1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common EFI memory map functions.
4  */
5 
6 #define pr_fmt(fmt) "efi: " fmt
7 
8 #include <linux/init.h>
9 #include <linux/kernel.h>
10 #include <linux/efi.h>
11 #include <linux/io.h>
12 #include <asm/early_ioremap.h>
13 #include <linux/memblock.h>
14 #include <linux/slab.h>
15 
__efi_memmap_alloc_early(unsigned long size)16 static phys_addr_t __init __efi_memmap_alloc_early(unsigned long size)
17 {
18 	return memblock_phys_alloc(size, SMP_CACHE_BYTES);
19 }
20 
__efi_memmap_alloc_late(unsigned long size)21 static phys_addr_t __init __efi_memmap_alloc_late(unsigned long size)
22 {
23 	unsigned int order = get_order(size);
24 	struct page *p = alloc_pages(GFP_KERNEL, order);
25 
26 	if (!p)
27 		return 0;
28 
29 	return PFN_PHYS(page_to_pfn(p));
30 }
31 
32 /**
33  * efi_memmap_alloc - Allocate memory for the EFI memory map
34  * @num_entries: Number of entries in the allocated map.
35  *
36  * Depending on whether mm_init() has already been invoked or not,
37  * either memblock or "normal" page allocation is used.
38  *
39  * Returns the physical address of the allocated memory map on
40  * success, zero on failure.
41  */
efi_memmap_alloc(unsigned int num_entries)42 phys_addr_t __init efi_memmap_alloc(unsigned int num_entries)
43 {
44 	unsigned long size = num_entries * efi.memmap.desc_size;
45 
46 	if (slab_is_available())
47 		return __efi_memmap_alloc_late(size);
48 
49 	return __efi_memmap_alloc_early(size);
50 }
51 
52 /**
53  * __efi_memmap_init - Common code for mapping the EFI memory map
54  * @data: EFI memory map data
55  * @late: Use early or late mapping function?
56  *
57  * This function takes care of figuring out which function to use to
58  * map the EFI memory map in efi.memmap based on how far into the boot
59  * we are.
60  *
61  * During bootup @late should be %false since we only have access to
62  * the early_memremap*() functions as the vmalloc space isn't setup.
63  * Once the kernel is fully booted we can fallback to the more robust
64  * memremap*() API.
65  *
66  * Returns zero on success, a negative error code on failure.
67  */
68 static int __init
__efi_memmap_init(struct efi_memory_map_data * data,bool late)69 __efi_memmap_init(struct efi_memory_map_data *data, bool late)
70 {
71 	struct efi_memory_map map;
72 	phys_addr_t phys_map;
73 
74 	if (efi_enabled(EFI_PARAVIRT))
75 		return 0;
76 
77 	phys_map = data->phys_map;
78 
79 	if (late)
80 		map.map = memremap(phys_map, data->size, MEMREMAP_WB);
81 	else
82 		map.map = early_memremap(phys_map, data->size);
83 
84 	if (!map.map) {
85 		pr_err("Could not map the memory map!\n");
86 		return -ENOMEM;
87 	}
88 
89 	map.phys_map = data->phys_map;
90 	map.nr_map = data->size / data->desc_size;
91 	map.map_end = map.map + data->size;
92 
93 	map.desc_version = data->desc_version;
94 	map.desc_size = data->desc_size;
95 	map.late = late;
96 
97 	set_bit(EFI_MEMMAP, &efi.flags);
98 
99 	efi.memmap = map;
100 
101 	return 0;
102 }
103 
104 /**
105  * efi_memmap_init_early - Map the EFI memory map data structure
106  * @data: EFI memory map data
107  *
108  * Use early_memremap() to map the passed in EFI memory map and assign
109  * it to efi.memmap.
