1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/crc32.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "farch_regs.h"
23 #include "sriov.h"
24 #include "siena_sriov.h"
25 #include "io.h"
26 #include "workarounds.h"
27 
28 /* Falcon-architecture (SFC9000-family) support */
29 
30 /**************************************************************************
31  *
32  * Configurable values
33  *
34  **************************************************************************
35  */
36 
37 /* This is set to 16 for a good reason.  In summary, if larger than
38  * 16, the descriptor cache holds more than a default socket
39  * buffer's worth of packets (for UDP we can only have at most one
40  * socket buffer's worth outstanding).  This combined with the fact
41  * that we only get 1 TX event per descriptor cache means the NIC
42  * goes idle.
43  */
44 #define TX_DC_ENTRIES 16
45 #define TX_DC_ENTRIES_ORDER 1
46 
47 #define RX_DC_ENTRIES 64
48 #define RX_DC_ENTRIES_ORDER 3
49 
50 /* If EFX_MAX_INT_ERRORS internal errors occur within
51  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
52  * disable it.
53  */
54 #define EFX_INT_ERROR_EXPIRE 3600
55 #define EFX_MAX_INT_ERRORS 5
56 
57 /* Depth of RX flush request fifo */
58 #define EFX_RX_FLUSH_COUNT 4
59 
60 /* Driver generated events */
61 #define _EFX_CHANNEL_MAGIC_TEST		0x000101
62 #define _EFX_CHANNEL_MAGIC_FILL		0x000102
63 #define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
64 #define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
65 
66 #define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
67 #define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
68 
69 #define EFX_CHANNEL_MAGIC_TEST(_channel)				\
70 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
71 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
72 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
73 			   efx_rx_queue_index(_rx_queue))
74 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
75 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
76 			   efx_rx_queue_index(_rx_queue))
77 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
78 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
79 			   (_tx_queue)->queue)
80 
81 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
82 
83 /**************************************************************************
84  *
85  * Hardware access
86  *
87  **************************************************************************/
88 
efx_write_buf_tbl(struct efx_nic * efx,efx_qword_t * value,unsigned int index)89 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
90 				     unsigned int index)
91 {
92 	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
93 			value, index);
94 }
95 
efx_masked_compare_oword(const efx_oword_t * a,const efx_oword_t * b,const efx_oword_t * mask)96 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
97 				     const efx_oword_t *mask)
98 {
99 	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
100 		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
101 }
102 
efx_farch_test_registers(struct efx_nic * efx,const struct efx_farch_register_test * regs,size_t n_regs)103 int efx_farch_test_registers(struct efx_nic *efx,
104 			     const struct efx_farch_register_test *regs,
105 			     size_t n_regs)
106 {
107 	unsigned address = 0;
108 	int i, j;
109 	efx_oword_t mask, imask, original, reg, buf;
110 
111 	for (i = 0; i < n_regs; ++i) {
112 		address = regs[i].address;
113 		mask = imask = regs[i].mask;
114 		EFX_INVERT_OWORD(imask);
115 
116 		efx_reado(efx, &original, address);
117 
118 		/* bit sweep on and off */
119 		for (j = 0; j < 128; j++) {
120 			if (!EFX_EXTRACT_OWORD32(mask, j, j))
121 				continue;
122 
123 			/* Test this testable bit can be set in isolation */
124 			EFX_AND_OWORD(reg, original, mask);
125 			EFX_SET_OWORD32(reg, j, j, 1);
126 
127 			efx_writeo(efx, &reg, address);
128 			efx_reado(efx, &buf, address);
129 
130 			if (efx_masked_compare_oword(&reg, &buf, &mask))
131 				goto fail;
132 
133 			/* Test this testable bit can be cleared in isolation */
134 			EFX_OR_OWORD(reg, original, mask);
135 			EFX_SET_OWORD32(reg, j, j, 0);
136 
137 			efx_writeo(efx, &reg, address);
138 			efx_reado(efx, &buf, address);
139 
140 			if (efx_masked_compare_oword(&reg, &buf, &mask))
141 				goto fail;
142 		}
143 
144 		efx_writeo(efx, &original, address);
145 	}
146 
147 	return 0;
148 
149 fail:
150 	netif_err(efx, hw, efx->net_dev,
151 		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
152 		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
153 		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
154 	return -EIO;
155 }
156 
157 /**************************************************************************
158  *
159  * Special buffer handling
160  * Special buffers are used for event queues and the TX and RX
161  * descriptor rings.
162  *
163  *************************************************************************/
164 
165 /*
166  * Initialise a special buffer
167  *
168  * This will define a buffer (previously allocated via
169  * efx_alloc_special_buffer()) in the buffer table, allowing
170  * it to be used for event queues, descriptor rings etc.
171  */
172 static void
efx_init_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)173 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
174 {
175 	efx_qword_t buf_desc;
176 	unsigned int index;
177 	dma_addr_t dma_addr;
178 	int i;
179 
180 	EFX_WARN_ON_PARANOID(!buffer->buf.addr);
181 
182 	/* Write buffer descriptors to NIC */
183 	for (i = 0; i < buffer->entries; i++) {
184 		index = buffer->index + i;
185 		dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
186 		netif_dbg(efx, probe, efx->net_dev,
187 			  "mapping special buffer %d at %llx\n",
188 			  index, (unsigned long long)dma_addr);
189 		EFX_POPULATE_QWORD_3(buf_desc,
190 				     FRF_AZ_BUF_ADR_REGION, 0,
191 				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
192 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
193 		efx_write_buf_tbl(efx, &buf_desc, index);
194 	}
195 }
196 
197 /* Unmaps a buffer and clears the buffer table entries */
198 static void
efx_fini_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)199 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
200 {
201 	efx_oword_t buf_tbl_upd;
202 	unsigned int start = buffer->index;
203 	unsigned int end = (buffer->index + buffer->entries - 1);
204 
205 	if (!buffer->entries)
206 		return;
207 
208 	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
209 		  buffer->index, buffer->index + buffer->entries - 1);
210 
211 	EFX_POPULATE_OWORD_4(buf_tbl_upd,
212 			     FRF_AZ_BUF_UPD_CMD, 0,
213 			     FRF_AZ_BUF_CLR_CMD, 1,
214 			     FRF_AZ_BUF_CLR_END_ID, end,
215 			     FRF_AZ_BUF_CLR_START_ID, start);
216 	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
217 }
218 
219 /*
220  * Allocate a new special buffer
221  *
222  * This allocates memory for a new buffer, clears it and allocates a
223  * new buffer ID range.  It does not write into the buffer table.
224  *
225  * This call will allocate 4KB buffers, since 8KB buffers can't be
226  * used for event queues and descriptor rings.
227  */
efx_alloc_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer,unsigned int len)228 static int efx_alloc_special_buffer(struct efx_nic *efx,
229 				    struct efx_special_buffer *buffer,
230 				    unsigned int len)
231 {
232 #ifdef CONFIG_SFC_SRIOV
233 	struct siena_nic_data *nic_data = efx->nic_data;
234 #endif
235 	len = ALIGN(len, EFX_BUF_SIZE);
236 
237 	if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
238 		return -ENOMEM;
239 	buffer->entries = len / EFX_BUF_SIZE;
240 	BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
241 
242 	/* Select new buffer ID */
243 	buffer->index = efx->next_buffer_table;
244 	efx->next_buffer_table += buffer->entries;
245 #ifdef CONFIG_SFC_SRIOV
246 	BUG_ON(efx_siena_sriov_enabled(efx) &&
247 	       nic_data->vf_buftbl_base < efx->next_buffer_table);
248 #endif
249 
250 	netif_dbg(efx, probe, efx->net_dev,
251 		  "allocating special buffers %d-%d at %llx+%x "
252 		  "(virt %p phys %llx)\n", buffer->index,
253 		  buffer->index + buffer->entries - 1,
254 		  (u64)buffer->buf.dma_addr, len,
255 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
256 
257 	return 0;
258 }
259 
260 static void
efx_free_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)261 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
262 {
263 	if (!buffer->buf.addr)
264 		return;
265 
266 	netif_dbg(efx, hw, efx->net_dev,
267 		  "deallocating special buffers %d-%d at %llx+%x "
268 		  "(virt %p phys %llx)\n", buffer->index,
269 		  buffer->index + buffer->entries - 1,
270 		  (u64)buffer->buf.dma_addr, buffer->buf.len,
271 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
272 
273 	efx_nic_free_buffer(efx, &buffer->buf);
274 	buffer->entries = 0;
275 }
276 
277 /**************************************************************************
278  *
279  * TX path
280  *
281  **************************************************************************/
282 
283 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
efx_farch_notify_tx_desc(struct efx_tx_queue * tx_queue)284 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
285 {
286 	unsigned write_ptr;
287 	efx_dword_t reg;
288 
289 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
290 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
291 	efx_writed_page(tx_queue->efx, &reg,
292 			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
293 }
294 
295 /* Write pointer and first descriptor for TX descriptor ring */
efx_farch_push_tx_desc(struct efx_tx_queue * tx_queue,const efx_qword_t * txd)296 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
297 					  const efx_qword_t *txd)
298 {
299 	unsigned write_ptr;
300 	efx_oword_t reg;
301 
302 	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
303 	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
304 
305 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
306 	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
307 			     FRF_AZ_TX_DESC_WPTR, write_ptr);
308 	reg.qword[0] = *txd;
309 	efx_writeo_page(tx_queue->efx, &reg,
310 			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
311 }
312 
313 
314 /* For each entry inserted into the software descriptor ring, create a
315  * descriptor in the hardware TX descriptor ring (in host memory), and
316  * write a doorbell.
317  */
efx_farch_tx_write(struct efx_tx_queue * tx_queue)318 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
319 {
320 	struct efx_tx_buffer *buffer;
321 	efx_qword_t *txd;
322 	unsigned write_ptr;
323 	unsigned old_write_count = tx_queue->write_count;
324 
325 	tx_queue->xmit_more_available = false;
326 	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
327 		return;
328 
329 	do {
330 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
331 		buffer = &tx_queue->buffer[write_ptr];
332 		txd = efx_tx_desc(tx_queue, write_ptr);
333 		++tx_queue->write_count;
334 
335 		EFX_WARN_ON_ONCE_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
336 
337 		/* Create TX descriptor ring entry */
338 		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
339 		EFX_POPULATE_QWORD_4(*txd,
340 				     FSF_AZ_TX_KER_CONT,
341 				     buffer->flags & EFX_TX_BUF_CONT,
342 				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
343 				     FSF_AZ_TX_KER_BUF_REGION, 0,
344 				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
345 	} while (tx_queue->write_count != tx_queue->insert_count);
346 
347 	wmb(); /* Ensure descriptors are written before they are fetched */
348 
349 	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
350 		txd = efx_tx_desc(tx_queue,
351 				  old_write_count & tx_queue->ptr_mask);
352 		efx_farch_push_tx_desc(tx_queue, txd);
353 		++tx_queue->pushes;
354 	} else {
355 		efx_farch_notify_tx_desc(tx_queue);
356 	}
357 }
358 
efx_farch_tx_limit_len(struct efx_tx_queue * tx_queue,dma_addr_t dma_addr,unsigned int len)359 unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
360 				    dma_addr_t dma_addr, unsigned int len)
361 {
362 	/* Don't cross 4K boundaries with descriptors. */
363 	unsigned int limit = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
364 
365 	len = min(limit, len);
366 
367 	return len;
368 }
369 
370 
371 /* Allocate hardware resources for a TX queue */
efx_farch_tx_probe(struct efx_tx_queue * tx_queue)372 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
373 {
374 	struct efx_nic *efx = tx_queue->efx;
375 	unsigned entries;
376 
377 	entries = tx_queue->ptr_mask + 1;
378 	return efx_alloc_special_buffer(efx, &tx_queue->txd,
379 					entries * sizeof(efx_qword_t));
380 }
381 
efx_farch_tx_init(struct efx_tx_queue * tx_queue)382 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
383 {
384 	int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
385 	struct efx_nic *efx = tx_queue->efx;
386 	efx_oword_t reg;
387 
388 	/* Pin TX descriptor ring */
389 	efx_init_special_buffer(efx, &tx_queue->txd);
390 
391 	/* Push TX descriptor ring to card */
392 	EFX_POPULATE_OWORD_10(reg,
393 			      FRF_AZ_TX_DESCQ_EN, 1,
394 			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
395 			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
396 			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
397 			      FRF_AZ_TX_DESCQ_EVQ_ID,
398 			      tx_queue->channel->channel,
399 			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
400 			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
401 			      FRF_AZ_TX_DESCQ_SIZE,
402 			      __ffs(tx_queue->txd.entries),
403 			      FRF_AZ_TX_DESCQ_TYPE, 0,
404 			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
405 
406 	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
407 	EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum);
408 
409 	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
410 			 tx_queue->queue);
411 
412 	EFX_POPULATE_OWORD_1(reg,
413 			     FRF_BZ_TX_PACE,
414 			     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
415 			     FFE_BZ_TX_PACE_OFF :
416 			     FFE_BZ_TX_PACE_RESERVED);
417 	efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL, tx_queue->queue);
418 }
419 
efx_farch_flush_tx_queue(struct efx_tx_queue * tx_queue)420 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
421 {
422 	struct efx_nic *efx = tx_queue->efx;
423 	efx_oword_t tx_flush_descq;
424 
425 	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
426 	atomic_set(&tx_queue->flush_outstanding, 1);
427 
428 	EFX_POPULATE_OWORD_2(tx_flush_descq,
429 			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
430 			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
431 	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
432 }
433 
efx_farch_tx_fini(struct efx_tx_queue * tx_queue)434 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
435 {
436 	struct efx_nic *efx = tx_queue->efx;
437 	efx_oword_t tx_desc_ptr;
438 
439 	/* Remove TX descriptor ring from card */
440 	EFX_ZERO_OWORD(tx_desc_ptr);
441 	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
442 			 tx_queue->queue);
443 
444 	/* Unpin TX descriptor ring */
445 	efx_fini_special_buffer(efx, &tx_queue->txd);
446 }
447 
448 /* Free buffers backing TX queue */
efx_farch_tx_remove(struct efx_tx_queue * tx_queue)449 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
450 {
451 	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
452 }
453 
454 /**************************************************************************
455  *
456  * RX path
457  *
458  **************************************************************************/
459 
460 /* This creates an entry in the RX descriptor queue */
461 static inline void
efx_farch_build_rx_desc(struct efx_rx_queue * rx_queue,unsigned index)462 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
463 {
464 	struct efx_rx_buffer *rx_buf;
465 	efx_qword_t *rxd;
466 
467 	rxd = efx_rx_desc(rx_queue, index);
468 	rx_buf = efx_rx_buffer(rx_queue, index);
469 	EFX_POPULATE_QWORD_3(*rxd,
470 			     FSF_AZ_RX_KER_BUF_SIZE,
471 			     rx_buf->len -
472 			     rx_queue->efx->type->rx_buffer_padding,
473 			     FSF_AZ_RX_KER_BUF_REGION, 0,
474 			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
475 }
476 
477 /* This writes to the RX_DESC_WPTR register for the specified receive
478  * descriptor ring.
