1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /* Copyright 2017-2019 NXP */
3 
4 #include "enetc.h"
5 #include <linux/tcp.h>
6 #include <linux/udp.h>
7 #include <linux/vmalloc.h>
8 
9 /* ENETC overhead: optional extension BD + 1 BD gap */
10 #define ENETC_TXBDS_NEEDED(val)	((val) + 2)
11 /* max # of chained Tx BDs is 15, including head and extension BD */
12 #define ENETC_MAX_SKB_FRAGS	13
13 #define ENETC_TXBDS_MAX_NEEDED	ENETC_TXBDS_NEEDED(ENETC_MAX_SKB_FRAGS + 1)
14 
15 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb,
16 			      int active_offloads);
17 
enetc_xmit(struct sk_buff * skb,struct net_device * ndev)18 netdev_tx_t enetc_xmit(struct sk_buff *skb, struct net_device *ndev)
19 {
20 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
21 	struct enetc_bdr *tx_ring;
22 	int count;
23 
24 	tx_ring = priv->tx_ring[skb->queue_mapping];
25 
26 	if (unlikely(skb_shinfo(skb)->nr_frags > ENETC_MAX_SKB_FRAGS))
27 		if (unlikely(skb_linearize(skb)))
28 			goto drop_packet_err;
29 
30 	count = skb_shinfo(skb)->nr_frags + 1; /* fragments + head */
31 	if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(count)) {
32 		netif_stop_subqueue(ndev, tx_ring->index);
33 		return NETDEV_TX_BUSY;
34 	}
35 
36 	enetc_lock_mdio();
37 	count = enetc_map_tx_buffs(tx_ring, skb, priv->active_offloads);
38 	enetc_unlock_mdio();
39 
40 	if (unlikely(!count))
41 		goto drop_packet_err;
42 
43 	if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_MAX_NEEDED)
44 		netif_stop_subqueue(ndev, tx_ring->index);
45 
46 	return NETDEV_TX_OK;
47 
48 drop_packet_err:
49 	dev_kfree_skb_any(skb);
50 	return NETDEV_TX_OK;
51 }
52 
enetc_tx_csum(struct sk_buff * skb,union enetc_tx_bd * txbd)53 static bool enetc_tx_csum(struct sk_buff *skb, union enetc_tx_bd *txbd)
54 {
55 	int l3_start, l3_hsize;
56 	u16 l3_flags, l4_flags;
57 
58 	if (skb->ip_summed != CHECKSUM_PARTIAL)
59 		return false;
60 
61 	switch (skb->csum_offset) {
62 	case offsetof(struct tcphdr, check):
63 		l4_flags = ENETC_TXBD_L4_TCP;
64 		break;
65 	case offsetof(struct udphdr, check):
66 		l4_flags = ENETC_TXBD_L4_UDP;
67 		break;
68 	default:
69 		skb_checksum_help(skb);
70 		return false;
71 	}
72 
73 	l3_start = skb_network_offset(skb);
74 	l3_hsize = skb_network_header_len(skb);
75 
76 	l3_flags = 0;
77 	if (skb->protocol == htons(ETH_P_IPV6))
78 		l3_flags = ENETC_TXBD_L3_IPV6;
79 
80 	/* write BD fields */
81 	txbd->l3_csoff = enetc_txbd_l3_csoff(l3_start, l3_hsize, l3_flags);
82 	txbd->l4_csoff = l4_flags;
83 
84 	return true;
85 }
86 
enetc_unmap_tx_buff(struct enetc_bdr * tx_ring,struct enetc_tx_swbd * tx_swbd)87 static void enetc_unmap_tx_buff(struct enetc_bdr *tx_ring,
88 				struct enetc_tx_swbd *tx_swbd)
89 {
90 	if (tx_swbd->is_dma_page)
91 		dma_unmap_page(tx_ring->dev, tx_swbd->dma,
92 			       tx_swbd->len, DMA_TO_DEVICE);
93 	else
94 		dma_unmap_single(tx_ring->dev, tx_swbd->dma,
95 				 tx_swbd->len, DMA_TO_DEVICE);
96 	tx_swbd->dma = 0;
97 }
98 
enetc_free_tx_skb(struct enetc_bdr * tx_ring,struct enetc_tx_swbd * tx_swbd)99 static void enetc_free_tx_skb(struct enetc_bdr *tx_ring,
100 			      struct enetc_tx_swbd *tx_swbd)
101 {
102 	if (tx_swbd->dma)
103 		enetc_unmap_tx_buff(tx_ring, tx_swbd);
104 
105 	if (tx_swbd->skb) {
106 		dev_kfree_skb_any(tx_swbd->skb);
107 		tx_swbd->skb = NULL;
108 	}
109 }
110 
enetc_map_tx_buffs(struct enetc_bdr * tx_ring,struct sk_buff * skb,int active_offloads)111 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb,
112 			      int active_offloads)
113 {
114 	struct enetc_tx_swbd *tx_swbd;
115 	skb_frag_t *frag;
116 	int len = skb_headlen(skb);
117 	union enetc_tx_bd temp_bd;
118 	union enetc_tx_bd *txbd;
119 	bool do_vlan, do_tstamp;
120 	int i, count = 0;
121 	unsigned int f;
122 	dma_addr_t dma;
123 	u8 flags = 0;
124 
125 	i = tx_ring->next_to_use;
126 	txbd = ENETC_TXBD(*tx_ring, i);
127 	prefetchw(txbd);
128 
129 	dma = dma_map_single(tx_ring->dev, skb->data, len, DMA_TO_DEVICE);
130 	if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
131 		goto dma_err;
132 
133 	temp_bd.addr = cpu_to_le64(dma);
134 	temp_bd.buf_len = cpu_to_le16(len);
135 	temp_bd.lstatus = 0;
136 
137 	tx_swbd = &tx_ring->tx_swbd[i];
138 	tx_swbd->dma = dma;
139 	tx_swbd->len = len;
140 	tx_swbd->is_dma_page = 0;
141 	count++;
142 
143 	do_vlan = skb_vlan_tag_present(skb);
144 	do_tstamp = (active_offloads & ENETC_F_TX_TSTAMP) &&
145 		    (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP);
146 	tx_swbd->do_tstamp = do_tstamp;
147 	tx_swbd->check_wb = tx_swbd->do_tstamp;
148 
149 	if (do_vlan || do_tstamp)
150 		flags |= ENETC_TXBD_FLAGS_EX;
151 
152 	if (enetc_tx_csum(skb, &temp_bd))
153 		flags |= ENETC_TXBD_FLAGS_CSUM | ENETC_TXBD_FLAGS_L4CS;
154 	else if (tx_ring->tsd_enable)
155 		flags |= ENETC_TXBD_FLAGS_TSE | ENETC_TXBD_FLAGS_TXSTART;
156 
157 	/* first BD needs frm_len and offload flags set */
158 	temp_bd.frm_len = cpu_to_le16(skb->len);
159 	temp_bd.flags = flags;
160 
161 	if (flags & ENETC_TXBD_FLAGS_TSE) {
162 		u32 temp;
163 
164 		temp = (skb->skb_mstamp_ns >> 5 & ENETC_TXBD_TXSTART_MASK)
165 			| (flags << ENETC_TXBD_FLAGS_OFFSET);
166 		temp_bd.txstart = cpu_to_le32(temp);
167 	}
168 
169 	if (flags & ENETC_TXBD_FLAGS_EX) {
170 		u8 e_flags = 0;
171 		*txbd = temp_bd;
172 		enetc_clear_tx_bd(&temp_bd);
173 
174 		/* add extension BD for VLAN and/or timestamping */
175 		flags = 0;
176 		tx_swbd++;
177 		txbd++;
178 		i++;
179 		if (unlikely(i == tx_ring->bd_count)) {
180 			i = 0;
181 			tx_swbd = tx_ring->tx_swbd;
182 			txbd = ENETC_TXBD(*tx_ring, 0);
183 		}
184 		prefetchw(txbd);
185 
186 		if (do_vlan) {
187 			temp_bd.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
188 			temp_bd.ext.tpid = 0; /* < C-TAG */
189 			e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
190 		}
191 
192 		if (do_tstamp) {
193 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
194 			e_flags |= ENETC_TXBD_E_FLAGS_TWO_STEP_PTP;
195 		}
196 
197 		temp_bd.ext.e_flags = e_flags;
198 		count++;
199 	}
200 
201 	frag = &skb_shinfo(skb)->frags[0];
202 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++, frag++) {
203 		len = skb_frag_size(frag);
204 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len,
205 				       DMA_TO_DEVICE);
206 		if (dma_mapping_error(tx_ring->dev, dma))
207 			goto dma_err;
208 
209 		*txbd = temp_bd;
210 		enetc_clear_tx_bd(&temp_bd);
211 
212 		flags = 0;
213 		tx_swbd++;
214 		txbd++;
215 		i++;
216 		if (unlikely(i == tx_ring->bd_count)) {
217 			i = 0;
218 			tx_swbd = tx_ring->tx_swbd;
219 			txbd = ENETC_TXBD(*tx_ring, 0);
220 		}
221 		prefetchw(txbd);
222 
223 		temp_bd.addr = cpu_to_le64(dma);
224 		temp_bd.buf_len = cpu_to_le16(len);
225 
226 		tx_swbd->dma = dma;
227 		tx_swbd->len = len;
228 		tx_swbd->is_dma_page = 1;
229 		count++;
230 	}
231 
232 	/* last BD needs 'F' bit set */
233 	flags |= ENETC_TXBD_FLAGS_F;
234 	temp_bd.flags = flags;
235 	*txbd = temp_bd;
236 
237 	tx_ring->tx_swbd[i].skb = skb;
238 
239 	enetc_bdr_idx_inc(tx_ring, &i);
240 	tx_ring->next_to_use = i;
241 
242 	skb_tx_timestamp(skb);
243 
244 	/* let H/W know BD ring has been updated */
245 	enetc_wr_reg_hot(tx_ring->tpir, i); /* includes wmb() */
246 
247 	return count;
248 
249 dma_err:
250 	dev_err(tx_ring->dev, "DMA map error");
251 
252 	do {
253 		tx_swbd = &tx_ring->tx_swbd[i];
254 		enetc_free_tx_skb(tx_ring, tx_swbd);
255 		if (i == 0)
256 			i = tx_ring->bd_count;
257 		i--;
258 	} while (count--);
259 
260 	return 0;
261 }
262 
enetc_msix(int irq,void * data)263 static irqreturn_t enetc_msix(int irq, void *data)
264 {
265 	struct enetc_int_vector	*v = data;
266 	int i;
267 
268 	enetc_lock_mdio();
269 
270 	/* disable interrupts */
