1 // SPDX-License-Identifier: GPL-2.0-only
2 /**
3  * eCryptfs: Linux filesystem encryption layer
4  *
5  * Copyright (C) 2004-2008 International Business Machines Corp.
6  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
7  *		Tyler Hicks <code@tyhicks.com>
8  */
9 #include <linux/sched.h>
10 #include <linux/slab.h>
11 #include <linux/user_namespace.h>
12 #include <linux/nsproxy.h>
13 #include "ecryptfs_kernel.h"
14 
15 static LIST_HEAD(ecryptfs_msg_ctx_free_list);
16 static LIST_HEAD(ecryptfs_msg_ctx_alloc_list);
17 static struct mutex ecryptfs_msg_ctx_lists_mux;
18 
19 static struct hlist_head *ecryptfs_daemon_hash;
20 struct mutex ecryptfs_daemon_hash_mux;
21 static int ecryptfs_hash_bits;
22 #define ecryptfs_current_euid_hash(uid) \
23 	hash_long((unsigned long)from_kuid(&init_user_ns, current_euid()), ecryptfs_hash_bits)
24 
25 static u32 ecryptfs_msg_counter;
26 static struct ecryptfs_msg_ctx *ecryptfs_msg_ctx_arr;
27 
28 /**
29  * ecryptfs_acquire_free_msg_ctx
30  * @msg_ctx: The context that was acquired from the free list
31  *
32  * Acquires a context element from the free list and locks the mutex
33  * on the context.  Sets the msg_ctx task to current.  Returns zero on
34  * success; non-zero on error or upon failure to acquire a free
35  * context element.  Must be called with ecryptfs_msg_ctx_lists_mux
36  * held.
37  */
ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx ** msg_ctx)38 static int ecryptfs_acquire_free_msg_ctx(struct ecryptfs_msg_ctx **msg_ctx)
39 {
40 	struct list_head *p;
41 	int rc;
42 
43 	if (list_empty(&ecryptfs_msg_ctx_free_list)) {
44 		printk(KERN_WARNING "%s: The eCryptfs free "
45 		       "context list is empty.  It may be helpful to "
46 		       "specify the ecryptfs_message_buf_len "
47 		       "parameter to be greater than the current "
48 		       "value of [%d]\n", __func__, ecryptfs_message_buf_len);
49 		rc = -ENOMEM;
50 		goto out;
51 	}
52 	list_for_each(p, &ecryptfs_msg_ctx_free_list) {
53 		*msg_ctx = list_entry(p, struct ecryptfs_msg_ctx, node);
54 		if (mutex_trylock(&(*msg_ctx)->mux)) {
55 			(*msg_ctx)->task = current;
56 			rc = 0;
57 			goto out;
58 		}
59 	}
60 	rc = -ENOMEM;
61 out:
62 	return rc;
63 }
64 
65 /**
66  * ecryptfs_msg_ctx_free_to_alloc
67  * @msg_ctx: The context to move from the free list to the alloc list
68  *
69  * Must be called with ecryptfs_msg_ctx_lists_mux held.
70  */
ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx * msg_ctx)71 static void ecryptfs_msg_ctx_free_to_alloc(struct ecryptfs_msg_ctx *msg_ctx)
72 {
73 	list_move(&msg_ctx->node, &ecryptfs_msg_ctx_alloc_list);
74 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_PENDING;
75 	msg_ctx->counter = ++ecryptfs_msg_counter;
76 }
77 
78 /**
79  * ecryptfs_msg_ctx_alloc_to_free
80  * @msg_ctx: The context to move from the alloc list to the free list
81  *
82  * Must be called with ecryptfs_msg_ctx_lists_mux held.
83  */
ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx * msg_ctx)84 void ecryptfs_msg_ctx_alloc_to_free(struct ecryptfs_msg_ctx *msg_ctx)
85 {
86 	list_move(&(msg_ctx->node), &ecryptfs_msg_ctx_free_list);
87 	kfree(msg_ctx->msg);
88 	msg_ctx->msg = NULL;
89 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_FREE;
90 }
91 
92 /**
93  * ecryptfs_find_daemon_by_euid
94  * @daemon: If return value is zero, points to the desired daemon pointer
95  *
96  * Must be called with ecryptfs_daemon_hash_mux held.
