1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions for working with the Flattened Device Tree data format
4  *
5  * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6  * benh@kernel.crashing.org
7  */
8 
9 #define pr_fmt(fmt)	"OF: fdt: " fmt
10 
11 #include <linux/crc32.h>
12 #include <linux/kernel.h>
13 #include <linux/initrd.h>
14 #include <linux/bootmem.h>
15 #include <linux/memblock.h>
16 #include <linux/mutex.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_reserved_mem.h>
20 #include <linux/sizes.h>
21 #include <linux/string.h>
22 #include <linux/errno.h>
23 #include <linux/slab.h>
24 #include <linux/libfdt.h>
25 #include <linux/debugfs.h>
26 #include <linux/serial_core.h>
27 #include <linux/sysfs.h>
28 
29 #include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
30 #include <asm/page.h>
31 
32 #include "of_private.h"
33 
34 /*
35  * of_fdt_limit_memory - limit the number of regions in the /memory node
36  * @limit: maximum entries
37  *
38  * Adjust the flattened device tree to have at most 'limit' number of
39  * memory entries in the /memory node. This function may be called
40  * any time after initial_boot_param is set.
41  */
of_fdt_limit_memory(int limit)42 void of_fdt_limit_memory(int limit)
43 {
44 	int memory;
45 	int len;
46 	const void *val;
47 	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
48 	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
49 	const __be32 *addr_prop;
50 	const __be32 *size_prop;
51 	int root_offset;
52 	int cell_size;
53 
54 	root_offset = fdt_path_offset(initial_boot_params, "/");
55 	if (root_offset < 0)
56 		return;
57 
58 	addr_prop = fdt_getprop(initial_boot_params, root_offset,
59 				"#address-cells", NULL);
60 	if (addr_prop)
61 		nr_address_cells = fdt32_to_cpu(*addr_prop);
62 
63 	size_prop = fdt_getprop(initial_boot_params, root_offset,
64 				"#size-cells", NULL);
65 	if (size_prop)
66 		nr_size_cells = fdt32_to_cpu(*size_prop);
67 
68 	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
69 
70 	memory = fdt_path_offset(initial_boot_params, "/memory");
71 	if (memory > 0) {
72 		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
73 		if (len > limit*cell_size) {
74 			len = limit*cell_size;
75 			pr_debug("Limiting number of entries to %d\n", limit);
76 			fdt_setprop(initial_boot_params, memory, "reg", val,
77 					len);
78 		}
79 	}
80 }
81 
82 /**
83  * of_fdt_is_compatible - Return true if given node from the given blob has
84  * compat in its compatible list
85  * @blob: A device tree blob
86  * @node: node to test
87  * @compat: compatible string to compare with compatible list.
88  *
89  * On match, returns a non-zero value with smaller values returned for more
90  * specific compatible values.
91  */
of_fdt_is_compatible(const void * blob,unsigned long node,const char * compat)92 static int of_fdt_is_compatible(const void *blob,
93 		      unsigned long node, const char *compat)
94 {
95 	const char *cp;
96 	int cplen;
97 	unsigned long l, score = 0;
98 
99 	cp = fdt_getprop(blob, node, "compatible", &cplen);
100 	if (cp == NULL)
101 		return 0;
102 	while (cplen > 0) {
103 		score++;
104 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
105 			return score;
106 		l = strlen(cp) + 1;
107 		cp += l;
108 		cplen -= l;
109 	}
110 
111 	return 0;
112 }
113 
114 /**
115  * of_fdt_is_big_endian - Return true if given node needs BE MMIO accesses
116  * @blob: A device tree blob
117  * @node: node to test
118  *
119  * Returns true if the node has a "big-endian" property, or if the kernel
120  * was compiled for BE *and* the node has a "native-endian" property.
121  * Returns false otherwise.
