1 /*
2 * edac_mc kernel module
3 * (C) 2005-2007 Linux Networx (http://lnxi.com)
4 *
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
7 *
8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9 *
10 * (c) 2012-2013 - Mauro Carvalho Chehab
11 * The entire API were re-written, and ported to use struct device
12 *
13 */
14
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21
22 #include "edac_mc.h"
23 #include "edac_module.h"
24
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30
31 /* Getter functions for above */
edac_mc_get_log_ue(void)32 int edac_mc_get_log_ue(void)
33 {
34 return edac_mc_log_ue;
35 }
36
edac_mc_get_log_ce(void)37 int edac_mc_get_log_ce(void)
38 {
39 return edac_mc_log_ce;
40 }
41
edac_mc_get_panic_on_ue(void)42 int edac_mc_get_panic_on_ue(void)
43 {
44 return edac_mc_panic_on_ue;
45 }
46
47 /* this is temporary */
edac_mc_get_poll_msec(void)48 int edac_mc_get_poll_msec(void)
49 {
50 return edac_mc_poll_msec;
51 }
52
edac_set_poll_msec(const char * val,const struct kernel_param * kp)53 static int edac_set_poll_msec(const char *val, const struct kernel_param *kp)
54 {
55 unsigned long l;
56 int ret;
57
58 if (!val)
59 return -EINVAL;
60
61 ret = kstrtoul(val, 0, &l);
62 if (ret)
63 return ret;
64
65 if (l < 1000)
66 return -EINVAL;
67
68 *((unsigned long *)kp->arg) = l;
69
70 /* notify edac_mc engine to reset the poll period */
71 edac_mc_reset_delay_period(l);
72
73 return 0;
74 }
75
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81 "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84 "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
86 &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88
89 static struct device *mci_pdev;
90
91 /*
92 * various constants for Memory Controllers
93 */
94 static const char * const dev_types[] = {
95 [DEV_UNKNOWN] = "Unknown",
96 [DEV_X1] = "x1",
97 [DEV_X2] = "x2",
98 [DEV_X4] = "x4",
99 [DEV_X8] = "x8",
100 [DEV_X16] = "x16",
101 [DEV_X32] = "x32",
102 [DEV_X64] = "x64"
103 };
104
105 static const char * const edac_caps[] = {
106 [EDAC_UNKNOWN] = "Unknown",
107 [EDAC_NONE] = "None",
108 [EDAC_RESERVED] = "Reserved",
109 [EDAC_PARITY] = "PARITY",
110 [EDAC_EC] = "EC",
111 [EDAC_SECDED] = "SECDED",
112 [EDAC_S2ECD2ED] = "S2ECD2ED",
113 [EDAC_S4ECD4ED] = "S4ECD4ED",
114 [EDAC_S8ECD8ED] = "S8ECD8ED",
115 [EDAC_S16ECD16ED] = "S16ECD16ED"
116 };
117
118 #ifdef CONFIG_EDAC_LEGACY_SYSFS
119 /*
120 * EDAC sysfs CSROW data structures and methods
121 */
122
123 #define to_csrow(k) container_of(k, struct csrow_info, dev)
124
125 /*
126 * We need it to avoid namespace conflicts between the legacy API
127 * and the per-dimm/per-rank one
128 */
129 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
130 static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
131
132 struct dev_ch_attribute {
133 struct device_attribute attr;
134 int channel;
135 };
136
137 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
138 static struct dev_ch_attribute dev_attr_legacy_##_name = \
139 { __ATTR(_name, _mode, _show, _store), (_var) }
140
141 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
142
143 /* Set of more default csrow<id> attribute show/store functions */
csrow_ue_count_show(struct device * dev,struct device_attribute * mattr,char * data)144 static ssize_t csrow_ue_count_show(struct device *dev,
145 struct device_attribute *mattr, char *data)
146 {
147 struct csrow_info *csrow = to_csrow(dev);
148
149 return sprintf(data, "%u\n", csrow->ue_count);
150 }
151
csrow_ce_count_show(struct device * dev,struct device_attribute * mattr,char * data)152 static ssize_t csrow_ce_count_show(struct device *dev,
153 struct device_attribute *mattr, char *data)
154 {
155 struct csrow_info *csrow = to_csrow(dev);
156
157 return sprintf(data, "%u\n", csrow->ce_count);
158 }
159
csrow_size_show(struct device * dev,struct device_attribute * mattr,char * data)160 static ssize_t csrow_size_show(struct device *dev,
161 struct device_attribute *mattr, char *data)
162 {
163 struct csrow_info *csrow = to_csrow(dev);
164 int i;
165 u32 nr_pages = 0;
166
167 for (i = 0; i < csrow->nr_channels; i++)
168 nr_pages += csrow->channels[i]->dimm->nr_pages;
169 return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
170 }
171
csrow_mem_type_show(struct device * dev,struct device_attribute * mattr,char * data)172 static ssize_t csrow_mem_type_show(struct device *dev,
