1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
5 * Copyright 2019-2022 Xilinx Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published
9 * by the Free Software Foundation, incorporated herein by reference.
10 */
11
12 #include "ef100_nic.h"
13 #include "efx_common.h"
14 #include "efx_channels.h"
15 #include "io.h"
16 #include "selftest.h"
17 #include "ef100_regs.h"
18 #include "mcdi.h"
19 #include "mcdi_pcol.h"
20 #include "mcdi_port_common.h"
21 #include "mcdi_functions.h"
22 #include "mcdi_filters.h"
23 #include "ef100_rx.h"
24 #include "ef100_tx.h"
25 #include "ef100_sriov.h"
26 #include "ef100_netdev.h"
27 #include "tc.h"
28 #include "mae.h"
29 #include "rx_common.h"
30
31 #define EF100_MAX_VIS 4096
32 #define EF100_NUM_MCDI_BUFFERS 1
33 #define MCDI_BUF_LEN (8 + MCDI_CTL_SDU_LEN_MAX)
34
35 #define EF100_RESET_PORT ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT)
36
37 /* MCDI
38 */
ef100_mcdi_buf(struct efx_nic * efx,u8 bufid,dma_addr_t * dma_addr)39 static u8 *ef100_mcdi_buf(struct efx_nic *efx, u8 bufid, dma_addr_t *dma_addr)
40 {
41 struct ef100_nic_data *nic_data = efx->nic_data;
42
43 if (dma_addr)
44 *dma_addr = nic_data->mcdi_buf.dma_addr +
45 bufid * ALIGN(MCDI_BUF_LEN, 256);
46 return nic_data->mcdi_buf.addr + bufid * ALIGN(MCDI_BUF_LEN, 256);
47 }
48
ef100_get_warm_boot_count(struct efx_nic * efx)49 static int ef100_get_warm_boot_count(struct efx_nic *efx)
50 {
51 efx_dword_t reg;
52
53 efx_readd(efx, ®, efx_reg(efx, ER_GZ_MC_SFT_STATUS));
54
55 if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) == 0xffffffff) {
56 netif_err(efx, hw, efx->net_dev, "Hardware unavailable\n");
57 efx->state = STATE_DISABLED;
58 return -ENETDOWN;
59 } else {
60 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
61 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
62 }
63 }
64
ef100_mcdi_request(struct efx_nic * efx,const efx_dword_t * hdr,size_t hdr_len,const efx_dword_t * sdu,size_t sdu_len)65 static void ef100_mcdi_request(struct efx_nic *efx,
66 const efx_dword_t *hdr, size_t hdr_len,
67 const efx_dword_t *sdu, size_t sdu_len)
68 {
69 dma_addr_t dma_addr;
70 u8 *pdu = ef100_mcdi_buf(efx, 0, &dma_addr);
71
72 memcpy(pdu, hdr, hdr_len);
73 memcpy(pdu + hdr_len, sdu, sdu_len);
74 wmb();
75
76 /* The hardware provides 'low' and 'high' (doorbell) registers
77 * for passing the 64-bit address of an MCDI request to
78 * firmware. However the dwords are swapped by firmware. The
79 * least significant bits of the doorbell are then 0 for all
80 * MCDI requests due to alignment.
81 */
82 _efx_writed(efx, cpu_to_le32((u64)dma_addr >> 32), efx_reg(efx, ER_GZ_MC_DB_LWRD));
83 _efx_writed(efx, cpu_to_le32((u32)dma_addr), efx_reg(efx, ER_GZ_MC_DB_HWRD));
84 }
85
ef100_mcdi_poll_response(struct efx_nic * efx)86 static bool ef100_mcdi_poll_response(struct efx_nic *efx)
87 {
88 const efx_dword_t hdr =
89 *(const efx_dword_t *)(ef100_mcdi_buf(efx, 0, NULL));
90
91 rmb();
92 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
93 }
94
ef100_mcdi_read_response(struct efx_nic * efx,efx_dword_t * outbuf,size_t offset,size_t outlen)95 static void ef100_mcdi_read_response(struct efx_nic *efx,
96 efx_dword_t *outbuf, size_t offset,
97 size_t outlen)
98 {
99 const u8 *pdu = ef100_mcdi_buf(efx, 0, NULL);
100
101 memcpy(outbuf, pdu + offset, outlen);
102 }
103
ef100_mcdi_poll_reboot(struct efx_nic * efx)104 static int ef100_mcdi_poll_reboot(struct efx_nic *efx)
105 {
106 struct ef100_nic_data *nic_data = efx->nic_data;
107 int rc;
108
109 rc = ef100_get_warm_boot_count(efx);
110 if (rc < 0) {
111 /* The firmware is presumably in the process of
112 * rebooting. However, we are supposed to report each
113 * reboot just once, so we must only do that once we
114 * can read and store the updated warm boot count.
115 */
116 return 0;
117 }
118
119 if (rc == nic_data->warm_boot_count)
120 return 0;
121
122 nic_data->warm_boot_count = rc;
123
124 return -EIO;
125 }
126
ef100_mcdi_reboot_detected(struct efx_nic * efx)127 static void ef100_mcdi_reboot_detected(struct efx_nic *efx)
128 {
129 }
130
131 /* MCDI calls
132 */
ef100_get_mac_address(struct efx_nic * efx,u8 * mac_address)133 static int ef100_get_mac_address(struct efx_nic *efx, u8 *mac_address)
134 {
135 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
136 size_t outlen;
137 int rc;
138
139 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
140
141 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
142 outbuf, sizeof(outbuf), &outlen);
143 if (rc)
144 return rc;
145 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
146 return -EIO;
147
148 ether_addr_copy(mac_address,
149 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
150 return 0;
151 }
152
efx_ef100_init_datapath_caps(struct efx_nic * efx)153 int efx_ef100_init_datapath_caps(struct efx_nic *efx)
154 {
155 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V7_OUT_LEN);
156 struct ef100_nic_data *nic_data = efx->nic_data;
157 u8 vi_window_mode;
158 size_t outlen;
159 int rc;
160
161 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
162
163 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
164 outbuf, sizeof(outbuf), &outlen);
165 if (rc)
166 return rc;
167 if (outlen < MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
168 netif_err(efx, drv, efx->net_dev,
169 "unable to read datapath firmware capabilities\n");
170 return -EIO;
171 }
172
173 nic_data->datapath_caps = MCDI_DWORD(outbuf,
174 GET_CAPABILITIES_OUT_FLAGS1);
175 nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
176 GET_CAPABILITIES_V2_OUT_FLAGS2);
177 if (outlen < MC_CMD_GET_CAPABILITIES_V7_OUT_LEN)
178 nic_data->datapath_caps3 = 0;
179 else
180 nic_data->datapath_caps3 = MCDI_DWORD(outbuf,
181 GET_CAPABILITIES_V7_OUT_FLAGS3);
182
183 vi_window_mode = MCDI_BYTE(outbuf,
184 GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
185 rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
186 if (rc)
187 return rc;
188
189 if (efx_ef100_has_cap(nic_data->datapath_caps2, TX_TSO_V3)) {
190 struct net_device *net_dev = efx->net_dev;
191 netdev_features_t tso = NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_PARTIAL |
192 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
193 NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM;
194
195 net_dev->features |= tso;
196 net_dev->hw_features |= tso;
197 net_dev->hw_enc_features |= tso;
198 /* EF100 HW can only offload outer checksums if they are UDP,
199 * so for GRE_CSUM we have to use GSO_PARTIAL.
