1 /*
2  * EFI stub implementation that is shared by arm and arm64 architectures.
3  * This should be #included by the EFI stub implementation files.
4  *
5  * Copyright (C) 2013,2014 Linaro Limited
6  *     Roy Franz <roy.franz@linaro.org
7  * Copyright (C) 2013 Red Hat, Inc.
8  *     Mark Salter <msalter@redhat.com>
9  *
10  * This file is part of the Linux kernel, and is made available under the
11  * terms of the GNU General Public License version 2.
12  *
13  */
14 
15 #include <linux/efi.h>
16 #include <linux/sort.h>
17 #include <asm/efi.h>
18 
19 #include "efistub.h"
20 
21 /*
22  * This is the base address at which to start allocating virtual memory ranges
23  * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
24  * any allocation we choose, and eliminate the risk of a conflict after kexec.
25  * The value chosen is the largest non-zero power of 2 suitable for this purpose
26  * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
27  * be mapped efficiently.
28  * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
29  * map everything below 1 GB. (512 MB is a reasonable upper bound for the
30  * entire footprint of the UEFI runtime services memory regions)
31  */
32 #define EFI_RT_VIRTUAL_BASE	SZ_512M
33 #define EFI_RT_VIRTUAL_SIZE	SZ_512M
34 
35 #ifdef CONFIG_ARM64
36 # define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE_64
37 #else
38 # define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE
39 #endif
40 
41 static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
42 
efi_char16_printk(efi_system_table_t * sys_table_arg,efi_char16_t * str)43 void efi_char16_printk(efi_system_table_t *sys_table_arg,
44 			      efi_char16_t *str)
45 {
46 	struct efi_simple_text_output_protocol *out;
47 
48 	out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out;
49 	out->output_string(out, str);
50 }
51 
setup_graphics(efi_system_table_t * sys_table_arg)52 static struct screen_info *setup_graphics(efi_system_table_t *sys_table_arg)
53 {
54 	efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
55 	efi_status_t status;
56 	unsigned long size;
57 	void **gop_handle = NULL;
58 	struct screen_info *si = NULL;
59 
60 	size = 0;
61 	status = efi_call_early(locate_handle, EFI_LOCATE_BY_PROTOCOL,
62 				&gop_proto, NULL, &size, gop_handle);
63 	if (status == EFI_BUFFER_TOO_SMALL) {
64 		si = alloc_screen_info(sys_table_arg);
65 		if (!si)
66 			return NULL;
67 		efi_setup_gop(sys_table_arg, si, &gop_proto, size);
68 	}
69 	return si;
70 }
71 
72 /*
73  * This function handles the architcture specific differences between arm and
74  * arm64 regarding where the kernel image must be loaded and any memory that
75  * must be reserved. On failure it is required to free all
76  * all allocations it has made.
77  */
78 efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
79 				 unsigned long *image_addr,
80 				 unsigned long *image_size,
81 				 unsigned long *reserve_addr,
82 				 unsigned long *reserve_size,
83 				 unsigned long dram_base,
84 				 efi_loaded_image_t *image);
85 /*
86  * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
87  * that is described in the PE/COFF header.  Most of the code is the same
88  * for both archictectures, with the arch-specific code provided in the
89  * handle_kernel_image() function.
90  */
efi_entry(void * handle,efi_system_table_t * sys_table,unsigned long * image_addr)91 unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
92 			       unsigned long *image_addr)
93 {
94 	efi_loaded_image_t *image;
95 	efi_status_t status;
96 	unsigned long image_size = 0;
97 	unsigned long dram_base;
98 	/* addr/point and size pairs for memory management*/
99 	unsigned long initrd_addr;
100 	u64 initrd_size = 0;
101 	unsigned long fdt_addr = 0;  /* Original DTB */
102 	unsigned long fdt_size = 0;
103 	char *cmdline_ptr = NULL;
104 	int cmdline_size = 0;
105 	unsigned long new_fdt_addr;
106 	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
107 	unsigned long reserve_addr = 0;
108 	unsigned long reserve_size = 0;
109 	enum efi_secureboot_mode secure_boot;
110 	struct screen_info *si;
111 
112 	/* Check if we were booted by the EFI firmware */
113 	if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
114 		goto fail;
115 
116 	status = check_platform_features(sys_table);
117 	if (status != EFI_SUCCESS)
118 		goto fail;
119 
120 	/*
121 	 * Get a handle to the loaded image protocol.  This is used to get
122 	 * information about the running image, such as size and the command
123 	 * line.
