1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Common code for the NVMe target.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12
13 #define CREATE_TRACE_POINTS
14 #include "trace.h"
15
16 #include "nvmet.h"
17
18 struct workqueue_struct *buffered_io_wq;
19 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
20 static DEFINE_IDA(cntlid_ida);
21
22 /*
23 * This read/write semaphore is used to synchronize access to configuration
24 * information on a target system that will result in discovery log page
25 * information change for at least one host.
26 * The full list of resources to protected by this semaphore is:
27 *
28 * - subsystems list
29 * - per-subsystem allowed hosts list
30 * - allow_any_host subsystem attribute
31 * - nvmet_genctr
32 * - the nvmet_transports array
33 *
34 * When updating any of those lists/structures write lock should be obtained,
35 * while when reading (popolating discovery log page or checking host-subsystem
36 * link) read lock is obtained to allow concurrent reads.
37 */
38 DECLARE_RWSEM(nvmet_config_sem);
39
40 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
41 u64 nvmet_ana_chgcnt;
42 DECLARE_RWSEM(nvmet_ana_sem);
43
errno_to_nvme_status(struct nvmet_req * req,int errno)44 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
45 {
46 u16 status;
47
48 switch (errno) {
49 case 0:
50 status = NVME_SC_SUCCESS;
51 break;
52 case -ENOSPC:
53 req->error_loc = offsetof(struct nvme_rw_command, length);
54 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
55 break;
56 case -EREMOTEIO:
57 req->error_loc = offsetof(struct nvme_rw_command, slba);
58 status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
59 break;
60 case -EOPNOTSUPP:
61 req->error_loc = offsetof(struct nvme_common_command, opcode);
62 switch (req->cmd->common.opcode) {
63 case nvme_cmd_dsm:
64 case nvme_cmd_write_zeroes:
65 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
66 break;
67 default:
68 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
69 }
70 break;
71 case -ENODATA:
72 req->error_loc = offsetof(struct nvme_rw_command, nsid);
73 status = NVME_SC_ACCESS_DENIED;
74 break;
75 case -EIO:
76 fallthrough;
77 default:
78 req->error_loc = offsetof(struct nvme_common_command, opcode);
79 status = NVME_SC_INTERNAL | NVME_SC_DNR;
80 }
81
82 return status;
83 }
84
85 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
86 const char *subsysnqn);
87
nvmet_copy_to_sgl(struct nvmet_req * req,off_t off,const void * buf,size_t len)88 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
89 size_t len)
90 {
91 if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
92 req->error_loc = offsetof(struct nvme_common_command, dptr);
93 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
94 }
95 return 0;
96 }
97
nvmet_copy_from_sgl(struct nvmet_req * req,off_t off,void * buf,size_t len)98 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
99 {
100 if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
101 req->error_loc = offsetof(struct nvme_common_command, dptr);
102 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
103 }
104 return 0;
105 }
106
nvmet_zero_sgl(struct nvmet_req * req,off_t off,size_t len)107 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
108 {
109 if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
110 req->error_loc = offsetof(struct nvme_common_command, dptr);
111 return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
112 }
113 return 0;
114 }
115
nvmet_max_nsid(struct nvmet_subsys * subsys)116 static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
117 {
118 unsigned long nsid = 0;
119 struct nvmet_ns *cur;
120 unsigned long idx;
121
122 xa_for_each(&subsys->namespaces, idx, cur)
123 nsid = cur->nsid;
124
125 return nsid;
126 }
127
nvmet_async_event_result(struct nvmet_async_event * aen)128 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
129 {
130 return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
131 }
132
nvmet_async_events_failall(struct nvmet_ctrl * ctrl)133 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
134 {
135 u16 status = NVME_SC_INTERNAL | NVME_SC_DNR;
136 struct nvmet_req *req;
137
138 mutex_lock(&ctrl->lock);
139 while (ctrl->nr_async_event_cmds) {
140 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
141 mutex_unlock(&ctrl->lock);
142 nvmet_req_complete(req, status);
143 mutex_lock(&ctrl->lock);
144 }
145 mutex_unlock(&ctrl->lock);
146 }
147
nvmet_async_events_process(struct nvmet_ctrl * ctrl)148 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
149 {
150 struct nvmet_async_event *aen;
151 struct nvmet_req *req;
152
153 mutex_lock(&ctrl->lock);
154 while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
155 aen = list_first_entry(&ctrl->async_events,
156 struct nvmet_async_event, entry);
157 req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
158 nvmet_set_result(req, nvmet_async_event_result(aen));
159
160 list_del(&aen->entry);
161 kfree(aen);
162
163 mutex_unlock(&ctrl->lock);
164 trace_nvmet_async_event(ctrl, req->cqe->result.u32);
165 nvmet_req_complete(req, 0);
166 mutex_lock(&ctrl->lock);
167 }
168 mutex_unlock(&ctrl->lock);
169 }
170
nvmet_async_events_free(struct nvmet_ctrl * ctrl)171 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
172 {
173 struct nvmet_async_event *aen, *tmp;
174
175 mutex_lock(&ctrl->lock);
176 list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
177 list_del(&aen->entry);
178 kfree(aen);
179 }
180 mutex_unlock(&ctrl->lock);
181 }
182
nvmet_async_event_work(struct work_struct * work)183 static void nvmet_async_event_work(struct work_struct *work)
184 {
185 struct nvmet_ctrl *ctrl =
186 container_of(work, struct nvmet_ctrl, async_event_work);
187
188 nvmet_async_events_process(ctrl);
189 }
190
nvmet_add_async_event(struct nvmet_ctrl * ctrl,u8 event_type,u8 event_info,u8 log_page)191 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
192 u8 event_info, u8 log_page)
193 {
194 struct nvmet_async_event *aen;
195
196 aen = kmalloc(sizeof(*aen), GFP_KERNEL);
197 if (!aen)
198 return;
199
200 aen->event_type = event_type;
201 aen->event_info = event_info;
202 aen->log_page = log_page;
203
204 mutex_lock(&ctrl->lock);
205 list_add_tail(&aen->entry, &ctrl->async_events);
206 mutex_unlock(&ctrl->lock);
207
208 schedule_work(&ctrl->async_event_work);
209 }
210
nvmet_add_to_changed_ns_log(struct nvmet_ctrl * ctrl,__le32 nsid)211 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
212 {
213 u32 i;
214
215 mutex_lock(&ctrl->lock);
216 if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
217 goto out_unlock;
218
219 for (i = 0; i < ctrl->nr_changed_ns; i++) {
220 if (ctrl->changed_ns_list[i] == nsid)
221 goto out_unlock;
222 }
223
224 if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
225 ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
226 ctrl->nr_changed_ns = U32_MAX;
227 goto out_unlock;
228 }
229
230 ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
231 out_unlock:
232 mutex_unlock(&ctrl->lock);
233 }
234
nvmet_ns_changed(struct nvmet_subsys * subsys,u32 nsid)235 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
