1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
6 */
7
8 #include <linux/socket.h>
9 #include <linux/in.h>
10 #include <linux/slab.h>
11 #include <linux/ip.h>
12 #include <linux/ipv6.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/prefetch.h>
16 #include <linux/moduleparam.h>
17 #include <linux/iommu.h>
18 #include <net/ip.h>
19 #include <net/checksum.h>
20 #include "net_driver.h"
21 #include "efx.h"
22 #include "filter.h"
23 #include "nic.h"
24 #include "selftest.h"
25 #include "workarounds.h"
26
27 /* Preferred number of descriptors to fill at once */
28 #define EF4_RX_PREFERRED_BATCH 8U
29
30 /* Number of RX buffers to recycle pages for. When creating the RX page recycle
31 * ring, this number is divided by the number of buffers per page to calculate
32 * the number of pages to store in the RX page recycle ring.
33 */
34 #define EF4_RECYCLE_RING_SIZE_IOMMU 4096
35 #define EF4_RECYCLE_RING_SIZE_NOIOMMU (2 * EF4_RX_PREFERRED_BATCH)
36
37 /* Size of buffer allocated for skb header area. */
38 #define EF4_SKB_HEADERS 128u
39
40 /* This is the percentage fill level below which new RX descriptors
41 * will be added to the RX descriptor ring.
42 */
43 static unsigned int rx_refill_threshold;
44
45 /* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
46 #define EF4_RX_MAX_FRAGS DIV_ROUND_UP(EF4_MAX_FRAME_LEN(EF4_MAX_MTU), \
47 EF4_RX_USR_BUF_SIZE)
48
49 /*
50 * RX maximum head room required.
51 *
52 * This must be at least 1 to prevent overflow, plus one packet-worth
53 * to allow pipelined receives.
54 */
55 #define EF4_RXD_HEAD_ROOM (1 + EF4_RX_MAX_FRAGS)
56
ef4_rx_buf_va(struct ef4_rx_buffer * buf)57 static inline u8 *ef4_rx_buf_va(struct ef4_rx_buffer *buf)
58 {
59 return page_address(buf->page) + buf->page_offset;
60 }
61
ef4_rx_buf_hash(struct ef4_nic * efx,const u8 * eh)62 static inline u32 ef4_rx_buf_hash(struct ef4_nic *efx, const u8 *eh)
63 {
64 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
65 return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset));
66 #else
67 const u8 *data = eh + efx->rx_packet_hash_offset;
68 return (u32)data[0] |
69 (u32)data[1] << 8 |
70 (u32)data[2] << 16 |
71 (u32)data[3] << 24;
72 #endif
73 }
74
75 static inline struct ef4_rx_buffer *
ef4_rx_buf_next(struct ef4_rx_queue * rx_queue,struct ef4_rx_buffer * rx_buf)76 ef4_rx_buf_next(struct ef4_rx_queue *rx_queue, struct ef4_rx_buffer *rx_buf)
77 {
78 if (unlikely(rx_buf == ef4_rx_buffer(rx_queue, rx_queue->ptr_mask)))
79 return ef4_rx_buffer(rx_queue, 0);
80 else
81 return rx_buf + 1;
82 }
83
ef4_sync_rx_buffer(struct ef4_nic * efx,struct ef4_rx_buffer * rx_buf,unsigned int len)84 static inline void ef4_sync_rx_buffer(struct ef4_nic *efx,
85 struct ef4_rx_buffer *rx_buf,
86 unsigned int len)
87 {
88 dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
89 DMA_FROM_DEVICE);
90 }
91
ef4_rx_config_page_split(struct ef4_nic * efx)92 void ef4_rx_config_page_split(struct ef4_nic *efx)
93 {
94 efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align,
95 EF4_RX_BUF_ALIGNMENT);
96 efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
97 ((PAGE_SIZE - sizeof(struct ef4_rx_page_state)) /
98 efx->rx_page_buf_step);
99 efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
100 efx->rx_bufs_per_page;
101 efx->rx_pages_per_batch = DIV_ROUND_UP(EF4_RX_PREFERRED_BATCH,
102 efx->rx_bufs_per_page);
103 }
104
105 /* Check the RX page recycle ring for a page that can be reused. */
ef4_reuse_page(struct ef4_rx_queue * rx_queue)106 static struct page *ef4_reuse_page(struct ef4_rx_queue *rx_queue)
107 {
108 struct ef4_nic *efx = rx_queue->efx;
109 struct page *page;
110 struct ef4_rx_page_state *state;
111 unsigned index;
112
113 index = rx_queue->page_remove & rx_queue->page_ptr_mask;
114 page = rx_queue->page_ring[index];
115 if (page == NULL)
116 return NULL;
117
118 rx_queue->page_ring[index] = NULL;
119 /* page_remove cannot exceed page_add. */
120 if (rx_queue->page_remove != rx_queue->page_add)
121 ++rx_queue->page_remove;
122
123 /* If page_count is 1 then we hold the only reference to this page. */
124 if (page_count(page) == 1) {
125 ++rx_queue->page_recycle_count;
126 return page;
127 } else {
128 state = page_address(page);
129 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
130 PAGE_SIZE << efx->rx_buffer_order,
131 DMA_FROM_DEVICE);
132 put_page(page);
133 ++rx_queue->page_recycle_failed;
134 }
135
136 return NULL;
137 }
138
139 /**
140 * ef4_init_rx_buffers - create EF4_RX_BATCH page-based RX buffers
141 *
142 * @rx_queue: Efx RX queue
143 * @atomic: control memory allocation flags
144 *
145 * This allocates a batch of pages, maps them for DMA, and populates
146 * struct ef4_rx_buffers for each one. Return a negative error code or
147 * 0 on success. If a single page can be used for multiple buffers,
148 * then the page will either be inserted fully, or not at all.
