1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions for working with the Flattened Device Tree data format
4  *
5  * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6  * benh@kernel.crashing.org
7  */
8 
9 #define pr_fmt(fmt)	"OF: fdt: " fmt
10 
11 #include <linux/crash_dump.h>
12 #include <linux/crc32.h>
13 #include <linux/kernel.h>
14 #include <linux/initrd.h>
15 #include <linux/memblock.h>
16 #include <linux/mutex.h>
17 #include <linux/of.h>
18 #include <linux/of_fdt.h>
19 #include <linux/of_reserved_mem.h>
20 #include <linux/sizes.h>
21 #include <linux/string.h>
22 #include <linux/errno.h>
23 #include <linux/slab.h>
24 #include <linux/libfdt.h>
25 #include <linux/debugfs.h>
26 #include <linux/serial_core.h>
27 #include <linux/sysfs.h>
28 #include <linux/random.h>
29 
30 #include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
31 #include <asm/page.h>
32 
33 #include "of_private.h"
34 
35 /*
36  * of_fdt_limit_memory - limit the number of regions in the /memory node
37  * @limit: maximum entries
38  *
39  * Adjust the flattened device tree to have at most 'limit' number of
40  * memory entries in the /memory node. This function may be called
41  * any time after initial_boot_param is set.
42  */
of_fdt_limit_memory(int limit)43 void __init of_fdt_limit_memory(int limit)
44 {
45 	int memory;
46 	int len;
47 	const void *val;
48 	int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
49 	int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
50 	const __be32 *addr_prop;
51 	const __be32 *size_prop;
52 	int root_offset;
53 	int cell_size;
54 
55 	root_offset = fdt_path_offset(initial_boot_params, "/");
56 	if (root_offset < 0)
57 		return;
58 
59 	addr_prop = fdt_getprop(initial_boot_params, root_offset,
60 				"#address-cells", NULL);
61 	if (addr_prop)
62 		nr_address_cells = fdt32_to_cpu(*addr_prop);
63 
64 	size_prop = fdt_getprop(initial_boot_params, root_offset,
65 				"#size-cells", NULL);
66 	if (size_prop)
67 		nr_size_cells = fdt32_to_cpu(*size_prop);
68 
69 	cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
70 
71 	memory = fdt_path_offset(initial_boot_params, "/memory");
72 	if (memory > 0) {
73 		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
74 		if (len > limit*cell_size) {
75 			len = limit*cell_size;
76 			pr_debug("Limiting number of entries to %d\n", limit);
77 			fdt_setprop(initial_boot_params, memory, "reg", val,
78 					len);
79 		}
80 	}
81 }
82 
of_fdt_device_is_available(const void * blob,unsigned long node)83 static bool of_fdt_device_is_available(const void *blob, unsigned long node)
84 {
85 	const char *status = fdt_getprop(blob, node, "status", NULL);
86 
87 	if (!status)
88 		return true;
89 
90 	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
91 		return true;
92 
93 	return false;
94 }
95 
unflatten_dt_alloc(void ** mem,unsigned long size,unsigned long align)96 static void *unflatten_dt_alloc(void **mem, unsigned long size,
97 				       unsigned long align)
98 {
99 	void *res;
100 
101 	*mem = PTR_ALIGN(*mem, align);
102 	res = *mem;
103 	*mem += size;
104 
105 	return res;
106 }
107 
populate_properties(const void * blob,int offset,void ** mem,struct device_node * np,const char * nodename,bool dryrun)108 static void populate_properties(const void *blob,
109 				int offset,
110 				void **mem,
111 				struct device_node *np,
112 				const char *nodename,
113 				bool dryrun)
114 {
115 	struct property *pp, **pprev = NULL;
116 	int cur;
117 	bool has_name = false;
118 
119 	pprev = &np->properties;
120 	for (cur = fdt_first_property_offset(blob, offset);
121 	     cur >= 0;
122 	     cur = fdt_next_property_offset(blob, cur)) {
123 		const __be32 *val;
124 		const char *pname;
125 		u32 sz;
126 
127 		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
128 		if (!val) {
129 			pr_warn("Cannot locate property at 0x%x\n", cur);
130 			continue;
131 		}
132 
133 		if (!pname) {
134 			pr_warn("Cannot find property name at 0x%x\n", cur);
135 			continue;
136 		}
137 
138 		if (!strcmp(pname, "name"))
139 			has_name = true;
140 
141 		pp = unflatten_dt_alloc(mem, sizeof(struct property),
142 					__alignof__(struct property));
143 		if (dryrun)
144 			continue;
145 
146 		/* We accept flattened tree phandles either in
147 		 * ePAPR-style "phandle" properties, or the
148 		 * legacy "linux,phandle" properties.  If both
149 		 * appear and have different values, things
150 		 * will get weird. Don't do that.