271 	enetc_wr_reg_hot(v->rbier, 0);
272 	enetc_wr_reg_hot(v->ricr1, v->rx_ictt);
273 
274 	for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
275 		enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i), 0);
276 
277 	enetc_unlock_mdio();
278 
279 	napi_schedule(&v->napi);
280 
281 	return IRQ_HANDLED;
282 }
283 
284 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget);
285 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
286 			       struct napi_struct *napi, int work_limit);
287 
enetc_rx_dim_work(struct work_struct * w)288 static void enetc_rx_dim_work(struct work_struct *w)
289 {
290 	struct dim *dim = container_of(w, struct dim, work);
291 	struct dim_cq_moder moder =
292 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
293 	struct enetc_int_vector	*v =
294 		container_of(dim, struct enetc_int_vector, rx_dim);
295 
296 	v->rx_ictt = enetc_usecs_to_cycles(moder.usec);
297 	dim->state = DIM_START_MEASURE;
298 }
299 
enetc_rx_net_dim(struct enetc_int_vector * v)300 static void enetc_rx_net_dim(struct enetc_int_vector *v)
301 {
302 	struct dim_sample dim_sample;
303 
304 	v->comp_cnt++;
305 
306 	if (!v->rx_napi_work)
307 		return;
308 
309 	dim_update_sample(v->comp_cnt,
310 			  v->rx_ring.stats.packets,
311 			  v->rx_ring.stats.bytes,
312 			  &dim_sample);
313 	net_dim(&v->rx_dim, dim_sample);
314 }
315 
enetc_poll(struct napi_struct * napi,int budget)316 static int enetc_poll(struct napi_struct *napi, int budget)
317 {
318 	struct enetc_int_vector
319 		*v = container_of(napi, struct enetc_int_vector, napi);
320 	bool complete = true;
321 	int work_done;
322 	int i;
323 
324 	for (i = 0; i < v->count_tx_rings; i++)
325 		if (!enetc_clean_tx_ring(&v->tx_ring[i], budget))
326 			complete = false;
327 
328 	work_done = enetc_clean_rx_ring(&v->rx_ring, napi, budget);
329 	if (work_done == budget)
330 		complete = false;
331 	if (work_done)
332 		v->rx_napi_work = true;
333 
334 	if (!complete)
335 		return budget;
336 
337 	napi_complete_done(napi, work_done);
338 
339 	if (likely(v->rx_dim_en))
340 		enetc_rx_net_dim(v);
341 
342 	v->rx_napi_work = false;
343 
344 	enetc_lock_mdio();
345 
346 	/* enable interrupts */
347 	enetc_wr_reg_hot(v->rbier, ENETC_RBIER_RXTIE);
348 
349 	for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
350 		enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i),
351 				 ENETC_TBIER_TXTIE);
352 
353 	enetc_unlock_mdio();
354 
355 	return work_done;
356 }
357 
enetc_bd_ready_count(struct enetc_bdr * tx_ring,int ci)358 static int enetc_bd_ready_count(struct enetc_bdr *tx_ring, int ci)
359 {
360 	int pi = enetc_rd_reg_hot(tx_ring->tcir) & ENETC_TBCIR_IDX_MASK;
361 
362 	return pi >= ci ? pi - ci : tx_ring->bd_count - ci + pi;
363 }
364 
enetc_get_tx_tstamp(struct enetc_hw * hw,union enetc_tx_bd * txbd,u64 * tstamp)365 static void enetc_get_tx_tstamp(struct enetc_hw *hw, union enetc_tx_bd *txbd,
366 				u64 *tstamp)
367 {
368 	u32 lo, hi, tstamp_lo;
369 
370 	lo = enetc_rd(hw, ENETC_SICTR0);
371 	hi = enetc_rd(hw, ENETC_SICTR1);
372 	tstamp_lo = le32_to_cpu(txbd->wb.tstamp);
373 	if (lo <= tstamp_lo)
374 		hi -= 1;
375 	*tstamp = (u64)hi << 32 | tstamp_lo;
376 }
377 
enetc_tstamp_tx(struct sk_buff * skb,u64 tstamp)378 static void enetc_tstamp_tx(struct sk_buff *skb, u64 tstamp)
379 {
380 	struct skb_shared_hwtstamps shhwtstamps;
381 
382 	if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
383 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
384 		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
385 		skb_tstamp_tx(skb, &shhwtstamps);
386 	}
387 }
388 
enetc_clean_tx_ring(struct enetc_bdr * tx_ring,int napi_budget)389 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget)
390 {
391 	struct net_device *ndev = tx_ring->ndev;
392 	int tx_frm_cnt = 0, tx_byte_cnt = 0;
393 	struct enetc_tx_swbd *tx_swbd;
394 	int i, bds_to_clean;
395 	bool do_tstamp;
396 	u64 tstamp = 0;
397 
398 	i = tx_ring->next_to_clean;
399 	tx_swbd = &tx_ring->tx_swbd[i];
400 
401 	enetc_lock_mdio();
402 	bds_to_clean = enetc_bd_ready_count(tx_ring, i);
403 	enetc_unlock_mdio();
404 
405 	do_tstamp = false;
406 
407 	while (bds_to_clean && tx_frm_cnt < ENETC_DEFAULT_TX_WORK) {
408 		bool is_eof = !!tx_swbd->skb;
409 
410 		if (unlikely(tx_swbd->check_wb)) {
411 			struct enetc_ndev_priv *priv = netdev_priv(ndev);
412 			union enetc_tx_bd *txbd;
413 
414 			txbd = ENETC_TXBD(*tx_ring, i);
415 
416 			if (txbd->flags & ENETC_TXBD_FLAGS_W &&
417 			    tx_swbd->do_tstamp) {
418 				enetc_get_tx_tstamp(&priv->si->hw, txbd,
419 						    &tstamp);
420 				do_tstamp = true;
421 			}
422 		}
423 
424 		if (likely(tx_swbd->dma))
425 			enetc_unmap_tx_buff(tx_ring, tx_swbd);
426 
427 		if (is_eof) {
428 			if (unlikely(do_tstamp)) {
429 				enetc_tstamp_tx(tx_swbd->skb, tstamp);
430 				do_tstamp = false;
431 			}
432 			napi_consume_skb(tx_swbd->skb, napi_budget);
433 			tx_swbd->skb = NULL;
434 		}
435 
436 		tx_byte_cnt += tx_swbd->len;
437 
438 		bds_to_clean--;
439 		tx_swbd++;
440 		i++;
441 		if (unlikely(i == tx_ring->bd_count)) {
442 			i = 0;
443 			tx_swbd = tx_ring->tx_swbd;
444 		}
445 
446 		enetc_lock_mdio();
447 
448 		/* BD iteration loop end */
449 		if (is_eof) {
450 			tx_frm_cnt++;
451 			/* re-arm interrupt source */
452 			enetc_wr_reg_hot(tx_ring->idr, BIT(tx_ring->index) |
453 					 BIT(16 + tx_ring->index));
454 		}
455 
456 		if (unlikely(!bds_to_clean))
457 			bds_to_clean = enetc_bd_ready_count(tx_ring, i);
458 
459 		enetc_unlock_mdio();
460 	}
461 
462 	tx_ring->next_to_clean = i;
463 	tx_ring->stats.packets += tx_frm_cnt;
464 	tx_ring->stats.bytes += tx_byte_cnt;
465 
466 	if (unlikely(tx_frm_cnt && netif_carrier_ok(ndev) &&
467 		     __netif_subqueue_stopped(ndev, tx_ring->index) &&
468 		     (enetc_bd_unused(tx_ring) >= ENETC_TXBDS_MAX_NEEDED))) {
469 		netif_wake_subqueue(ndev, tx_ring->index);
470 	}
471 
472 	return tx_frm_cnt != ENETC_DEFAULT_TX_WORK;
473 }
474 
enetc_new_page(struct enetc_bdr * rx_ring,struct enetc_rx_swbd * rx_swbd)475 static bool enetc_new_page(struct enetc_bdr *rx_ring,
476 			   struct enetc_rx_swbd *rx_swbd)
477 {
478 	struct page *page;
479 	dma_addr_t addr;
480 
481 	page = dev_alloc_page();
482 	if (unlikely(!page))
483 		return false;
484 
485 	addr = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
486 	if (unlikely(dma_mapping_error(rx_ring->dev, addr))) {
487 		__free_page(page);
488 
489 		return false;
490 	}
491 
492 	rx_swbd->dma = addr;
493 	rx_swbd->page = page;
494 	rx_swbd->page_offset = ENETC_RXB_PAD;
495 
496 	return true;
497 }
498 
enetc_refill_rx_ring(struct enetc_bdr * rx_ring,const int buff_cnt)499 static int enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt)
500 {
501 	struct enetc_rx_swbd *rx_swbd;
502 	union enetc_rx_bd *rxbd;
503 	int i, j;
504 
505 	i = rx_ring->next_to_use;
506 	rx_swbd = &rx_ring->rx_swbd[i];
507 	rxbd = enetc_rxbd(rx_ring, i);
508 
509 	for (j = 0; j < buff_cnt; j++) {
510 		/* try reuse page */
511 		if (unlikely(!rx_swbd->page)) {
512 			if (unlikely(!enetc_new_page(rx_ring, rx_swbd))) {
513 				rx_ring->stats.rx_alloc_errs++;
514 				break;
515 			}
516 		}
517 
518 		/* update RxBD */
519 		rxbd->w.addr = cpu_to_le64(rx_swbd->dma +
520 					   rx_swbd->page_offset);
521 		/* clear 'R" as well */
522 		rxbd->r.lstatus = 0;
523 
524 		rxbd = enetc_rxbd_next(rx_ring, rxbd, i);
525 		rx_swbd++;
526 		i++;
527 		if (unlikely(i == rx_ring->bd_count)) {
528 			i = 0;
529 			rx_swbd = rx_ring->rx_swbd;
530 		}
531 	}
532 
533 	if (likely(j)) {
534 		rx_ring->next_to_alloc = i; /* keep track from page reuse */
535 		rx_ring->next_to_use = i;
536 	}
537 
538 	return j;
539 }
540 