236 {
237 struct nvmet_ctrl *ctrl;
238
239 lockdep_assert_held(&subsys->lock);
240
241 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
242 nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
243 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
244 continue;
245 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
246 NVME_AER_NOTICE_NS_CHANGED,
247 NVME_LOG_CHANGED_NS);
248 }
249 }
250
nvmet_send_ana_event(struct nvmet_subsys * subsys,struct nvmet_port * port)251 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
252 struct nvmet_port *port)
253 {
254 struct nvmet_ctrl *ctrl;
255
256 mutex_lock(&subsys->lock);
257 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
258 if (port && ctrl->port != port)
259 continue;
260 if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
261 continue;
262 nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
263 NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
264 }
265 mutex_unlock(&subsys->lock);
266 }
267
nvmet_port_send_ana_event(struct nvmet_port * port)268 void nvmet_port_send_ana_event(struct nvmet_port *port)
269 {
270 struct nvmet_subsys_link *p;
271
272 down_read(&nvmet_config_sem);
273 list_for_each_entry(p, &port->subsystems, entry)
274 nvmet_send_ana_event(p->subsys, port);
275 up_read(&nvmet_config_sem);
276 }
277
nvmet_register_transport(const struct nvmet_fabrics_ops * ops)278 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
279 {
280 int ret = 0;
281
282 down_write(&nvmet_config_sem);
283 if (nvmet_transports[ops->type])
284 ret = -EINVAL;
285 else
286 nvmet_transports[ops->type] = ops;
287 up_write(&nvmet_config_sem);
288
289 return ret;
290 }
291 EXPORT_SYMBOL_GPL(nvmet_register_transport);
292
nvmet_unregister_transport(const struct nvmet_fabrics_ops * ops)293 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
294 {
295 down_write(&nvmet_config_sem);
296 nvmet_transports[ops->type] = NULL;
297 up_write(&nvmet_config_sem);
298 }
299 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
300
nvmet_port_del_ctrls(struct nvmet_port * port,struct nvmet_subsys * subsys)301 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
302 {
303 struct nvmet_ctrl *ctrl;
304
305 mutex_lock(&subsys->lock);
306 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
307 if (ctrl->port == port)
308 ctrl->ops->delete_ctrl(ctrl);
309 }
310 mutex_unlock(&subsys->lock);
311 }
312
nvmet_enable_port(struct nvmet_port * port)313 int nvmet_enable_port(struct nvmet_port *port)
314 {
315 const struct nvmet_fabrics_ops *ops;
316 int ret;
317
318 lockdep_assert_held(&nvmet_config_sem);
319
320 ops = nvmet_transports[port->disc_addr.trtype];
321 if (!ops) {
322 up_write(&nvmet_config_sem);
323 request_module("nvmet-transport-%d", port->disc_addr.trtype);
324 down_write(&nvmet_config_sem);
325 ops = nvmet_transports[port->disc_addr.trtype];
326 if (!ops) {
327 pr_err("transport type %d not supported\n",
328 port->disc_addr.trtype);
329 return -EINVAL;
330 }
331 }
332
333 if (!try_module_get(ops->owner))
334 return -EINVAL;
335
336 /*
337 * If the user requested PI support and the transport isn't pi capable,
338 * don't enable the port.
339 */
340 if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
341 pr_err("T10-PI is not supported by transport type %d\n",
342 port->disc_addr.trtype);
343 ret = -EINVAL;
344 goto out_put;
345 }
346
347 ret = ops->add_port(port);
348 if (ret)
349 goto out_put;
350
351 /* If the transport didn't set inline_data_size, then disable it. */
352 if (port->inline_data_size < 0)
353 port->inline_data_size = 0;
354
355 port->enabled = true;
356 port->tr_ops = ops;
357 return 0;
358
359 out_put:
360 module_put(ops->owner);
361 return ret;
362 }
363
nvmet_disable_port(struct nvmet_port * port)364 void nvmet_disable_port(struct nvmet_port *port)
365 {
366 const struct nvmet_fabrics_ops *ops;
367
368 lockdep_assert_held(&nvmet_config_sem);
369
370 port->enabled = false;
371 port->tr_ops = NULL;
372
373 ops = nvmet_transports[port->disc_addr.trtype];
374 ops->remove_port(port);
375 module_put(ops->owner);
376 }
377
nvmet_keep_alive_timer(struct work_struct * work)378 static void nvmet_keep_alive_timer(struct work_struct *work)
379 {
380 struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
381 struct nvmet_ctrl, ka_work);
382 bool cmd_seen = ctrl->cmd_seen;
383
384 ctrl->cmd_seen = false;
385 if (cmd_seen) {
386 pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
387 ctrl->cntlid);
388 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
389 return;
390 }
391
392 pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
393 ctrl->cntlid, ctrl->kato);
394
395 nvmet_ctrl_fatal_error(ctrl);
396 }
397
nvmet_start_keep_alive_timer(struct nvmet_ctrl * ctrl)398 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
399 {
400 if (unlikely(ctrl->kato == 0))
401 return;
402
403 pr_debug("ctrl %d start keep-alive timer for %d secs\n",
404 ctrl->cntlid, ctrl->kato);
405
406 INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
407 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
408 }
409
nvmet_stop_keep_alive_timer(struct nvmet_ctrl * ctrl)410 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
411 {
412 if (unlikely(ctrl->kato == 0))
413 return;
414
415 pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
416
417 cancel_delayed_work_sync(&ctrl->ka_work);
418 }
419
nvmet_find_namespace(struct nvmet_ctrl * ctrl,__le32 nsid)420 struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
421 {
422 struct nvmet_ns *ns;
423
424 ns = xa_load(&ctrl->subsys->namespaces, le32_to_cpu(nsid));
425 if (ns)
426 percpu_ref_get(&ns->ref);
427
428 return ns;
429 }
430
nvmet_destroy_namespace(struct percpu_ref * ref)431 static void nvmet_destroy_namespace(struct percpu_ref *ref)
432 {
433 struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
434
435 complete(&ns->disable_done);
436 }
437
nvmet_put_namespace(struct nvmet_ns * ns)438 void nvmet_put_namespace(struct nvmet_ns *ns)
439 {
440 percpu_ref_put(&ns->ref);
441 }
442
nvmet_ns_dev_disable(struct nvmet_ns * ns)443 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
444 {
445 nvmet_bdev_ns_disable(ns);
446 nvmet_file_ns_disable(ns);
447 }
448
nvmet_p2pmem_ns_enable(struct nvmet_ns * ns)449 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
450 {
451 int ret;
452 struct pci_dev *p2p_dev;
453
454 if (!ns->use_p2pmem)
455 return 0;
456
457 if (!ns->bdev) {
458 pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
459 return -EINVAL;
460 }
461
462 if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
463 pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
464 ns->device_path);
465 return -EINVAL;
466 }
467
468 if (ns->p2p_dev) {
469 ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
470 if (ret < 0)
471 return -EINVAL;
472 } else {
473 /*
474 * Right now we just check that there is p2pmem available so
475 * we can report an error to the user right away if there
476 * is not. We'll find the actual device to use once we
477 * setup the controller when the port's device is available.