479  */
efx_farch_rx_write(struct efx_rx_queue * rx_queue)480 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
481 {
482 	struct efx_nic *efx = rx_queue->efx;
483 	efx_dword_t reg;
484 	unsigned write_ptr;
485 
486 	while (rx_queue->notified_count != rx_queue->added_count) {
487 		efx_farch_build_rx_desc(
488 			rx_queue,
489 			rx_queue->notified_count & rx_queue->ptr_mask);
490 		++rx_queue->notified_count;
491 	}
492 
493 	wmb();
494 	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
495 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
496 	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
497 			efx_rx_queue_index(rx_queue));
498 }
499 
efx_farch_rx_probe(struct efx_rx_queue * rx_queue)500 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
501 {
502 	struct efx_nic *efx = rx_queue->efx;
503 	unsigned entries;
504 
505 	entries = rx_queue->ptr_mask + 1;
506 	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
507 					entries * sizeof(efx_qword_t));
508 }
509 
efx_farch_rx_init(struct efx_rx_queue * rx_queue)510 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
511 {
512 	efx_oword_t rx_desc_ptr;
513 	struct efx_nic *efx = rx_queue->efx;
514 	bool jumbo_en;
515 
516 	/* For kernel-mode queues in Siena, the JUMBO flag enables scatter. */
517 	jumbo_en = efx->rx_scatter;
518 
519 	netif_dbg(efx, hw, efx->net_dev,
520 		  "RX queue %d ring in special buffers %d-%d\n",
521 		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
522 		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
523 
524 	rx_queue->scatter_n = 0;
525 
526 	/* Pin RX descriptor ring */
527 	efx_init_special_buffer(efx, &rx_queue->rxd);
528 
529 	/* Push RX descriptor ring to card */
530 	EFX_POPULATE_OWORD_10(rx_desc_ptr,
531 			      FRF_AZ_RX_ISCSI_DDIG_EN, true,
532 			      FRF_AZ_RX_ISCSI_HDIG_EN, true,
533 			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
534 			      FRF_AZ_RX_DESCQ_EVQ_ID,
535 			      efx_rx_queue_channel(rx_queue)->channel,
536 			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
537 			      FRF_AZ_RX_DESCQ_LABEL,
538 			      efx_rx_queue_index(rx_queue),
539 			      FRF_AZ_RX_DESCQ_SIZE,
540 			      __ffs(rx_queue->rxd.entries),
541 			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
542 			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
543 			      FRF_AZ_RX_DESCQ_EN, 1);
544 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
545 			 efx_rx_queue_index(rx_queue));
546 }
547 
efx_farch_flush_rx_queue(struct efx_rx_queue * rx_queue)548 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
549 {
550 	struct efx_nic *efx = rx_queue->efx;
551 	efx_oword_t rx_flush_descq;
552 
553 	EFX_POPULATE_OWORD_2(rx_flush_descq,
554 			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
555 			     FRF_AZ_RX_FLUSH_DESCQ,
556 			     efx_rx_queue_index(rx_queue));
557 	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
558 }
559 
efx_farch_rx_fini(struct efx_rx_queue * rx_queue)560 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
561 {
562 	efx_oword_t rx_desc_ptr;
563 	struct efx_nic *efx = rx_queue->efx;
564 
565 	/* Remove RX descriptor ring from card */
566 	EFX_ZERO_OWORD(rx_desc_ptr);
567 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
568 			 efx_rx_queue_index(rx_queue));
569 
570 	/* Unpin RX descriptor ring */
571 	efx_fini_special_buffer(efx, &rx_queue->rxd);
572 }
573 
574 /* Free buffers backing RX queue */
efx_farch_rx_remove(struct efx_rx_queue * rx_queue)575 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
576 {
577 	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
578 }
579 
580 /**************************************************************************
581  *
582  * Flush handling
583  *
584  **************************************************************************/
585 
586 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
587  * or more RX flushes can be kicked off.
588  */
efx_farch_flush_wake(struct efx_nic * efx)589 static bool efx_farch_flush_wake(struct efx_nic *efx)
590 {
591 	/* Ensure that all updates are visible to efx_farch_flush_queues() */
592 	smp_mb();
593 
594 	return (atomic_read(&efx->active_queues) == 0 ||
595 		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
596 		 && atomic_read(&efx->rxq_flush_pending) > 0));
597 }
598 
efx_check_tx_flush_complete(struct efx_nic * efx)599 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
600 {
601 	bool i = true;
602 	efx_oword_t txd_ptr_tbl;
603 	struct efx_channel *channel;
604 	struct efx_tx_queue *tx_queue;
605 
606 	efx_for_each_channel(channel, efx) {
607 		efx_for_each_channel_tx_queue(tx_queue, channel) {
608 			efx_reado_table(efx, &txd_ptr_tbl,
609 					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
610 			if (EFX_OWORD_FIELD(txd_ptr_tbl,
611 					    FRF_AZ_TX_DESCQ_FLUSH) ||
612 			    EFX_OWORD_FIELD(txd_ptr_tbl,
613 					    FRF_AZ_TX_DESCQ_EN)) {
614 				netif_dbg(efx, hw, efx->net_dev,
615 					  "flush did not complete on TXQ %d\n",
616 					  tx_queue->queue);
617 				i = false;
618 			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
619 						  1, 0)) {
620 				/* The flush is complete, but we didn't
621 				 * receive a flush completion event
622 				 */
623 				netif_dbg(efx, hw, efx->net_dev,
624 					  "flush complete on TXQ %d, so drain "
625 					  "the queue\n", tx_queue->queue);
626 				/* Don't need to increment active_queues as it
627 				 * has already been incremented for the queues
628 				 * which did not drain
629 				 */
630 				efx_farch_magic_event(channel,
631 						      EFX_CHANNEL_MAGIC_TX_DRAIN(
632 							      tx_queue));
633 			}
634 		}
635 	}
636 
637 	return i;
638 }
639 
640 /* Flush all the transmit queues, and continue flushing receive queues until
641  * they're all flushed. Wait for the DRAIN events to be received so that there
642  * are no more RX and TX events left on any channel. */
efx_farch_do_flush(struct efx_nic * efx)643 static int efx_farch_do_flush(struct efx_nic *efx)
644 {
645 	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
646 	struct efx_channel *channel;
647 	struct efx_rx_queue *rx_queue;
648 	struct efx_tx_queue *tx_queue;
649 	int rc = 0;
650 
651 	efx_for_each_channel(channel, efx) {
652 		efx_for_each_channel_tx_queue(tx_queue, channel) {
653 			efx_farch_flush_tx_queue(tx_queue);
654 		}
655 		efx_for_each_channel_rx_queue(rx_queue, channel) {
656 			rx_queue->flush_pending = true;
657 			atomic_inc(&efx->rxq_flush_pending);
658 		}
659 	}
660 
661 	while (timeout && atomic_read(&efx->active_queues) > 0) {
662 		/* If SRIOV is enabled, then offload receive queue flushing to
663 		 * the firmware (though we will still have to poll for
664 		 * completion). If that fails, fall back to the old scheme.
665 		 */
666 		if (efx_siena_sriov_enabled(efx)) {
667 			rc = efx_mcdi_flush_rxqs(efx);
668 			if (!rc)
669 				goto wait;
670 		}
671 
672 		/* The hardware supports four concurrent rx flushes, each of
673 		 * which may need to be retried if there is an outstanding
674 		 * descriptor fetch
675 		 */
676 		efx_for_each_channel(channel, efx) {
677 			efx_for_each_channel_rx_queue(rx_queue, channel) {
678 				if (atomic_read(&efx->rxq_flush_outstanding) >=
679 				    EFX_RX_FLUSH_COUNT)
680 					break;
681 
682 				if (rx_queue->flush_pending) {
683 					rx_queue->flush_pending = false;
684 					atomic_dec(&efx->rxq_flush_pending);
685 					atomic_inc(&efx->rxq_flush_outstanding);
686 					efx_farch_flush_rx_queue(rx_queue);
687 				}
688 			}
689 		}
690 
691 	wait:
692 		timeout = wait_event_timeout(efx->flush_wq,
693 					     efx_farch_flush_wake(efx),
694 					     timeout);
695 	}
696 
697 	if (atomic_read(&efx->active_queues) &&
698 	    !efx_check_tx_flush_complete(efx)) {
699 		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
700 			  "(rx %d+%d)\n", atomic_read(&efx->active_queues),
701 			  atomic_read(&efx->rxq_flush_outstanding),
702 			  atomic_read(&efx->rxq_flush_pending));
703 		rc = -ETIMEDOUT;
704 
705 		atomic_set(&efx->active_queues, 0);
706 		atomic_set(&efx->rxq_flush_pending, 0);
707 		atomic_set(&efx->rxq_flush_outstanding, 0);
708 	}
709 
710 	return rc;
711 }
712 
efx_farch_fini_dmaq(struct efx_nic * efx)713 int efx_farch_fini_dmaq(struct efx_nic *efx)
714 {
715 	struct efx_channel *channel;
716 	struct efx_tx_queue *tx_queue;
717 	struct efx_rx_queue *rx_queue;
718 	int rc = 0;
719 
720 	/* Do not attempt to write to the NIC during EEH recovery */
721 	if (efx->state != STATE_RECOVERY) {
722 		/* Only perform flush if DMA is enabled */
723 		if (efx->pci_dev->is_busmaster) {
724 			efx->type->prepare_flush(efx);
725 			rc = efx_farch_do_flush(efx);
726 			efx->type->finish_flush(efx);
727 		}
728 
729 		efx_for_each_channel(channel, efx) {
730 			efx_for_each_channel_rx_queue(rx_queue, channel)
731 				efx_farch_rx_fini(rx_queue);
732 			efx_for_each_channel_tx_queue(tx_queue, channel)
733 				efx_farch_tx_fini(tx_queue);
734 		}
735 	}
736 
737 	return rc;
738 }
739 
740 /* Reset queue and flush accounting after FLR
741  *
742  * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
743  * mastering was disabled), in which case we don't receive (RXQ) flush
744  * completion events.  This means that efx->rxq_flush_outstanding remained at 4
745  * after the FLR; also, efx->active_queues was non-zero (as no flush completion
746  * events were received, and we didn't go through efx_check_tx_flush_complete())
747  * If we don't fix this up, on the next call to efx_realloc_channels() we won't
748  * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
749  * for batched flush requests; and the efx->active_queues gets messed up because
750  * we keep incrementing for the newly initialised queues, but it never went to
751  * zero previously.  Then we get a timeout every time we try to restart the
752  * queues, as it doesn't go back to zero when we should be flushing the queues.
