1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (c) 2016-2017 Micron Technology, Inc.
4 *
5 * Authors:
6 * Peter Pan <peterpandong@micron.com>
7 */
8 #ifndef __LINUX_MTD_SPINAND_H
9 #define __LINUX_MTD_SPINAND_H
10
11 #include <linux/mutex.h>
12 #include <linux/bitops.h>
13 #include <linux/device.h>
14 #include <linux/mtd/mtd.h>
15 #include <linux/mtd/nand.h>
16 #include <linux/spi/spi.h>
17 #include <linux/spi/spi-mem.h>
18
19 /**
20 * Standard SPI NAND flash operations
21 */
22
23 #define SPINAND_RESET_OP \
24 SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1), \
25 SPI_MEM_OP_NO_ADDR, \
26 SPI_MEM_OP_NO_DUMMY, \
27 SPI_MEM_OP_NO_DATA)
28
29 #define SPINAND_WR_EN_DIS_OP(enable) \
30 SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1), \
31 SPI_MEM_OP_NO_ADDR, \
32 SPI_MEM_OP_NO_DUMMY, \
33 SPI_MEM_OP_NO_DATA)
34
35 #define SPINAND_READID_OP(naddr, ndummy, buf, len) \
36 SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1), \
37 SPI_MEM_OP_ADDR(naddr, 0, 1), \
38 SPI_MEM_OP_DUMMY(ndummy, 1), \
39 SPI_MEM_OP_DATA_IN(len, buf, 1))
40
41 #define SPINAND_SET_FEATURE_OP(reg, valptr) \
42 SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1), \
43 SPI_MEM_OP_ADDR(1, reg, 1), \
44 SPI_MEM_OP_NO_DUMMY, \
45 SPI_MEM_OP_DATA_OUT(1, valptr, 1))
46
47 #define SPINAND_GET_FEATURE_OP(reg, valptr) \
48 SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1), \
49 SPI_MEM_OP_ADDR(1, reg, 1), \
50 SPI_MEM_OP_NO_DUMMY, \
51 SPI_MEM_OP_DATA_IN(1, valptr, 1))
52
53 #define SPINAND_BLK_ERASE_OP(addr) \
54 SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1), \
55 SPI_MEM_OP_ADDR(3, addr, 1), \
56 SPI_MEM_OP_NO_DUMMY, \
57 SPI_MEM_OP_NO_DATA)
58
59 #define SPINAND_PAGE_READ_OP(addr) \
60 SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1), \
61 SPI_MEM_OP_ADDR(3, addr, 1), \
62 SPI_MEM_OP_NO_DUMMY, \
63 SPI_MEM_OP_NO_DATA)
64
65 #define SPINAND_PAGE_READ_FROM_CACHE_OP(fast, addr, ndummy, buf, len) \
66 SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1), \
67 SPI_MEM_OP_ADDR(2, addr, 1), \
68 SPI_MEM_OP_DUMMY(ndummy, 1), \
69 SPI_MEM_OP_DATA_IN(len, buf, 1))
70
71 #define SPINAND_PAGE_READ_FROM_CACHE_OP_3A(fast, addr, ndummy, buf, len) \
72 SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1), \
73 SPI_MEM_OP_ADDR(3, addr, 1), \
74 SPI_MEM_OP_DUMMY(ndummy, 1), \
75 SPI_MEM_OP_DATA_IN(len, buf, 1))
76
77 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP(addr, ndummy, buf, len) \
78 SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \
79 SPI_MEM_OP_ADDR(2, addr, 1), \
80 SPI_MEM_OP_DUMMY(ndummy, 1), \
81 SPI_MEM_OP_DATA_IN(len, buf, 2))
82
83 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP_3A(addr, ndummy, buf, len) \
84 SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \
85 SPI_MEM_OP_ADDR(3, addr, 1), \
86 SPI_MEM_OP_DUMMY(ndummy, 1), \
87 SPI_MEM_OP_DATA_IN(len, buf, 2))
88
89 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP(addr, ndummy, buf, len) \
90 SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \
91 SPI_MEM_OP_ADDR(2, addr, 1), \
92 SPI_MEM_OP_DUMMY(ndummy, 1), \
93 SPI_MEM_OP_DATA_IN(len, buf, 4))
94
95 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP_3A(addr, ndummy, buf, len) \
