1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions for working with the Flattened Device Tree data format
4 *
5 * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6 * benh@kernel.crashing.org
7 */
8
9 #define pr_fmt(fmt) "OF: fdt: " fmt
10
11 #include <linux/crc32.h>
12 #include <linux/kernel.h>
13 #include <linux/initrd.h>
14 #include <linux/bootmem.h>
15 #include <linux/memblock.h>
16 #include <linux/mutex.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_reserved_mem.h>
20 #include <linux/sizes.h>
21 #include <linux/string.h>
22 #include <linux/errno.h>
23 #include <linux/slab.h>
24 #include <linux/libfdt.h>
25 #include <linux/debugfs.h>
26 #include <linux/serial_core.h>
27 #include <linux/sysfs.h>
28
29 #include <asm/setup.h> /* for COMMAND_LINE_SIZE */
30 #include <asm/page.h>
31
32 #include "of_private.h"
33
34 /*
35 * of_fdt_limit_memory - limit the number of regions in the /memory node
36 * @limit: maximum entries
37 *
38 * Adjust the flattened device tree to have at most 'limit' number of
39 * memory entries in the /memory node. This function may be called
40 * any time after initial_boot_param is set.
41 */
of_fdt_limit_memory(int limit)42 void of_fdt_limit_memory(int limit)
43 {
44 int memory;
45 int len;
46 const void *val;
47 int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
48 int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
49 const __be32 *addr_prop;
50 const __be32 *size_prop;
51 int root_offset;
52 int cell_size;
53
54 root_offset = fdt_path_offset(initial_boot_params, "/");
55 if (root_offset < 0)
56 return;
57
58 addr_prop = fdt_getprop(initial_boot_params, root_offset,
59 "#address-cells", NULL);
60 if (addr_prop)
61 nr_address_cells = fdt32_to_cpu(*addr_prop);
62
63 size_prop = fdt_getprop(initial_boot_params, root_offset,
64 "#size-cells", NULL);
65 if (size_prop)
66 nr_size_cells = fdt32_to_cpu(*size_prop);
67
68 cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
69
70 memory = fdt_path_offset(initial_boot_params, "/memory");
71 if (memory > 0) {
72 val = fdt_getprop(initial_boot_params, memory, "reg", &len);
73 if (len > limit*cell_size) {
74 len = limit*cell_size;
75 pr_debug("Limiting number of entries to %d\n", limit);
76 fdt_setprop(initial_boot_params, memory, "reg", val,
77 len);
78 }
79 }
80 }
81
82 /**
83 * of_fdt_is_compatible - Return true if given node from the given blob has
84 * compat in its compatible list
85 * @blob: A device tree blob
86 * @node: node to test
87 * @compat: compatible string to compare with compatible list.
88 *
89 * On match, returns a non-zero value with smaller values returned for more
90 * specific compatible values.
91 */
of_fdt_is_compatible(const void * blob,unsigned long node,const char * compat)92 static int of_fdt_is_compatible(const void *blob,
93 unsigned long node, const char *compat)
94 {
95 const char *cp;
96 int cplen;
97 unsigned long l, score = 0;
98
99 cp = fdt_getprop(blob, node, "compatible", &cplen);
100 if (cp == NULL)
101 return 0;
102 while (cplen > 0) {
103 score++;
104 if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
105 return score;
106 l = strlen(cp) + 1;
107 cp += l;
108 cplen -= l;
109 }
110
111 return 0;
112 }
113
114 /**
115 * of_fdt_is_big_endian - Return true if given node needs BE MMIO accesses
116 * @blob: A device tree blob
117 * @node: node to test
118 *
119 * Returns true if the node has a "big-endian" property, or if the kernel
120 * was compiled for BE *and* the node has a "native-endian" property.
121 * Returns false otherwise.
