1 /* Copyright (c) 2015, The Linux Foundation. All rights reserved.
2  *
3  * This program is free software; you can redistribute it and/or modify
4  * it under the terms of the GNU General Public License version 2 and
5  * only version 2 as published by the Free Software Foundation.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  */
12 
13 #include <linux/delay.h>
14 #include <linux/highmem.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/slab.h>
19 #include <linux/scatterlist.h>
20 #include <linux/platform_device.h>
21 #include <linux/ktime.h>
22 
23 #include <linux/mmc/mmc.h>
24 #include <linux/mmc/host.h>
25 #include <linux/mmc/card.h>
26 
27 #include "cqhci.h"
28 
29 #define DCMD_SLOT 31
30 #define NUM_SLOTS 32
31 
32 struct cqhci_slot {
33 	struct mmc_request *mrq;
34 	unsigned int flags;
35 #define CQHCI_EXTERNAL_TIMEOUT	BIT(0)
36 #define CQHCI_COMPLETED		BIT(1)
37 #define CQHCI_HOST_CRC		BIT(2)
38 #define CQHCI_HOST_TIMEOUT	BIT(3)
39 #define CQHCI_HOST_OTHER	BIT(4)
40 };
41 
get_desc(struct cqhci_host * cq_host,u8 tag)42 static inline u8 *get_desc(struct cqhci_host *cq_host, u8 tag)
43 {
44 	return cq_host->desc_base + (tag * cq_host->slot_sz);
45 }
46 
get_link_desc(struct cqhci_host * cq_host,u8 tag)47 static inline u8 *get_link_desc(struct cqhci_host *cq_host, u8 tag)
48 {
49 	u8 *desc = get_desc(cq_host, tag);
50 
51 	return desc + cq_host->task_desc_len;
52 }
53 
get_trans_desc_dma(struct cqhci_host * cq_host,u8 tag)54 static inline dma_addr_t get_trans_desc_dma(struct cqhci_host *cq_host, u8 tag)
55 {
56 	return cq_host->trans_desc_dma_base +
57 		(cq_host->mmc->max_segs * tag *
58 		 cq_host->trans_desc_len);
59 }
60 
get_trans_desc(struct cqhci_host * cq_host,u8 tag)61 static inline u8 *get_trans_desc(struct cqhci_host *cq_host, u8 tag)
62 {
63 	return cq_host->trans_desc_base +
64 		(cq_host->trans_desc_len * cq_host->mmc->max_segs * tag);
65 }
66 
setup_trans_desc(struct cqhci_host * cq_host,u8 tag)67 static void setup_trans_desc(struct cqhci_host *cq_host, u8 tag)
68 {
69 	u8 *link_temp;
70 	dma_addr_t trans_temp;
71 
72 	link_temp = get_link_desc(cq_host, tag);
73 	trans_temp = get_trans_desc_dma(cq_host, tag);
74 
75 	memset(link_temp, 0, cq_host->link_desc_len);
76 	if (cq_host->link_desc_len > 8)
77 		*(link_temp + 8) = 0;
78 
79 	if (tag == DCMD_SLOT && (cq_host->mmc->caps2 & MMC_CAP2_CQE_DCMD)) {
80 		*link_temp = CQHCI_VALID(0) | CQHCI_ACT(0) | CQHCI_END(1);
81 		return;
82 	}
83 
84 	*link_temp = CQHCI_VALID(1) | CQHCI_ACT(0x6) | CQHCI_END(0);
85 
86 	if (cq_host->dma64) {
87 		__le64 *data_addr = (__le64 __force *)(link_temp + 4);
88 
89 		data_addr[0] = cpu_to_le64(trans_temp);
90 	} else {
91 		__le32 *data_addr = (__le32 __force *)(link_temp + 4);
92 
93 		data_addr[0] = cpu_to_le32(trans_temp);
94 	}
95 }
96 
cqhci_set_irqs(struct cqhci_host * cq_host,u32 set)97 static void cqhci_set_irqs(struct cqhci_host *cq_host, u32 set)
98 {
99 	cqhci_writel(cq_host, set, CQHCI_ISTE);
100 	cqhci_writel(cq_host, set, CQHCI_ISGE);
101 }
102 
103 #define DRV_NAME "cqhci"
104 
105 #define CQHCI_DUMP(f, x...) \
106 	pr_err("%s: " DRV_NAME ": " f, mmc_hostname(mmc), ## x)
107 
cqhci_dumpregs(struct cqhci_host * cq_host)108 static void cqhci_dumpregs(struct cqhci_host *cq_host)
109 {
110 	struct mmc_host *mmc = cq_host->mmc;
111 
112 	CQHCI_DUMP("============ CQHCI REGISTER DUMP ===========\n");
113 
114 	CQHCI_DUMP("Caps:      0x%08x | Version:  0x%08x\n",
115 		   cqhci_readl(cq_host, CQHCI_CAP),
116 		   cqhci_readl(cq_host, CQHCI_VER));
117 	CQHCI_DUMP("Config:    0x%08x | Control:  0x%08x\n",
118 		   cqhci_readl(cq_host, CQHCI_CFG),
119 		   cqhci_readl(cq_host, CQHCI_CTL));
120 	CQHCI_DUMP("Int stat:  0x%08x | Int enab: 0x%08x\n",
121 		   cqhci_readl(cq_host, CQHCI_IS),
122 		   cqhci_readl(cq_host, CQHCI_ISTE));
123 	CQHCI_DUMP("Int sig:   0x%08x | Int Coal: 0x%08x\n",
124 		   cqhci_readl(cq_host, CQHCI_ISGE),
125 		   cqhci_readl(cq_host, CQHCI_IC));
126 	CQHCI_DUMP("TDL base:  0x%08x | TDL up32: 0x%08x\n",
127 		   cqhci_readl(cq_host, CQHCI_TDLBA),
128 		   cqhci_readl(cq_host, CQHCI_TDLBAU));
129 	CQHCI_DUMP("Doorbell:  0x%08x | TCN:      0x%08x\n",
130 		   cqhci_readl(cq_host, CQHCI_TDBR),
131 		   cqhci_readl(cq_host, CQHCI_TCN));
132 	CQHCI_DUMP("Dev queue: 0x%08x | Dev Pend: 0x%08x\n",
133 		   cqhci_readl(cq_host, CQHCI_DQS),
134 		   cqhci_readl(cq_host, CQHCI_DPT));
135 	CQHCI_DUMP("Task clr:  0x%08x | SSC1:     0x%08x\n",
136 		   cqhci_readl(cq_host, CQHCI_TCLR),
137 		   cqhci_readl(cq_host, CQHCI_SSC1));
138 	CQHCI_DUMP("SSC2:      0x%08x | DCMD rsp: 0x%08x\n",
139 		   cqhci_readl(cq_host, CQHCI_SSC2),
140 		   cqhci_readl(cq_host, CQHCI_CRDCT));
141 	CQHCI_DUMP("RED mask:  0x%08x | TERRI:    0x%08x\n",
142 		   cqhci_readl(cq_host, CQHCI_RMEM),
143 		   cqhci_readl(cq_host, CQHCI_TERRI));
144 	CQHCI_DUMP("Resp idx:  0x%08x | Resp arg: 0x%08x\n",
145 		   cqhci_readl(cq_host, CQHCI_CRI),
146 		   cqhci_readl(cq_host, CQHCI_CRA));
147 
148 	if (cq_host->ops->dumpregs)
149 		cq_host->ops->dumpregs(mmc);
150 	else
151 		CQHCI_DUMP(": ===========================================\n");
152 }
153 
154 /**
155  * The allocated descriptor table for task, link & transfer descritors
156  * looks like:
157  * |----------|
158  * |task desc |  |->|----------|
159  * |----------|  |  |trans desc|
160  * |link desc-|->|  |----------|
161  * |----------|          .