96 SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \
97 SPI_MEM_OP_ADDR(3, addr, 1), \
98 SPI_MEM_OP_DUMMY(ndummy, 1), \
99 SPI_MEM_OP_DATA_IN(len, buf, 4))
100
101 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(addr, ndummy, buf, len) \
102 SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \
103 SPI_MEM_OP_ADDR(2, addr, 2), \
104 SPI_MEM_OP_DUMMY(ndummy, 2), \
105 SPI_MEM_OP_DATA_IN(len, buf, 2))
106
107 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP_3A(addr, ndummy, buf, len) \
108 SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \
109 SPI_MEM_OP_ADDR(3, addr, 2), \
110 SPI_MEM_OP_DUMMY(ndummy, 2), \
111 SPI_MEM_OP_DATA_IN(len, buf, 2))
112
113 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(addr, ndummy, buf, len) \
114 SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \
115 SPI_MEM_OP_ADDR(2, addr, 4), \
116 SPI_MEM_OP_DUMMY(ndummy, 4), \
117 SPI_MEM_OP_DATA_IN(len, buf, 4))
118
119 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP_3A(addr, ndummy, buf, len) \
120 SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \
121 SPI_MEM_OP_ADDR(3, addr, 4), \
122 SPI_MEM_OP_DUMMY(ndummy, 4), \
123 SPI_MEM_OP_DATA_IN(len, buf, 4))
124
125 #define SPINAND_PROG_EXEC_OP(addr) \
126 SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1), \
127 SPI_MEM_OP_ADDR(3, addr, 1), \
128 SPI_MEM_OP_NO_DUMMY, \
129 SPI_MEM_OP_NO_DATA)
130
131 #define SPINAND_PROG_LOAD(reset, addr, buf, len) \
132 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1), \
133 SPI_MEM_OP_ADDR(2, addr, 1), \
134 SPI_MEM_OP_NO_DUMMY, \
135 SPI_MEM_OP_DATA_OUT(len, buf, 1))
136
137 #define SPINAND_PROG_LOAD_X4(reset, addr, buf, len) \
138 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1), \
139 SPI_MEM_OP_ADDR(2, addr, 1), \
140 SPI_MEM_OP_NO_DUMMY, \
141 SPI_MEM_OP_DATA_OUT(len, buf, 4))
142
143 /**
144 * Standard SPI NAND flash commands
145 */
146 #define SPINAND_CMD_PROG_LOAD_X4 0x32
147 #define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4 0x34
148
149 /* feature register */
150 #define REG_BLOCK_LOCK 0xa0
151 #define BL_ALL_UNLOCKED 0x00
152
153 /* configuration register */
154 #define REG_CFG 0xb0
155 #define CFG_OTP_ENABLE BIT(6)
156 #define CFG_ECC_ENABLE BIT(4)
157 #define CFG_QUAD_ENABLE BIT(0)
158
159 /* status register */
160 #define REG_STATUS 0xc0
161 #define STATUS_BUSY BIT(0)
162 #define STATUS_ERASE_FAILED BIT(2)
163 #define STATUS_PROG_FAILED BIT(3)
164 #define STATUS_ECC_MASK GENMASK(5, 4)
165 #define STATUS_ECC_NO_BITFLIPS (0 << 4)
166 #define STATUS_ECC_HAS_BITFLIPS (1 << 4)
167 #define STATUS_ECC_UNCOR_ERROR (2 << 4)
168
169 struct spinand_op;
170 struct spinand_device;
171
172 #define SPINAND_MAX_ID_LEN 4
173 /*
174 * For erase, write and read operation, we got the following timings :
175 * tBERS (erase) 1ms to 4ms
176 * tPROG 300us to 400us
177 * tREAD 25us to 100us
178 * In order to minimize latency, the min value is divided by 4 for the
179 * initial delay, and dividing by 20 for the poll delay.
180 * For reset, 5us/10us/500us if the device is respectively
181 * reading/programming/erasing when the RESET occurs. Since we always
182 * issue a RESET when the device is IDLE, 5us is selected for both initial
183 * and poll delay.