122  */
of_fdt_is_big_endian(const void * blob,unsigned long node)123 bool of_fdt_is_big_endian(const void *blob, unsigned long node)
124 {
125 	if (fdt_getprop(blob, node, "big-endian", NULL))
126 		return true;
127 	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
128 	    fdt_getprop(blob, node, "native-endian", NULL))
129 		return true;
130 	return false;
131 }
132 
of_fdt_device_is_available(const void * blob,unsigned long node)133 static bool of_fdt_device_is_available(const void *blob, unsigned long node)
134 {
135 	const char *status = fdt_getprop(blob, node, "status", NULL);
136 
137 	if (!status)
138 		return true;
139 
140 	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
141 		return true;
142 
143 	return false;
144 }
145 
146 /**
147  * of_fdt_match - Return true if node matches a list of compatible values
148  */
of_fdt_match(const void * blob,unsigned long node,const char * const * compat)149 int of_fdt_match(const void *blob, unsigned long node,
150                  const char *const *compat)
151 {
152 	unsigned int tmp, score = 0;
153 
154 	if (!compat)
155 		return 0;
156 
157 	while (*compat) {
158 		tmp = of_fdt_is_compatible(blob, node, *compat);
159 		if (tmp && (score == 0 || (tmp < score)))
160 			score = tmp;
161 		compat++;
162 	}
163 
164 	return score;
165 }
166 
unflatten_dt_alloc(void ** mem,unsigned long size,unsigned long align)167 static void *unflatten_dt_alloc(void **mem, unsigned long size,
168 				       unsigned long align)
169 {
170 	void *res;
171 
172 	*mem = PTR_ALIGN(*mem, align);
173 	res = *mem;
174 	*mem += size;
175 
176 	return res;
177 }
178 
populate_properties(const void * blob,int offset,void ** mem,struct device_node * np,const char * nodename,bool dryrun)179 static void populate_properties(const void *blob,
180 				int offset,
181 				void **mem,
182 				struct device_node *np,
183 				const char *nodename,
184 				bool dryrun)
185 {
186 	struct property *pp, **pprev = NULL;
187 	int cur;
188 	bool has_name = false;
189 
190 	pprev = &np->properties;
191 	for (cur = fdt_first_property_offset(blob, offset);
192 	     cur >= 0;
193 	     cur = fdt_next_property_offset(blob, cur)) {
194 		const __be32 *val;
195 		const char *pname;
196 		u32 sz;
197 
198 		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
199 		if (!val) {
200 			pr_warn("Cannot locate property at 0x%x\n", cur);
201 			continue;
202 		}
203 
204 		if (!pname) {
205 			pr_warn("Cannot find property name at 0x%x\n", cur);
206 			continue;
207 		}
208 
209 		if (!strcmp(pname, "name"))
210 			has_name = true;
211 
212 		pp = unflatten_dt_alloc(mem, sizeof(struct property),
213 					__alignof__(struct property));
214 		if (dryrun)
215 			continue;
216 
217 		/* We accept flattened tree phandles either in
218 		 * ePAPR-style "phandle" properties, or the
219 		 * legacy "linux,phandle" properties.  If both
220 		 * appear and have different values, things
221 		 * will get weird. Don't do that.
222 		 */
223 		if (!strcmp(pname, "phandle") ||
224 		    !strcmp(pname, "linux,phandle")) {
225 			if (!np->phandle)
226 				np->phandle = be32_to_cpup(val);
227 		}
228 
229 		/* And we process the "ibm,phandle" property
230 		 * used in pSeries dynamic device tree
231 		 * stuff
232 		 */
233 		if (!strcmp(pname, "ibm,phandle"))
234 			np->phandle = be32_to_cpup(val);
235 
236 		pp->name   = (char *)pname;
237 		pp->length = sz;
238 		pp->value  = (__be32 *)val;
239 		*pprev     = pp;
240 		pprev      = &pp->next;
241 	}
242 
243 	/* With version 0x10 we may not have the name property,
244 	 * recreate it here from the unit name if absent
245 	 */
246 	if (!has_name) {
247 		const char *p = nodename, *ps = p, *pa = NULL;
248 		int len;
249 
250 		while (*p) {
251 			if ((*p) == '@')
252 				pa = p;
253 			else if ((*p) == '/')
254 				ps = p + 1;
255 			p++;
256 		}
257 
258 		if (pa < ps)
259 			pa = p;
260 		len = (pa - ps) + 1;
261 		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
262 					__alignof__(struct property));
263 		if (!dryrun) {
264 			pp->name   = "name";
265 			pp->length = len;
266 			pp->value  = pp + 1;
267 			*pprev     = pp;
268 			pprev      = &pp->next;
269 			memcpy(pp->value, ps, len - 1);
270 			((char *)pp->value)[len - 1] = 0;
271 			pr_debug("fixed up name for %s -> %s\n",
272 				 nodename, (char *)pp->value);
273 		}
274 	}
275 
276 	if (!dryrun)
277 		*pprev = NULL;
278 }
279 
populate_node(const void * blob,int offset,void ** mem,struct device_node * dad,struct device_node ** pnp,bool dryrun)280 static bool populate_node(const void *blob,
281 			  int offset,
282 			  void **mem,
283 			  struct device_node *dad,
284 			  struct device_node **pnp,
285 			  bool dryrun)
286 {
287 	struct device_node *np;
288 	const char *pathp;
289 	unsigned int l, allocl;
290 
291 	pathp = fdt_get_name(blob, offset, &l);
292 	if (!pathp) {
293 		*pnp = NULL;
294 		return false;
295 	}
296 
297 	allocl = ++l;
298 
299 	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
300 				__alignof__(struct device_node));
301 	if (!dryrun) {
302 		char *fn;
303 		of_node_init(np);
304 		np->full_name = fn = ((char *)np) + sizeof(*np);
305 
306 		memcpy(fn, pathp, l);
307 
308 		if (dad != NULL) {
309 			np->parent = dad;
310 			np->sibling = dad->child;
311 			dad->child = np;
312 		}
313 	}
314 
315 	populate_properties(blob, offset, mem, np, pathp, dryrun);
316 	if (!dryrun) {
317 		np->name = of_get_property(np, "name", NULL);
318 		np->type = of_get_property(np, "device_type", NULL);
319 
320 		if (!np->name)
321 			np->name = "<NULL>";
322 		if (!np->type)
323 			np->type = "<NULL>";
324 	}
325 
326 	*pnp = np;
327 	return true;
328 }
329 
reverse_nodes(struct device_node * parent)330 static void reverse_nodes(struct device_node *parent)
331 {
332 	struct device_node *child, *next;
333 
334 	/* In-depth first */
335 	child = parent->child;