173 struct device_attribute *mattr, char *data)
174 {
175 struct csrow_info *csrow = to_csrow(dev);
176
177 return sprintf(data, "%s\n", edac_mem_types[csrow->channels[0]->dimm->mtype]);
178 }
179
csrow_dev_type_show(struct device * dev,struct device_attribute * mattr,char * data)180 static ssize_t csrow_dev_type_show(struct device *dev,
181 struct device_attribute *mattr, char *data)
182 {
183 struct csrow_info *csrow = to_csrow(dev);
184
185 return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
186 }
187
csrow_edac_mode_show(struct device * dev,struct device_attribute * mattr,char * data)188 static ssize_t csrow_edac_mode_show(struct device *dev,
189 struct device_attribute *mattr,
190 char *data)
191 {
192 struct csrow_info *csrow = to_csrow(dev);
193
194 return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
195 }
196
197 /* show/store functions for DIMM Label attributes */
channel_dimm_label_show(struct device * dev,struct device_attribute * mattr,char * data)198 static ssize_t channel_dimm_label_show(struct device *dev,
199 struct device_attribute *mattr,
200 char *data)
201 {
202 struct csrow_info *csrow = to_csrow(dev);
203 unsigned chan = to_channel(mattr);
204 struct rank_info *rank = csrow->channels[chan];
205
206 /* if field has not been initialized, there is nothing to send */
207 if (!rank->dimm->label[0])
208 return 0;
209
210 return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n",
211 rank->dimm->label);
212 }
213
channel_dimm_label_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)214 static ssize_t channel_dimm_label_store(struct device *dev,
215 struct device_attribute *mattr,
216 const char *data, size_t count)
217 {
218 struct csrow_info *csrow = to_csrow(dev);
219 unsigned chan = to_channel(mattr);
220 struct rank_info *rank = csrow->channels[chan];
221 size_t copy_count = count;
222
223 if (count == 0)
224 return -EINVAL;
225
226 if (data[count - 1] == '\0' || data[count - 1] == '\n')
227 copy_count -= 1;
228
229 if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label))
230 return -EINVAL;
231
232 strncpy(rank->dimm->label, data, copy_count);
233 rank->dimm->label[copy_count] = '\0';
234
235 return count;
236 }
237
238 /* show function for dynamic chX_ce_count attribute */
channel_ce_count_show(struct device * dev,struct device_attribute * mattr,char * data)239 static ssize_t channel_ce_count_show(struct device *dev,
240 struct device_attribute *mattr, char *data)
241 {
242 struct csrow_info *csrow = to_csrow(dev);
243 unsigned chan = to_channel(mattr);
244 struct rank_info *rank = csrow->channels[chan];
245
246 return sprintf(data, "%u\n", rank->ce_count);
247 }
248
249 /* cwrow<id>/attribute files */
250 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
251 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
252 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
253 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
254 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
255 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
256
257 /* default attributes of the CSROW<id> object */
258 static struct attribute *csrow_attrs[] = {
259 &dev_attr_legacy_dev_type.attr,
260 &dev_attr_legacy_mem_type.attr,
261 &dev_attr_legacy_edac_mode.attr,
262 &dev_attr_legacy_size_mb.attr,
263 &dev_attr_legacy_ue_count.attr,
264 &dev_attr_legacy_ce_count.attr,
265 NULL,
266 };
267
268 static const struct attribute_group csrow_attr_grp = {
269 .attrs = csrow_attrs,
270 };
271
272 static const struct attribute_group *csrow_attr_groups[] = {
273 &csrow_attr_grp,
274 NULL
275 };
276
csrow_attr_release(struct device * dev)277 static void csrow_attr_release(struct device *dev)
278 {
279 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
280
281 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
282 kfree(csrow);
283 }
284
285 static const struct device_type csrow_attr_type = {
286 .groups = csrow_attr_groups,
287 .release = csrow_attr_release,
288 };
289
290 /*
291 * possible dynamic channel DIMM Label attribute files
292 *
293 */
294 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
295 channel_dimm_label_show, channel_dimm_label_store, 0);
296 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
297 channel_dimm_label_show, channel_dimm_label_store, 1);