753  */
efx_farch_finish_flr(struct efx_nic * efx)754 void efx_farch_finish_flr(struct efx_nic *efx)
755 {
756 	atomic_set(&efx->rxq_flush_pending, 0);
757 	atomic_set(&efx->rxq_flush_outstanding, 0);
758 	atomic_set(&efx->active_queues, 0);
759 }
760 
761 
762 /**************************************************************************
763  *
764  * Event queue processing
765  * Event queues are processed by per-channel tasklets.
766  *
767  **************************************************************************/
768 
769 /* Update a channel's event queue's read pointer (RPTR) register
770  *
771  * This writes the EVQ_RPTR_REG register for the specified channel's
772  * event queue.
773  */
efx_farch_ev_read_ack(struct efx_channel * channel)774 void efx_farch_ev_read_ack(struct efx_channel *channel)
775 {
776 	efx_dword_t reg;
777 	struct efx_nic *efx = channel->efx;
778 
779 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
780 			     channel->eventq_read_ptr & channel->eventq_mask);
781 
782 	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
783 	 * of 4 bytes, but it is really 16 bytes just like later revisions.
784 	 */
785 	efx_writed(efx, &reg,
786 		   efx->type->evq_rptr_tbl_base +
787 		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
788 }
789 
790 /* Use HW to insert a SW defined event */
efx_farch_generate_event(struct efx_nic * efx,unsigned int evq,efx_qword_t * event)791 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
792 			      efx_qword_t *event)
793 {
794 	efx_oword_t drv_ev_reg;
795 
796 	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
797 		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
798 	drv_ev_reg.u32[0] = event->u32[0];
799 	drv_ev_reg.u32[1] = event->u32[1];
800 	drv_ev_reg.u32[2] = 0;
801 	drv_ev_reg.u32[3] = 0;
802 	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
803 	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
804 }
805 
efx_farch_magic_event(struct efx_channel * channel,u32 magic)806 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
807 {
808 	efx_qword_t event;
809 
810 	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
811 			     FSE_AZ_EV_CODE_DRV_GEN_EV,
812 			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
813 	efx_farch_generate_event(channel->efx, channel->channel, &event);
814 }
815 
816 /* Handle a transmit completion event
817  *
818  * The NIC batches TX completion events; the message we receive is of
819  * the form "complete all TX events up to this index".
820  */
821 static void
efx_farch_handle_tx_event(struct efx_channel * channel,efx_qword_t * event)822 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
823 {
824 	unsigned int tx_ev_desc_ptr;
825 	unsigned int tx_ev_q_label;
826 	struct efx_tx_queue *tx_queue;
827 	struct efx_nic *efx = channel->efx;
828 
829 	if (unlikely(READ_ONCE(efx->reset_pending)))
830 		return;
831 
832 	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
833 		/* Transmit completion */
834 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
835 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
836 		tx_queue = efx_channel_get_tx_queue(
837 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
838 		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
839 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
840 		/* Rewrite the FIFO write pointer */
841 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
842 		tx_queue = efx_channel_get_tx_queue(
843 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
844 
845 		netif_tx_lock(efx->net_dev);
846 		efx_farch_notify_tx_desc(tx_queue);
847 		netif_tx_unlock(efx->net_dev);
848 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
849 		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
850 	} else {
851 		netif_err(efx, tx_err, efx->net_dev,
852 			  "channel %d unexpected TX event "
853 			  EFX_QWORD_FMT"\n", channel->channel,
854 			  EFX_QWORD_VAL(*event));
855 	}
856 }
857 
858 /* Detect errors included in the rx_evt_pkt_ok bit. */
efx_farch_handle_rx_not_ok(struct efx_rx_queue * rx_queue,const efx_qword_t * event)859 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
860 				      const efx_qword_t *event)
861 {
862 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
863 	struct efx_nic *efx = rx_queue->efx;
864 	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
865 	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
866 	bool rx_ev_frm_trunc, rx_ev_tobe_disc;
867 	bool rx_ev_other_err, rx_ev_pause_frm;
868 	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
869 	unsigned rx_ev_pkt_type;
870 
871 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
872 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
873 	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
874 	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
875 	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
876 						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
877 	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
878 						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
879 	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
880 						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
881 	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
882 	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
883 	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
884 
885 	/* Every error apart from tobe_disc and pause_frm */
886 	rx_ev_other_err = (rx_ev_tcp_udp_chksum_err |
887 			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
888 			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
889 
890 	/* Count errors that are not in MAC stats.  Ignore expected
891 	 * checksum errors during self-test. */
892 	if (rx_ev_frm_trunc)
893 		++channel->n_rx_frm_trunc;
894 	else if (rx_ev_tobe_disc)
895 		++channel->n_rx_tobe_disc;
896 	else if (!efx->loopback_selftest) {
897 		if (rx_ev_ip_hdr_chksum_err)
898 			++channel->n_rx_ip_hdr_chksum_err;
899 		else if (rx_ev_tcp_udp_chksum_err)
900 			++channel->n_rx_tcp_udp_chksum_err;
901 	}
902 
903 	/* TOBE_DISC is expected on unicast mismatches; don't print out an
904 	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
905 	 * to a FIFO overflow.
906 	 */
907 #ifdef DEBUG
908 	if (rx_ev_other_err && net_ratelimit()) {
909 		netif_dbg(efx, rx_err, efx->net_dev,
910 			  " RX queue %d unexpected RX event "
911 			  EFX_QWORD_FMT "%s%s%s%s%s%s%s\n",
912 			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
913 			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
914 			  rx_ev_ip_hdr_chksum_err ?
915 			  " [IP_HDR_CHKSUM_ERR]" : "",
916 			  rx_ev_tcp_udp_chksum_err ?
917 			  " [TCP_UDP_CHKSUM_ERR]" : "",
918 			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
919 			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
920 			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
921 			  rx_ev_pause_frm ? " [PAUSE]" : "");
922 	}
923 #endif
924 
925 	if (efx->net_dev->features & NETIF_F_RXALL)
926 		/* don't discard frame for CRC error */
927 		rx_ev_eth_crc_err = false;
928 
929 	/* The frame must be discarded if any of these are true. */
930 	return (rx_ev_eth_crc_err | rx_ev_frm_trunc |
931 		rx_ev_tobe_disc | rx_ev_pause_frm) ?
932 		EFX_RX_PKT_DISCARD : 0;
933 }
934 
935 /* Handle receive events that are not in-order. Return true if this
936  * can be handled as a partial packet discard, false if it's more
937  * serious.
938  */
939 static bool
efx_farch_handle_rx_bad_index(struct efx_rx_queue * rx_queue,unsigned index)940 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
941 {
942 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
943 	struct efx_nic *efx = rx_queue->efx;
944 	unsigned expected, dropped;
945 
946 	if (rx_queue->scatter_n &&
947 	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
948 		      rx_queue->ptr_mask)) {
949 		++channel->n_rx_nodesc_trunc;
950 		return true;
951 	}
952 
953 	expected = rx_queue->removed_count & rx_queue->ptr_mask;
954 	dropped = (index - expected) & rx_queue->ptr_mask;
955 	netif_info(efx, rx_err, efx->net_dev,
956 		   "dropped %d events (index=%d expected=%d)\n",
957 		   dropped, index, expected);
958 
959 	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
960 	return false;
961 }
962 
963 /* Handle a packet received event
964  *
965  * The NIC gives a "discard" flag if it's a unicast packet with the
966  * wrong destination address
967  * Also "is multicast" and "matches multicast filter" flags can be used to
968  * discard non-matching multicast packets.
969  */
970 static void
efx_farch_handle_rx_event(struct efx_channel * channel,const efx_qword_t * event)971 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
972 {
973 	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
974 	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
975 	unsigned expected_ptr;
976 	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
977 	u16 flags;
978 	struct efx_rx_queue *rx_queue;
979 	struct efx_nic *efx = channel->efx;
980 
981 	if (unlikely(READ_ONCE(efx->reset_pending)))
982 		return;
983 
984 	rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
985 	rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
986 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
987 		channel->channel);
988 
989 	rx_queue = efx_channel_get_rx_queue(channel);
990 
991 	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
992 	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
993 			rx_queue->ptr_mask);
994 
995 	/* Check for partial drops and other errors */
996 	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
997 	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
998 		if (rx_ev_desc_ptr != expected_ptr &&
999 		    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1000 			return;
1001 
1002 		/* Discard all pending fragments */
1003 		if (rx_queue->scatter_n) {
1004 			efx_rx_packet(
1005 				rx_queue,
1006 				rx_queue->removed_count & rx_queue->ptr_mask,
1007 				rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1008 			rx_queue->removed_count += rx_queue->scatter_n;
1009 			rx_queue->scatter_n = 0;
1010 		}
1011 
1012 		/* Return if there is no new fragment */
1013 		if (rx_ev_desc_ptr != expected_ptr)
1014 			return;
1015 
1016 		/* Discard new fragment if not SOP */
1017 		if (!rx_ev_sop) {
1018 			efx_rx_packet(
1019 				rx_queue,
1020 				rx_queue->removed_count & rx_queue->ptr_mask,
1021 				1, 0, EFX_RX_PKT_DISCARD);
1022 			++rx_queue->removed_count;
1023 			return;
1024 		}
1025 	}
1026 
1027 	++rx_queue->scatter_n;
1028 	if (rx_ev_cont)
1029 		return;
1030 
1031 	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1032 	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1033 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1034 
1035 	if (likely(rx_ev_pkt_ok)) {
1036 		/* If packet is marked as OK then we can rely on the
1037 		 * hardware checksum and classification.
1038 		 */
1039 		flags = 0;
1040 		switch (rx_ev_hdr_type) {
1041 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1042 			flags |= EFX_RX_PKT_TCP;
1043 			/* fall through */
1044 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1045 			flags |= EFX_RX_PKT_CSUMMED;
1046 			/* fall through */
1047 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1048 		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1049 			break;
1050 		}
1051 	} else {
1052 		flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1053 	}
1054 
1055 	/* Detect multicast packets that didn't match the filter */
1056 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1057 	if (rx_ev_mcast_pkt) {
1058 		unsigned int rx_ev_mcast_hash_match =
1059 			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1060 
1061 		if (unlikely(!rx_ev_mcast_hash_match)) {
1062 			++channel->n_rx_mcast_mismatch;
1063 			flags |= EFX_RX_PKT_DISCARD;
1064 		}
1065 	}
1066 
1067 	channel->irq_mod_score += 2;
1068 
1069 	/* Handle received packet */
1070 	efx_rx_packet(rx_queue,
1071 		      rx_queue->removed_count & rx_queue->ptr_mask,
1072 		      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1073 	rx_queue->removed_count += rx_queue->scatter_n;
1074 	rx_queue->scatter_n = 0;
1075 }
1076 
1077 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1078  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1079  * of all transmit completions.
1080  */
1081 static void
efx_farch_handle_tx_flush_done(struct efx_nic * efx,efx_qword_t * event)1082 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1083 {
1084 	struct efx_tx_queue *tx_queue;
1085 	int qid;
1086 
1087 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1088 	if (qid < EFX_TXQ_TYPES * (efx->n_tx_channels + efx->n_extra_tx_channels)) {
1089 		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1090 					    qid % EFX_TXQ_TYPES);
1091 		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1092 			efx_farch_magic_event(tx_queue->channel,
1093 					      EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1094 		}
1095 	}
1096 }
1097 
1098 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1099  * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1100  * the RX queue back to the mask of RX queues in need of flushing.
1101  */
1102 static void
efx_farch_handle_rx_flush_done(struct efx_nic * efx,efx_qword_t * event)1103 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1104 {
1105 	struct efx_channel *channel;
1106 	struct efx_rx_queue *rx_queue;
1107 	int qid;
1108 	bool failed;
1109 
1110 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1111 	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1112 	if (qid >= efx->n_channels)
1113 		return;
1114 	channel = efx_get_channel(efx, qid);
1115 	if (!efx_channel_has_rx_queue(channel))
1116 		return;
1117 	rx_queue = efx_channel_get_rx_queue(channel);
1118 
1119 	if (failed) {
1120 		netif_info(efx, hw, efx->net_dev,
1121 			   "RXQ %d flush retry\n", qid);
1122 		rx_queue->flush_pending = true;
1123 		atomic_inc(&efx->rxq_flush_pending);
1124 	} else {
1125 		efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1126 				      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1127 	}
1128 	atomic_dec(&efx->rxq_flush_outstanding);
1129 	if (efx_farch_flush_wake(efx))
1130 		wake_up(&efx->flush_wq);
1131 }
1132 
1133 static void
efx_farch_handle_drain_event(struct efx_channel * channel)1134 efx_farch_handle_drain_event(struct efx_channel *channel)
1135 {
1136 	struct efx_nic *efx = channel->efx;
1137 
1138 	WARN_ON(atomic_read(&efx->active_queues) == 0);
1139 	atomic_dec(&efx->active_queues);
1140 	if (efx_farch_flush_wake(efx))
1141 		wake_up(&efx->flush_wq);
1142 }
1143 
efx_farch_handle_generated_event(struct efx_channel * channel,efx_qword_t * event)1144 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1145 					     efx_qword_t *event)
1146 {
1147 	struct efx_nic *efx = channel->efx;
1148 	struct efx_rx_queue *rx_queue =
1149 		efx_channel_has_rx_queue(channel) ?