151 		 */
152 		if (!strcmp(pname, "phandle") ||
153 		    !strcmp(pname, "linux,phandle")) {
154 			if (!np->phandle)
155 				np->phandle = be32_to_cpup(val);
156 		}
157 
158 		/* And we process the "ibm,phandle" property
159 		 * used in pSeries dynamic device tree
160 		 * stuff
161 		 */
162 		if (!strcmp(pname, "ibm,phandle"))
163 			np->phandle = be32_to_cpup(val);
164 
165 		pp->name   = (char *)pname;
166 		pp->length = sz;
167 		pp->value  = (__be32 *)val;
168 		*pprev     = pp;
169 		pprev      = &pp->next;
170 	}
171 
172 	/* With version 0x10 we may not have the name property,
173 	 * recreate it here from the unit name if absent
174 	 */
175 	if (!has_name) {
176 		const char *p = nodename, *ps = p, *pa = NULL;
177 		int len;
178 
179 		while (*p) {
180 			if ((*p) == '@')
181 				pa = p;
182 			else if ((*p) == '/')
183 				ps = p + 1;
184 			p++;
185 		}
186 
187 		if (pa < ps)
188 			pa = p;
189 		len = (pa - ps) + 1;
190 		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
191 					__alignof__(struct property));
192 		if (!dryrun) {
193 			pp->name   = "name";
194 			pp->length = len;
195 			pp->value  = pp + 1;
196 			*pprev     = pp;
197 			memcpy(pp->value, ps, len - 1);
198 			((char *)pp->value)[len - 1] = 0;
199 			pr_debug("fixed up name for %s -> %s\n",
200 				 nodename, (char *)pp->value);
201 		}
202 	}
203 }
204 
populate_node(const void * blob,int offset,void ** mem,struct device_node * dad,struct device_node ** pnp,bool dryrun)205 static int populate_node(const void *blob,
206 			  int offset,
207 			  void **mem,
208 			  struct device_node *dad,
209 			  struct device_node **pnp,
210 			  bool dryrun)
211 {
212 	struct device_node *np;
213 	const char *pathp;
214 	int len;
215 
216 	pathp = fdt_get_name(blob, offset, &len);
217 	if (!pathp) {
218 		*pnp = NULL;
219 		return len;
220 	}
221 
222 	len++;
223 
224 	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len,
225 				__alignof__(struct device_node));
226 	if (!dryrun) {
227 		char *fn;
228 		of_node_init(np);
229 		np->full_name = fn = ((char *)np) + sizeof(*np);
230 
231 		memcpy(fn, pathp, len);
232 
233 		if (dad != NULL) {
234 			np->parent = dad;
235 			np->sibling = dad->child;
236 			dad->child = np;
237 		}
238 	}
239 
240 	populate_properties(blob, offset, mem, np, pathp, dryrun);
241 	if (!dryrun) {
242 		np->name = of_get_property(np, "name", NULL);
243 		if (!np->name)
244 			np->name = "<NULL>";
245 	}
246 
247 	*pnp = np;
248 	return 0;
249 }
250 
reverse_nodes(struct device_node * parent)251 static void reverse_nodes(struct device_node *parent)
252 {
253 	struct device_node *child, *next;
254 
255 	/* In-depth first */
256 	child = parent->child;
257 	while (child) {
258 		reverse_nodes(child);
259 
260 		child = child->sibling;
261 	}
262 
263 	/* Reverse the nodes in the child list */
264 	child = parent->child;
265 	parent->child = NULL;
266 	while (child) {
267 		next = child->sibling;
268 
269 		child->sibling = parent->child;
270 		parent->child = child;
271 		child = next;
272 	}
273 }
274 
275 /**
276  * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
277  * @blob: The parent device tree blob
278  * @mem: Memory chunk to use for allocating device nodes and properties
279  * @dad: Parent struct device_node
280  * @nodepp: The device_node tree created by the call
281  *
282  * Return: The size of unflattened device tree or error code
283  */
unflatten_dt_nodes(const void * blob,void * mem,struct device_node * dad,struct device_node ** nodepp)284 static int unflatten_dt_nodes(const void *blob,
285 			      void *mem,
286 			      struct device_node *dad,
287 			      struct device_node **nodepp)
288 {
289 	struct device_node *root;
290 	int offset = 0, depth = 0, initial_depth = 0;
291 #define FDT_MAX_DEPTH	64
292 	struct device_node *nps[FDT_MAX_DEPTH];
293 	void *base = mem;
294 	bool dryrun = !base;
295 	int ret;
296 
297 	if (nodepp)
298 		*nodepp = NULL;
299 
300 	/*
301 	 * We're unflattening device sub-tree if @dad is valid. There are
302 	 * possibly multiple nodes in the first level of depth. We need
303 	 * set @depth to 1 to make fdt_next_node() happy as it bails
304 	 * immediately when negative @depth is found. Otherwise, the device
305 	 * nodes except the first one won't be unflattened successfully.