478 */
479
480 p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
481 if (!p2p_dev) {
482 pr_err("no peer-to-peer memory is available for %s\n",
483 ns->device_path);
484 return -EINVAL;
485 }
486
487 pci_dev_put(p2p_dev);
488 }
489
490 return 0;
491 }
492
493 /*
494 * Note: ctrl->subsys->lock should be held when calling this function
495 */
nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl * ctrl,struct nvmet_ns * ns)496 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
497 struct nvmet_ns *ns)
498 {
499 struct device *clients[2];
500 struct pci_dev *p2p_dev;
501 int ret;
502
503 if (!ctrl->p2p_client || !ns->use_p2pmem)
504 return;
505
506 if (ns->p2p_dev) {
507 ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
508 if (ret < 0)
509 return;
510
511 p2p_dev = pci_dev_get(ns->p2p_dev);
512 } else {
513 clients[0] = ctrl->p2p_client;
514 clients[1] = nvmet_ns_dev(ns);
515
516 p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
517 if (!p2p_dev) {
518 pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
519 dev_name(ctrl->p2p_client), ns->device_path);
520 return;
521 }
522 }
523
524 ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
525 if (ret < 0)
526 pci_dev_put(p2p_dev);
527
528 pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
529 ns->nsid);
530 }
531
nvmet_ns_revalidate(struct nvmet_ns * ns)532 void nvmet_ns_revalidate(struct nvmet_ns *ns)
533 {
534 loff_t oldsize = ns->size;
535
536 if (ns->bdev)
537 nvmet_bdev_ns_revalidate(ns);
538 else
539 nvmet_file_ns_revalidate(ns);
540
541 if (oldsize != ns->size)
542 nvmet_ns_changed(ns->subsys, ns->nsid);
543 }
544
nvmet_ns_enable(struct nvmet_ns * ns)545 int nvmet_ns_enable(struct nvmet_ns *ns)
546 {
547 struct nvmet_subsys *subsys = ns->subsys;
548 struct nvmet_ctrl *ctrl;
549 int ret;
550
551 mutex_lock(&subsys->lock);
552 ret = 0;
553
554 if (nvmet_passthru_ctrl(subsys)) {
555 pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
556 goto out_unlock;
557 }
558
559 if (ns->enabled)
560 goto out_unlock;
561
562 ret = -EMFILE;
563 if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
564 goto out_unlock;
565
566 ret = nvmet_bdev_ns_enable(ns);
567 if (ret == -ENOTBLK)
568 ret = nvmet_file_ns_enable(ns);
569 if (ret)
570 goto out_unlock;
571
572 ret = nvmet_p2pmem_ns_enable(ns);
573 if (ret)
574 goto out_dev_disable;
575
576 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
577 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
578
579 ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
580 0, GFP_KERNEL);
581 if (ret)
582 goto out_dev_put;
583
584 if (ns->nsid > subsys->max_nsid)
585 subsys->max_nsid = ns->nsid;
586
587 ret = xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL);
588 if (ret)
589 goto out_restore_subsys_maxnsid;
590
591 subsys->nr_namespaces++;
592
593 nvmet_ns_changed(subsys, ns->nsid);
594 ns->enabled = true;
595 ret = 0;
596 out_unlock:
597 mutex_unlock(&subsys->lock);
598 return ret;
599
600 out_restore_subsys_maxnsid:
601 subsys->max_nsid = nvmet_max_nsid(subsys);
602 percpu_ref_exit(&ns->ref);
603 out_dev_put:
604 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
605 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
606 out_dev_disable:
607 nvmet_ns_dev_disable(ns);
608 goto out_unlock;
609 }
610
nvmet_ns_disable(struct nvmet_ns * ns)611 void nvmet_ns_disable(struct nvmet_ns *ns)
612 {
613 struct nvmet_subsys *subsys = ns->subsys;
614 struct nvmet_ctrl *ctrl;
615
616 mutex_lock(&subsys->lock);
617 if (!ns->enabled)
618 goto out_unlock;
619
620 ns->enabled = false;
621 xa_erase(&ns->subsys->namespaces, ns->nsid);
622 if (ns->nsid == subsys->max_nsid)
623 subsys->max_nsid = nvmet_max_nsid(subsys);
624
625 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
626 pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
627
628 mutex_unlock(&subsys->lock);
629
630 /*
631 * Now that we removed the namespaces from the lookup list, we
632 * can kill the per_cpu ref and wait for any remaining references
633 * to be dropped, as well as a RCU grace period for anyone only
634 * using the namepace under rcu_read_lock(). Note that we can't
635 * use call_rcu here as we need to ensure the namespaces have
636 * been fully destroyed before unloading the module.