124 	 */
125 	status = sys_table->boottime->handle_protocol(handle,
126 					&loaded_image_proto, (void *)&image);
127 	if (status != EFI_SUCCESS) {
128 		pr_efi_err(sys_table, "Failed to get loaded image protocol\n");
129 		goto fail;
130 	}
131 
132 	dram_base = get_dram_base(sys_table);
133 	if (dram_base == EFI_ERROR) {
134 		pr_efi_err(sys_table, "Failed to find DRAM base\n");
135 		goto fail;
136 	}
137 
138 	/*
139 	 * Get the command line from EFI, using the LOADED_IMAGE
140 	 * protocol. We are going to copy the command line into the
141 	 * device tree, so this can be allocated anywhere.
142 	 */
143 	cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size);
144 	if (!cmdline_ptr) {
145 		pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n");
146 		goto fail;
147 	}
148 
149 	if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
150 	    IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
151 	    cmdline_size == 0)
152 		efi_parse_options(CONFIG_CMDLINE);
153 
154 	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0)
155 		efi_parse_options(cmdline_ptr);
156 
157 	pr_efi(sys_table, "Booting Linux Kernel...\n");
158 
159 	si = setup_graphics(sys_table);
160 
161 	status = handle_kernel_image(sys_table, image_addr, &image_size,
162 				     &reserve_addr,
163 				     &reserve_size,
164 				     dram_base, image);
165 	if (status != EFI_SUCCESS) {
166 		pr_efi_err(sys_table, "Failed to relocate kernel\n");
167 		goto fail_free_cmdline;
168 	}
169 
170 	/* Ask the firmware to clear memory on unclean shutdown */
171 	efi_enable_reset_attack_mitigation(sys_table);
172 
173 	secure_boot = efi_get_secureboot(sys_table);
174 
175 	/*
176 	 * Unauthenticated device tree data is a security hazard, so ignore
177 	 * 'dtb=' unless UEFI Secure Boot is disabled.  We assume that secure
178 	 * boot is enabled if we can't determine its state.
179 	 */
180 	if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
181 	     secure_boot != efi_secureboot_mode_disabled) {
182 		if (strstr(cmdline_ptr, "dtb="))
183 			pr_efi(sys_table, "Ignoring DTB from command line.\n");
184 	} else {
185 		status = handle_cmdline_files(sys_table, image, cmdline_ptr,
186 					      "dtb=",
187 					      ~0UL, &fdt_addr, &fdt_size);
188 
189 		if (status != EFI_SUCCESS) {
190 			pr_efi_err(sys_table, "Failed to load device tree!\n");
191 			goto fail_free_image;
192 		}
193 	}
194 
195 	if (fdt_addr) {
196 		pr_efi(sys_table, "Using DTB from command line\n");
197 	} else {
198 		/* Look for a device tree configuration table entry. */
199 		fdt_addr = (uintptr_t)get_fdt(sys_table, &fdt_size);
200 		if (fdt_addr)
201 			pr_efi(sys_table, "Using DTB from configuration table\n");
202 	}
203 
204 	if (!fdt_addr)
205 		pr_efi(sys_table, "Generating empty DTB\n");
206 
207 	status = handle_cmdline_files(sys_table, image, cmdline_ptr, "initrd=",
208 				      efi_get_max_initrd_addr(dram_base,
209 							      *image_addr),
210 				      (unsigned long *)&initrd_addr,
211 				      (unsigned long *)&initrd_size);
212 	if (status != EFI_SUCCESS)
213 		pr_efi_err(sys_table, "Failed initrd from command line!\n");
214 
215 	efi_random_get_seed(sys_table);
216 
217 	/* hibernation expects the runtime regions to stay in the same place */
218 	if (!IS_ENABLED(CONFIG_HIBERNATION) && !nokaslr()) {
219 		/*
220 		 * Randomize the base of the UEFI runtime services region.
221 		 * Preserve the 2 MB alignment of the region by taking a
222 		 * shift of 21 bit positions into account when scaling
223 		 * the headroom value using a 32-bit random value.
224 		 */
225 		static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
226 					    EFI_RT_VIRTUAL_BASE -
227 					    EFI_RT_VIRTUAL_SIZE;
228 		u32 rnd;
229 
230 		status = efi_get_random_bytes(sys_table, sizeof(rnd),
231 					      (u8 *)&rnd);
232 		if (status == EFI_SUCCESS) {
233 			virtmap_base = EFI_RT_VIRTUAL_BASE +
234 				       (((headroom >> 21) * rnd) >> (32 - 21));
235 		}
236 	}
237 
238 	new_fdt_addr = fdt_addr;
239 	status = allocate_new_fdt_and_exit_boot(sys_table, handle,
240 				&new_fdt_addr, efi_get_max_fdt_addr(dram_base),
241 				initrd_addr, initrd_size, cmdline_ptr,
242 				fdt_addr, fdt_size);
243 
244 	/*
245 	 * If all went well, we need to return the FDT address to the
246 	 * calling function so it can be passed to kernel as part of
247 	 * the kernel boot protocol.