122 */
of_fdt_is_big_endian(const void * blob,unsigned long node)123 bool of_fdt_is_big_endian(const void *blob, unsigned long node)
124 {
125 if (fdt_getprop(blob, node, "big-endian", NULL))
126 return true;
127 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
128 fdt_getprop(blob, node, "native-endian", NULL))
129 return true;
130 return false;
131 }
132
of_fdt_device_is_available(const void * blob,unsigned long node)133 static bool of_fdt_device_is_available(const void *blob, unsigned long node)
134 {
135 const char *status = fdt_getprop(blob, node, "status", NULL);
136
137 if (!status)
138 return true;
139
140 if (!strcmp(status, "ok") || !strcmp(status, "okay"))
141 return true;
142
143 return false;
144 }
145
146 /**
147 * of_fdt_match - Return true if node matches a list of compatible values
148 */
of_fdt_match(const void * blob,unsigned long node,const char * const * compat)149 int of_fdt_match(const void *blob, unsigned long node,
150 const char *const *compat)
151 {
152 unsigned int tmp, score = 0;
153
154 if (!compat)
155 return 0;
156
157 while (*compat) {
158 tmp = of_fdt_is_compatible(blob, node, *compat);
159 if (tmp && (score == 0 || (tmp < score)))
160 score = tmp;
161 compat++;
162 }
163
164 return score;
165 }
166
unflatten_dt_alloc(void ** mem,unsigned long size,unsigned long align)167 static void *unflatten_dt_alloc(void **mem, unsigned long size,
168 unsigned long align)
169 {
170 void *res;
171
172 *mem = PTR_ALIGN(*mem, align);
173 res = *mem;
174 *mem += size;
175
176 return res;
177 }
178
populate_properties(const void * blob,int offset,void ** mem,struct device_node * np,const char * nodename,bool dryrun)179 static void populate_properties(const void *blob,
180 int offset,
181 void **mem,
182 struct device_node *np,
183 const char *nodename,
184 bool dryrun)
185 {
186 struct property *pp, **pprev = NULL;
187 int cur;
188 bool has_name = false;
189
190 pprev = &np->properties;
191 for (cur = fdt_first_property_offset(blob, offset);
192 cur >= 0;
193 cur = fdt_next_property_offset(blob, cur)) {
194 const __be32 *val;
195 const char *pname;
196 u32 sz;
197
198 val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
199 if (!val) {
200 pr_warn("Cannot locate property at 0x%x\n", cur);
201 continue;
202 }
203
204 if (!pname) {
205 pr_warn("Cannot find property name at 0x%x\n", cur);
206 continue;
207 }
208
209 if (!strcmp(pname, "name"))
210 has_name = true;
211
212 pp = unflatten_dt_alloc(mem, sizeof(struct property),
213 __alignof__(struct property));
214 if (dryrun)
215 continue;
216
217 /* We accept flattened tree phandles either in
218 * ePAPR-style "phandle" properties, or the
219 * legacy "linux,phandle" properties. If both
220 * appear and have different values, things
221 * will get weird. Don't do that.
222 */
223 if (!strcmp(pname, "phandle") ||
224 !strcmp(pname, "linux,phandle")) {
225 if (!np->phandle)
226 np->phandle = be32_to_cpup(val);
227 }
228
229 /* And we process the "ibm,phandle" property
230 * used in pSeries dynamic device tree
231 * stuff
232 */
233 if (!strcmp(pname, "ibm,phandle"))
234 np->phandle = be32_to_cpup(val);
235
236 pp->name = (char *)pname;
237 pp->length = sz;
238 pp->value = (__be32 *)val;
239 *pprev = pp;
240 pprev = &pp->next;
241 }
242
243 /* With version 0x10 we may not have the name property,
244 * recreate it here from the unit name if absent
245 */
246 if (!has_name) {
247 const char *p = nodename, *ps = p, *pa = NULL;
248 int len;
249
250 while (*p) {
251 if ((*p) == '@')
252 pa = p;
253 else if ((*p) == '/')
254 ps = p + 1;
255 p++;
256 }
257
258 if (pa < ps)
259 pa = p;
260 len = (pa - ps) + 1;
261 pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
262 __alignof__(struct property));
263 if (!dryrun) {
264 pp->name = "name";
265 pp->length = len;
266 pp->value = pp + 1;
267 *pprev = pp;
268 pprev = &pp->next;
269 memcpy(pp->value, ps, len - 1);
270 ((char *)pp->value)[len - 1] = 0;
271 pr_debug("fixed up name for %s -> %s\n",
272 nodename, (char *)pp->value);
273 }
274 }
275
276 if (!dryrun)
277 *pprev = NULL;
278 }
279
populate_node(const void * blob,int offset,void ** mem,struct device_node * dad,struct device_node ** pnp,bool dryrun)280 static bool populate_node(const void *blob,
281 int offset,
282 void **mem,
283 struct device_node *dad,
284 struct device_node **pnp,
285 bool dryrun)
286 {
287 struct device_node *np;
288 const char *pathp;
289 unsigned int l, allocl;
290
291 pathp = fdt_get_name(blob, offset, &l);
292 if (!pathp) {
293 *pnp = NULL;
294 return false;
295 }
296
297 allocl = ++l;
298
299 np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
300 __alignof__(struct device_node));
301 if (!dryrun) {
302 char *fn;
303 of_node_init(np);
304 np->full_name = fn = ((char *)np) + sizeof(*np);
305
306 memcpy(fn, pathp, l);
307
308 if (dad != NULL) {
309 np->parent = dad;
310 np->sibling = dad->child;
311 dad->child = np;
312 }
313 }
314
315 populate_properties(blob, offset, mem, np, pathp, dryrun);
316 if (!dryrun) {
317 np->name = of_get_property(np, "name", NULL);
318 np->type = of_get_property(np, "device_type", NULL);
319
320 if (!np->name)
321 np->name = "<NULL>";
322 if (!np->type)
323 np->type = "<NULL>";
324 }
325
326 *pnp = np;
327 return true;
328 }
329
reverse_nodes(struct device_node * parent)330 static void reverse_nodes(struct device_node *parent)
331 {
332 struct device_node *child, *next;
333
334 /* In-depth first */
335 child = parent->child;
336 while (child) {
337 reverse_nodes(child);
338