541 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
enetc_get_rx_tstamp(struct net_device * ndev,union enetc_rx_bd * rxbd,struct sk_buff * skb)542 static void enetc_get_rx_tstamp(struct net_device *ndev,
543 				union enetc_rx_bd *rxbd,
544 				struct sk_buff *skb)
545 {
546 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
547 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
548 	struct enetc_hw *hw = &priv->si->hw;
549 	u32 lo, hi, tstamp_lo;
550 	u64 tstamp;
551 
552 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TSTMP) {
553 		lo = enetc_rd_reg_hot(hw->reg + ENETC_SICTR0);
554 		hi = enetc_rd_reg_hot(hw->reg + ENETC_SICTR1);
555 		rxbd = enetc_rxbd_ext(rxbd);
556 		tstamp_lo = le32_to_cpu(rxbd->ext.tstamp);
557 		if (lo <= tstamp_lo)
558 			hi -= 1;
559 
560 		tstamp = (u64)hi << 32 | tstamp_lo;
561 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
562 		shhwtstamps->hwtstamp = ns_to_ktime(tstamp);
563 	}
564 }
565 #endif
566 
enetc_get_offloads(struct enetc_bdr * rx_ring,union enetc_rx_bd * rxbd,struct sk_buff * skb)567 static void enetc_get_offloads(struct enetc_bdr *rx_ring,
568 			       union enetc_rx_bd *rxbd, struct sk_buff *skb)
569 {
570 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
571 	struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
572 #endif
573 	/* TODO: hashing */
574 	if (rx_ring->ndev->features & NETIF_F_RXCSUM) {
575 		u16 inet_csum = le16_to_cpu(rxbd->r.inet_csum);
576 
577 		skb->csum = csum_unfold((__force __sum16)~htons(inet_csum));
578 		skb->ip_summed = CHECKSUM_COMPLETE;
579 	}
580 
581 	/* copy VLAN to skb, if one is extracted, for now we assume it's a
582 	 * standard TPID, but HW also supports custom values
583 	 */
584 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_VLAN)
585 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
586 				       le16_to_cpu(rxbd->r.vlan_opt));
587 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
588 	if (priv->active_offloads & ENETC_F_RX_TSTAMP)
589 		enetc_get_rx_tstamp(rx_ring->ndev, rxbd, skb);
590 #endif
591 }
592 
enetc_process_skb(struct enetc_bdr * rx_ring,struct sk_buff * skb)593 static void enetc_process_skb(struct enetc_bdr *rx_ring,
594 			      struct sk_buff *skb)
595 {
596 	skb_record_rx_queue(skb, rx_ring->index);
597 	skb->protocol = eth_type_trans(skb, rx_ring->ndev);
598 }
599 
enetc_page_reusable(struct page * page)600 static bool enetc_page_reusable(struct page *page)
601 {
602 	return (!page_is_pfmemalloc(page) && page_ref_count(page) == 1);
603 }
604 
enetc_reuse_page(struct enetc_bdr * rx_ring,struct enetc_rx_swbd * old)605 static void enetc_reuse_page(struct enetc_bdr *rx_ring,
606 			     struct enetc_rx_swbd *old)
607 {
608 	struct enetc_rx_swbd *new;
609 
610 	new = &rx_ring->rx_swbd[rx_ring->next_to_alloc];
611 
612 	/* next buf that may reuse a page */
613 	enetc_bdr_idx_inc(rx_ring, &rx_ring->next_to_alloc);
614 
615 	/* copy page reference */
616 	*new = *old;
617 }
618 
enetc_get_rx_buff(struct enetc_bdr * rx_ring,int i,u16 size)619 static struct enetc_rx_swbd *enetc_get_rx_buff(struct enetc_bdr *rx_ring,
620 					       int i, u16 size)
621 {
622 	struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
623 
624 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_swbd->dma,
625 				      rx_swbd->page_offset,
626 				      size, DMA_FROM_DEVICE);
627 	return rx_swbd;
628 }
629 
enetc_put_rx_buff(struct enetc_bdr * rx_ring,struct enetc_rx_swbd * rx_swbd)630 static void enetc_put_rx_buff(struct enetc_bdr *rx_ring,
631 			      struct enetc_rx_swbd *rx_swbd)
632 {
633 	if (likely(enetc_page_reusable(rx_swbd->page))) {
634 		rx_swbd->page_offset ^= ENETC_RXB_TRUESIZE;
635 		page_ref_inc(rx_swbd->page);
636 
637 		enetc_reuse_page(rx_ring, rx_swbd);
638 
639 		/* sync for use by the device */
640 		dma_sync_single_range_for_device(rx_ring->dev, rx_swbd->dma,
641 						 rx_swbd->page_offset,
642 						 ENETC_RXB_DMA_SIZE,
643 						 DMA_FROM_DEVICE);
644 	} else {
645 		dma_unmap_page(rx_ring->dev, rx_swbd->dma,
646 			       PAGE_SIZE, DMA_FROM_DEVICE);
647 	}
648 
649 	rx_swbd->page = NULL;
650 }
651 
enetc_map_rx_buff_to_skb(struct enetc_bdr * rx_ring,int i,u16 size)652 static struct sk_buff *enetc_map_rx_buff_to_skb(struct enetc_bdr *rx_ring,
653 						int i, u16 size)
654 {
655 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
656 	struct sk_buff *skb;
657 	void *ba;
658 
659 	ba = page_address(rx_swbd->page) + rx_swbd->page_offset;
660 	skb = build_skb(ba - ENETC_RXB_PAD, ENETC_RXB_TRUESIZE);
661 	if (unlikely(!skb)) {
662 		rx_ring->stats.rx_alloc_errs++;
663 		return NULL;
664 	}
665 
666 	skb_reserve(skb, ENETC_RXB_PAD);
667 	__skb_put(skb, size);
668 
669 	enetc_put_rx_buff(rx_ring, rx_swbd);
670 
671 	return skb;
672 }
673 
enetc_add_rx_buff_to_skb(struct enetc_bdr * rx_ring,int i,u16 size,struct sk_buff * skb)674 static void enetc_add_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i,
675 				     u16 size, struct sk_buff *skb)
676 {
677 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
678 
679 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_swbd->page,
680 			rx_swbd->page_offset, size, ENETC_RXB_TRUESIZE);
681 
682 	enetc_put_rx_buff(rx_ring, rx_swbd);
683 }
684 
685 #define ENETC_RXBD_BUNDLE 16 /* # of BDs to update at once */
686 
enetc_clean_rx_ring(struct enetc_bdr * rx_ring,struct napi_struct * napi,int work_limit)687 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
688 			       struct napi_struct *napi, int work_limit)
689 {
690 	int rx_frm_cnt = 0, rx_byte_cnt = 0;
691 	int cleaned_cnt, i;
692 
693 	cleaned_cnt = enetc_bd_unused(rx_ring);
694 	/* next descriptor to process */
695 	i = rx_ring->next_to_clean;
696 
697 	while (likely(rx_frm_cnt < work_limit)) {
698 		union enetc_rx_bd *rxbd;
699 		struct sk_buff *skb;
700 		u32 bd_status;
701 		u16 size;
702 
703 		enetc_lock_mdio();
704 
705 		if (cleaned_cnt >= ENETC_RXBD_BUNDLE) {
706 			int count = enetc_refill_rx_ring(rx_ring, cleaned_cnt);
707 
708 			/* update ENETC's consumer index */
709 			enetc_wr_reg_hot(rx_ring->rcir, rx_ring->next_to_use);
710 			cleaned_cnt -= count;
711 		}
712 
713 		rxbd = enetc_rxbd(rx_ring, i);
714 		bd_status = le32_to_cpu(rxbd->r.lstatus);
715 		if (!bd_status) {
716 			enetc_unlock_mdio();
717 			break;
718 		}
719 
720 		enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index));
721 		dma_rmb(); /* for reading other rxbd fields */
722 		size = le16_to_cpu(rxbd->r.buf_len);
723 		skb = enetc_map_rx_buff_to_skb(rx_ring, i, size);
724 		if (!skb) {
725 			enetc_unlock_mdio();
726 			break;
727 		}
728 
729 		enetc_get_offloads(rx_ring, rxbd, skb);
730 
731 		cleaned_cnt++;
732 
733 		rxbd = enetc_rxbd_next(rx_ring, rxbd, i);
734 		if (unlikely(++i == rx_ring->bd_count))
735 			i = 0;
736 
737 		if (unlikely(bd_status &
738 			     ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK))) {
739 			enetc_unlock_mdio();
740 			dev_kfree_skb(skb);
741 			while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
742 				dma_rmb();
743 				bd_status = le32_to_cpu(rxbd->r.lstatus);
744 
745 				rxbd = enetc_rxbd_next(rx_ring, rxbd, i);
746 				if (unlikely(++i == rx_ring->bd_count))
747 					i = 0;
748 			}
749 
750 			rx_ring->ndev->stats.rx_dropped++;
751 			rx_ring->ndev->stats.rx_errors++;
752 
753 			break;
754 		}
755 
756 		/* not last BD in frame? */
757 		while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
758 			bd_status = le32_to_cpu(rxbd->r.lstatus);
759 			size = ENETC_RXB_DMA_SIZE;
760 
761 			if (bd_status & ENETC_RXBD_LSTATUS_F) {
762 				dma_rmb();
763 				size = le16_to_cpu(rxbd->r.buf_len);
764 			}
765 
766 			enetc_add_rx_buff_to_skb(rx_ring, i, size, skb);
767 