200 */
201 net_dev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
202 }
203 efx->num_mac_stats = MCDI_WORD(outbuf,
204 GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
205 netif_dbg(efx, probe, efx->net_dev,
206 "firmware reports num_mac_stats = %u\n",
207 efx->num_mac_stats);
208 return 0;
209 }
210
211 /* Event handling
212 */
ef100_ev_probe(struct efx_channel * channel)213 static int ef100_ev_probe(struct efx_channel *channel)
214 {
215 /* Allocate an extra descriptor for the QMDA status completion entry */
216 return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
217 (channel->eventq_mask + 2) *
218 sizeof(efx_qword_t),
219 GFP_KERNEL);
220 }
221
ef100_ev_init(struct efx_channel * channel)222 static int ef100_ev_init(struct efx_channel *channel)
223 {
224 struct ef100_nic_data *nic_data = channel->efx->nic_data;
225
226 /* initial phase is 0 */
227 clear_bit(channel->channel, nic_data->evq_phases);
228
229 return efx_mcdi_ev_init(channel, false, false);
230 }
231
ef100_ev_read_ack(struct efx_channel * channel)232 static void ef100_ev_read_ack(struct efx_channel *channel)
233 {
234 efx_dword_t evq_prime;
235
236 EFX_POPULATE_DWORD_2(evq_prime,
237 ERF_GZ_EVQ_ID, channel->channel,
238 ERF_GZ_IDX, channel->eventq_read_ptr &
239 channel->eventq_mask);
240
241 efx_writed(channel->efx, &evq_prime,
242 efx_reg(channel->efx, ER_GZ_EVQ_INT_PRIME));
243 }
244
ef100_ev_process(struct efx_channel * channel,int quota)245 static int ef100_ev_process(struct efx_channel *channel, int quota)
246 {
247 struct efx_nic *efx = channel->efx;
248 struct ef100_nic_data *nic_data;
249 bool evq_phase, old_evq_phase;
250 unsigned int read_ptr;
251 efx_qword_t *p_event;
252 int spent = 0;
253 bool ev_phase;
254 int ev_type;
255
256 if (unlikely(!channel->enabled))
257 return 0;
258
259 nic_data = efx->nic_data;
260 evq_phase = test_bit(channel->channel, nic_data->evq_phases);
261 old_evq_phase = evq_phase;
262 read_ptr = channel->eventq_read_ptr;
263 BUILD_BUG_ON(ESF_GZ_EV_RXPKTS_PHASE_LBN != ESF_GZ_EV_TXCMPL_PHASE_LBN);
264
265 while (spent < quota) {
266 p_event = efx_event(channel, read_ptr);
267
268 ev_phase = !!EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_RXPKTS_PHASE);
269 if (ev_phase != evq_phase)
270 break;
271
272 netif_vdbg(efx, drv, efx->net_dev,
273 "processing event on %d " EFX_QWORD_FMT "\n",
274 channel->channel, EFX_QWORD_VAL(*p_event));
275
276 ev_type = EFX_QWORD_FIELD(*p_event, ESF_GZ_E_TYPE);
277
278 switch (ev_type) {
279 case ESE_GZ_EF100_EV_RX_PKTS:
280 efx_ef100_ev_rx(channel, p_event);
281 ++spent;
282 break;
283 case ESE_GZ_EF100_EV_MCDI:
284 efx_mcdi_process_event(channel, p_event);
285 break;
286 case ESE_GZ_EF100_EV_TX_COMPLETION:
287 ef100_ev_tx(channel, p_event);
288 break;
289 case ESE_GZ_EF100_EV_DRIVER:
290 netif_info(efx, drv, efx->net_dev,
291 "Driver initiated event " EFX_QWORD_FMT "\n",
292 EFX_QWORD_VAL(*p_event));
293 break;
294 default:
295 netif_info(efx, drv, efx->net_dev,
296 "Unhandled event " EFX_QWORD_FMT "\n",
297 EFX_QWORD_VAL(*p_event));
298 }
299
300 ++read_ptr;
301 if ((read_ptr & channel->eventq_mask) == 0)
302 evq_phase = !evq_phase;
303 }
304
305 channel->eventq_read_ptr = read_ptr;
306 if (evq_phase != old_evq_phase)
307 change_bit(channel->channel, nic_data->evq_phases);
308
309 return spent;
310 }
311
ef100_msi_interrupt(int irq,void * dev_id)312 static irqreturn_t ef100_msi_interrupt(int irq, void *dev_id)
313 {
314 struct efx_msi_context *context = dev_id;
315 struct efx_nic *efx = context->efx;
316
317 netif_vdbg(efx, intr, efx->net_dev,
318 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
319
320 if (likely(READ_ONCE(efx->irq_soft_enabled))) {
321 /* Note test interrupts */
322 if (context->index == efx->irq_level)
323 efx->last_irq_cpu = raw_smp_processor_id();
324
325 /* Schedule processing of the channel */
326 efx_schedule_channel_irq(efx->channel[context->index]);
327 }
328
329 return IRQ_HANDLED;
330 }
331
ef100_phy_probe(struct efx_nic * efx)332 int ef100_phy_probe(struct efx_nic *efx)
333 {
334 struct efx_mcdi_phy_data *phy_data;
335 int rc;
336
337 /* Probe for the PHY */
338 efx->phy_data = kzalloc(sizeof(struct efx_mcdi_phy_data), GFP_KERNEL);
339 if (!efx->phy_data)
340 return -ENOMEM;
341
342 rc = efx_mcdi_get_phy_cfg(efx, efx->phy_data);
343 if (rc)
344 return rc;
345
346 /* Populate driver and ethtool settings */
347 phy_data = efx->phy_data;
348 mcdi_to_ethtool_linkset(phy_data->media, phy_data->supported_cap,
349 efx->link_advertising);
350 efx->fec_config = mcdi_fec_caps_to_ethtool(phy_data->supported_cap,
351 false);
352
353 /* Default to Autonegotiated flow control if the PHY supports it */
354 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
355 if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN))
356 efx->wanted_fc |= EFX_FC_AUTO;
357 efx_link_set_wanted_fc(efx, efx->wanted_fc);
358
359 /* Push settings to the PHY. Failure is not fatal, the user can try to
360 * fix it using ethtool.