336 	while (child) {
337 		reverse_nodes(child);
338 
339 		child = child->sibling;
340 	}
341 
342 	/* Reverse the nodes in the child list */
343 	child = parent->child;
344 	parent->child = NULL;
345 	while (child) {
346 		next = child->sibling;
347 
348 		child->sibling = parent->child;
349 		parent->child = child;
350 		child = next;
351 	}
352 }
353 
354 /**
355  * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
356  * @blob: The parent device tree blob
357  * @mem: Memory chunk to use for allocating device nodes and properties
358  * @dad: Parent struct device_node
359  * @nodepp: The device_node tree created by the call
360  *
361  * It returns the size of unflattened device tree or error code
362  */
unflatten_dt_nodes(const void * blob,void * mem,struct device_node * dad,struct device_node ** nodepp)363 static int unflatten_dt_nodes(const void *blob,
364 			      void *mem,
365 			      struct device_node *dad,
366 			      struct device_node **nodepp)
367 {
368 	struct device_node *root;
369 	int offset = 0, depth = 0, initial_depth = 0;
370 #define FDT_MAX_DEPTH	64
371 	struct device_node *nps[FDT_MAX_DEPTH];
372 	void *base = mem;
373 	bool dryrun = !base;
374 
375 	if (nodepp)
376 		*nodepp = NULL;
377 
378 	/*
379 	 * We're unflattening device sub-tree if @dad is valid. There are
380 	 * possibly multiple nodes in the first level of depth. We need
381 	 * set @depth to 1 to make fdt_next_node() happy as it bails
382 	 * immediately when negative @depth is found. Otherwise, the device
383 	 * nodes except the first one won't be unflattened successfully.
384 	 */
385 	if (dad)
386 		depth = initial_depth = 1;
387 
388 	root = dad;
389 	nps[depth] = dad;
390 
391 	for (offset = 0;
392 	     offset >= 0 && depth >= initial_depth;
393 	     offset = fdt_next_node(blob, offset, &depth)) {
394 		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
395 			continue;
396 
397 		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
398 		    !of_fdt_device_is_available(blob, offset))
399 			continue;
400 
401 		if (!populate_node(blob, offset, &mem, nps[depth],
402 				   &nps[depth+1], dryrun))
403 			return mem - base;
404 
405 		if (!dryrun && nodepp && !*nodepp)
406 			*nodepp = nps[depth+1];
407 		if (!dryrun && !root)
408 			root = nps[depth+1];
409 	}
410 
411 	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
412 		pr_err("Error %d processing FDT\n", offset);
413 		return -EINVAL;
414 	}
415 
416 	/*
417 	 * Reverse the child list. Some drivers assumes node order matches .dts
418 	 * node order
419 	 */
420 	if (!dryrun)
421 		reverse_nodes(root);
422 
423 	return mem - base;
424 }
425 
426 /**
427  * __unflatten_device_tree - create tree of device_nodes from flat blob
428  *
429  * unflattens a device-tree, creating the
430  * tree of struct device_node. It also fills the "name" and "type"
431  * pointers of the nodes so the normal device-tree walking functions
432  * can be used.
433  * @blob: The blob to expand
434  * @dad: Parent device node
435  * @mynodes: The device_node tree created by the call
436  * @dt_alloc: An allocator that provides a virtual address to memory
437  * for the resulting tree
438  * @detached: if true set OF_DETACHED on @mynodes
439  *
440  * Returns NULL on failure or the memory chunk containing the unflattened
441  * device tree on success.
442  */
__unflatten_device_tree(const void * blob,struct device_node * dad,struct device_node ** mynodes,void * (* dt_alloc)(u64 size,u64 align),bool detached)443 void *__unflatten_device_tree(const void *blob,
444 			      struct device_node *dad,
445 			      struct device_node **mynodes,
446 			      void *(*dt_alloc)(u64 size, u64 align),
447 			      bool detached)
448 {
449 	int size;
450 	void *mem;
451 
452 	pr_debug(" -> unflatten_device_tree()\n");
453 
454 	if (!blob) {
455 		pr_debug("No device tree pointer\n");
456 		return NULL;
457 	}
458 
459 	pr_debug("Unflattening device tree:\n");
460 	pr_debug("magic: %08x\n", fdt_magic(blob));
461 	pr_debug("size: %08x\n", fdt_totalsize(blob));
462 	pr_debug("version: %08x\n", fdt_version(blob));
463 
464 	if (fdt_check_header(blob)) {
465 		pr_err("Invalid device tree blob header\n");
466 		return NULL;
467 	}
468 
469 	/* First pass, scan for size */
470 	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
471 	if (size < 0)
472 		return NULL;
473 
474 	size = ALIGN(size, 4);
475 	pr_debug("  size is %d, allocating...\n", size);
476 
477 	/* Allocate memory for the expanded device tree */
478 	mem = dt_alloc(size + 4, __alignof__(struct device_node));
479 	if (!mem)
480 		return NULL;
481 
482 	memset(mem, 0, size);
483 
484 	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
485 
486 	pr_debug("  unflattening %p...\n", mem);
487 
488 	/* Second pass, do actual unflattening */
489 	unflatten_dt_nodes(blob, mem, dad, mynodes);
490 	if (be32_to_cpup(mem + size) != 0xdeadbeef)
491 		pr_warning("End of tree marker overwritten: %08x\n",
492 			   be32_to_cpup(mem + size));
493 
494 	if (detached && mynodes) {
495 		of_node_set_flag(*mynodes, OF_DETACHED);
496 		pr_debug("unflattened tree is detached\n");
497 	}
498 
499 	pr_debug(" <- unflatten_device_tree()\n");
500 	return mem;
501 }
502 
kernel_tree_alloc(u64 size,u64 align)503 static void *kernel_tree_alloc(u64 size, u64 align)
504 {
505 	return kzalloc(size, GFP_KERNEL);
506 }
507 
508 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
509 
510 /**
511  * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
512  * @blob: Flat device tree blob
513  * @dad: Parent device node
514  * @mynodes: The device tree created by the call
515  *
516  * unflattens the device-tree passed by the firmware, creating the
517  * tree of struct device_node. It also fills the "name" and "type"
518  * pointers of the nodes so the normal device-tree walking functions
519  * can be used.