184 */
185 #define SPINAND_READ_INITIAL_DELAY_US 6
186 #define SPINAND_READ_POLL_DELAY_US 5
187 #define SPINAND_RESET_INITIAL_DELAY_US 5
188 #define SPINAND_RESET_POLL_DELAY_US 5
189 #define SPINAND_WRITE_INITIAL_DELAY_US 75
190 #define SPINAND_WRITE_POLL_DELAY_US 15
191 #define SPINAND_ERASE_INITIAL_DELAY_US 250
192 #define SPINAND_ERASE_POLL_DELAY_US 50
193
194 #define SPINAND_WAITRDY_TIMEOUT_MS 400
195
196 /**
197 * struct spinand_id - SPI NAND id structure
198 * @data: buffer containing the id bytes. Currently 4 bytes large, but can
199 * be extended if required
200 * @len: ID length
201 */
202 struct spinand_id {
203 u8 data[SPINAND_MAX_ID_LEN];
204 int len;
205 };
206
207 enum spinand_readid_method {
208 SPINAND_READID_METHOD_OPCODE,
209 SPINAND_READID_METHOD_OPCODE_ADDR,
210 SPINAND_READID_METHOD_OPCODE_DUMMY,
211 };
212
213 /**
214 * struct spinand_devid - SPI NAND device id structure
215 * @id: device id of current chip
216 * @len: number of bytes in device id
217 * @method: method to read chip id
218 * There are 3 possible variants:
219 * SPINAND_READID_METHOD_OPCODE: chip id is returned immediately
220 * after read_id opcode.
221 * SPINAND_READID_METHOD_OPCODE_ADDR: chip id is returned after
222 * read_id opcode + 1-byte address.
223 * SPINAND_READID_METHOD_OPCODE_DUMMY: chip id is returned after
224 * read_id opcode + 1 dummy byte.
225 */
226 struct spinand_devid {
227 const u8 *id;
228 const u8 len;
229 const enum spinand_readid_method method;
230 };
231
232 /**
233 * struct manufacurer_ops - SPI NAND manufacturer specific operations
234 * @init: initialize a SPI NAND device
235 * @cleanup: cleanup a SPI NAND device
236 *
237 * Each SPI NAND manufacturer driver should implement this interface so that
238 * NAND chips coming from this vendor can be initialized properly.
239 */
240 struct spinand_manufacturer_ops {
241 int (*init)(struct spinand_device *spinand);
242 void (*cleanup)(struct spinand_device *spinand);
243 };
244
245 /**
246 * struct spinand_manufacturer - SPI NAND manufacturer instance
247 * @id: manufacturer ID
248 * @name: manufacturer name
249 * @devid_len: number of bytes in device ID
250 * @chips: supported SPI NANDs under current manufacturer
251 * @nchips: number of SPI NANDs available in chips array
252 * @ops: manufacturer operations
253 */
254 struct spinand_manufacturer {
255 u8 id;
256 char *name;
257 const struct spinand_info *chips;
258 const size_t nchips;
259 const struct spinand_manufacturer_ops *ops;
260 };
261
262 /* SPI NAND manufacturers */
263 extern const struct spinand_manufacturer ato_spinand_manufacturer;
264 extern const struct spinand_manufacturer gigadevice_spinand_manufacturer;
265 extern const struct spinand_manufacturer macronix_spinand_manufacturer;
266 extern const struct spinand_manufacturer micron_spinand_manufacturer;
267 extern const struct spinand_manufacturer paragon_spinand_manufacturer;
268 extern const struct spinand_manufacturer toshiba_spinand_manufacturer;
269 extern const struct spinand_manufacturer winbond_spinand_manufacturer;
270 extern const struct spinand_manufacturer xtx_spinand_manufacturer;
271
272 /**
273 * struct spinand_op_variants - SPI NAND operation variants
274 * @ops: the list of variants for a given operation
275 * @nops: the number of variants
276 *
277 * Some operations like read-from-cache/write-to-cache have several variants
278 * depending on the number of IO lines you use to transfer data or address
279 * cycles. This structure is a way to describe the different variants supported
280 * by a chip and let the core pick the best one based on the SPI mem controller
281 * capabilities.