1150 		efx_channel_get_rx_queue(channel) : NULL;
1151 	unsigned magic, code;
1152 
1153 	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1154 	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1155 
1156 	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1157 		channel->event_test_cpu = raw_smp_processor_id();
1158 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1159 		/* The queue must be empty, so we won't receive any rx
1160 		 * events, so efx_process_channel() won't refill the
1161 		 * queue. Refill it here */
1162 		efx_fast_push_rx_descriptors(rx_queue, true);
1163 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1164 		efx_farch_handle_drain_event(channel);
1165 	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1166 		efx_farch_handle_drain_event(channel);
1167 	} else {
1168 		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1169 			  "generated event "EFX_QWORD_FMT"\n",
1170 			  channel->channel, EFX_QWORD_VAL(*event));
1171 	}
1172 }
1173 
1174 static void
efx_farch_handle_driver_event(struct efx_channel * channel,efx_qword_t * event)1175 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1176 {
1177 	struct efx_nic *efx = channel->efx;
1178 	unsigned int ev_sub_code;
1179 	unsigned int ev_sub_data;
1180 
1181 	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1182 	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1183 
1184 	switch (ev_sub_code) {
1185 	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1186 		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1187 			   channel->channel, ev_sub_data);
1188 		efx_farch_handle_tx_flush_done(efx, event);
1189 #ifdef CONFIG_SFC_SRIOV
1190 		efx_siena_sriov_tx_flush_done(efx, event);
1191 #endif
1192 		break;
1193 	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1194 		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1195 			   channel->channel, ev_sub_data);
1196 		efx_farch_handle_rx_flush_done(efx, event);
1197 #ifdef CONFIG_SFC_SRIOV
1198 		efx_siena_sriov_rx_flush_done(efx, event);
1199 #endif
1200 		break;
1201 	case FSE_AZ_EVQ_INIT_DONE_EV:
1202 		netif_dbg(efx, hw, efx->net_dev,
1203 			  "channel %d EVQ %d initialised\n",
1204 			  channel->channel, ev_sub_data);
1205 		break;
1206 	case FSE_AZ_SRM_UPD_DONE_EV:
1207 		netif_vdbg(efx, hw, efx->net_dev,
1208 			   "channel %d SRAM update done\n", channel->channel);
1209 		break;
1210 	case FSE_AZ_WAKE_UP_EV:
1211 		netif_vdbg(efx, hw, efx->net_dev,
1212 			   "channel %d RXQ %d wakeup event\n",
1213 			   channel->channel, ev_sub_data);
1214 		break;
1215 	case FSE_AZ_TIMER_EV:
1216 		netif_vdbg(efx, hw, efx->net_dev,
1217 			   "channel %d RX queue %d timer expired\n",
1218 			   channel->channel, ev_sub_data);
1219 		break;
1220 	case FSE_AA_RX_RECOVER_EV:
1221 		netif_err(efx, rx_err, efx->net_dev,
1222 			  "channel %d seen DRIVER RX_RESET event. "
1223 			"Resetting.\n", channel->channel);
1224 		atomic_inc(&efx->rx_reset);
1225 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1226 		break;
1227 	case FSE_BZ_RX_DSC_ERROR_EV:
1228 		if (ev_sub_data < EFX_VI_BASE) {
1229 			netif_err(efx, rx_err, efx->net_dev,
1230 				  "RX DMA Q %d reports descriptor fetch error."
1231 				  " RX Q %d is disabled.\n", ev_sub_data,
1232 				  ev_sub_data);
1233 			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1234 		}
1235 #ifdef CONFIG_SFC_SRIOV
1236 		else
1237 			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1238 #endif
1239 		break;
1240 	case FSE_BZ_TX_DSC_ERROR_EV:
1241 		if (ev_sub_data < EFX_VI_BASE) {
1242 			netif_err(efx, tx_err, efx->net_dev,
1243 				  "TX DMA Q %d reports descriptor fetch error."
1244 				  " TX Q %d is disabled.\n", ev_sub_data,
1245 				  ev_sub_data);
1246 			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1247 		}
1248 #ifdef CONFIG_SFC_SRIOV
1249 		else
1250 			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1251 #endif
1252 		break;
1253 	default:
1254 		netif_vdbg(efx, hw, efx->net_dev,
1255 			   "channel %d unknown driver event code %d "
1256 			   "data %04x\n", channel->channel, ev_sub_code,
1257 			   ev_sub_data);
1258 		break;
1259 	}
1260 }
1261 
efx_farch_ev_process(struct efx_channel * channel,int budget)1262 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1263 {
1264 	struct efx_nic *efx = channel->efx;
1265 	unsigned int read_ptr;
1266 	efx_qword_t event, *p_event;
1267 	int ev_code;
1268 	int spent = 0;
1269 
1270 	if (budget <= 0)
1271 		return spent;
1272 
1273 	read_ptr = channel->eventq_read_ptr;
1274 
1275 	for (;;) {
1276 		p_event = efx_event(channel, read_ptr);
1277 		event = *p_event;
1278 
1279 		if (!efx_event_present(&event))
1280 			/* End of events */
1281 			break;
1282 
1283 		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1284 			   "channel %d event is "EFX_QWORD_FMT"\n",
1285 			   channel->channel, EFX_QWORD_VAL(event));
1286 
1287 		/* Clear this event by marking it all ones */
1288 		EFX_SET_QWORD(*p_event);
1289 
1290 		++read_ptr;
1291 
1292 		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1293 
1294 		switch (ev_code) {
1295 		case FSE_AZ_EV_CODE_RX_EV:
1296 			efx_farch_handle_rx_event(channel, &event);
1297 			if (++spent == budget)
1298 				goto out;
1299 			break;
1300 		case FSE_AZ_EV_CODE_TX_EV:
1301 			efx_farch_handle_tx_event(channel, &event);
1302 			break;
1303 		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1304 			efx_farch_handle_generated_event(channel, &event);
1305 			break;
1306 		case FSE_AZ_EV_CODE_DRIVER_EV:
1307 			efx_farch_handle_driver_event(channel, &event);
1308 			break;
1309 #ifdef CONFIG_SFC_SRIOV
1310 		case FSE_CZ_EV_CODE_USER_EV:
1311 			efx_siena_sriov_event(channel, &event);
1312 			break;
1313 #endif
1314 		case FSE_CZ_EV_CODE_MCDI_EV:
1315 			efx_mcdi_process_event(channel, &event);
1316 			break;
1317 		case FSE_AZ_EV_CODE_GLOBAL_EV:
1318 			if (efx->type->handle_global_event &&
1319 			    efx->type->handle_global_event(channel, &event))
1320 				break;
1321 			/* else fall through */
1322 		default:
1323 			netif_err(channel->efx, hw, channel->efx->net_dev,
1324 				  "channel %d unknown event type %d (data "
1325 				  EFX_QWORD_FMT ")\n", channel->channel,
1326 				  ev_code, EFX_QWORD_VAL(event));
1327 		}
1328 	}
1329 
1330 out:
1331 	channel->eventq_read_ptr = read_ptr;
1332 	return spent;
1333 }
1334 
1335 /* Allocate buffer table entries for event queue */
efx_farch_ev_probe(struct efx_channel * channel)1336 int efx_farch_ev_probe(struct efx_channel *channel)
1337 {
1338 	struct efx_nic *efx = channel->efx;
1339 	unsigned entries;
1340 
1341 	entries = channel->eventq_mask + 1;
1342 	return efx_alloc_special_buffer(efx, &channel->eventq,
1343 					entries * sizeof(efx_qword_t));
1344 }
1345 
efx_farch_ev_init(struct efx_channel * channel)1346 int efx_farch_ev_init(struct efx_channel *channel)
1347 {
1348 	efx_oword_t reg;
1349 	struct efx_nic *efx = channel->efx;
1350 
1351 	netif_dbg(efx, hw, efx->net_dev,
1352 		  "channel %d event queue in special buffers %d-%d\n",
1353 		  channel->channel, channel->eventq.index,
1354 		  channel->eventq.index + channel->eventq.entries - 1);
1355 
1356 	EFX_POPULATE_OWORD_3(reg,
1357 			     FRF_CZ_TIMER_Q_EN, 1,
1358 			     FRF_CZ_HOST_NOTIFY_MODE, 0,
1359 			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1360 	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1361 
1362 	/* Pin event queue buffer */
1363 	efx_init_special_buffer(efx, &channel->eventq);
1364 
1365 	/* Fill event queue with all ones (i.e. empty events) */
1366 	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1367 
1368 	/* Push event queue to card */
1369 	EFX_POPULATE_OWORD_3(reg,
1370 			     FRF_AZ_EVQ_EN, 1,
1371 			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1372 			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1373 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1374 			 channel->channel);
1375 
1376 	return 0;
1377 }
1378 
efx_farch_ev_fini(struct efx_channel * channel)1379 void efx_farch_ev_fini(struct efx_channel *channel)
1380 {
1381 	efx_oword_t reg;
1382 	struct efx_nic *efx = channel->efx;
1383 
1384 	/* Remove event queue from card */
1385 	EFX_ZERO_OWORD(reg);
1386 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1387 			 channel->channel);
1388 	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1389 
1390 	/* Unpin event queue */
1391 	efx_fini_special_buffer(efx, &channel->eventq);
1392 }
1393 
1394 /* Free buffers backing event queue */
efx_farch_ev_remove(struct efx_channel * channel)1395 void efx_farch_ev_remove(struct efx_channel *channel)
1396 {
1397 	efx_free_special_buffer(channel->efx, &channel->eventq);
1398 }
1399 
1400 
efx_farch_ev_test_generate(struct efx_channel * channel)1401 void efx_farch_ev_test_generate(struct efx_channel *channel)
1402 {
1403 	efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1404 }
1405 
efx_farch_rx_defer_refill(struct efx_rx_queue * rx_queue)1406 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1407 {
1408 	efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1409 			      EFX_CHANNEL_MAGIC_FILL(rx_queue));
1410 }
1411 
1412 /**************************************************************************
1413  *
1414  * Hardware interrupts
1415  * The hardware interrupt handler does very little work; all the event
1416  * queue processing is carried out by per-channel tasklets.
1417  *
1418  **************************************************************************/
1419 
1420 /* Enable/disable/generate interrupts */
efx_farch_interrupts(struct efx_nic * efx,bool enabled,bool force)1421 static inline void efx_farch_interrupts(struct efx_nic *efx,
1422 				      bool enabled, bool force)
1423 {
1424 	efx_oword_t int_en_reg_ker;
1425 
1426 	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1427 			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1428 			     FRF_AZ_KER_INT_KER, force,
1429 			     FRF_AZ_DRV_INT_EN_KER, enabled);
1430 	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1431 }
1432 
efx_farch_irq_enable_master(struct efx_nic * efx)1433 void efx_farch_irq_enable_master(struct efx_nic *efx)
1434 {
1435 	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1436 	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1437 
1438 	efx_farch_interrupts(efx, true, false);
1439 }
1440 
efx_farch_irq_disable_master(struct efx_nic * efx)1441 void efx_farch_irq_disable_master(struct efx_nic *efx)
1442 {
1443 	/* Disable interrupts */
1444 	efx_farch_interrupts(efx, false, false);
1445 }
1446 
1447 /* Generate a test interrupt
1448  * Interrupt must already have been enabled, otherwise nasty things
1449  * may happen.
1450  */
efx_farch_irq_test_generate(struct efx_nic * efx)1451 int efx_farch_irq_test_generate(struct efx_nic *efx)
1452 {
1453 	efx_farch_interrupts(efx, true, true);
1454 	return 0;
1455 }
1456 
1457 /* Process a fatal interrupt
1458  * Disable bus mastering ASAP and schedule a reset
1459  */
efx_farch_fatal_interrupt(struct efx_nic * efx)1460 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1461 {
1462 	efx_oword_t *int_ker = efx->irq_status.addr;
1463 	efx_oword_t fatal_intr;
1464 	int error, mem_perr;
1465 
1466 	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1467 	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1468 
1469 	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1470 		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1471 		  EFX_OWORD_VAL(fatal_intr),
1472 		  error ? "disabling bus mastering" : "no recognised error");
1473 
1474 	/* If this is a memory parity error dump which blocks are offending */
1475 	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1476 		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1477 	if (mem_perr) {
1478 		efx_oword_t reg;
1479 		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1480 		netif_err(efx, hw, efx->net_dev,
1481 			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1482 			  EFX_OWORD_VAL(reg));
1483 	}
1484 
1485 	/* Disable both devices */
1486 	pci_clear_master(efx->pci_dev);
1487 	efx_farch_irq_disable_master(efx);
1488 
1489 	/* Count errors and reset or disable the NIC accordingly */
1490 	if (efx->int_error_count == 0 ||
1491 	    time_after(jiffies, efx->int_error_expire)) {
1492 		efx->int_error_count = 0;
1493 		efx->int_error_expire =
1494 			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1495 	}
1496 	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1497 		netif_err(efx, hw, efx->net_dev,
1498 			  "SYSTEM ERROR - reset scheduled\n");
1499 		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1500 	} else {
1501 		netif_err(efx, hw, efx->net_dev,
1502 			  "SYSTEM ERROR - max number of errors seen."