306 	 */
307 	if (dad)
308 		depth = initial_depth = 1;
309 
310 	root = dad;
311 	nps[depth] = dad;
312 
313 	for (offset = 0;
314 	     offset >= 0 && depth >= initial_depth;
315 	     offset = fdt_next_node(blob, offset, &depth)) {
316 		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1))
317 			continue;
318 
319 		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
320 		    !of_fdt_device_is_available(blob, offset))
321 			continue;
322 
323 		ret = populate_node(blob, offset, &mem, nps[depth],
324 				   &nps[depth+1], dryrun);
325 		if (ret < 0)
326 			return ret;
327 
328 		if (!dryrun && nodepp && !*nodepp)
329 			*nodepp = nps[depth+1];
330 		if (!dryrun && !root)
331 			root = nps[depth+1];
332 	}
333 
334 	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
335 		pr_err("Error %d processing FDT\n", offset);
336 		return -EINVAL;
337 	}
338 
339 	/*
340 	 * Reverse the child list. Some drivers assumes node order matches .dts
341 	 * node order
342 	 */
343 	if (!dryrun)
344 		reverse_nodes(root);
345 
346 	return mem - base;
347 }
348 
349 /**
350  * __unflatten_device_tree - create tree of device_nodes from flat blob
351  * @blob: The blob to expand
352  * @dad: Parent device node
353  * @mynodes: The device_node tree created by the call
354  * @dt_alloc: An allocator that provides a virtual address to memory
355  * for the resulting tree
356  * @detached: if true set OF_DETACHED on @mynodes
357  *
358  * unflattens a device-tree, creating the tree of struct device_node. It also
359  * fills the "name" and "type" pointers of the nodes so the normal device-tree
360  * walking functions can be used.
361  *
362  * Return: NULL on failure or the memory chunk containing the unflattened
363  * device tree on success.
364  */
__unflatten_device_tree(const void * blob,struct device_node * dad,struct device_node ** mynodes,void * (* dt_alloc)(u64 size,u64 align),bool detached)365 void *__unflatten_device_tree(const void *blob,
366 			      struct device_node *dad,
367 			      struct device_node **mynodes,
368 			      void *(*dt_alloc)(u64 size, u64 align),
369 			      bool detached)
370 {
371 	int size;
372 	void *mem;
373 	int ret;
374 
375 	if (mynodes)
376 		*mynodes = NULL;
377 
378 	pr_debug(" -> unflatten_device_tree()\n");
379 
380 	if (!blob) {
381 		pr_debug("No device tree pointer\n");
382 		return NULL;
383 	}
384 
385 	pr_debug("Unflattening device tree:\n");
386 	pr_debug("magic: %08x\n", fdt_magic(blob));
387 	pr_debug("size: %08x\n", fdt_totalsize(blob));
388 	pr_debug("version: %08x\n", fdt_version(blob));
389 
390 	if (fdt_check_header(blob)) {
391 		pr_err("Invalid device tree blob header\n");
392 		return NULL;
393 	}
394 
395 	/* First pass, scan for size */
396 	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
397 	if (size <= 0)
398 		return NULL;
399 
400 	size = ALIGN(size, 4);
401 	pr_debug("  size is %d, allocating...\n", size);
402 
403 	/* Allocate memory for the expanded device tree */
404 	mem = dt_alloc(size + 4, __alignof__(struct device_node));
405 	if (!mem)
406 		return NULL;
407 
408 	memset(mem, 0, size);
409 
410 	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
411 
412 	pr_debug("  unflattening %p...\n", mem);
413 
414 	/* Second pass, do actual unflattening */
415 	ret = unflatten_dt_nodes(blob, mem, dad, mynodes);
416 
417 	if (be32_to_cpup(mem + size) != 0xdeadbeef)
418 		pr_warn("End of tree marker overwritten: %08x\n",
419 			be32_to_cpup(mem + size));
420 
421 	if (ret <= 0)
422 		return NULL;
423 
424 	if (detached && mynodes && *mynodes) {
425 		of_node_set_flag(*mynodes, OF_DETACHED);
426 		pr_debug("unflattened tree is detached\n");
427 	}
428 
429 	pr_debug(" <- unflatten_device_tree()\n");
430 	return mem;
431 }
432 
kernel_tree_alloc(u64 size,u64 align)433 static void *kernel_tree_alloc(u64 size, u64 align)
434 {
435 	return kzalloc(size, GFP_KERNEL);
436 }
437 
438 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
439 
440 /**
441  * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
442  * @blob: Flat device tree blob
443  * @dad: Parent device node
444  * @mynodes: The device tree created by the call
445  *
446  * unflattens the device-tree passed by the firmware, creating the
447  * tree of struct device_node. It also fills the "name" and "type"
448  * pointers of the nodes so the normal device-tree walking functions
449  * can be used.
