1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * PCI address cache; allows the lookup of PCI devices based on I/O address
4 *
5 * Copyright IBM Corporation 2004
6 * Copyright Linas Vepstas <linas@austin.ibm.com> 2004
7 */
8
9 #include <linux/list.h>
10 #include <linux/pci.h>
11 #include <linux/rbtree.h>
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 #include <linux/atomic.h>
15 #include <asm/pci-bridge.h>
16 #include <asm/debugfs.h>
17 #include <asm/ppc-pci.h>
18
19
20 /**
21 * DOC: Overview
22 *
23 * The pci address cache subsystem. This subsystem places
24 * PCI device address resources into a red-black tree, sorted
25 * according to the address range, so that given only an i/o
26 * address, the corresponding PCI device can be **quickly**
27 * found. It is safe to perform an address lookup in an interrupt
28 * context; this ability is an important feature.
29 *
30 * Currently, the only customer of this code is the EEH subsystem;
31 * thus, this code has been somewhat tailored to suit EEH better.
32 * In particular, the cache does *not* hold the addresses of devices
33 * for which EEH is not enabled.
34 *
35 * (Implementation Note: The RB tree seems to be better/faster
36 * than any hash algo I could think of for this problem, even
37 * with the penalty of slow pointer chases for d-cache misses).
38 */
39
40 struct pci_io_addr_range {
41 struct rb_node rb_node;
42 resource_size_t addr_lo;
43 resource_size_t addr_hi;
44 struct eeh_dev *edev;
45 struct pci_dev *pcidev;
46 unsigned long flags;
47 };
48
49 static struct pci_io_addr_cache {
50 struct rb_root rb_root;
51 spinlock_t piar_lock;
52 } pci_io_addr_cache_root;
53
__eeh_addr_cache_get_device(unsigned long addr)54 static inline struct eeh_dev *__eeh_addr_cache_get_device(unsigned long addr)
55 {
56 struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
57
58 while (n) {
59 struct pci_io_addr_range *piar;
60 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
61
62 if (addr < piar->addr_lo)
63 n = n->rb_left;
64 else if (addr > piar->addr_hi)
65 n = n->rb_right;
66 else
67 return piar->edev;
68 }
69
70 return NULL;
71 }
72
73 /**
74 * eeh_addr_cache_get_dev - Get device, given only address
75 * @addr: mmio (PIO) phys address or i/o port number
76 *
77 * Given an mmio phys address, or a port number, find a pci device
78 * that implements this address. I/O port numbers are assumed to be offset
79 * from zero (that is, they do *not* have pci_io_addr added in).
80 * It is safe to call this function within an interrupt.
81 */
eeh_addr_cache_get_dev(unsigned long addr)82 struct eeh_dev *eeh_addr_cache_get_dev(unsigned long addr)
83 {
84 struct eeh_dev *edev;
85 unsigned long flags;
86
87 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
88 edev = __eeh_addr_cache_get_device(addr);
89 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
90 return edev;
91 }
92
93 #ifdef DEBUG
94 /*
95 * Handy-dandy debug print routine, does nothing more
96 * than print out the contents of our addr cache.
97 */
eeh_addr_cache_print(struct pci_io_addr_cache * cache)98 static void eeh_addr_cache_print(struct pci_io_addr_cache *cache)
99 {
100 struct rb_node *n;
101 int cnt = 0;
102
103 n = rb_first(&cache->rb_root);
104 while (n) {
105 struct pci_io_addr_range *piar;
106 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
107 pr_info("PCI: %s addr range %d [%pap-%pap]: %s\n",
108 (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
109 &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev));
110 cnt++;
111 n = rb_next(n);
112 }
113 }
114 #endif
115
116 /* Insert address range into the rb tree. */
117 static struct pci_io_addr_range *
eeh_addr_cache_insert(struct pci_dev * dev,resource_size_t alo,resource_size_t ahi,unsigned long flags)118 eeh_addr_cache_insert(struct pci_dev *dev, resource_size_t alo,
119 resource_size_t ahi, unsigned long flags)
120 {
121 struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
122 struct rb_node *parent = NULL;
123 struct pci_io_addr_range *piar;
124
125 /* Walk tree, find a place to insert into tree */
126 while (*p) {
127 parent = *p;
128 piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
129 if (ahi < piar->addr_lo) {
130 p = &parent->rb_left;
131 } else if (alo > piar->addr_hi) {
132 p = &parent->rb_right;
133 } else {
134 if (dev != piar->pcidev ||
135 alo != piar->addr_lo || ahi != piar->addr_hi) {
136 pr_warn("PIAR: overlapping address range\n");
137 }
138 return piar;
139 }
140 }
141 piar = kzalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
142 if (!piar)
143 return NULL;
144
145 piar->addr_lo = alo;
146 piar->addr_hi = ahi;
147 piar->edev = pci_dev_to_eeh_dev(dev);
148 piar->pcidev = dev;
149 piar->flags = flags;
150
151 eeh_edev_dbg(piar->edev, "PIAR: insert range=[%pap:%pap]\n",
152 &alo, &ahi);
153
154 rb_link_node(&piar->rb_node, parent, p);
155 rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
156
157 return piar;
158 }
159
__eeh_addr_cache_insert_dev(struct pci_dev * dev)160 static void __eeh_addr_cache_insert_dev(struct pci_dev *dev)
161 {
162 struct pci_dn *pdn;
163 struct eeh_dev *edev;
164 int i;
165
166 pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
167 if (!pdn) {
168 pr_warn("PCI: no pci dn found for dev=%s\n",
169 pci_name(dev));
170 return;
171 }
172
173 edev = pdn_to_eeh_dev(pdn);
174 if (!edev) {
175 pr_warn("PCI: no EEH dev found for %s\n",
176 pci_name(dev));
177 return;
178 }
179
180 /* Skip any devices for which EEH is not enabled. */
181 if (!edev->pe) {
182 dev_dbg(&dev->dev, "EEH: Skip building address cache\n");
183 return;
184 }
185
186 /*
187 * Walk resources on this device, poke the first 7 (6 normal BAR and 1
188 * ROM BAR) into the tree.