637 */
638 percpu_ref_kill(&ns->ref);
639 synchronize_rcu();
640 wait_for_completion(&ns->disable_done);
641 percpu_ref_exit(&ns->ref);
642
643 mutex_lock(&subsys->lock);
644
645 subsys->nr_namespaces--;
646 nvmet_ns_changed(subsys, ns->nsid);
647 nvmet_ns_dev_disable(ns);
648 out_unlock:
649 mutex_unlock(&subsys->lock);
650 }
651
nvmet_ns_free(struct nvmet_ns * ns)652 void nvmet_ns_free(struct nvmet_ns *ns)
653 {
654 nvmet_ns_disable(ns);
655
656 down_write(&nvmet_ana_sem);
657 nvmet_ana_group_enabled[ns->anagrpid]--;
658 up_write(&nvmet_ana_sem);
659
660 kfree(ns->device_path);
661 kfree(ns);
662 }
663
nvmet_ns_alloc(struct nvmet_subsys * subsys,u32 nsid)664 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
665 {
666 struct nvmet_ns *ns;
667
668 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
669 if (!ns)
670 return NULL;
671
672 init_completion(&ns->disable_done);
673
674 ns->nsid = nsid;
675 ns->subsys = subsys;
676
677 down_write(&nvmet_ana_sem);
678 ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
679 nvmet_ana_group_enabled[ns->anagrpid]++;
680 up_write(&nvmet_ana_sem);
681
682 uuid_gen(&ns->uuid);
683 ns->buffered_io = false;
684
685 return ns;
686 }
687
nvmet_update_sq_head(struct nvmet_req * req)688 static void nvmet_update_sq_head(struct nvmet_req *req)
689 {
690 if (req->sq->size) {
691 u32 old_sqhd, new_sqhd;
692
693 do {
694 old_sqhd = req->sq->sqhd;
695 new_sqhd = (old_sqhd + 1) % req->sq->size;
696 } while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
697 old_sqhd);
698 }
699 req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
700 }
701
nvmet_set_error(struct nvmet_req * req,u16 status)702 static void nvmet_set_error(struct nvmet_req *req, u16 status)
703 {
704 struct nvmet_ctrl *ctrl = req->sq->ctrl;
705 struct nvme_error_slot *new_error_slot;
706 unsigned long flags;
707
708 req->cqe->status = cpu_to_le16(status << 1);
709
710 if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
711 return;
712
713 spin_lock_irqsave(&ctrl->error_lock, flags);
714 ctrl->err_counter++;
715 new_error_slot =
716 &ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
717
718 new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
719 new_error_slot->sqid = cpu_to_le16(req->sq->qid);
720 new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
721 new_error_slot->status_field = cpu_to_le16(status << 1);
722 new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
723 new_error_slot->lba = cpu_to_le64(req->error_slba);
724 new_error_slot->nsid = req->cmd->common.nsid;
725 spin_unlock_irqrestore(&ctrl->error_lock, flags);
726
727 /* set the more bit for this request */
728 req->cqe->status |= cpu_to_le16(1 << 14);
729 }
730
__nvmet_req_complete(struct nvmet_req * req,u16 status)731 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
732 {
733 if (!req->sq->sqhd_disabled)
734 nvmet_update_sq_head(req);
735 req->cqe->sq_id = cpu_to_le16(req->sq->qid);
736 req->cqe->command_id = req->cmd->common.command_id;
737
738 if (unlikely(status))
739 nvmet_set_error(req, status);
740
741 trace_nvmet_req_complete(req);
742
743 if (req->ns)
744 nvmet_put_namespace(req->ns);
745 req->ops->queue_response(req);
746 }
747
nvmet_req_complete(struct nvmet_req * req,u16 status)748 void nvmet_req_complete(struct nvmet_req *req, u16 status)
749 {
750 __nvmet_req_complete(req, status);
751 percpu_ref_put(&req->sq->ref);
752 }
753 EXPORT_SYMBOL_GPL(nvmet_req_complete);
754
nvmet_cq_setup(struct nvmet_ctrl * ctrl,struct nvmet_cq * cq,u16 qid,u16 size)755 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
756 u16 qid, u16 size)
757 {
758 cq->qid = qid;
759 cq->size = size;
760
761 ctrl->cqs[qid] = cq;
762 }
763
nvmet_sq_setup(struct nvmet_ctrl * ctrl,struct nvmet_sq * sq,u16 qid,u16 size)764 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
765 u16 qid, u16 size)
766 {
767 sq->sqhd = 0;
768 sq->qid = qid;
769 sq->size = size;
770
771 ctrl->sqs[qid] = sq;
772 }
773
nvmet_confirm_sq(struct percpu_ref * ref)774 static void nvmet_confirm_sq(struct percpu_ref *ref)
775 {
776 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
777
778 complete(&sq->confirm_done);
779 }
780
nvmet_sq_destroy(struct nvmet_sq * sq)781 void nvmet_sq_destroy(struct nvmet_sq *sq)
782 {
783 struct nvmet_ctrl *ctrl = sq->ctrl;
784
785 /*
786 * If this is the admin queue, complete all AERs so that our
787 * queue doesn't have outstanding requests on it.
