1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2008-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10 #include <linux/delay.h>
11 #include <linux/moduleparam.h>
12 #include <linux/atomic.h>
13 #include "net_driver.h"
14 #include "nic.h"
15 #include "io.h"
16 #include "farch_regs.h"
17 #include "mcdi_pcol.h"
18
19 /**************************************************************************
20 *
21 * Management-Controller-to-Driver Interface
22 *
23 **************************************************************************
24 */
25
26 #define MCDI_RPC_TIMEOUT (10 * HZ)
27
28 /* A reboot/assertion causes the MCDI status word to be set after the
29 * command word is set or a REBOOT event is sent. If we notice a reboot
30 * via these mechanisms then wait 250ms for the status word to be set.
31 */
32 #define MCDI_STATUS_DELAY_US 100
33 #define MCDI_STATUS_DELAY_COUNT 2500
34 #define MCDI_STATUS_SLEEP_MS \
35 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
36
37 #define SEQ_MASK \
38 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
39
40 struct efx_mcdi_async_param {
41 struct list_head list;
42 unsigned int cmd;
43 size_t inlen;
44 size_t outlen;
45 bool quiet;
46 efx_mcdi_async_completer *complete;
47 unsigned long cookie;
48 /* followed by request/response buffer */
49 };
50
51 static void efx_mcdi_timeout_async(struct timer_list *t);
52 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
53 bool *was_attached_out);
54 static bool efx_mcdi_poll_once(struct efx_nic *efx);
55 static void efx_mcdi_abandon(struct efx_nic *efx);
56
57 #ifdef CONFIG_SFC_MCDI_LOGGING
58 static bool mcdi_logging_default;
59 module_param(mcdi_logging_default, bool, 0644);
60 MODULE_PARM_DESC(mcdi_logging_default,
61 "Enable MCDI logging on newly-probed functions");
62 #endif
63
efx_mcdi_init(struct efx_nic * efx)64 int efx_mcdi_init(struct efx_nic *efx)
65 {
66 struct efx_mcdi_iface *mcdi;
67 bool already_attached;
68 int rc = -ENOMEM;
69
70 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
71 if (!efx->mcdi)
72 goto fail;
73
74 mcdi = efx_mcdi(efx);
75 mcdi->efx = efx;
76 #ifdef CONFIG_SFC_MCDI_LOGGING
77 /* consuming code assumes buffer is page-sized */
78 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
79 if (!mcdi->logging_buffer)
80 goto fail1;
81 mcdi->logging_enabled = mcdi_logging_default;
82 #endif
83 init_waitqueue_head(&mcdi->wq);
84 init_waitqueue_head(&mcdi->proxy_rx_wq);
85 spin_lock_init(&mcdi->iface_lock);
86 mcdi->state = MCDI_STATE_QUIESCENT;
87 mcdi->mode = MCDI_MODE_POLL;
88 spin_lock_init(&mcdi->async_lock);
89 INIT_LIST_HEAD(&mcdi->async_list);
90 timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0);
91
92 (void) efx_mcdi_poll_reboot(efx);
93 mcdi->new_epoch = true;
94
95 /* Recover from a failed assertion before probing */
96 rc = efx_mcdi_handle_assertion(efx);
97 if (rc)
98 goto fail2;
99
100 /* Let the MC (and BMC, if this is a LOM) know that the driver
101 * is loaded. We should do this before we reset the NIC.
102 */
103 rc = efx_mcdi_drv_attach(efx, true, &already_attached);
104 if (rc) {
105 netif_err(efx, probe, efx->net_dev,
106 "Unable to register driver with MCPU\n");
107 goto fail2;
108 }
109 if (already_attached)
110 /* Not a fatal error */
111 netif_err(efx, probe, efx->net_dev,
112 "Host already registered with MCPU\n");
113
114 if (efx->mcdi->fn_flags &
115 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
116 efx->primary = efx;
117
118 return 0;
119 fail2:
120 #ifdef CONFIG_SFC_MCDI_LOGGING
121 free_page((unsigned long)mcdi->logging_buffer);
122 fail1:
123 #endif
124 kfree(efx->mcdi);
125 efx->mcdi = NULL;
126 fail:
127 return rc;
128 }
129
efx_mcdi_detach(struct efx_nic * efx)130 void efx_mcdi_detach(struct efx_nic *efx)
131 {
132 if (!efx->mcdi)
133 return;
134
135 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
136
137 /* Relinquish the device (back to the BMC, if this is a LOM) */
138 efx_mcdi_drv_attach(efx, false, NULL);
139 }
140
efx_mcdi_fini(struct efx_nic * efx)141 void efx_mcdi_fini(struct efx_nic *efx)
142 {
143 if (!efx->mcdi)
144 return;
145
146 #ifdef CONFIG_SFC_MCDI_LOGGING
147 free_page((unsigned long)efx->mcdi->iface.logging_buffer);
148 #endif
149
150 kfree(efx->mcdi);
151 }
152
efx_mcdi_send_request(struct efx_nic * efx,unsigned cmd,const efx_dword_t * inbuf,size_t inlen)153 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
154 const efx_dword_t *inbuf, size_t inlen)
155 {
156 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
157 #ifdef CONFIG_SFC_MCDI_LOGGING
158 char *buf = mcdi->logging_buffer; /* page-sized */
159 #endif
160 efx_dword_t hdr[2];
161 size_t hdr_len;
162 u32 xflags, seqno;
163
164 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
165
166 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
167 spin_lock_bh(&mcdi->iface_lock);
168 ++mcdi->seqno;
169 spin_unlock_bh(&mcdi->iface_lock);
170
171 seqno = mcdi->seqno & SEQ_MASK;
172 xflags = 0;
173 if (mcdi->mode == MCDI_MODE_EVENTS)
174 xflags |= MCDI_HEADER_XFLAGS_EVREQ;
175
176 if (efx->type->mcdi_max_ver == 1) {
177 /* MCDI v1 */
178 EFX_POPULATE_DWORD_7(hdr[0],
179 MCDI_HEADER_RESPONSE, 0,
180 MCDI_HEADER_RESYNC, 1,
181 MCDI_HEADER_CODE, cmd,
182 MCDI_HEADER_DATALEN, inlen,
183 MCDI_HEADER_SEQ, seqno,
184 MCDI_HEADER_XFLAGS, xflags,
185 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
186 hdr_len = 4;
187 } else {
188 /* MCDI v2 */
189 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
190 EFX_POPULATE_DWORD_7(hdr[0],
191 MCDI_HEADER_RESPONSE, 0,
192 MCDI_HEADER_RESYNC, 1,
193 MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
194 MCDI_HEADER_DATALEN, 0,
195 MCDI_HEADER_SEQ, seqno,
196 MCDI_HEADER_XFLAGS, xflags,
197 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
198 EFX_POPULATE_DWORD_2(hdr[1],
199 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
200 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
201 hdr_len = 8;
202 }
203
204 #ifdef CONFIG_SFC_MCDI_LOGGING
205 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
206 int bytes = 0;
207 int i;
208 /* Lengths should always be a whole number of dwords, so scream
209 * if they're not.
210 */
211 WARN_ON_ONCE(hdr_len % 4);
212 WARN_ON_ONCE(inlen % 4);
213
214 /* We own the logging buffer, as only one MCDI can be in
215 * progress on a NIC at any one time. So no need for locking.