97  *
98  * Search the hash list for the current effective user id.
99  *
100  * Returns zero if the user id exists in the list; non-zero otherwise.
101  */
ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon ** daemon)102 int ecryptfs_find_daemon_by_euid(struct ecryptfs_daemon **daemon)
103 {
104 	int rc;
105 
106 	hlist_for_each_entry(*daemon,
107 			    &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()],
108 			    euid_chain) {
109 		if (uid_eq((*daemon)->file->f_cred->euid, current_euid())) {
110 			rc = 0;
111 			goto out;
112 		}
113 	}
114 	rc = -EINVAL;
115 out:
116 	return rc;
117 }
118 
119 /**
120  * ecryptfs_spawn_daemon - Create and initialize a new daemon struct
121  * @daemon: Pointer to set to newly allocated daemon struct
122  * @file: File used when opening /dev/ecryptfs
123  *
124  * Must be called ceremoniously while in possession of
125  * ecryptfs_sacred_daemon_hash_mux
126  *
127  * Returns zero on success; non-zero otherwise
128  */
129 int
ecryptfs_spawn_daemon(struct ecryptfs_daemon ** daemon,struct file * file)130 ecryptfs_spawn_daemon(struct ecryptfs_daemon **daemon, struct file *file)
131 {
132 	int rc = 0;
133 
134 	(*daemon) = kzalloc(sizeof(**daemon), GFP_KERNEL);
135 	if (!(*daemon)) {
136 		rc = -ENOMEM;
137 		goto out;
138 	}
139 	(*daemon)->file = file;
140 	mutex_init(&(*daemon)->mux);
141 	INIT_LIST_HEAD(&(*daemon)->msg_ctx_out_queue);
142 	init_waitqueue_head(&(*daemon)->wait);
143 	(*daemon)->num_queued_msg_ctx = 0;
144 	hlist_add_head(&(*daemon)->euid_chain,
145 		       &ecryptfs_daemon_hash[ecryptfs_current_euid_hash()]);
146 out:
147 	return rc;
148 }
149 
150 /**
151  * ecryptfs_exorcise_daemon - Destroy the daemon struct
152  *
153  * Must be called ceremoniously while in possession of
154  * ecryptfs_daemon_hash_mux and the daemon's own mux.
155  */
ecryptfs_exorcise_daemon(struct ecryptfs_daemon * daemon)156 int ecryptfs_exorcise_daemon(struct ecryptfs_daemon *daemon)
157 {
158 	struct ecryptfs_msg_ctx *msg_ctx, *msg_ctx_tmp;
159 	int rc = 0;
160 
161 	mutex_lock(&daemon->mux);
162 	if ((daemon->flags & ECRYPTFS_DAEMON_IN_READ)
163 	    || (daemon->flags & ECRYPTFS_DAEMON_IN_POLL)) {
164 		rc = -EBUSY;
165 		mutex_unlock(&daemon->mux);
166 		goto out;
167 	}
168 	list_for_each_entry_safe(msg_ctx, msg_ctx_tmp,
169 				 &daemon->msg_ctx_out_queue, daemon_out_list) {
170 		list_del(&msg_ctx->daemon_out_list);
171 		daemon->num_queued_msg_ctx--;
172 		printk(KERN_WARNING "%s: Warning: dropping message that is in "
173 		       "the out queue of a dying daemon\n", __func__);
174 		ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
175 	}
176 	hlist_del(&daemon->euid_chain);
177 	mutex_unlock(&daemon->mux);
178 	kfree_sensitive(daemon);
179 out:
180 	return rc;
181 }
182 
183 /**
184  * ecryptfs_process_reponse
185  * @msg: The ecryptfs message received; the caller should sanity check
186  *       msg->data_len and free the memory
187  * @seq: The sequence number of the message; must match the sequence
188  *       number for the existing message context waiting for this
189  *       response
190  *
191  * Processes a response message after sending an operation request to
192  * userspace. Some other process is awaiting this response. Before
193  * sending out its first communications, the other process allocated a
194  * msg_ctx from the ecryptfs_msg_ctx_arr at a particular index. The
195  * response message contains this index so that we can copy over the
196  * response message into the msg_ctx that the process holds a
197  * reference to. The other process is going to wake up, check to see
198  * that msg_ctx->state == ECRYPTFS_MSG_CTX_STATE_DONE, and then
199  * proceed to read off and process the response message. Returns zero
200  * upon delivery to desired context element; non-zero upon delivery
201  * failure or error.