520  *
521  * Returns NULL on failure or the memory chunk containing the unflattened
522  * device tree on success.
523  */
of_fdt_unflatten_tree(const unsigned long * blob,struct device_node * dad,struct device_node ** mynodes)524 void *of_fdt_unflatten_tree(const unsigned long *blob,
525 			    struct device_node *dad,
526 			    struct device_node **mynodes)
527 {
528 	void *mem;
529 
530 	mutex_lock(&of_fdt_unflatten_mutex);
531 	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
532 				      true);
533 	mutex_unlock(&of_fdt_unflatten_mutex);
534 
535 	return mem;
536 }
537 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
538 
539 /* Everything below here references initial_boot_params directly. */
540 int __initdata dt_root_addr_cells;
541 int __initdata dt_root_size_cells;
542 
543 void *initial_boot_params;
544 
545 #ifdef CONFIG_OF_EARLY_FLATTREE
546 
547 static u32 of_fdt_crc32;
548 
549 /**
550  * res_mem_reserve_reg() - reserve all memory described in 'reg' property
551  */
__reserved_mem_reserve_reg(unsigned long node,const char * uname)552 static int __init __reserved_mem_reserve_reg(unsigned long node,
553 					     const char *uname)
554 {
555 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
556 	phys_addr_t base, size;
557 	int len;
558 	const __be32 *prop;
559 	int nomap, first = 1;
560 
561 	prop = of_get_flat_dt_prop(node, "reg", &len);
562 	if (!prop)
563 		return -ENOENT;
564 
565 	if (len && len % t_len != 0) {
566 		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
567 		       uname);
568 		return -EINVAL;
569 	}
570 
571 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
572 
573 	while (len >= t_len) {
574 		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
575 		size = dt_mem_next_cell(dt_root_size_cells, &prop);
576 
577 		if (size &&
578 		    early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
579 			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
580 				uname, &base, (unsigned long)size / SZ_1M);
581 		else
582 			pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
583 				uname, &base, (unsigned long)size / SZ_1M);
584 
585 		len -= t_len;
586 		if (first) {
587 			fdt_reserved_mem_save_node(node, uname, base, size);
588 			first = 0;
589 		}
590 	}
591 	return 0;
592 }
593 
594 /**
595  * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
596  * in /reserved-memory matches the values supported by the current implementation,
597  * also check if ranges property has been provided
598  */
__reserved_mem_check_root(unsigned long node)599 static int __init __reserved_mem_check_root(unsigned long node)
600 {
601 	const __be32 *prop;
602 
603 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
604 	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
605 		return -EINVAL;
606 
607 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
608 	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
609 		return -EINVAL;
610 
611 	prop = of_get_flat_dt_prop(node, "ranges", NULL);
612 	if (!prop)
613 		return -EINVAL;
614 	return 0;
615 }
616 
617 /**
618  * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
619  */
__fdt_scan_reserved_mem(unsigned long node,const char * uname,int depth,void * data)620 static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
621 					  int depth, void *data)
622 {
623 	static int found;
624 	int err;
625 
626 	if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
627 		if (__reserved_mem_check_root(node) != 0) {
628 			pr_err("Reserved memory: unsupported node format, ignoring\n");
629 			/* break scan */
630 			return 1;
631 		}
632 		found = 1;
633 		/* scan next node */
634 		return 0;
635 	} else if (!found) {
636 		/* scan next node */
637 		return 0;
638 	} else if (found && depth < 2) {
639 		/* scanning of /reserved-memory has been finished */
640 		return 1;
641 	}
642 
643 	if (!of_fdt_device_is_available(initial_boot_params, node))
644 		return 0;
645 
646 	err = __reserved_mem_reserve_reg(node, uname);
647 	if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
648 		fdt_reserved_mem_save_node(node, uname, 0, 0);
649 
650 	/* scan next node */
651 	return 0;
652 }
653 
654 /**
655  * early_init_fdt_scan_reserved_mem() - create reserved memory regions
656  *
657  * This function grabs memory from early allocator for device exclusive use
658  * defined in device tree structures. It should be called by arch specific code
659  * once the early allocator (i.e. memblock) has been fully activated.