216 */
217 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
218 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
219 " %08x", le32_to_cpu(hdr[i].u32[0]));
220
221 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
222 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
223 " %08x", le32_to_cpu(inbuf[i].u32[0]));
224
225 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
226 }
227 #endif
228
229 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
230
231 mcdi->new_epoch = false;
232 }
233
efx_mcdi_errno(unsigned int mcdi_err)234 static int efx_mcdi_errno(unsigned int mcdi_err)
235 {
236 switch (mcdi_err) {
237 case 0:
238 return 0;
239 #define TRANSLATE_ERROR(name) \
240 case MC_CMD_ERR_ ## name: \
241 return -name;
242 TRANSLATE_ERROR(EPERM);
243 TRANSLATE_ERROR(ENOENT);
244 TRANSLATE_ERROR(EINTR);
245 TRANSLATE_ERROR(EAGAIN);
246 TRANSLATE_ERROR(EACCES);
247 TRANSLATE_ERROR(EBUSY);
248 TRANSLATE_ERROR(EINVAL);
249 TRANSLATE_ERROR(EDEADLK);
250 TRANSLATE_ERROR(ENOSYS);
251 TRANSLATE_ERROR(ETIME);
252 TRANSLATE_ERROR(EALREADY);
253 TRANSLATE_ERROR(ENOSPC);
254 #undef TRANSLATE_ERROR
255 case MC_CMD_ERR_ENOTSUP:
256 return -EOPNOTSUPP;
257 case MC_CMD_ERR_ALLOC_FAIL:
258 return -ENOBUFS;
259 case MC_CMD_ERR_MAC_EXIST:
260 return -EADDRINUSE;
261 default:
262 return -EPROTO;
263 }
264 }
265
efx_mcdi_read_response_header(struct efx_nic * efx)266 static void efx_mcdi_read_response_header(struct efx_nic *efx)
267 {
268 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
269 unsigned int respseq, respcmd, error;
270 #ifdef CONFIG_SFC_MCDI_LOGGING
271 char *buf = mcdi->logging_buffer; /* page-sized */
272 #endif
273 efx_dword_t hdr;
274
275 efx->type->mcdi_read_response(efx, &hdr, 0, 4);
276 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
277 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
278 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
279
280 if (respcmd != MC_CMD_V2_EXTN) {
281 mcdi->resp_hdr_len = 4;
282 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
283 } else {
284 efx->type->mcdi_read_response(efx, &hdr, 4, 4);
285 mcdi->resp_hdr_len = 8;
286 mcdi->resp_data_len =
287 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
288 }
289
290 #ifdef CONFIG_SFC_MCDI_LOGGING
291 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
292 size_t hdr_len, data_len;
293 int bytes = 0;
294 int i;
295
296 WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
297 hdr_len = mcdi->resp_hdr_len / 4;
298 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded
299 * to dword size, and the MCDI buffer is always dword size
300 */
301 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
302
303 /* We own the logging buffer, as only one MCDI can be in
304 * progress on a NIC at any one time. So no need for locking.
305 */
306 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
307 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
308 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
309 " %08x", le32_to_cpu(hdr.u32[0]));
310 }
311
312 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
313 efx->type->mcdi_read_response(efx, &hdr,
314 mcdi->resp_hdr_len + (i * 4), 4);
315 bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
316 " %08x", le32_to_cpu(hdr.u32[0]));
317 }
318
319 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
320 }
321 #endif
322
323 mcdi->resprc_raw = 0;
324 if (error && mcdi->resp_data_len == 0) {
325 netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
326 mcdi->resprc = -EIO;
327 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
328 netif_err(efx, hw, efx->net_dev,
329 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
330 respseq, mcdi->seqno);
331 mcdi->resprc = -EIO;
332 } else if (error) {
333 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
334 mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
335 mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
336 } else {
337 mcdi->resprc = 0;
338 }
339 }
340
efx_mcdi_poll_once(struct efx_nic * efx)341 static bool efx_mcdi_poll_once(struct efx_nic *efx)
342 {
343 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
344
345 rmb();
346 if (!efx->type->mcdi_poll_response(efx))
347 return false;
348
349 spin_lock_bh(&mcdi->iface_lock);
350 efx_mcdi_read_response_header(efx);
351 spin_unlock_bh(&mcdi->iface_lock);
352
353 return true;
354 }
355
efx_mcdi_poll(struct efx_nic * efx)356 static int efx_mcdi_poll(struct efx_nic *efx)
357 {
358 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
359 unsigned long time, finish;
360 unsigned int spins;
361 int rc;
362
363 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
364 rc = efx_mcdi_poll_reboot(efx);
365 if (rc) {
366 spin_lock_bh(&mcdi->iface_lock);
367 mcdi->resprc = rc;
368 mcdi->resp_hdr_len = 0;
369 mcdi->resp_data_len = 0;
370 spin_unlock_bh(&mcdi->iface_lock);
371 return 0;
372 }
373
374 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
375 * because generally mcdi responses are fast. After that, back off
376 * and poll once a jiffy (approximately)
377 */
378 spins = USER_TICK_USEC;
379 finish = jiffies + MCDI_RPC_TIMEOUT;
380
381 while (1) {
382 if (spins != 0) {
383 --spins;
384 udelay(1);
385 } else {
386 schedule_timeout_uninterruptible(1);
387 }
388
389 time = jiffies;
390
391 if (efx_mcdi_poll_once(efx))
392 break;
393
394 if (time_after(time, finish))
395 return -ETIMEDOUT;
396 }
397
398 /* Return rc=0 like wait_event_timeout() */
399 return 0;
400 }
401
402 /* Test and clear MC-rebooted flag for this port/function; reset
403 * software state as necessary.
404 */
efx_mcdi_poll_reboot(struct efx_nic * efx)405 int efx_mcdi_poll_reboot(struct efx_nic *efx)
406 {
407 if (!efx->mcdi)
408 return 0;
409
410 return efx->type->mcdi_poll_reboot(efx);
411 }
412
efx_mcdi_acquire_async(struct efx_mcdi_iface * mcdi)413 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
414 {
415 return cmpxchg(&mcdi->state,
416 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
417 MCDI_STATE_QUIESCENT;
418 }
419
efx_mcdi_acquire_sync(struct efx_mcdi_iface * mcdi)420 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
421 {
422 /* Wait until the interface becomes QUIESCENT and we win the race
423 * to mark it RUNNING_SYNC.
424 */
425 wait_event(mcdi->wq,
426 cmpxchg(&mcdi->state,
427 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
428 MCDI_STATE_QUIESCENT);
429 }
430
efx_mcdi_await_completion(struct efx_nic * efx)431 static int efx_mcdi_await_completion(struct efx_nic *efx)
432 {
433 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
434
435 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
436 MCDI_RPC_TIMEOUT) == 0)
437 return -ETIMEDOUT;
438
439 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
440 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
441 * completed the request first, then we'll just end up completing the
442 * request again, which is safe.
443 *
444 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
445 * wait_event_timeout() implicitly provides.
446 */
447 if (mcdi->mode == MCDI_MODE_POLL)
448 return efx_mcdi_poll(efx);
449
450 return 0;
451 }
452
453 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
454 * requester. Return whether this was done. Does not take any locks.
455 */
efx_mcdi_complete_sync(struct efx_mcdi_iface * mcdi)456 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
457 {
458 if (cmpxchg(&mcdi->state,
459 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
460 MCDI_STATE_RUNNING_SYNC) {
461 wake_up(&mcdi->wq);
462 return true;
463 }
464
465 return false;
466 }
467
efx_mcdi_release(struct efx_mcdi_iface * mcdi)468 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
469 {
470 if (mcdi->mode == MCDI_MODE_EVENTS) {
471 struct efx_mcdi_async_param *async;
472 struct efx_nic *efx = mcdi->efx;
473
474 /* Process the asynchronous request queue */
475 spin_lock_bh(&mcdi->async_lock);
476 async = list_first_entry_or_null(
477 &mcdi->async_list, struct efx_mcdi_async_param, list);
478 if (async) {
479 mcdi->state = MCDI_STATE_RUNNING_ASYNC;
480 efx_mcdi_send_request(efx, async->cmd,
481 (const efx_dword_t *)(async + 1),
482 async->inlen);
483 mod_timer(&mcdi->async_timer,
484 jiffies + MCDI_RPC_TIMEOUT);
485 }
486 spin_unlock_bh(&mcdi->async_lock);
487
488 if (async)
489 return;
490 }
491
492 mcdi->state = MCDI_STATE_QUIESCENT;
493 wake_up(&mcdi->wq);
494 }
495
496 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
497 * asynchronous completion function, and release the interface.
498 * Return whether this was done. Must be called in bh-disabled
499 * context. Will take iface_lock and async_lock.
500 */
efx_mcdi_complete_async(struct efx_mcdi_iface * mcdi,bool timeout)501 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
502 {
503 struct efx_nic *efx = mcdi->efx;
504 struct efx_mcdi_async_param *async;
505 size_t hdr_len, data_len, err_len;
506 efx_dword_t *outbuf;
507 MCDI_DECLARE_BUF_ERR(errbuf);
508 int rc;
509
510 if (cmpxchg(&mcdi->state,
511 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
512 MCDI_STATE_RUNNING_ASYNC)
513 return false;
514
515 spin_lock(&mcdi->iface_lock);
516 if (timeout) {
517 /* Ensure that if the completion event arrives later,
518 * the seqno check in efx_mcdi_ev_cpl() will fail
519 */
520 ++mcdi->seqno;
521 ++mcdi->credits;
522 rc = -ETIMEDOUT;
523 hdr_len = 0;
524 data_len = 0;
525 } else {
526 rc = mcdi->resprc;
527 hdr_len = mcdi->resp_hdr_len;
528 data_len = mcdi->resp_data_len;
529 }
530 spin_unlock(&mcdi->iface_lock);
531
532 /* Stop the timer. In case the timer function is running, we
533 * must wait for it to return so that there is no possibility
534 * of it aborting the next request.