361 */
362 rc = efx_mcdi_port_reconfigure(efx);
363 if (rc && rc != -EPERM)
364 netif_warn(efx, drv, efx->net_dev,
365 "could not initialise PHY settings\n");
366
367 return 0;
368 }
369
ef100_filter_table_probe(struct efx_nic * efx)370 int ef100_filter_table_probe(struct efx_nic *efx)
371 {
372 return efx_mcdi_filter_table_probe(efx, true);
373 }
374
ef100_filter_table_up(struct efx_nic * efx)375 static int ef100_filter_table_up(struct efx_nic *efx)
376 {
377 int rc;
378
379 down_write(&efx->filter_sem);
380 rc = efx_mcdi_filter_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
381 if (rc)
382 goto fail_unspec;
383
384 rc = efx_mcdi_filter_add_vlan(efx, 0);
385 if (rc)
386 goto fail_vlan0;
387 /* Drop the lock: we've finished altering table existence, and
388 * filter insertion will need to take the lock for read.
389 */
390 up_write(&efx->filter_sem);
391 #ifdef CONFIG_SFC_SRIOV
392 rc = efx_tc_insert_rep_filters(efx);
393 /* Rep filter failure is nonfatal */
394 if (rc)
395 netif_warn(efx, drv, efx->net_dev,
396 "Failed to insert representor filters, rc %d\n",
397 rc);
398 #endif
399 return 0;
400
401 fail_vlan0:
402 efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
403 fail_unspec:
404 efx_mcdi_filter_table_down(efx);
405 up_write(&efx->filter_sem);
406 return rc;
407 }
408
ef100_filter_table_down(struct efx_nic * efx)409 static void ef100_filter_table_down(struct efx_nic *efx)
410 {
411 #ifdef CONFIG_SFC_SRIOV
412 efx_tc_remove_rep_filters(efx);
413 #endif
414 down_write(&efx->filter_sem);
415 efx_mcdi_filter_del_vlan(efx, 0);
416 efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
417 efx_mcdi_filter_table_down(efx);
418 up_write(&efx->filter_sem);
419 }
420
421 /* Other
422 */
ef100_reconfigure_mac(struct efx_nic * efx,bool mtu_only)423 static int ef100_reconfigure_mac(struct efx_nic *efx, bool mtu_only)
424 {
425 WARN_ON(!mutex_is_locked(&efx->mac_lock));
426
427 efx_mcdi_filter_sync_rx_mode(efx);
428
429 if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
430 return efx_mcdi_set_mtu(efx);
431 return efx_mcdi_set_mac(efx);
432 }
433
ef100_map_reset_reason(enum reset_type reason)434 static enum reset_type ef100_map_reset_reason(enum reset_type reason)
435 {
436 if (reason == RESET_TYPE_TX_WATCHDOG)
437 return reason;
438 return RESET_TYPE_DISABLE;
439 }
440
ef100_map_reset_flags(u32 * flags)441 static int ef100_map_reset_flags(u32 *flags)
442 {
443 /* Only perform a RESET_TYPE_ALL because we don't support MC_REBOOTs */
444 if ((*flags & EF100_RESET_PORT)) {
445 *flags &= ~EF100_RESET_PORT;
446 return RESET_TYPE_ALL;
447 }
448 if (*flags & ETH_RESET_MGMT) {
449 *flags &= ~ETH_RESET_MGMT;
450 return RESET_TYPE_DISABLE;
451 }
452
453 return -EINVAL;
454 }
455
ef100_reset(struct efx_nic * efx,enum reset_type reset_type)456 static int ef100_reset(struct efx_nic *efx, enum reset_type reset_type)
457 {
458 int rc;
459
460 dev_close(efx->net_dev);
461
462 if (reset_type == RESET_TYPE_TX_WATCHDOG) {
463 netif_device_attach(efx->net_dev);
464 __clear_bit(reset_type, &efx->reset_pending);
465 rc = dev_open(efx->net_dev, NULL);
466 } else if (reset_type == RESET_TYPE_ALL) {
467 rc = efx_mcdi_reset(efx, reset_type);
468 if (rc)
469 return rc;
470
471 netif_device_attach(efx->net_dev);
472
473 rc = dev_open(efx->net_dev, NULL);
474 } else {
475 rc = 1; /* Leave the device closed */
476 }
477 return rc;
478 }
479
ef100_common_stat_mask(unsigned long * mask)480 static void ef100_common_stat_mask(unsigned long *mask)
481 {
482 __set_bit(EF100_STAT_port_rx_packets, mask);
483 __set_bit(EF100_STAT_port_tx_packets, mask);
484 __set_bit(EF100_STAT_port_rx_bytes, mask);
485 __set_bit(EF100_STAT_port_tx_bytes, mask);
486 __set_bit(EF100_STAT_port_rx_multicast, mask);
487 __set_bit(EF100_STAT_port_rx_bad, mask);
488 __set_bit(EF100_STAT_port_rx_align_error, mask);
489 __set_bit(EF100_STAT_port_rx_overflow, mask);
490 }
491
ef100_ethtool_stat_mask(unsigned long * mask)492 static void ef100_ethtool_stat_mask(unsigned long *mask)
493 {
494 __set_bit(EF100_STAT_port_tx_pause, mask);
495 __set_bit(EF100_STAT_port_tx_unicast, mask);
496 __set_bit(EF100_STAT_port_tx_multicast, mask);
497 __set_bit(EF100_STAT_port_tx_broadcast, mask);
498 __set_bit(EF100_STAT_port_tx_lt64, mask);
499 __set_bit(EF100_STAT_port_tx_64, mask);
500 __set_bit(EF100_STAT_port_tx_65_to_127, mask);
501 __set_bit(EF100_STAT_port_tx_128_to_255, mask);
502 __set_bit(EF100_STAT_port_tx_256_to_511, mask);
503 __set_bit(EF100_STAT_port_tx_512_to_1023, mask);
504 __set_bit(EF100_STAT_port_tx_1024_to_15xx, mask);
505 __set_bit(EF100_STAT_port_tx_15xx_to_jumbo, mask);
506 __set_bit(EF100_STAT_port_rx_good, mask);
507 __set_bit(EF100_STAT_port_rx_pause, mask);
508 __set_bit(EF100_STAT_port_rx_unicast, mask);
509 __set_bit(EF100_STAT_port_rx_broadcast, mask);
510 __set_bit(EF100_STAT_port_rx_lt64, mask);
511 __set_bit(EF100_STAT_port_rx_64, mask);
512 __set_bit(EF100_STAT_port_rx_65_to_127, mask);
513 __set_bit(EF100_STAT_port_rx_128_to_255, mask);
514 __set_bit(EF100_STAT_port_rx_256_to_511, mask);
515 __set_bit(EF100_STAT_port_rx_512_to_1023, mask);
516 __set_bit(EF100_STAT_port_rx_1024_to_15xx, mask);
517 __set_bit(EF100_STAT_port_rx_15xx_to_jumbo, mask);
518 __set_bit(EF100_STAT_port_rx_gtjumbo, mask);
519 __set_bit(EF100_STAT_port_rx_bad_gtjumbo, mask);
520 __set_bit(EF100_STAT_port_rx_length_error, mask);
521 __set_bit(EF100_STAT_port_rx_nodesc_drops, mask);
522 __set_bit(GENERIC_STAT_rx_nodesc_trunc, mask);
523 __set_bit(GENERIC_STAT_rx_noskb_drops, mask);
524 }
525
526 #define EF100_DMA_STAT(ext_name, mcdi_name) \
527 [EF100_STAT_ ## ext_name] = \
528 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
529
530 static const struct efx_hw_stat_desc ef100_stat_desc[EF100_STAT_COUNT] = {
531 EF100_DMA_STAT(port_tx_bytes, TX_BYTES),
532 EF100_DMA_STAT(port_tx_packets, TX_PKTS),
533 EF100_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
534 EF100_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
535 EF100_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
536 EF100_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
537 EF100_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