660  */
early_init_fdt_scan_reserved_mem(void)661 void __init early_init_fdt_scan_reserved_mem(void)
662 {
663 	int n;
664 	u64 base, size;
665 
666 	if (!initial_boot_params)
667 		return;
668 
669 	/* Process header /memreserve/ fields */
670 	for (n = 0; ; n++) {
671 		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
672 		if (!size)
673 			break;
674 		early_init_dt_reserve_memory_arch(base, size, 0);
675 	}
676 
677 	of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
678 	fdt_init_reserved_mem();
679 }
680 
681 /**
682  * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
683  */
early_init_fdt_reserve_self(void)684 void __init early_init_fdt_reserve_self(void)
685 {
686 	if (!initial_boot_params)
687 		return;
688 
689 	/* Reserve the dtb region */
690 	early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
691 					  fdt_totalsize(initial_boot_params),
692 					  0);
693 }
694 
695 /**
696  * of_scan_flat_dt - scan flattened tree blob and call callback on each.
697  * @it: callback function
698  * @data: context data pointer
699  *
700  * This function is used to scan the flattened device-tree, it is
701  * used to extract the memory information at boot before we can
702  * unflatten the tree
703  */
of_scan_flat_dt(int (* it)(unsigned long node,const char * uname,int depth,void * data),void * data)704 int __init of_scan_flat_dt(int (*it)(unsigned long node,
705 				     const char *uname, int depth,
706 				     void *data),
707 			   void *data)
708 {
709 	const void *blob = initial_boot_params;
710 	const char *pathp;
711 	int offset, rc = 0, depth = -1;
712 
713 	if (!blob)
714 		return 0;
715 
716 	for (offset = fdt_next_node(blob, -1, &depth);
717 	     offset >= 0 && depth >= 0 && !rc;
718 	     offset = fdt_next_node(blob, offset, &depth)) {
719 
720 		pathp = fdt_get_name(blob, offset, NULL);
721 		if (*pathp == '/')
722 			pathp = kbasename(pathp);
723 		rc = it(offset, pathp, depth, data);
724 	}
725 	return rc;
726 }
727 
728 /**
729  * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
730  * @it: callback function
731  * @data: context data pointer
732  *
733  * This function is used to scan sub-nodes of a node.
734  */
of_scan_flat_dt_subnodes(unsigned long parent,int (* it)(unsigned long node,const char * uname,void * data),void * data)735 int __init of_scan_flat_dt_subnodes(unsigned long parent,
736 				    int (*it)(unsigned long node,
737 					      const char *uname,
738 					      void *data),
739 				    void *data)
740 {
741 	const void *blob = initial_boot_params;
742 	int node;
743 
744 	fdt_for_each_subnode(node, blob, parent) {
745 		const char *pathp;
746 		int rc;
747 
748 		pathp = fdt_get_name(blob, node, NULL);
749 		if (*pathp == '/')
750 			pathp = kbasename(pathp);
751 		rc = it(node, pathp, data);
752 		if (rc)
753 			return rc;
754 	}
755 	return 0;
756 }
757 
758 /**
759  * of_get_flat_dt_subnode_by_name - get the subnode by given name
760  *
761  * @node: the parent node
762  * @uname: the name of subnode
763  * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
764  */
765 
of_get_flat_dt_subnode_by_name(unsigned long node,const char * uname)766 int of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
767 {
768 	return fdt_subnode_offset(initial_boot_params, node, uname);
769 }
770 
771 /**
772  * of_get_flat_dt_root - find the root node in the flat blob
773  */
of_get_flat_dt_root(void)774 unsigned long __init of_get_flat_dt_root(void)
775 {
776 	return 0;
777 }
778 
779 /**
780  * of_get_flat_dt_size - Return the total size of the FDT
781  */
of_get_flat_dt_size(void)782 int __init of_get_flat_dt_size(void)
783 {
784 	return fdt_totalsize(initial_boot_params);
785 }
786 
787 /**
788  * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
789  *
790  * This function can be used within scan_flattened_dt callback to get
791  * access to properties
792  */
of_get_flat_dt_prop(unsigned long node,const char * name,int * size)793 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
794 				       int *size)
795 {
796 	return fdt_getprop(initial_boot_params, node, name, size);
797 }
798 
799 /**
800  * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
801  * @node: node to test
802  * @compat: compatible string to compare with compatible list.
803  */
of_flat_dt_is_compatible(unsigned long node,const char * compat)804 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
805 {
806 	return of_fdt_is_compatible(initial_boot_params, node, compat);
807 }
808 
809 /**
810  * of_flat_dt_match - Return true if node matches a list of compatible values
811  */
of_flat_dt_match(unsigned long node,const char * const * compat)812 int __init of_flat_dt_match(unsigned long node, const char *const *compat)
813 {
814 	return of_fdt_match(initial_boot_params, node, compat);
815 }
816 
817 /**
818  * of_get_flat_dt_prop - Given a node in the flat blob, return the phandle
819  */
of_get_flat_dt_phandle(unsigned long node)820 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
821 {
822 	return fdt_get_phandle(initial_boot_params, node);
823 }
824 
825 struct fdt_scan_status {
826 	const char *name;
827 	int namelen;
828 	int depth;
829 	int found;
830 	int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
831 	void *data;
832 };
833 
of_flat_dt_get_machine_name(void)834 const char * __init of_flat_dt_get_machine_name(void)
835 {
836 	const char *name;
837 	unsigned long dt_root = of_get_flat_dt_root();
838 
839 	name = of_get_flat_dt_prop(dt_root, "model", NULL);
840 	if (!name)
841 		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
842 	return name;
843 }
844 
845 /**
846  * of_flat_dt_match_machine - Iterate match tables to find matching machine.
