1 /*
2 * PCI address cache; allows the lookup of PCI devices based on I/O address
3 *
4 * Copyright IBM Corporation 2004
5 * Copyright Linas Vepstas <linas@austin.ibm.com> 2004
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/rbtree.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/atomic.h>
28 #include <asm/pci-bridge.h>
29 #include <asm/ppc-pci.h>
30
31
32 /**
33 * The pci address cache subsystem. This subsystem places
34 * PCI device address resources into a red-black tree, sorted
35 * according to the address range, so that given only an i/o
36 * address, the corresponding PCI device can be **quickly**
37 * found. It is safe to perform an address lookup in an interrupt
38 * context; this ability is an important feature.
39 *
40 * Currently, the only customer of this code is the EEH subsystem;
41 * thus, this code has been somewhat tailored to suit EEH better.
42 * In particular, the cache does *not* hold the addresses of devices
43 * for which EEH is not enabled.
44 *
45 * (Implementation Note: The RB tree seems to be better/faster
46 * than any hash algo I could think of for this problem, even
47 * with the penalty of slow pointer chases for d-cache misses).
48 */
49 struct pci_io_addr_range {
50 struct rb_node rb_node;
51 resource_size_t addr_lo;
52 resource_size_t addr_hi;
53 struct eeh_dev *edev;
54 struct pci_dev *pcidev;
55 unsigned long flags;
56 };
57
58 static struct pci_io_addr_cache {
59 struct rb_root rb_root;
60 spinlock_t piar_lock;
61 } pci_io_addr_cache_root;
62
__eeh_addr_cache_get_device(unsigned long addr)63 static inline struct eeh_dev *__eeh_addr_cache_get_device(unsigned long addr)
64 {
65 struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
66
67 while (n) {
68 struct pci_io_addr_range *piar;
69 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
70
71 if (addr < piar->addr_lo)
72 n = n->rb_left;
73 else if (addr > piar->addr_hi)
74 n = n->rb_right;
75 else
76 return piar->edev;
77 }
78
79 return NULL;
80 }
81
82 /**
83 * eeh_addr_cache_get_dev - Get device, given only address
84 * @addr: mmio (PIO) phys address or i/o port number
85 *
86 * Given an mmio phys address, or a port number, find a pci device
87 * that implements this address. I/O port numbers are assumed to be offset
88 * from zero (that is, they do *not* have pci_io_addr added in).
89 * It is safe to call this function within an interrupt.
90 */
eeh_addr_cache_get_dev(unsigned long addr)91 struct eeh_dev *eeh_addr_cache_get_dev(unsigned long addr)
92 {
93 struct eeh_dev *edev;
94 unsigned long flags;
95
96 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
97 edev = __eeh_addr_cache_get_device(addr);
98 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
99 return edev;
100 }
101
102 #ifdef DEBUG
103 /*
104 * Handy-dandy debug print routine, does nothing more
105 * than print out the contents of our addr cache.
106 */
eeh_addr_cache_print(struct pci_io_addr_cache * cache)107 static void eeh_addr_cache_print(struct pci_io_addr_cache *cache)
108 {
109 struct rb_node *n;
110 int cnt = 0;
111
112 n = rb_first(&cache->rb_root);
113 while (n) {
114 struct pci_io_addr_range *piar;
115 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
116 pr_debug("PCI: %s addr range %d [%pap-%pap]: %s\n",
117 (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
118 &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev));
119 cnt++;
120 n = rb_next(n);
121 }
122 }
123 #endif
124
125 /* Insert address range into the rb tree. */
126 static struct pci_io_addr_range *
eeh_addr_cache_insert(struct pci_dev * dev,resource_size_t alo,resource_size_t ahi,unsigned long flags)127 eeh_addr_cache_insert(struct pci_dev *dev, resource_size_t alo,
128 resource_size_t ahi, unsigned long flags)
129 {
130 struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
131 struct rb_node *parent = NULL;
132 struct pci_io_addr_range *piar;
133
134 /* Walk tree, find a place to insert into tree */
135 while (*p) {
136 parent = *p;
137 piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
138 if (ahi < piar->addr_lo) {
139 p = &parent->rb_left;
140 } else if (alo > piar->addr_hi) {
141 p = &parent->rb_right;
142 } else {
143 if (dev != piar->pcidev ||
144 alo != piar->addr_lo || ahi != piar->addr_hi) {
145 pr_warn("PIAR: overlapping address range\n");
146 }
147 return piar;
148 }
149 }
150 piar = kzalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
151 if (!piar)
152 return NULL;
153
154 piar->addr_lo = alo;
155 piar->addr_hi = ahi;
156 piar->edev = pci_dev_to_eeh_dev(dev);
157 piar->pcidev = dev;
158 piar->flags = flags;
159
160 #ifdef DEBUG
161 pr_debug("PIAR: insert range=[%pap:%pap] dev=%s\n",
162 &alo, &ahi, pci_name(dev));
163 #endif
164
165 rb_link_node(&piar->rb_node, parent, p);
166 rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
167
168 return piar;
169 }
170
__eeh_addr_cache_insert_dev(struct pci_dev * dev)171 static void __eeh_addr_cache_insert_dev(struct pci_dev *dev)
172 {
173 struct pci_dn *pdn;
174 struct eeh_dev *edev;
175 int i;
176
177 pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
178 if (!pdn) {
179 pr_warn("PCI: no pci dn found for dev=%s\n",
180 pci_name(dev));
181 return;
182 }
183
184 edev = pdn_to_eeh_dev(pdn);
185 if (!edev) {
186 pr_warn("PCI: no EEH dev found for %s\n",
187 pci_name(dev));
188 return;
189 }
190
191 /* Skip any devices for which EEH is not enabled. */
192 if (!edev->pe) {
193 dev_dbg(&dev->dev, "EEH: Skip building address cache\n");
194 return;
195 }
196
197 /*
198 * Walk resources on this device, poke the first 7 (6 normal BAR and 1
199 * ROM BAR) into the tree.