538 EF100_DMA_STAT(port_tx_64, TX_64_PKTS),
539 EF100_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
540 EF100_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
541 EF100_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
542 EF100_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
543 EF100_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
544 EF100_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
545 EF100_DMA_STAT(port_rx_bytes, RX_BYTES),
546 EF100_DMA_STAT(port_rx_packets, RX_PKTS),
547 EF100_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
548 EF100_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
549 EF100_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
550 EF100_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
551 EF100_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
552 EF100_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
553 EF100_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
554 EF100_DMA_STAT(port_rx_64, RX_64_PKTS),
555 EF100_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
556 EF100_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
557 EF100_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
558 EF100_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
559 EF100_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
560 EF100_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
561 EF100_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
562 EF100_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
563 EF100_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
564 EF100_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
565 EF100_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
566 EF100_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
567 EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
568 EFX_GENERIC_SW_STAT(rx_noskb_drops),
569 };
570
ef100_describe_stats(struct efx_nic * efx,u8 * names)571 static size_t ef100_describe_stats(struct efx_nic *efx, u8 *names)
572 {
573 DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
574
575 ef100_ethtool_stat_mask(mask);
576 return efx_nic_describe_stats(ef100_stat_desc, EF100_STAT_COUNT,
577 mask, names);
578 }
579
ef100_update_stats_common(struct efx_nic * efx,u64 * full_stats,struct rtnl_link_stats64 * core_stats)580 static size_t ef100_update_stats_common(struct efx_nic *efx, u64 *full_stats,
581 struct rtnl_link_stats64 *core_stats)
582 {
583 struct ef100_nic_data *nic_data = efx->nic_data;
584 DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
585 size_t stats_count = 0, index;
586 u64 *stats = nic_data->stats;
587
588 ef100_ethtool_stat_mask(mask);
589
590 if (full_stats) {
591 for_each_set_bit(index, mask, EF100_STAT_COUNT) {
592 if (ef100_stat_desc[index].name) {
593 *full_stats++ = stats[index];
594 ++stats_count;
595 }
596 }
597 }
598
599 if (!core_stats)
600 return stats_count;
601
602 core_stats->rx_packets = stats[EF100_STAT_port_rx_packets];
603 core_stats->tx_packets = stats[EF100_STAT_port_tx_packets];
604 core_stats->rx_bytes = stats[EF100_STAT_port_rx_bytes];
605 core_stats->tx_bytes = stats[EF100_STAT_port_tx_bytes];
606 core_stats->rx_dropped = stats[EF100_STAT_port_rx_nodesc_drops] +
607 stats[GENERIC_STAT_rx_nodesc_trunc] +
608 stats[GENERIC_STAT_rx_noskb_drops];
609 core_stats->multicast = stats[EF100_STAT_port_rx_multicast];
610 core_stats->rx_length_errors =
611 stats[EF100_STAT_port_rx_gtjumbo] +
612 stats[EF100_STAT_port_rx_length_error];
613 core_stats->rx_crc_errors = stats[EF100_STAT_port_rx_bad];
614 core_stats->rx_frame_errors =
615 stats[EF100_STAT_port_rx_align_error];
616 core_stats->rx_fifo_errors = stats[EF100_STAT_port_rx_overflow];
617 core_stats->rx_errors = (core_stats->rx_length_errors +
618 core_stats->rx_crc_errors +
619 core_stats->rx_frame_errors);
620
621 return stats_count;
622 }
623
ef100_update_stats(struct efx_nic * efx,u64 * full_stats,struct rtnl_link_stats64 * core_stats)624 static size_t ef100_update_stats(struct efx_nic *efx,
625 u64 *full_stats,
626 struct rtnl_link_stats64 *core_stats)
627 {
628 __le64 *mc_stats = kmalloc(array_size(efx->num_mac_stats, sizeof(__le64)), GFP_ATOMIC);
629 struct ef100_nic_data *nic_data = efx->nic_data;
630 DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
631 u64 *stats = nic_data->stats;
632
633 ef100_common_stat_mask(mask);
634 ef100_ethtool_stat_mask(mask);
635
636 if (!mc_stats)
637 return 0;
638
639 efx_nic_copy_stats(efx, mc_stats);
640 efx_nic_update_stats(ef100_stat_desc, EF100_STAT_COUNT, mask,
641 stats, mc_stats, false);
642
643 kfree(mc_stats);
644
645 return ef100_update_stats_common(efx, full_stats, core_stats);
646 }
647
efx_ef100_get_phys_port_id(struct efx_nic * efx,struct netdev_phys_item_id * ppid)648 static int efx_ef100_get_phys_port_id(struct efx_nic *efx,
649 struct netdev_phys_item_id *ppid)
650 {
651 struct ef100_nic_data *nic_data = efx->nic_data;
652
653 if (!is_valid_ether_addr(nic_data->port_id))
654 return -EOPNOTSUPP;
655
656 ppid->id_len = ETH_ALEN;
657 memcpy(ppid->id, nic_data->port_id, ppid->id_len);
658
659 return 0;
660 }
661
efx_ef100_irq_test_generate(struct efx_nic * efx)662 static int efx_ef100_irq_test_generate(struct efx_nic *efx)
663 {
664 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
665
666 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
667
668 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
669 return efx_mcdi_rpc_quiet(efx, MC_CMD_TRIGGER_INTERRUPT,
670 inbuf, sizeof(inbuf), NULL, 0, NULL);
671 }
672
673 #define EFX_EF100_TEST 1
674
efx_ef100_ev_test_generate(struct efx_channel * channel)675 static void efx_ef100_ev_test_generate(struct efx_channel *channel)
676 {
677 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
678 struct efx_nic *efx = channel->efx;
679 efx_qword_t event;
680 int rc;
681
682 EFX_POPULATE_QWORD_2(event,
683 ESF_GZ_E_TYPE, ESE_GZ_EF100_EV_DRIVER,
684 ESF_GZ_DRIVER_DATA, EFX_EF100_TEST);
685
686 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
687
688 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
689 * already swapped the data to little-endian order.