149 */
ef4_init_rx_buffers(struct ef4_rx_queue * rx_queue,bool atomic)150 static int ef4_init_rx_buffers(struct ef4_rx_queue *rx_queue, bool atomic)
151 {
152 struct ef4_nic *efx = rx_queue->efx;
153 struct ef4_rx_buffer *rx_buf;
154 struct page *page;
155 unsigned int page_offset;
156 struct ef4_rx_page_state *state;
157 dma_addr_t dma_addr;
158 unsigned index, count;
159
160 count = 0;
161 do {
162 page = ef4_reuse_page(rx_queue);
163 if (page == NULL) {
164 page = alloc_pages(__GFP_COMP |
165 (atomic ? GFP_ATOMIC : GFP_KERNEL),
166 efx->rx_buffer_order);
167 if (unlikely(page == NULL))
168 return -ENOMEM;
169 dma_addr =
170 dma_map_page(&efx->pci_dev->dev, page, 0,
171 PAGE_SIZE << efx->rx_buffer_order,
172 DMA_FROM_DEVICE);
173 if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
174 dma_addr))) {
175 __free_pages(page, efx->rx_buffer_order);
176 return -EIO;
177 }
178 state = page_address(page);
179 state->dma_addr = dma_addr;
180 } else {
181 state = page_address(page);
182 dma_addr = state->dma_addr;
183 }
184
185 dma_addr += sizeof(struct ef4_rx_page_state);
186 page_offset = sizeof(struct ef4_rx_page_state);
187
188 do {
189 index = rx_queue->added_count & rx_queue->ptr_mask;
190 rx_buf = ef4_rx_buffer(rx_queue, index);
191 rx_buf->dma_addr = dma_addr + efx->rx_ip_align;
192 rx_buf->page = page;
193 rx_buf->page_offset = page_offset + efx->rx_ip_align;
194 rx_buf->len = efx->rx_dma_len;
195 rx_buf->flags = 0;
196 ++rx_queue->added_count;
197 get_page(page);
198 dma_addr += efx->rx_page_buf_step;
199 page_offset += efx->rx_page_buf_step;
200 } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
201
202 rx_buf->flags = EF4_RX_BUF_LAST_IN_PAGE;
203 } while (++count < efx->rx_pages_per_batch);
204
205 return 0;
206 }
207
208 /* Unmap a DMA-mapped page. This function is only called for the final RX
209 * buffer in a page.
210 */
ef4_unmap_rx_buffer(struct ef4_nic * efx,struct ef4_rx_buffer * rx_buf)211 static void ef4_unmap_rx_buffer(struct ef4_nic *efx,
212 struct ef4_rx_buffer *rx_buf)
213 {
214 struct page *page = rx_buf->page;
215
216 if (page) {
217 struct ef4_rx_page_state *state = page_address(page);
218 dma_unmap_page(&efx->pci_dev->dev,
219 state->dma_addr,
220 PAGE_SIZE << efx->rx_buffer_order,
221 DMA_FROM_DEVICE);
222 }
223 }
224
ef4_free_rx_buffers(struct ef4_rx_queue * rx_queue,struct ef4_rx_buffer * rx_buf,unsigned int num_bufs)225 static void ef4_free_rx_buffers(struct ef4_rx_queue *rx_queue,
226 struct ef4_rx_buffer *rx_buf,
227 unsigned int num_bufs)
228 {
229 do {
230 if (rx_buf->page) {
231 put_page(rx_buf->page);
232 rx_buf->page = NULL;
233 }
234 rx_buf = ef4_rx_buf_next(rx_queue, rx_buf);
235 } while (--num_bufs);
236 }
237
238 /* Attempt to recycle the page if there is an RX recycle ring; the page can
239 * only be added if this is the final RX buffer, to prevent pages being used in
240 * the descriptor ring and appearing in the recycle ring simultaneously.