162  *      .                .
163  *  no. of slots      max-segs
164  *      .           |----------|
165  * |----------|
166  * The idea here is to create the [task+trans] table and mark & point the
167  * link desc to the transfer desc table on a per slot basis.
168  */
cqhci_host_alloc_tdl(struct cqhci_host * cq_host)169 static int cqhci_host_alloc_tdl(struct cqhci_host *cq_host)
170 {
171 	int i = 0;
172 
173 	/* task descriptor can be 64/128 bit irrespective of arch */
174 	if (cq_host->caps & CQHCI_TASK_DESC_SZ_128) {
175 		cqhci_writel(cq_host, cqhci_readl(cq_host, CQHCI_CFG) |
176 			       CQHCI_TASK_DESC_SZ, CQHCI_CFG);
177 		cq_host->task_desc_len = 16;
178 	} else {
179 		cq_host->task_desc_len = 8;
180 	}
181 
182 	/*
183 	 * 96 bits length of transfer desc instead of 128 bits which means
184 	 * ADMA would expect next valid descriptor at the 96th bit
185 	 * or 128th bit
186 	 */
187 	if (cq_host->dma64) {
188 		if (cq_host->quirks & CQHCI_QUIRK_SHORT_TXFR_DESC_SZ)
189 			cq_host->trans_desc_len = 12;
190 		else
191 			cq_host->trans_desc_len = 16;
192 		cq_host->link_desc_len = 16;
193 	} else {
194 		cq_host->trans_desc_len = 8;
195 		cq_host->link_desc_len = 8;
196 	}
197 
198 	/* total size of a slot: 1 task & 1 transfer (link) */
199 	cq_host->slot_sz = cq_host->task_desc_len + cq_host->link_desc_len;
200 
201 	cq_host->desc_size = cq_host->slot_sz * cq_host->num_slots;
202 
203 	cq_host->data_size = cq_host->trans_desc_len * cq_host->mmc->max_segs *
204 		(cq_host->num_slots - 1);
205 
206 	pr_debug("%s: cqhci: desc_size: %zu data_sz: %zu slot-sz: %d\n",
207 		 mmc_hostname(cq_host->mmc), cq_host->desc_size, cq_host->data_size,
208 		 cq_host->slot_sz);
209 
210 	/*
211 	 * allocate a dma-mapped chunk of memory for the descriptors
212 	 * allocate a dma-mapped chunk of memory for link descriptors
213 	 * setup each link-desc memory offset per slot-number to
214 	 * the descriptor table.
215 	 */
216 	cq_host->desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
217 						 cq_host->desc_size,
218 						 &cq_host->desc_dma_base,
219 						 GFP_KERNEL);
220 	cq_host->trans_desc_base = dmam_alloc_coherent(mmc_dev(cq_host->mmc),
221 					      cq_host->data_size,
222 					      &cq_host->trans_desc_dma_base,
223 					      GFP_KERNEL);
224 	if (!cq_host->desc_base || !cq_host->trans_desc_base)
225 		return -ENOMEM;
226 
227 	pr_debug("%s: cqhci: desc-base: 0x%p trans-base: 0x%p\n desc_dma 0x%llx trans_dma: 0x%llx\n",
228 		 mmc_hostname(cq_host->mmc), cq_host->desc_base, cq_host->trans_desc_base,
229 		(unsigned long long)cq_host->desc_dma_base,
230 		(unsigned long long)cq_host->trans_desc_dma_base);
231 
232 	for (; i < (cq_host->num_slots); i++)
233 		setup_trans_desc(cq_host, i);
234 
235 	return 0;
236 }
237 
__cqhci_enable(struct cqhci_host * cq_host)238 static void __cqhci_enable(struct cqhci_host *cq_host)
239 {
240 	struct mmc_host *mmc = cq_host->mmc;
241 	u32 cqcfg;
242 
243 	cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
244 
245 	/* Configuration must not be changed while enabled */
246 	if (cqcfg & CQHCI_ENABLE) {
247 		cqcfg &= ~CQHCI_ENABLE;
248 		cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
249 	}
250 
251 	cqcfg &= ~(CQHCI_DCMD | CQHCI_TASK_DESC_SZ);
252 
253 	if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
254 		cqcfg |= CQHCI_DCMD;
255 
256 	if (cq_host->caps & CQHCI_TASK_DESC_SZ_128)
257 		cqcfg |= CQHCI_TASK_DESC_SZ;
258 
259 	cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
260 
261 	cqhci_writel(cq_host, lower_32_bits(cq_host->desc_dma_base),
262 		     CQHCI_TDLBA);
263 	cqhci_writel(cq_host, upper_32_bits(cq_host->desc_dma_base),
264 		     CQHCI_TDLBAU);
265 
266 	cqhci_writel(cq_host, cq_host->rca, CQHCI_SSC2);
267 
268 	cqhci_set_irqs(cq_host, 0);
269 
270 	cqcfg |= CQHCI_ENABLE;
271 
272 	cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
273 
274 	mmc->cqe_on = true;
275 
276 	if (cq_host->ops->enable)
277 		cq_host->ops->enable(mmc);
278 
279 	/* Ensure all writes are done before interrupts are enabled */
280 	wmb();
281 
282 	cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
283 
284 	cq_host->activated = true;
285 }
286 