110  */
efi_memmap_init_early(struct efi_memory_map_data * data)111 int __init efi_memmap_init_early(struct efi_memory_map_data *data)
112 {
113 	/* Cannot go backwards */
114 	WARN_ON(efi.memmap.late);
115 
116 	return __efi_memmap_init(data, false);
117 }
118 
efi_memmap_unmap(void)119 void __init efi_memmap_unmap(void)
120 {
121 	if (!efi_enabled(EFI_MEMMAP))
122 		return;
123 
124 	if (!efi.memmap.late) {
125 		unsigned long size;
126 
127 		size = efi.memmap.desc_size * efi.memmap.nr_map;
128 		early_memunmap(efi.memmap.map, size);
129 	} else {
130 		memunmap(efi.memmap.map);
131 	}
132 
133 	efi.memmap.map = NULL;
134 	clear_bit(EFI_MEMMAP, &efi.flags);
135 }
136 
137 /**
138  * efi_memmap_init_late - Map efi.memmap with memremap()
139  * @phys_addr: Physical address of the new EFI memory map
140  * @size: Size in bytes of the new EFI memory map
141  *
142  * Setup a mapping of the EFI memory map using ioremap_cache(). This
143  * function should only be called once the vmalloc space has been
144  * setup and is therefore not suitable for calling during early EFI
145  * initialise, e.g. in efi_init(). Additionally, it expects
146  * efi_memmap_init_early() to have already been called.
147  *
148  * The reason there are two EFI memmap initialisation
149  * (efi_memmap_init_early() and this late version) is because the
150  * early EFI memmap should be explicitly unmapped once EFI
151  * initialisation is complete as the fixmap space used to map the EFI
152  * memmap (via early_memremap()) is a scarce resource.
153  *
154  * This late mapping is intended to persist for the duration of
155  * runtime so that things like efi_mem_desc_lookup() and
156  * efi_mem_attributes() always work.
157  *
158  * Returns zero on success, a negative error code on failure.
159  */
efi_memmap_init_late(phys_addr_t addr,unsigned long size)160 int __init efi_memmap_init_late(phys_addr_t addr, unsigned long size)
161 {
162 	struct efi_memory_map_data data = {
163 		.phys_map = addr,
164 		.size = size,
165 	};
166 
167 	/* Did we forget to unmap the early EFI memmap? */
168 	WARN_ON(efi.memmap.map);
169 
170 	/* Were we already called? */
171 	WARN_ON(efi.memmap.late);
172 
173 	/*
174 	 * It makes no sense to allow callers to register different
175 	 * values for the following fields. Copy them out of the
176 	 * existing early EFI memmap.
177 	 */
178 	data.desc_version = efi.memmap.desc_version;
179 	data.desc_size = efi.memmap.desc_size;
180 
181 	return __efi_memmap_init(&data, true);
182 }
183 
184 /**
185  * efi_memmap_install - Install a new EFI memory map in efi.memmap
186  * @addr: Physical address of the memory map
187  * @nr_map: Number of entries in the memory map
188  *
189  * Unlike efi_memmap_init_*(), this function does not allow the caller
190  * to switch from early to late mappings. It simply uses the existing
191  * mapping function and installs the new memmap.
192  *
193  * Returns zero on success, a negative error code on failure.
194  */
efi_memmap_install(phys_addr_t addr,unsigned int nr_map)195 int __init efi_memmap_install(phys_addr_t addr, unsigned int nr_map)
196 {
197 	struct efi_memory_map_data data;
198 
199 	efi_memmap_unmap();
200 
201 	data.phys_map = addr;
202 	data.size = efi.memmap.desc_size * nr_map;
203 	data.desc_version = efi.memmap.desc_version;
204 	data.desc_size = efi.memmap.desc_size;
205 
206 	return __efi_memmap_init(&data, efi.memmap.late);
207 }
208 
209 /**
210  * efi_memmap_split_count - Count number of additional EFI memmap entries
211  * @md: EFI memory descriptor to split
212  * @range: Address range (start, end) to split around
213  *
214  * Returns the number of additional EFI memmap entries required to
215  * accomodate @range.