241 */
ef4_recycle_rx_page(struct ef4_channel * channel,struct ef4_rx_buffer * rx_buf)242 static void ef4_recycle_rx_page(struct ef4_channel *channel,
243 struct ef4_rx_buffer *rx_buf)
244 {
245 struct page *page = rx_buf->page;
246 struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel);
247 struct ef4_nic *efx = rx_queue->efx;
248 unsigned index;
249
250 /* Only recycle the page after processing the final buffer. */
251 if (!(rx_buf->flags & EF4_RX_BUF_LAST_IN_PAGE))
252 return;
253
254 index = rx_queue->page_add & rx_queue->page_ptr_mask;
255 if (rx_queue->page_ring[index] == NULL) {
256 unsigned read_index = rx_queue->page_remove &
257 rx_queue->page_ptr_mask;
258
259 /* The next slot in the recycle ring is available, but
260 * increment page_remove if the read pointer currently
261 * points here.
262 */
263 if (read_index == index)
264 ++rx_queue->page_remove;
265 rx_queue->page_ring[index] = page;
266 ++rx_queue->page_add;
267 return;
268 }
269 ++rx_queue->page_recycle_full;
270 ef4_unmap_rx_buffer(efx, rx_buf);
271 put_page(rx_buf->page);
272 }
273
ef4_fini_rx_buffer(struct ef4_rx_queue * rx_queue,struct ef4_rx_buffer * rx_buf)274 static void ef4_fini_rx_buffer(struct ef4_rx_queue *rx_queue,
275 struct ef4_rx_buffer *rx_buf)
276 {
277 /* Release the page reference we hold for the buffer. */
278 if (rx_buf->page)
279 put_page(rx_buf->page);
280
281 /* If this is the last buffer in a page, unmap and free it. */
282 if (rx_buf->flags & EF4_RX_BUF_LAST_IN_PAGE) {
283 ef4_unmap_rx_buffer(rx_queue->efx, rx_buf);
284 ef4_free_rx_buffers(rx_queue, rx_buf, 1);
285 }
286 rx_buf->page = NULL;
287 }
288
289 /* Recycle the pages that are used by buffers that have just been received. */
ef4_recycle_rx_pages(struct ef4_channel * channel,struct ef4_rx_buffer * rx_buf,unsigned int n_frags)290 static void ef4_recycle_rx_pages(struct ef4_channel *channel,
291 struct ef4_rx_buffer *rx_buf,
292 unsigned int n_frags)
293 {
294 struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel);
295
296 do {
297 ef4_recycle_rx_page(channel, rx_buf);
298 rx_buf = ef4_rx_buf_next(rx_queue, rx_buf);
299 } while (--n_frags);
300 }
301
ef4_discard_rx_packet(struct ef4_channel * channel,struct ef4_rx_buffer * rx_buf,unsigned int n_frags)302 static void ef4_discard_rx_packet(struct ef4_channel *channel,
303 struct ef4_rx_buffer *rx_buf,
304 unsigned int n_frags)
305 {
306 struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel);
307
308 ef4_recycle_rx_pages(channel, rx_buf, n_frags);
309
310 ef4_free_rx_buffers(rx_queue, rx_buf, n_frags);
311 }
312
313 /**
314 * ef4_fast_push_rx_descriptors - push new RX descriptors quickly
315 * @rx_queue: RX descriptor queue
316 *
317 * This will aim to fill the RX descriptor queue up to
318 * @rx_queue->@max_fill. If there is insufficient atomic
319 * memory to do so, a slow fill will be scheduled.
320 * @atomic: control memory allocation flags
321 *
322 * The caller must provide serialisation (none is used here). In practise,
323 * this means this function must run from the NAPI handler, or be called
324 * when NAPI is disabled.
325 */
ef4_fast_push_rx_descriptors(struct ef4_rx_queue * rx_queue,bool atomic)326 void ef4_fast_push_rx_descriptors(struct ef4_rx_queue *rx_queue, bool atomic)
327 {
328 struct ef4_nic *efx = rx_queue->efx;
329 unsigned int fill_level, batch_size;
330 int space, rc = 0;
331
332 if (!rx_queue->refill_enabled)
333 return;
334
335 /* Calculate current fill level, and exit if we don't need to fill */
336 fill_level = (rx_queue->added_count - rx_queue->removed_count);
337 EF4_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
338 if (fill_level >= rx_queue->fast_fill_trigger)
339 goto out;
340
341 /* Record minimum fill level */
342 if (unlikely(fill_level < rx_queue->min_fill)) {
343 if (fill_level)
344 rx_queue->min_fill = fill_level;
345 }
346
347 batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
348 space = rx_queue->max_fill - fill_level;
349 EF4_BUG_ON_PARANOID(space < batch_size);
350
351 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
352 "RX queue %d fast-filling descriptor ring from"
353 " level %d to level %d\n",