__cqhci_disable(struct cqhci_host * cq_host)287 static void __cqhci_disable(struct cqhci_host *cq_host)
288 {
289 	u32 cqcfg;
290 
291 	cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
292 	cqcfg &= ~CQHCI_ENABLE;
293 	cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
294 
295 	cq_host->mmc->cqe_on = false;
296 
297 	cq_host->activated = false;
298 }
299 
cqhci_suspend(struct mmc_host * mmc)300 int cqhci_suspend(struct mmc_host *mmc)
301 {
302 	struct cqhci_host *cq_host = mmc->cqe_private;
303 
304 	if (cq_host->enabled)
305 		__cqhci_disable(cq_host);
306 
307 	return 0;
308 }
309 EXPORT_SYMBOL(cqhci_suspend);
310 
cqhci_resume(struct mmc_host * mmc)311 int cqhci_resume(struct mmc_host *mmc)
312 {
313 	/* Re-enable is done upon first request */
314 	return 0;
315 }
316 EXPORT_SYMBOL(cqhci_resume);
317 
cqhci_enable(struct mmc_host * mmc,struct mmc_card * card)318 static int cqhci_enable(struct mmc_host *mmc, struct mmc_card *card)
319 {
320 	struct cqhci_host *cq_host = mmc->cqe_private;
321 	int err;
322 
323 	if (cq_host->enabled)
324 		return 0;
325 
326 	cq_host->rca = card->rca;
327 
328 	err = cqhci_host_alloc_tdl(cq_host);
329 	if (err)
330 		return err;
331 
332 	__cqhci_enable(cq_host);
333 
334 	cq_host->enabled = true;
335 
336 #ifdef DEBUG
337 	cqhci_dumpregs(cq_host);
338 #endif
339 	return 0;
340 }
341 
342 /* CQHCI is idle and should halt immediately, so set a small timeout */
343 #define CQHCI_OFF_TIMEOUT 100
344 
cqhci_off(struct mmc_host * mmc)345 static void cqhci_off(struct mmc_host *mmc)
346 {
347 	struct cqhci_host *cq_host = mmc->cqe_private;
348 	ktime_t timeout;
349 	bool timed_out;
350 	u32 reg;
351 
352 	if (!cq_host->enabled || !mmc->cqe_on || cq_host->recovery_halt)
353 		return;
354 
355 	if (cq_host->ops->disable)
356 		cq_host->ops->disable(mmc, false);
357 
358 	cqhci_writel(cq_host, CQHCI_HALT, CQHCI_CTL);
359 
360 	timeout = ktime_add_us(ktime_get(), CQHCI_OFF_TIMEOUT);
361 	while (1) {
362 		timed_out = ktime_compare(ktime_get(), timeout) > 0;
363 		reg = cqhci_readl(cq_host, CQHCI_CTL);
364 		if ((reg & CQHCI_HALT) || timed_out)
365 			break;
366 	}
367 
368 	if (timed_out)
369 		pr_err("%s: cqhci: CQE stuck on\n", mmc_hostname(mmc));
370 	else
371 		pr_debug("%s: cqhci: CQE off\n", mmc_hostname(mmc));
372 
373 	mmc->cqe_on = false;
374 }
375 
cqhci_disable(struct mmc_host * mmc)376 static void cqhci_disable(struct mmc_host *mmc)
377 {
378 	struct cqhci_host *cq_host = mmc->cqe_private;
379 
380 	if (!cq_host->enabled)
381 		return;
382 
383 	cqhci_off(mmc);
384 
385 	__cqhci_disable(cq_host);
386 
387 	dmam_free_coherent(mmc_dev(mmc), cq_host->data_size,
388 			   cq_host->trans_desc_base,
389 			   cq_host->trans_desc_dma_base);
390 
391 	dmam_free_coherent(mmc_dev(mmc), cq_host->desc_size,
392 			   cq_host->desc_base,
393 			   cq_host->desc_dma_base);
394 
395 	cq_host->trans_desc_base = NULL;
396 	cq_host->desc_base = NULL;
397 
398 	cq_host->enabled = false;
399 }
400 
cqhci_prep_task_desc(struct mmc_request * mrq,u64 * data,bool intr)401 static void cqhci_prep_task_desc(struct mmc_request *mrq,
402 					u64 *data, bool intr)
403 {
404 	u32 req_flags = mrq->data->flags;
405 
406 	*data = CQHCI_VALID(1) |
407 		CQHCI_END(1) |
408 		CQHCI_INT(intr) |
409 		CQHCI_ACT(0x5) |
410 		CQHCI_FORCED_PROG(!!(req_flags & MMC_DATA_FORCED_PRG)) |
411 		CQHCI_DATA_TAG(!!(req_flags & MMC_DATA_DAT_TAG)) |
412 		CQHCI_DATA_DIR(!!(req_flags & MMC_DATA_READ)) |
413 		CQHCI_PRIORITY(!!(req_flags & MMC_DATA_PRIO)) |
414 		CQHCI_QBAR(!!(req_flags & MMC_DATA_QBR)) |
415 		CQHCI_REL_WRITE(!!(req_flags & MMC_DATA_REL_WR)) |
416 		CQHCI_BLK_COUNT(mrq->data->blocks) |
417 		CQHCI_BLK_ADDR((u64)mrq->data->blk_addr);
418 
419 	pr_debug("%s: cqhci: tag %d task descriptor 0x016%llx\n",
420 		 mmc_hostname(mrq->host), mrq->tag, (unsigned long long)*data);
421 }
422 
cqhci_dma_map(struct mmc_host * host,struct mmc_request * mrq)423 static int cqhci_dma_map(struct mmc_host *host, struct mmc_request *mrq)
424 {
425 	int sg_count;
426 	struct mmc_data *data = mrq->data;
427 
428 	if (!data)
429 		return -EINVAL;
430 
431 	sg_count = dma_map_sg(mmc_dev(host), data->sg,
432 			      data->sg_len,
433 			      (data->flags & MMC_DATA_WRITE) ?