339 child = child->sibling;
340 }
341
342 /* Reverse the nodes in the child list */
343 child = parent->child;
344 parent->child = NULL;
345 while (child) {
346 next = child->sibling;
347
348 child->sibling = parent->child;
349 parent->child = child;
350 child = next;
351 }
352 }
353
354 /**
355 * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
356 * @blob: The parent device tree blob
357 * @mem: Memory chunk to use for allocating device nodes and properties
358 * @dad: Parent struct device_node
359 * @nodepp: The device_node tree created by the call
360 *
361 * It returns the size of unflattened device tree or error code
362 */
unflatten_dt_nodes(const void * blob,void * mem,struct device_node * dad,struct device_node ** nodepp)363 static int unflatten_dt_nodes(const void *blob,
364 void *mem,
365 struct device_node *dad,
366 struct device_node **nodepp)
367 {
368 struct device_node *root;
369 int offset = 0, depth = 0, initial_depth = 0;
370 #define FDT_MAX_DEPTH 64
371 struct device_node *nps[FDT_MAX_DEPTH];
372 void *base = mem;
373 bool dryrun = !base;
374
375 if (nodepp)
376 *nodepp = NULL;
377
378 /*
379 * We're unflattening device sub-tree if @dad is valid. There are
380 * possibly multiple nodes in the first level of depth. We need
381 * set @depth to 1 to make fdt_next_node() happy as it bails
382 * immediately when negative @depth is found. Otherwise, the device
383 * nodes except the first one won't be unflattened successfully.
384 */
385 if (dad)
386 depth = initial_depth = 1;
387
388 root = dad;
389 nps[depth] = dad;
390
391 for (offset = 0;
392 offset >= 0 && depth >= initial_depth;
393 offset = fdt_next_node(blob, offset, &depth)) {
394 if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
395 continue;
396
397 if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
398 !of_fdt_device_is_available(blob, offset))
399 continue;
400
401 if (!populate_node(blob, offset, &mem, nps[depth],
402 &nps[depth+1], dryrun))
403 return mem - base;
404
405 if (!dryrun && nodepp && !*nodepp)
406 *nodepp = nps[depth+1];
407 if (!dryrun && !root)
408 root = nps[depth+1];
409 }
410
411 if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
412 pr_err("Error %d processing FDT\n", offset);
413 return -EINVAL;
414 }
415
416 /*
417 * Reverse the child list. Some drivers assumes node order matches .dts
418 * node order
419 */
420 if (!dryrun)
421 reverse_nodes(root);
422
423 return mem - base;
424 }
425
426 /**
427 * __unflatten_device_tree - create tree of device_nodes from flat blob
428 *
429 * unflattens a device-tree, creating the
430 * tree of struct device_node. It also fills the "name" and "type"
431 * pointers of the nodes so the normal device-tree walking functions
432 * can be used.
433 * @blob: The blob to expand
434 * @dad: Parent device node
435 * @mynodes: The device_node tree created by the call
436 * @dt_alloc: An allocator that provides a virtual address to memory
437 * for the resulting tree
438 * @detached: if true set OF_DETACHED on @mynodes
439 *
440 * Returns NULL on failure or the memory chunk containing the unflattened
441 * device tree on success.
442 */
__unflatten_device_tree(const void * blob,struct device_node * dad,struct device_node ** mynodes,void * (* dt_alloc)(u64 size,u64 align),bool detached)443 void *__unflatten_device_tree(const void *blob,
444 struct device_node *dad,
445 struct device_node **mynodes,
446 void *(*dt_alloc)(u64 size, u64 align),
447 bool detached)
448 {
449 int size;
450 void *mem;
451
452 pr_debug(" -> unflatten_device_tree()\n");
453
454 if (!blob) {
455 pr_debug("No device tree pointer\n");
456 return NULL;
457 }
458
459 pr_debug("Unflattening device tree:\n");
460 pr_debug("magic: %08x\n", fdt_magic(blob));
461 pr_debug("size: %08x\n", fdt_totalsize(blob));
462 pr_debug("version: %08x\n", fdt_version(blob));
463
464 if (fdt_check_header(blob)) {
465 pr_err("Invalid device tree blob header\n");
466 return NULL;
467 }
468
469 /* First pass, scan for size */
470 size = unflatten_dt_nodes(blob, NULL, dad, NULL);
471 if (size < 0)
472 return NULL;
473
474 size = ALIGN(size, 4);
475 pr_debug(" size is %d, allocating...\n", size);
476
477 /* Allocate memory for the expanded device tree */
478 mem = dt_alloc(size + 4, __alignof__(struct device_node));
479 if (!mem)
480 return NULL;
481
482 memset(mem, 0, size);
483
484 *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
485
486 pr_debug(" unflattening %p...\n", mem);
487
488 /* Second pass, do actual unflattening */
489 unflatten_dt_nodes(blob, mem, dad, mynodes);
490 if (be32_to_cpup(mem + size) != 0xdeadbeef)
491 pr_warning("End of tree marker overwritten: %08x\n",
492 be32_to_cpup(mem + size));
493
494 if (detached && mynodes) {
495 of_node_set_flag(*mynodes, OF_DETACHED);
496 pr_debug("unflattened tree is detached\n");
497 }
498
499 pr_debug(" <- unflatten_device_tree()\n");
500 return mem;
501 }
502
kernel_tree_alloc(u64 size,u64 align)503 static void *kernel_tree_alloc(u64 size, u64 align)
504 {
505 return kzalloc(size, GFP_KERNEL);
506 }
507
508 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
509
510 /**
511 * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
512 * @blob: Flat device tree blob
513 * @dad: Parent device node
514 * @mynodes: The device tree created by the call
515 *
516 * unflattens the device-tree passed by the firmware, creating the
517 * tree of struct device_node. It also fills the "name" and "type"
518 * pointers of the nodes so the normal device-tree walking functions
519 * can be used.