202  *
203  * Returns zero on success; non-zero otherwise
204  */
ecryptfs_process_response(struct ecryptfs_daemon * daemon,struct ecryptfs_message * msg,u32 seq)205 int ecryptfs_process_response(struct ecryptfs_daemon *daemon,
206 			      struct ecryptfs_message *msg, u32 seq)
207 {
208 	struct ecryptfs_msg_ctx *msg_ctx;
209 	size_t msg_size;
210 	int rc;
211 
212 	if (msg->index >= ecryptfs_message_buf_len) {
213 		rc = -EINVAL;
214 		printk(KERN_ERR "%s: Attempt to reference "
215 		       "context buffer at index [%d]; maximum "
216 		       "allowable is [%d]\n", __func__, msg->index,
217 		       (ecryptfs_message_buf_len - 1));
218 		goto out;
219 	}
220 	msg_ctx = &ecryptfs_msg_ctx_arr[msg->index];
221 	mutex_lock(&msg_ctx->mux);
222 	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_PENDING) {
223 		rc = -EINVAL;
224 		printk(KERN_WARNING "%s: Desired context element is not "
225 		       "pending a response\n", __func__);
226 		goto unlock;
227 	} else if (msg_ctx->counter != seq) {
228 		rc = -EINVAL;
229 		printk(KERN_WARNING "%s: Invalid message sequence; "
230 		       "expected [%d]; received [%d]\n", __func__,
231 		       msg_ctx->counter, seq);
232 		goto unlock;
233 	}
234 	msg_size = (sizeof(*msg) + msg->data_len);
235 	msg_ctx->msg = kmemdup(msg, msg_size, GFP_KERNEL);
236 	if (!msg_ctx->msg) {
237 		rc = -ENOMEM;
238 		goto unlock;
239 	}
240 	msg_ctx->state = ECRYPTFS_MSG_CTX_STATE_DONE;
241 	wake_up_process(msg_ctx->task);
242 	rc = 0;
243 unlock:
244 	mutex_unlock(&msg_ctx->mux);
245 out:
246 	return rc;
247 }
248 
249 /**
250  * ecryptfs_send_message_locked
251  * @data: The data to send
252  * @data_len: The length of data
253  * @msg_ctx: The message context allocated for the send
254  *
255  * Must be called with ecryptfs_daemon_hash_mux held.
256  *
257  * Returns zero on success; non-zero otherwise
258  */
259 static int
ecryptfs_send_message_locked(char * data,int data_len,u8 msg_type,struct ecryptfs_msg_ctx ** msg_ctx)260 ecryptfs_send_message_locked(char *data, int data_len, u8 msg_type,
261 			     struct ecryptfs_msg_ctx **msg_ctx)
262 {
263 	struct ecryptfs_daemon *daemon;
264 	int rc;
265 
266 	rc = ecryptfs_find_daemon_by_euid(&daemon);
267 	if (rc) {
268 		rc = -ENOTCONN;
269 		goto out;
270 	}
271 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
272 	rc = ecryptfs_acquire_free_msg_ctx(msg_ctx);
273 	if (rc) {
274 		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
275 		printk(KERN_WARNING "%s: Could not claim a free "
276 		       "context element\n", __func__);
277 		goto out;
278 	}
279 	ecryptfs_msg_ctx_free_to_alloc(*msg_ctx);
280 	mutex_unlock(&(*msg_ctx)->mux);
281 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
282 	rc = ecryptfs_send_miscdev(data, data_len, *msg_ctx, msg_type, 0,
283 				   daemon);
284 	if (rc)
285 		printk(KERN_ERR "%s: Error attempting to send message to "
286 		       "userspace daemon; rc = [%d]\n", __func__, rc);
287 out:
288 	return rc;
289 }
290 
291 /**
292  * ecryptfs_send_message
293  * @data: The data to send
294  * @data_len: The length of data
295  * @msg_ctx: The message context allocated for the send
296  *
297  * Grabs ecryptfs_daemon_hash_mux.