768 			cleaned_cnt++;
769 
770 			rxbd = enetc_rxbd_next(rx_ring, rxbd, i);
771 			if (unlikely(++i == rx_ring->bd_count))
772 				i = 0;
773 		}
774 
775 		rx_byte_cnt += skb->len;
776 
777 		enetc_process_skb(rx_ring, skb);
778 
779 		enetc_unlock_mdio();
780 
781 		napi_gro_receive(napi, skb);
782 
783 		rx_frm_cnt++;
784 	}
785 
786 	rx_ring->next_to_clean = i;
787 
788 	rx_ring->stats.packets += rx_frm_cnt;
789 	rx_ring->stats.bytes += rx_byte_cnt;
790 
791 	return rx_frm_cnt;
792 }
793 
794 /* Probing and Init */
795 #define ENETC_MAX_RFS_SIZE 64
enetc_get_si_caps(struct enetc_si * si)796 void enetc_get_si_caps(struct enetc_si *si)
797 {
798 	struct enetc_hw *hw = &si->hw;
799 	u32 val;
800 
801 	/* find out how many of various resources we have to work with */
802 	val = enetc_rd(hw, ENETC_SICAPR0);
803 	si->num_rx_rings = (val >> 16) & 0xff;
804 	si->num_tx_rings = val & 0xff;
805 
806 	val = enetc_rd(hw, ENETC_SIRFSCAPR);
807 	si->num_fs_entries = ENETC_SIRFSCAPR_GET_NUM_RFS(val);
808 	si->num_fs_entries = min(si->num_fs_entries, ENETC_MAX_RFS_SIZE);
809 
810 	si->num_rss = 0;
811 	val = enetc_rd(hw, ENETC_SIPCAPR0);
812 	if (val & ENETC_SIPCAPR0_RSS) {
813 		u32 rss;
814 
815 		rss = enetc_rd(hw, ENETC_SIRSSCAPR);
816 		si->num_rss = ENETC_SIRSSCAPR_GET_NUM_RSS(rss);
817 	}
818 
819 	if (val & ENETC_SIPCAPR0_QBV)
820 		si->hw_features |= ENETC_SI_F_QBV;
821 
822 	if (val & ENETC_SIPCAPR0_PSFP)
823 		si->hw_features |= ENETC_SI_F_PSFP;
824 }
825 
enetc_dma_alloc_bdr(struct enetc_bdr * r,size_t bd_size)826 static int enetc_dma_alloc_bdr(struct enetc_bdr *r, size_t bd_size)
827 {
828 	r->bd_base = dma_alloc_coherent(r->dev, r->bd_count * bd_size,
829 					&r->bd_dma_base, GFP_KERNEL);
830 	if (!r->bd_base)
831 		return -ENOMEM;
832 
833 	/* h/w requires 128B alignment */
834 	if (!IS_ALIGNED(r->bd_dma_base, 128)) {
835 		dma_free_coherent(r->dev, r->bd_count * bd_size, r->bd_base,
836 				  r->bd_dma_base);
837 		return -EINVAL;
838 	}
839 
840 	return 0;
841 }
842 
enetc_alloc_txbdr(struct enetc_bdr * txr)843 static int enetc_alloc_txbdr(struct enetc_bdr *txr)
844 {
845 	int err;
846 
847 	txr->tx_swbd = vzalloc(txr->bd_count * sizeof(struct enetc_tx_swbd));
848 	if (!txr->tx_swbd)
849 		return -ENOMEM;
850 
851 	err = enetc_dma_alloc_bdr(txr, sizeof(union enetc_tx_bd));
852 	if (err) {
853 		vfree(txr->tx_swbd);
854 		return err;
855 	}
856 
857 	txr->next_to_clean = 0;
858 	txr->next_to_use = 0;
859 
860 	return 0;
861 }
862 
enetc_free_txbdr(struct enetc_bdr * txr)863 static void enetc_free_txbdr(struct enetc_bdr *txr)
864 {
865 	int size, i;
866 
867 	for (i = 0; i < txr->bd_count; i++)
868 		enetc_free_tx_skb(txr, &txr->tx_swbd[i]);
869 
870 	size = txr->bd_count * sizeof(union enetc_tx_bd);
871 
872 	dma_free_coherent(txr->dev, size, txr->bd_base, txr->bd_dma_base);
873 	txr->bd_base = NULL;
874 
875 	vfree(txr->tx_swbd);
876 	txr->tx_swbd = NULL;
877 }
878 
enetc_alloc_tx_resources(struct enetc_ndev_priv * priv)879 static int enetc_alloc_tx_resources(struct enetc_ndev_priv *priv)
880 {
881 	int i, err;
882 
883 	for (i = 0; i < priv->num_tx_rings; i++) {
884 		err = enetc_alloc_txbdr(priv->tx_ring[i]);
885 
886 		if (err)
887 			goto fail;
888 	}
889 
890 	return 0;
891 
892 fail:
893 	while (i-- > 0)
894 		enetc_free_txbdr(priv->tx_ring[i]);
895 
896 	return err;
897 }
898 
enetc_free_tx_resources(struct enetc_ndev_priv * priv)899 static void enetc_free_tx_resources(struct enetc_ndev_priv *priv)
900 {
901 	int i;
902 
903 	for (i = 0; i < priv->num_tx_rings; i++)
904 		enetc_free_txbdr(priv->tx_ring[i]);
905 }
906 
enetc_alloc_rxbdr(struct enetc_bdr * rxr,bool extended)907 static int enetc_alloc_rxbdr(struct enetc_bdr *rxr, bool extended)
908 {
909 	size_t size = sizeof(union enetc_rx_bd);
910 	int err;
911 
912 	rxr->rx_swbd = vzalloc(rxr->bd_count * sizeof(struct enetc_rx_swbd));
913 	if (!rxr->rx_swbd)
914 		return -ENOMEM;
915 
916 	if (extended)
917 		size *= 2;
918 
919 	err = enetc_dma_alloc_bdr(rxr, size);
920 	if (err) {
921 		vfree(rxr->rx_swbd);
922 		return err;
923 	}
924 
925 	rxr->next_to_clean = 0;
926 	rxr->next_to_use = 0;
927 	rxr->next_to_alloc = 0;
928 	rxr->ext_en = extended;
929 
930 	return 0;
931 }
932 
enetc_free_rxbdr(struct enetc_bdr * rxr)933 static void enetc_free_rxbdr(struct enetc_bdr *rxr)
934 {
935 	int size;
936 
937 	size = rxr->bd_count * sizeof(union enetc_rx_bd);
938 
939 	dma_free_coherent(rxr->dev, size, rxr->bd_base, rxr->bd_dma_base);
940 	rxr->bd_base = NULL;
941 
942 	vfree(rxr->rx_swbd);
943 	rxr->rx_swbd = NULL;
944 }
945 
enetc_alloc_rx_resources(struct enetc_ndev_priv * priv)946 static int enetc_alloc_rx_resources(struct enetc_ndev_priv *priv)
947 {
948 	bool extended = !!(priv->active_offloads & ENETC_F_RX_TSTAMP);
949 	int i, err;
950 
951 	for (i = 0; i < priv->num_rx_rings; i++) {
952 		err = enetc_alloc_rxbdr(priv->rx_ring[i], extended);
953 
954 		if (err)
955 			goto fail;
956 	}
957 
958 	return 0;
959 
960 fail:
961 	while (i-- > 0)
962 		enetc_free_rxbdr(priv->rx_ring[i]);
963 
964 	return err;
965 }
966 
enetc_free_rx_resources(struct enetc_ndev_priv * priv)967 static void enetc_free_rx_resources(struct enetc_ndev_priv *priv)
968 {
969 	int i;
970 
971 	for (i = 0; i < priv->num_rx_rings; i++)
972 		enetc_free_rxbdr(priv->rx_ring[i]);
973 }
974 
enetc_free_tx_ring(struct enetc_bdr * tx_ring)975 static void enetc_free_tx_ring(struct enetc_bdr *tx_ring)
976 {
977 	int i;
978 
979 	if (!tx_ring->tx_swbd)
980 		return;
981 
982 	for (i = 0; i < tx_ring->bd_count; i++) {
983 		struct enetc_tx_swbd *tx_swbd = &tx_ring->tx_swbd[i];
984 
985 		enetc_free_tx_skb(tx_ring, tx_swbd);
986 	}
987 
988 	tx_ring->next_to_clean = 0;
989 	tx_ring->next_to_use = 0;
990 }
991 
enetc_free_rx_ring(struct enetc_bdr * rx_ring)992 static void enetc_free_rx_ring(struct enetc_bdr *rx_ring)
993 {
994 	int i;
995 
996 	if (!rx_ring->rx_swbd)
997 		return;
998 
999 	for (i = 0; i < rx_ring->bd_count; i++) {
1000 		struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
1001 
1002 		if (!rx_swbd->page)
1003 			continue;
1004 
1005 		dma_unmap_page(rx_ring->dev, rx_swbd->dma,
1006 			       PAGE_SIZE, DMA_FROM_DEVICE);
1007 		__free_page(rx_swbd->page);
1008 		rx_swbd->page = NULL;
1009 	}
1010 
1011 	rx_ring->next_to_clean = 0;
1012 	rx_ring->next_to_use = 0;
1013 	rx_ring->next_to_alloc = 0;
1014 }
1015 
enetc_free_rxtx_rings(struct enetc_ndev_priv * priv)1016 static void enetc_free_rxtx_rings(struct enetc_ndev_priv *priv)
1017 {
1018 	int i;
1019 
1020 	for (i = 0; i < priv->num_rx_rings; i++)
1021 		enetc_free_rx_ring(priv->rx_ring[i]);
1022 
1023 	for (i = 0; i < priv->num_tx_rings; i++)
1024 		enetc_free_tx_ring(priv->tx_ring[i]);
1025 }
1026 
enetc_alloc_cbdr(struct device * dev,struct enetc_cbdr * cbdr)1027 static int enetc_alloc_cbdr(struct device *dev, struct enetc_cbdr *cbdr)
1028 {
1029 	int size = cbdr->bd_count * sizeof(struct enetc_cbd);
1030 
1031 	cbdr->bd_base = dma_alloc_coherent(dev, size, &cbdr->bd_dma_base,
1032 					   GFP_KERNEL);
1033 	if (!cbdr->bd_base)
1034 		return -ENOMEM;
1035 
1036 	/* h/w requires 128B alignment */
1037 	if (!IS_ALIGNED(cbdr->bd_dma_base, 128)) {
1038 		dma_free_coherent(dev, size, cbdr->bd_base, cbdr->bd_dma_base);
1039 		return -EINVAL;
1040 	}
1041 
1042 	cbdr->next_to_clean = 0;
1043 	cbdr->next_to_use = 0;
1044 
1045 	return 0;
1046 }
1047 
enetc_free_cbdr(struct device * dev,struct enetc_cbdr * cbdr)1048 static void enetc_free_cbdr(struct device *dev, struct enetc_cbdr *cbdr)
1049 {
1050 	int size = cbdr->bd_count * sizeof(struct enetc_cbd);
1051 
1052 	dma_free_coherent(dev, size, cbdr->bd_base, cbdr->bd_dma_base);
1053 	cbdr->bd_base = NULL;
1054 }
1055 