520 *
521 * Returns NULL on failure or the memory chunk containing the unflattened
522 * device tree on success.
523 */
of_fdt_unflatten_tree(const unsigned long * blob,struct device_node * dad,struct device_node ** mynodes)524 void *of_fdt_unflatten_tree(const unsigned long *blob,
525 struct device_node *dad,
526 struct device_node **mynodes)
527 {
528 void *mem;
529
530 mutex_lock(&of_fdt_unflatten_mutex);
531 mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
532 true);
533 mutex_unlock(&of_fdt_unflatten_mutex);
534
535 return mem;
536 }
537 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
538
539 /* Everything below here references initial_boot_params directly. */
540 int __initdata dt_root_addr_cells;
541 int __initdata dt_root_size_cells;
542
543 void *initial_boot_params;
544
545 #ifdef CONFIG_OF_EARLY_FLATTREE
546
547 static u32 of_fdt_crc32;
548
549 /**
550 * res_mem_reserve_reg() - reserve all memory described in 'reg' property
551 */
__reserved_mem_reserve_reg(unsigned long node,const char * uname)552 static int __init __reserved_mem_reserve_reg(unsigned long node,
553 const char *uname)
554 {
555 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
556 phys_addr_t base, size;
557 int len;
558 const __be32 *prop;
559 int nomap, first = 1;
560
561 prop = of_get_flat_dt_prop(node, "reg", &len);
562 if (!prop)
563 return -ENOENT;
564
565 if (len && len % t_len != 0) {
566 pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
567 uname);
568 return -EINVAL;
569 }
570
571 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
572
573 while (len >= t_len) {
574 base = dt_mem_next_cell(dt_root_addr_cells, &prop);
575 size = dt_mem_next_cell(dt_root_size_cells, &prop);
576
577 if (size &&
578 early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
579 pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
580 uname, &base, (unsigned long)size / SZ_1M);
581 else
582 pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
583 uname, &base, (unsigned long)size / SZ_1M);
584
585 len -= t_len;
586 if (first) {
587 fdt_reserved_mem_save_node(node, uname, base, size);
588 first = 0;
589 }
590 }
591 return 0;
592 }
593
594 /**
595 * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
596 * in /reserved-memory matches the values supported by the current implementation,
597 * also check if ranges property has been provided
598 */
__reserved_mem_check_root(unsigned long node)599 static int __init __reserved_mem_check_root(unsigned long node)
600 {
601 const __be32 *prop;
602
603 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
604 if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
605 return -EINVAL;
606
607 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
608 if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
609 return -EINVAL;
610
611 prop = of_get_flat_dt_prop(node, "ranges", NULL);
612 if (!prop)
613 return -EINVAL;
614 return 0;
615 }
616
617 /**
618 * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
619 */
__fdt_scan_reserved_mem(unsigned long node,const char * uname,int depth,void * data)620 static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
621 int depth, void *data)
622 {
623 static int found;
624 int err;
625
626 if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
627 if (__reserved_mem_check_root(node) != 0) {
628 pr_err("Reserved memory: unsupported node format, ignoring\n");
629 /* break scan */
630 return 1;
631 }
632 found = 1;
633 /* scan next node */
634 return 0;
635 } else if (!found) {
636 /* scan next node */
637 return 0;
638 } else if (found && depth < 2) {
639 /* scanning of /reserved-memory has been finished */
640 return 1;
641 }
642
643 if (!of_fdt_device_is_available(initial_boot_params, node))
644 return 0;
645
646 err = __reserved_mem_reserve_reg(node, uname);
647 if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
648 fdt_reserved_mem_save_node(node, uname, 0, 0);
649
650 /* scan next node */
651 return 0;
652 }
653
654 /**
655 * early_init_fdt_scan_reserved_mem() - create reserved memory regions
656 *
657 * This function grabs memory from early allocator for device exclusive use
658 * defined in device tree structures. It should be called by arch specific code
659 * once the early allocator (i.e. memblock) has been fully activated.