189 */
190 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
191 resource_size_t start = pci_resource_start(dev,i);
192 resource_size_t end = pci_resource_end(dev,i);
193 unsigned long flags = pci_resource_flags(dev,i);
194
195 /* We are interested only bus addresses, not dma or other stuff */
196 if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
197 continue;
198 if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
199 continue;
200 eeh_addr_cache_insert(dev, start, end, flags);
201 }
202 }
203
204 /**
205 * eeh_addr_cache_insert_dev - Add a device to the address cache
206 * @dev: PCI device whose I/O addresses we are interested in.
207 *
208 * In order to support the fast lookup of devices based on addresses,
209 * we maintain a cache of devices that can be quickly searched.
210 * This routine adds a device to that cache.
211 */
eeh_addr_cache_insert_dev(struct pci_dev * dev)212 void eeh_addr_cache_insert_dev(struct pci_dev *dev)
213 {
214 unsigned long flags;
215
216 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
217 __eeh_addr_cache_insert_dev(dev);
218 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
219 }
220
__eeh_addr_cache_rmv_dev(struct pci_dev * dev)221 static inline void __eeh_addr_cache_rmv_dev(struct pci_dev *dev)
222 {
223 struct rb_node *n;
224
225 restart:
226 n = rb_first(&pci_io_addr_cache_root.rb_root);
227 while (n) {
228 struct pci_io_addr_range *piar;
229 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
230
231 if (piar->pcidev == dev) {
232 eeh_edev_dbg(piar->edev, "PIAR: remove range=[%pap:%pap]\n",
233 &piar->addr_lo, &piar->addr_hi);
234 rb_erase(n, &pci_io_addr_cache_root.rb_root);
235 kfree(piar);
236 goto restart;
237 }
238 n = rb_next(n);
239 }
240 }
241
242 /**
243 * eeh_addr_cache_rmv_dev - remove pci device from addr cache
244 * @dev: device to remove
245 *
246 * Remove a device from the addr-cache tree.
247 * This is potentially expensive, since it will walk
248 * the tree multiple times (once per resource).
249 * But so what; device removal doesn't need to be that fast.
250 */
eeh_addr_cache_rmv_dev(struct pci_dev * dev)251 void eeh_addr_cache_rmv_dev(struct pci_dev *dev)
252 {
253 unsigned long flags;
254
255 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
256 __eeh_addr_cache_rmv_dev(dev);
257 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
258 }
259
260 /**
261 * eeh_addr_cache_init - Initialize a cache of I/O addresses
262 *
263 * Initialize a cache of pci i/o addresses. This cache will be used to
264 * find the pci device that corresponds to a given address.
265 */
eeh_addr_cache_init(void)266 void eeh_addr_cache_init(void)
267 {
268 spin_lock_init(&pci_io_addr_cache_root.piar_lock);
269 }
270
eeh_addr_cache_show(struct seq_file * s,void * v)271 static int eeh_addr_cache_show(struct seq_file *s, void *v)
272 {
273 struct pci_io_addr_range *piar;
274 struct rb_node *n;
275
276 spin_lock(&pci_io_addr_cache_root.piar_lock);
277 for (n = rb_first(&pci_io_addr_cache_root.rb_root); n; n = rb_next(n)) {
278 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
279
280 seq_printf(s, "%s addr range [%pap-%pap]: %s\n",
281 (piar->flags & IORESOURCE_IO) ? "i/o" : "mem",
282 &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev));
283 }
284 spin_unlock(&pci_io_addr_cache_root.piar_lock);
285
286 return 0;
287 }
288 DEFINE_SHOW_ATTRIBUTE(eeh_addr_cache);
289
eeh_cache_debugfs_init(void)290 void eeh_cache_debugfs_init(void)
291 {
292 debugfs_create_file_unsafe("eeh_address_cache", 0400,
293 powerpc_debugfs_root, NULL,
294 &eeh_addr_cache_fops);
295 }
296