enetc_setup_cbdr(struct enetc_hw * hw,struct enetc_cbdr * cbdr)1056 static void enetc_setup_cbdr(struct enetc_hw *hw, struct enetc_cbdr *cbdr)
1057 {
1058 	/* set CBDR cache attributes */
1059 	enetc_wr(hw, ENETC_SICAR2,
1060 		 ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
1061 
1062 	enetc_wr(hw, ENETC_SICBDRBAR0, lower_32_bits(cbdr->bd_dma_base));
1063 	enetc_wr(hw, ENETC_SICBDRBAR1, upper_32_bits(cbdr->bd_dma_base));
1064 	enetc_wr(hw, ENETC_SICBDRLENR, ENETC_RTBLENR_LEN(cbdr->bd_count));
1065 
1066 	enetc_wr(hw, ENETC_SICBDRPIR, 0);
1067 	enetc_wr(hw, ENETC_SICBDRCIR, 0);
1068 
1069 	/* enable ring */
1070 	enetc_wr(hw, ENETC_SICBDRMR, BIT(31));
1071 
1072 	cbdr->pir = hw->reg + ENETC_SICBDRPIR;
1073 	cbdr->cir = hw->reg + ENETC_SICBDRCIR;
1074 }
1075 
enetc_clear_cbdr(struct enetc_hw * hw)1076 static void enetc_clear_cbdr(struct enetc_hw *hw)
1077 {
1078 	enetc_wr(hw, ENETC_SICBDRMR, 0);
1079 }
1080 
enetc_setup_default_rss_table(struct enetc_si * si,int num_groups)1081 static int enetc_setup_default_rss_table(struct enetc_si *si, int num_groups)
1082 {
1083 	int *rss_table;
1084 	int i;
1085 
1086 	rss_table = kmalloc_array(si->num_rss, sizeof(*rss_table), GFP_KERNEL);
1087 	if (!rss_table)
1088 		return -ENOMEM;
1089 
1090 	/* Set up RSS table defaults */
1091 	for (i = 0; i < si->num_rss; i++)
1092 		rss_table[i] = i % num_groups;
1093 
1094 	enetc_set_rss_table(si, rss_table, si->num_rss);
1095 
1096 	kfree(rss_table);
1097 
1098 	return 0;
1099 }
1100 
enetc_configure_si(struct enetc_ndev_priv * priv)1101 static int enetc_configure_si(struct enetc_ndev_priv *priv)
1102 {
1103 	struct enetc_si *si = priv->si;
1104 	struct enetc_hw *hw = &si->hw;
1105 	int err;
1106 
1107 	enetc_setup_cbdr(hw, &si->cbd_ring);
1108 	/* set SI cache attributes */
1109 	enetc_wr(hw, ENETC_SICAR0,
1110 		 ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
1111 	enetc_wr(hw, ENETC_SICAR1, ENETC_SICAR_MSI);
1112 	/* enable SI */
1113 	enetc_wr(hw, ENETC_SIMR, ENETC_SIMR_EN);
1114 
1115 	if (si->num_rss) {
1116 		err = enetc_setup_default_rss_table(si, priv->num_rx_rings);
1117 		if (err)
1118 			return err;
1119 	}
1120 
1121 	return 0;
1122 }
1123 
enetc_init_si_rings_params(struct enetc_ndev_priv * priv)1124 void enetc_init_si_rings_params(struct enetc_ndev_priv *priv)
1125 {
1126 	struct enetc_si *si = priv->si;
1127 	int cpus = num_online_cpus();
1128 
1129 	priv->tx_bd_count = ENETC_TX_RING_DEFAULT_SIZE;
1130 	priv->rx_bd_count = ENETC_RX_RING_DEFAULT_SIZE;
1131 
1132 	/* Enable all available TX rings in order to configure as many
1133 	 * priorities as possible, when needed.
1134 	 * TODO: Make # of TX rings run-time configurable
1135 	 */
1136 	priv->num_rx_rings = min_t(int, cpus, si->num_rx_rings);
1137 	priv->num_tx_rings = si->num_tx_rings;
1138 	priv->bdr_int_num = cpus;
1139 	priv->ic_mode = ENETC_IC_RX_ADAPTIVE | ENETC_IC_TX_MANUAL;
1140 	priv->tx_ictt = ENETC_TXIC_TIMETHR;
1141 
1142 	/* SI specific */
1143 	si->cbd_ring.bd_count = ENETC_CBDR_DEFAULT_SIZE;
1144 }
1145 
enetc_alloc_si_resources(struct enetc_ndev_priv * priv)1146 int enetc_alloc_si_resources(struct enetc_ndev_priv *priv)
1147 {
1148 	struct enetc_si *si = priv->si;
1149 	int err;
1150 
1151 	err = enetc_alloc_cbdr(priv->dev, &si->cbd_ring);
1152 	if (err)
1153 		return err;
1154 
1155 	priv->cls_rules = kcalloc(si->num_fs_entries, sizeof(*priv->cls_rules),
1156 				  GFP_KERNEL);
1157 	if (!priv->cls_rules) {
1158 		err = -ENOMEM;
1159 		goto err_alloc_cls;
1160 	}
1161 
1162 	err = enetc_configure_si(priv);
1163 	if (err)
1164 		goto err_config_si;
1165 
1166 	return 0;
1167 
1168 err_config_si:
1169 	kfree(priv->cls_rules);
1170 err_alloc_cls:
1171 	enetc_clear_cbdr(&si->hw);
1172 	enetc_free_cbdr(priv->dev, &si->cbd_ring);
1173 
1174 	return err;
1175 }
1176 
enetc_free_si_resources(struct enetc_ndev_priv * priv)1177 void enetc_free_si_resources(struct enetc_ndev_priv *priv)
1178 {
1179 	struct enetc_si *si = priv->si;
1180 
1181 	enetc_clear_cbdr(&si->hw);
1182 	enetc_free_cbdr(priv->dev, &si->cbd_ring);
1183 
1184 	kfree(priv->cls_rules);
1185 }
1186 
enetc_setup_txbdr(struct enetc_hw * hw,struct enetc_bdr * tx_ring)1187 static void enetc_setup_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
1188 {
1189 	int idx = tx_ring->index;
1190 	u32 tbmr;
1191 
1192 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR0,
1193 		       lower_32_bits(tx_ring->bd_dma_base));
1194 
1195 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR1,
1196 		       upper_32_bits(tx_ring->bd_dma_base));
1197 
1198 	WARN_ON(!IS_ALIGNED(tx_ring->bd_count, 64)); /* multiple of 64 */
1199 	enetc_txbdr_wr(hw, idx, ENETC_TBLENR,
1200 		       ENETC_RTBLENR_LEN(tx_ring->bd_count));
1201 
1202 	/* clearing PI/CI registers for Tx not supported, adjust sw indexes */
1203 	tx_ring->next_to_use = enetc_txbdr_rd(hw, idx, ENETC_TBPIR);
1204 	tx_ring->next_to_clean = enetc_txbdr_rd(hw, idx, ENETC_TBCIR);
1205 
1206 	/* enable Tx ints by setting pkt thr to 1 */
1207 	enetc_txbdr_wr(hw, idx, ENETC_TBICR0, ENETC_TBICR0_ICEN | 0x1);
1208 
1209 	tbmr = ENETC_TBMR_EN;
1210 	if (tx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
1211 		tbmr |= ENETC_TBMR_VIH;
1212 
1213 	/* enable ring */
1214 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr);
1215 
1216 	tx_ring->tpir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBPIR);
1217 	tx_ring->tcir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBCIR);
1218 	tx_ring->idr = hw->reg + ENETC_SITXIDR;
1219 }
1220 
enetc_setup_rxbdr(struct enetc_hw * hw,struct enetc_bdr * rx_ring)1221 static void enetc_setup_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
1222 {
1223 	int idx = rx_ring->index;
1224 	u32 rbmr;
1225 
1226 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR0,
1227 		       lower_32_bits(rx_ring->bd_dma_base));
1228 
1229 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR1,
1230 		       upper_32_bits(rx_ring->bd_dma_base));
1231 
1232 	WARN_ON(!IS_ALIGNED(rx_ring->bd_count, 64)); /* multiple of 64 */
1233 	enetc_rxbdr_wr(hw, idx, ENETC_RBLENR,
1234 		       ENETC_RTBLENR_LEN(rx_ring->bd_count));
1235 
1236 	enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE);
1237 
1238 	enetc_rxbdr_wr(hw, idx, ENETC_RBPIR, 0);
1239 
1240 	/* enable Rx ints by setting pkt thr to 1 */
1241 	enetc_rxbdr_wr(hw, idx, ENETC_RBICR0, ENETC_RBICR0_ICEN | 0x1);
1242 
1243 	rbmr = ENETC_RBMR_EN;
1244 
1245 	if (rx_ring->ext_en)
1246 		rbmr |= ENETC_RBMR_BDS;
1247 
1248 	if (rx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1249 		rbmr |= ENETC_RBMR_VTE;
1250 
1251 	rx_ring->rcir = hw->reg + ENETC_BDR(RX, idx, ENETC_RBCIR);
1252 	rx_ring->idr = hw->reg + ENETC_SIRXIDR;
1253 
1254 	enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring));
1255 	enetc_wr(hw, ENETC_SIRXIDR, rx_ring->next_to_use);
1256 
1257 	/* enable ring */
1258 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr);
1259 }
1260 
enetc_setup_bdrs(struct enetc_ndev_priv * priv)1261 static void enetc_setup_bdrs(struct enetc_ndev_priv *priv)
1262 {
1263 	int i;
1264 
1265 	for (i = 0; i < priv->num_tx_rings; i++)
1266 		enetc_setup_txbdr(&priv->si->hw, priv->tx_ring[i]);
1267 
1268 	for (i = 0; i < priv->num_rx_rings; i++)
1269 		enetc_setup_rxbdr(&priv->si->hw, priv->rx_ring[i]);
1270 }
1271 
enetc_clear_rxbdr(struct enetc_hw * hw,struct enetc_bdr * rx_ring)1272 static void enetc_clear_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
1273 {
1274 	int idx = rx_ring->index;
1275 
1276 	/* disable EN bit on ring */
1277 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, 0);
1278 }
1279 
enetc_clear_txbdr(struct enetc_hw * hw,struct enetc_bdr * tx_ring)1280 static void enetc_clear_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