434 			      DMA_TO_DEVICE : DMA_FROM_DEVICE);
435 	if (!sg_count) {
436 		pr_err("%s: sg-len: %d\n", __func__, data->sg_len);
437 		return -ENOMEM;
438 	}
439 
440 	return sg_count;
441 }
442 
cqhci_set_tran_desc(u8 * desc,dma_addr_t addr,int len,bool end,bool dma64)443 static void cqhci_set_tran_desc(u8 *desc, dma_addr_t addr, int len, bool end,
444 				bool dma64)
445 {
446 	__le32 *attr = (__le32 __force *)desc;
447 
448 	*attr = (CQHCI_VALID(1) |
449 		 CQHCI_END(end ? 1 : 0) |
450 		 CQHCI_INT(0) |
451 		 CQHCI_ACT(0x4) |
452 		 CQHCI_DAT_LENGTH(len));
453 
454 	if (dma64) {
455 		__le64 *dataddr = (__le64 __force *)(desc + 4);
456 
457 		dataddr[0] = cpu_to_le64(addr);
458 	} else {
459 		__le32 *dataddr = (__le32 __force *)(desc + 4);
460 
461 		dataddr[0] = cpu_to_le32(addr);
462 	}
463 }
464 
cqhci_prep_tran_desc(struct mmc_request * mrq,struct cqhci_host * cq_host,int tag)465 static int cqhci_prep_tran_desc(struct mmc_request *mrq,
466 			       struct cqhci_host *cq_host, int tag)
467 {
468 	struct mmc_data *data = mrq->data;
469 	int i, sg_count, len;
470 	bool end = false;
471 	bool dma64 = cq_host->dma64;
472 	dma_addr_t addr;
473 	u8 *desc;
474 	struct scatterlist *sg;
475 
476 	sg_count = cqhci_dma_map(mrq->host, mrq);
477 	if (sg_count < 0) {
478 		pr_err("%s: %s: unable to map sg lists, %d\n",
479 				mmc_hostname(mrq->host), __func__, sg_count);
480 		return sg_count;
481 	}
482 
483 	desc = get_trans_desc(cq_host, tag);
484 
485 	for_each_sg(data->sg, sg, sg_count, i) {
486 		addr = sg_dma_address(sg);
487 		len = sg_dma_len(sg);
488 
489 		if ((i+1) == sg_count)
490 			end = true;
491 		cqhci_set_tran_desc(desc, addr, len, end, dma64);
492 		desc += cq_host->trans_desc_len;
493 	}
494 
495 	return 0;
496 }
497 
cqhci_prep_dcmd_desc(struct mmc_host * mmc,struct mmc_request * mrq)498 static void cqhci_prep_dcmd_desc(struct mmc_host *mmc,
499 				   struct mmc_request *mrq)
500 {
501 	u64 *task_desc = NULL;
502 	u64 data = 0;
503 	u8 resp_type;
504 	u8 *desc;
505 	__le64 *dataddr;
506 	struct cqhci_host *cq_host = mmc->cqe_private;
507 	u8 timing;
508 
509 	if (!(mrq->cmd->flags & MMC_RSP_PRESENT)) {
510 		resp_type = 0x0;
511 		timing = 0x1;
512 	} else {
513 		if (mrq->cmd->flags & MMC_RSP_R1B) {
514 			resp_type = 0x3;
515 			timing = 0x0;
516 		} else {
517 			resp_type = 0x2;
518 			timing = 0x1;
519 		}
520 	}
521 
522 	task_desc = (__le64 __force *)get_desc(cq_host, cq_host->dcmd_slot);
523 	memset(task_desc, 0, cq_host->task_desc_len);
524 	data |= (CQHCI_VALID(1) |
525 		 CQHCI_END(1) |
526 		 CQHCI_INT(1) |
527 		 CQHCI_QBAR(1) |
528 		 CQHCI_ACT(0x5) |
529 		 CQHCI_CMD_INDEX(mrq->cmd->opcode) |
530 		 CQHCI_CMD_TIMING(timing) | CQHCI_RESP_TYPE(resp_type));
531 	*task_desc |= data;
532 	desc = (u8 *)task_desc;
533 	pr_debug("%s: cqhci: dcmd: cmd: %d timing: %d resp: %d\n",
534 		 mmc_hostname(mmc), mrq->cmd->opcode, timing, resp_type);
535 	dataddr = (__le64 __force *)(desc + 4);
536 	dataddr[0] = cpu_to_le64((u64)mrq->cmd->arg);
537 
538 }
539 
cqhci_post_req(struct mmc_host * host,struct mmc_request * mrq)540 static void cqhci_post_req(struct mmc_host *host, struct mmc_request *mrq)
541 {
542 	struct mmc_data *data = mrq->data;
543 
544 	if (data) {
545 		dma_unmap_sg(mmc_dev(host), data->sg, data->sg_len,
546 			     (data->flags & MMC_DATA_READ) ?