660 */
early_init_fdt_scan_reserved_mem(void)661 void __init early_init_fdt_scan_reserved_mem(void)
662 {
663 int n;
664 u64 base, size;
665
666 if (!initial_boot_params)
667 return;
668
669 /* Process header /memreserve/ fields */
670 for (n = 0; ; n++) {
671 fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
672 if (!size)
673 break;
674 early_init_dt_reserve_memory_arch(base, size, 0);
675 }
676
677 of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
678 fdt_init_reserved_mem();
679 }
680
681 /**
682 * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
683 */
early_init_fdt_reserve_self(void)684 void __init early_init_fdt_reserve_self(void)
685 {
686 if (!initial_boot_params)
687 return;
688
689 /* Reserve the dtb region */
690 early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
691 fdt_totalsize(initial_boot_params),
692 0);
693 }
694
695 /**
696 * of_scan_flat_dt - scan flattened tree blob and call callback on each.
697 * @it: callback function
698 * @data: context data pointer
699 *
700 * This function is used to scan the flattened device-tree, it is
701 * used to extract the memory information at boot before we can
702 * unflatten the tree
703 */
of_scan_flat_dt(int (* it)(unsigned long node,const char * uname,int depth,void * data),void * data)704 int __init of_scan_flat_dt(int (*it)(unsigned long node,
705 const char *uname, int depth,
706 void *data),
707 void *data)
708 {
709 const void *blob = initial_boot_params;
710 const char *pathp;
711 int offset, rc = 0, depth = -1;
712
713 if (!blob)
714 return 0;
715
716 for (offset = fdt_next_node(blob, -1, &depth);
717 offset >= 0 && depth >= 0 && !rc;
718 offset = fdt_next_node(blob, offset, &depth)) {
719
720 pathp = fdt_get_name(blob, offset, NULL);
721 if (*pathp == '/')
722 pathp = kbasename(pathp);
723 rc = it(offset, pathp, depth, data);
724 }
725 return rc;
726 }
727
728 /**
729 * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
730 * @it: callback function
731 * @data: context data pointer
732 *
733 * This function is used to scan sub-nodes of a node.
734 */
of_scan_flat_dt_subnodes(unsigned long parent,int (* it)(unsigned long node,const char * uname,void * data),void * data)735 int __init of_scan_flat_dt_subnodes(unsigned long parent,
736 int (*it)(unsigned long node,
737 const char *uname,
738 void *data),
739 void *data)
740 {
741 const void *blob = initial_boot_params;
742 int node;
743
744 fdt_for_each_subnode(node, blob, parent) {
745 const char *pathp;
746 int rc;
747
748 pathp = fdt_get_name(blob, node, NULL);
749 if (*pathp == '/')
750 pathp = kbasename(pathp);
751 rc = it(node, pathp, data);
752 if (rc)
753 return rc;
754 }
755 return 0;
756 }
757
758 /**
759 * of_get_flat_dt_subnode_by_name - get the subnode by given name
760 *
761 * @node: the parent node
762 * @uname: the name of subnode
763 * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
764 */
765
of_get_flat_dt_subnode_by_name(unsigned long node,const char * uname)766 int of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
767 {
768 return fdt_subnode_offset(initial_boot_params, node, uname);
769 }
770
771 /**
772 * of_get_flat_dt_root - find the root node in the flat blob
773 */
of_get_flat_dt_root(void)774 unsigned long __init of_get_flat_dt_root(void)
775 {
776 return 0;
777 }
778
779 /**
780 * of_get_flat_dt_size - Return the total size of the FDT
781 */
of_get_flat_dt_size(void)782 int __init of_get_flat_dt_size(void)
783 {
784 return fdt_totalsize(initial_boot_params);
785 }
786
787 /**
788 * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
789 *
790 * This function can be used within scan_flattened_dt callback to get
791 * access to properties
792 */
of_get_flat_dt_prop(unsigned long node,const char * name,int * size)793 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
794 int *size)
795 {
796 return fdt_getprop(initial_boot_params, node, name, size);
797 }
798
799 /**
800 * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
801 * @node: node to test
802 * @compat: compatible string to compare with compatible list.
803 */
of_flat_dt_is_compatible(unsigned long node,const char * compat)804 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
805 {
806 return of_fdt_is_compatible(initial_boot_params, node, compat);
807 }
808
809 /**
810 * of_flat_dt_match - Return true if node matches a list of compatible values
811 */
of_flat_dt_match(unsigned long node,const char * const * compat)812 int __init of_flat_dt_match(unsigned long node, const char *const *compat)
813 {
814 return of_fdt_match(initial_boot_params, node, compat);
815 }
816
817 /**
818 * of_get_flat_dt_prop - Given a node in the flat blob, return the phandle
819 */
of_get_flat_dt_phandle(unsigned long node)820 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
821 {
822 return fdt_get_phandle(initial_boot_params, node);
823 }
824
825 struct fdt_scan_status {
826 const char *name;
827 int namelen;
828 int depth;
829 int found;
830 int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
831 void *data;
832 };
833
of_flat_dt_get_machine_name(void)834 const char * __init of_flat_dt_get_machine_name(void)
835 {
836 const char *name;
837 unsigned long dt_root = of_get_flat_dt_root();
838
839 name = of_get_flat_dt_prop(dt_root, "model", NULL);
840 if (!name)
841 name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
842 return name;
843 }
844
845 /**
846 * of_flat_dt_match_machine - Iterate match tables to find matching machine.