1281 {
1282 	int delay = 8, timeout = 100;
1283 	int idx = tx_ring->index;
1284 
1285 	/* disable EN bit on ring */
1286 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, 0);
1287 
1288 	/* wait for busy to clear */
1289 	while (delay < timeout &&
1290 	       enetc_txbdr_rd(hw, idx, ENETC_TBSR) & ENETC_TBSR_BUSY) {
1291 		msleep(delay);
1292 		delay *= 2;
1293 	}
1294 
1295 	if (delay >= timeout)
1296 		netdev_warn(tx_ring->ndev, "timeout for tx ring #%d clear\n",
1297 			    idx);
1298 }
1299 
enetc_clear_bdrs(struct enetc_ndev_priv * priv)1300 static void enetc_clear_bdrs(struct enetc_ndev_priv *priv)
1301 {
1302 	int i;
1303 
1304 	for (i = 0; i < priv->num_tx_rings; i++)
1305 		enetc_clear_txbdr(&priv->si->hw, priv->tx_ring[i]);
1306 
1307 	for (i = 0; i < priv->num_rx_rings; i++)
1308 		enetc_clear_rxbdr(&priv->si->hw, priv->rx_ring[i]);
1309 
1310 	udelay(1);
1311 }
1312 
enetc_setup_irqs(struct enetc_ndev_priv * priv)1313 static int enetc_setup_irqs(struct enetc_ndev_priv *priv)
1314 {
1315 	struct pci_dev *pdev = priv->si->pdev;
1316 	cpumask_t cpu_mask;
1317 	int i, j, err;
1318 
1319 	for (i = 0; i < priv->bdr_int_num; i++) {
1320 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1321 		struct enetc_int_vector *v = priv->int_vector[i];
1322 		int entry = ENETC_BDR_INT_BASE_IDX + i;
1323 		struct enetc_hw *hw = &priv->si->hw;
1324 
1325 		snprintf(v->name, sizeof(v->name), "%s-rxtx%d",
1326 			 priv->ndev->name, i);
1327 		err = request_irq(irq, enetc_msix, 0, v->name, v);
1328 		if (err) {
1329 			dev_err(priv->dev, "request_irq() failed!\n");
1330 			goto irq_err;
1331 		}
1332 		disable_irq(irq);
1333 
1334 		v->tbier_base = hw->reg + ENETC_BDR(TX, 0, ENETC_TBIER);
1335 		v->rbier = hw->reg + ENETC_BDR(RX, i, ENETC_RBIER);
1336 		v->ricr1 = hw->reg + ENETC_BDR(RX, i, ENETC_RBICR1);
1337 
1338 		enetc_wr(hw, ENETC_SIMSIRRV(i), entry);
1339 
1340 		for (j = 0; j < v->count_tx_rings; j++) {
1341 			int idx = v->tx_ring[j].index;
1342 
1343 			enetc_wr(hw, ENETC_SIMSITRV(idx), entry);
1344 		}
1345 		cpumask_clear(&cpu_mask);
1346 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
1347 		irq_set_affinity_hint(irq, &cpu_mask);
1348 	}
1349 
1350 	return 0;
1351 
1352 irq_err:
1353 	while (i--) {
1354 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1355 
1356 		irq_set_affinity_hint(irq, NULL);
1357 		free_irq(irq, priv->int_vector[i]);
1358 	}
1359 
1360 	return err;
1361 }
1362 
enetc_free_irqs(struct enetc_ndev_priv * priv)1363 static void enetc_free_irqs(struct enetc_ndev_priv *priv)
1364 {
1365 	struct pci_dev *pdev = priv->si->pdev;
1366 	int i;
1367 
1368 	for (i = 0; i < priv->bdr_int_num; i++) {
1369 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1370 
1371 		irq_set_affinity_hint(irq, NULL);
1372 		free_irq(irq, priv->int_vector[i]);
1373 	}
1374 }
1375 
enetc_setup_interrupts(struct enetc_ndev_priv * priv)1376 static void enetc_setup_interrupts(struct enetc_ndev_priv *priv)
1377 {
1378 	struct enetc_hw *hw = &priv->si->hw;
1379 	u32 icpt, ictt;
1380 	int i;
1381 
1382 	/* enable Tx & Rx event indication */
1383 	if (priv->ic_mode &
1384 	    (ENETC_IC_RX_MANUAL | ENETC_IC_RX_ADAPTIVE)) {
1385 		icpt = ENETC_RBICR0_SET_ICPT(ENETC_RXIC_PKTTHR);
1386 		/* init to non-0 minimum, will be adjusted later */
1387 		ictt = 0x1;
1388 	} else {
1389 		icpt = 0x1; /* enable Rx ints by setting pkt thr to 1 */
1390 		ictt = 0;
1391 	}
1392 
1393 	for (i = 0; i < priv->num_rx_rings; i++) {
1394 		enetc_rxbdr_wr(hw, i, ENETC_RBICR1, ictt);
1395 		enetc_rxbdr_wr(hw, i, ENETC_RBICR0, ENETC_RBICR0_ICEN | icpt);
1396 		enetc_rxbdr_wr(hw, i, ENETC_RBIER, ENETC_RBIER_RXTIE);
1397 	}
1398 
1399 	if (priv->ic_mode & ENETC_IC_TX_MANUAL)
1400 		icpt = ENETC_TBICR0_SET_ICPT(ENETC_TXIC_PKTTHR);
1401 	else
1402 		icpt = 0x1; /* enable Tx ints by setting pkt thr to 1 */
1403 
1404 	for (i = 0; i < priv->num_tx_rings; i++) {
1405 		enetc_txbdr_wr(hw, i, ENETC_TBICR1, priv->tx_ictt);
1406 		enetc_txbdr_wr(hw, i, ENETC_TBICR0, ENETC_TBICR0_ICEN | icpt);
1407 		enetc_txbdr_wr(hw, i, ENETC_TBIER, ENETC_TBIER_TXTIE);
1408 	}
1409 }
1410 
enetc_clear_interrupts(struct enetc_ndev_priv * priv)1411 static void enetc_clear_interrupts(struct enetc_ndev_priv *priv)
1412 {
1413 	int i;
1414 
1415 	for (i = 0; i < priv->num_tx_rings; i++)
1416 		enetc_txbdr_wr(&priv->si->hw, i, ENETC_TBIER, 0);
1417 
1418 	for (i = 0; i < priv->num_rx_rings; i++)
1419 		enetc_rxbdr_wr(&priv->si->hw, i, ENETC_RBIER, 0);
1420 }
1421 
enetc_phylink_connect(struct net_device * ndev)1422 static int enetc_phylink_connect(struct net_device *ndev)
1423 {
1424 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1425 	struct ethtool_eee edata;
1426 	int err;
1427 
1428 	if (!priv->phylink)
1429 		return 0; /* phy-less mode */
1430 
1431 	err = phylink_of_phy_connect(priv->phylink, priv->dev->of_node, 0);
1432 	if (err) {
1433 		dev_err(&ndev->dev, "could not attach to PHY\n");
1434 		return err;
1435 	}
1436 
1437 	/* disable EEE autoneg, until ENETC driver supports it */
1438 	memset(&edata, 0, sizeof(struct ethtool_eee));
1439 	phylink_ethtool_set_eee(priv->phylink, &edata);
1440 
1441 	return 0;
1442 }
1443 
enetc_start(struct net_device * ndev)1444 void enetc_start(struct net_device *ndev)
1445 {
1446 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1447 	int i;
1448 
1449 	enetc_setup_interrupts(priv);
1450 
1451 	for (i = 0; i < priv->bdr_int_num; i++) {
1452 		int irq = pci_irq_vector(priv->si->pdev,
1453 					 ENETC_BDR_INT_BASE_IDX + i);
1454 
1455 		napi_enable(&priv->int_vector[i]->napi);
1456 		enable_irq(irq);
1457 	}
1458 
1459 	if (priv->phylink)
1460 		phylink_start(priv->phylink);
1461 	else
1462 		netif_carrier_on(ndev);
1463 
1464 	netif_tx_start_all_queues(ndev);
1465 }
1466 
enetc_open(struct net_device * ndev)1467 int enetc_open(struct net_device *ndev)
1468 {
1469 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1470 	int err;
1471 
1472 	err = enetc_setup_irqs(priv);
1473 	if (err)
1474 		return err;
1475 
1476 	err = enetc_phylink_connect(ndev);
1477 	if (err)
1478 		goto err_phy_connect;
1479 
1480 	err = enetc_alloc_tx_resources(priv);
1481 	if (err)
1482 		goto err_alloc_tx;
1483 
1484 	err = enetc_alloc_rx_resources(priv);
1485 	if (err)
1486 		goto err_alloc_rx;
1487 
1488 	err = netif_set_real_num_tx_queues(ndev, priv->num_tx_rings);
1489 	if (err)
1490 		goto err_set_queues;
1491 
1492 	err = netif_set_real_num_rx_queues(ndev, priv->num_rx_rings);
1493 	if (err)
1494 		goto err_set_queues;
1495 
1496 	enetc_setup_bdrs(priv);
1497 	enetc_start(ndev);
1498 
1499 	return 0;
1500 
1501 err_set_queues:
1502 	enetc_free_rx_resources(priv);
1503 err_alloc_rx:
1504 	enetc_free_tx_resources(priv);
1505 err_alloc_tx:
1506 	if (priv->phylink)
1507 		phylink_disconnect_phy(priv->phylink);
1508 err_phy_connect:
1509 	enetc_free_irqs(priv);
1510 
1511 	return err;
1512 }
1513 
enetc_stop(struct net_device * ndev)1514 void enetc_stop(struct net_device *ndev)
1515 {
1516 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1517 	int i;
1518 
1519 	netif_tx_stop_all_queues(ndev);
1520 
1521 	for (i = 0; i < priv->bdr_int_num; i++) {
1522 		int irq = pci_irq_vector(priv->si->pdev,
1523 					 ENETC_BDR_INT_BASE_IDX + i);
1524 
1525 		disable_irq(irq);
1526 		napi_synchronize(&priv->int_vector[i]->napi);
1527 		napi_disable(&priv->int_vector[i]->napi);
1528 	}
1529 
1530 	if (priv->phylink)
1531 		phylink_stop(priv->phylink);
1532 	else
1533 		netif_carrier_off(ndev);
1534 
1535 	enetc_clear_interrupts(priv);
1536 }
1537 
enetc_close(struct net_device * ndev)1538 int enetc_close(struct net_device *ndev)
1539 {