788 */
789 if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
790 nvmet_async_events_failall(ctrl);
791 percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
792 wait_for_completion(&sq->confirm_done);
793 wait_for_completion(&sq->free_done);
794 percpu_ref_exit(&sq->ref);
795
796 if (ctrl) {
797 nvmet_ctrl_put(ctrl);
798 sq->ctrl = NULL; /* allows reusing the queue later */
799 }
800 }
801 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
802
nvmet_sq_free(struct percpu_ref * ref)803 static void nvmet_sq_free(struct percpu_ref *ref)
804 {
805 struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
806
807 complete(&sq->free_done);
808 }
809
nvmet_sq_init(struct nvmet_sq * sq)810 int nvmet_sq_init(struct nvmet_sq *sq)
811 {
812 int ret;
813
814 ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
815 if (ret) {
816 pr_err("percpu_ref init failed!\n");
817 return ret;
818 }
819 init_completion(&sq->free_done);
820 init_completion(&sq->confirm_done);
821
822 return 0;
823 }
824 EXPORT_SYMBOL_GPL(nvmet_sq_init);
825
nvmet_check_ana_state(struct nvmet_port * port,struct nvmet_ns * ns)826 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
827 struct nvmet_ns *ns)
828 {
829 enum nvme_ana_state state = port->ana_state[ns->anagrpid];
830
831 if (unlikely(state == NVME_ANA_INACCESSIBLE))
832 return NVME_SC_ANA_INACCESSIBLE;
833 if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
834 return NVME_SC_ANA_PERSISTENT_LOSS;
835 if (unlikely(state == NVME_ANA_CHANGE))
836 return NVME_SC_ANA_TRANSITION;
837 return 0;
838 }
839
nvmet_io_cmd_check_access(struct nvmet_req * req)840 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
841 {
842 if (unlikely(req->ns->readonly)) {
843 switch (req->cmd->common.opcode) {
844 case nvme_cmd_read:
845 case nvme_cmd_flush:
846 break;
847 default:
848 return NVME_SC_NS_WRITE_PROTECTED;
849 }
850 }
851
852 return 0;
853 }
854
nvmet_parse_io_cmd(struct nvmet_req * req)855 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
856 {
857 struct nvme_command *cmd = req->cmd;
858 u16 ret;
859
860 ret = nvmet_check_ctrl_status(req, cmd);
861 if (unlikely(ret))
862 return ret;
863
864 if (nvmet_req_passthru_ctrl(req))
865 return nvmet_parse_passthru_io_cmd(req);
866
867 req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
868 if (unlikely(!req->ns)) {
869 req->error_loc = offsetof(struct nvme_common_command, nsid);
870 return NVME_SC_INVALID_NS | NVME_SC_DNR;
871 }
872 ret = nvmet_check_ana_state(req->port, req->ns);
873 if (unlikely(ret)) {
874 req->error_loc = offsetof(struct nvme_common_command, nsid);
875 return ret;
876 }
877 ret = nvmet_io_cmd_check_access(req);
878 if (unlikely(ret)) {
879 req->error_loc = offsetof(struct nvme_common_command, nsid);
880 return ret;
881 }
882
883 if (req->ns->file)
884 return nvmet_file_parse_io_cmd(req);
885 else
886 return nvmet_bdev_parse_io_cmd(req);
887 }
888
nvmet_req_init(struct nvmet_req * req,struct nvmet_cq * cq,struct nvmet_sq * sq,const struct nvmet_fabrics_ops * ops)889 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
890 struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
891 {
892 u8 flags = req->cmd->common.flags;
893 u16 status;
894
895 req->cq = cq;
896 req->sq = sq;
897 req->ops = ops;
898 req->sg = NULL;
899 req->metadata_sg = NULL;
900 req->sg_cnt = 0;
901 req->metadata_sg_cnt = 0;
902 req->transfer_len = 0;
903 req->metadata_len = 0;
904 req->cqe->status = 0;
905 req->cqe->sq_head = 0;
906 req->ns = NULL;
907 req->error_loc = NVMET_NO_ERROR_LOC;
908 req->error_slba = 0;
909
910 /* no support for fused commands yet */
911 if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
912 req->error_loc = offsetof(struct nvme_common_command, flags);
913 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
914 goto fail;
915 }
916
917 /*
918 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
919 * contains an address of a single contiguous physical buffer that is
920 * byte aligned.
921 */
922 if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
923 req->error_loc = offsetof(struct nvme_common_command, flags);
924 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
925 goto fail;
926 }
927
928 if (unlikely(!req->sq->ctrl))
929 /* will return an error for any non-connect command: */
930 status = nvmet_parse_connect_cmd(req);
931 else if (likely(req->sq->qid != 0))
932 status = nvmet_parse_io_cmd(req);
933 else
934 status = nvmet_parse_admin_cmd(req);
935
936 if (status)
937 goto fail;
938
939 trace_nvmet_req_init(req, req->cmd);
940
941 if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
942 status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
943 goto fail;
944 }
945
946 if (sq->ctrl)
947 sq->ctrl->cmd_seen = true;
948
949 return true;
950
951 fail:
952 __nvmet_req_complete(req, status);
953 return false;
954 }
955 EXPORT_SYMBOL_GPL(nvmet_req_init);
956
nvmet_req_uninit(struct nvmet_req * req)957 void nvmet_req_uninit(struct nvmet_req *req)
958 {
959 percpu_ref_put(&req->sq->ref);
960 if (req->ns)
961 nvmet_put_namespace(req->ns);
962 }
963 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
964
nvmet_check_transfer_len(struct nvmet_req * req,size_t len)965 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
966 {
967 if (unlikely(len != req->transfer_len)) {
968 req->error_loc = offsetof(struct nvme_common_command, dptr);
969 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
970 return false;
971 }
972
973 return true;
974 }
975 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
976
nvmet_check_data_len_lte(struct nvmet_req * req,size_t data_len)977 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
978 {
979 if (unlikely(data_len > req->transfer_len)) {
980 req->error_loc = offsetof(struct nvme_common_command, dptr);
981 nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
982 return false;
983 }
984
985 return true;
986 }
987
nvmet_data_transfer_len(struct nvmet_req * req)988 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
989 {
990 return req->transfer_len - req->metadata_len;
991 }
992