354 ef4_rx_queue_index(rx_queue), fill_level,
355 rx_queue->max_fill);
356
357
358 do {
359 rc = ef4_init_rx_buffers(rx_queue, atomic);
360 if (unlikely(rc)) {
361 /* Ensure that we don't leave the rx queue empty */
362 if (rx_queue->added_count == rx_queue->removed_count)
363 ef4_schedule_slow_fill(rx_queue);
364 goto out;
365 }
366 } while ((space -= batch_size) >= batch_size);
367
368 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
369 "RX queue %d fast-filled descriptor ring "
370 "to level %d\n", ef4_rx_queue_index(rx_queue),
371 rx_queue->added_count - rx_queue->removed_count);
372
373 out:
374 if (rx_queue->notified_count != rx_queue->added_count)
375 ef4_nic_notify_rx_desc(rx_queue);
376 }
377
ef4_rx_slow_fill(struct timer_list * t)378 void ef4_rx_slow_fill(struct timer_list *t)
379 {
380 struct ef4_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
381
382 /* Post an event to cause NAPI to run and refill the queue */
383 ef4_nic_generate_fill_event(rx_queue);
384 ++rx_queue->slow_fill_count;
385 }
386
ef4_rx_packet__check_len(struct ef4_rx_queue * rx_queue,struct ef4_rx_buffer * rx_buf,int len)387 static void ef4_rx_packet__check_len(struct ef4_rx_queue *rx_queue,
388 struct ef4_rx_buffer *rx_buf,
389 int len)
390 {
391 struct ef4_nic *efx = rx_queue->efx;
392 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
393
394 if (likely(len <= max_len))
395 return;
396
397 /* The packet must be discarded, but this is only a fatal error
398 * if the caller indicated it was
399 */
400 rx_buf->flags |= EF4_RX_PKT_DISCARD;
401
402 if ((len > rx_buf->len) && EF4_WORKAROUND_8071(efx)) {
403 if (net_ratelimit())
404 netif_err(efx, rx_err, efx->net_dev,
405 " RX queue %d seriously overlength "
406 "RX event (0x%x > 0x%x+0x%x). Leaking\n",
407 ef4_rx_queue_index(rx_queue), len, max_len,
408 efx->type->rx_buffer_padding);
409 ef4_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
410 } else {
411 if (net_ratelimit())
412 netif_err(efx, rx_err, efx->net_dev,
413 " RX queue %d overlength RX event "
414 "(0x%x > 0x%x)\n",
415 ef4_rx_queue_index(rx_queue), len, max_len);
416 }
417
418 ef4_rx_queue_channel(rx_queue)->n_rx_overlength++;
419 }
420
421 /* Pass a received packet up through GRO. GRO can handle pages
422 * regardless of checksum state and skbs with a good checksum.
423 */
424 static void
ef4_rx_packet_gro(struct ef4_channel * channel,struct ef4_rx_buffer * rx_buf,unsigned int n_frags,u8 * eh)425 ef4_rx_packet_gro(struct ef4_channel *channel, struct ef4_rx_buffer *rx_buf,
426 unsigned int n_frags, u8 *eh)
427 {
428 struct napi_struct *napi = &channel->napi_str;
429 struct ef4_nic *efx = channel->efx;
430 struct sk_buff *skb;
431
432 skb = napi_get_frags(napi);
433 if (unlikely(!skb)) {
434 struct ef4_rx_queue *rx_queue;
435
436 rx_queue = ef4_channel_get_rx_queue(channel);
437 ef4_free_rx_buffers(rx_queue, rx_buf, n_frags);
438 return;
439 }
440
441 if (efx->net_dev->features & NETIF_F_RXHASH)
442 skb_set_hash(skb, ef4_rx_buf_hash(efx, eh),
443 PKT_HASH_TYPE_L3);
444 skb->ip_summed = ((rx_buf->flags & EF4_RX_PKT_CSUMMED) ?
445 CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
446
447 for (;;) {
448 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
449 rx_buf->page, rx_buf->page_offset,
450 rx_buf->len);
451 rx_buf->page = NULL;
452 skb->len += rx_buf->len;
453 if (skb_shinfo(skb)->nr_frags == n_frags)
454 break;
455
456 rx_buf = ef4_rx_buf_next(&channel->rx_queue, rx_buf);
457 }
458
459 skb->data_len = skb->len;
460 skb->truesize += n_frags * efx->rx_buffer_truesize;
461
462 skb_record_rx_queue(skb, channel->rx_queue.core_index);
463
464 napi_gro_frags(napi);
465 }
466
467 /* Allocate and construct an SKB around page fragments */
ef4_rx_mk_skb(struct ef4_channel * channel,struct ef4_rx_buffer * rx_buf,unsigned int n_frags,u8 * eh,int hdr_len)468 static struct sk_buff *ef4_rx_mk_skb(struct ef4_channel *channel,
469 struct ef4_rx_buffer *rx_buf,
470 unsigned int n_frags,
471 u8 *eh, int hdr_len)
472 {
473 struct ef4_nic *efx = channel->efx;
474 struct sk_buff *skb;
475
476 /* Allocate an SKB to store the headers */
477 skb = netdev_alloc_skb(efx->net_dev,
478 efx->rx_ip_align + efx->rx_prefix_size +