200 */
201 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
202 resource_size_t start = pci_resource_start(dev,i);
203 resource_size_t end = pci_resource_end(dev,i);
204 unsigned long flags = pci_resource_flags(dev,i);
205
206 /* We are interested only bus addresses, not dma or other stuff */
207 if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
208 continue;
209 if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
210 continue;
211 eeh_addr_cache_insert(dev, start, end, flags);
212 }
213 }
214
215 /**
216 * eeh_addr_cache_insert_dev - Add a device to the address cache
217 * @dev: PCI device whose I/O addresses we are interested in.
218 *
219 * In order to support the fast lookup of devices based on addresses,
220 * we maintain a cache of devices that can be quickly searched.
221 * This routine adds a device to that cache.
222 */
eeh_addr_cache_insert_dev(struct pci_dev * dev)223 void eeh_addr_cache_insert_dev(struct pci_dev *dev)
224 {
225 unsigned long flags;
226
227 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
228 __eeh_addr_cache_insert_dev(dev);
229 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
230 }
231
__eeh_addr_cache_rmv_dev(struct pci_dev * dev)232 static inline void __eeh_addr_cache_rmv_dev(struct pci_dev *dev)
233 {
234 struct rb_node *n;
235
236 restart:
237 n = rb_first(&pci_io_addr_cache_root.rb_root);
238 while (n) {
239 struct pci_io_addr_range *piar;
240 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
241
242 if (piar->pcidev == dev) {
243 rb_erase(n, &pci_io_addr_cache_root.rb_root);
244 kfree(piar);
245 goto restart;
246 }
247 n = rb_next(n);
248 }
249 }
250
251 /**
252 * eeh_addr_cache_rmv_dev - remove pci device from addr cache
253 * @dev: device to remove
254 *
255 * Remove a device from the addr-cache tree.
256 * This is potentially expensive, since it will walk
257 * the tree multiple times (once per resource).
258 * But so what; device removal doesn't need to be that fast.
259 */
eeh_addr_cache_rmv_dev(struct pci_dev * dev)260 void eeh_addr_cache_rmv_dev(struct pci_dev *dev)
261 {
262 unsigned long flags;
263
264 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
265 __eeh_addr_cache_rmv_dev(dev);
266 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
267 }
268
269 /**
270 * eeh_addr_cache_build - Build a cache of I/O addresses
271 *
272 * Build a cache of pci i/o addresses. This cache will be used to
273 * find the pci device that corresponds to a given address.
274 * This routine scans all pci busses to build the cache.
275 * Must be run late in boot process, after the pci controllers
276 * have been scanned for devices (after all device resources are known).
277 */
eeh_addr_cache_build(void)278 void eeh_addr_cache_build(void)
279 {
280 struct pci_dn *pdn;
281 struct eeh_dev *edev;
282 struct pci_dev *dev = NULL;
283
284 spin_lock_init(&pci_io_addr_cache_root.piar_lock);
285
286 for_each_pci_dev(dev) {
287 pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
288 if (!pdn)
289 continue;
290
291 edev = pdn_to_eeh_dev(pdn);
292 if (!edev)
293 continue;
294
295 dev->dev.archdata.edev = edev;
296 edev->pdev = dev;
297
298 eeh_addr_cache_insert_dev(dev);
299 eeh_sysfs_add_device(dev);
300 }
301
302 #ifdef DEBUG
303 /* Verify tree built up above, echo back the list of addrs. */
304 eeh_addr_cache_print(&pci_io_addr_cache_root);
305 #endif
306 }
307