nvmet_req_alloc_p2pmem_sgls(struct nvmet_req * req)993 static int nvmet_req_alloc_p2pmem_sgls(struct nvmet_req *req)
994 {
995 req->sg = pci_p2pmem_alloc_sgl(req->p2p_dev, &req->sg_cnt,
996 nvmet_data_transfer_len(req));
997 if (!req->sg)
998 goto out_err;
999
1000 if (req->metadata_len) {
1001 req->metadata_sg = pci_p2pmem_alloc_sgl(req->p2p_dev,
1002 &req->metadata_sg_cnt, req->metadata_len);
1003 if (!req->metadata_sg)
1004 goto out_free_sg;
1005 }
1006 return 0;
1007 out_free_sg:
1008 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1009 out_err:
1010 return -ENOMEM;
1011 }
1012
nvmet_req_find_p2p_dev(struct nvmet_req * req)1013 static bool nvmet_req_find_p2p_dev(struct nvmet_req *req)
1014 {
1015 if (!IS_ENABLED(CONFIG_PCI_P2PDMA))
1016 return false;
1017
1018 if (req->sq->ctrl && req->sq->qid && req->ns) {
1019 req->p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
1020 req->ns->nsid);
1021 if (req->p2p_dev)
1022 return true;
1023 }
1024
1025 req->p2p_dev = NULL;
1026 return false;
1027 }
1028
nvmet_req_alloc_sgls(struct nvmet_req * req)1029 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1030 {
1031 if (nvmet_req_find_p2p_dev(req) && !nvmet_req_alloc_p2pmem_sgls(req))
1032 return 0;
1033
1034 req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1035 &req->sg_cnt);
1036 if (unlikely(!req->sg))
1037 goto out;
1038
1039 if (req->metadata_len) {
1040 req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1041 &req->metadata_sg_cnt);
1042 if (unlikely(!req->metadata_sg))
1043 goto out_free;
1044 }
1045
1046 return 0;
1047 out_free:
1048 sgl_free(req->sg);
1049 out:
1050 return -ENOMEM;
1051 }
1052 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1053
nvmet_req_free_sgls(struct nvmet_req * req)1054 void nvmet_req_free_sgls(struct nvmet_req *req)
1055 {
1056 if (req->p2p_dev) {
1057 pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1058 if (req->metadata_sg)
1059 pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1060 } else {
1061 sgl_free(req->sg);
1062 if (req->metadata_sg)
1063 sgl_free(req->metadata_sg);
1064 }
1065
1066 req->sg = NULL;
1067 req->metadata_sg = NULL;
1068 req->sg_cnt = 0;
1069 req->metadata_sg_cnt = 0;
1070 }
1071 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1072
nvmet_cc_en(u32 cc)1073 static inline bool nvmet_cc_en(u32 cc)
1074 {
1075 return (cc >> NVME_CC_EN_SHIFT) & 0x1;
1076 }
1077
nvmet_cc_css(u32 cc)1078 static inline u8 nvmet_cc_css(u32 cc)
1079 {
1080 return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
1081 }
1082
nvmet_cc_mps(u32 cc)1083 static inline u8 nvmet_cc_mps(u32 cc)
1084 {
1085 return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
1086 }
1087
nvmet_cc_ams(u32 cc)1088 static inline u8 nvmet_cc_ams(u32 cc)
1089 {
1090 return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
1091 }
1092
nvmet_cc_shn(u32 cc)1093 static inline u8 nvmet_cc_shn(u32 cc)
1094 {
1095 return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
1096 }
1097
nvmet_cc_iosqes(u32 cc)1098 static inline u8 nvmet_cc_iosqes(u32 cc)
1099 {
1100 return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
1101 }
1102
nvmet_cc_iocqes(u32 cc)1103 static inline u8 nvmet_cc_iocqes(u32 cc)
1104 {
1105 return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
1106 }
1107
nvmet_start_ctrl(struct nvmet_ctrl * ctrl)1108 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1109 {
1110 lockdep_assert_held(&ctrl->lock);
1111
1112 if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1113 nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
1114 nvmet_cc_mps(ctrl->cc) != 0 ||
1115 nvmet_cc_ams(ctrl->cc) != 0 ||
1116 nvmet_cc_css(ctrl->cc) != 0) {
1117 ctrl->csts = NVME_CSTS_CFS;
1118 return;
1119 }
1120
1121 ctrl->csts = NVME_CSTS_RDY;
1122
1123 /*
1124 * Controllers that are not yet enabled should not really enforce the
1125 * keep alive timeout, but we still want to track a timeout and cleanup
1126 * in case a host died before it enabled the controller. Hence, simply
1127 * reset the keep alive timer when the controller is enabled.
1128 */
1129 if (ctrl->kato)
1130 mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
1131 }
1132
nvmet_clear_ctrl(struct nvmet_ctrl * ctrl)1133 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1134 {
1135 lockdep_assert_held(&ctrl->lock);
1136
1137 /* XXX: tear down queues? */
1138 ctrl->csts &= ~NVME_CSTS_RDY;
1139 ctrl->cc = 0;
1140 }
1141
nvmet_update_cc(struct nvmet_ctrl * ctrl,u32 new)1142 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1143 {
1144 u32 old;
1145
1146 mutex_lock(&ctrl->lock);
1147 old = ctrl->cc;
1148 ctrl->cc = new;
1149
1150 if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1151 nvmet_start_ctrl(ctrl);
1152 if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1153 nvmet_clear_ctrl(ctrl);
1154 if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1155 nvmet_clear_ctrl(ctrl);
1156 ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1157 }
1158 if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1159 ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1160 mutex_unlock(&ctrl->lock);
1161 }
1162
nvmet_init_cap(struct nvmet_ctrl * ctrl)1163 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1164 {
1165 /* command sets supported: NVMe command set: */
1166 ctrl->cap = (1ULL << 37);
1167 /* CC.EN timeout in 500msec units: */
1168 ctrl->cap |= (15ULL << 24);
1169 /* maximum queue entries supported: */
1170 ctrl->cap |= NVMET_QUEUE_SIZE - 1;
1171 }
1172
nvmet_ctrl_find_get(const char * subsysnqn,const char * hostnqn,u16 cntlid,struct nvmet_req * req,struct nvmet_ctrl ** ret)1173 u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
1174 struct nvmet_req *req, struct nvmet_ctrl **ret)
1175 {
1176 struct nvmet_subsys *subsys;
1177 struct nvmet_ctrl *ctrl;
1178 u16 status = 0;
1179
1180 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1181 if (!subsys) {
1182 pr_warn("connect request for invalid subsystem %s!\n",
1183 subsysnqn);
1184 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1185 return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1186 }