298 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
299 channel_dimm_label_show, channel_dimm_label_store, 2);
300 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
301 channel_dimm_label_show, channel_dimm_label_store, 3);
302 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
303 channel_dimm_label_show, channel_dimm_label_store, 4);
304 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
305 channel_dimm_label_show, channel_dimm_label_store, 5);
306 DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR,
307 channel_dimm_label_show, channel_dimm_label_store, 6);
308 DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR,
309 channel_dimm_label_show, channel_dimm_label_store, 7);
310
311 /* Total possible dynamic DIMM Label attribute file table */
312 static struct attribute *dynamic_csrow_dimm_attr[] = {
313 &dev_attr_legacy_ch0_dimm_label.attr.attr,
314 &dev_attr_legacy_ch1_dimm_label.attr.attr,
315 &dev_attr_legacy_ch2_dimm_label.attr.attr,
316 &dev_attr_legacy_ch3_dimm_label.attr.attr,
317 &dev_attr_legacy_ch4_dimm_label.attr.attr,
318 &dev_attr_legacy_ch5_dimm_label.attr.attr,
319 &dev_attr_legacy_ch6_dimm_label.attr.attr,
320 &dev_attr_legacy_ch7_dimm_label.attr.attr,
321 NULL
322 };
323
324 /* possible dynamic channel ce_count attribute files */
325 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
326 channel_ce_count_show, NULL, 0);
327 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
328 channel_ce_count_show, NULL, 1);
329 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
330 channel_ce_count_show, NULL, 2);
331 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
332 channel_ce_count_show, NULL, 3);
333 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
334 channel_ce_count_show, NULL, 4);
335 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
336 channel_ce_count_show, NULL, 5);
337 DEVICE_CHANNEL(ch6_ce_count, S_IRUGO,
338 channel_ce_count_show, NULL, 6);
339 DEVICE_CHANNEL(ch7_ce_count, S_IRUGO,
340 channel_ce_count_show, NULL, 7);
341
342 /* Total possible dynamic ce_count attribute file table */
343 static struct attribute *dynamic_csrow_ce_count_attr[] = {
344 &dev_attr_legacy_ch0_ce_count.attr.attr,
345 &dev_attr_legacy_ch1_ce_count.attr.attr,
346 &dev_attr_legacy_ch2_ce_count.attr.attr,
347 &dev_attr_legacy_ch3_ce_count.attr.attr,
348 &dev_attr_legacy_ch4_ce_count.attr.attr,
349 &dev_attr_legacy_ch5_ce_count.attr.attr,
350 &dev_attr_legacy_ch6_ce_count.attr.attr,
351 &dev_attr_legacy_ch7_ce_count.attr.attr,
352 NULL
353 };
354
csrow_dev_is_visible(struct kobject * kobj,struct attribute * attr,int idx)355 static umode_t csrow_dev_is_visible(struct kobject *kobj,
356 struct attribute *attr, int idx)
357 {
358 struct device *dev = kobj_to_dev(kobj);
359 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
360
361 if (idx >= csrow->nr_channels)
362 return 0;
363
364 if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) {
365 WARN_ONCE(1, "idx: %d\n", idx);
366 return 0;
367 }
368
369 /* Only expose populated DIMMs */
370 if (!csrow->channels[idx]->dimm->nr_pages)
371 return 0;
372
373 return attr->mode;
374 }
375
376
377 static const struct attribute_group csrow_dev_dimm_group = {
378 .attrs = dynamic_csrow_dimm_attr,
379 .is_visible = csrow_dev_is_visible,
380 };
381
382 static const struct attribute_group csrow_dev_ce_count_group = {
383 .attrs = dynamic_csrow_ce_count_attr,
384 .is_visible = csrow_dev_is_visible,
385 };
386
387 static const struct attribute_group *csrow_dev_groups[] = {
388 &csrow_dev_dimm_group,
389 &csrow_dev_ce_count_group,
390 NULL
391 };
392
nr_pages_per_csrow(struct csrow_info * csrow)393 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
394 {
395 int chan, nr_pages = 0;
396
397 for (chan = 0; chan < csrow->nr_channels; chan++)
398 nr_pages += csrow->channels[chan]->dimm->nr_pages;
399
400 return nr_pages;
401 }
402
403 /* Create a CSROW object under specifed edac_mc_device */
edac_create_csrow_object(struct mem_ctl_info * mci,struct csrow_info * csrow,int index)404 static int edac_create_csrow_object(struct mem_ctl_info *mci,
405 struct csrow_info *csrow, int index)
406 {
407 csrow->dev.type = &csrow_attr_type;
408 csrow->dev.bus = mci->bus;
409 csrow->dev.groups = csrow_dev_groups;
410 device_initialize(&csrow->dev);
411 csrow->dev.parent = &mci->dev;
412 csrow->mci = mci;