547 			     DMA_FROM_DEVICE : DMA_TO_DEVICE);
548 	}
549 }
550 
cqhci_tag(struct mmc_request * mrq)551 static inline int cqhci_tag(struct mmc_request *mrq)
552 {
553 	return mrq->cmd ? DCMD_SLOT : mrq->tag;
554 }
555 
cqhci_request(struct mmc_host * mmc,struct mmc_request * mrq)556 static int cqhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
557 {
558 	int err = 0;
559 	u64 data = 0;
560 	u64 *task_desc = NULL;
561 	int tag = cqhci_tag(mrq);
562 	struct cqhci_host *cq_host = mmc->cqe_private;
563 	unsigned long flags;
564 
565 	if (!cq_host->enabled) {
566 		pr_err("%s: cqhci: not enabled\n", mmc_hostname(mmc));
567 		return -EINVAL;
568 	}
569 
570 	/* First request after resume has to re-enable */
571 	if (!cq_host->activated)
572 		__cqhci_enable(cq_host);
573 
574 	if (!mmc->cqe_on) {
575 		cqhci_writel(cq_host, 0, CQHCI_CTL);
576 		mmc->cqe_on = true;
577 		pr_debug("%s: cqhci: CQE on\n", mmc_hostname(mmc));
578 		if (cqhci_readl(cq_host, CQHCI_CTL) && CQHCI_HALT) {
579 			pr_err("%s: cqhci: CQE failed to exit halt state\n",
580 			       mmc_hostname(mmc));
581 		}
582 		if (cq_host->ops->enable)
583 			cq_host->ops->enable(mmc);
584 	}
585 
586 	if (mrq->data) {
587 		task_desc = (__le64 __force *)get_desc(cq_host, tag);
588 		cqhci_prep_task_desc(mrq, &data, 1);
589 		*task_desc = cpu_to_le64(data);
590 		err = cqhci_prep_tran_desc(mrq, cq_host, tag);
591 		if (err) {
592 			pr_err("%s: cqhci: failed to setup tx desc: %d\n",
593 			       mmc_hostname(mmc), err);
594 			return err;
595 		}
596 	} else {
597 		cqhci_prep_dcmd_desc(mmc, mrq);
598 	}
599 
600 	spin_lock_irqsave(&cq_host->lock, flags);
601 
602 	if (cq_host->recovery_halt) {
603 		err = -EBUSY;
604 		goto out_unlock;
605 	}
606 
607 	cq_host->slot[tag].mrq = mrq;
608 	cq_host->slot[tag].flags = 0;
609 
610 	cq_host->qcnt += 1;
611 
612 	cqhci_writel(cq_host, 1 << tag, CQHCI_TDBR);
613 	if (!(cqhci_readl(cq_host, CQHCI_TDBR) & (1 << tag)))
614 		pr_debug("%s: cqhci: doorbell not set for tag %d\n",
615 			 mmc_hostname(mmc), tag);
616 out_unlock:
617 	spin_unlock_irqrestore(&cq_host->lock, flags);
618 
619 	if (err)
620 		cqhci_post_req(mmc, mrq);
621 
622 	return err;
623 }
624 
cqhci_recovery_needed(struct mmc_host * mmc,struct mmc_request * mrq,bool notify)625 static void cqhci_recovery_needed(struct mmc_host *mmc, struct mmc_request *mrq,
626 				  bool notify)
627 {
628 	struct cqhci_host *cq_host = mmc->cqe_private;
629 
630 	if (!cq_host->recovery_halt) {
631 		cq_host->recovery_halt = true;
632 		pr_debug("%s: cqhci: recovery needed\n", mmc_hostname(mmc));
633 		wake_up(&cq_host->wait_queue);
634 		if (notify && mrq->recovery_notifier)
635 			mrq->recovery_notifier(mrq);
636 	}
637 }
638 
cqhci_error_flags(int error1,int error2)639 static unsigned int cqhci_error_flags(int error1, int error2)
640 {
641 	int error = error1 ? error1 : error2;
642 
643 	switch (error) {
644 	case -EILSEQ:
645 		return CQHCI_HOST_CRC;
646 	case -ETIMEDOUT:
647 		return CQHCI_HOST_TIMEOUT;
648 	default:
649 		return CQHCI_HOST_OTHER;
650 	}
651 }
652 
cqhci_error_irq(struct mmc_host * mmc,u32 status,int cmd_error,int data_error)653 static void cqhci_error_irq(struct mmc_host *mmc, u32 status, int cmd_error,
654 			    int data_error)
655 {
656 	struct cqhci_host *cq_host = mmc->cqe_private;
657 	struct cqhci_slot *slot;
658 	u32 terri;
659 	int tag;
660 
661 	spin_lock(&cq_host->lock);
662 
663 	terri = cqhci_readl(cq_host, CQHCI_TERRI);
664 
665 	pr_debug("%s: cqhci: error IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
666 		 mmc_hostname(mmc), status, cmd_error, data_error, terri);
667 
668 	/* Forget about errors when recovery has already been triggered */
669 	if (cq_host->recovery_halt)
670 		goto out_unlock;
671 
672 	if (!cq_host->qcnt) {
673 		WARN_ONCE(1, "%s: cqhci: error when idle. IRQ status: 0x%08x cmd error %d data error %d TERRI: 0x%08x\n",
674 			  mmc_hostname(mmc), status, cmd_error, data_error,
675 			  terri);
676 		goto out_unlock;
677 	}
678 
679 	if (CQHCI_TERRI_C_VALID(terri)) {
680 		tag = CQHCI_TERRI_C_TASK(terri);
681 		slot = &cq_host->slot[tag];
682 		if (slot->mrq) {
683 			slot->flags = cqhci_error_flags(cmd_error, data_error);
684 			cqhci_recovery_needed(mmc, slot->mrq, true);
685 		}
686 	}
687 
688 	if (CQHCI_TERRI_D_VALID(terri)) {
689 		tag = CQHCI_TERRI_D_TASK(terri);
690 		slot = &cq_host->slot[tag];
691 		if (slot->mrq) {
692 			slot->flags = cqhci_error_flags(data_error, cmd_error);
693 			cqhci_recovery_needed(mmc, slot->mrq, true);
694 		}
695 	}
696 
697 	if (!cq_host->recovery_halt) {
698 		/*
699 		 * The only way to guarantee forward progress is to mark at
700 		 * least one task in error, so if none is indicated, pick one.