847 *
848 * @default_match: A machine specific ptr to return in case of no match.
849 * @get_next_compat: callback function to return next compatible match table.
850 *
851 * Iterate through machine match tables to find the best match for the machine
852 * compatible string in the FDT.
853 */
of_flat_dt_match_machine(const void * default_match,const void * (* get_next_compat)(const char * const **))854 const void * __init of_flat_dt_match_machine(const void *default_match,
855 const void * (*get_next_compat)(const char * const**))
856 {
857 const void *data = NULL;
858 const void *best_data = default_match;
859 const char *const *compat;
860 unsigned long dt_root;
861 unsigned int best_score = ~1, score = 0;
862
863 dt_root = of_get_flat_dt_root();
864 while ((data = get_next_compat(&compat))) {
865 score = of_flat_dt_match(dt_root, compat);
866 if (score > 0 && score < best_score) {
867 best_data = data;
868 best_score = score;
869 }
870 }
871 if (!best_data) {
872 const char *prop;
873 int size;
874
875 pr_err("\n unrecognized device tree list:\n[ ");
876
877 prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
878 if (prop) {
879 while (size > 0) {
880 printk("'%s' ", prop);
881 size -= strlen(prop) + 1;
882 prop += strlen(prop) + 1;
883 }
884 }
885 printk("]\n\n");
886 return NULL;
887 }
888
889 pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
890
891 return best_data;
892 }
893
894 #ifdef CONFIG_BLK_DEV_INITRD
895 #ifndef __early_init_dt_declare_initrd
__early_init_dt_declare_initrd(unsigned long start,unsigned long end)896 static void __early_init_dt_declare_initrd(unsigned long start,
897 unsigned long end)
898 {
899 initrd_start = (unsigned long)__va(start);
900 initrd_end = (unsigned long)__va(end);
901 initrd_below_start_ok = 1;
902 }
903 #endif
904
905 /**
906 * early_init_dt_check_for_initrd - Decode initrd location from flat tree
907 * @node: reference to node containing initrd location ('chosen')
908 */
early_init_dt_check_for_initrd(unsigned long node)909 static void __init early_init_dt_check_for_initrd(unsigned long node)
910 {
911 u64 start, end;
912 int len;
913 const __be32 *prop;
914
915 pr_debug("Looking for initrd properties... ");
916
917 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
918 if (!prop)
919 return;
920 start = of_read_number(prop, len/4);
921
922 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
923 if (!prop)
924 return;
925 end = of_read_number(prop, len/4);
926
927 __early_init_dt_declare_initrd(start, end);
928
929 pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n",
930 (unsigned long long)start, (unsigned long long)end);
931 }
932 #else
early_init_dt_check_for_initrd(unsigned long node)933 static inline void early_init_dt_check_for_initrd(unsigned long node)
934 {
935 }
936 #endif /* CONFIG_BLK_DEV_INITRD */
937
938 #ifdef CONFIG_SERIAL_EARLYCON
939
early_init_dt_scan_chosen_stdout(void)940 int __init early_init_dt_scan_chosen_stdout(void)
941 {
942 int offset;
943 const char *p, *q, *options = NULL;
944 int l;
945 const struct earlycon_id **p_match;
946 const void *fdt = initial_boot_params;
947
948 offset = fdt_path_offset(fdt, "/chosen");
949 if (offset < 0)
950 offset = fdt_path_offset(fdt, "/chosen@0");
951 if (offset < 0)
952 return -ENOENT;
953
954 p = fdt_getprop(fdt, offset, "stdout-path", &l);
955 if (!p)
956 p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
957 if (!p || !l)
958 return -ENOENT;
959
960 q = strchrnul(p, ':');
961 if (*q != '\0')
962 options = q + 1;
963 l = q - p;
964
965 /* Get the node specified by stdout-path */
966 offset = fdt_path_offset_namelen(fdt, p, l);
967 if (offset < 0) {
968 pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
969 return 0;
970 }
971
972 for (p_match = __earlycon_table; p_match < __earlycon_table_end;
973 p_match++) {
974 const struct earlycon_id *match = *p_match;
975
976 if (!match->compatible[0])
977 continue;
978
979 if (fdt_node_check_compatible(fdt, offset, match->compatible))
980 continue;
981
982 of_setup_earlycon(match, offset, options);
983 return 0;
984 }
985 return -ENODEV;
986 }
987 #endif
988
989 /**
990 * early_init_dt_scan_root - fetch the top level address and size cells
991 */
early_init_dt_scan_root(unsigned long node,const char * uname,int depth,void * data)992 int __init early_init_dt_scan_root(unsigned long node, const char *uname,
993 int depth, void *data)
994 {
995 const __be32 *prop;
996
997 if (depth != 0)
998 return 0;
999
1000 dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1001 dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1002
1003 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1004 if (prop)
1005 dt_root_size_cells = be32_to_cpup(prop);
1006 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1007
1008 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1009 if (prop)
1010 dt_root_addr_cells = be32_to_cpup(prop);
1011 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1012