413 dev_set_name(&csrow->dev, "csrow%d", index);
414 dev_set_drvdata(&csrow->dev, csrow);
415
416 edac_dbg(0, "creating (virtual) csrow node %s\n",
417 dev_name(&csrow->dev));
418
419 return device_add(&csrow->dev);
420 }
421
422 /* Create a CSROW object under specifed edac_mc_device */
edac_create_csrow_objects(struct mem_ctl_info * mci)423 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
424 {
425 int err, i;
426 struct csrow_info *csrow;
427
428 for (i = 0; i < mci->nr_csrows; i++) {
429 csrow = mci->csrows[i];
430 if (!nr_pages_per_csrow(csrow))
431 continue;
432 err = edac_create_csrow_object(mci, mci->csrows[i], i);
433 if (err < 0) {
434 edac_dbg(1,
435 "failure: create csrow objects for csrow %d\n",
436 i);
437 goto error;
438 }
439 }
440 return 0;
441
442 error:
443 for (--i; i >= 0; i--) {
444 csrow = mci->csrows[i];
445 if (!nr_pages_per_csrow(csrow))
446 continue;
447 put_device(&mci->csrows[i]->dev);
448 }
449
450 return err;
451 }
452
edac_delete_csrow_objects(struct mem_ctl_info * mci)453 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
454 {
455 int i;
456 struct csrow_info *csrow;
457
458 for (i = mci->nr_csrows - 1; i >= 0; i--) {
459 csrow = mci->csrows[i];
460 if (!nr_pages_per_csrow(csrow))
461 continue;
462 device_unregister(&mci->csrows[i]->dev);
463 }
464 }
465 #endif
466
467 /*
468 * Per-dimm (or per-rank) devices
469 */
470
471 #define to_dimm(k) container_of(k, struct dimm_info, dev)
472
473 /* show/store functions for DIMM Label attributes */
dimmdev_location_show(struct device * dev,struct device_attribute * mattr,char * data)474 static ssize_t dimmdev_location_show(struct device *dev,
475 struct device_attribute *mattr, char *data)
476 {
477 struct dimm_info *dimm = to_dimm(dev);
478
479 return edac_dimm_info_location(dimm, data, PAGE_SIZE);
480 }
481
dimmdev_label_show(struct device * dev,struct device_attribute * mattr,char * data)482 static ssize_t dimmdev_label_show(struct device *dev,
483 struct device_attribute *mattr, char *data)
484 {
485 struct dimm_info *dimm = to_dimm(dev);
486
487 /* if field has not been initialized, there is nothing to send */
488 if (!dimm->label[0])
489 return 0;
490
491 return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label);
492 }
493
dimmdev_label_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)494 static ssize_t dimmdev_label_store(struct device *dev,
495 struct device_attribute *mattr,
496 const char *data,
497 size_t count)
498 {
499 struct dimm_info *dimm = to_dimm(dev);
500 size_t copy_count = count;
501
502 if (count == 0)
503 return -EINVAL;
504
505 if (data[count - 1] == '\0' || data[count - 1] == '\n')
506 copy_count -= 1;
507
508 if (copy_count == 0 || copy_count >= sizeof(dimm->label))
509 return -EINVAL;
510
511 strncpy(dimm->label, data, copy_count);
512 dimm->label[copy_count] = '\0';
513
514 return count;
515 }
516
dimmdev_size_show(struct device * dev,struct device_attribute * mattr,char * data)517 static ssize_t dimmdev_size_show(struct device *dev,
518 struct device_attribute *mattr, char *data)
519 {
520 struct dimm_info *dimm = to_dimm(dev);
521
522 return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
523 }
524
dimmdev_mem_type_show(struct device * dev,struct device_attribute * mattr,char * data)525 static ssize_t dimmdev_mem_type_show(struct device *dev,
526 struct device_attribute *mattr, char *data)
527 {
528 struct dimm_info *dimm = to_dimm(dev);
529
530 return sprintf(data, "%s\n", edac_mem_types[dimm->mtype]);
531 }
532
dimmdev_dev_type_show(struct device * dev,struct device_attribute * mattr,char * data)533 static ssize_t dimmdev_dev_type_show(struct device *dev,
534 struct device_attribute *mattr, char *data)
535 {
536 struct dimm_info *dimm = to_dimm(dev);
537
538 return sprintf(data, "%s\n", dev_types[dimm->dtype]);
539 }
540
dimmdev_edac_mode_show(struct device * dev,struct device_attribute * mattr,char * data)541 static ssize_t dimmdev_edac_mode_show(struct device *dev,
542 struct device_attribute *mattr,
543 char *data)
544 {
545 struct dimm_info *dimm = to_dimm(dev);
546
547 return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
548 }
549
dimmdev_ce_count_show(struct device * dev,struct device_attribute * mattr,char * data)550 static ssize_t dimmdev_ce_count_show(struct device *dev,
551 struct device_attribute *mattr,