1503 			  "NIC will be disabled\n");
1504 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1505 	}
1506 
1507 	return IRQ_HANDLED;
1508 }
1509 
1510 /* Handle a legacy interrupt
1511  * Acknowledges the interrupt and schedule event queue processing.
1512  */
efx_farch_legacy_interrupt(int irq,void * dev_id)1513 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1514 {
1515 	struct efx_nic *efx = dev_id;
1516 	bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
1517 	efx_oword_t *int_ker = efx->irq_status.addr;
1518 	irqreturn_t result = IRQ_NONE;
1519 	struct efx_channel *channel;
1520 	efx_dword_t reg;
1521 	u32 queues;
1522 	int syserr;
1523 
1524 	/* Read the ISR which also ACKs the interrupts */
1525 	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1526 	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1527 
1528 	/* Legacy interrupts are disabled too late by the EEH kernel
1529 	 * code. Disable them earlier.
1530 	 * If an EEH error occurred, the read will have returned all ones.
1531 	 */
1532 	if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1533 	    !efx->eeh_disabled_legacy_irq) {
1534 		disable_irq_nosync(efx->legacy_irq);
1535 		efx->eeh_disabled_legacy_irq = true;
1536 	}
1537 
1538 	/* Handle non-event-queue sources */
1539 	if (queues & (1U << efx->irq_level) && soft_enabled) {
1540 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1541 		if (unlikely(syserr))
1542 			return efx_farch_fatal_interrupt(efx);
1543 		efx->last_irq_cpu = raw_smp_processor_id();
1544 	}
1545 
1546 	if (queues != 0) {
1547 		efx->irq_zero_count = 0;
1548 
1549 		/* Schedule processing of any interrupting queues */
1550 		if (likely(soft_enabled)) {
1551 			efx_for_each_channel(channel, efx) {
1552 				if (queues & 1)
1553 					efx_schedule_channel_irq(channel);
1554 				queues >>= 1;
1555 			}
1556 		}
1557 		result = IRQ_HANDLED;
1558 
1559 	} else {
1560 		efx_qword_t *event;
1561 
1562 		/* Legacy ISR read can return zero once (SF bug 15783) */
1563 
1564 		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1565 		 * because this might be a shared interrupt. */
1566 		if (efx->irq_zero_count++ == 0)
1567 			result = IRQ_HANDLED;
1568 
1569 		/* Ensure we schedule or rearm all event queues */
1570 		if (likely(soft_enabled)) {
1571 			efx_for_each_channel(channel, efx) {
1572 				event = efx_event(channel,
1573 						  channel->eventq_read_ptr);
1574 				if (efx_event_present(event))
1575 					efx_schedule_channel_irq(channel);
1576 				else
1577 					efx_farch_ev_read_ack(channel);
1578 			}
1579 		}
1580 	}
1581 
1582 	if (result == IRQ_HANDLED)
1583 		netif_vdbg(efx, intr, efx->net_dev,
1584 			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1585 			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1586 
1587 	return result;
1588 }
1589 
1590 /* Handle an MSI interrupt
1591  *
1592  * Handle an MSI hardware interrupt.  This routine schedules event
1593  * queue processing.  No interrupt acknowledgement cycle is necessary.
1594  * Also, we never need to check that the interrupt is for us, since
1595  * MSI interrupts cannot be shared.
1596  */
efx_farch_msi_interrupt(int irq,void * dev_id)1597 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1598 {
1599 	struct efx_msi_context *context = dev_id;
1600 	struct efx_nic *efx = context->efx;
1601 	efx_oword_t *int_ker = efx->irq_status.addr;
1602 	int syserr;
1603 
1604 	netif_vdbg(efx, intr, efx->net_dev,
1605 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1606 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1607 
1608 	if (!likely(READ_ONCE(efx->irq_soft_enabled)))
1609 		return IRQ_HANDLED;
1610 
1611 	/* Handle non-event-queue sources */
1612 	if (context->index == efx->irq_level) {
1613 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1614 		if (unlikely(syserr))
1615 			return efx_farch_fatal_interrupt(efx);
1616 		efx->last_irq_cpu = raw_smp_processor_id();
1617 	}
1618 
1619 	/* Schedule processing of the channel */
1620 	efx_schedule_channel_irq(efx->channel[context->index]);
1621 
1622 	return IRQ_HANDLED;
1623 }
1624 
1625 /* Setup RSS indirection table.
1626  * This maps from the hash value of the packet to RXQ
1627  */
efx_farch_rx_push_indir_table(struct efx_nic * efx)1628 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1629 {
1630 	size_t i = 0;
1631 	efx_dword_t dword;
1632 
1633 	BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1634 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1635 
1636 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1637 		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1638 				     efx->rss_context.rx_indir_table[i]);
1639 		efx_writed(efx, &dword,
1640 			   FR_BZ_RX_INDIRECTION_TBL +
1641 			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1642 	}
1643 }
1644 
efx_farch_rx_pull_indir_table(struct efx_nic * efx)1645 void efx_farch_rx_pull_indir_table(struct efx_nic *efx)
1646 {
1647 	size_t i = 0;
1648 	efx_dword_t dword;
1649 
1650 	BUILD_BUG_ON(ARRAY_SIZE(efx->rss_context.rx_indir_table) !=
1651 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1652 
1653 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1654 		efx_readd(efx, &dword,
1655 			   FR_BZ_RX_INDIRECTION_TBL +
1656 			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1657 		efx->rss_context.rx_indir_table[i] = EFX_DWORD_FIELD(dword, FRF_BZ_IT_QUEUE);
1658 	}
1659 }
1660 
1661 /* Looks at available SRAM resources and works out how many queues we
1662  * can support, and where things like descriptor caches should live.
1663  *
1664  * SRAM is split up as follows:
1665  * 0                          buftbl entries for channels
1666  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1667  * efx->rx_dc_base            RX descriptor caches
1668  * efx->tx_dc_base            TX descriptor caches
1669  */
efx_farch_dimension_resources(struct efx_nic * efx,unsigned sram_lim_qw)1670 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1671 {
1672 	unsigned vi_count, buftbl_min, total_tx_channels;
1673 
1674 #ifdef CONFIG_SFC_SRIOV
1675 	struct siena_nic_data *nic_data = efx->nic_data;
1676 #endif
1677 
1678 	total_tx_channels = efx->n_tx_channels + efx->n_extra_tx_channels;
1679 	/* Account for the buffer table entries backing the datapath channels
1680 	 * and the descriptor caches for those channels.
1681 	 */
1682 	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1683 		       total_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1684 		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1685 		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1686 	vi_count = max(efx->n_channels, total_tx_channels * EFX_TXQ_TYPES);
1687 
1688 #ifdef CONFIG_SFC_SRIOV
1689 	if (efx->type->sriov_wanted) {
1690 		if (efx->type->sriov_wanted(efx)) {
1691 			unsigned vi_dc_entries, buftbl_free;
1692 			unsigned entries_per_vf, vf_limit;
1693 
1694 			nic_data->vf_buftbl_base = buftbl_min;
1695 
1696 			vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1697 			vi_count = max(vi_count, EFX_VI_BASE);
1698 			buftbl_free = (sram_lim_qw - buftbl_min -
1699 				       vi_count * vi_dc_entries);
1700 
1701 			entries_per_vf = ((vi_dc_entries +
1702 					   EFX_VF_BUFTBL_PER_VI) *
1703 					  efx_vf_size(efx));
1704 			vf_limit = min(buftbl_free / entries_per_vf,
1705 				       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1706 
1707 			if (efx->vf_count > vf_limit) {
1708 				netif_err(efx, probe, efx->net_dev,
1709 					  "Reducing VF count from from %d to %d\n",
1710 					  efx->vf_count, vf_limit);
1711 				efx->vf_count = vf_limit;
1712 			}
1713 			vi_count += efx->vf_count * efx_vf_size(efx);
1714 		}
1715 	}
1716 #endif
1717 
1718 	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1719 	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1720 }
1721 
efx_farch_fpga_ver(struct efx_nic * efx)1722 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1723 {
1724 	efx_oword_t altera_build;
1725 	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1726 	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1727 }
1728 
efx_farch_init_common(struct efx_nic * efx)1729 void efx_farch_init_common(struct efx_nic *efx)
1730 {
1731 	efx_oword_t temp;
1732 
1733 	/* Set positions of descriptor caches in SRAM. */
1734 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1735 	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1736 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1737 	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1738 
1739 	/* Set TX descriptor cache size. */
1740 	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1741 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1742 	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1743 
1744 	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1745 	 * this allows most efficient prefetching.
1746 	 */
1747 	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1748 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1749 	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1750 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1751 	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1752 
1753 	/* Program INT_KER address */
1754 	EFX_POPULATE_OWORD_2(temp,
1755 			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1756 			     EFX_INT_MODE_USE_MSI(efx),
1757 			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1758 	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1759 
1760 	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1761 		/* Use an interrupt level unused by event queues */
1762 		efx->irq_level = 0x1f;
1763 	else
1764 		/* Use a valid MSI-X vector */
1765 		efx->irq_level = 0;
1766 
1767 	/* Enable all the genuinely fatal interrupts.  (They are still
1768 	 * masked by the overall interrupt mask, controlled by
1769 	 * falcon_interrupts()).
1770 	 *
1771 	 * Note: All other fatal interrupts are enabled
1772 	 */
1773 	EFX_POPULATE_OWORD_3(temp,
1774 			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1775 			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1776 			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1777 	EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1778 	EFX_INVERT_OWORD(temp);
1779 	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1780 
1781 	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1782 	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1783 	 */
1784 	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1785 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1786 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1787 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1788 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1789 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1790 	/* Enable SW_EV to inherit in char driver - assume harmless here */
1791 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1792 	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1793 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1794 	/* Disable hardware watchdog which can misfire */
1795 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1796 	/* Squash TX of packets of 16 bytes or less */
1797 	EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1798 	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1799 
1800 	EFX_POPULATE_OWORD_4(temp,
1801 			     /* Default values */
1802 			     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1803 			     FRF_BZ_TX_PACE_SB_AF, 0xb,
1804 			     FRF_BZ_TX_PACE_FB_BASE, 0,
1805 			     /* Allow large pace values in the fast bin. */
1806 			     FRF_BZ_TX_PACE_BIN_TH,
1807 			     FFE_BZ_TX_PACE_RESERVED);
1808 	efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1809 }
1810 
1811 /**************************************************************************
1812  *
1813  * Filter tables
1814  *
1815  **************************************************************************
1816  */
1817 
1818 /* "Fudge factors" - difference between programmed value and actual depth.
1819  * Due to pipelined implementation we need to program H/W with a value that
1820  * is larger than the hop limit we want.
1821  */
1822 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1823 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1824 
1825 /* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1826  * We also need to avoid infinite loops in efx_farch_filter_search() when the
1827  * table is full.