847  *
848  * @default_match: A machine specific ptr to return in case of no match.
849  * @get_next_compat: callback function to return next compatible match table.
850  *
851  * Iterate through machine match tables to find the best match for the machine
852  * compatible string in the FDT.
853  */
of_flat_dt_match_machine(const void * default_match,const void * (* get_next_compat)(const char * const **))854 const void * __init of_flat_dt_match_machine(const void *default_match,
855 		const void * (*get_next_compat)(const char * const**))
856 {
857 	const void *data = NULL;
858 	const void *best_data = default_match;
859 	const char *const *compat;
860 	unsigned long dt_root;
861 	unsigned int best_score = ~1, score = 0;
862 
863 	dt_root = of_get_flat_dt_root();
864 	while ((data = get_next_compat(&compat))) {
865 		score = of_flat_dt_match(dt_root, compat);
866 		if (score > 0 && score < best_score) {
867 			best_data = data;
868 			best_score = score;
869 		}
870 	}
871 	if (!best_data) {
872 		const char *prop;
873 		int size;
874 
875 		pr_err("\n unrecognized device tree list:\n[ ");
876 
877 		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
878 		if (prop) {
879 			while (size > 0) {
880 				printk("'%s' ", prop);
881 				size -= strlen(prop) + 1;
882 				prop += strlen(prop) + 1;
883 			}
884 		}
885 		printk("]\n\n");
886 		return NULL;
887 	}
888 
889 	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
890 
891 	return best_data;
892 }
893 
894 #ifdef CONFIG_BLK_DEV_INITRD
895 #ifndef __early_init_dt_declare_initrd
__early_init_dt_declare_initrd(unsigned long start,unsigned long end)896 static void __early_init_dt_declare_initrd(unsigned long start,
897 					   unsigned long end)
898 {
899 	initrd_start = (unsigned long)__va(start);
900 	initrd_end = (unsigned long)__va(end);
901 	initrd_below_start_ok = 1;
902 }
903 #endif
904 
905 /**
906  * early_init_dt_check_for_initrd - Decode initrd location from flat tree
907  * @node: reference to node containing initrd location ('chosen')
908  */
early_init_dt_check_for_initrd(unsigned long node)909 static void __init early_init_dt_check_for_initrd(unsigned long node)
910 {
911 	u64 start, end;
912 	int len;
913 	const __be32 *prop;
914 
915 	pr_debug("Looking for initrd properties... ");
916 
917 	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
918 	if (!prop)
919 		return;
920 	start = of_read_number(prop, len/4);
921 
922 	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
923 	if (!prop)
924 		return;
925 	end = of_read_number(prop, len/4);
926 
927 	__early_init_dt_declare_initrd(start, end);
928 
929 	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n",
930 		 (unsigned long long)start, (unsigned long long)end);
931 }
932 #else
early_init_dt_check_for_initrd(unsigned long node)933 static inline void early_init_dt_check_for_initrd(unsigned long node)
934 {
935 }
936 #endif /* CONFIG_BLK_DEV_INITRD */
937 
938 #ifdef CONFIG_SERIAL_EARLYCON
939 
early_init_dt_scan_chosen_stdout(void)940 int __init early_init_dt_scan_chosen_stdout(void)
941 {
942 	int offset;
943 	const char *p, *q, *options = NULL;
944 	int l;
945 	const struct earlycon_id **p_match;
946 	const void *fdt = initial_boot_params;
947 
948 	offset = fdt_path_offset(fdt, "/chosen");
949 	if (offset < 0)
950 		offset = fdt_path_offset(fdt, "/chosen@0");
951 	if (offset < 0)
952 		return -ENOENT;
953 
954 	p = fdt_getprop(fdt, offset, "stdout-path", &l);
955 	if (!p)
956 		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
957 	if (!p || !l)
958 		return -ENOENT;
959 
960 	q = strchrnul(p, ':');
961 	if (*q != '\0')
962 		options = q + 1;
963 	l = q - p;
964 
965 	/* Get the node specified by stdout-path */
966 	offset = fdt_path_offset_namelen(fdt, p, l);
967 	if (offset < 0) {
968 		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
969 		return 0;
970 	}
971 
972 	for (p_match = __earlycon_table; p_match < __earlycon_table_end;
973 	     p_match++) {
974 		const struct earlycon_id *match = *p_match;
975 
976 		if (!match->compatible[0])
977 			continue;
978 
979 		if (fdt_node_check_compatible(fdt, offset, match->compatible))
980 			continue;
981 
982 		of_setup_earlycon(match, offset, options);
983 		return 0;
984 	}
985 	return -ENODEV;
986 }
987 #endif
988 
989 /**
990  * early_init_dt_scan_root - fetch the top level address and size cells
991  */
early_init_dt_scan_root(unsigned long node,const char * uname,int depth,void * data)992 int __init early_init_dt_scan_root(unsigned long node, const char *uname,
993 				   int depth, void *data)
994 {
995 	const __be32 *prop;
996 
997 	if (depth != 0)
998 		return 0;
999 
1000 	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1001 	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1002 
1003 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1004 	if (prop)
1005 		dt_root_size_cells = be32_to_cpup(prop);
1006 	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1007 
1008 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1009 	if (prop)
1010 		dt_root_addr_cells = be32_to_cpup(prop);
1011 	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1012 