552 char *data)
553 {
554 struct dimm_info *dimm = to_dimm(dev);
555 u32 count;
556 int off;
557
558 off = EDAC_DIMM_OFF(dimm->mci->layers,
559 dimm->mci->n_layers,
560 dimm->location[0],
561 dimm->location[1],
562 dimm->location[2]);
563 count = dimm->mci->ce_per_layer[dimm->mci->n_layers-1][off];
564 return sprintf(data, "%u\n", count);
565 }
566
dimmdev_ue_count_show(struct device * dev,struct device_attribute * mattr,char * data)567 static ssize_t dimmdev_ue_count_show(struct device *dev,
568 struct device_attribute *mattr,
569 char *data)
570 {
571 struct dimm_info *dimm = to_dimm(dev);
572 u32 count;
573 int off;
574
575 off = EDAC_DIMM_OFF(dimm->mci->layers,
576 dimm->mci->n_layers,
577 dimm->location[0],
578 dimm->location[1],
579 dimm->location[2]);
580 count = dimm->mci->ue_per_layer[dimm->mci->n_layers-1][off];
581 return sprintf(data, "%u\n", count);
582 }
583
584 /* dimm/rank attribute files */
585 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
586 dimmdev_label_show, dimmdev_label_store);
587 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
588 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
589 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
590 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
591 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
592 static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL);
593 static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL);
594
595 /* attributes of the dimm<id>/rank<id> object */
596 static struct attribute *dimm_attrs[] = {
597 &dev_attr_dimm_label.attr,
598 &dev_attr_dimm_location.attr,
599 &dev_attr_size.attr,
600 &dev_attr_dimm_mem_type.attr,
601 &dev_attr_dimm_dev_type.attr,
602 &dev_attr_dimm_edac_mode.attr,
603 &dev_attr_dimm_ce_count.attr,
604 &dev_attr_dimm_ue_count.attr,
605 NULL,
606 };
607
608 static const struct attribute_group dimm_attr_grp = {
609 .attrs = dimm_attrs,
610 };
611
612 static const struct attribute_group *dimm_attr_groups[] = {
613 &dimm_attr_grp,
614 NULL
615 };
616
dimm_attr_release(struct device * dev)617 static void dimm_attr_release(struct device *dev)
618 {
619 struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
620
621 edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
622 kfree(dimm);
623 }
624
625 static const struct device_type dimm_attr_type = {
626 .groups = dimm_attr_groups,
627 .release = dimm_attr_release,
628 };
629
630 /* Create a DIMM object under specifed memory controller device */
edac_create_dimm_object(struct mem_ctl_info * mci,struct dimm_info * dimm,int index)631 static int edac_create_dimm_object(struct mem_ctl_info *mci,
632 struct dimm_info *dimm,
633 int index)
634 {
635 int err;
636 dimm->mci = mci;
637
638 dimm->dev.type = &dimm_attr_type;
639 dimm->dev.bus = mci->bus;
640 device_initialize(&dimm->dev);
641
642 dimm->dev.parent = &mci->dev;
643 if (mci->csbased)
644 dev_set_name(&dimm->dev, "rank%d", index);
645 else
646 dev_set_name(&dimm->dev, "dimm%d", index);
647 dev_set_drvdata(&dimm->dev, dimm);
648 pm_runtime_forbid(&mci->dev);
649
650 err = device_add(&dimm->dev);
651
652 edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
653
654 return err;
655 }
656
657 /*
658 * Memory controller device
659 */
660
661 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
662
mci_reset_counters_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)663 static ssize_t mci_reset_counters_store(struct device *dev,
664 struct device_attribute *mattr,
665 const char *data, size_t count)
666 {
667 struct mem_ctl_info *mci = to_mci(dev);
668 int cnt, row, chan, i;
669 mci->ue_mc = 0;
670 mci->ce_mc = 0;
671 mci->ue_noinfo_count = 0;
672 mci->ce_noinfo_count = 0;
673
674 for (row = 0; row < mci->nr_csrows; row++) {
675 struct csrow_info *ri = mci->csrows[row];
676
677 ri->ue_count = 0;
678 ri->ce_count = 0;
679
680 for (chan = 0; chan < ri->nr_channels; chan++)
681 ri->channels[chan]->ce_count = 0;
682 }
683
684 cnt = 1;
685 for (i = 0; i < mci->n_layers; i++) {
686 cnt *= mci->layers[i].size;
687 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
688 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
689 }
690
691 mci->start_time = jiffies;
692 return count;
693 }
694
695 /* Memory scrubbing interface:
696 *
697 * A MC driver can limit the scrubbing bandwidth based on the CPU type.