535 */
536 if (!timeout)
537 del_timer_sync(&mcdi->async_timer);
538
539 spin_lock(&mcdi->async_lock);
540 async = list_first_entry(&mcdi->async_list,
541 struct efx_mcdi_async_param, list);
542 list_del(&async->list);
543 spin_unlock(&mcdi->async_lock);
544
545 outbuf = (efx_dword_t *)(async + 1);
546 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
547 min(async->outlen, data_len));
548 if (!timeout && rc && !async->quiet) {
549 err_len = min(sizeof(errbuf), data_len);
550 efx->type->mcdi_read_response(efx, errbuf, hdr_len,
551 sizeof(errbuf));
552 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
553 err_len, rc);
554 }
555
556 if (async->complete)
557 async->complete(efx, async->cookie, rc, outbuf,
558 min(async->outlen, data_len));
559 kfree(async);
560
561 efx_mcdi_release(mcdi);
562
563 return true;
564 }
565
efx_mcdi_ev_cpl(struct efx_nic * efx,unsigned int seqno,unsigned int datalen,unsigned int mcdi_err)566 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
567 unsigned int datalen, unsigned int mcdi_err)
568 {
569 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
570 bool wake = false;
571
572 spin_lock(&mcdi->iface_lock);
573
574 if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
575 if (mcdi->credits)
576 /* The request has been cancelled */
577 --mcdi->credits;
578 else
579 netif_err(efx, hw, efx->net_dev,
580 "MC response mismatch tx seq 0x%x rx "
581 "seq 0x%x\n", seqno, mcdi->seqno);
582 } else {
583 if (efx->type->mcdi_max_ver >= 2) {
584 /* MCDI v2 responses don't fit in an event */
585 efx_mcdi_read_response_header(efx);
586 } else {
587 mcdi->resprc = efx_mcdi_errno(mcdi_err);
588 mcdi->resp_hdr_len = 4;
589 mcdi->resp_data_len = datalen;
590 }
591
592 wake = true;
593 }
594
595 spin_unlock(&mcdi->iface_lock);
596
597 if (wake) {
598 if (!efx_mcdi_complete_async(mcdi, false))
599 (void) efx_mcdi_complete_sync(mcdi);
600
601 /* If the interface isn't RUNNING_ASYNC or
602 * RUNNING_SYNC then we've received a duplicate
603 * completion after we've already transitioned back to
604 * QUIESCENT. [A subsequent invocation would increment
605 * seqno, so would have failed the seqno check].
606 */
607 }
608 }
609
efx_mcdi_timeout_async(struct timer_list * t)610 static void efx_mcdi_timeout_async(struct timer_list *t)
611 {
612 struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer);
613
614 efx_mcdi_complete_async(mcdi, true);
615 }
616
617 static int
efx_mcdi_check_supported(struct efx_nic * efx,unsigned int cmd,size_t inlen)618 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
619 {
620 if (efx->type->mcdi_max_ver < 0 ||
621 (efx->type->mcdi_max_ver < 2 &&
622 cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
623 return -EINVAL;
624
625 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
626 (efx->type->mcdi_max_ver < 2 &&
627 inlen > MCDI_CTL_SDU_LEN_MAX_V1))
628 return -EMSGSIZE;
629
630 return 0;
631 }
632
efx_mcdi_get_proxy_handle(struct efx_nic * efx,size_t hdr_len,size_t data_len,u32 * proxy_handle)633 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
634 size_t hdr_len, size_t data_len,
635 u32 *proxy_handle)
636 {
637 MCDI_DECLARE_BUF_ERR(testbuf);
638 const size_t buflen = sizeof(testbuf);
639
640 if (!proxy_handle || data_len < buflen)
641 return false;
642
643 efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
644 if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
645 *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
646 return true;
647 }
648
649 return false;
650 }
651
_efx_mcdi_rpc_finish(struct efx_nic * efx,unsigned int cmd,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual,bool quiet,u32 * proxy_handle,int * raw_rc)652 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
653 size_t inlen,
654 efx_dword_t *outbuf, size_t outlen,
655 size_t *outlen_actual, bool quiet,
656 u32 *proxy_handle, int *raw_rc)
657 {
658 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
659 MCDI_DECLARE_BUF_ERR(errbuf);
660 int rc;
661
662 if (mcdi->mode == MCDI_MODE_POLL)
663 rc = efx_mcdi_poll(efx);
664 else
665 rc = efx_mcdi_await_completion(efx);
666
667 if (rc != 0) {
668 netif_err(efx, hw, efx->net_dev,
669 "MC command 0x%x inlen %d mode %d timed out\n",
670 cmd, (int)inlen, mcdi->mode);
671
672 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
673 netif_err(efx, hw, efx->net_dev,
674 "MCDI request was completed without an event\n");
675 rc = 0;
676 }
677
678 efx_mcdi_abandon(efx);
679
680 /* Close the race with efx_mcdi_ev_cpl() executing just too late
681 * and completing a request we've just cancelled, by ensuring
682 * that the seqno check therein fails.
683 */
684 spin_lock_bh(&mcdi->iface_lock);
685 ++mcdi->seqno;
686 ++mcdi->credits;
687 spin_unlock_bh(&mcdi->iface_lock);
688 }
689
690 if (proxy_handle)
691 *proxy_handle = 0;
692
693 if (rc != 0) {
694 if (outlen_actual)
695 *outlen_actual = 0;
696 } else {
697 size_t hdr_len, data_len, err_len;
698
699 /* At the very least we need a memory barrier here to ensure
700 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
701 * a spurious efx_mcdi_ev_cpl() running concurrently by
702 * acquiring the iface_lock. */
703 spin_lock_bh(&mcdi->iface_lock);
704 rc = mcdi->resprc;
705 if (raw_rc)
706 *raw_rc = mcdi->resprc_raw;
707 hdr_len = mcdi->resp_hdr_len;
708 data_len = mcdi->resp_data_len;
709 err_len = min(sizeof(errbuf), data_len);
710 spin_unlock_bh(&mcdi->iface_lock);
711
712 BUG_ON(rc > 0);
713
714 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
715 min(outlen, data_len));
716 if (outlen_actual)
717 *outlen_actual = data_len;
718
719 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
720
721 if (cmd == MC_CMD_REBOOT && rc == -EIO) {
722 /* Don't reset if MC_CMD_REBOOT returns EIO */
723 } else if (rc == -EIO || rc == -EINTR) {
724 netif_err(efx, hw, efx->net_dev, "MC reboot detected\n");
725 netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n",
726 cmd, -rc);
727 if (efx->type->mcdi_reboot_detected)
728 efx->type->mcdi_reboot_detected(efx);
729 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
730 } else if (proxy_handle && (rc == -EPROTO) &&
731 efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
732 proxy_handle)) {
733 mcdi->proxy_rx_status = 0;
734 mcdi->proxy_rx_handle = 0;
735 mcdi->state = MCDI_STATE_PROXY_WAIT;
736 } else if (rc && !quiet) {
737 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
738 rc);
739 }
740
741 if (rc == -EIO || rc == -EINTR) {
742 msleep(MCDI_STATUS_SLEEP_MS);
743 efx_mcdi_poll_reboot(efx);
744 mcdi->new_epoch = true;
745 }
746 }
747
748 if (!proxy_handle || !*proxy_handle)
749 efx_mcdi_release(mcdi);
750 return rc;
751 }
752
efx_mcdi_proxy_abort(struct efx_mcdi_iface * mcdi)753 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
754 {
755 if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
756 /* Interrupt the proxy wait. */
757 mcdi->proxy_rx_status = -EINTR;
758 wake_up(&mcdi->proxy_rx_wq);
759 }
760 }
761
efx_mcdi_ev_proxy_response(struct efx_nic * efx,u32 handle,int status)762 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
763 u32 handle, int status)
764 {
765 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
766
767 WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
768
769 mcdi->proxy_rx_status = efx_mcdi_errno(status);
770 /* Ensure the status is written before we update the handle, since the
771 * latter is used to check if we've finished.