1187
1188 mutex_lock(&subsys->lock);
1189 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1190 if (ctrl->cntlid == cntlid) {
1191 if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1192 pr_warn("hostnqn mismatch.\n");
1193 continue;
1194 }
1195 if (!kref_get_unless_zero(&ctrl->ref))
1196 continue;
1197
1198 *ret = ctrl;
1199 goto out;
1200 }
1201 }
1202
1203 pr_warn("could not find controller %d for subsys %s / host %s\n",
1204 cntlid, subsysnqn, hostnqn);
1205 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1206 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1207
1208 out:
1209 mutex_unlock(&subsys->lock);
1210 nvmet_subsys_put(subsys);
1211 return status;
1212 }
1213
nvmet_check_ctrl_status(struct nvmet_req * req,struct nvme_command * cmd)1214 u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
1215 {
1216 if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1217 pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1218 cmd->common.opcode, req->sq->qid);
1219 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1220 }
1221
1222 if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1223 pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1224 cmd->common.opcode, req->sq->qid);
1225 return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
1226 }
1227 return 0;
1228 }
1229
nvmet_host_allowed(struct nvmet_subsys * subsys,const char * hostnqn)1230 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1231 {
1232 struct nvmet_host_link *p;
1233
1234 lockdep_assert_held(&nvmet_config_sem);
1235
1236 if (subsys->allow_any_host)
1237 return true;
1238
1239 if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
1240 return true;
1241
1242 list_for_each_entry(p, &subsys->hosts, entry) {
1243 if (!strcmp(nvmet_host_name(p->host), hostnqn))
1244 return true;
1245 }
1246
1247 return false;
1248 }
1249
1250 /*
1251 * Note: ctrl->subsys->lock should be held when calling this function
1252 */
nvmet_setup_p2p_ns_map(struct nvmet_ctrl * ctrl,struct nvmet_req * req)1253 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1254 struct nvmet_req *req)
1255 {
1256 struct nvmet_ns *ns;
1257 unsigned long idx;
1258
1259 if (!req->p2p_client)
1260 return;
1261
1262 ctrl->p2p_client = get_device(req->p2p_client);
1263
1264 xa_for_each(&ctrl->subsys->namespaces, idx, ns)
1265 nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1266 }
1267
1268 /*
1269 * Note: ctrl->subsys->lock should be held when calling this function
1270 */
nvmet_release_p2p_ns_map(struct nvmet_ctrl * ctrl)1271 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1272 {
1273 struct radix_tree_iter iter;
1274 void __rcu **slot;
1275
1276 radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1277 pci_dev_put(radix_tree_deref_slot(slot));
1278
1279 put_device(ctrl->p2p_client);
1280 }
1281
nvmet_fatal_error_handler(struct work_struct * work)1282 static void nvmet_fatal_error_handler(struct work_struct *work)
1283 {
1284 struct nvmet_ctrl *ctrl =
1285 container_of(work, struct nvmet_ctrl, fatal_err_work);
1286
1287 pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1288 ctrl->ops->delete_ctrl(ctrl);
1289 }
1290
nvmet_alloc_ctrl(const char * subsysnqn,const char * hostnqn,struct nvmet_req * req,u32 kato,struct nvmet_ctrl ** ctrlp)1291 u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
1292 struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
1293 {
1294 struct nvmet_subsys *subsys;
1295 struct nvmet_ctrl *ctrl;
1296 int ret;
1297 u16 status;
1298
1299 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1300 subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1301 if (!subsys) {
1302 pr_warn("connect request for invalid subsystem %s!\n",
1303 subsysnqn);
1304 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1305 goto out;
1306 }
1307
1308 status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
1309 down_read(&nvmet_config_sem);
1310 if (!nvmet_host_allowed(subsys, hostnqn)) {
1311 pr_info("connect by host %s for subsystem %s not allowed\n",
1312 hostnqn, subsysnqn);
1313 req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
1314 up_read(&nvmet_config_sem);
1315 status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
1316 goto out_put_subsystem;
1317 }
1318 up_read(&nvmet_config_sem);
1319
1320 status = NVME_SC_INTERNAL;
1321 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1322 if (!ctrl)
1323 goto out_put_subsystem;
1324 mutex_init(&ctrl->lock);
1325
1326 nvmet_init_cap(ctrl);
1327
1328 ctrl->port = req->port;
1329
1330 INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1331 INIT_LIST_HEAD(&ctrl->async_events);
1332 INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1333 INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1334
1335 memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
1336 memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
1337
1338 kref_init(&ctrl->ref);
1339 ctrl->subsys = subsys;
1340 WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1341
1342 ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1343 sizeof(__le32), GFP_KERNEL);
1344 if (!ctrl->changed_ns_list)
1345 goto out_free_ctrl;
1346
1347 ctrl->cqs = kcalloc(subsys->max_qid + 1,
1348 sizeof(struct nvmet_cq *),
1349 GFP_KERNEL);
1350 if (!ctrl->cqs)
1351 goto out_free_changed_ns_list;
1352
1353 ctrl->sqs = kcalloc(subsys->max_qid + 1,
1354 sizeof(struct nvmet_sq *),
1355 GFP_KERNEL);
1356 if (!ctrl->sqs)
1357 goto out_free_cqs;
1358
1359 if (subsys->cntlid_min > subsys->cntlid_max)
1360 goto out_free_cqs;
1361
1362 ret = ida_simple_get(&cntlid_ida,
1363 subsys->cntlid_min, subsys->cntlid_max,
1364 GFP_KERNEL);
1365 if (ret < 0) {
1366 status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
1367 goto out_free_sqs;
1368 }
1369 ctrl->cntlid = ret;
1370
1371 ctrl->ops = req->ops;
1372
1373 /*
1374 * Discovery controllers may use some arbitrary high value
1375 * in order to cleanup stale discovery sessions
1376 */
1377 if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
1378 kato = NVMET_DISC_KATO_MS;
1379