282 */
283 struct spinand_op_variants {
284 const struct spi_mem_op *ops;
285 unsigned int nops;
286 };
287
288 #define SPINAND_OP_VARIANTS(name, ...) \
289 const struct spinand_op_variants name = { \
290 .ops = (struct spi_mem_op[]) { __VA_ARGS__ }, \
291 .nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) / \
292 sizeof(struct spi_mem_op), \
293 }
294
295 /**
296 * spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND
297 * chip
298 * @get_status: get the ECC status. Should return a positive number encoding
299 * the number of corrected bitflips if correction was possible or
300 * -EBADMSG if there are uncorrectable errors. I can also return
301 * other negative error codes if the error is not caused by
302 * uncorrectable bitflips
303 * @ooblayout: the OOB layout used by the on-die ECC implementation
304 */
305 struct spinand_ecc_info {
306 int (*get_status)(struct spinand_device *spinand, u8 status);
307 const struct mtd_ooblayout_ops *ooblayout;
308 };
309
310 #define SPINAND_HAS_QE_BIT BIT(0)
311 #define SPINAND_HAS_CR_FEAT_BIT BIT(1)
312
313 /**
314 * struct spinand_ondie_ecc_conf - private SPI-NAND on-die ECC engine structure
315 * @status: status of the last wait operation that will be used in case
316 * ->get_status() is not populated by the spinand device.
317 */
318 struct spinand_ondie_ecc_conf {
319 u8 status;
320 };
321
322 /**
323 * struct spinand_info - Structure used to describe SPI NAND chips
324 * @model: model name
325 * @devid: device ID
326 * @flags: OR-ing of the SPINAND_XXX flags
327 * @memorg: memory organization
328 * @eccreq: ECC requirements
329 * @eccinfo: on-die ECC info
330 * @op_variants: operations variants
331 * @op_variants.read_cache: variants of the read-cache operation
332 * @op_variants.write_cache: variants of the write-cache operation
333 * @op_variants.update_cache: variants of the update-cache operation
334 * @select_target: function used to select a target/die. Required only for
335 * multi-die chips
336 *
337 * Each SPI NAND manufacturer driver should have a spinand_info table
338 * describing all the chips supported by the driver.
339 */
340 struct spinand_info {
341 const char *model;
342 struct spinand_devid devid;
343 u32 flags;
344 struct nand_memory_organization memorg;
345 struct nand_ecc_props eccreq;
346 struct spinand_ecc_info eccinfo;
347 struct {
348 const struct spinand_op_variants *read_cache;
349 const struct spinand_op_variants *write_cache;
350 const struct spinand_op_variants *update_cache;
351 } op_variants;
352 int (*select_target)(struct spinand_device *spinand,
353 unsigned int target);
354 };
355
356 #define SPINAND_ID(__method, ...) \
357 { \
358 .id = (const u8[]){ __VA_ARGS__ }, \
359 .len = sizeof((u8[]){ __VA_ARGS__ }), \
360 .method = __method, \
361 }
362
363 #define SPINAND_INFO_OP_VARIANTS(__read, __write, __update) \
364 { \
365 .read_cache = __read, \
366 .write_cache = __write, \
367 .update_cache = __update, \
368 }
369
370 #define SPINAND_ECCINFO(__ooblayout, __get_status) \
371 .eccinfo = { \
372 .ooblayout = __ooblayout, \
373 .get_status = __get_status, \
374 }
375
376 #define SPINAND_SELECT_TARGET(__func) \
377 .select_target = __func,
378
379 #define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants, \
380 __flags, ...) \
381 { \
382 .model = __model, \
383 .devid = __id, \
384 .memorg = __memorg, \
385 .eccreq = __eccreq, \
386 .op_variants = __op_variants, \
387 .flags = __flags, \
388 __VA_ARGS__ \
389 }
390
391 struct spinand_dirmap {
392 struct spi_mem_dirmap_desc *wdesc;
393 struct spi_mem_dirmap_desc *rdesc;
394 struct spi_mem_dirmap_desc *wdesc_ecc;
395 struct spi_mem_dirmap_desc *rdesc_ecc;
396 };
397
398 /**
399 * struct spinand_device - SPI NAND device instance
400 * @base: NAND device instance
401 * @spimem: pointer to the SPI mem object
402 * @lock: lock used to serialize accesses to the NAND
403 * @id: NAND ID as returned by READ_ID