1013 /* break now */
1014 return 1;
1015 }
1016
dt_mem_next_cell(int s,const __be32 ** cellp)1017 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1018 {
1019 const __be32 *p = *cellp;
1020
1021 *cellp = p + s;
1022 return of_read_number(p, s);
1023 }
1024
1025 /**
1026 * early_init_dt_scan_memory - Look for and parse memory nodes
1027 */
early_init_dt_scan_memory(unsigned long node,const char * uname,int depth,void * data)1028 int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
1029 int depth, void *data)
1030 {
1031 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1032 const __be32 *reg, *endp;
1033 int l;
1034 bool hotpluggable;
1035
1036 /* We are scanning "memory" nodes only */
1037 if (type == NULL || strcmp(type, "memory") != 0)
1038 return 0;
1039
1040 reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1041 if (reg == NULL)
1042 reg = of_get_flat_dt_prop(node, "reg", &l);
1043 if (reg == NULL)
1044 return 0;
1045
1046 endp = reg + (l / sizeof(__be32));
1047 hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1048
1049 pr_debug("memory scan node %s, reg size %d,\n", uname, l);
1050
1051 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1052 u64 base, size;
1053
1054 base = dt_mem_next_cell(dt_root_addr_cells, ®);
1055 size = dt_mem_next_cell(dt_root_size_cells, ®);
1056
1057 if (size == 0)
1058 continue;
1059 pr_debug(" - %llx , %llx\n", (unsigned long long)base,
1060 (unsigned long long)size);
1061
1062 early_init_dt_add_memory_arch(base, size);
1063
1064 if (!hotpluggable)
1065 continue;
1066
1067 if (early_init_dt_mark_hotplug_memory_arch(base, size))
1068 pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1069 base, base + size);
1070 }
1071
1072 return 0;
1073 }
1074
early_init_dt_scan_chosen(unsigned long node,const char * uname,int depth,void * data)1075 int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
1076 int depth, void *data)
1077 {
1078 int l;
1079 const char *p;
1080
1081 pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1082
1083 if (depth != 1 || !data ||
1084 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1085 return 0;
1086
1087 early_init_dt_check_for_initrd(node);
1088
1089 /* Retrieve command line */
1090 p = of_get_flat_dt_prop(node, "bootargs", &l);
1091 if (p != NULL && l > 0)
1092 strlcpy(data, p, min((int)l, COMMAND_LINE_SIZE));
1093
1094 /*
1095 * CONFIG_CMDLINE is meant to be a default in case nothing else
1096 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1097 * is set in which case we override whatever was found earlier.
1098 */
1099 #ifdef CONFIG_CMDLINE
1100 #if defined(CONFIG_CMDLINE_EXTEND)
1101 strlcat(data, " ", COMMAND_LINE_SIZE);
1102 strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1103 #elif defined(CONFIG_CMDLINE_FORCE)
1104 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1105 #else
1106 /* No arguments from boot loader, use kernel's cmdl*/
1107 if (!((char *)data)[0])
1108 strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1109 #endif
1110 #endif /* CONFIG_CMDLINE */
1111
1112 pr_debug("Command line is: %s\n", (char*)data);
1113
1114 /* break now */
1115 return 1;
1116 }
1117
1118 #ifdef CONFIG_HAVE_MEMBLOCK
1119 #ifndef MIN_MEMBLOCK_ADDR
1120 #define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET)
1121 #endif
1122 #ifndef MAX_MEMBLOCK_ADDR
1123 #define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0)
1124 #endif
1125
early_init_dt_add_memory_arch(u64 base,u64 size)1126 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1127 {
1128 const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1129
1130 if (!PAGE_ALIGNED(base)) {
1131 if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1132 pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1133 base, base + size);
1134 return;
1135 }
1136 size -= PAGE_SIZE - (base & ~PAGE_MASK);
1137 base = PAGE_ALIGN(base);
1138 }
1139 size &= PAGE_MASK;
1140
1141 if (base > MAX_MEMBLOCK_ADDR) {
1142 pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1143 base, base + size);
1144 return;
1145 }
1146
1147 if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1148 pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1149 ((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1150 size = MAX_MEMBLOCK_ADDR - base + 1;
1151 }
1152
1153 if (base + size < phys_offset) {
1154 pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
1155 base, base + size);
1156 return;
1157 }
1158 if (base < phys_offset) {
1159 pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
1160 base, phys_offset);
1161 size -= phys_offset - base;
1162 base = phys_offset;
1163 }
1164 memblock_add(base, size);
1165 }
1166
early_init_dt_mark_hotplug_memory_arch(u64 base,u64 size)1167 int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1168 {
1169 return memblock_mark_hotplug(base, size);
1170 }
1171
early_init_dt_reserve_memory_arch(phys_addr_t base,phys_addr_t size,bool nomap)1172 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1173 phys_addr_t size, bool nomap)