772 */
773 wmb();
774 mcdi->proxy_rx_handle = handle;
775 wake_up(&mcdi->proxy_rx_wq);
776 }
777
efx_mcdi_proxy_wait(struct efx_nic * efx,u32 handle,bool quiet)778 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
779 {
780 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
781 int rc;
782
783 /* Wait for a proxy event, or timeout. */
784 rc = wait_event_timeout(mcdi->proxy_rx_wq,
785 mcdi->proxy_rx_handle != 0 ||
786 mcdi->proxy_rx_status == -EINTR,
787 MCDI_RPC_TIMEOUT);
788
789 if (rc <= 0) {
790 netif_dbg(efx, hw, efx->net_dev,
791 "MCDI proxy timeout %d\n", handle);
792 return -ETIMEDOUT;
793 } else if (mcdi->proxy_rx_handle != handle) {
794 netif_warn(efx, hw, efx->net_dev,
795 "MCDI proxy unexpected handle %d (expected %d)\n",
796 mcdi->proxy_rx_handle, handle);
797 return -EINVAL;
798 }
799
800 return mcdi->proxy_rx_status;
801 }
802
_efx_mcdi_rpc(struct efx_nic * efx,unsigned int cmd,const efx_dword_t * inbuf,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual,bool quiet,int * raw_rc)803 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
804 const efx_dword_t *inbuf, size_t inlen,
805 efx_dword_t *outbuf, size_t outlen,
806 size_t *outlen_actual, bool quiet, int *raw_rc)
807 {
808 u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
809 int rc;
810
811 if (inbuf && inlen && (inbuf == outbuf)) {
812 /* The input buffer can't be aliased with the output. */
813 WARN_ON(1);
814 return -EINVAL;
815 }
816
817 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
818 if (rc)
819 return rc;
820
821 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
822 outlen_actual, quiet, &proxy_handle, raw_rc);
823
824 if (proxy_handle) {
825 /* Handle proxy authorisation. This allows approval of MCDI
826 * operations to be delegated to the admin function, allowing
827 * fine control over (eg) multicast subscriptions.
828 */
829 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
830
831 netif_dbg(efx, hw, efx->net_dev,
832 "MCDI waiting for proxy auth %d\n",
833 proxy_handle);
834 rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
835
836 if (rc == 0) {
837 netif_dbg(efx, hw, efx->net_dev,
838 "MCDI proxy retry %d\n", proxy_handle);
839
840 /* We now retry the original request. */
841 mcdi->state = MCDI_STATE_RUNNING_SYNC;
842 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
843
844 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
845 outbuf, outlen, outlen_actual,
846 quiet, NULL, raw_rc);
847 } else {
848 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
849 "MC command 0x%x failed after proxy auth rc=%d\n",
850 cmd, rc);
851
852 if (rc == -EINTR || rc == -EIO)
853 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
854 efx_mcdi_release(mcdi);
855 }
856 }
857
858 return rc;
859 }
860
_efx_mcdi_rpc_evb_retry(struct efx_nic * efx,unsigned cmd,const efx_dword_t * inbuf,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual,bool quiet)861 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
862 const efx_dword_t *inbuf, size_t inlen,
863 efx_dword_t *outbuf, size_t outlen,
864 size_t *outlen_actual, bool quiet)
865 {
866 int raw_rc = 0;
867 int rc;
868
869 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
870 outbuf, outlen, outlen_actual, true, &raw_rc);
871
872 if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
873 efx->type->is_vf) {
874 /* If the EVB port isn't available within a VF this may
875 * mean the PF is still bringing the switch up. We should
876 * retry our request shortly.
877 */
878 unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
879 unsigned int delay_us = 10000;
880
881 netif_dbg(efx, hw, efx->net_dev,
882 "%s: NO_EVB_PORT; will retry request\n",
883 __func__);
884
885 do {
886 usleep_range(delay_us, delay_us + 10000);
887 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
888 outbuf, outlen, outlen_actual,
889 true, &raw_rc);
890 if (delay_us < 100000)
891 delay_us <<= 1;
892 } while ((rc == -EPROTO) &&
893 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
894 time_before(jiffies, abort_time));
895 }
896
897 if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
898 efx_mcdi_display_error(efx, cmd, inlen,
899 outbuf, outlen, rc);
900
901 return rc;
902 }
903
904 /**
905 * efx_mcdi_rpc - Issue an MCDI command and wait for completion
906 * @efx: NIC through which to issue the command
907 * @cmd: Command type number
908 * @inbuf: Command parameters
909 * @inlen: Length of command parameters, in bytes. Must be a multiple
910 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
911 * @outbuf: Response buffer. May be %NULL if @outlen is 0.
912 * @outlen: Length of response buffer, in bytes. If the actual
913 * response is longer than @outlen & ~3, it will be truncated
914 * to that length.
915 * @outlen_actual: Pointer through which to return the actual response
916 * length. May be %NULL if this is not needed.
917 *
918 * This function may sleep and therefore must be called in an appropriate
919 * context.
920 *
921 * Return: A negative error code, or zero if successful. The error
922 * code may come from the MCDI response or may indicate a failure
923 * to communicate with the MC. In the former case, the response
924 * will still be copied to @outbuf and *@outlen_actual will be
925 * set accordingly. In the latter case, *@outlen_actual will be
926 * set to zero.
927 */
efx_mcdi_rpc(struct efx_nic * efx,unsigned cmd,const efx_dword_t * inbuf,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual)928 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
929 const efx_dword_t *inbuf, size_t inlen,
930 efx_dword_t *outbuf, size_t outlen,
931 size_t *outlen_actual)
932 {
933 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
934 outlen_actual, false);
935 }
936
937 /* Normally, on receiving an error code in the MCDI response,
938 * efx_mcdi_rpc will log an error message containing (among other
939 * things) the raw error code, by means of efx_mcdi_display_error.
940 * This _quiet version suppresses that; if the caller wishes to log
941 * the error conditionally on the return code, it should call this
942 * function and is then responsible for calling efx_mcdi_display_error
943 * as needed.
944 */
efx_mcdi_rpc_quiet(struct efx_nic * efx,unsigned cmd,const efx_dword_t * inbuf,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual)945 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
946 const efx_dword_t *inbuf, size_t inlen,
947 efx_dword_t *outbuf, size_t outlen,
948 size_t *outlen_actual)
949 {
950 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
951 outlen_actual, true);
952 }
953
efx_mcdi_rpc_start(struct efx_nic * efx,unsigned cmd,const efx_dword_t * inbuf,size_t inlen)954 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
955 const efx_dword_t *inbuf, size_t inlen)
956 {
957 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
958 int rc;
959
960 rc = efx_mcdi_check_supported(efx, cmd, inlen);
961 if (rc)
962 return rc;
963
964 if (efx->mc_bist_for_other_fn)
965 return -ENETDOWN;
966
967 if (mcdi->mode == MCDI_MODE_FAIL)
968 return -ENETDOWN;
969
970 efx_mcdi_acquire_sync(mcdi);
971 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
972 return 0;
973 }
974
_efx_mcdi_rpc_async(struct efx_nic * efx,unsigned int cmd,const efx_dword_t * inbuf,size_t inlen,size_t outlen,efx_mcdi_async_completer * complete,unsigned long cookie,bool quiet)975 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
976 const efx_dword_t *inbuf, size_t inlen,
977 size_t outlen,
978 efx_mcdi_async_completer *complete,
979 unsigned long cookie, bool quiet)
980 {
981 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
982 struct efx_mcdi_async_param *async;
983 int rc;
984
985 rc = efx_mcdi_check_supported(efx, cmd, inlen);
986 if (rc)
987 return rc;
988
989 if (efx->mc_bist_for_other_fn)
990 return -ENETDOWN;
991
992 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
993 GFP_ATOMIC);
994 if (!async)
995 return -ENOMEM;
996
997 async->cmd = cmd;
998 async->inlen = inlen;
999 async->outlen = outlen;
1000 async->quiet = quiet;
1001 async->complete = complete;
1002 async->cookie = cookie;
1003 memcpy(async + 1, inbuf, inlen);
1004
1005 spin_lock_bh(&mcdi->async_lock);
1006
1007 if (mcdi->mode == MCDI_MODE_EVENTS) {
1008 list_add_tail(&async->list, &mcdi->async_list);
1009
1010 /* If this is at the front of the queue, try to start it
1011 * immediately
1012 */
1013 if (mcdi->async_list.next == &async->list &&
1014 efx_mcdi_acquire_async(mcdi)) {
1015 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
1016 mod_timer(&mcdi->async_timer,
1017 jiffies + MCDI_RPC_TIMEOUT);
1018 }
1019 } else {
1020 kfree(async);
1021 rc = -ENETDOWN;
1022 }
1023
1024 spin_unlock_bh(&mcdi->async_lock);
1025
1026 return rc;
1027 }
1028
1029 /**
1030 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1031 * @efx: NIC through which to issue the command
1032 * @cmd: Command type number
1033 * @inbuf: Command parameters
1034 * @inlen: Length of command parameters, in bytes
1035 * @outlen: Length to allocate for response buffer, in bytes
1036 * @complete: Function to be called on completion or cancellation.
1037 * @cookie: Arbitrary value to be passed to @complete.
1038 *
1039 * This function does not sleep and therefore may be called in atomic
1040 * context. It will fail if event queues are disabled or if MCDI
1041 * event completions have been disabled due to an error.