248 	 */
249 	if (status == EFI_SUCCESS)
250 		return new_fdt_addr;
251 
252 	pr_efi_err(sys_table, "Failed to update FDT and exit boot services\n");
253 
254 	efi_free(sys_table, initrd_size, initrd_addr);
255 	efi_free(sys_table, fdt_size, fdt_addr);
256 
257 fail_free_image:
258 	efi_free(sys_table, image_size, *image_addr);
259 	efi_free(sys_table, reserve_size, reserve_addr);
260 fail_free_cmdline:
261 	free_screen_info(sys_table, si);
262 	efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr);
263 fail:
264 	return EFI_ERROR;
265 }
266 
cmp_mem_desc(const void * l,const void * r)267 static int cmp_mem_desc(const void *l, const void *r)
268 {
269 	const efi_memory_desc_t *left = l, *right = r;
270 
271 	return (left->phys_addr > right->phys_addr) ? 1 : -1;
272 }
273 
274 /*
275  * Returns whether region @left ends exactly where region @right starts,
276  * or false if either argument is NULL.
277  */
regions_are_adjacent(efi_memory_desc_t * left,efi_memory_desc_t * right)278 static bool regions_are_adjacent(efi_memory_desc_t *left,
279 				 efi_memory_desc_t *right)
280 {
281 	u64 left_end;
282 
283 	if (left == NULL || right == NULL)
284 		return false;
285 
286 	left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE;
287 
288 	return left_end == right->phys_addr;
289 }
290 
291 /*
292  * Returns whether region @left and region @right have compatible memory type
293  * mapping attributes, and are both EFI_MEMORY_RUNTIME regions.
294  */
regions_have_compatible_memory_type_attrs(efi_memory_desc_t * left,efi_memory_desc_t * right)295 static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left,
296 						      efi_memory_desc_t *right)
297 {
298 	static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT |
299 					 EFI_MEMORY_WC | EFI_MEMORY_UC |
300 					 EFI_MEMORY_RUNTIME;
301 
302 	return ((left->attribute ^ right->attribute) & mem_type_mask) == 0;
303 }
304 
305 /*
306  * efi_get_virtmap() - create a virtual mapping for the EFI memory map
307  *
308  * This function populates the virt_addr fields of all memory region descriptors
309  * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
310  * are also copied to @runtime_map, and their total count is returned in @count.
311  */
efi_get_virtmap(efi_memory_desc_t * memory_map,unsigned long map_size,unsigned long desc_size,efi_memory_desc_t * runtime_map,int * count)312 void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
313 		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
314 		     int *count)
315 {
316 	u64 efi_virt_base = virtmap_base;
317 	efi_memory_desc_t *in, *prev = NULL, *out = runtime_map;
318 	int l;
319 
320 	/*
321 	 * To work around potential issues with the Properties Table feature
322 	 * introduced in UEFI 2.5, which may split PE/COFF executable images
323 	 * in memory into several RuntimeServicesCode and RuntimeServicesData
324 	 * regions, we need to preserve the relative offsets between adjacent
325 	 * EFI_MEMORY_RUNTIME regions with the same memory type attributes.
326 	 * The easiest way to find adjacent regions is to sort the memory map
327 	 * before traversing it.
328 	 */
329 	if (IS_ENABLED(CONFIG_ARM64))
330 		sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc,
331 		     NULL);
332 
333 	for (l = 0; l < map_size; l += desc_size, prev = in) {
334 		u64 paddr, size;
335 
336 		in = (void *)memory_map + l;
337 		if (!(in->attribute & EFI_MEMORY_RUNTIME))
338 			continue;
339 
340 		paddr = in->phys_addr;
341 		size = in->num_pages * EFI_PAGE_SIZE;
342 
343 		/*
344 		 * Make the mapping compatible with 64k pages: this allows
345 		 * a 4k page size kernel to kexec a 64k page size kernel and
346 		 * vice versa.
347 		 */
348 		if ((IS_ENABLED(CONFIG_ARM64) &&
349 		     !regions_are_adjacent(prev, in)) ||
350 		    !regions_have_compatible_memory_type_attrs(prev, in)) {
351 
352 			paddr = round_down(in->phys_addr, SZ_64K);
353 			size += in->phys_addr - paddr;
354 
355 			/*
356 			 * Avoid wasting memory on PTEs by choosing a virtual
357 			 * base that is compatible with section mappings if this
358 			 * region has the appropriate size and physical
359 			 * alignment. (Sections are 2 MB on 4k granule kernels)
360 			 */
361 			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
362 				efi_virt_base = round_up(efi_virt_base, SZ_2M);
363 			else
364 				efi_virt_base = round_up(efi_virt_base, SZ_64K);
365 		}
366 
367 		in->virt_addr = efi_virt_base + in->phys_addr - paddr;
368 		efi_virt_base += size;
369 
370 		memcpy(out, in, desc_size);
371 		out = (void *)out + desc_size;
372 		++*count;
373 	}
374 }
375