701 		 */
702 		for (tag = 0; tag < NUM_SLOTS; tag++) {
703 			slot = &cq_host->slot[tag];
704 			if (!slot->mrq)
705 				continue;
706 			slot->flags = cqhci_error_flags(data_error, cmd_error);
707 			cqhci_recovery_needed(mmc, slot->mrq, true);
708 			break;
709 		}
710 	}
711 
712 out_unlock:
713 	spin_unlock(&cq_host->lock);
714 }
715 
cqhci_finish_mrq(struct mmc_host * mmc,unsigned int tag)716 static void cqhci_finish_mrq(struct mmc_host *mmc, unsigned int tag)
717 {
718 	struct cqhci_host *cq_host = mmc->cqe_private;
719 	struct cqhci_slot *slot = &cq_host->slot[tag];
720 	struct mmc_request *mrq = slot->mrq;
721 	struct mmc_data *data;
722 
723 	if (!mrq) {
724 		WARN_ONCE(1, "%s: cqhci: spurious TCN for tag %d\n",
725 			  mmc_hostname(mmc), tag);
726 		return;
727 	}
728 
729 	/* No completions allowed during recovery */
730 	if (cq_host->recovery_halt) {
731 		slot->flags |= CQHCI_COMPLETED;
732 		return;
733 	}
734 
735 	slot->mrq = NULL;
736 
737 	cq_host->qcnt -= 1;
738 
739 	data = mrq->data;
740 	if (data) {
741 		if (data->error)
742 			data->bytes_xfered = 0;
743 		else
744 			data->bytes_xfered = data->blksz * data->blocks;
745 	}
746 
747 	mmc_cqe_request_done(mmc, mrq);
748 }
749 
cqhci_irq(struct mmc_host * mmc,u32 intmask,int cmd_error,int data_error)750 irqreturn_t cqhci_irq(struct mmc_host *mmc, u32 intmask, int cmd_error,
751 		      int data_error)
752 {
753 	u32 status;
754 	unsigned long tag = 0, comp_status;
755 	struct cqhci_host *cq_host = mmc->cqe_private;
756 
757 	status = cqhci_readl(cq_host, CQHCI_IS);
758 	cqhci_writel(cq_host, status, CQHCI_IS);
759 
760 	pr_debug("%s: cqhci: IRQ status: 0x%08x\n", mmc_hostname(mmc), status);
761 
762 	if ((status & CQHCI_IS_RED) || cmd_error || data_error)
763 		cqhci_error_irq(mmc, status, cmd_error, data_error);
764 
765 	if (status & CQHCI_IS_TCC) {
766 		/* read TCN and complete the request */
767 		comp_status = cqhci_readl(cq_host, CQHCI_TCN);
768 		cqhci_writel(cq_host, comp_status, CQHCI_TCN);
769 		pr_debug("%s: cqhci: TCN: 0x%08lx\n",
770 			 mmc_hostname(mmc), comp_status);
771 
772 		spin_lock(&cq_host->lock);
773 
774 		for_each_set_bit(tag, &comp_status, cq_host->num_slots) {
775 			/* complete the corresponding mrq */
776 			pr_debug("%s: cqhci: completing tag %lu\n",
777 				 mmc_hostname(mmc), tag);
778 			cqhci_finish_mrq(mmc, tag);
779 		}
780 
781 		if (cq_host->waiting_for_idle && !cq_host->qcnt) {
782 			cq_host->waiting_for_idle = false;
783 			wake_up(&cq_host->wait_queue);
784 		}
785 
786 		spin_unlock(&cq_host->lock);
787 	}
788 
789 	if (status & CQHCI_IS_TCL)
790 		wake_up(&cq_host->wait_queue);
791 
792 	if (status & CQHCI_IS_HAC)
793 		wake_up(&cq_host->wait_queue);
794 
795 	return IRQ_HANDLED;
796 }
797 EXPORT_SYMBOL(cqhci_irq);
798 
cqhci_is_idle(struct cqhci_host * cq_host,int * ret)799 static bool cqhci_is_idle(struct cqhci_host *cq_host, int *ret)
800 {
801 	unsigned long flags;
802 	bool is_idle;
803 
804 	spin_lock_irqsave(&cq_host->lock, flags);
805 	is_idle = !cq_host->qcnt || cq_host->recovery_halt;
806 	*ret = cq_host->recovery_halt ? -EBUSY : 0;
807 	cq_host->waiting_for_idle = !is_idle;
808 	spin_unlock_irqrestore(&cq_host->lock, flags);
809 
810 	return is_idle;
811 }
812 
cqhci_wait_for_idle(struct mmc_host * mmc)813 static int cqhci_wait_for_idle(struct mmc_host *mmc)
814 {
815 	struct cqhci_host *cq_host = mmc->cqe_private;
816 	int ret;
817 
818 	wait_event(cq_host->wait_queue, cqhci_is_idle(cq_host, &ret));
819 
820 	return ret;
821 }
822 
cqhci_timeout(struct mmc_host * mmc,struct mmc_request * mrq,bool * recovery_needed)823 static bool cqhci_timeout(struct mmc_host *mmc, struct mmc_request *mrq,
824 			  bool *recovery_needed)
825 {
826 	struct cqhci_host *cq_host = mmc->cqe_private;
827 	int tag = cqhci_tag(mrq);
828 	struct cqhci_slot *slot = &cq_host->slot[tag];
829 	unsigned long flags;
830 	bool timed_out;
831 
832 	spin_lock_irqsave(&cq_host->lock, flags);
833 	timed_out = slot->mrq == mrq;
834 	if (timed_out) {
835 		slot->flags |= CQHCI_EXTERNAL_TIMEOUT;
836 		cqhci_recovery_needed(mmc, mrq, false);
837 		*recovery_needed = cq_host->recovery_halt;
838 	}
839 	spin_unlock_irqrestore(&cq_host->lock, flags);
840 
841 	if (timed_out) {
842 		pr_err("%s: cqhci: timeout for tag %d\n",
843 		       mmc_hostname(mmc), tag);
844 		cqhci_dumpregs(cq_host);
845 	}
846 
847 	return timed_out;
848 }
849 
cqhci_tasks_cleared(struct cqhci_host * cq_host)850 static bool cqhci_tasks_cleared(struct cqhci_host *cq_host)
851 {
852 	return !(cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_CLEAR_ALL_TASKS);
853 }
854 
cqhci_clear_all_tasks(struct mmc_host * mmc,unsigned int timeout)855 static bool cqhci_clear_all_tasks(struct mmc_host *mmc, unsigned int timeout)