1540 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1541 
1542 	enetc_stop(ndev);
1543 	enetc_clear_bdrs(priv);
1544 
1545 	if (priv->phylink)
1546 		phylink_disconnect_phy(priv->phylink);
1547 	enetc_free_rxtx_rings(priv);
1548 	enetc_free_rx_resources(priv);
1549 	enetc_free_tx_resources(priv);
1550 	enetc_free_irqs(priv);
1551 
1552 	return 0;
1553 }
1554 
enetc_setup_tc_mqprio(struct net_device * ndev,void * type_data)1555 static int enetc_setup_tc_mqprio(struct net_device *ndev, void *type_data)
1556 {
1557 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1558 	struct tc_mqprio_qopt *mqprio = type_data;
1559 	struct enetc_bdr *tx_ring;
1560 	u8 num_tc;
1561 	int i;
1562 
1563 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1564 	num_tc = mqprio->num_tc;
1565 
1566 	if (!num_tc) {
1567 		netdev_reset_tc(ndev);
1568 		netif_set_real_num_tx_queues(ndev, priv->num_tx_rings);
1569 
1570 		/* Reset all ring priorities to 0 */
1571 		for (i = 0; i < priv->num_tx_rings; i++) {
1572 			tx_ring = priv->tx_ring[i];
1573 			enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, 0);
1574 		}
1575 
1576 		return 0;
1577 	}
1578 
1579 	/* Check if we have enough BD rings available to accommodate all TCs */
1580 	if (num_tc > priv->num_tx_rings) {
1581 		netdev_err(ndev, "Max %d traffic classes supported\n",
1582 			   priv->num_tx_rings);
1583 		return -EINVAL;
1584 	}
1585 
1586 	/* For the moment, we use only one BD ring per TC.
1587 	 *
1588 	 * Configure num_tc BD rings with increasing priorities.
1589 	 */
1590 	for (i = 0; i < num_tc; i++) {
1591 		tx_ring = priv->tx_ring[i];
1592 		enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, i);
1593 	}
1594 
1595 	/* Reset the number of netdev queues based on the TC count */
1596 	netif_set_real_num_tx_queues(ndev, num_tc);
1597 
1598 	netdev_set_num_tc(ndev, num_tc);
1599 
1600 	/* Each TC is associated with one netdev queue */
1601 	for (i = 0; i < num_tc; i++)
1602 		netdev_set_tc_queue(ndev, i, 1, i);
1603 
1604 	return 0;
1605 }
1606 
enetc_setup_tc(struct net_device * ndev,enum tc_setup_type type,void * type_data)1607 int enetc_setup_tc(struct net_device *ndev, enum tc_setup_type type,
1608 		   void *type_data)
1609 {
1610 	switch (type) {
1611 	case TC_SETUP_QDISC_MQPRIO:
1612 		return enetc_setup_tc_mqprio(ndev, type_data);
1613 	case TC_SETUP_QDISC_TAPRIO:
1614 		return enetc_setup_tc_taprio(ndev, type_data);
1615 	case TC_SETUP_QDISC_CBS:
1616 		return enetc_setup_tc_cbs(ndev, type_data);
1617 	case TC_SETUP_QDISC_ETF:
1618 		return enetc_setup_tc_txtime(ndev, type_data);
1619 	case TC_SETUP_BLOCK:
1620 		return enetc_setup_tc_psfp(ndev, type_data);
1621 	default:
1622 		return -EOPNOTSUPP;
1623 	}
1624 }
1625 
enetc_get_stats(struct net_device * ndev)1626 struct net_device_stats *enetc_get_stats(struct net_device *ndev)
1627 {
1628 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1629 	struct net_device_stats *stats = &ndev->stats;
1630 	unsigned long packets = 0, bytes = 0;
1631 	int i;
1632 
1633 	for (i = 0; i < priv->num_rx_rings; i++) {
1634 		packets += priv->rx_ring[i]->stats.packets;
1635 		bytes	+= priv->rx_ring[i]->stats.bytes;
1636 	}
1637 
1638 	stats->rx_packets = packets;
1639 	stats->rx_bytes = bytes;
1640 	bytes = 0;
1641 	packets = 0;
1642 
1643 	for (i = 0; i < priv->num_tx_rings; i++) {
1644 		packets += priv->tx_ring[i]->stats.packets;
1645 		bytes	+= priv->tx_ring[i]->stats.bytes;
1646 	}
1647 
1648 	stats->tx_packets = packets;
1649 	stats->tx_bytes = bytes;
1650 
1651 	return stats;
1652 }
1653 
enetc_set_rss(struct net_device * ndev,int en)1654 static int enetc_set_rss(struct net_device *ndev, int en)
1655 {
1656 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1657 	struct enetc_hw *hw = &priv->si->hw;
1658 	u32 reg;
1659 
1660 	enetc_wr(hw, ENETC_SIRBGCR, priv->num_rx_rings);
1661 
1662 	reg = enetc_rd(hw, ENETC_SIMR);
1663 	reg &= ~ENETC_SIMR_RSSE;
1664 	reg |= (en) ? ENETC_SIMR_RSSE : 0;
1665 	enetc_wr(hw, ENETC_SIMR, reg);
1666 
1667 	return 0;
1668 }
1669 
enetc_set_psfp(struct net_device * ndev,int en)1670 static int enetc_set_psfp(struct net_device *ndev, int en)
1671 {
1672 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1673 	int err;
1674 
1675 	if (en) {
1676 		err = enetc_psfp_enable(priv);
1677 		if (err)
1678 			return err;
1679 
1680 		priv->active_offloads |= ENETC_F_QCI;
1681 		return 0;
1682 	}
1683 
1684 	err = enetc_psfp_disable(priv);
1685 	if (err)
1686 		return err;
1687 
1688 	priv->active_offloads &= ~ENETC_F_QCI;
1689 
1690 	return 0;
1691 }
1692 
enetc_enable_rxvlan(struct net_device * ndev,bool en)1693 static void enetc_enable_rxvlan(struct net_device *ndev, bool en)
1694 {
1695 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1696 	int i;
1697 
1698 	for (i = 0; i < priv->num_rx_rings; i++)
1699 		enetc_bdr_enable_rxvlan(&priv->si->hw, i, en);
1700 }
1701 
enetc_enable_txvlan(struct net_device * ndev,bool en)1702 static void enetc_enable_txvlan(struct net_device *ndev, bool en)
1703 {
1704 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1705 	int i;
1706 
1707 	for (i = 0; i < priv->num_tx_rings; i++)
1708 		enetc_bdr_enable_txvlan(&priv->si->hw, i, en);
1709 }
1710 
enetc_set_features(struct net_device * ndev,netdev_features_t features)1711 int enetc_set_features(struct net_device *ndev,
1712 		       netdev_features_t features)
1713 {
1714 	netdev_features_t changed = ndev->features ^ features;
1715 	int err = 0;
1716 
1717 	if (changed & NETIF_F_RXHASH)
1718 		enetc_set_rss(ndev, !!(features & NETIF_F_RXHASH));
1719 
1720 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1721 		enetc_enable_rxvlan(ndev,
1722 				    !!(features & NETIF_F_HW_VLAN_CTAG_RX));
1723 
1724 	if (changed & NETIF_F_HW_VLAN_CTAG_TX)
1725 		enetc_enable_txvlan(ndev,
1726 				    !!(features & NETIF_F_HW_VLAN_CTAG_TX));
1727 
1728 	if (changed & NETIF_F_HW_TC)
1729 		err = enetc_set_psfp(ndev, !!(features & NETIF_F_HW_TC));
1730 
1731 	return err;
1732 }
1733 
1734 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
enetc_hwtstamp_set(struct net_device * ndev,struct ifreq * ifr)1735 static int enetc_hwtstamp_set(struct net_device *ndev, struct ifreq *ifr)
1736 {
1737 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1738 	struct hwtstamp_config config;
1739 	int ao;
1740 
1741 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1742 		return -EFAULT;
1743 
1744 	switch (config.tx_type) {
1745 	case HWTSTAMP_TX_OFF:
1746 		priv->active_offloads &= ~ENETC_F_TX_TSTAMP;
1747 		break;
1748 	case HWTSTAMP_TX_ON:
1749 		priv->active_offloads |= ENETC_F_TX_TSTAMP;
1750 		break;
1751 	default:
1752 		return -ERANGE;
1753 	}
1754 
1755 	ao = priv->active_offloads;
1756 	switch (config.rx_filter) {
1757 	case HWTSTAMP_FILTER_NONE:
1758 		priv->active_offloads &= ~ENETC_F_RX_TSTAMP;
1759 		break;
1760 	default:
1761 		priv->active_offloads |= ENETC_F_RX_TSTAMP;
1762 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1763 	}
1764 
1765 	if (netif_running(ndev) && ao != priv->active_offloads) {
1766 		enetc_close(ndev);
1767 		enetc_open(ndev);
1768 	}
1769 
1770 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1771 	       -EFAULT : 0;
1772 }
1773 
enetc_hwtstamp_get(struct net_device * ndev,struct ifreq * ifr)1774 static int enetc_hwtstamp_get(struct net_device *ndev, struct ifreq *ifr)
1775 {
1776 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1777 	struct hwtstamp_config config;
1778 
1779 	config.flags = 0;
1780 
1781 	if (priv->active_offloads & ENETC_F_TX_TSTAMP)
1782 		config.tx_type = HWTSTAMP_TX_ON;
1783 	else
1784 		config.tx_type = HWTSTAMP_TX_OFF;
1785 
1786 	config.rx_filter = (priv->active_offloads & ENETC_F_RX_TSTAMP) ?