479 hdr_len);
480 if (unlikely(skb == NULL)) {
481 atomic_inc(&efx->n_rx_noskb_drops);
482 return NULL;
483 }
484
485 EF4_BUG_ON_PARANOID(rx_buf->len < hdr_len);
486
487 memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size,
488 efx->rx_prefix_size + hdr_len);
489 skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size);
490 __skb_put(skb, hdr_len);
491
492 /* Append the remaining page(s) onto the frag list */
493 if (rx_buf->len > hdr_len) {
494 rx_buf->page_offset += hdr_len;
495 rx_buf->len -= hdr_len;
496
497 for (;;) {
498 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
499 rx_buf->page, rx_buf->page_offset,
500 rx_buf->len);
501 rx_buf->page = NULL;
502 skb->len += rx_buf->len;
503 skb->data_len += rx_buf->len;
504 if (skb_shinfo(skb)->nr_frags == n_frags)
505 break;
506
507 rx_buf = ef4_rx_buf_next(&channel->rx_queue, rx_buf);
508 }
509 } else {
510 __free_pages(rx_buf->page, efx->rx_buffer_order);
511 rx_buf->page = NULL;
512 n_frags = 0;
513 }
514
515 skb->truesize += n_frags * efx->rx_buffer_truesize;
516
517 /* Move past the ethernet header */
518 skb->protocol = eth_type_trans(skb, efx->net_dev);
519
520 skb_mark_napi_id(skb, &channel->napi_str);
521
522 return skb;
523 }
524
ef4_rx_packet(struct ef4_rx_queue * rx_queue,unsigned int index,unsigned int n_frags,unsigned int len,u16 flags)525 void ef4_rx_packet(struct ef4_rx_queue *rx_queue, unsigned int index,
526 unsigned int n_frags, unsigned int len, u16 flags)
527 {
528 struct ef4_nic *efx = rx_queue->efx;
529 struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue);
530 struct ef4_rx_buffer *rx_buf;
531
532 rx_queue->rx_packets++;
533
534 rx_buf = ef4_rx_buffer(rx_queue, index);
535 rx_buf->flags |= flags;
536
537 /* Validate the number of fragments and completed length */
538 if (n_frags == 1) {
539 if (!(flags & EF4_RX_PKT_PREFIX_LEN))
540 ef4_rx_packet__check_len(rx_queue, rx_buf, len);
541 } else if (unlikely(n_frags > EF4_RX_MAX_FRAGS) ||
542 unlikely(len <= (n_frags - 1) * efx->rx_dma_len) ||
543 unlikely(len > n_frags * efx->rx_dma_len) ||
544 unlikely(!efx->rx_scatter)) {
545 /* If this isn't an explicit discard request, either
546 * the hardware or the driver is broken.
547 */
548 WARN_ON(!(len == 0 && rx_buf->flags & EF4_RX_PKT_DISCARD));
549 rx_buf->flags |= EF4_RX_PKT_DISCARD;
550 }
551
552 netif_vdbg(efx, rx_status, efx->net_dev,
553 "RX queue %d received ids %x-%x len %d %s%s\n",
554 ef4_rx_queue_index(rx_queue), index,
555 (index + n_frags - 1) & rx_queue->ptr_mask, len,
556 (rx_buf->flags & EF4_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
557 (rx_buf->flags & EF4_RX_PKT_DISCARD) ? " [DISCARD]" : "");
558
559 /* Discard packet, if instructed to do so. Process the
560 * previous receive first.
561 */
562 if (unlikely(rx_buf->flags & EF4_RX_PKT_DISCARD)) {
563 ef4_rx_flush_packet(channel);
564 ef4_discard_rx_packet(channel, rx_buf, n_frags);
565 return;
566 }
567
568 if (n_frags == 1 && !(flags & EF4_RX_PKT_PREFIX_LEN))
569 rx_buf->len = len;
570
571 /* Release and/or sync the DMA mapping - assumes all RX buffers
572 * consumed in-order per RX queue.
573 */
574 ef4_sync_rx_buffer(efx, rx_buf, rx_buf->len);
575
576 /* Prefetch nice and early so data will (hopefully) be in cache by
577 * the time we look at it.
578 */
579 prefetch(ef4_rx_buf_va(rx_buf));
580
581 rx_buf->page_offset += efx->rx_prefix_size;
582 rx_buf->len -= efx->rx_prefix_size;
583
584 if (n_frags > 1) {
585 /* Release/sync DMA mapping for additional fragments.
586 * Fix length for last fragment.
587 */
588 unsigned int tail_frags = n_frags - 1;
589
590 for (;;) {
591 rx_buf = ef4_rx_buf_next(rx_queue, rx_buf);
592 if (--tail_frags == 0)
593 break;
594 ef4_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len);
595 }
596 rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len;
597 ef4_sync_rx_buffer(efx, rx_buf, rx_buf->len);
598 }
599
600 /* All fragments have been DMA-synced, so recycle pages. */
601 rx_buf = ef4_rx_buffer(rx_queue, index);
602 ef4_recycle_rx_pages(channel, rx_buf, n_frags);
603
604 /* Pipeline receives so that we give time for packet headers to be
605 * prefetched into cache.