1042 *
1043 * If it succeeds, the @complete function will be called exactly once
1044 * in atomic context, when one of the following occurs:
1045 * (a) the completion event is received (in NAPI context)
1046 * (b) event queues are disabled (in the process that disables them)
1047 * (c) the request times-out (in timer context)
1048 */
1049 int
efx_mcdi_rpc_async(struct efx_nic * efx,unsigned int cmd,const efx_dword_t * inbuf,size_t inlen,size_t outlen,efx_mcdi_async_completer * complete,unsigned long cookie)1050 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
1051 const efx_dword_t *inbuf, size_t inlen, size_t outlen,
1052 efx_mcdi_async_completer *complete, unsigned long cookie)
1053 {
1054 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1055 cookie, false);
1056 }
1057
efx_mcdi_rpc_async_quiet(struct efx_nic * efx,unsigned int cmd,const efx_dword_t * inbuf,size_t inlen,size_t outlen,efx_mcdi_async_completer * complete,unsigned long cookie)1058 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
1059 const efx_dword_t *inbuf, size_t inlen,
1060 size_t outlen, efx_mcdi_async_completer *complete,
1061 unsigned long cookie)
1062 {
1063 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1064 cookie, true);
1065 }
1066
efx_mcdi_rpc_finish(struct efx_nic * efx,unsigned cmd,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual)1067 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
1068 efx_dword_t *outbuf, size_t outlen,
1069 size_t *outlen_actual)
1070 {
1071 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1072 outlen_actual, false, NULL, NULL);
1073 }
1074
efx_mcdi_rpc_finish_quiet(struct efx_nic * efx,unsigned cmd,size_t inlen,efx_dword_t * outbuf,size_t outlen,size_t * outlen_actual)1075 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
1076 efx_dword_t *outbuf, size_t outlen,
1077 size_t *outlen_actual)
1078 {
1079 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1080 outlen_actual, true, NULL, NULL);
1081 }
1082
efx_mcdi_display_error(struct efx_nic * efx,unsigned cmd,size_t inlen,efx_dword_t * outbuf,size_t outlen,int rc)1083 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
1084 size_t inlen, efx_dword_t *outbuf,
1085 size_t outlen, int rc)
1086 {
1087 int code = 0, err_arg = 0;
1088
1089 if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
1090 code = MCDI_DWORD(outbuf, ERR_CODE);
1091 if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
1092 err_arg = MCDI_DWORD(outbuf, ERR_ARG);
1093 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
1094 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1095 cmd, inlen, rc, code, err_arg);
1096 }
1097
1098 /* Switch to polled MCDI completions. This can be called in various
1099 * error conditions with various locks held, so it must be lockless.
1100 * Caller is responsible for flushing asynchronous requests later.
1101 */
efx_mcdi_mode_poll(struct efx_nic * efx)1102 void efx_mcdi_mode_poll(struct efx_nic *efx)
1103 {
1104 struct efx_mcdi_iface *mcdi;
1105
1106 if (!efx->mcdi)
1107 return;
1108
1109 mcdi = efx_mcdi(efx);
1110 /* If already in polling mode, nothing to do.
1111 * If in fail-fast state, don't switch to polled completion.
1112 * FLR recovery will do that later.
1113 */
1114 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
1115 return;
1116
1117 /* We can switch from event completion to polled completion, because
1118 * mcdi requests are always completed in shared memory. We do this by
1119 * switching the mode to POLL'd then completing the request.
1120 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1121 *
1122 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1123 * which efx_mcdi_complete_sync() provides for us.
1124 */
1125 mcdi->mode = MCDI_MODE_POLL;
1126
1127 efx_mcdi_complete_sync(mcdi);
1128 }
1129
1130 /* Flush any running or queued asynchronous requests, after event processing
1131 * is stopped
1132 */
efx_mcdi_flush_async(struct efx_nic * efx)1133 void efx_mcdi_flush_async(struct efx_nic *efx)
1134 {
1135 struct efx_mcdi_async_param *async, *next;
1136 struct efx_mcdi_iface *mcdi;
1137
1138 if (!efx->mcdi)
1139 return;
1140
1141 mcdi = efx_mcdi(efx);
1142
1143 /* We must be in poll or fail mode so no more requests can be queued */
1144 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
1145
1146 del_timer_sync(&mcdi->async_timer);
1147
1148 /* If a request is still running, make sure we give the MC
1149 * time to complete it so that the response won't overwrite our
1150 * next request.
1151 */
1152 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
1153 efx_mcdi_poll(efx);
1154 mcdi->state = MCDI_STATE_QUIESCENT;
1155 }
1156
1157 /* Nothing else will access the async list now, so it is safe
1158 * to walk it without holding async_lock. If we hold it while
1159 * calling a completer then lockdep may warn that we have
1160 * acquired locks in the wrong order.
1161 */
1162 list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
1163 if (async->complete)
1164 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
1165 list_del(&async->list);
1166 kfree(async);
1167 }
1168 }
1169
efx_mcdi_mode_event(struct efx_nic * efx)1170 void efx_mcdi_mode_event(struct efx_nic *efx)
1171 {
1172 struct efx_mcdi_iface *mcdi;
1173
1174 if (!efx->mcdi)
1175 return;
1176
1177 mcdi = efx_mcdi(efx);
1178 /* If already in event completion mode, nothing to do.
1179 * If in fail-fast state, don't switch to event completion. FLR
1180 * recovery will do that later.
1181 */
1182 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
1183 return;
1184
1185 /* We can't switch from polled to event completion in the middle of a
1186 * request, because the completion method is specified in the request.
1187 * So acquire the interface to serialise the requestors. We don't need
1188 * to acquire the iface_lock to change the mode here, but we do need a
1189 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1190 * efx_mcdi_acquire() provides.
1191 */
1192 efx_mcdi_acquire_sync(mcdi);
1193 mcdi->mode = MCDI_MODE_EVENTS;
1194 efx_mcdi_release(mcdi);
1195 }
1196
efx_mcdi_ev_death(struct efx_nic * efx,int rc)1197 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
1198 {
1199 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1200
1201 /* If there is an outstanding MCDI request, it has been terminated
1202 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1203 * in polled mode, then do nothing because the MC reboot handler will
1204 * set the header correctly. However, if the mcdi interface is waiting
1205 * for a CMDDONE event it won't receive it [and since all MCDI events
1206 * are sent to the same queue, we can't be racing with
1207 * efx_mcdi_ev_cpl()]
1208 *
1209 * If there is an outstanding asynchronous request, we can't
1210 * complete it now (efx_mcdi_complete() would deadlock). The
1211 * reset process will take care of this.
1212 *
1213 * There's a race here with efx_mcdi_send_request(), because
1214 * we might receive a REBOOT event *before* the request has
1215 * been copied out. In polled mode (during startup) this is
1216 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1217 * event mode, this condition is just an edge-case of
1218 * receiving a REBOOT event after posting the MCDI
1219 * request. Did the mc reboot before or after the copyout? The
1220 * best we can do always is just return failure.
1221 *
1222 * If there is an outstanding proxy response expected it is not going
1223 * to arrive. We should thus abort it.
1224 */
1225 spin_lock(&mcdi->iface_lock);
1226 efx_mcdi_proxy_abort(mcdi);
1227
1228 if (efx_mcdi_complete_sync(mcdi)) {
1229 if (mcdi->mode == MCDI_MODE_EVENTS) {
1230 mcdi->resprc = rc;
1231 mcdi->resp_hdr_len = 0;
1232 mcdi->resp_data_len = 0;
1233 ++mcdi->credits;
1234 }
1235 } else {
1236 int count;
1237
1238 /* Consume the status word since efx_mcdi_rpc_finish() won't */
1239 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1240 rc = efx_mcdi_poll_reboot(efx);
1241 if (rc)
1242 break;
1243 udelay(MCDI_STATUS_DELAY_US);
1244 }
1245
1246 /* On EF10, a CODE_MC_REBOOT event can be received without the
1247 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1248 * If zero was returned from the final call to
1249 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1250 * MC has definitely rebooted so prepare for the reset.
1251 */
1252 if (!rc && efx->type->mcdi_reboot_detected)
1253 efx->type->mcdi_reboot_detected(efx);
1254
1255 mcdi->new_epoch = true;
1256
1257 /* Nobody was waiting for an MCDI request, so trigger a reset */
1258 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1259 }
1260
1261 spin_unlock(&mcdi->iface_lock);
1262 }
1263
1264 /* The MC is going down in to BIST mode. set the BIST flag to block
1265 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
1266 * (which doesn't actually execute a reset, it waits for the controlling
1267 * function to reset it).
1268 */
efx_mcdi_ev_bist(struct efx_nic * efx)1269 static void efx_mcdi_ev_bist(struct efx_nic *efx)
1270 {
1271 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1272
1273 spin_lock(&mcdi->iface_lock);
1274 efx->mc_bist_for_other_fn = true;
1275 efx_mcdi_proxy_abort(mcdi);
1276
1277 if (efx_mcdi_complete_sync(mcdi)) {
1278 if (mcdi->mode == MCDI_MODE_EVENTS) {
1279 mcdi->resprc = -EIO;
1280 mcdi->resp_hdr_len = 0;
1281 mcdi->resp_data_len = 0;
1282 ++mcdi->credits;
1283 }
1284 }
1285 mcdi->new_epoch = true;
1286 efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
1287 spin_unlock(&mcdi->iface_lock);
1288 }
1289
1290 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1291 * to recover.