690 */
691 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
692 sizeof(efx_qword_t));
693
694 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
695 NULL, 0, NULL);
696 if (rc && (rc != -ENETDOWN))
697 goto fail;
698
699 return;
700
701 fail:
702 WARN_ON(true);
703 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
704 }
705
ef100_check_caps(const struct efx_nic * efx,u8 flag,u32 offset)706 static unsigned int ef100_check_caps(const struct efx_nic *efx,
707 u8 flag, u32 offset)
708 {
709 const struct ef100_nic_data *nic_data = efx->nic_data;
710
711 switch (offset) {
712 case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS1_OFST:
713 return nic_data->datapath_caps & BIT_ULL(flag);
714 case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS2_OFST:
715 return nic_data->datapath_caps2 & BIT_ULL(flag);
716 case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS3_OFST:
717 return nic_data->datapath_caps3 & BIT_ULL(flag);
718 default:
719 return 0;
720 }
721 }
722
efx_ef100_recycle_ring_size(const struct efx_nic * efx)723 static unsigned int efx_ef100_recycle_ring_size(const struct efx_nic *efx)
724 {
725 /* Maximum link speed for Riverhead is 100G */
726 return 10 * EFX_RECYCLE_RING_SIZE_10G;
727 }
728
729 #ifdef CONFIG_SFC_SRIOV
efx_ef100_get_base_mport(struct efx_nic * efx)730 static int efx_ef100_get_base_mport(struct efx_nic *efx)
731 {
732 struct ef100_nic_data *nic_data = efx->nic_data;
733 u32 selector, id;
734 int rc;
735
736 /* Construct mport selector for "physical network port" */
737 efx_mae_mport_wire(efx, &selector);
738 /* Look up actual mport ID */
739 rc = efx_mae_lookup_mport(efx, selector, &id);
740 if (rc)
741 return rc;
742 /* The ID should always fit in 16 bits, because that's how wide the
743 * corresponding fields in the RX prefix & TX override descriptor are
744 */
745 if (id >> 16)
746 netif_warn(efx, probe, efx->net_dev, "Bad base m-port id %#x\n",
747 id);
748 nic_data->base_mport = id;
749 nic_data->have_mport = true;
750 return 0;
751 }
752 #endif
753
compare_versions(const char * a,const char * b)754 static int compare_versions(const char *a, const char *b)
755 {
756 int a_major, a_minor, a_point, a_patch;
757 int b_major, b_minor, b_point, b_patch;
758 int a_matched, b_matched;
759
760 a_matched = sscanf(a, "%d.%d.%d.%d", &a_major, &a_minor, &a_point, &a_patch);
761 b_matched = sscanf(b, "%d.%d.%d.%d", &b_major, &b_minor, &b_point, &b_patch);
762
763 if (a_matched == 4 && b_matched != 4)
764 return +1;
765
766 if (a_matched != 4 && b_matched == 4)
767 return -1;
768
769 if (a_matched != 4 && b_matched != 4)
770 return 0;
771
772 if (a_major != b_major)
773 return a_major - b_major;
774
775 if (a_minor != b_minor)
776 return a_minor - b_minor;
777
778 if (a_point != b_point)
779 return a_point - b_point;
780
781 return a_patch - b_patch;
782 }
783
784 enum ef100_tlv_state_machine {
785 EF100_TLV_TYPE,
786 EF100_TLV_TYPE_CONT,
787 EF100_TLV_LENGTH,
788 EF100_TLV_VALUE
789 };
790
791 struct ef100_tlv_state {
792 enum ef100_tlv_state_machine state;
793 u64 value;
794 u32 value_offset;
795 u16 type;
796 u8 len;
797 };
798
ef100_tlv_feed(struct ef100_tlv_state * state,u8 byte)799 static int ef100_tlv_feed(struct ef100_tlv_state *state, u8 byte)
800 {
801 switch (state->state) {
802 case EF100_TLV_TYPE:
803 state->type = byte & 0x7f;
804 state->state = (byte & 0x80) ? EF100_TLV_TYPE_CONT
805 : EF100_TLV_LENGTH;
806 /* Clear ready to read in a new entry */
807 state->value = 0;
808 state->value_offset = 0;
809 return 0;
810 case EF100_TLV_TYPE_CONT:
811 state->type |= byte << 7;
812 state->state = EF100_TLV_LENGTH;
813 return 0;
814 case EF100_TLV_LENGTH:
815 state->len = byte;
816 /* We only handle TLVs that fit in a u64 */
817 if (state->len > sizeof(state->value))
818 return -EOPNOTSUPP;
819 /* len may be zero, implying a value of zero */
820 state->state = state->len ? EF100_TLV_VALUE : EF100_TLV_TYPE;
821 return 0;
822 case EF100_TLV_VALUE:
823 state->value |= ((u64)byte) << (state->value_offset * 8);
824 state->value_offset++;
825 if (state->value_offset >= state->len)
826 state->state = EF100_TLV_TYPE;
827 return 0;
828 default: /* state machine error, can't happen */
829 WARN_ON_ONCE(1);
830 return -EIO;
831 }
832 }
833
ef100_process_design_param(struct efx_nic * efx,const struct ef100_tlv_state * reader)834 static int ef100_process_design_param(struct efx_nic *efx,
835 const struct ef100_tlv_state *reader)
836 {
837 struct ef100_nic_data *nic_data = efx->nic_data;
838
839 switch (reader->type) {
840 case ESE_EF100_DP_GZ_PAD: /* padding, skip it */
841 return 0;
842 case ESE_EF100_DP_GZ_PARTIAL_TSTAMP_SUB_NANO_BITS:
843 /* Driver doesn't support timestamping yet, so we don't care */
844 return 0;
845 case ESE_EF100_DP_GZ_EVQ_UNSOL_CREDIT_SEQ_BITS:
846 /* Driver doesn't support unsolicited-event credits yet, so
847 * we don't care
848 */
849 return 0;
850 case ESE_EF100_DP_GZ_NMMU_GROUP_SIZE:
851 /* Driver doesn't manage the NMMU (so we don't care) */
852 return 0;
853 case ESE_EF100_DP_GZ_RX_L4_CSUM_PROTOCOLS:
854 /* Driver uses CHECKSUM_COMPLETE, so we don't care about
855 * protocol checksum validation
856 */
857 return 0;
858 case ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN:
859 nic_data->tso_max_hdr_len = min_t(u64, reader->value, 0xffff);
860 return 0;
861 case ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS:
862 /* We always put HDR_NUM_SEGS=1 in our TSO descriptors */
863 if (!reader->value) {
864 netif_err(efx, probe, efx->net_dev,
865 "TSO_MAX_HDR_NUM_SEGS < 1\n");
866 return -EOPNOTSUPP;
867 }
868 return 0;
869 case ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY:
870 case ESE_EF100_DP_GZ_TXQ_SIZE_GRANULARITY:
871 /* Our TXQ and RXQ sizes are always power-of-two and thus divisible by
872 * EFX_MIN_DMAQ_SIZE, so we just need to check that
873 * EFX_MIN_DMAQ_SIZE is divisible by GRANULARITY.