606 */
607 ef4_rx_flush_packet(channel);
608 channel->rx_pkt_n_frags = n_frags;
609 channel->rx_pkt_index = index;
610 }
611
ef4_rx_deliver(struct ef4_channel * channel,u8 * eh,struct ef4_rx_buffer * rx_buf,unsigned int n_frags)612 static void ef4_rx_deliver(struct ef4_channel *channel, u8 *eh,
613 struct ef4_rx_buffer *rx_buf,
614 unsigned int n_frags)
615 {
616 struct sk_buff *skb;
617 u16 hdr_len = min_t(u16, rx_buf->len, EF4_SKB_HEADERS);
618
619 skb = ef4_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
620 if (unlikely(skb == NULL)) {
621 struct ef4_rx_queue *rx_queue;
622
623 rx_queue = ef4_channel_get_rx_queue(channel);
624 ef4_free_rx_buffers(rx_queue, rx_buf, n_frags);
625 return;
626 }
627 skb_record_rx_queue(skb, channel->rx_queue.core_index);
628
629 /* Set the SKB flags */
630 skb_checksum_none_assert(skb);
631 if (likely(rx_buf->flags & EF4_RX_PKT_CSUMMED))
632 skb->ip_summed = CHECKSUM_UNNECESSARY;
633
634 if (channel->type->receive_skb)
635 if (channel->type->receive_skb(channel, skb))
636 return;
637
638 /* Pass the packet up */
639 netif_receive_skb(skb);
640 }
641
642 /* Handle a received packet. Second half: Touches packet payload. */
__ef4_rx_packet(struct ef4_channel * channel)643 void __ef4_rx_packet(struct ef4_channel *channel)
644 {
645 struct ef4_nic *efx = channel->efx;
646 struct ef4_rx_buffer *rx_buf =
647 ef4_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
648 u8 *eh = ef4_rx_buf_va(rx_buf);
649
650 /* Read length from the prefix if necessary. This already
651 * excludes the length of the prefix itself.
652 */
653 if (rx_buf->flags & EF4_RX_PKT_PREFIX_LEN)
654 rx_buf->len = le16_to_cpup((__le16 *)
655 (eh + efx->rx_packet_len_offset));
656
657 /* If we're in loopback test, then pass the packet directly to the
658 * loopback layer, and free the rx_buf here
659 */
660 if (unlikely(efx->loopback_selftest)) {
661 struct ef4_rx_queue *rx_queue;
662
663 ef4_loopback_rx_packet(efx, eh, rx_buf->len);
664 rx_queue = ef4_channel_get_rx_queue(channel);
665 ef4_free_rx_buffers(rx_queue, rx_buf,
666 channel->rx_pkt_n_frags);
667 goto out;
668 }
669
670 if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
671 rx_buf->flags &= ~EF4_RX_PKT_CSUMMED;
672
673 if ((rx_buf->flags & EF4_RX_PKT_TCP) && !channel->type->receive_skb)
674 ef4_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
675 else
676 ef4_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
677 out:
678 channel->rx_pkt_n_frags = 0;
679 }
680
ef4_probe_rx_queue(struct ef4_rx_queue * rx_queue)681 int ef4_probe_rx_queue(struct ef4_rx_queue *rx_queue)
682 {
683 struct ef4_nic *efx = rx_queue->efx;
684 unsigned int entries;
685 int rc;
686
687 /* Create the smallest power-of-two aligned ring */
688 entries = max(roundup_pow_of_two(efx->rxq_entries), EF4_MIN_DMAQ_SIZE);
689 EF4_BUG_ON_PARANOID(entries > EF4_MAX_DMAQ_SIZE);
690 rx_queue->ptr_mask = entries - 1;
691
692 netif_dbg(efx, probe, efx->net_dev,
693 "creating RX queue %d size %#x mask %#x\n",
694 ef4_rx_queue_index(rx_queue), efx->rxq_entries,
695 rx_queue->ptr_mask);
696
697 /* Allocate RX buffers */
698 rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
699 GFP_KERNEL);
700 if (!rx_queue->buffer)
701 return -ENOMEM;
702
703 rc = ef4_nic_probe_rx(rx_queue);
704 if (rc) {
705 kfree(rx_queue->buffer);
706 rx_queue->buffer = NULL;
707 }
708
709 return rc;
710 }
711
ef4_init_rx_recycle_ring(struct ef4_nic * efx,struct ef4_rx_queue * rx_queue)712 static void ef4_init_rx_recycle_ring(struct ef4_nic *efx,
713 struct ef4_rx_queue *rx_queue)
714 {
715 unsigned int bufs_in_recycle_ring, page_ring_size;
716
717 /* Set the RX recycle ring size */
718 #ifdef CONFIG_PPC64
719 bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_IOMMU;
720 #else
721 if (iommu_present(&pci_bus_type))
722 bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_IOMMU;
723 else
724 bufs_in_recycle_ring = EF4_RECYCLE_RING_SIZE_NOIOMMU;
725 #endif /* CONFIG_PPC64 */
726
727 page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
728 efx->rx_bufs_per_page);