1828  */
1829 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1830 
1831 /* Don't try very hard to find space for performance hints, as this is
1832  * counter-productive. */
1833 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1834 
1835 enum efx_farch_filter_type {
1836 	EFX_FARCH_FILTER_TCP_FULL = 0,
1837 	EFX_FARCH_FILTER_TCP_WILD,
1838 	EFX_FARCH_FILTER_UDP_FULL,
1839 	EFX_FARCH_FILTER_UDP_WILD,
1840 	EFX_FARCH_FILTER_MAC_FULL = 4,
1841 	EFX_FARCH_FILTER_MAC_WILD,
1842 	EFX_FARCH_FILTER_UC_DEF = 8,
1843 	EFX_FARCH_FILTER_MC_DEF,
1844 	EFX_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */
1845 };
1846 
1847 enum efx_farch_filter_table_id {
1848 	EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1849 	EFX_FARCH_FILTER_TABLE_RX_MAC,
1850 	EFX_FARCH_FILTER_TABLE_RX_DEF,
1851 	EFX_FARCH_FILTER_TABLE_TX_MAC,
1852 	EFX_FARCH_FILTER_TABLE_COUNT,
1853 };
1854 
1855 enum efx_farch_filter_index {
1856 	EFX_FARCH_FILTER_INDEX_UC_DEF,
1857 	EFX_FARCH_FILTER_INDEX_MC_DEF,
1858 	EFX_FARCH_FILTER_SIZE_RX_DEF,
1859 };
1860 
1861 struct efx_farch_filter_spec {
1862 	u8	type:4;
1863 	u8	priority:4;
1864 	u8	flags;
1865 	u16	dmaq_id;
1866 	u32	data[3];
1867 };
1868 
1869 struct efx_farch_filter_table {
1870 	enum efx_farch_filter_table_id id;
1871 	u32		offset;		/* address of table relative to BAR */
1872 	unsigned	size;		/* number of entries */
1873 	unsigned	step;		/* step between entries */
1874 	unsigned	used;		/* number currently used */
1875 	unsigned long	*used_bitmap;
1876 	struct efx_farch_filter_spec *spec;
1877 	unsigned	search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1878 };
1879 
1880 struct efx_farch_filter_state {
1881 	struct rw_semaphore lock; /* Protects table contents */
1882 	struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1883 };
1884 
1885 static void
1886 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1887 				   struct efx_farch_filter_table *table,
1888 				   unsigned int filter_idx);
1889 
1890 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1891  * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
efx_farch_filter_hash(u32 key)1892 static u16 efx_farch_filter_hash(u32 key)
1893 {
1894 	u16 tmp;
1895 
1896 	/* First 16 rounds */
1897 	tmp = 0x1fff ^ key >> 16;
1898 	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1899 	tmp = tmp ^ tmp >> 9;
1900 	/* Last 16 rounds */
1901 	tmp = tmp ^ tmp << 13 ^ key;
1902 	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1903 	return tmp ^ tmp >> 9;
1904 }
1905 
1906 /* To allow for hash collisions, filter search continues at these
1907  * increments from the first possible entry selected by the hash. */
efx_farch_filter_increment(u32 key)1908 static u16 efx_farch_filter_increment(u32 key)
1909 {
1910 	return key * 2 - 1;
1911 }
1912 
1913 static enum efx_farch_filter_table_id
efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec * spec)1914 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1915 {
1916 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1917 		     (EFX_FARCH_FILTER_TCP_FULL >> 2));
1918 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1919 		     (EFX_FARCH_FILTER_TCP_WILD >> 2));
1920 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1921 		     (EFX_FARCH_FILTER_UDP_FULL >> 2));
1922 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1923 		     (EFX_FARCH_FILTER_UDP_WILD >> 2));
1924 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1925 		     (EFX_FARCH_FILTER_MAC_FULL >> 2));
1926 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1927 		     (EFX_FARCH_FILTER_MAC_WILD >> 2));
1928 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1929 		     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1930 	return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1931 }
1932 
efx_farch_filter_push_rx_config(struct efx_nic * efx)1933 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1934 {
1935 	struct efx_farch_filter_state *state = efx->filter_state;
1936 	struct efx_farch_filter_table *table;
1937 	efx_oword_t filter_ctl;
1938 
1939 	efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1940 
1941 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1942 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1943 			    table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1944 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1945 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1946 			    table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1947 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1948 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1949 			    table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1950 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1951 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1952 			    table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1953 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1954 
1955 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1956 	if (table->size) {
1957 		EFX_SET_OWORD_FIELD(
1958 			filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1959 			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1960 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1961 		EFX_SET_OWORD_FIELD(
1962 			filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1963 			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1964 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1965 	}
1966 
1967 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1968 	if (table->size) {
1969 		EFX_SET_OWORD_FIELD(
1970 			filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1971 			table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1972 		EFX_SET_OWORD_FIELD(
1973 			filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1974 			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1975 			   EFX_FILTER_FLAG_RX_RSS));
1976 		EFX_SET_OWORD_FIELD(
1977 			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1978 			table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1979 		EFX_SET_OWORD_FIELD(
1980 			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1981 			!!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1982 			   EFX_FILTER_FLAG_RX_RSS));
1983 
1984 		/* There is a single bit to enable RX scatter for all
1985 		 * unmatched packets.  Only set it if scatter is
1986 		 * enabled in both filter specs.
1987 		 */
1988 		EFX_SET_OWORD_FIELD(
1989 			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1990 			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1991 			   table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1992 			   EFX_FILTER_FLAG_RX_SCATTER));
1993 	} else {
1994 		/* We don't expose 'default' filters because unmatched
1995 		 * packets always go to the queue number found in the
1996 		 * RSS table.  But we still need to set the RX scatter
1997 		 * bit here.
1998 		 */
1999 		EFX_SET_OWORD_FIELD(
2000 			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2001 			efx->rx_scatter);
2002 	}
2003 
2004 	efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2005 }
2006 
efx_farch_filter_push_tx_limits(struct efx_nic * efx)2007 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2008 {
2009 	struct efx_farch_filter_state *state = efx->filter_state;
2010 	struct efx_farch_filter_table *table;
2011 	efx_oword_t tx_cfg;
2012 
2013 	efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2014 
2015 	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2016 	if (table->size) {
2017 		EFX_SET_OWORD_FIELD(
2018 			tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2019 			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2020 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2021 		EFX_SET_OWORD_FIELD(
2022 			tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2023 			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2024 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2025 	}
2026 
2027 	efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2028 }
2029 
2030 static int
efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec * spec,const struct efx_filter_spec * gen_spec)2031 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2032 			       const struct efx_filter_spec *gen_spec)
2033 {
2034 	bool is_full = false;
2035 
2036 	if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) && gen_spec->rss_context)
2037 		return -EINVAL;
2038 
2039 	spec->priority = gen_spec->priority;
2040 	spec->flags = gen_spec->flags;
2041 	spec->dmaq_id = gen_spec->dmaq_id;
2042 
2043 	switch (gen_spec->match_flags) {
2044 	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2045 	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2046 	      EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2047 		is_full = true;
2048 		/* fall through */
2049 	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2050 	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2051 		__be32 rhost, host1, host2;
2052 		__be16 rport, port1, port2;
2053 
2054 		EFX_WARN_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2055 
2056 		if (gen_spec->ether_type != htons(ETH_P_IP))
2057 			return -EPROTONOSUPPORT;
2058 		if (gen_spec->loc_port == 0 ||
2059 		    (is_full && gen_spec->rem_port == 0))
2060 			return -EADDRNOTAVAIL;
2061 		switch (gen_spec->ip_proto) {
2062 		case IPPROTO_TCP:
2063 			spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2064 				      EFX_FARCH_FILTER_TCP_WILD);
2065 			break;
2066 		case IPPROTO_UDP:
2067 			spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2068 				      EFX_FARCH_FILTER_UDP_WILD);
2069 			break;
2070 		default:
2071 			return -EPROTONOSUPPORT;
2072 		}
2073 
2074 		/* Filter is constructed in terms of source and destination,
2075 		 * with the odd wrinkle that the ports are swapped in a UDP
2076 		 * wildcard filter.  We need to convert from local and remote
2077 		 * (= zero for wildcard) addresses.
2078 		 */
2079 		rhost = is_full ? gen_spec->rem_host[0] : 0;
2080 		rport = is_full ? gen_spec->rem_port : 0;
2081 		host1 = rhost;
2082 		host2 = gen_spec->loc_host[0];
2083 		if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2084 			port1 = gen_spec->loc_port;
2085 			port2 = rport;
2086 		} else {
2087 			port1 = rport;
2088 			port2 = gen_spec->loc_port;
2089 		}
2090 		spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2091 		spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2092 		spec->data[2] = ntohl(host2);
2093 
2094 		break;
2095 	}
2096 
2097 	case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2098 		is_full = true;
2099 		/* fall through */
2100 	case EFX_FILTER_MATCH_LOC_MAC:
2101 		spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2102 			      EFX_FARCH_FILTER_MAC_WILD);
2103 		spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2104 		spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2105 				 gen_spec->loc_mac[3] << 16 |
2106 				 gen_spec->loc_mac[4] << 8 |
2107 				 gen_spec->loc_mac[5]);
2108 		spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2109 				 gen_spec->loc_mac[1]);
2110 		break;
2111 
2112 	case EFX_FILTER_MATCH_LOC_MAC_IG:
2113 		spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2114 			      EFX_FARCH_FILTER_MC_DEF :
2115 			      EFX_FARCH_FILTER_UC_DEF);
2116 		memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2117 		break;
2118 
2119 	default:
2120 		return -EPROTONOSUPPORT;
2121 	}
2122 
2123 	return 0;
2124 }
2125 
2126 static void
efx_farch_filter_to_gen_spec(struct efx_filter_spec * gen_spec,const struct efx_farch_filter_spec * spec)2127 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2128 			     const struct efx_farch_filter_spec *spec)
2129 {
2130 	bool is_full = false;
2131 
2132 	/* *gen_spec should be completely initialised, to be consistent
2133 	 * with efx_filter_init_{rx,tx}() and in case we want to copy
2134 	 * it back to userland.
2135 	 */
2136 	memset(gen_spec, 0, sizeof(*gen_spec));
2137 
2138 	gen_spec->priority = spec->priority;
2139 	gen_spec->flags = spec->flags;
2140 	gen_spec->dmaq_id = spec->dmaq_id;
2141 
2142 	switch (spec->type) {
2143 	case EFX_FARCH_FILTER_TCP_FULL:
2144 	case EFX_FARCH_FILTER_UDP_FULL:
2145 		is_full = true;
2146 		/* fall through */
2147 	case EFX_FARCH_FILTER_TCP_WILD:
2148 	case EFX_FARCH_FILTER_UDP_WILD: {
2149 		__be32 host1, host2;
2150 		__be16 port1, port2;
2151 
2152 		gen_spec->match_flags =
2153 			EFX_FILTER_MATCH_ETHER_TYPE |
2154 			EFX_FILTER_MATCH_IP_PROTO |
2155 			EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2156 		if (is_full)
2157 			gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2158 						  EFX_FILTER_MATCH_REM_PORT);
2159 		gen_spec->ether_type = htons(ETH_P_IP);
2160 		gen_spec->ip_proto =
2161 			(spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2162 			 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2163 			IPPROTO_TCP : IPPROTO_UDP;
2164 
2165 		host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2166 		port1 = htons(spec->data[0]);
2167 		host2 = htonl(spec->data[2]);
2168 		port2 = htons(spec->data[1] >> 16);
2169 		if (spec->flags & EFX_FILTER_FLAG_TX) {
2170 			gen_spec->loc_host[0] = host1;
2171 			gen_spec->rem_host[0] = host2;
2172 		} else {
2173 			gen_spec->loc_host[0] = host2;
2174 			gen_spec->rem_host[0] = host1;
2175 		}
2176 		if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2177 		    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2178 			gen_spec->loc_port = port1;
2179 			gen_spec->rem_port = port2;
2180 		} else {
2181 			gen_spec->loc_port = port2;
2182 			gen_spec->rem_port = port1;
2183 		}
2184 
2185 		break;
2186 	}
2187 
2188 	case EFX_FARCH_FILTER_MAC_FULL:
2189 		is_full = true;
2190 		/* fall through */
2191 	case EFX_FARCH_FILTER_MAC_WILD:
2192 		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2193 		if (is_full)
2194 			gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2195 		gen_spec->loc_mac[0] = spec->data[2] >> 8;
2196 		gen_spec->loc_mac[1] = spec->data[2];
2197 		gen_spec->loc_mac[2] = spec->data[1] >> 24;
2198 		gen_spec->loc_mac[3] = spec->data[1] >> 16;
2199 		gen_spec->loc_mac[4] = spec->data[1] >> 8;
2200 		gen_spec->loc_mac[5] = spec->data[1];
2201 		gen_spec->outer_vid = htons(spec->data[0]);
2202 		break;
2203 
2204 	case EFX_FARCH_FILTER_UC_DEF:
2205 	case EFX_FARCH_FILTER_MC_DEF:
2206 		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2207 		gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2208 		break;
2209 
2210 	default:
2211 		WARN_ON(1);
2212 		break;
2213 	}
2214 }
2215 
2216 static void
efx_farch_filter_init_rx_auto(struct efx_nic * efx,struct efx_farch_filter_spec * spec)2217 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2218 			      struct efx_farch_filter_spec *spec)
2219 {
2220 	/* If there's only one channel then disable RSS for non VF
2221 	 * traffic, thereby allowing VFs to use RSS when the PF can't.