874 * This is very unlikely to fail.
875 */
876 if (!reader->value || reader->value > EFX_MIN_DMAQ_SIZE ||
877 EFX_MIN_DMAQ_SIZE % (u32)reader->value) {
878 netif_err(efx, probe, efx->net_dev,
879 "%s size granularity is %llu, can't guarantee safety\n",
880 reader->type == ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY ? "RXQ" : "TXQ",
881 reader->value);
882 return -EOPNOTSUPP;
883 }
884 return 0;
885 case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN:
886 nic_data->tso_max_payload_len = min_t(u64, reader->value,
887 GSO_LEGACY_MAX_SIZE);
888 netif_set_tso_max_size(efx->net_dev,
889 nic_data->tso_max_payload_len);
890 return 0;
891 case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS:
892 nic_data->tso_max_payload_num_segs = min_t(u64, reader->value, 0xffff);
893 netif_set_tso_max_segs(efx->net_dev,
894 nic_data->tso_max_payload_num_segs);
895 return 0;
896 case ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES:
897 nic_data->tso_max_frames = min_t(u64, reader->value, 0xffff);
898 return 0;
899 case ESE_EF100_DP_GZ_COMPAT:
900 if (reader->value) {
901 netif_err(efx, probe, efx->net_dev,
902 "DP_COMPAT has unknown bits %#llx, driver not compatible with this hw\n",
903 reader->value);
904 return -EOPNOTSUPP;
905 }
906 return 0;
907 case ESE_EF100_DP_GZ_MEM2MEM_MAX_LEN:
908 /* Driver doesn't use mem2mem transfers */
909 return 0;
910 case ESE_EF100_DP_GZ_EVQ_TIMER_TICK_NANOS:
911 /* Driver doesn't currently use EVQ_TIMER */
912 return 0;
913 case ESE_EF100_DP_GZ_NMMU_PAGE_SIZES:
914 /* Driver doesn't manage the NMMU (so we don't care) */
915 return 0;
916 case ESE_EF100_DP_GZ_VI_STRIDES:
917 /* We never try to set the VI stride, and we don't rely on
918 * being able to find VIs past VI 0 until after we've learned
919 * the current stride from MC_CMD_GET_CAPABILITIES.
920 * So the value of this shouldn't matter.
921 */
922 if (reader->value != ESE_EF100_DP_GZ_VI_STRIDES_DEFAULT)
923 netif_dbg(efx, probe, efx->net_dev,
924 "NIC has other than default VI_STRIDES (mask "
925 "%#llx), early probing might use wrong one\n",
926 reader->value);
927 return 0;
928 case ESE_EF100_DP_GZ_RX_MAX_RUNT:
929 /* Driver doesn't look at L2_STATUS:LEN_ERR bit, so we don't
930 * care whether it indicates runt or overlength for any given
931 * packet, so we don't care about this parameter.
932 */
933 return 0;
934 default:
935 /* Host interface says "Drivers should ignore design parameters
936 * that they do not recognise."
937 */
938 netif_dbg(efx, probe, efx->net_dev,
939 "Ignoring unrecognised design parameter %u\n",
940 reader->type);
941 return 0;
942 }
943 }
944
ef100_check_design_params(struct efx_nic * efx)945 static int ef100_check_design_params(struct efx_nic *efx)
946 {
947 struct ef100_tlv_state reader = {};
948 u32 total_len, offset = 0;
949 efx_dword_t reg;
950 int rc = 0, i;
951 u32 data;
952
953 efx_readd(efx, ®, ER_GZ_PARAMS_TLV_LEN);
954 total_len = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
955 pci_dbg(efx->pci_dev, "%u bytes of design parameters\n", total_len);
956 while (offset < total_len) {
957 efx_readd(efx, ®, ER_GZ_PARAMS_TLV + offset);
958 data = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
959 for (i = 0; i < sizeof(data); i++) {
960 rc = ef100_tlv_feed(&reader, data);
961 /* Got a complete value? */
962 if (!rc && reader.state == EF100_TLV_TYPE)
963 rc = ef100_process_design_param(efx, &reader);
964 if (rc)
965 goto out;
966 data >>= 8;
967 offset++;
968 }
969 }
970 /* Check we didn't end halfway through a TLV entry, which could either
971 * mean that the TLV stream is truncated or just that it's corrupted
972 * and our state machine is out of sync.
973 */
974 if (reader.state != EF100_TLV_TYPE) {
975 if (reader.state == EF100_TLV_TYPE_CONT)
976 netif_err(efx, probe, efx->net_dev,
977 "truncated design parameter (incomplete type %u)\n",
978 reader.type);
979 else
980 netif_err(efx, probe, efx->net_dev,
981 "truncated design parameter %u\n",
982 reader.type);
983 rc = -EIO;
984 }
985 out:
986 return rc;
987 }
988
989 /* NIC probe and remove
990 */
ef100_probe_main(struct efx_nic * efx)991 static int ef100_probe_main(struct efx_nic *efx)
992 {
993 unsigned int bar_size = resource_size(&efx->pci_dev->resource[efx->mem_bar]);
994 struct ef100_nic_data *nic_data;
995 char fw_version[32];
996 u32 priv_mask = 0;
997 int i, rc;
998
999 if (WARN_ON(bar_size == 0))
1000 return -EIO;
1001
1002 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1003 if (!nic_data)
1004 return -ENOMEM;
1005 efx->nic_data = nic_data;
1006 nic_data->efx = efx;
1007 efx->max_vis = EF100_MAX_VIS;
1008
1009 /* Populate design-parameter defaults */
1010 nic_data->tso_max_hdr_len = ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN_DEFAULT;
1011 nic_data->tso_max_frames = ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES_DEFAULT;
1012 nic_data->tso_max_payload_num_segs = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS_DEFAULT;
1013 nic_data->tso_max_payload_len = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN_DEFAULT;
1014
1015 /* Read design parameters */
1016 rc = ef100_check_design_params(efx);
1017 if (rc) {
1018 pci_err(efx->pci_dev, "Unsupported design parameters\n");
1019 goto fail;
1020 }
1021
1022 /* we assume later that we can copy from this buffer in dwords */
1023 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
1024
1025 /* MCDI buffers must be 256 byte aligned. */
1026 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, MCDI_BUF_LEN,
1027 GFP_KERNEL);
1028 if (rc)
1029 goto fail;
1030
1031 /* Get the MC's warm boot count. In case it's rebooting right
1032 * now, be prepared to retry.