729 rx_queue->page_ring = kcalloc(page_ring_size,
730 sizeof(*rx_queue->page_ring), GFP_KERNEL);
731 rx_queue->page_ptr_mask = page_ring_size - 1;
732 }
733
ef4_init_rx_queue(struct ef4_rx_queue * rx_queue)734 void ef4_init_rx_queue(struct ef4_rx_queue *rx_queue)
735 {
736 struct ef4_nic *efx = rx_queue->efx;
737 unsigned int max_fill, trigger, max_trigger;
738
739 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
740 "initialising RX queue %d\n", ef4_rx_queue_index(rx_queue));
741
742 /* Initialise ptr fields */
743 rx_queue->added_count = 0;
744 rx_queue->notified_count = 0;
745 rx_queue->removed_count = 0;
746 rx_queue->min_fill = -1U;
747 ef4_init_rx_recycle_ring(efx, rx_queue);
748
749 rx_queue->page_remove = 0;
750 rx_queue->page_add = rx_queue->page_ptr_mask + 1;
751 rx_queue->page_recycle_count = 0;
752 rx_queue->page_recycle_failed = 0;
753 rx_queue->page_recycle_full = 0;
754
755 /* Initialise limit fields */
756 max_fill = efx->rxq_entries - EF4_RXD_HEAD_ROOM;
757 max_trigger =
758 max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
759 if (rx_refill_threshold != 0) {
760 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
761 if (trigger > max_trigger)
762 trigger = max_trigger;
763 } else {
764 trigger = max_trigger;
765 }
766
767 rx_queue->max_fill = max_fill;
768 rx_queue->fast_fill_trigger = trigger;
769 rx_queue->refill_enabled = true;
770
771 /* Set up RX descriptor ring */
772 ef4_nic_init_rx(rx_queue);
773 }
774
ef4_fini_rx_queue(struct ef4_rx_queue * rx_queue)775 void ef4_fini_rx_queue(struct ef4_rx_queue *rx_queue)
776 {
777 int i;
778 struct ef4_nic *efx = rx_queue->efx;
779 struct ef4_rx_buffer *rx_buf;
780
781 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
782 "shutting down RX queue %d\n", ef4_rx_queue_index(rx_queue));
783
784 del_timer_sync(&rx_queue->slow_fill);
785
786 /* Release RX buffers from the current read ptr to the write ptr */
787 if (rx_queue->buffer) {
788 for (i = rx_queue->removed_count; i < rx_queue->added_count;
789 i++) {
790 unsigned index = i & rx_queue->ptr_mask;
791 rx_buf = ef4_rx_buffer(rx_queue, index);
792 ef4_fini_rx_buffer(rx_queue, rx_buf);
793 }
794 }
795
796 /* Unmap and release the pages in the recycle ring. Remove the ring. */
797 for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
798 struct page *page = rx_queue->page_ring[i];
799 struct ef4_rx_page_state *state;
800
801 if (page == NULL)
802 continue;
803
804 state = page_address(page);
805 dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
806 PAGE_SIZE << efx->rx_buffer_order,
807 DMA_FROM_DEVICE);
808 put_page(page);
809 }
810 kfree(rx_queue->page_ring);
811 rx_queue->page_ring = NULL;
812 }
813
ef4_remove_rx_queue(struct ef4_rx_queue * rx_queue)814 void ef4_remove_rx_queue(struct ef4_rx_queue *rx_queue)
815 {
816 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
817 "destroying RX queue %d\n", ef4_rx_queue_index(rx_queue));
818
819 ef4_nic_remove_rx(rx_queue);
820
821 kfree(rx_queue->buffer);
822 rx_queue->buffer = NULL;
823 }
824
825
826 module_param(rx_refill_threshold, uint, 0444);
827 MODULE_PARM_DESC(rx_refill_threshold,
828 "RX descriptor ring refill threshold (%)");
829
830 #ifdef CONFIG_RFS_ACCEL
831
ef4_filter_rfs(struct net_device * net_dev,const struct sk_buff * skb,u16 rxq_index,u32 flow_id)832 int ef4_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
833 u16 rxq_index, u32 flow_id)
834 {
835 struct ef4_nic *efx = netdev_priv(net_dev);
836 struct ef4_channel *channel;
837 struct ef4_filter_spec spec;
838 struct flow_keys fk;
839 int rc;
840
841 if (flow_id == RPS_FLOW_ID_INVALID)
842 return -EINVAL;
843
844 if (!skb_flow_dissect_flow_keys(skb, &fk, 0))
845 return -EPROTONOSUPPORT;
846
847 if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6))
848 return -EPROTONOSUPPORT;
849 if (fk.control.flags & FLOW_DIS_IS_FRAGMENT)
850 return -EPROTONOSUPPORT;
851
852 ef4_filter_init_rx(&spec, EF4_FILTER_PRI_HINT,
853 efx->rx_scatter ? EF4_FILTER_FLAG_RX_SCATTER : 0,
854 rxq_index);
855 spec.match_flags =