1292 */
efx_mcdi_abandon(struct efx_nic * efx)1293 static void efx_mcdi_abandon(struct efx_nic *efx)
1294 {
1295 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1296
1297 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1298 return; /* it had already been done */
1299 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1300 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1301 }
1302
1303 /* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */
efx_mcdi_process_event(struct efx_channel * channel,efx_qword_t * event)1304 void efx_mcdi_process_event(struct efx_channel *channel,
1305 efx_qword_t *event)
1306 {
1307 struct efx_nic *efx = channel->efx;
1308 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1309 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1310
1311 switch (code) {
1312 case MCDI_EVENT_CODE_BADSSERT:
1313 netif_err(efx, hw, efx->net_dev,
1314 "MC watchdog or assertion failure at 0x%x\n", data);
1315 efx_mcdi_ev_death(efx, -EINTR);
1316 break;
1317
1318 case MCDI_EVENT_CODE_PMNOTICE:
1319 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1320 break;
1321
1322 case MCDI_EVENT_CODE_CMDDONE:
1323 efx_mcdi_ev_cpl(efx,
1324 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1325 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1326 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1327 break;
1328
1329 case MCDI_EVENT_CODE_LINKCHANGE:
1330 efx_mcdi_process_link_change(efx, event);
1331 break;
1332 case MCDI_EVENT_CODE_SENSOREVT:
1333 efx_mcdi_sensor_event(efx, event);
1334 break;
1335 case MCDI_EVENT_CODE_SCHEDERR:
1336 netif_dbg(efx, hw, efx->net_dev,
1337 "MC Scheduler alert (0x%x)\n", data);
1338 break;
1339 case MCDI_EVENT_CODE_REBOOT:
1340 case MCDI_EVENT_CODE_MC_REBOOT:
1341 netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1342 efx_mcdi_ev_death(efx, -EIO);
1343 break;
1344 case MCDI_EVENT_CODE_MC_BIST:
1345 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1346 efx_mcdi_ev_bist(efx);
1347 break;
1348 case MCDI_EVENT_CODE_MAC_STATS_DMA:
1349 /* MAC stats are gather lazily. We can ignore this. */
1350 break;
1351 case MCDI_EVENT_CODE_FLR:
1352 if (efx->type->sriov_flr)
1353 efx->type->sriov_flr(efx,
1354 MCDI_EVENT_FIELD(*event, FLR_VF));
1355 break;
1356 case MCDI_EVENT_CODE_PTP_RX:
1357 case MCDI_EVENT_CODE_PTP_FAULT:
1358 case MCDI_EVENT_CODE_PTP_PPS:
1359 efx_ptp_event(efx, event);
1360 break;
1361 case MCDI_EVENT_CODE_PTP_TIME:
1362 efx_time_sync_event(channel, event);
1363 break;
1364 case MCDI_EVENT_CODE_TX_FLUSH:
1365 case MCDI_EVENT_CODE_RX_FLUSH:
1366 /* Two flush events will be sent: one to the same event
1367 * queue as completions, and one to event queue 0.
1368 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1369 * flag will be set, and we should ignore the event
1370 * because we want to wait for all completions.
1371 */
1372 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1373 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1374 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1375 efx_ef10_handle_drain_event(efx);
1376 break;
1377 case MCDI_EVENT_CODE_TX_ERR:
1378 case MCDI_EVENT_CODE_RX_ERR:
1379 netif_err(efx, hw, efx->net_dev,
1380 "%s DMA error (event: "EFX_QWORD_FMT")\n",
1381 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1382 EFX_QWORD_VAL(*event));
1383 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1384 break;
1385 case MCDI_EVENT_CODE_PROXY_RESPONSE:
1386 efx_mcdi_ev_proxy_response(efx,
1387 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
1388 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
1389 break;
1390 default:
1391 netif_err(efx, hw, efx->net_dev,
1392 "Unknown MCDI event " EFX_QWORD_FMT "\n",
1393 EFX_QWORD_VAL(*event));
1394 }
1395 }
1396
1397 /**************************************************************************
1398 *
1399 * Specific request functions
1400 *
1401 **************************************************************************
1402 */
1403
efx_mcdi_print_fwver(struct efx_nic * efx,char * buf,size_t len)1404 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1405 {
1406 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1407 size_t outlength;
1408 const __le16 *ver_words;
1409 size_t offset;
1410 int rc;
1411
1412 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1413 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1414 outbuf, sizeof(outbuf), &outlength);
1415 if (rc)
1416 goto fail;
1417 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1418 rc = -EIO;
1419 goto fail;
1420 }
1421
1422 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1423 offset = snprintf(buf, len, "%u.%u.%u.%u",
1424 le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
1425 le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
1426
1427 /* EF10 may have multiple datapath firmware variants within a
1428 * single version. Report which variants are running.
1429 */
1430 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
1431 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1432
1433 offset += snprintf(buf + offset, len - offset, " rx%x tx%x",
1434 nic_data->rx_dpcpu_fw_id,
1435 nic_data->tx_dpcpu_fw_id);
1436
1437 /* It's theoretically possible for the string to exceed 31
1438 * characters, though in practice the first three version
1439 * components are short enough that this doesn't happen.
1440 */
1441 if (WARN_ON(offset >= len))
1442 buf[0] = 0;
1443 }
1444
1445 return;
1446
1447 fail:
1448 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1449 buf[0] = 0;
1450 }
1451
efx_mcdi_drv_attach(struct efx_nic * efx,bool driver_operating,bool * was_attached)1452 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1453 bool *was_attached)
1454 {
1455 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1456 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1457 size_t outlen;
1458 int rc;
1459
1460 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1461 driver_operating ? 1 : 0);
1462 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1463 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1464
1465 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1466 outbuf, sizeof(outbuf), &outlen);
1467 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1468 * specified will fail with EPERM, and we have to tell the MC we don't
1469 * care what firmware we get.
1470 */
1471 if (rc == -EPERM) {
1472 netif_dbg(efx, probe, efx->net_dev,
1473 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1474 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1475 MC_CMD_FW_DONT_CARE);
1476 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1477 sizeof(inbuf), outbuf, sizeof(outbuf),
1478 &outlen);
1479 }
1480 if (rc) {
1481 efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1482 outbuf, outlen, rc);
1483 goto fail;
1484 }
1485 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1486 rc = -EIO;
1487 goto fail;
1488 }
1489
1490 if (driver_operating) {
1491 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1492 efx->mcdi->fn_flags =
1493 MCDI_DWORD(outbuf,
1494 DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1495 } else {
1496 /* Synthesise flags for Siena */
1497 efx->mcdi->fn_flags =
1498 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1499 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1500 (efx_port_num(efx) == 0) <<
1501 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1502 }
1503 }
1504
1505 /* We currently assume we have control of the external link
1506 * and are completely trusted by firmware. Abort probing
1507 * if that's not true for this function.
1508 */
1509
1510 if (was_attached != NULL)
1511 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1512 return 0;
1513
1514 fail:
1515 netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1516 return rc;
1517 }
1518
efx_mcdi_get_board_cfg(struct efx_nic * efx,u8 * mac_address,u16 * fw_subtype_list,u32 * capabilities)1519 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1520 u16 *fw_subtype_list, u32 *capabilities)
1521 {
1522 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1523 size_t outlen, i;
1524 int port_num = efx_port_num(efx);
1525 int rc;
1526
1527 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1528 /* we need __aligned(2) for ether_addr_copy */
1529 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1530 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1531
1532 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1533 outbuf, sizeof(outbuf), &outlen);
1534 if (rc)
1535 goto fail;
1536
1537 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1538 rc = -EIO;
1539 goto fail;
1540 }
1541
1542 if (mac_address)
1543 ether_addr_copy(mac_address,
1544 port_num ?