698 * Therefore, ->set_sdram_scrub_rate should be made to return the actual
699 * bandwidth that is accepted or 0 when scrubbing is to be disabled.
700 *
701 * Negative value still means that an error has occurred while setting
702 * the scrub rate.
703 */
mci_sdram_scrub_rate_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)704 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
705 struct device_attribute *mattr,
706 const char *data, size_t count)
707 {
708 struct mem_ctl_info *mci = to_mci(dev);
709 unsigned long bandwidth = 0;
710 int new_bw = 0;
711
712 if (kstrtoul(data, 10, &bandwidth) < 0)
713 return -EINVAL;
714
715 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
716 if (new_bw < 0) {
717 edac_printk(KERN_WARNING, EDAC_MC,
718 "Error setting scrub rate to: %lu\n", bandwidth);
719 return -EINVAL;
720 }
721
722 return count;
723 }
724
725 /*
726 * ->get_sdram_scrub_rate() return value semantics same as above.
727 */
mci_sdram_scrub_rate_show(struct device * dev,struct device_attribute * mattr,char * data)728 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
729 struct device_attribute *mattr,
730 char *data)
731 {
732 struct mem_ctl_info *mci = to_mci(dev);
733 int bandwidth = 0;
734
735 bandwidth = mci->get_sdram_scrub_rate(mci);
736 if (bandwidth < 0) {
737 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
738 return bandwidth;
739 }
740
741 return sprintf(data, "%d\n", bandwidth);
742 }
743
744 /* default attribute files for the MCI object */
mci_ue_count_show(struct device * dev,struct device_attribute * mattr,char * data)745 static ssize_t mci_ue_count_show(struct device *dev,
746 struct device_attribute *mattr,
747 char *data)
748 {
749 struct mem_ctl_info *mci = to_mci(dev);
750
751 return sprintf(data, "%d\n", mci->ue_mc);
752 }
753
mci_ce_count_show(struct device * dev,struct device_attribute * mattr,char * data)754 static ssize_t mci_ce_count_show(struct device *dev,
755 struct device_attribute *mattr,
756 char *data)
757 {
758 struct mem_ctl_info *mci = to_mci(dev);
759
760 return sprintf(data, "%d\n", mci->ce_mc);
761 }
762
mci_ce_noinfo_show(struct device * dev,struct device_attribute * mattr,char * data)763 static ssize_t mci_ce_noinfo_show(struct device *dev,
764 struct device_attribute *mattr,
765 char *data)
766 {
767 struct mem_ctl_info *mci = to_mci(dev);
768
769 return sprintf(data, "%d\n", mci->ce_noinfo_count);
770 }
771
mci_ue_noinfo_show(struct device * dev,struct device_attribute * mattr,char * data)772 static ssize_t mci_ue_noinfo_show(struct device *dev,
773 struct device_attribute *mattr,
774 char *data)
775 {
776 struct mem_ctl_info *mci = to_mci(dev);
777
778 return sprintf(data, "%d\n", mci->ue_noinfo_count);
779 }
780
mci_seconds_show(struct device * dev,struct device_attribute * mattr,char * data)781 static ssize_t mci_seconds_show(struct device *dev,
782 struct device_attribute *mattr,
783 char *data)
784 {
785 struct mem_ctl_info *mci = to_mci(dev);
786
787 return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
788 }
789
mci_ctl_name_show(struct device * dev,struct device_attribute * mattr,char * data)790 static ssize_t mci_ctl_name_show(struct device *dev,
791 struct device_attribute *mattr,
792 char *data)
793 {
794 struct mem_ctl_info *mci = to_mci(dev);
795
796 return sprintf(data, "%s\n", mci->ctl_name);
797 }
798
mci_size_mb_show(struct device * dev,struct device_attribute * mattr,char * data)799 static ssize_t mci_size_mb_show(struct device *dev,
800 struct device_attribute *mattr,
801 char *data)
802 {
803 struct mem_ctl_info *mci = to_mci(dev);
804 int total_pages = 0, csrow_idx, j;