298  *
299  * Returns zero on success; non-zero otherwise
300  */
ecryptfs_send_message(char * data,int data_len,struct ecryptfs_msg_ctx ** msg_ctx)301 int ecryptfs_send_message(char *data, int data_len,
302 			  struct ecryptfs_msg_ctx **msg_ctx)
303 {
304 	int rc;
305 
306 	mutex_lock(&ecryptfs_daemon_hash_mux);
307 	rc = ecryptfs_send_message_locked(data, data_len, ECRYPTFS_MSG_REQUEST,
308 					  msg_ctx);
309 	mutex_unlock(&ecryptfs_daemon_hash_mux);
310 	return rc;
311 }
312 
313 /**
314  * ecryptfs_wait_for_response
315  * @msg_ctx: The context that was assigned when sending a message
316  * @msg: The incoming message from userspace; not set if rc != 0
317  *
318  * Sleeps until awaken by ecryptfs_receive_message or until the amount
319  * of time exceeds ecryptfs_message_wait_timeout.  If zero is
320  * returned, msg will point to a valid message from userspace; a
321  * non-zero value is returned upon failure to receive a message or an
322  * error occurs. Callee must free @msg on success.
323  */
ecryptfs_wait_for_response(struct ecryptfs_msg_ctx * msg_ctx,struct ecryptfs_message ** msg)324 int ecryptfs_wait_for_response(struct ecryptfs_msg_ctx *msg_ctx,
325 			       struct ecryptfs_message **msg)
326 {
327 	signed long timeout = ecryptfs_message_wait_timeout * HZ;
328 	int rc = 0;
329 
330 sleep:
331 	timeout = schedule_timeout_interruptible(timeout);
332 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
333 	mutex_lock(&msg_ctx->mux);
334 	if (msg_ctx->state != ECRYPTFS_MSG_CTX_STATE_DONE) {
335 		if (timeout) {
336 			mutex_unlock(&msg_ctx->mux);
337 			mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
338 			goto sleep;
339 		}
340 		rc = -ENOMSG;
341 	} else {
342 		*msg = msg_ctx->msg;
343 		msg_ctx->msg = NULL;
344 	}
345 	ecryptfs_msg_ctx_alloc_to_free(msg_ctx);
346 	mutex_unlock(&msg_ctx->mux);
347 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
348 	return rc;
349 }
350 
ecryptfs_init_messaging(void)351 int __init ecryptfs_init_messaging(void)
352 {
353 	int i;
354 	int rc = 0;
355 
356 	if (ecryptfs_number_of_users > ECRYPTFS_MAX_NUM_USERS) {
357 		ecryptfs_number_of_users = ECRYPTFS_MAX_NUM_USERS;
358 		printk(KERN_WARNING "%s: Specified number of users is "
359 		       "too large, defaulting to [%d] users\n", __func__,
360 		       ecryptfs_number_of_users);
361 	}
362 	mutex_init(&ecryptfs_daemon_hash_mux);
363 	mutex_lock(&ecryptfs_daemon_hash_mux);
364 	ecryptfs_hash_bits = 1;
365 	while (ecryptfs_number_of_users >> ecryptfs_hash_bits)
366 		ecryptfs_hash_bits++;
367 	ecryptfs_daemon_hash = kmalloc((sizeof(struct hlist_head)
368 					* (1 << ecryptfs_hash_bits)),
369 				       GFP_KERNEL);
370 	if (!ecryptfs_daemon_hash) {
371 		rc = -ENOMEM;