1545 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1546 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1547 if (fw_subtype_list) {
1548 for (i = 0;
1549 i < MCDI_VAR_ARRAY_LEN(outlen,
1550 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1551 i++)
1552 fw_subtype_list[i] = MCDI_ARRAY_WORD(
1553 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1554 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1555 fw_subtype_list[i] = 0;
1556 }
1557 if (capabilities) {
1558 if (port_num)
1559 *capabilities = MCDI_DWORD(outbuf,
1560 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1561 else
1562 *capabilities = MCDI_DWORD(outbuf,
1563 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1564 }
1565
1566 return 0;
1567
1568 fail:
1569 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1570 __func__, rc, (int)outlen);
1571
1572 return rc;
1573 }
1574
efx_mcdi_log_ctrl(struct efx_nic * efx,bool evq,bool uart,u32 dest_evq)1575 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1576 {
1577 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1578 u32 dest = 0;
1579 int rc;
1580
1581 if (uart)
1582 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1583 if (evq)
1584 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1585
1586 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1587 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1588
1589 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1590
1591 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1592 NULL, 0, NULL);
1593 return rc;
1594 }
1595
efx_mcdi_nvram_types(struct efx_nic * efx,u32 * nvram_types_out)1596 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1597 {
1598 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1599 size_t outlen;
1600 int rc;
1601
1602 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1603
1604 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1605 outbuf, sizeof(outbuf), &outlen);
1606 if (rc)
1607 goto fail;
1608 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1609 rc = -EIO;
1610 goto fail;
1611 }
1612
1613 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1614 return 0;
1615
1616 fail:
1617 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1618 __func__, rc);
1619 return rc;
1620 }
1621
efx_mcdi_nvram_info(struct efx_nic * efx,unsigned int type,size_t * size_out,size_t * erase_size_out,bool * protected_out)1622 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1623 size_t *size_out, size_t *erase_size_out,
1624 bool *protected_out)
1625 {
1626 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1627 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1628 size_t outlen;
1629 int rc;
1630
1631 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1632
1633 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1634 outbuf, sizeof(outbuf), &outlen);
1635 if (rc)
1636 goto fail;
1637 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1638 rc = -EIO;
1639 goto fail;
1640 }
1641
1642 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1643 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1644 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1645 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1646 return 0;
1647
1648 fail:
1649 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1650 return rc;
1651 }
1652
efx_mcdi_nvram_test(struct efx_nic * efx,unsigned int type)1653 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1654 {
1655 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1656 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1657 int rc;
1658
1659 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1660
1661 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1662 outbuf, sizeof(outbuf), NULL);
1663 if (rc)
1664 return rc;
1665
1666 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1667 case MC_CMD_NVRAM_TEST_PASS:
1668 case MC_CMD_NVRAM_TEST_NOTSUPP:
1669 return 0;
1670 default:
1671 return -EIO;
1672 }
1673 }
1674
efx_mcdi_nvram_test_all(struct efx_nic * efx)1675 int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1676 {
1677 u32 nvram_types;
1678 unsigned int type;
1679 int rc;
1680
1681 rc = efx_mcdi_nvram_types(efx, &nvram_types);
1682 if (rc)
1683 goto fail1;
1684
1685 type = 0;
1686 while (nvram_types != 0) {
1687 if (nvram_types & 1) {
1688 rc = efx_mcdi_nvram_test(efx, type);
1689 if (rc)
1690 goto fail2;
1691 }
1692 type++;
1693 nvram_types >>= 1;
1694 }
1695
1696 return 0;
1697
1698 fail2:
1699 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1700 __func__, type);
1701 fail1:
1702 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1703 return rc;
1704 }
1705
1706 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1707 * negative on error.
1708 */
efx_mcdi_read_assertion(struct efx_nic * efx)1709 static int efx_mcdi_read_assertion(struct efx_nic *efx)
1710 {
1711 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1712 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1713 unsigned int flags, index;
1714 const char *reason;
1715 size_t outlen;
1716 int retry;
1717 int rc;
1718
1719 /* Attempt to read any stored assertion state before we reboot
1720 * the mcfw out of the assertion handler. Retry twice, once
1721 * because a boot-time assertion might cause this command to fail
1722 * with EINTR. And once again because GET_ASSERTS can race with
1723 * MC_CMD_REBOOT running on the other port. */
1724 retry = 2;
1725 do {
1726 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1727 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1728 inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1729 outbuf, sizeof(outbuf), &outlen);
1730 if (rc == -EPERM)
1731 return 0;
1732 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1733
1734 if (rc) {
1735 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1736 MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1737 outlen, rc);
1738 return rc;
1739 }
1740 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1741 return -EIO;
1742
1743 /* Print out any recorded assertion state */
1744 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1745 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1746 return 0;
1747
1748 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1749 ? "system-level assertion"
1750 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1751 ? "thread-level assertion"
1752 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1753 ? "watchdog reset"
1754 : "unknown assertion";
1755 netif_err(efx, hw, efx->net_dev,
1756 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1757 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1758 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1759
1760 /* Print out the registers */
1761 for (index = 0;
1762 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1763 index++)
1764 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1765 1 + index,
1766 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1767 index));
1768
1769 return 1;
1770 }
1771
efx_mcdi_exit_assertion(struct efx_nic * efx)1772 static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1773 {
1774 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1775 int rc;
1776
1777 /* If the MC is running debug firmware, it might now be
1778 * waiting for a debugger to attach, but we just want it to
1779 * reboot. We set a flag that makes the command a no-op if it
1780 * has already done so.
1781 * The MCDI will thus return either 0 or -EIO.
1782 */
1783 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1784 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1785 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1786 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1787 NULL, 0, NULL);
1788 if (rc == -EIO)
1789 rc = 0;
1790 if (rc)
1791 efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1792 NULL, 0, rc);
1793 return rc;
1794 }
1795
efx_mcdi_handle_assertion(struct efx_nic * efx)1796 int efx_mcdi_handle_assertion(struct efx_nic *efx)
1797 {
1798 int rc;
1799
1800 rc = efx_mcdi_read_assertion(efx);
1801 if (rc <= 0)
1802 return rc;
1803
1804 return efx_mcdi_exit_assertion(efx);
1805 }
1806
efx_mcdi_set_id_led(struct efx_nic * efx,enum efx_led_mode mode)1807 void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1808 {
1809 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1810 int rc;
1811
1812 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1813 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1814 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1815
1816 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1817
1818 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1819
1820 rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1821 NULL, 0, NULL);
1822 }
1823
efx_mcdi_reset_func(struct efx_nic * efx)1824 static int efx_mcdi_reset_func(struct efx_nic *efx)
1825 {
1826 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1827 int rc;
1828
1829 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1830 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1831 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1832 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1833 NULL, 0, NULL);
1834 return rc;
1835 }
1836
efx_mcdi_reset_mc(struct efx_nic * efx)1837 static int efx_mcdi_reset_mc(struct efx_nic *efx)
1838 {
1839 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1840 int rc;
1841
1842 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1843 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1844 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1845 NULL, 0, NULL);
1846 /* White is black, and up is down */
1847 if (rc == -EIO)
1848 return 0;
1849 if (rc == 0)
1850 rc = -EIO;
1851 return rc;
1852 }
1853
efx_mcdi_map_reset_reason(enum reset_type reason)1854 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1855 {
1856 return RESET_TYPE_RECOVER_OR_ALL;
1857 }
1858
efx_mcdi_reset(struct efx_nic * efx,enum reset_type method)1859 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1860 {
1861 int rc;
1862
1863 /* If MCDI is down, we can't handle_assertion */
1864 if (method == RESET_TYPE_MCDI_TIMEOUT) {
1865 rc = pci_reset_function(efx->pci_dev);
1866 if (rc)
1867 return rc;
1868 /* Re-enable polled MCDI completion */
1869 if (efx->mcdi) {
1870 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1871 mcdi->mode = MCDI_MODE_POLL;
1872 }
1873 return 0;
1874 }
1875
1876 /* Recover from a failed assertion pre-reset */
1877 rc = efx_mcdi_handle_assertion(efx);
1878 if (rc)
1879 return rc;
1880
1881 if (method == RESET_TYPE_DATAPATH)
1882 return 0;
1883 else if (method == RESET_TYPE_WORLD)
1884 return efx_mcdi_reset_mc(efx);
1885 else
1886 return efx_mcdi_reset_func(efx);
1887 }
1888
efx_mcdi_wol_filter_set(struct efx_nic * efx,u32 type,const u8 * mac,int * id_out)1889 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1890 const u8 *mac, int *id_out)
1891 {
1892 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1893 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1894 size_t outlen;
1895 int rc;
1896
1897 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1898 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1899 MC_CMD_FILTER_MODE_SIMPLE);
1900 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1901