1033 */
1034 i = 0;
1035 for (;;) {
1036 rc = ef100_get_warm_boot_count(efx);
1037 if (rc >= 0)
1038 break;
1039 if (++i == 5)
1040 goto fail;
1041 ssleep(1);
1042 }
1043 nic_data->warm_boot_count = rc;
1044
1045 /* In case we're recovering from a crash (kexec), we want to
1046 * cancel any outstanding request by the previous user of this
1047 * function. We send a special message using the least
1048 * significant bits of the 'high' (doorbell) register.
1049 */
1050 _efx_writed(efx, cpu_to_le32(1), efx_reg(efx, ER_GZ_MC_DB_HWRD));
1051
1052 /* Post-IO section. */
1053
1054 rc = efx_mcdi_init(efx);
1055 if (rc)
1056 goto fail;
1057 /* Reset (most) configuration for this function */
1058 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
1059 if (rc)
1060 goto fail;
1061 /* Enable event logging */
1062 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
1063 if (rc)
1064 goto fail;
1065
1066 rc = efx_get_pf_index(efx, &nic_data->pf_index);
1067 if (rc)
1068 goto fail;
1069
1070 rc = efx_mcdi_port_get_number(efx);
1071 if (rc < 0)
1072 goto fail;
1073 efx->port_num = rc;
1074
1075 efx_mcdi_print_fwver(efx, fw_version, sizeof(fw_version));
1076 pci_dbg(efx->pci_dev, "Firmware version %s\n", fw_version);
1077
1078 rc = efx_mcdi_get_privilege_mask(efx, &priv_mask);
1079 if (rc) /* non-fatal, and priv_mask will still be 0 */
1080 pci_info(efx->pci_dev,
1081 "Failed to get privilege mask from FW, rc %d\n", rc);
1082 nic_data->grp_mae = !!(priv_mask & MC_CMD_PRIVILEGE_MASK_IN_GRP_MAE);
1083
1084 if (compare_versions(fw_version, "1.1.0.1000") < 0) {
1085 pci_info(efx->pci_dev, "Firmware uses old event descriptors\n");
1086 rc = -EINVAL;
1087 goto fail;
1088 }
1089
1090 if (efx_has_cap(efx, UNSOL_EV_CREDIT_SUPPORTED)) {
1091 pci_info(efx->pci_dev, "Firmware uses unsolicited-event credits\n");
1092 rc = -EINVAL;
1093 goto fail;
1094 }
1095
1096 return 0;
1097 fail:
1098 return rc;
1099 }
1100
ef100_probe_netdev_pf(struct efx_nic * efx)1101 int ef100_probe_netdev_pf(struct efx_nic *efx)
1102 {
1103 struct ef100_nic_data *nic_data = efx->nic_data;
1104 struct net_device *net_dev = efx->net_dev;
1105 int rc;
1106
1107 rc = ef100_get_mac_address(efx, net_dev->perm_addr);
1108 if (rc)
1109 goto fail;
1110 /* Assign MAC address */
1111 eth_hw_addr_set(net_dev, net_dev->perm_addr);
1112 memcpy(nic_data->port_id, net_dev->perm_addr, ETH_ALEN);
1113
1114 if (!nic_data->grp_mae)
1115 return 0;
1116
1117 #ifdef CONFIG_SFC_SRIOV
1118 rc = efx_init_struct_tc(efx);
1119 if (rc)
1120 return rc;
1121
1122 rc = efx_ef100_get_base_mport(efx);
1123 if (rc) {
1124 netif_warn(efx, probe, net_dev,
1125 "Failed to probe base mport rc %d; representors will not function\n",
1126 rc);
1127 }
1128
1129 rc = efx_init_tc(efx);
1130 if (rc) {
1131 /* Either we don't have an MAE at all (i.e. legacy v-switching),
1132 * or we do but we failed to probe it. In the latter case, we
1133 * may not have set up default rules, in which case we won't be
1134 * able to pass any traffic. However, we don't fail the probe,
1135 * because the user might need to use the netdevice to apply
1136 * configuration changes to fix whatever's wrong with the MAE.
1137 */
1138 netif_warn(efx, probe, net_dev, "Failed to probe MAE rc %d\n",
1139 rc);
1140 } else {
1141 net_dev->features |= NETIF_F_HW_TC;
1142 efx->fixed_features |= NETIF_F_HW_TC;
1143 }
1144 #endif
1145 return 0;
1146
1147 fail:
1148 return rc;
1149 }
1150
ef100_probe_vf(struct efx_nic * efx)1151 int ef100_probe_vf(struct efx_nic *efx)
1152 {
1153 return ef100_probe_main(efx);
1154 }
1155
ef100_remove(struct efx_nic * efx)1156 void ef100_remove(struct efx_nic *efx)
1157 {
1158 struct ef100_nic_data *nic_data = efx->nic_data;
1159
1160 efx_mcdi_detach(efx);
1161 efx_mcdi_fini(efx);
1162 if (nic_data)
1163 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
1164 kfree(nic_data);
1165 efx->nic_data = NULL;
1166 }
1167
1168 /* NIC level access functions
1169 */
1170 #define EF100_OFFLOAD_FEATURES (NETIF_F_HW_CSUM | NETIF_F_RXCSUM | \
1171 NETIF_F_HIGHDMA | NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_NTUPLE | \
1172 NETIF_F_RXHASH | NETIF_F_RXFCS | NETIF_F_TSO_ECN | NETIF_F_RXALL | \
1173 NETIF_F_HW_VLAN_CTAG_TX)
1174
1175 const struct efx_nic_type ef100_pf_nic_type = {
1176 .revision = EFX_REV_EF100,
1177 .is_vf = false,
1178 .probe = ef100_probe_main,
1179 .offload_features = EF100_OFFLOAD_FEATURES,
1180 .mcdi_max_ver = 2,
1181 .mcdi_request = ef100_mcdi_request,
1182 .mcdi_poll_response = ef100_mcdi_poll_response,
1183 .mcdi_read_response = ef100_mcdi_read_response,
1184 .mcdi_poll_reboot = ef100_mcdi_poll_reboot,
1185 .mcdi_reboot_detected = ef100_mcdi_reboot_detected,
1186 .irq_enable_master = efx_port_dummy_op_void,
1187 .irq_test_generate = efx_ef100_irq_test_generate,
1188 .irq_disable_non_ev = efx_port_dummy_op_void,
1189 .push_irq_moderation = efx_channel_dummy_op_void,
1190 .min_interrupt_mode = EFX_INT_MODE_MSIX,
1191 .map_reset_reason = ef100_map_reset_reason,
1192 .map_reset_flags = ef100_map_reset_flags,
1193 .reset = ef100_reset,
1194
1195 .check_caps = ef100_check_caps,
1196
1197 .ev_probe = ef100_ev_probe,
1198 .ev_init = ef100_ev_init,
1199 .ev_fini = efx_mcdi_ev_fini,
1200 .ev_remove = efx_mcdi_ev_remove,
1201 .irq_handle_msi = ef100_msi_interrupt,
1202 .ev_process = ef100_ev_process,
1203 .ev_read_ack = ef100_ev_read_ack,
1204 .ev_test_generate = efx_ef100_ev_test_generate,
1205 .tx_probe = ef100_tx_probe,
1206 .tx_init = ef100_tx_init,