2222 	 */
2223 	spec->priority = EFX_FILTER_PRI_AUTO;
2224 	spec->flags = (EFX_FILTER_FLAG_RX |
2225 		       (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2226 		       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2227 	spec->dmaq_id = 0;
2228 }
2229 
2230 /* Build a filter entry and return its n-tuple key. */
efx_farch_filter_build(efx_oword_t * filter,struct efx_farch_filter_spec * spec)2231 static u32 efx_farch_filter_build(efx_oword_t *filter,
2232 				  struct efx_farch_filter_spec *spec)
2233 {
2234 	u32 data3;
2235 
2236 	switch (efx_farch_filter_spec_table_id(spec)) {
2237 	case EFX_FARCH_FILTER_TABLE_RX_IP: {
2238 		bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2239 			       spec->type == EFX_FARCH_FILTER_UDP_WILD);
2240 		EFX_POPULATE_OWORD_7(
2241 			*filter,
2242 			FRF_BZ_RSS_EN,
2243 			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2244 			FRF_BZ_SCATTER_EN,
2245 			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2246 			FRF_BZ_TCP_UDP, is_udp,
2247 			FRF_BZ_RXQ_ID, spec->dmaq_id,
2248 			EFX_DWORD_2, spec->data[2],
2249 			EFX_DWORD_1, spec->data[1],
2250 			EFX_DWORD_0, spec->data[0]);
2251 		data3 = is_udp;
2252 		break;
2253 	}
2254 
2255 	case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2256 		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2257 		EFX_POPULATE_OWORD_7(
2258 			*filter,
2259 			FRF_CZ_RMFT_RSS_EN,
2260 			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2261 			FRF_CZ_RMFT_SCATTER_EN,
2262 			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2263 			FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2264 			FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2265 			FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2266 			FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2267 			FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2268 		data3 = is_wild;
2269 		break;
2270 	}
2271 
2272 	case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2273 		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2274 		EFX_POPULATE_OWORD_5(*filter,
2275 				     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2276 				     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2277 				     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2278 				     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2279 				     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2280 		data3 = is_wild | spec->dmaq_id << 1;
2281 		break;
2282 	}
2283 
2284 	default:
2285 		BUG();
2286 	}
2287 
2288 	return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2289 }
2290 
efx_farch_filter_equal(const struct efx_farch_filter_spec * left,const struct efx_farch_filter_spec * right)2291 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2292 				   const struct efx_farch_filter_spec *right)
2293 {
2294 	if (left->type != right->type ||
2295 	    memcmp(left->data, right->data, sizeof(left->data)))
2296 		return false;
2297 
2298 	if (left->flags & EFX_FILTER_FLAG_TX &&
2299 	    left->dmaq_id != right->dmaq_id)
2300 		return false;
2301 
2302 	return true;
2303 }
2304 
2305 /*
2306  * Construct/deconstruct external filter IDs.  At least the RX filter
2307  * IDs must be ordered by matching priority, for RX NFC semantics.
2308  *
2309  * Deconstruction needs to be robust against invalid IDs so that
2310  * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2311  * accept user-provided IDs.
2312  */
2313 
2314 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT	5
2315 
2316 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2317 	[EFX_FARCH_FILTER_TCP_FULL]	= 0,
2318 	[EFX_FARCH_FILTER_UDP_FULL]	= 0,
2319 	[EFX_FARCH_FILTER_TCP_WILD]	= 1,
2320 	[EFX_FARCH_FILTER_UDP_WILD]	= 1,
2321 	[EFX_FARCH_FILTER_MAC_FULL]	= 2,
2322 	[EFX_FARCH_FILTER_MAC_WILD]	= 3,
2323 	[EFX_FARCH_FILTER_UC_DEF]	= 4,
2324 	[EFX_FARCH_FILTER_MC_DEF]	= 4,
2325 };
2326 
2327 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2328 	EFX_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */
2329 	EFX_FARCH_FILTER_TABLE_RX_IP,
2330 	EFX_FARCH_FILTER_TABLE_RX_MAC,
2331 	EFX_FARCH_FILTER_TABLE_RX_MAC,
2332 	EFX_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */
2333 	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */
2334 	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */
2335 };
2336 
2337 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2338 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2339 
2340 static inline u32
efx_farch_filter_make_id(const struct efx_farch_filter_spec * spec,unsigned int index)2341 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2342 			 unsigned int index)
2343 {
2344 	unsigned int range;
2345 
2346 	range = efx_farch_filter_type_match_pri[spec->type];
2347 	if (!(spec->flags & EFX_FILTER_FLAG_RX))
2348 		range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2349 
2350 	return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2351 }
2352 
2353 static inline enum efx_farch_filter_table_id
efx_farch_filter_id_table_id(u32 id)2354 efx_farch_filter_id_table_id(u32 id)
2355 {
2356 	unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2357 
2358 	if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2359 		return efx_farch_filter_range_table[range];
2360 	else
2361 		return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2362 }
2363 
efx_farch_filter_id_index(u32 id)2364 static inline unsigned int efx_farch_filter_id_index(u32 id)
2365 {
2366 	return id & EFX_FARCH_FILTER_INDEX_MASK;
2367 }
2368 
efx_farch_filter_get_rx_id_limit(struct efx_nic * efx)2369 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2370 {
2371 	struct efx_farch_filter_state *state = efx->filter_state;
2372 	unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2373 	enum efx_farch_filter_table_id table_id;
2374 
2375 	do {
2376 		table_id = efx_farch_filter_range_table[range];
2377 		if (state->table[table_id].size != 0)
2378 			return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2379 				state->table[table_id].size;
2380 	} while (range--);
2381 
2382 	return 0;
2383 }
2384 
efx_farch_filter_insert(struct efx_nic * efx,struct efx_filter_spec * gen_spec,bool replace_equal)2385 s32 efx_farch_filter_insert(struct efx_nic *efx,
2386 			    struct efx_filter_spec *gen_spec,
2387 			    bool replace_equal)
2388 {
2389 	struct efx_farch_filter_state *state = efx->filter_state;
2390 	struct efx_farch_filter_table *table;
2391 	struct efx_farch_filter_spec spec;
2392 	efx_oword_t filter;
2393 	int rep_index, ins_index;
2394 	unsigned int depth = 0;
2395 	int rc;
2396 
2397 	rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2398 	if (rc)
2399 		return rc;
2400 
2401 	down_write(&state->lock);
2402 
2403 	table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2404 	if (table->size == 0) {
2405 		rc = -EINVAL;
2406 		goto out_unlock;
2407 	}
2408 
2409 	netif_vdbg(efx, hw, efx->net_dev,
2410 		   "%s: type %d search_limit=%d", __func__, spec.type,
2411 		   table->search_limit[spec.type]);
2412 
2413 	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2414 		/* One filter spec per type */
2415 		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2416 		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2417 			     EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2418 		rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2419 		ins_index = rep_index;
2420 	} else {
2421 		/* Search concurrently for
2422 		 * (1) a filter to be replaced (rep_index): any filter
2423 		 *     with the same match values, up to the current
2424 		 *     search depth for this type, and
2425 		 * (2) the insertion point (ins_index): (1) or any
2426 		 *     free slot before it or up to the maximum search
2427 		 *     depth for this priority
2428 		 * We fail if we cannot find (2).
2429 		 *
2430 		 * We can stop once either
2431 		 * (a) we find (1), in which case we have definitely
2432 		 *     found (2) as well; or
2433 		 * (b) we have searched exhaustively for (1), and have
2434 		 *     either found (2) or searched exhaustively for it
2435 		 */
2436 		u32 key = efx_farch_filter_build(&filter, &spec);
2437 		unsigned int hash = efx_farch_filter_hash(key);
2438 		unsigned int incr = efx_farch_filter_increment(key);
2439 		unsigned int max_rep_depth = table->search_limit[spec.type];
2440 		unsigned int max_ins_depth =
2441 			spec.priority <= EFX_FILTER_PRI_HINT ?
2442 			EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2443 			EFX_FARCH_FILTER_CTL_SRCH_MAX;
2444 		unsigned int i = hash & (table->size - 1);
2445 
2446 		ins_index = -1;
2447 		depth = 1;
2448 
2449 		for (;;) {
2450 			if (!test_bit(i, table->used_bitmap)) {
2451 				if (ins_index < 0)
2452 					ins_index = i;
2453 			} else if (efx_farch_filter_equal(&spec,
2454 							  &table->spec[i])) {
2455 				/* Case (a) */
2456 				if (ins_index < 0)
2457 					ins_index = i;
2458 				rep_index = i;
2459 				break;
2460 			}
2461 
2462 			if (depth >= max_rep_depth &&
2463 			    (ins_index >= 0 || depth >= max_ins_depth)) {
2464 				/* Case (b) */
2465 				if (ins_index < 0) {
2466 					rc = -EBUSY;
2467 					goto out_unlock;
2468 				}
2469 				rep_index = -1;
2470 				break;
2471 			}
2472 
2473 			i = (i + incr) & (table->size - 1);
2474 			++depth;
2475 		}
2476 	}
2477 
2478 	/* If we found a filter to be replaced, check whether we
2479 	 * should do so
2480 	 */
2481 	if (rep_index >= 0) {
2482 		struct efx_farch_filter_spec *saved_spec =
2483 			&table->spec[rep_index];
2484 
2485 		if (spec.priority == saved_spec->priority && !replace_equal) {
2486 			rc = -EEXIST;
2487 			goto out_unlock;
2488 		}
2489 		if (spec.priority < saved_spec->priority) {
2490 			rc = -EPERM;
2491 			goto out_unlock;
2492 		}
2493 		if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2494 		    saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2495 			spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2496 	}
2497 
2498 	/* Insert the filter */
2499 	if (ins_index != rep_index) {
2500 		__set_bit(ins_index, table->used_bitmap);
2501 		++table->used;
2502 	}
2503 	table->spec[ins_index] = spec;
2504 
2505 	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2506 		efx_farch_filter_push_rx_config(efx);
2507 	} else {
2508 		if (table->search_limit[spec.type] < depth) {
2509 			table->search_limit[spec.type] = depth;
2510 			if (spec.flags & EFX_FILTER_FLAG_TX)
2511 				efx_farch_filter_push_tx_limits(efx);
2512 			else
2513 				efx_farch_filter_push_rx_config(efx);
2514 		}
2515 
2516 		efx_writeo(efx, &filter,
2517 			   table->offset + table->step * ins_index);
2518 
2519 		/* If we were able to replace a filter by inserting
2520 		 * at a lower depth, clear the replaced filter
2521 		 */
2522 		if (ins_index != rep_index && rep_index >= 0)
2523 			efx_farch_filter_table_clear_entry(efx, table,
2524 							   rep_index);
2525 	}
2526 
2527 	netif_vdbg(efx, hw, efx->net_dev,
2528 		   "%s: filter type %d index %d rxq %u set",
2529 		   __func__, spec.type, ins_index, spec.dmaq_id);
2530 	rc = efx_farch_filter_make_id(&spec, ins_index);
2531 
2532 out_unlock:
2533 	up_write(&state->lock);
2534 	return rc;
2535 }
2536 
2537 static void
efx_farch_filter_table_clear_entry(struct efx_nic * efx,struct efx_farch_filter_table * table,unsigned int filter_idx)2538 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2539 				   struct efx_farch_filter_table *table,
2540 				   unsigned int filter_idx)
2541 {
2542 	static efx_oword_t filter;
2543 
2544 	EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2545 	BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2546 
2547 	__clear_bit(filter_idx, table->used_bitmap);
2548 	--table->used;
2549 	memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2550 
2551 	efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2552 
2553 	/* If this filter required a greater search depth than
2554 	 * any other, the search limit for its type can now be
2555 	 * decreased.  However, it is hard to determine that
2556 	 * unless the table has become completely empty - in
2557 	 * which case, all its search limits can be set to 0.