216  */
efi_memmap_split_count(efi_memory_desc_t * md,struct range * range)217 int __init efi_memmap_split_count(efi_memory_desc_t *md, struct range *range)
218 {
219 	u64 m_start, m_end;
220 	u64 start, end;
221 	int count = 0;
222 
223 	start = md->phys_addr;
224 	end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1;
225 
226 	/* modifying range */
227 	m_start = range->start;
228 	m_end = range->end;
229 
230 	if (m_start <= start) {
231 		/* split into 2 parts */
232 		if (start < m_end && m_end < end)
233 			count++;
234 	}
235 
236 	if (start < m_start && m_start < end) {
237 		/* split into 3 parts */
238 		if (m_end < end)
239 			count += 2;
240 		/* split into 2 parts */
241 		if (end <= m_end)
242 			count++;
243 	}
244 
245 	return count;
246 }
247 
248 /**
249  * efi_memmap_insert - Insert a memory region in an EFI memmap
250  * @old_memmap: The existing EFI memory map structure
251  * @buf: Address of buffer to store new map
252  * @mem: Memory map entry to insert
253  *
254  * It is suggested that you call efi_memmap_split_count() first
255  * to see how large @buf needs to be.
256  */
efi_memmap_insert(struct efi_memory_map * old_memmap,void * buf,struct efi_mem_range * mem)257 void __init efi_memmap_insert(struct efi_memory_map *old_memmap, void *buf,
258 			      struct efi_mem_range *mem)
259 {
260 	u64 m_start, m_end, m_attr;
261 	efi_memory_desc_t *md;
262 	u64 start, end;
263 	void *old, *new;
264 
265 	/* modifying range */
266 	m_start = mem->range.start;
267 	m_end = mem->range.end;
268 	m_attr = mem->attribute;
269 
270 	/*
271 	 * The EFI memory map deals with regions in EFI_PAGE_SIZE
272 	 * units. Ensure that the region described by 'mem' is aligned
273 	 * correctly.
274 	 */
275 	if (!IS_ALIGNED(m_start, EFI_PAGE_SIZE) ||
276 	    !IS_ALIGNED(m_end + 1, EFI_PAGE_SIZE)) {
277 		WARN_ON(1);
278 		return;
279 	}
280 
281 	for (old = old_memmap->map, new = buf;
282 	     old < old_memmap->map_end;
283 	     old += old_memmap->desc_size, new += old_memmap->desc_size) {
284 
285 		/* copy original EFI memory descriptor */
286 		memcpy(new, old, old_memmap->desc_size);
287 		md = new;
288 		start = md->phys_addr;
289 		end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
290 
291 		if (m_start <= start && end <= m_end)
292 			md->attribute |= m_attr;
293 
294 		if (m_start <= start &&
295 		    (start < m_end && m_end < end)) {
296 			/* first part */
297 			md->attribute |= m_attr;
298 			md->num_pages = (m_end - md->phys_addr + 1) >>
299 				EFI_PAGE_SHIFT;
300 			/* latter part */
301 			new += old_memmap->desc_size;
302 			memcpy(new, old, old_memmap->desc_size);
303 			md = new;
304 			md->phys_addr = m_end + 1;
305 			md->num_pages = (end - md->phys_addr + 1) >>
306 				EFI_PAGE_SHIFT;
307 		}
308 
309 		if ((start < m_start && m_start < end) && m_end < end) {
310 			/* first part */
311 			md->num_pages = (m_start - md->phys_addr) >>
312 				EFI_PAGE_SHIFT;
313 			/* middle part */
314 			new += old_memmap->desc_size;
315 			memcpy(new, old, old_memmap->desc_size);
316 			md = new;
317 			md->attribute |= m_attr;
318 			md->phys_addr = m_start;
319 			md->num_pages = (m_end - m_start + 1) >>
320 				EFI_PAGE_SHIFT;
321 			/* last part */
322 			new += old_memmap->desc_size;
323 			memcpy(new, old, old_memmap->desc_size);
324 			md = new;
325 			md->phys_addr = m_end + 1;
326 			md->num_pages = (end - m_end) >>
327 				EFI_PAGE_SHIFT;
328 		}
329 
330 		if ((start < m_start && m_start < end) &&
331 		    (end <= m_end)) {
332 			/* first part */
333 			md->num_pages = (m_start - md->phys_addr) >>
334 				EFI_PAGE_SHIFT;
335 			/* latter part */
336 			new += old_memmap->desc_size;
337 			memcpy(new, old, old_memmap->desc_size);
338 			md = new;
339 			md->phys_addr = m_start;
340 			md->num_pages = (end - md->phys_addr + 1) >>
341 				EFI_PAGE_SHIFT;
342 			md->attribute |= m_attr;
343 		}
344 	}
345 }
346