1207 .tx_write = ef100_tx_write,
1208 .tx_enqueue = ef100_enqueue_skb,
1209 .rx_probe = efx_mcdi_rx_probe,
1210 .rx_init = efx_mcdi_rx_init,
1211 .rx_remove = efx_mcdi_rx_remove,
1212 .rx_write = ef100_rx_write,
1213 .rx_packet = __ef100_rx_packet,
1214 .rx_buf_hash_valid = ef100_rx_buf_hash_valid,
1215 .fini_dmaq = efx_fini_dmaq,
1216 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
1217 .filter_table_probe = ef100_filter_table_up,
1218 .filter_table_restore = efx_mcdi_filter_table_restore,
1219 .filter_table_remove = ef100_filter_table_down,
1220 .filter_insert = efx_mcdi_filter_insert,
1221 .filter_remove_safe = efx_mcdi_filter_remove_safe,
1222 .filter_get_safe = efx_mcdi_filter_get_safe,
1223 .filter_clear_rx = efx_mcdi_filter_clear_rx,
1224 .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
1225 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
1226 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
1227 #ifdef CONFIG_RFS_ACCEL
1228 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
1229 #endif
1230
1231 .get_phys_port_id = efx_ef100_get_phys_port_id,
1232
1233 .rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
1234 .rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
1235 .rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
1236 .rx_hash_key_size = 40,
1237 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
1238 .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
1239 .rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
1240 .rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
1241 .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
1242 .rx_recycle_ring_size = efx_ef100_recycle_ring_size,
1243
1244 .reconfigure_mac = ef100_reconfigure_mac,
1245 .reconfigure_port = efx_mcdi_port_reconfigure,
1246 .test_nvram = efx_new_mcdi_nvram_test_all,
1247 .describe_stats = ef100_describe_stats,
1248 .start_stats = efx_mcdi_mac_start_stats,
1249 .update_stats = ef100_update_stats,
1250 .pull_stats = efx_mcdi_mac_pull_stats,
1251 .stop_stats = efx_mcdi_mac_stop_stats,
1252 #ifdef CONFIG_SFC_SRIOV
1253 .sriov_configure = efx_ef100_sriov_configure,
1254 #endif
1255
1256 /* Per-type bar/size configuration not used on ef100. Location of
1257 * registers is defined by extended capabilities.
1258 */
1259 .mem_bar = NULL,
1260 .mem_map_size = NULL,
1261
1262 };
1263
1264 const struct efx_nic_type ef100_vf_nic_type = {
1265 .revision = EFX_REV_EF100,
1266 .is_vf = true,
1267 .probe = ef100_probe_vf,
1268 .offload_features = EF100_OFFLOAD_FEATURES,
1269 .mcdi_max_ver = 2,
1270 .mcdi_request = ef100_mcdi_request,
1271 .mcdi_poll_response = ef100_mcdi_poll_response,
1272 .mcdi_read_response = ef100_mcdi_read_response,
1273 .mcdi_poll_reboot = ef100_mcdi_poll_reboot,
1274 .mcdi_reboot_detected = ef100_mcdi_reboot_detected,
1275 .irq_enable_master = efx_port_dummy_op_void,
1276 .irq_test_generate = efx_ef100_irq_test_generate,
1277 .irq_disable_non_ev = efx_port_dummy_op_void,
1278 .push_irq_moderation = efx_channel_dummy_op_void,
1279 .min_interrupt_mode = EFX_INT_MODE_MSIX,
1280 .map_reset_reason = ef100_map_reset_reason,
1281 .map_reset_flags = ef100_map_reset_flags,
1282 .reset = ef100_reset,
1283 .check_caps = ef100_check_caps,
1284 .ev_probe = ef100_ev_probe,
1285 .ev_init = ef100_ev_init,
1286 .ev_fini = efx_mcdi_ev_fini,
1287 .ev_remove = efx_mcdi_ev_remove,
1288 .irq_handle_msi = ef100_msi_interrupt,
1289 .ev_process = ef100_ev_process,
1290 .ev_read_ack = ef100_ev_read_ack,
1291 .ev_test_generate = efx_ef100_ev_test_generate,
1292 .tx_probe = ef100_tx_probe,
1293 .tx_init = ef100_tx_init,
1294 .tx_write = ef100_tx_write,
1295 .tx_enqueue = ef100_enqueue_skb,
1296 .rx_probe = efx_mcdi_rx_probe,
1297 .rx_init = efx_mcdi_rx_init,
1298 .rx_remove = efx_mcdi_rx_remove,
1299 .rx_write = ef100_rx_write,
1300 .rx_packet = __ef100_rx_packet,
1301 .rx_buf_hash_valid = ef100_rx_buf_hash_valid,
1302 .fini_dmaq = efx_fini_dmaq,
1303 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
1304 .filter_table_probe = ef100_filter_table_up,
1305 .filter_table_restore = efx_mcdi_filter_table_restore,
1306 .filter_table_remove = ef100_filter_table_down,
1307 .filter_insert = efx_mcdi_filter_insert,
1308 .filter_remove_safe = efx_mcdi_filter_remove_safe,
1309 .filter_get_safe = efx_mcdi_filter_get_safe,
1310 .filter_clear_rx = efx_mcdi_filter_clear_rx,
1311 .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
1312 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
1313 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
1314 #ifdef CONFIG_RFS_ACCEL
1315 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
1316 #endif
1317
1318 .rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
1319 .rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
1320 .rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
1321 .rx_hash_key_size = 40,
1322 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
1323 .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
1324 .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
1325 .rx_recycle_ring_size = efx_ef100_recycle_ring_size,
1326
1327 .reconfigure_mac = ef100_reconfigure_mac,
1328 .test_nvram = efx_new_mcdi_nvram_test_all,
1329 .describe_stats = ef100_describe_stats,
1330 .start_stats = efx_mcdi_mac_start_stats,
1331 .update_stats = ef100_update_stats,
1332 .pull_stats = efx_mcdi_mac_pull_stats,
1333 .stop_stats = efx_mcdi_mac_stop_stats,
1334
1335 .mem_bar = NULL,
1336 .mem_map_size = NULL,
1337
1338 };
1339