404 * @flags: NAND flags
405 * @op_templates: various SPI mem op templates
406 * @op_templates.read_cache: read cache op template
407 * @op_templates.write_cache: write cache op template
408 * @op_templates.update_cache: update cache op template
409 * @select_target: select a specific target/die. Usually called before sending
410 * a command addressing a page or an eraseblock embedded in
411 * this die. Only required if your chip exposes several dies
412 * @cur_target: currently selected target/die
413 * @eccinfo: on-die ECC information
414 * @cfg_cache: config register cache. One entry per die
415 * @databuf: bounce buffer for data
416 * @oobbuf: bounce buffer for OOB data
417 * @scratchbuf: buffer used for everything but page accesses. This is needed
418 * because the spi-mem interface explicitly requests that buffers
419 * passed in spi_mem_op be DMA-able, so we can't based the bufs on
420 * the stack
421 * @manufacturer: SPI NAND manufacturer information
422 * @priv: manufacturer private data
423 */
424 struct spinand_device {
425 struct nand_device base;
426 struct spi_mem *spimem;
427 struct mutex lock;
428 struct spinand_id id;
429 u32 flags;
430
431 struct {
432 const struct spi_mem_op *read_cache;
433 const struct spi_mem_op *write_cache;
434 const struct spi_mem_op *update_cache;
435 } op_templates;
436
437 struct spinand_dirmap *dirmaps;
438
439 int (*select_target)(struct spinand_device *spinand,
440 unsigned int target);
441 unsigned int cur_target;
442
443 struct spinand_ecc_info eccinfo;
444
445 u8 *cfg_cache;
446 u8 *databuf;
447 u8 *oobbuf;
448 u8 *scratchbuf;
449 const struct spinand_manufacturer *manufacturer;
450 void *priv;
451 };
452
453 /**
454 * mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance
455 * @mtd: MTD instance
456 *
457 * Return: the SPI NAND device attached to @mtd.
458 */
mtd_to_spinand(struct mtd_info * mtd)459 static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd)
460 {
461 return container_of(mtd_to_nanddev(mtd), struct spinand_device, base);
462 }
463
464 /**
465 * spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device
466 * @spinand: SPI NAND device
467 *
468 * Return: the MTD device embedded in @spinand.
469 */
spinand_to_mtd(struct spinand_device * spinand)470 static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand)
471 {
472 return nanddev_to_mtd(&spinand->base);
473 }
474
475 /**
476 * nand_to_spinand() - Get the SPI NAND device embedding an NAND object
477 * @nand: NAND object
478 *
479 * Return: the SPI NAND device embedding @nand.
480 */
nand_to_spinand(struct nand_device * nand)481 static inline struct spinand_device *nand_to_spinand(struct nand_device *nand)
482 {
483 return container_of(nand, struct spinand_device, base);
484 }
485
486 /**
487 * spinand_to_nand() - Get the NAND device embedded in a SPI NAND object
488 * @spinand: SPI NAND device
489 *
490 * Return: the NAND device embedded in @spinand.
491 */
492 static inline struct nand_device *
spinand_to_nand(struct spinand_device * spinand)493 spinand_to_nand(struct spinand_device *spinand)
494 {
495 return &spinand->base;
496 }
497
498 /**
499 * spinand_set_of_node - Attach a DT node to a SPI NAND device
500 * @spinand: SPI NAND device
501 * @np: DT node
502 *
503 * Attach a DT node to a SPI NAND device.
504 */
spinand_set_of_node(struct spinand_device * spinand,struct device_node * np)505 static inline void spinand_set_of_node(struct spinand_device *spinand,
506 struct device_node *np)
507 {
508 nanddev_set_of_node(&spinand->base, np);
509 }
510
511 int spinand_match_and_init(struct spinand_device *spinand,
512 const struct spinand_info *table,
513 unsigned int table_size,
514 enum spinand_readid_method rdid_method);
515
516 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val);
517 int spinand_select_target(struct spinand_device *spinand, unsigned int target);
518
519 #endif /* __LINUX_MTD_SPINAND_H */
520