1380 /* keep-alive timeout in seconds */
1381 ctrl->kato = DIV_ROUND_UP(kato, 1000);
1382
1383 ctrl->err_counter = 0;
1384 spin_lock_init(&ctrl->error_lock);
1385
1386 nvmet_start_keep_alive_timer(ctrl);
1387
1388 mutex_lock(&subsys->lock);
1389 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1390 nvmet_setup_p2p_ns_map(ctrl, req);
1391 mutex_unlock(&subsys->lock);
1392
1393 *ctrlp = ctrl;
1394 return 0;
1395
1396 out_free_sqs:
1397 kfree(ctrl->sqs);
1398 out_free_cqs:
1399 kfree(ctrl->cqs);
1400 out_free_changed_ns_list:
1401 kfree(ctrl->changed_ns_list);
1402 out_free_ctrl:
1403 kfree(ctrl);
1404 out_put_subsystem:
1405 nvmet_subsys_put(subsys);
1406 out:
1407 return status;
1408 }
1409
nvmet_ctrl_free(struct kref * ref)1410 static void nvmet_ctrl_free(struct kref *ref)
1411 {
1412 struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1413 struct nvmet_subsys *subsys = ctrl->subsys;
1414
1415 mutex_lock(&subsys->lock);
1416 nvmet_release_p2p_ns_map(ctrl);
1417 list_del(&ctrl->subsys_entry);
1418 mutex_unlock(&subsys->lock);
1419
1420 nvmet_stop_keep_alive_timer(ctrl);
1421
1422 flush_work(&ctrl->async_event_work);
1423 cancel_work_sync(&ctrl->fatal_err_work);
1424
1425 ida_simple_remove(&cntlid_ida, ctrl->cntlid);
1426
1427 nvmet_async_events_free(ctrl);
1428 kfree(ctrl->sqs);
1429 kfree(ctrl->cqs);
1430 kfree(ctrl->changed_ns_list);
1431 kfree(ctrl);
1432
1433 nvmet_subsys_put(subsys);
1434 }
1435
nvmet_ctrl_put(struct nvmet_ctrl * ctrl)1436 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1437 {
1438 kref_put(&ctrl->ref, nvmet_ctrl_free);
1439 }
1440
nvmet_ctrl_fatal_error(struct nvmet_ctrl * ctrl)1441 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1442 {
1443 mutex_lock(&ctrl->lock);
1444 if (!(ctrl->csts & NVME_CSTS_CFS)) {
1445 ctrl->csts |= NVME_CSTS_CFS;
1446 schedule_work(&ctrl->fatal_err_work);
1447 }
1448 mutex_unlock(&ctrl->lock);
1449 }
1450 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1451
nvmet_find_get_subsys(struct nvmet_port * port,const char * subsysnqn)1452 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1453 const char *subsysnqn)
1454 {
1455 struct nvmet_subsys_link *p;
1456
1457 if (!port)
1458 return NULL;
1459
1460 if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1461 if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1462 return NULL;
1463 return nvmet_disc_subsys;
1464 }
1465
1466 down_read(&nvmet_config_sem);
1467 list_for_each_entry(p, &port->subsystems, entry) {
1468 if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1469 NVMF_NQN_SIZE)) {
1470 if (!kref_get_unless_zero(&p->subsys->ref))
1471 break;
1472 up_read(&nvmet_config_sem);
1473 return p->subsys;
1474 }
1475 }
1476 up_read(&nvmet_config_sem);
1477 return NULL;
1478 }
1479
nvmet_subsys_alloc(const char * subsysnqn,enum nvme_subsys_type type)1480 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1481 enum nvme_subsys_type type)
1482 {
1483 struct nvmet_subsys *subsys;
1484
1485 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1486 if (!subsys)
1487 return ERR_PTR(-ENOMEM);
1488
1489 subsys->ver = NVMET_DEFAULT_VS;
1490 /* generate a random serial number as our controllers are ephemeral: */
1491 get_random_bytes(&subsys->serial, sizeof(subsys->serial));
1492
1493 switch (type) {
1494 case NVME_NQN_NVME:
1495 subsys->max_qid = NVMET_NR_QUEUES;
1496 break;
1497 case NVME_NQN_DISC:
1498 subsys->max_qid = 0;
1499 break;
1500 default:
1501 pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1502 kfree(subsys);
1503 return ERR_PTR(-EINVAL);
1504 }
1505 subsys->type = type;
1506 subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1507 GFP_KERNEL);
1508 if (!subsys->subsysnqn) {
1509 kfree(subsys);
1510 return ERR_PTR(-ENOMEM);
1511 }
1512 subsys->cntlid_min = NVME_CNTLID_MIN;
1513 subsys->cntlid_max = NVME_CNTLID_MAX;
1514 kref_init(&subsys->ref);
1515
1516 mutex_init(&subsys->lock);
1517 xa_init(&subsys->namespaces);
1518 INIT_LIST_HEAD(&subsys->ctrls);
1519 INIT_LIST_HEAD(&subsys->hosts);
1520
1521 return subsys;
1522 }
1523
nvmet_subsys_free(struct kref * ref)1524 static void nvmet_subsys_free(struct kref *ref)
1525 {
1526 struct nvmet_subsys *subsys =
1527 container_of(ref, struct nvmet_subsys, ref);
1528
1529 WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1530
1531 xa_destroy(&subsys->namespaces);
1532 nvmet_passthru_subsys_free(subsys);
1533
1534 kfree(subsys->subsysnqn);
1535 kfree_rcu(subsys->model, rcuhead);
1536 kfree(subsys);
1537 }
1538
nvmet_subsys_del_ctrls(struct nvmet_subsys * subsys)1539 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1540 {
1541 struct nvmet_ctrl *ctrl;
1542
1543 mutex_lock(&subsys->lock);
1544 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1545 ctrl->ops->delete_ctrl(ctrl);
1546 mutex_unlock(&subsys->lock);
1547 }
1548
nvmet_subsys_put(struct nvmet_subsys * subsys)1549 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1550 {
1551 kref_put(&subsys->ref, nvmet_subsys_free);
1552 }
1553
nvmet_init(void)1554 static int __init nvmet_init(void)
1555 {
1556 int error;
1557
1558 nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1559
1560 buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1561 WQ_MEM_RECLAIM, 0);
1562 if (!buffered_io_wq) {
1563 error = -ENOMEM;
1564 goto out;
1565 }
1566
1567 error = nvmet_init_discovery();
1568 if (error)
1569 goto out_free_work_queue;
1570
1571 error = nvmet_init_configfs();
1572 if (error)
1573 goto out_exit_discovery;
1574 return 0;
1575
1576 out_exit_discovery:
1577 nvmet_exit_discovery();
1578 out_free_work_queue:
1579 destroy_workqueue(buffered_io_wq);
1580 out:
1581 return error;
1582 }
1583
nvmet_exit(void)1584 static void __exit nvmet_exit(void)
1585 {
1586 nvmet_exit_configfs();
1587 nvmet_exit_discovery();
1588 ida_destroy(&cntlid_ida);
1589 destroy_workqueue(buffered_io_wq);
1590
1591 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1592 BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1593 }
1594
1595 module_init(nvmet_init);
1596 module_exit(nvmet_exit);
1597
1598 MODULE_LICENSE("GPL v2");
1599