1013 	/* break now */
1014 	return 1;
1015 }
1016 
dt_mem_next_cell(int s,const __be32 ** cellp)1017 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1018 {
1019 	const __be32 *p = *cellp;
1020 
1021 	*cellp = p + s;
1022 	return of_read_number(p, s);
1023 }
1024 
1025 /**
1026  * early_init_dt_scan_memory - Look for and parse memory nodes
1027  */
early_init_dt_scan_memory(unsigned long node,const char * uname,int depth,void * data)1028 int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
1029 				     int depth, void *data)
1030 {
1031 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1032 	const __be32 *reg, *endp;
1033 	int l;
1034 	bool hotpluggable;
1035 
1036 	/* We are scanning "memory" nodes only */
1037 	if (type == NULL || strcmp(type, "memory") != 0)
1038 		return 0;
1039 
1040 	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1041 	if (reg == NULL)
1042 		reg = of_get_flat_dt_prop(node, "reg", &l);
1043 	if (reg == NULL)
1044 		return 0;
1045 
1046 	endp = reg + (l / sizeof(__be32));
1047 	hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1048 
1049 	pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1050 
1051 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1052 		u64 base, size;
1053 
1054 		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1055 		size = dt_mem_next_cell(dt_root_size_cells, &reg);
1056 
1057 		if (size == 0)
1058 			continue;
1059 		pr_debug(" - %llx ,  %llx\n", (unsigned long long)base,
1060 		    (unsigned long long)size);
1061 
1062 		early_init_dt_add_memory_arch(base, size);
1063 
1064 		if (!hotpluggable)
1065 			continue;
1066 
1067 		if (early_init_dt_mark_hotplug_memory_arch(base, size))
1068 			pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1069 				base, base + size);
1070 	}
1071 
1072 	return 0;
1073 }
1074 
early_init_dt_scan_chosen(unsigned long node,const char * uname,int depth,void * data)1075 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1076 				     int depth, void *data)
1077 {
1078 	int l;
1079 	const char *p;
1080 
1081 	pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1082 
1083 	if (depth != 1 || !data ||
1084 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1085 		return 0;
1086 
1087 	early_init_dt_check_for_initrd(node);
1088 
1089 	/* Retrieve command line */
1090 	p = of_get_flat_dt_prop(node, "bootargs", &l);
1091 	if (p != NULL && l > 0)
1092 		strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
1093 
1094 	/*
1095 	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1096 	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1097 	 * is set in which case we override whatever was found earlier.
1098 	 */
1099 #ifdef CONFIG_CMDLINE
1100 #if defined(CONFIG_CMDLINE_EXTEND)
1101 	strlcat(data, " ", COMMAND_LINE_SIZE);
1102 	strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1103 #elif defined(CONFIG_CMDLINE_FORCE)
1104 	strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1105 #else
1106 	/* No arguments from boot loader, use kernel's  cmdl*/
1107 	if (!((char *)data)[0])
1108 		strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1109 #endif
1110 #endif /* CONFIG_CMDLINE */
1111 
1112 	pr_debug("Command line is: %s\n", (char*)data);
1113 
1114 	/* break now */
1115 	return 1;
1116 }
1117 
1118 #ifdef CONFIG_HAVE_MEMBLOCK
1119 #ifndef MIN_MEMBLOCK_ADDR
1120 #define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1121 #endif
1122 #ifndef MAX_MEMBLOCK_ADDR
1123 #define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1124 #endif
1125 
early_init_dt_add_memory_arch(u64 base,u64 size)1126 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1127 {
1128 	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1129 
1130 	if (!PAGE_ALIGNED(base)) {
1131 		if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1132 			pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1133 				base, base + size);
1134 			return;
1135 		}
1136 		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1137 		base = PAGE_ALIGN(base);
1138 	}
1139 	size &= PAGE_MASK;
1140 
1141 	if (base > MAX_MEMBLOCK_ADDR) {
1142 		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1143 				base, base + size);
1144 		return;
1145 	}
1146 
1147 	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1148 		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1149 				((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1150 		size = MAX_MEMBLOCK_ADDR - base + 1;
1151 	}
1152 
1153 	if (base + size < phys_offset) {
1154 		pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1155 			   base, base + size);
1156 		return;
1157 	}
1158 	if (base < phys_offset) {
1159 		pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1160 			   base, phys_offset);
1161 		size -= phys_offset - base;
1162 		base = phys_offset;
1163 	}
1164 	memblock_add(base, size);
1165 }
1166 
early_init_dt_mark_hotplug_memory_arch(u64 base,u64 size)1167 int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1168 {
1169 	return memblock_mark_hotplug(base, size);
1170 }
1171 
