1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PCI address cache; allows the lookup of PCI devices based on I/O address
4  *
5  * Copyright IBM Corporation 2004
6  * Copyright Linas Vepstas <linas@austin.ibm.com> 2004
7  */
8 
9 #include <linux/list.h>
10 #include <linux/pci.h>
11 #include <linux/rbtree.h>
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 #include <linux/atomic.h>
15 #include <asm/pci-bridge.h>
16 #include <asm/debugfs.h>
17 #include <asm/ppc-pci.h>
18 
19 
20 /**
21  * DOC: Overview
22  *
23  * The pci address cache subsystem.  This subsystem places
24  * PCI device address resources into a red-black tree, sorted
25  * according to the address range, so that given only an i/o
26  * address, the corresponding PCI device can be **quickly**
27  * found. It is safe to perform an address lookup in an interrupt
28  * context; this ability is an important feature.
29  *
30  * Currently, the only customer of this code is the EEH subsystem;
31  * thus, this code has been somewhat tailored to suit EEH better.
32  * In particular, the cache does *not* hold the addresses of devices
33  * for which EEH is not enabled.
34  *
35  * (Implementation Note: The RB tree seems to be better/faster
36  * than any hash algo I could think of for this problem, even
37  * with the penalty of slow pointer chases for d-cache misses).
38  */
39 
40 struct pci_io_addr_range {
41 	struct rb_node rb_node;
42 	resource_size_t addr_lo;
43 	resource_size_t addr_hi;
44 	struct eeh_dev *edev;
45 	struct pci_dev *pcidev;
46 	unsigned long flags;
47 };
48 
49 static struct pci_io_addr_cache {
50 	struct rb_root rb_root;
51 	spinlock_t piar_lock;
52 } pci_io_addr_cache_root;
53 
__eeh_addr_cache_get_device(unsigned long addr)54 static inline struct eeh_dev *__eeh_addr_cache_get_device(unsigned long addr)
55 {
56 	struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
57 
58 	while (n) {
59 		struct pci_io_addr_range *piar;
60 		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
61 
62 		if (addr < piar->addr_lo)
63 			n = n->rb_left;
64 		else if (addr > piar->addr_hi)
65 			n = n->rb_right;
66 		else
67 			return piar->edev;
68 	}
69 
70 	return NULL;
71 }
72 
73 /**
74  * eeh_addr_cache_get_dev - Get device, given only address
75  * @addr: mmio (PIO) phys address or i/o port number
76  *
77  * Given an mmio phys address, or a port number, find a pci device
78  * that implements this address.  I/O port numbers are assumed to be offset
79  * from zero (that is, they do *not* have pci_io_addr added in).
80  * It is safe to call this function within an interrupt.
81  */
eeh_addr_cache_get_dev(unsigned long addr)82 struct eeh_dev *eeh_addr_cache_get_dev(unsigned long addr)
83 {
84 	struct eeh_dev *edev;
85 	unsigned long flags;
86 
87 	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
88 	edev = __eeh_addr_cache_get_device(addr);
89 	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
90 	return edev;
91 }
92 
93 #ifdef DEBUG
94 /*
95  * Handy-dandy debug print routine, does nothing more
96  * than print out the contents of our addr cache.
97  */
eeh_addr_cache_print(struct pci_io_addr_cache * cache)98 static void eeh_addr_cache_print(struct pci_io_addr_cache *cache)
99 {
100 	struct rb_node *n;
101 	int cnt = 0;
102 
103 	n = rb_first(&cache->rb_root);
104 	while (n) {
105 		struct pci_io_addr_range *piar;
106 		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
107 		pr_info("PCI: %s addr range %d [%pap-%pap]: %s\n",
108 		       (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
109 		       &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev));
110 		cnt++;
111 		n = rb_next(n);
112 	}
113 }
114 #endif
115 
116 /* Insert address range into the rb tree. */
117 static struct pci_io_addr_range *
eeh_addr_cache_insert(struct pci_dev * dev,resource_size_t alo,resource_size_t ahi,unsigned long flags)118 eeh_addr_cache_insert(struct pci_dev *dev, resource_size_t alo,
119 		      resource_size_t ahi, unsigned long flags)
120 {
121 	struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
122 	struct rb_node *parent = NULL;
123 	struct pci_io_addr_range *piar;
124 
125 	/* Walk tree, find a place to insert into tree */
126 	while (*p) {
127 		parent = *p;
128 		piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
129 		if (ahi < piar->addr_lo) {
130 			p = &parent->rb_left;
131 		} else if (alo > piar->addr_hi) {
132 			p = &parent->rb_right;
133 		} else {
134 			if (dev != piar->pcidev ||
135 			    alo != piar->addr_lo || ahi != piar->addr_hi) {
136 				pr_warn("PIAR: overlapping address range\n");
137 			}
138 			return piar;
139 		}
140 	}
141 	piar = kzalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
142 	if (!piar)
143 		return NULL;
144 
145 	piar->addr_lo = alo;
146 	piar->addr_hi = ahi;
147 	piar->edev = pci_dev_to_eeh_dev(dev);
148 	piar->pcidev = dev;
149 	piar->flags = flags;
150 
151 	eeh_edev_dbg(piar->edev, "PIAR: insert range=[%pap:%pap]\n",
152 		 &alo, &ahi);
153 
154 	rb_link_node(&piar->rb_node, parent, p);
155 	rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
156 
157 	return piar;
158 }
159 
__eeh_addr_cache_insert_dev(struct pci_dev * dev)160 static void __eeh_addr_cache_insert_dev(struct pci_dev *dev)
161 {
162 	struct pci_dn *pdn;
163 	struct eeh_dev *edev;
164 	int i;
165 
166 	pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
167 	if (!pdn) {
168 		pr_warn("PCI: no pci dn found for dev=%s\n",
169 			pci_name(dev));
170 		return;
171 	}
172 
173 	edev = pdn_to_eeh_dev(pdn);
174 	if (!edev) {
175 		pr_warn("PCI: no EEH dev found for %s\n",
176 			pci_name(dev));
177 		return;
178 	}
179 
180 	/* Skip any devices for which EEH is not enabled. */
181 	if (!edev->pe) {
182 		dev_dbg(&dev->dev, "EEH: Skip building address cache\n");
183 		return;
184 	}
185 
186 	/*
187 	 * Walk resources on this device, poke the first 7 (6 normal BAR and 1
188 	 * ROM BAR) into the tree.