856 {
857 	struct cqhci_host *cq_host = mmc->cqe_private;
858 	bool ret;
859 	u32 ctl;
860 
861 	cqhci_set_irqs(cq_host, CQHCI_IS_TCL);
862 
863 	ctl = cqhci_readl(cq_host, CQHCI_CTL);
864 	ctl |= CQHCI_CLEAR_ALL_TASKS;
865 	cqhci_writel(cq_host, ctl, CQHCI_CTL);
866 
867 	wait_event_timeout(cq_host->wait_queue, cqhci_tasks_cleared(cq_host),
868 			   msecs_to_jiffies(timeout) + 1);
869 
870 	cqhci_set_irqs(cq_host, 0);
871 
872 	ret = cqhci_tasks_cleared(cq_host);
873 
874 	if (!ret)
875 		pr_debug("%s: cqhci: Failed to clear tasks\n",
876 			 mmc_hostname(mmc));
877 
878 	return ret;
879 }
880 
cqhci_halted(struct cqhci_host * cq_host)881 static bool cqhci_halted(struct cqhci_host *cq_host)
882 {
883 	return cqhci_readl(cq_host, CQHCI_CTL) & CQHCI_HALT;
884 }
885 
cqhci_halt(struct mmc_host * mmc,unsigned int timeout)886 static bool cqhci_halt(struct mmc_host *mmc, unsigned int timeout)
887 {
888 	struct cqhci_host *cq_host = mmc->cqe_private;
889 	bool ret;
890 	u32 ctl;
891 
892 	if (cqhci_halted(cq_host))
893 		return true;
894 
895 	cqhci_set_irqs(cq_host, CQHCI_IS_HAC);
896 
897 	ctl = cqhci_readl(cq_host, CQHCI_CTL);
898 	ctl |= CQHCI_HALT;
899 	cqhci_writel(cq_host, ctl, CQHCI_CTL);
900 
901 	wait_event_timeout(cq_host->wait_queue, cqhci_halted(cq_host),
902 			   msecs_to_jiffies(timeout) + 1);
903 
904 	cqhci_set_irqs(cq_host, 0);
905 
906 	ret = cqhci_halted(cq_host);
907 
908 	if (!ret)
909 		pr_debug("%s: cqhci: Failed to halt\n", mmc_hostname(mmc));
910 
911 	return ret;
912 }
913 
914 /*
915  * After halting we expect to be able to use the command line. We interpret the
916  * failure to halt to mean the data lines might still be in use (and the upper
917  * layers will need to send a STOP command), so we set the timeout based on a
918  * generous command timeout.
919  */
920 #define CQHCI_START_HALT_TIMEOUT	5
921 
cqhci_recovery_start(struct mmc_host * mmc)922 static void cqhci_recovery_start(struct mmc_host *mmc)
923 {
924 	struct cqhci_host *cq_host = mmc->cqe_private;
925 
926 	pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
927 
928 	WARN_ON(!cq_host->recovery_halt);
929 
930 	cqhci_halt(mmc, CQHCI_START_HALT_TIMEOUT);
931 
932 	if (cq_host->ops->disable)
933 		cq_host->ops->disable(mmc, true);
934 
935 	mmc->cqe_on = false;
936 }
937 
cqhci_error_from_flags(unsigned int flags)938 static int cqhci_error_from_flags(unsigned int flags)
939 {
940 	if (!flags)
941 		return 0;
942 
943 	/* CRC errors might indicate re-tuning so prefer to report that */
944 	if (flags & CQHCI_HOST_CRC)
945 		return -EILSEQ;
946 
947 	if (flags & (CQHCI_EXTERNAL_TIMEOUT | CQHCI_HOST_TIMEOUT))
948 		return -ETIMEDOUT;
949 
950 	return -EIO;
951 }
952 
cqhci_recover_mrq(struct cqhci_host * cq_host,unsigned int tag)953 static void cqhci_recover_mrq(struct cqhci_host *cq_host, unsigned int tag)
954 {
955 	struct cqhci_slot *slot = &cq_host->slot[tag];
956 	struct mmc_request *mrq = slot->mrq;
957 	struct mmc_data *data;
958 
959 	if (!mrq)
960 		return;
961 
962 	slot->mrq = NULL;
963 
964 	cq_host->qcnt -= 1;
965 
966 	data = mrq->data;
967 	if (data) {
968 		data->bytes_xfered = 0;
969 		data->error = cqhci_error_from_flags(slot->flags);
970 	} else {
971 		mrq->cmd->error = cqhci_error_from_flags(slot->flags);
972 	}
973 
974 	mmc_cqe_request_done(cq_host->mmc, mrq);
975 }
976 
cqhci_recover_mrqs(struct cqhci_host * cq_host)977 static void cqhci_recover_mrqs(struct cqhci_host *cq_host)
978 {
979 	int i;
980 
981 	for (i = 0; i < cq_host->num_slots; i++)
982 		cqhci_recover_mrq(cq_host, i);
983 }
984 
985 /*
986  * By now the command and data lines should be unused so there is no reason for
987  * CQHCI to take a long time to halt, but if it doesn't halt there could be
988  * problems clearing tasks, so be generous.
989  */
990 #define CQHCI_FINISH_HALT_TIMEOUT	20
991 
992 /* CQHCI could be expected to clear it's internal state pretty quickly */
993 #define CQHCI_CLEAR_TIMEOUT		20
994 
cqhci_recovery_finish(struct mmc_host * mmc)995 static void cqhci_recovery_finish(struct mmc_host *mmc)
996 {
997 	struct cqhci_host *cq_host = mmc->cqe_private;
998 	unsigned long flags;
999 	u32 cqcfg;
1000 	bool ok;
1001 
1002 	pr_debug("%s: cqhci: %s\n", mmc_hostname(mmc), __func__);
1003 
1004 	WARN_ON(!cq_host->recovery_halt);
1005 
1006 	ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1007 
1008 	if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
1009 		ok = false;
1010 
1011 	/*
1012 	 * The specification contradicts itself, by saying that tasks cannot be
1013 	 * cleared if CQHCI does not halt, but if CQHCI does not halt, it should
1014 	 * be disabled/re-enabled, but not to disable before clearing tasks.
1015 	 * Have a go anyway.