1787 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
1788 
1789 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1790 	       -EFAULT : 0;
1791 }
1792 #endif
1793 
enetc_ioctl(struct net_device * ndev,struct ifreq * rq,int cmd)1794 int enetc_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1795 {
1796 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1797 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
1798 	if (cmd == SIOCSHWTSTAMP)
1799 		return enetc_hwtstamp_set(ndev, rq);
1800 	if (cmd == SIOCGHWTSTAMP)
1801 		return enetc_hwtstamp_get(ndev, rq);
1802 #endif
1803 
1804 	if (!priv->phylink)
1805 		return -EOPNOTSUPP;
1806 
1807 	return phylink_mii_ioctl(priv->phylink, rq, cmd);
1808 }
1809 
enetc_alloc_msix(struct enetc_ndev_priv * priv)1810 int enetc_alloc_msix(struct enetc_ndev_priv *priv)
1811 {
1812 	struct pci_dev *pdev = priv->si->pdev;
1813 	int v_tx_rings;
1814 	int i, n, err, nvec;
1815 
1816 	nvec = ENETC_BDR_INT_BASE_IDX + priv->bdr_int_num;
1817 	/* allocate MSIX for both messaging and Rx/Tx interrupts */
1818 	n = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_MSIX);
1819 
1820 	if (n < 0)
1821 		return n;
1822 
1823 	if (n != nvec)
1824 		return -EPERM;
1825 
1826 	/* # of tx rings per int vector */
1827 	v_tx_rings = priv->num_tx_rings / priv->bdr_int_num;
1828 
1829 	for (i = 0; i < priv->bdr_int_num; i++) {
1830 		struct enetc_int_vector *v;
1831 		struct enetc_bdr *bdr;
1832 		int j;
1833 
1834 		v = kzalloc(struct_size(v, tx_ring, v_tx_rings), GFP_KERNEL);
1835 		if (!v) {
1836 			err = -ENOMEM;
1837 			goto fail;
1838 		}
1839 
1840 		priv->int_vector[i] = v;
1841 
1842 		/* init defaults for adaptive IC */
1843 		if (priv->ic_mode & ENETC_IC_RX_ADAPTIVE) {
1844 			v->rx_ictt = 0x1;
1845 			v->rx_dim_en = true;
1846 		}
1847 		INIT_WORK(&v->rx_dim.work, enetc_rx_dim_work);
1848 		netif_napi_add(priv->ndev, &v->napi, enetc_poll,
1849 			       NAPI_POLL_WEIGHT);
1850 		v->count_tx_rings = v_tx_rings;
1851 
1852 		for (j = 0; j < v_tx_rings; j++) {
1853 			int idx;
1854 
1855 			/* default tx ring mapping policy */
1856 			if (priv->bdr_int_num == ENETC_MAX_BDR_INT)
1857 				idx = 2 * j + i; /* 2 CPUs */
1858 			else
1859 				idx = j + i * v_tx_rings; /* default */
1860 
1861 			__set_bit(idx, &v->tx_rings_map);
1862 			bdr = &v->tx_ring[j];
1863 			bdr->index = idx;
1864 			bdr->ndev = priv->ndev;
1865 			bdr->dev = priv->dev;
1866 			bdr->bd_count = priv->tx_bd_count;
1867 			priv->tx_ring[idx] = bdr;
1868 		}
1869 
1870 		bdr = &v->rx_ring;
1871 		bdr->index = i;
1872 		bdr->ndev = priv->ndev;
1873 		bdr->dev = priv->dev;
1874 		bdr->bd_count = priv->rx_bd_count;
1875 		priv->rx_ring[i] = bdr;
1876 	}
1877 
1878 	return 0;
1879 
1880 fail:
1881 	while (i--) {
1882 		netif_napi_del(&priv->int_vector[i]->napi);
1883 		cancel_work_sync(&priv->int_vector[i]->rx_dim.work);
1884 		kfree(priv->int_vector[i]);
1885 	}
1886 
1887 	pci_free_irq_vectors(pdev);
1888 
1889 	return err;
1890 }
1891 
enetc_free_msix(struct enetc_ndev_priv * priv)1892 void enetc_free_msix(struct enetc_ndev_priv *priv)
1893 {
1894 	int i;
1895 
1896 	for (i = 0; i < priv->bdr_int_num; i++) {
1897 		struct enetc_int_vector *v = priv->int_vector[i];
1898 
1899 		netif_napi_del(&v->napi);
1900 		cancel_work_sync(&v->rx_dim.work);
1901 	}
1902 
1903 	for (i = 0; i < priv->num_rx_rings; i++)
1904 		priv->rx_ring[i] = NULL;
1905 
1906 	for (i = 0; i < priv->num_tx_rings; i++)
1907 		priv->tx_ring[i] = NULL;
1908 
1909 	for (i = 0; i < priv->bdr_int_num; i++) {
1910 		kfree(priv->int_vector[i]);
1911 		priv->int_vector[i] = NULL;
1912 	}
1913 
1914 	/* disable all MSIX for this device */
1915 	pci_free_irq_vectors(priv->si->pdev);
1916 }
1917 
enetc_kfree_si(struct enetc_si * si)1918 static void enetc_kfree_si(struct enetc_si *si)
1919 {
1920 	char *p = (char *)si - si->pad;
1921 
1922 	kfree(p);
1923 }
1924 
enetc_detect_errata(struct enetc_si * si)1925 static void enetc_detect_errata(struct enetc_si *si)
1926 {
1927 	if (si->pdev->revision == ENETC_REV1)
1928 		si->errata = ENETC_ERR_TXCSUM | ENETC_ERR_VLAN_ISOL |
1929 			     ENETC_ERR_UCMCSWP;
1930 }
1931 
enetc_pci_probe(struct pci_dev * pdev,const char * name,int sizeof_priv)1932 int enetc_pci_probe(struct pci_dev *pdev, const char *name, int sizeof_priv)
1933 {
1934 	struct enetc_si *si, *p;
1935 	struct enetc_hw *hw;
1936 	size_t alloc_size;
1937 	int err, len;
1938 
1939 	pcie_flr(pdev);
1940 	err = pci_enable_device_mem(pdev);
1941 	if (err) {
1942 		dev_err(&pdev->dev, "device enable failed\n");
1943 		return err;
1944 	}
1945 
1946 	/* set up for high or low dma */
1947 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1948 	if (err) {
1949 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1950 		if (err) {
1951 			dev_err(&pdev->dev,
1952 				"DMA configuration failed: 0x%x\n", err);
1953 			goto err_dma;
1954 		}
1955 	}
1956 
1957 	err = pci_request_mem_regions(pdev, name);
1958 	if (err) {
1959 		dev_err(&pdev->dev, "pci_request_regions failed err=%d\n", err);
1960 		goto err_pci_mem_reg;
1961 	}
1962 
1963 	pci_set_master(pdev);
1964 
1965 	alloc_size = sizeof(struct enetc_si);
1966 	if (sizeof_priv) {
1967 		/* align priv to 32B */
1968 		alloc_size = ALIGN(alloc_size, ENETC_SI_ALIGN);
1969 		alloc_size += sizeof_priv;
1970 	}
1971 	/* force 32B alignment for enetc_si */
1972 	alloc_size += ENETC_SI_ALIGN - 1;
1973 
1974 	p = kzalloc(alloc_size, GFP_KERNEL);
1975 	if (!p) {
1976 		err = -ENOMEM;
1977 		goto err_alloc_si;
1978 	}
1979 
1980 	si = PTR_ALIGN(p, ENETC_SI_ALIGN);
1981 	si->pad = (char *)si - (char *)p;
1982 
1983 	pci_set_drvdata(pdev, si);
1984 	si->pdev = pdev;
1985 	hw = &si->hw;
1986 
1987 	len = pci_resource_len(pdev, ENETC_BAR_REGS);
1988 	hw->reg = ioremap(pci_resource_start(pdev, ENETC_BAR_REGS), len);
1989 	if (!hw->reg) {
1990 		err = -ENXIO;
1991 		dev_err(&pdev->dev, "ioremap() failed\n");
1992 		goto err_ioremap;
1993 	}
1994 	if (len > ENETC_PORT_BASE)
1995 		hw->port = hw->reg + ENETC_PORT_BASE;
1996 	if (len > ENETC_GLOBAL_BASE)
1997 		hw->global = hw->reg + ENETC_GLOBAL_BASE;
1998 
1999 	enetc_detect_errata(si);
2000 
2001 	return 0;
2002 
2003 err_ioremap:
2004 	enetc_kfree_si(si);
2005 err_alloc_si:
2006 	pci_release_mem_regions(pdev);
2007 err_pci_mem_reg:
2008 err_dma:
2009 	pci_disable_device(pdev);
2010 
2011 	return err;
2012 }
2013 
enetc_pci_remove(struct pci_dev * pdev)2014 void enetc_pci_remove(struct pci_dev *pdev)
2015 {
2016 	struct enetc_si *si = pci_get_drvdata(pdev);
2017 	struct enetc_hw *hw = &si->hw;
2018 
2019 	iounmap(hw->reg);
2020 	enetc_kfree_si(si);
2021 	pci_release_mem_regions(pdev);
2022 	pci_disable_device(pdev);
2023 }
2024