2558 	 */
2559 	if (unlikely(table->used == 0)) {
2560 		memset(table->search_limit, 0, sizeof(table->search_limit));
2561 		if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2562 			efx_farch_filter_push_tx_limits(efx);
2563 		else
2564 			efx_farch_filter_push_rx_config(efx);
2565 	}
2566 }
2567 
efx_farch_filter_remove(struct efx_nic * efx,struct efx_farch_filter_table * table,unsigned int filter_idx,enum efx_filter_priority priority)2568 static int efx_farch_filter_remove(struct efx_nic *efx,
2569 				   struct efx_farch_filter_table *table,
2570 				   unsigned int filter_idx,
2571 				   enum efx_filter_priority priority)
2572 {
2573 	struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2574 
2575 	if (!test_bit(filter_idx, table->used_bitmap) ||
2576 	    spec->priority != priority)
2577 		return -ENOENT;
2578 
2579 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2580 		efx_farch_filter_init_rx_auto(efx, spec);
2581 		efx_farch_filter_push_rx_config(efx);
2582 	} else {
2583 		efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2584 	}
2585 
2586 	return 0;
2587 }
2588 
efx_farch_filter_remove_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id)2589 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2590 				 enum efx_filter_priority priority,
2591 				 u32 filter_id)
2592 {
2593 	struct efx_farch_filter_state *state = efx->filter_state;
2594 	enum efx_farch_filter_table_id table_id;
2595 	struct efx_farch_filter_table *table;
2596 	unsigned int filter_idx;
2597 	struct efx_farch_filter_spec *spec;
2598 	int rc;
2599 
2600 	table_id = efx_farch_filter_id_table_id(filter_id);
2601 	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2602 		return -ENOENT;
2603 	table = &state->table[table_id];
2604 
2605 	filter_idx = efx_farch_filter_id_index(filter_id);
2606 	if (filter_idx >= table->size)
2607 		return -ENOENT;
2608 	down_write(&state->lock);
2609 	spec = &table->spec[filter_idx];
2610 
2611 	rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2612 	up_write(&state->lock);
2613 
2614 	return rc;
2615 }
2616 
efx_farch_filter_get_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id,struct efx_filter_spec * spec_buf)2617 int efx_farch_filter_get_safe(struct efx_nic *efx,
2618 			      enum efx_filter_priority priority,
2619 			      u32 filter_id, struct efx_filter_spec *spec_buf)
2620 {
2621 	struct efx_farch_filter_state *state = efx->filter_state;
2622 	enum efx_farch_filter_table_id table_id;
2623 	struct efx_farch_filter_table *table;
2624 	struct efx_farch_filter_spec *spec;
2625 	unsigned int filter_idx;
2626 	int rc = -ENOENT;
2627 
2628 	down_read(&state->lock);
2629 
2630 	table_id = efx_farch_filter_id_table_id(filter_id);
2631 	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2632 		goto out_unlock;
2633 	table = &state->table[table_id];
2634 
2635 	filter_idx = efx_farch_filter_id_index(filter_id);
2636 	if (filter_idx >= table->size)
2637 		goto out_unlock;
2638 	spec = &table->spec[filter_idx];
2639 
2640 	if (test_bit(filter_idx, table->used_bitmap) &&
2641 	    spec->priority == priority) {
2642 		efx_farch_filter_to_gen_spec(spec_buf, spec);
2643 		rc = 0;
2644 	}
2645 
2646 out_unlock:
2647 	up_read(&state->lock);
2648 	return rc;
2649 }
2650 
2651 static void
efx_farch_filter_table_clear(struct efx_nic * efx,enum efx_farch_filter_table_id table_id,enum efx_filter_priority priority)2652 efx_farch_filter_table_clear(struct efx_nic *efx,
2653 			     enum efx_farch_filter_table_id table_id,
2654 			     enum efx_filter_priority priority)
2655 {
2656 	struct efx_farch_filter_state *state = efx->filter_state;
2657 	struct efx_farch_filter_table *table = &state->table[table_id];
2658 	unsigned int filter_idx;
2659 
2660 	down_write(&state->lock);
2661 	for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2662 		if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2663 			efx_farch_filter_remove(efx, table,
2664 						filter_idx, priority);
2665 	}
2666 	up_write(&state->lock);
2667 }
2668 
efx_farch_filter_clear_rx(struct efx_nic * efx,enum efx_filter_priority priority)2669 int efx_farch_filter_clear_rx(struct efx_nic *efx,
2670 			       enum efx_filter_priority priority)
2671 {
2672 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2673 				     priority);
2674 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2675 				     priority);
2676 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2677 				     priority);
2678 	return 0;
2679 }
2680 
efx_farch_filter_count_rx_used(struct efx_nic * efx,enum efx_filter_priority priority)2681 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2682 				   enum efx_filter_priority priority)
2683 {
2684 	struct efx_farch_filter_state *state = efx->filter_state;
2685 	enum efx_farch_filter_table_id table_id;
2686 	struct efx_farch_filter_table *table;
2687 	unsigned int filter_idx;
2688 	u32 count = 0;
2689 
2690 	down_read(&state->lock);
2691 
2692 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2693 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2694 	     table_id++) {
2695 		table = &state->table[table_id];
2696 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2697 			if (test_bit(filter_idx, table->used_bitmap) &&
2698 			    table->spec[filter_idx].priority == priority)
2699 				++count;
2700 		}
2701 	}
2702 
2703 	up_read(&state->lock);
2704 
2705 	return count;
2706 }
2707 
efx_farch_filter_get_rx_ids(struct efx_nic * efx,enum efx_filter_priority priority,u32 * buf,u32 size)2708 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2709 				enum efx_filter_priority priority,
2710 				u32 *buf, u32 size)
2711 {
2712 	struct efx_farch_filter_state *state = efx->filter_state;
2713 	enum efx_farch_filter_table_id table_id;
2714 	struct efx_farch_filter_table *table;
2715 	unsigned int filter_idx;
2716 	s32 count = 0;
2717 
2718 	down_read(&state->lock);
2719 
2720 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2721 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2722 	     table_id++) {
2723 		table = &state->table[table_id];
2724 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2725 			if (test_bit(filter_idx, table->used_bitmap) &&
2726 			    table->spec[filter_idx].priority == priority) {
2727 				if (count == size) {
2728 					count = -EMSGSIZE;
2729 					goto out;
2730 				}
2731 				buf[count++] = efx_farch_filter_make_id(
2732 					&table->spec[filter_idx], filter_idx);
2733 			}
2734 		}
2735 	}
2736 out:
2737 	up_read(&state->lock);
2738 
2739 	return count;
2740 }
2741 
2742 /* Restore filter stater after reset */
efx_farch_filter_table_restore(struct efx_nic * efx)2743 void efx_farch_filter_table_restore(struct efx_nic *efx)
2744 {
2745 	struct efx_farch_filter_state *state = efx->filter_state;
2746 	enum efx_farch_filter_table_id table_id;
2747 	struct efx_farch_filter_table *table;
2748 	efx_oword_t filter;
2749 	unsigned int filter_idx;
2750 
2751 	down_write(&state->lock);
2752 
2753 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2754 		table = &state->table[table_id];
2755 
2756 		/* Check whether this is a regular register table */
2757 		if (table->step == 0)
2758 			continue;
2759 
2760 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2761 			if (!test_bit(filter_idx, table->used_bitmap))
2762 				continue;
2763 			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2764 			efx_writeo(efx, &filter,
2765 				   table->offset + table->step * filter_idx);
2766 		}
2767 	}
2768 
2769 	efx_farch_filter_push_rx_config(efx);
2770 	efx_farch_filter_push_tx_limits(efx);
2771 
2772 	up_write(&state->lock);
2773 }
2774 
efx_farch_filter_table_remove(struct efx_nic * efx)2775 void efx_farch_filter_table_remove(struct efx_nic *efx)
2776 {
2777 	struct efx_farch_filter_state *state = efx->filter_state;
2778 	enum efx_farch_filter_table_id table_id;
2779 
2780 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2781 		kfree(state->table[table_id].used_bitmap);
2782 		vfree(state->table[table_id].spec);
2783 	}
2784 	kfree(state);
2785 }
2786 
efx_farch_filter_table_probe(struct efx_nic * efx)2787 int efx_farch_filter_table_probe(struct efx_nic *efx)
2788 {
2789 	struct efx_farch_filter_state *state;
2790 	struct efx_farch_filter_table *table;
2791 	unsigned table_id;
2792 
2793 	state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2794 	if (!state)
2795 		return -ENOMEM;
2796 	efx->filter_state = state;
2797 	init_rwsem(&state->lock);
2798 
2799 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2800 	table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2801 	table->offset = FR_BZ_RX_FILTER_TBL0;
2802 	table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2803 	table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2804 
2805 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2806 	table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2807 	table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2808 	table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2809 	table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2810 
2811 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2812 	table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2813 	table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2814 
2815 	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2816 	table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2817 	table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2818 	table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2819 	table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2820 
2821 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2822 		table = &state->table[table_id];
2823 		if (table->size == 0)
2824 			continue;
2825 		table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2826 					     sizeof(unsigned long),
2827 					     GFP_KERNEL);
2828 		if (!table->used_bitmap)
2829 			goto fail;
2830 		table->spec = vzalloc(array_size(sizeof(*table->spec),
2831 						 table->size));
2832 		if (!table->spec)
2833 			goto fail;
2834 	}
2835 
2836 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2837 	if (table->size) {
2838 		/* RX default filters must always exist */
2839 		struct efx_farch_filter_spec *spec;
2840 		unsigned i;
2841 
2842 		for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2843 			spec = &table->spec[i];
2844 			spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2845 			efx_farch_filter_init_rx_auto(efx, spec);
2846 			__set_bit(i, table->used_bitmap);
2847 		}
2848 	}
2849 
2850 	efx_farch_filter_push_rx_config(efx);
2851 
2852 	return 0;
2853 
2854 fail:
2855 	efx_farch_filter_table_remove(efx);
2856 	return -ENOMEM;
2857 }
2858 
2859 /* Update scatter enable flags for filters pointing to our own RX queues */
efx_farch_filter_update_rx_scatter(struct efx_nic * efx)2860 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2861 {
2862 	struct efx_farch_filter_state *state = efx->filter_state;
2863 	enum efx_farch_filter_table_id table_id;
2864 	struct efx_farch_filter_table *table;
2865 	efx_oword_t filter;
2866 	unsigned int filter_idx;
2867 
2868 	down_write(&state->lock);
2869 
2870 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2871 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2872 	     table_id++) {
2873 		table = &state->table[table_id];
2874 
2875 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2876 			if (!test_bit(filter_idx, table->used_bitmap) ||
2877 			    table->spec[filter_idx].dmaq_id >=
2878 			    efx->n_rx_channels)
2879 				continue;
2880 
2881 			if (efx->rx_scatter)
2882 				table->spec[filter_idx].flags |=
2883 					EFX_FILTER_FLAG_RX_SCATTER;
2884 			else
2885 				table->spec[filter_idx].flags &=
2886 					~EFX_FILTER_FLAG_RX_SCATTER;
2887 
2888 			if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2889 				/* Pushed by efx_farch_filter_push_rx_config() */
2890 				continue;
2891 
2892 			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2893 			efx_writeo(efx, &filter,
2894 				   table->offset + table->step * filter_idx);
2895 		}
2896 	}
2897 
2898 	efx_farch_filter_push_rx_config(efx);
2899 
2900 	up_write(&state->lock);
2901 }
2902 
2903 #ifdef CONFIG_RFS_ACCEL
2904 
efx_farch_filter_rfs_expire_one(struct efx_nic * efx,u32 flow_id,unsigned int index)2905 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2906 				     unsigned int index)
2907 {
2908 	struct efx_farch_filter_state *state = efx->filter_state;
2909 	struct efx_farch_filter_table *table;
2910 	bool ret = false, force = false;
2911 	u16 arfs_id;
2912 
2913 	down_write(&state->lock);
2914 	spin_lock_bh(&efx->rps_hash_lock);
2915 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2916 	if (test_bit(index, table->used_bitmap) &&
2917 	    table->spec[index].priority == EFX_FILTER_PRI_HINT) {
2918 		struct efx_arfs_rule *rule = NULL;
2919 		struct efx_filter_spec spec;
2920 
2921 		efx_farch_filter_to_gen_spec(&spec, &table->spec[index]);
2922 		if (!efx->rps_hash_table) {
2923 			/* In the absence of the table, we always returned 0 to
2924 			 * ARFS, so use the same to query it.
2925 			 */
2926 			arfs_id = 0;
2927 		} else {
2928 			rule = efx_rps_hash_find(efx, &spec);
2929 			if (!rule) {
2930 				/* ARFS table doesn't know of this filter, remove it */
2931 				force = true;
2932 			} else {
2933 				arfs_id = rule->arfs_id;
2934 				if (!efx_rps_check_rule(rule, index, &force))
2935 					goto out_unlock;
2936 			}
2937 		}
2938 		if (force || rps_may_expire_flow(efx->net_dev, spec.dmaq_id,
2939 						 flow_id, arfs_id)) {
2940 			if (rule)
2941 				rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
2942 			efx_rps_hash_del(efx, &spec);
2943 			efx_farch_filter_table_clear_entry(efx, table, index);
2944 			ret = true;
2945 		}
2946 	}
2947 out_unlock:
2948 	spin_unlock_bh(&efx->rps_hash_lock);
2949 	up_write(&state->lock);
2950 	return ret;
2951 }
2952 
2953 #endif /* CONFIG_RFS_ACCEL */
2954 
efx_farch_filter_sync_rx_mode(struct efx_nic * efx)2955 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2956 {
2957 	struct net_device *net_dev = efx->net_dev;
2958 	struct netdev_hw_addr *ha;
2959 	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2960 	u32 crc;
2961 	int bit;
2962 
2963 	if (!efx_dev_registered(efx))
2964 		return;
2965 
2966 	netif_addr_lock_bh(net_dev);
2967 
2968 	efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2969 
2970 	/* Build multicast hash table */
2971 	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2972 		memset(mc_hash, 0xff, sizeof(*mc_hash));
2973 	} else {
2974 		memset(mc_hash, 0x00, sizeof(*mc_hash));
2975 		netdev_for_each_mc_addr(ha, net_dev) {
2976 			crc = ether_crc_le(ETH_ALEN, ha->addr);
2977 			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2978 			__set_bit_le(bit, mc_hash);
2979 		}
2980 
2981 		/* Broadcast packets go through the multicast hash filter.
2982 		 * ether_crc_le() of the broadcast address is 0xbe2612ff
2983 		 * so we always add bit 0xff to the mask.
2984 		 */
2985 		__set_bit_le(0xff, mc_hash);
2986 	}
2987 
2988 	netif_addr_unlock_bh(net_dev);
2989 }
2990