372 		mutex_unlock(&ecryptfs_daemon_hash_mux);
373 		goto out;
374 	}
375 	for (i = 0; i < (1 << ecryptfs_hash_bits); i++)
376 		INIT_HLIST_HEAD(&ecryptfs_daemon_hash[i]);
377 	mutex_unlock(&ecryptfs_daemon_hash_mux);
378 	ecryptfs_msg_ctx_arr = kmalloc((sizeof(struct ecryptfs_msg_ctx)
379 					* ecryptfs_message_buf_len),
380 				       GFP_KERNEL);
381 	if (!ecryptfs_msg_ctx_arr) {
382 		kfree(ecryptfs_daemon_hash);
383 		rc = -ENOMEM;
384 		goto out;
385 	}
386 	mutex_init(&ecryptfs_msg_ctx_lists_mux);
387 	mutex_lock(&ecryptfs_msg_ctx_lists_mux);
388 	ecryptfs_msg_counter = 0;
389 	for (i = 0; i < ecryptfs_message_buf_len; i++) {
390 		INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].node);
391 		INIT_LIST_HEAD(&ecryptfs_msg_ctx_arr[i].daemon_out_list);
392 		mutex_init(&ecryptfs_msg_ctx_arr[i].mux);
393 		mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
394 		ecryptfs_msg_ctx_arr[i].index = i;
395 		ecryptfs_msg_ctx_arr[i].state = ECRYPTFS_MSG_CTX_STATE_FREE;
396 		ecryptfs_msg_ctx_arr[i].counter = 0;
397 		ecryptfs_msg_ctx_arr[i].task = NULL;
398 		ecryptfs_msg_ctx_arr[i].msg = NULL;
399 		list_add_tail(&ecryptfs_msg_ctx_arr[i].node,
400 			      &ecryptfs_msg_ctx_free_list);
401 		mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
402 	}
403 	mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
404 	rc = ecryptfs_init_ecryptfs_miscdev();
405 	if (rc)
406 		ecryptfs_release_messaging();
407 out:
408 	return rc;
409 }
410 
ecryptfs_release_messaging(void)411 void ecryptfs_release_messaging(void)
412 {
413 	if (ecryptfs_msg_ctx_arr) {
414 		int i;
415 
416 		mutex_lock(&ecryptfs_msg_ctx_lists_mux);
417 		for (i = 0; i < ecryptfs_message_buf_len; i++) {
418 			mutex_lock(&ecryptfs_msg_ctx_arr[i].mux);
419 			kfree(ecryptfs_msg_ctx_arr[i].msg);
420 			mutex_unlock(&ecryptfs_msg_ctx_arr[i].mux);
421 		}
422 		kfree(ecryptfs_msg_ctx_arr);
423 		mutex_unlock(&ecryptfs_msg_ctx_lists_mux);
424 	}
425 	if (ecryptfs_daemon_hash) {
426 		struct ecryptfs_daemon *daemon;
427 		struct hlist_node *n;
428 		int i;
429 
430 		mutex_lock(&ecryptfs_daemon_hash_mux);
431 		for (i = 0; i < (1 << ecryptfs_hash_bits); i++) {
432 			int rc;
433 
434 			hlist_for_each_entry_safe(daemon, n,
435 						  &ecryptfs_daemon_hash[i],
436 						  euid_chain) {
437 				rc = ecryptfs_exorcise_daemon(daemon);
438 				if (rc)
439 					printk(KERN_ERR "%s: Error whilst "
440 					       "attempting to destroy daemon; "
441 					       "rc = [%d]. Dazed and confused, "
442 					       "but trying to continue.\n",
443 					       __func__, rc);
444 			}
445 		}
446 		kfree(ecryptfs_daemon_hash);
447 		mutex_unlock(&ecryptfs_daemon_hash_mux);
448 	}
449 	ecryptfs_destroy_ecryptfs_miscdev();
450 	return;
451 }
452