1174 {
1175 if (nomap)
1176 return memblock_remove(base, size);
1177 return memblock_reserve(base, size);
1178 }
1179
1180 #else
early_init_dt_add_memory_arch(u64 base,u64 size)1181 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1182 {
1183 WARN_ON(1);
1184 }
1185
early_init_dt_mark_hotplug_memory_arch(u64 base,u64 size)1186 int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
1187 {
1188 return -ENOSYS;
1189 }
1190
early_init_dt_reserve_memory_arch(phys_addr_t base,phys_addr_t size,bool nomap)1191 int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
1192 phys_addr_t size, bool nomap)
1193 {
1194 pr_err("Reserved memory not supported, ignoring range %pa - %pa%s\n",
1195 &base, &size, nomap ? " (nomap)" : "");
1196 return -ENOSYS;
1197 }
1198 #endif
1199
early_init_dt_alloc_memory_arch(u64 size,u64 align)1200 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1201 {
1202 return memblock_virt_alloc(size, align);
1203 }
1204
early_init_dt_verify(void * params)1205 bool __init early_init_dt_verify(void *params)
1206 {
1207 if (!params)
1208 return false;
1209
1210 /* check device tree validity */
1211 if (fdt_check_header(params))
1212 return false;
1213
1214 /* Setup flat device-tree pointer */
1215 initial_boot_params = params;
1216 of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1217 fdt_totalsize(initial_boot_params));
1218 return true;
1219 }
1220
1221
early_init_dt_scan_nodes(void)1222 void __init early_init_dt_scan_nodes(void)
1223 {
1224 /* Retrieve various information from the /chosen node */
1225 of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
1226
1227 /* Initialize {size,address}-cells info */
1228 of_scan_flat_dt(early_init_dt_scan_root, NULL);
1229
1230 /* Setup memory, calling early_init_dt_add_memory_arch */
1231 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1232 }
1233
early_init_dt_scan(void * params)1234 bool __init early_init_dt_scan(void *params)
1235 {
1236 bool status;
1237
1238 status = early_init_dt_verify(params);
1239 if (!status)
1240 return false;
1241
1242 early_init_dt_scan_nodes();
1243 return true;
1244 }
1245
1246 /**
1247 * unflatten_device_tree - create tree of device_nodes from flat blob
1248 *
1249 * unflattens the device-tree passed by the firmware, creating the
1250 * tree of struct device_node. It also fills the "name" and "type"
1251 * pointers of the nodes so the normal device-tree walking functions
1252 * can be used.
1253 */
unflatten_device_tree(void)1254 void __init unflatten_device_tree(void)
1255 {
1256 __unflatten_device_tree(initial_boot_params, NULL, &of_root,
1257 early_init_dt_alloc_memory_arch, false);
1258
1259 /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1260 of_alias_scan(early_init_dt_alloc_memory_arch);
1261
1262 unittest_unflatten_overlay_base();
1263 }
1264
1265 /**
1266 * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1267 *
1268 * Copies and unflattens the device-tree passed by the firmware, creating the
1269 * tree of struct device_node. It also fills the "name" and "type"
1270 * pointers of the nodes so the normal device-tree walking functions
1271 * can be used. This should only be used when the FDT memory has not been
1272 * reserved such is the case when the FDT is built-in to the kernel init
1273 * section. If the FDT memory is reserved already then unflatten_device_tree
1274 * should be used instead.
1275 */
unflatten_and_copy_device_tree(void)1276 void __init unflatten_and_copy_device_tree(void)
1277 {
1278 int size;
1279 void *dt;
1280
1281 if (!initial_boot_params) {
1282 pr_warn("No valid device tree found, continuing without\n");
1283 return;
1284 }
1285
1286 size = fdt_totalsize(initial_boot_params);
1287 dt = early_init_dt_alloc_memory_arch(size,
1288 roundup_pow_of_two(FDT_V17_SIZE));
1289
1290 if (dt) {
1291 memcpy(dt, initial_boot_params, size);
1292 initial_boot_params = dt;
1293 }
1294 unflatten_device_tree();
1295 }
1296
1297 #ifdef CONFIG_SYSFS
of_fdt_raw_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)1298 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1299 struct bin_attribute *bin_attr,
1300 char *buf, loff_t off, size_t count)
1301 {
1302 memcpy(buf, initial_boot_params + off, count);
1303 return count;
1304 }
1305
of_fdt_raw_init(void)1306 static int __init of_fdt_raw_init(void)
1307 {
1308 static struct bin_attribute of_fdt_raw_attr =
1309 __BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1310
1311 if (!initial_boot_params)
1312 return 0;
1313
1314 if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1315 fdt_totalsize(initial_boot_params))) {
1316 pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1317 return 0;
1318 }
1319 of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1320 return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1321 }
1322 late_initcall(of_fdt_raw_init);
1323 #endif
1324
1325 #endif /* CONFIG_OF_EARLY_FLATTREE */
1326