pdev, int dev_idx)
1253 {
1254 	struct mem_ctl_info *mci;
1255 	struct i5400_pvt *pvt;
1256 	struct edac_mc_layer layers[3];
1257 
1258 	if (dev_idx >= ARRAY_SIZE(i5400_devs))
1259 		return -EINVAL;
1260 
1261 	edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
1262 		 pdev->bus->number,
1263 		 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1264 
1265 	/* We only are looking for func 0 of the set */
1266 	if (PCI_FUNC(pdev->devfn) != 0)
1267 		return -ENODEV;
1268 
1269 	/*
1270 	 * allocate a new MC control structure
1271 	 *
1272 	 * This drivers uses the DIMM slot as "csrow" and the rest as "channel".
1273 	 */
1274 	layers[0].type = EDAC_MC_LAYER_BRANCH;
1275 	layers[0].size = MAX_BRANCHES;
1276 	layers[0].is_virt_csrow = false;
1277 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1278 	layers[1].size = CHANNELS_PER_BRANCH;
1279 	layers[1].is_virt_csrow = false;
1280 	layers[2].type = EDAC_MC_LAYER_SLOT;
1281 	layers[2].size = DIMMS_PER_CHANNEL;
1282 	layers[2].is_virt_csrow = true;
1283 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1284 	if (mci == NULL)
1285 		return -ENOMEM;
1286 
1287 	edac_dbg(0, "MC: mci = %p\n", mci);
1288 
1289 	mci->pdev = &pdev->dev;	/* record ptr  to the generic device */
1290 
1291 	pvt = mci->pvt_info;
1292 	pvt->system_address = pdev;	/* Record this device in our private */
1293 	pvt->maxch = MAX_CHANNELS;
1294 	pvt->maxdimmperch = DIMMS_PER_CHANNEL;
1295 
1296 	/* 'get' the pci devices we want to reserve for our use */
1297 	if (i5400_get_devices(mci, dev_idx))
1298 		goto fail0;
1299 
1300 	/* Time to get serious */
1301 	i5400_get_mc_regs(mci);	/* retrieve the hardware registers */
1302 
1303 	mci->mc_idx = 0;
1304 	mci->mtype_cap = MEM_FLAG_FB_DDR2;
1305 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1306 	mci->edac_cap = EDAC_FLAG_NONE;
1307 	mci->mod_name = "i5400_edac.c";
1308 	mci->ctl_name = i5400_devs[dev_idx].ctl_name;
1309 	mci->dev_name = pci_name(pdev);
1310 	mci->ctl_page_to_phys = NULL;
1311 
1312 	/* Set the function pointer to an actual operation function */
1313 	mci->edac_check = i5400_check_error;
1314 
1315 	/* initialize the MC control structure 'dimms' table
1316 	 * with the mapping and control information */
1317 	if (i5400_init_dimms(mci)) {
1318 		edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5400_init_dimms() returned nonzero value\n");
1319 		mci->edac_cap = EDAC_FLAG_NONE;	/* no dimms found */
1320 	} else {
1321 		edac_dbg(1, "MC: Enable error reporting now\n");
1322 		i5400_enable_error_reporting(mci);
1323 	}
1324 
1325 	/* add this new MC control structure to EDAC's list of MCs */
1326 	if (edac_mc_add_mc(mci)) {
1327 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1328 		/* FIXME: perhaps some code should go here that disables error
1329 		 * reporting if we just enabled it
1330 		 */
1331 		goto fail1;
1332 	}
1333 
1334 	i5400_clear_error(mci);
1335 
1336 	/* allocating generic PCI control info */
1337 	i5400_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1338 	if (!i5400_pci) {
1339 		printk(KERN_WARNING
1340 			"%s(): Unable to create PCI control\n",
1341 			__func__);
1342 		printk(KERN_WARNING
1343 			"%s(): PCI error report via EDAC not setup\n",
1344 			__func__);
1345 	}
1346 
1347 	return 0;
1348 
1349 	/* Error exit unwinding stack */
1350 fail1:
1351 
1352 	i5400_put_devices(mci);
1353 
1354 fail0:
1355 	edac_mc_free(mci);
1356 	return -ENODEV;
1357 }
1358 
1359 /*
1360  *	i5400_init_one	constructor for one instance of device
1361  *
1362  * 	returns:
1363  *		negative on error
1364  *		count (>= 0)
1365  */
i5400_init_one(struct pci_dev * pdev,const struct pci_device_id * id)1366 static int i5400_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
1367 {
1368 	int rc;
1369 
1370 	edac_dbg(0, "MC:\n");
1371 
1372 	/* wake up device */
1373 	rc = pci_enable_device(pdev);
1374 	if (rc)
1375 		return rc;
1376 
1377 	/* now probe and enable the device */
1378 	return i5400_probe1(pdev, id->driver_data);
1379 }
1380 
1381 /*
1382  *	i5400_remove_one	destructor for one instance of device
1383  *
1384  */
i5400_remove_one(struct pci_dev * pdev)1385 static void i5400_remove_one(struct pci_dev *pdev)
1386 {
1387 	struct mem_ctl_info *mci;
1388 
1389 	edac_dbg(0, "\n");
1390 
1391 	if (i5400_pci)
1392 		edac_pci_release_generic_ctl(i5400_pci);
1393 
1394 	mci = edac_mc_del_mc(&pdev->dev);
1395 	if (!mci)
1396 		return;
1397 
1398 	/* retrieve references to resources, and free those resources */
1399 	i5400_put_devices(mci);
1400 
1401 	pci_disable_device(pdev);
1402 
1403 	edac_mc_free(mci);
1404 }
1405 
1406 /*
1407  *	pci_device_id	table for which devices we are looking for
1408  *
1409  *	The "E500P" device is the first device supported.
1410  */
1411 static const struct pci_device_id i5400_pci_tbl[] = {
1412 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR)},
1413 	{0,}			/* 0 terminated list. */
1414 };
1415 
1416 MODULE_DEVICE_TABLE(pci, i5400_pci_tbl);
1417 
1418 /*
1419  *	i5400_driver	pci_driver structure for this module
1420  *
1421  */
1422 static struct pci_driver i5400_driver = {
1423 	.name = "i5400_edac",
1424 	.probe = i5400_init_one,
1425 	.remove = i5400_remove_one,
1426 	.id_table = i5400_pci_tbl,
1427 };
1428 
1429 /*
1430  *	i5400_init		Module entry function
1431  *			Try to initialize this module for its devices
1432  */
i5400_init(void)1433 static int __init i5400_init(void)
1434 {
1435 	int pci_rc;
1436 
1437 	edac_dbg(2, "MC:\n");
1438 
1439 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
1440 	opstate_init();
1441 
1442 	pci_rc = pci_register_driver(&i5400_driver);
1443 
1444 	return (pci_rc < 0) ? pci_rc : 0;
1445 }
1446 
1447 /*
1448  *	i5400_exit()	Module exit function
1449  *			Unregister the driver
1450  */
i5400_exit(void)1451 static void __exit i5400_exit(void)
1452 {
1453 	edac_dbg(2, "MC:\n");
1454 	pci_unregister_driver(&i5400_driver);
1455 }
1456 
1457 module_init(i5400_init);
1458 module_exit(i5400_exit);
1459 
1460 MODULE_LICENSE("GPL");
1461 MODULE_AUTHOR("Ben Woodard <woodard@redhat.com>");
1462 MODULE_AUTHOR("Mauro Carvalho Chehab");
1463 MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
1464 MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - "
1465 		   I5400_REVISION);
1466 
1467 module_param(edac_op_state, int, 0444);
1468 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1469