805
806 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
807 struct csrow_info *csrow = mci->csrows[csrow_idx];
808
809 for (j = 0; j < csrow->nr_channels; j++) {
810 struct dimm_info *dimm = csrow->channels[j]->dimm;
811
812 total_pages += dimm->nr_pages;
813 }
814 }
815
816 return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
817 }
818
mci_max_location_show(struct device * dev,struct device_attribute * mattr,char * data)819 static ssize_t mci_max_location_show(struct device *dev,
820 struct device_attribute *mattr,
821 char *data)
822 {
823 struct mem_ctl_info *mci = to_mci(dev);
824 int i;
825 char *p = data;
826
827 for (i = 0; i < mci->n_layers; i++) {
828 p += sprintf(p, "%s %d ",
829 edac_layer_name[mci->layers[i].type],
830 mci->layers[i].size - 1);
831 }
832
833 return p - data;
834 }
835
836 /* default Control file */
837 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
838
839 /* default Attribute files */
840 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
841 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
842 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
843 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
844 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
845 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
846 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
847 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
848
849 /* memory scrubber attribute file */
850 static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
851 mci_sdram_scrub_rate_store); /* umode set later in is_visible */
852
853 static struct attribute *mci_attrs[] = {
854 &dev_attr_reset_counters.attr,
855 &dev_attr_mc_name.attr,
856 &dev_attr_size_mb.attr,
857 &dev_attr_seconds_since_reset.attr,
858 &dev_attr_ue_noinfo_count.attr,
859 &dev_attr_ce_noinfo_count.attr,
860 &dev_attr_ue_count.attr,
861 &dev_attr_ce_count.attr,
862 &dev_attr_max_location.attr,
863 &dev_attr_sdram_scrub_rate.attr,
864 NULL
865 };
866
mci_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)867 static umode_t mci_attr_is_visible(struct kobject *kobj,
868 struct attribute *attr, int idx)
869 {
870 struct device *dev = kobj_to_dev(kobj);
871 struct mem_ctl_info *mci = to_mci(dev);
872 umode_t mode = 0;
873
874 if (attr != &dev_attr_sdram_scrub_rate.attr)
875 return attr->mode;
876 if (mci->get_sdram_scrub_rate)
877 mode |= S_IRUGO;
878 if (mci->set_sdram_scrub_rate)
879 mode |= S_IWUSR;
880 return mode;
881 }
882
883 static const struct attribute_group mci_attr_grp = {
884 .attrs = mci_attrs,
885 .is_visible = mci_attr_is_visible,
886 };
887
888 static const struct attribute_group *mci_attr_groups[] = {
889 &mci_attr_grp,
890 NULL
891 };
892
mci_attr_release(struct device * dev)893 static void mci_attr_release(struct device *dev)
894 {
895 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
896
897 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
898 kfree(mci);
899 }
900
901 static const struct device_type mci_attr_type = {
902 .groups = mci_attr_groups,
903 .release = mci_attr_release,
904 };
905
906 /*
907 * Create a new Memory Controller kobject instance,
908 * mc<id> under the 'mc' directory
909 *
910 * Return:
911 * 0 Success
912 * !0 Failure
913 */
edac_create_sysfs_mci_device(struct mem_ctl_info * mci,const struct attribute_group ** groups)914 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
915 const struct attribute_group **groups)
916 {
917 char *name;
918 int i, err;
919
920 /*
921 * The memory controller needs its own bus, in order to avoid
922 * namespace conflicts at /sys/bus/edac.