189 	 */
190 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
191 		resource_size_t start = pci_resource_start(dev,i);
192 		resource_size_t end = pci_resource_end(dev,i);
193 		unsigned long flags = pci_resource_flags(dev,i);
194 
195 		/* We are interested only bus addresses, not dma or other stuff */
196 		if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
197 			continue;
198 		if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
199 			 continue;
200 		eeh_addr_cache_insert(dev, start, end, flags);
201 	}
202 }
203 
204 /**
205  * eeh_addr_cache_insert_dev - Add a device to the address cache
206  * @dev: PCI device whose I/O addresses we are interested in.
207  *
208  * In order to support the fast lookup of devices based on addresses,
209  * we maintain a cache of devices that can be quickly searched.
210  * This routine adds a device to that cache.
211  */
eeh_addr_cache_insert_dev(struct pci_dev * dev)212 void eeh_addr_cache_insert_dev(struct pci_dev *dev)
213 {
214 	unsigned long flags;
215 
216 	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
217 	__eeh_addr_cache_insert_dev(dev);
218 	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
219 }
220 
__eeh_addr_cache_rmv_dev(struct pci_dev * dev)221 static inline void __eeh_addr_cache_rmv_dev(struct pci_dev *dev)
222 {
223 	struct rb_node *n;
224 
225 restart:
226 	n = rb_first(&pci_io_addr_cache_root.rb_root);
227 	while (n) {
228 		struct pci_io_addr_range *piar;
229 		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
230 
231 		if (piar->pcidev == dev) {
232 			eeh_edev_dbg(piar->edev, "PIAR: remove range=[%pap:%pap]\n",
233 				 &piar->addr_lo, &piar->addr_hi);
234 			rb_erase(n, &pci_io_addr_cache_root.rb_root);
235 			kfree(piar);
236 			goto restart;
237 		}
238 		n = rb_next(n);
239 	}
240 }
241 
242 /**
243  * eeh_addr_cache_rmv_dev - remove pci device from addr cache
244  * @dev: device to remove
245  *
246  * Remove a device from the addr-cache tree.
247  * This is potentially expensive, since it will walk
248  * the tree multiple times (once per resource).
249  * But so what; device removal doesn't need to be that fast.
250  */
eeh_addr_cache_rmv_dev(struct pci_dev * dev)251 void eeh_addr_cache_rmv_dev(struct pci_dev *dev)
252 {
253 	unsigned long flags;
254 
255 	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
256 	__eeh_addr_cache_rmv_dev(dev);
257 	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
258 }
259 
260 /**
261  * eeh_addr_cache_init - Initialize a cache of I/O addresses
262  *
263  * Initialize a cache of pci i/o addresses.  This cache will be used to
264  * find the pci device that corresponds to a given address.
265  */
eeh_addr_cache_init(void)266 void eeh_addr_cache_init(void)
267 {
268 	spin_lock_init(&pci_io_addr_cache_root.piar_lock);
269 }
270 
eeh_addr_cache_show(struct seq_file * s,void * v)271 static int eeh_addr_cache_show(struct seq_file *s, void *v)
272 {
273 	struct pci_io_addr_range *piar;
274 	struct rb_node *n;
275 
276 	spin_lock(&pci_io_addr_cache_root.piar_lock);
277 	for (n = rb_first(&pci_io_addr_cache_root.rb_root); n; n = rb_next(n)) {
278 		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
279 
280 		seq_printf(s, "%s addr range [%pap-%pap]: %s\n",
281 		       (piar->flags & IORESOURCE_IO) ? "i/o" : "mem",
282 		       &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev));
283 	}
284 	spin_unlock(&pci_io_addr_cache_root.piar_lock);
285 
286 	return 0;
287 }
288 DEFINE_SHOW_ATTRIBUTE(eeh_addr_cache);
289 
eeh_cache_debugfs_init(void)290 void eeh_cache_debugfs_init(void)
291 {
292 	debugfs_create_file_unsafe("eeh_address_cache", 0400,
293 			powerpc_debugfs_root, NULL,
294 			&eeh_addr_cache_fops);
295 }
296