856 EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO |
857 EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT |
858 EF4_FILTER_MATCH_REM_HOST | EF4_FILTER_MATCH_REM_PORT;
859 spec.ether_type = fk.basic.n_proto;
860 spec.ip_proto = fk.basic.ip_proto;
861
862 if (fk.basic.n_proto == htons(ETH_P_IP)) {
863 spec.rem_host[0] = fk.addrs.v4addrs.src;
864 spec.loc_host[0] = fk.addrs.v4addrs.dst;
865 } else {
866 memcpy(spec.rem_host, &fk.addrs.v6addrs.src, sizeof(struct in6_addr));
867 memcpy(spec.loc_host, &fk.addrs.v6addrs.dst, sizeof(struct in6_addr));
868 }
869
870 spec.rem_port = fk.ports.src;
871 spec.loc_port = fk.ports.dst;
872
873 rc = efx->type->filter_rfs_insert(efx, &spec);
874 if (rc < 0)
875 return rc;
876
877 /* Remember this so we can check whether to expire the filter later */
878 channel = ef4_get_channel(efx, rxq_index);
879 channel->rps_flow_id[rc] = flow_id;
880 ++channel->rfs_filters_added;
881
882 if (spec.ether_type == htons(ETH_P_IP))
883 netif_info(efx, rx_status, efx->net_dev,
884 "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n",
885 (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
886 spec.rem_host, ntohs(spec.rem_port), spec.loc_host,
887 ntohs(spec.loc_port), rxq_index, flow_id, rc);
888 else
889 netif_info(efx, rx_status, efx->net_dev,
890 "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d]\n",
891 (spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
892 spec.rem_host, ntohs(spec.rem_port), spec.loc_host,
893 ntohs(spec.loc_port), rxq_index, flow_id, rc);
894
895 return rc;
896 }
897
__ef4_filter_rfs_expire(struct ef4_nic * efx,unsigned int quota)898 bool __ef4_filter_rfs_expire(struct ef4_nic *efx, unsigned int quota)
899 {
900 bool (*expire_one)(struct ef4_nic *efx, u32 flow_id, unsigned int index);
901 unsigned int channel_idx, index, size;
902 u32 flow_id;
903
904 if (!spin_trylock_bh(&efx->filter_lock))
905 return false;
906
907 expire_one = efx->type->filter_rfs_expire_one;
908 channel_idx = efx->rps_expire_channel;
909 index = efx->rps_expire_index;
910 size = efx->type->max_rx_ip_filters;
911 while (quota--) {
912 struct ef4_channel *channel = ef4_get_channel(efx, channel_idx);
913 flow_id = channel->rps_flow_id[index];
914
915 if (flow_id != RPS_FLOW_ID_INVALID &&
916 expire_one(efx, flow_id, index)) {
917 netif_info(efx, rx_status, efx->net_dev,
918 "expired filter %d [queue %u flow %u]\n",
919 index, channel_idx, flow_id);
920 channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
921 }
922 if (++index == size) {
923 if (++channel_idx == efx->n_channels)
924 channel_idx = 0;
925 index = 0;
926 }
927 }
928 efx->rps_expire_channel = channel_idx;
929 efx->rps_expire_index = index;
930
931 spin_unlock_bh(&efx->filter_lock);
932 return true;
933 }
934
935 #endif /* CONFIG_RFS_ACCEL */
936
937 /**
938 * ef4_filter_is_mc_recipient - test whether spec is a multicast recipient
939 * @spec: Specification to test
940 *
941 * Return: %true if the specification is a non-drop RX filter that
942 * matches a local MAC address I/G bit value of 1 or matches a local
943 * IPv4 or IPv6 address value in the respective multicast address
944 * range. Otherwise %false.
945 */
ef4_filter_is_mc_recipient(const struct ef4_filter_spec * spec)946 bool ef4_filter_is_mc_recipient(const struct ef4_filter_spec *spec)
947 {
948 if (!(spec->flags & EF4_FILTER_FLAG_RX) ||
949 spec->dmaq_id == EF4_FILTER_RX_DMAQ_ID_DROP)
950 return false;
951
952 if (spec->match_flags &
953 (EF4_FILTER_MATCH_LOC_MAC | EF4_FILTER_MATCH_LOC_MAC_IG) &&
954 is_multicast_ether_addr(spec->loc_mac))
955 return true;
956
957 if ((spec->match_flags &
958 (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_LOC_HOST)) ==
959 (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_LOC_HOST)) {
960 if (spec->ether_type == htons(ETH_P_IP) &&
961 ipv4_is_multicast(spec->loc_host[0]))
962 return true;
963 if (spec->ether_type == htons(ETH_P_IPV6) &&
964 ((const u8 *)spec->loc_host)[0] == 0xff)
965 return true;
966 }
967
968 return false;
969 }
970