923 */
924 name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
925 if (!name)
926 return -ENOMEM;
927
928 mci->bus->name = name;
929
930 edac_dbg(0, "creating bus %s\n", mci->bus->name);
931
932 err = bus_register(mci->bus);
933 if (err < 0) {
934 kfree(name);
935 return err;
936 }
937
938 /* get the /sys/devices/system/edac subsys reference */
939 mci->dev.type = &mci_attr_type;
940 device_initialize(&mci->dev);
941
942 mci->dev.parent = mci_pdev;
943 mci->dev.bus = mci->bus;
944 mci->dev.groups = groups;
945 dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
946 dev_set_drvdata(&mci->dev, mci);
947 pm_runtime_forbid(&mci->dev);
948
949 edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
950 err = device_add(&mci->dev);
951 if (err < 0) {
952 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
953 goto fail_unregister_bus;
954 }
955
956 /*
957 * Create the dimm/rank devices
958 */
959 for (i = 0; i < mci->tot_dimms; i++) {
960 struct dimm_info *dimm = mci->dimms[i];
961 /* Only expose populated DIMMs */
962 if (!dimm->nr_pages)
963 continue;
964
965 #ifdef CONFIG_EDAC_DEBUG
966 edac_dbg(1, "creating dimm%d, located at ", i);
967 if (edac_debug_level >= 1) {
968 int lay;
969 for (lay = 0; lay < mci->n_layers; lay++)
970 printk(KERN_CONT "%s %d ",
971 edac_layer_name[mci->layers[lay].type],
972 dimm->location[lay]);
973 printk(KERN_CONT "\n");
974 }
975 #endif
976 err = edac_create_dimm_object(mci, dimm, i);
977 if (err) {
978 edac_dbg(1, "failure: create dimm %d obj\n", i);
979 goto fail_unregister_dimm;
980 }
981 }
982
983 #ifdef CONFIG_EDAC_LEGACY_SYSFS
984 err = edac_create_csrow_objects(mci);
985 if (err < 0)
986 goto fail_unregister_dimm;
987 #endif
988
989 edac_create_debugfs_nodes(mci);
990 return 0;
991
992 fail_unregister_dimm:
993 for (i--; i >= 0; i--) {
994 struct dimm_info *dimm = mci->dimms[i];
995 if (!dimm->nr_pages)
996 continue;
997
998 device_unregister(&dimm->dev);
999 }
1000 device_unregister(&mci->dev);
1001 fail_unregister_bus:
1002 bus_unregister(mci->bus);
1003 kfree(name);
1004
1005 return err;
1006 }
1007
1008 /*
1009 * remove a Memory Controller instance
1010 */
edac_remove_sysfs_mci_device(struct mem_ctl_info * mci)1011 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1012 {
1013 int i;
1014
1015 edac_dbg(0, "\n");
1016
1017 #ifdef CONFIG_EDAC_DEBUG
1018 edac_debugfs_remove_recursive(mci->debugfs);
1019 #endif
1020 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1021 edac_delete_csrow_objects(mci);
1022 #endif
1023
1024 for (i = 0; i < mci->tot_dimms; i++) {
1025 struct dimm_info *dimm = mci->dimms[i];
1026 if (dimm->nr_pages == 0)
1027 continue;
1028 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1029 device_unregister(&dimm->dev);
1030 }
1031 }
1032
edac_unregister_sysfs(struct mem_ctl_info * mci)1033 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1034 {
1035 struct bus_type *bus = mci->bus;
1036 const char *name = mci->bus->name;
1037
1038 edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1039 device_unregister(&mci->dev);
1040 bus_unregister(bus);
1041 kfree(name);
1042 }
1043
mc_attr_release(struct device * dev)1044 static void mc_attr_release(struct device *dev)
1045 {
1046 /*
1047 * There's no container structure here, as this is just the mci
1048 * parent device, used to create the /sys/devices/mc sysfs node.
1049 * So, there are no attributes on it.
1050 */
1051 edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1052 kfree(dev);
1053 }
1054
1055 static const struct device_type mc_attr_type = {
1056 .release = mc_attr_release,
1057 };
1058 /*
1059 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1060 */
edac_mc_sysfs_init(void)1061 int __init edac_mc_sysfs_init(void)
1062 {
1063 int err;
1064
1065 mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1066 if (!mci_pdev) {
1067 err = -ENOMEM;
1068 goto out;
1069 }
1070
1071 mci_pdev->bus = edac_get_sysfs_subsys();
1072 mci_pdev->type = &mc_attr_type;
1073 device_initialize(mci_pdev);
1074 dev_set_name(mci_pdev, "mc");
1075
1076 err = device_add(mci_pdev);
1077 if (err < 0)
1078 goto out_put_device;
1079
1080 edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1081
1082 return 0;
1083
1084 out_put_device:
1085 put_device(mci_pdev);
1086 out:
1087 return err;
1088 }
1089
edac_mc_sysfs_exit(void)1090 void edac_mc_sysfs_exit(void)
1091 {
1092 device_unregister(mci_pdev);
1093 }
1094