early_init_dt_reserve_memory_arch(phys_addr_t base,phys_addr_t size,bool nomap)1172 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1173 					phys_addr_t size, bool nomap)
1174 {
1175 	if (nomap)
1176 		return memblock_remove(base, size);
1177 	return memblock_reserve(base, size);
1178 }
1179 
1180 #else
early_init_dt_add_memory_arch(u64 base,u64 size)1181 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1182 {
1183 	WARN_ON(1);
1184 }
1185 
early_init_dt_mark_hotplug_memory_arch(u64 base,u64 size)1186 int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1187 {
1188 	return -ENOSYS;
1189 }
1190 
early_init_dt_reserve_memory_arch(phys_addr_t base,phys_addr_t size,bool nomap)1191 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1192 					phys_addr_t size, bool nomap)
1193 {
1194 	pr_err("Reserved memory not supported, ignoring range %pa - %pa%s\n",
1195 		  &base, &size, nomap ? " (nomap)" : "");
1196 	return -ENOSYS;
1197 }
1198 #endif
1199 
early_init_dt_alloc_memory_arch(u64 size,u64 align)1200 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1201 {
1202 	return memblock_virt_alloc(size, align);
1203 }
1204 
early_init_dt_verify(void * params)1205 bool __init early_init_dt_verify(void *params)
1206 {
1207 	if (!params)
1208 		return false;
1209 
1210 	/* check device tree validity */
1211 	if (fdt_check_header(params))
1212 		return false;
1213 
1214 	/* Setup flat device-tree pointer */
1215 	initial_boot_params = params;
1216 	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1217 				fdt_totalsize(initial_boot_params));
1218 	return true;
1219 }
1220 
1221 
early_init_dt_scan_nodes(void)1222 void __init early_init_dt_scan_nodes(void)
1223 {
1224 	/* Retrieve various information from the /chosen node */
1225 	of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1226 
1227 	/* Initialize {size,address}-cells info */
1228 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
1229 
1230 	/* Setup memory, calling early_init_dt_add_memory_arch */
1231 	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1232 }
1233 
early_init_dt_scan(void * params)1234 bool __init early_init_dt_scan(void *params)
1235 {
1236 	bool status;
1237 
1238 	status = early_init_dt_verify(params);
1239 	if (!status)
1240 		return false;
1241 
1242 	early_init_dt_scan_nodes();
1243 	return true;
1244 }
1245 
1246 /**
1247  * unflatten_device_tree - create tree of device_nodes from flat blob
1248  *
1249  * unflattens the device-tree passed by the firmware, creating the
1250  * tree of struct device_node. It also fills the "name" and "type"
1251  * pointers of the nodes so the normal device-tree walking functions
1252  * can be used.
1253  */
unflatten_device_tree(void)1254 void __init unflatten_device_tree(void)
1255 {
1256 	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
1257 				early_init_dt_alloc_memory_arch, false);
1258 
1259 	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1260 	of_alias_scan(early_init_dt_alloc_memory_arch);
1261 
1262 	unittest_unflatten_overlay_base();
1263 }
1264 
1265 /**
1266  * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1267  *
1268  * Copies and unflattens the device-tree passed by the firmware, creating the
1269  * tree of struct device_node. It also fills the "name" and "type"
1270  * pointers of the nodes so the normal device-tree walking functions
1271  * can be used. This should only be used when the FDT memory has not been
1272  * reserved such is the case when the FDT is built-in to the kernel init
1273  * section. If the FDT memory is reserved already then unflatten_device_tree
1274  * should be used instead.
1275  */
unflatten_and_copy_device_tree(void)1276 void __init unflatten_and_copy_device_tree(void)
1277 {
1278 	int size;
1279 	void *dt;
1280 
1281 	if (!initial_boot_params) {
1282 		pr_warn("No valid device tree found, continuing without\n");
1283 		return;
1284 	}
1285 
1286 	size = fdt_totalsize(initial_boot_params);
1287 	dt = early_init_dt_alloc_memory_arch(size,
1288 					     roundup_pow_of_two(FDT_V17_SIZE));
1289 
1290 	if (dt) {
1291 		memcpy(dt, initial_boot_params, size);
1292 		initial_boot_params = dt;
1293 	}
1294 	unflatten_device_tree();
1295 }
1296 
1297 #ifdef CONFIG_SYSFS
of_fdt_raw_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)1298 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1299 			       struct bin_attribute *bin_attr,
1300 			       char *buf, loff_t off, size_t count)
1301 {
1302 	memcpy(buf, initial_boot_params + off, count);
1303 	return count;
1304 }
1305 
of_fdt_raw_init(void)1306 static int __init of_fdt_raw_init(void)
1307 {
1308 	static struct bin_attribute of_fdt_raw_attr =
1309 		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1310 
1311 	if (!initial_boot_params)
1312 		return 0;
1313 
1314 	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1315 				     fdt_totalsize(initial_boot_params))) {
1316 		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1317 		return 0;
1318 	}
1319 	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1320 	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1321 }
1322 late_initcall(of_fdt_raw_init);
1323 #endif
1324 
1325 #endif /* CONFIG_OF_EARLY_FLATTREE */
1326