1016 	 */
1017 	if (!ok) {
1018 		pr_debug("%s: cqhci: disable / re-enable\n", mmc_hostname(mmc));
1019 		cqcfg = cqhci_readl(cq_host, CQHCI_CFG);
1020 		cqcfg &= ~CQHCI_ENABLE;
1021 		cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1022 		cqcfg |= CQHCI_ENABLE;
1023 		cqhci_writel(cq_host, cqcfg, CQHCI_CFG);
1024 		/* Be sure that there are no tasks */
1025 		ok = cqhci_halt(mmc, CQHCI_FINISH_HALT_TIMEOUT);
1026 		if (!cqhci_clear_all_tasks(mmc, CQHCI_CLEAR_TIMEOUT))
1027 			ok = false;
1028 		WARN_ON(!ok);
1029 	}
1030 
1031 	cqhci_recover_mrqs(cq_host);
1032 
1033 	WARN_ON(cq_host->qcnt);
1034 
1035 	spin_lock_irqsave(&cq_host->lock, flags);
1036 	cq_host->qcnt = 0;
1037 	cq_host->recovery_halt = false;
1038 	mmc->cqe_on = false;
1039 	spin_unlock_irqrestore(&cq_host->lock, flags);
1040 
1041 	/* Ensure all writes are done before interrupts are re-enabled */
1042 	wmb();
1043 
1044 	cqhci_writel(cq_host, CQHCI_IS_HAC | CQHCI_IS_TCL, CQHCI_IS);
1045 
1046 	cqhci_set_irqs(cq_host, CQHCI_IS_MASK);
1047 
1048 	pr_debug("%s: cqhci: recovery done\n", mmc_hostname(mmc));
1049 }
1050 
1051 static const struct mmc_cqe_ops cqhci_cqe_ops = {
1052 	.cqe_enable = cqhci_enable,
1053 	.cqe_disable = cqhci_disable,
1054 	.cqe_request = cqhci_request,
1055 	.cqe_post_req = cqhci_post_req,
1056 	.cqe_off = cqhci_off,
1057 	.cqe_wait_for_idle = cqhci_wait_for_idle,
1058 	.cqe_timeout = cqhci_timeout,
1059 	.cqe_recovery_start = cqhci_recovery_start,
1060 	.cqe_recovery_finish = cqhci_recovery_finish,
1061 };
1062 
cqhci_pltfm_init(struct platform_device * pdev)1063 struct cqhci_host *cqhci_pltfm_init(struct platform_device *pdev)
1064 {
1065 	struct cqhci_host *cq_host;
1066 	struct resource *cqhci_memres = NULL;
1067 
1068 	/* check and setup CMDQ interface */
1069 	cqhci_memres = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1070 						   "cqhci_mem");
1071 	if (!cqhci_memres) {
1072 		dev_dbg(&pdev->dev, "CMDQ not supported\n");
1073 		return ERR_PTR(-EINVAL);
1074 	}
1075 
1076 	cq_host = devm_kzalloc(&pdev->dev, sizeof(*cq_host), GFP_KERNEL);
1077 	if (!cq_host)
1078 		return ERR_PTR(-ENOMEM);
1079 	cq_host->mmio = devm_ioremap(&pdev->dev,
1080 				     cqhci_memres->start,
1081 				     resource_size(cqhci_memres));
1082 	if (!cq_host->mmio) {
1083 		dev_err(&pdev->dev, "failed to remap cqhci regs\n");
1084 		return ERR_PTR(-EBUSY);
1085 	}
1086 	dev_dbg(&pdev->dev, "CMDQ ioremap: done\n");
1087 
1088 	return cq_host;
1089 }
1090 EXPORT_SYMBOL(cqhci_pltfm_init);
1091 
cqhci_ver_major(struct cqhci_host * cq_host)1092 static unsigned int cqhci_ver_major(struct cqhci_host *cq_host)
1093 {
1094 	return CQHCI_VER_MAJOR(cqhci_readl(cq_host, CQHCI_VER));
1095 }
1096 
cqhci_ver_minor(struct cqhci_host * cq_host)1097 static unsigned int cqhci_ver_minor(struct cqhci_host *cq_host)
1098 {
1099 	u32 ver = cqhci_readl(cq_host, CQHCI_VER);
1100 
1101 	return CQHCI_VER_MINOR1(ver) * 10 + CQHCI_VER_MINOR2(ver);
1102 }
1103 
cqhci_init(struct cqhci_host * cq_host,struct mmc_host * mmc,bool dma64)1104 int cqhci_init(struct cqhci_host *cq_host, struct mmc_host *mmc,
1105 	      bool dma64)
1106 {
1107 	int err;
1108 
1109 	cq_host->dma64 = dma64;
1110 	cq_host->mmc = mmc;
1111 	cq_host->mmc->cqe_private = cq_host;
1112 
1113 	cq_host->num_slots = NUM_SLOTS;
1114 	cq_host->dcmd_slot = DCMD_SLOT;
1115 
1116 	mmc->cqe_ops = &cqhci_cqe_ops;
1117 
1118 	mmc->cqe_qdepth = NUM_SLOTS;
1119 	if (mmc->caps2 & MMC_CAP2_CQE_DCMD)
1120 		mmc->cqe_qdepth -= 1;
1121 
1122 	cq_host->slot = devm_kcalloc(mmc_dev(mmc), cq_host->num_slots,
1123 				     sizeof(*cq_host->slot), GFP_KERNEL);
1124 	if (!cq_host->slot) {
1125 		err = -ENOMEM;
1126 		goto out_err;
1127 	}
1128 
1129 	spin_lock_init(&cq_host->lock);
1130 
1131 	init_completion(&cq_host->halt_comp);
1132 	init_waitqueue_head(&cq_host->wait_queue);
1133 
1134 	pr_info("%s: CQHCI version %u.%02u\n",
1135 		mmc_hostname(mmc), cqhci_ver_major(cq_host),
1136 		cqhci_ver_minor(cq_host));
1137 
1138 	return 0;
1139 
1140 out_err:
1141 	pr_err("%s: CQHCI version %u.%02u failed to initialize, error %d\n",
1142 	       mmc_hostname(mmc), cqhci_ver_major(cq_host),
1143 	       cqhci_ver_minor(cq_host), err);
1144 	return err;
1145 }
1146 EXPORT_SYMBOL(cqhci_init);
1147 
1148 MODULE_AUTHOR("Venkat Gopalakrishnan <venkatg@codeaurora.org>");
1149 MODULE_DESCRIPTION("Command Queue Host Controller Interface driver");
1150 MODULE_LICENSE("GPL v2");
1151