1902 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1903 outbuf, sizeof(outbuf), &outlen);
1904 if (rc)
1905 goto fail;
1906
1907 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1908 rc = -EIO;
1909 goto fail;
1910 }
1911
1912 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1913
1914 return 0;
1915
1916 fail:
1917 *id_out = -1;
1918 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1919 return rc;
1920
1921 }
1922
1923
1924 int
efx_mcdi_wol_filter_set_magic(struct efx_nic * efx,const u8 * mac,int * id_out)1925 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
1926 {
1927 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1928 }
1929
1930
efx_mcdi_wol_filter_get_magic(struct efx_nic * efx,int * id_out)1931 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1932 {
1933 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1934 size_t outlen;
1935 int rc;
1936
1937 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1938 outbuf, sizeof(outbuf), &outlen);
1939 if (rc)
1940 goto fail;
1941
1942 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1943 rc = -EIO;
1944 goto fail;
1945 }
1946
1947 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1948
1949 return 0;
1950
1951 fail:
1952 *id_out = -1;
1953 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1954 return rc;
1955 }
1956
1957
efx_mcdi_wol_filter_remove(struct efx_nic * efx,int id)1958 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1959 {
1960 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1961 int rc;
1962
1963 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1964
1965 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1966 NULL, 0, NULL);
1967 return rc;
1968 }
1969
efx_mcdi_flush_rxqs(struct efx_nic * efx)1970 int efx_mcdi_flush_rxqs(struct efx_nic *efx)
1971 {
1972 struct efx_channel *channel;
1973 struct efx_rx_queue *rx_queue;
1974 MCDI_DECLARE_BUF(inbuf,
1975 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1976 int rc, count;
1977
1978 BUILD_BUG_ON(EFX_MAX_CHANNELS >
1979 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1980
1981 count = 0;
1982 efx_for_each_channel(channel, efx) {
1983 efx_for_each_channel_rx_queue(rx_queue, channel) {
1984 if (rx_queue->flush_pending) {
1985 rx_queue->flush_pending = false;
1986 atomic_dec(&efx->rxq_flush_pending);
1987 MCDI_SET_ARRAY_DWORD(
1988 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1989 count, efx_rx_queue_index(rx_queue));
1990 count++;
1991 }
1992 }
1993 }
1994
1995 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
1996 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
1997 WARN_ON(rc < 0);
1998
1999 return rc;
2000 }
2001
efx_mcdi_wol_filter_reset(struct efx_nic * efx)2002 int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
2003 {
2004 int rc;
2005
2006 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
2007 return rc;
2008 }
2009
efx_mcdi_set_workaround(struct efx_nic * efx,u32 type,bool enabled,unsigned int * flags)2010 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
2011 unsigned int *flags)
2012 {
2013 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
2014 MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
2015 size_t outlen;
2016 int rc;
2017
2018 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
2019 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
2020 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
2021 rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
2022 outbuf, sizeof(outbuf), &outlen);
2023 if (rc)
2024 return rc;
2025
2026 if (!flags)
2027 return 0;
2028
2029 if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2030 *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
2031 else
2032 *flags = 0;
2033
2034 return 0;
2035 }
2036
efx_mcdi_get_workarounds(struct efx_nic * efx,unsigned int * impl_out,unsigned int * enabled_out)2037 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
2038 unsigned int *enabled_out)
2039 {
2040 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2041 size_t outlen;
2042 int rc;
2043
2044 rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
2045 outbuf, sizeof(outbuf), &outlen);
2046 if (rc)
2047 goto fail;
2048
2049 if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
2050 rc = -EIO;
2051 goto fail;
2052 }
2053
2054 if (impl_out)
2055 *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2056
2057 if (enabled_out)
2058 *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
2059
2060 return 0;
2061
2062 fail:
2063 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2064 * terrifying. The call site will have to deal with it though.
2065 */
2066 netif_cond_dbg(efx, hw, efx->net_dev, rc == -ENOSYS, err,
2067 "%s: failed rc=%d\n", __func__, rc);
2068 return rc;
2069 }
2070
2071 #ifdef CONFIG_SFC_MTD
2072
2073 #define EFX_MCDI_NVRAM_LEN_MAX 128
2074
efx_mcdi_nvram_update_start(struct efx_nic * efx,unsigned int type)2075 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
2076 {
2077 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
2078 int rc;
2079
2080 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
2081
2082 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
2083
2084 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
2085 NULL, 0, NULL);
2086 return rc;
2087 }
2088
efx_mcdi_nvram_read(struct efx_nic * efx,unsigned int type,loff_t offset,u8 * buffer,size_t length)2089 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
2090 loff_t offset, u8 *buffer, size_t length)
2091 {
2092 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
2093 MCDI_DECLARE_BUF(outbuf,
2094 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2095 size_t outlen;
2096 int rc;
2097
2098 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
2099 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
2100 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
2101
2102 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
2103 outbuf, sizeof(outbuf), &outlen);
2104 if (rc)
2105 return rc;
2106
2107 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
2108 return 0;
2109 }
2110
efx_mcdi_nvram_write(struct efx_nic * efx,unsigned int type,loff_t offset,const u8 * buffer,size_t length)2111 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
2112 loff_t offset, const u8 *buffer, size_t length)
2113 {
2114 MCDI_DECLARE_BUF(inbuf,
2115 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2116 int rc;
2117
2118 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
2119 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
2120 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
2121 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
2122
2123 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
2124
2125 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
2126 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
2127 NULL, 0, NULL);
2128 return rc;
2129 }
2130
efx_mcdi_nvram_erase(struct efx_nic * efx,unsigned int type,loff_t offset,size_t length)2131 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
2132 loff_t offset, size_t length)
2133 {
2134 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
2135 int rc;
2136
2137 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
2138 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
2139 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
2140
2141 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
2142
2143 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
2144 NULL, 0, NULL);
2145 return rc;
2146 }
2147
efx_mcdi_nvram_update_finish(struct efx_nic * efx,unsigned int type)2148 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
2149 {
2150 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
2151 int rc;
2152
2153 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
2154
2155 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
2156
2157 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
2158 NULL, 0, NULL);
2159 return rc;
2160 }
2161
efx_mcdi_mtd_read(struct mtd_info * mtd,loff_t start,size_t len,size_t * retlen,u8 * buffer)2162 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
2163 size_t len, size_t *retlen, u8 *buffer)
2164 {
2165 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2166 struct efx_nic *efx = mtd->priv;
2167 loff_t offset = start;
2168 loff_t end = min_t(loff_t, start + len, mtd->size);
2169 size_t chunk;
2170 int rc = 0;
2171
2172 while (offset < end) {
2173 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2174 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
2175 buffer, chunk);
2176 if (rc)
2177 goto out;
2178 offset += chunk;
2179 buffer += chunk;
2180 }
2181 out:
2182 *retlen = offset - start;
2183 return rc;
2184 }
2185
efx_mcdi_mtd_erase(struct mtd_info * mtd,loff_t start,size_t len)2186 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
2187 {
2188 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2189 struct efx_nic *efx = mtd->priv;
2190 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
2191 loff_t end = min_t(loff_t, start + len, mtd->size);
2192 size_t chunk = part->common.mtd.erasesize;
2193 int rc = 0;
2194
2195 if (!part->updating) {
2196 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2197 if (rc)
2198 goto out;
2199 part->updating = true;
2200 }
2201
2202 /* The MCDI interface can in fact do multiple erase blocks at once;
2203 * but erasing may be slow, so we make multiple calls here to avoid
2204 * tripping the MCDI RPC timeout. */
2205 while (offset < end) {
2206 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
2207 chunk);
2208 if (rc)
2209 goto out;
2210 offset += chunk;
2211 }
2212 out:
2213 return rc;
2214 }
2215
efx_mcdi_mtd_write(struct mtd_info * mtd,loff_t start,size_t len,size_t * retlen,const u8 * buffer)2216 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2217 size_t len, size_t *retlen, const u8 *buffer)
2218 {
2219 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2220 struct efx_nic *efx = mtd->priv;
2221 loff_t offset = start;
2222 loff_t end = min_t(loff_t, start + len, mtd->size);
2223 size_t chunk;
2224 int rc = 0;
2225
2226 if (!part->updating) {
2227 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2228 if (rc)
2229 goto out;
2230 part->updating = true;
2231 }
2232
2233 while (offset < end) {
2234 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2235 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2236 buffer, chunk);
2237 if (rc)
2238 goto out;
2239 offset += chunk;
2240 buffer += chunk;
2241 }
2242 out:
2243 *retlen = offset - start;
2244 return rc;
2245 }
2246
efx_mcdi_mtd_sync(struct mtd_info * mtd)2247 int efx_mcdi_mtd_sync(struct mtd_info *mtd)
2248 {
2249 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2250 struct efx_nic *efx = mtd->priv;
2251 int rc = 0;
2252
2253 if (part->updating) {
2254 part->updating = false;
2255 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2256 }
2257
2258 return rc;
2259 }
2260
efx_mcdi_mtd_rename(struct efx_mtd_partition * part)2261 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
2262 {
2263 struct efx_mcdi_mtd_partition *mcdi_part =
2264 container_of(part, struct efx_mcdi_mtd_partition, common);
2265 struct efx_nic *efx = part->mtd.priv;
2266
2267 snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2268 efx->name, part->type_name, mcdi_part->fw_subtype);
2269 }
2270
2271 #endif /* CONFIG_SFC_MTD */
2272