450  *
451  * Return: NULL on failure or the memory chunk containing the unflattened
452  * device tree on success.
453  */
of_fdt_unflatten_tree(const unsigned long * blob,struct device_node * dad,struct device_node ** mynodes)454 void *of_fdt_unflatten_tree(const unsigned long *blob,
455 			    struct device_node *dad,
456 			    struct device_node **mynodes)
457 {
458 	void *mem;
459 
460 	mutex_lock(&of_fdt_unflatten_mutex);
461 	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
462 				      true);
463 	mutex_unlock(&of_fdt_unflatten_mutex);
464 
465 	return mem;
466 }
467 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
468 
469 /* Everything below here references initial_boot_params directly. */
470 int __initdata dt_root_addr_cells;
471 int __initdata dt_root_size_cells;
472 
473 void *initial_boot_params __ro_after_init;
474 
475 #ifdef CONFIG_OF_EARLY_FLATTREE
476 
477 static u32 of_fdt_crc32;
478 
early_init_dt_reserve_memory(phys_addr_t base,phys_addr_t size,bool nomap)479 static int __init early_init_dt_reserve_memory(phys_addr_t base,
480 					       phys_addr_t size, bool nomap)
481 {
482 	if (nomap) {
483 		/*
484 		 * If the memory is already reserved (by another region), we
485 		 * should not allow it to be marked nomap, but don't worry
486 		 * if the region isn't memory as it won't be mapped.
487 		 */
488 		if (memblock_overlaps_region(&memblock.memory, base, size) &&
489 		    memblock_is_region_reserved(base, size))
490 			return -EBUSY;
491 
492 		return memblock_mark_nomap(base, size);
493 	}
494 	return memblock_reserve(base, size);
495 }
496 
497 /*
498  * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
499  */
__reserved_mem_reserve_reg(unsigned long node,const char * uname)500 static int __init __reserved_mem_reserve_reg(unsigned long node,
501 					     const char *uname)
502 {
503 	int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
504 	phys_addr_t base, size;
505 	int len;
506 	const __be32 *prop;
507 	int first = 1;
508 	bool nomap;
509 
510 	prop = of_get_flat_dt_prop(node, "reg", &len);
511 	if (!prop)
512 		return -ENOENT;
513 
514 	if (len && len % t_len != 0) {
515 		pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
516 		       uname);
517 		return -EINVAL;
518 	}
519 
520 	nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
521 
522 	while (len >= t_len) {
523 		base = dt_mem_next_cell(dt_root_addr_cells, &prop);
524 		size = dt_mem_next_cell(dt_root_size_cells, &prop);
525 
526 		if (size &&
527 		    early_init_dt_reserve_memory(base, size, nomap) == 0)
528 			pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
529 				uname, &base, (unsigned long)(size / SZ_1M));
530 		else
531 			pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
532 			       uname, &base, (unsigned long)(size / SZ_1M));
533 
534 		len -= t_len;
535 		if (first) {
536 			fdt_reserved_mem_save_node(node, uname, base, size);
537 			first = 0;
538 		}
539 	}
540 	return 0;
541 }
542 
543 /*
544  * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
545  * in /reserved-memory matches the values supported by the current implementation,
546  * also check if ranges property has been provided
547  */
__reserved_mem_check_root(unsigned long node)548 static int __init __reserved_mem_check_root(unsigned long node)
549 {
550 	const __be32 *prop;
551 
552 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
553 	if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
554 		return -EINVAL;
555 
556 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
557 	if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
558 		return -EINVAL;
559 
560 	prop = of_get_flat_dt_prop(node, "ranges", NULL);
561 	if (!prop)
562 		return -EINVAL;
563 	return 0;
564 }
565 
566 /*
567  * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
568  */
fdt_scan_reserved_mem(void)569 static int __init fdt_scan_reserved_mem(void)
570 {
571 	int node, child;
572 	const void *fdt = initial_boot_params;
573 
574 	node = fdt_path_offset(fdt, "/reserved-memory");
575 	if (node < 0)
576 		return -ENODEV;
577 
578 	if (__reserved_mem_check_root(node) != 0) {
579 		pr_err("Reserved memory: unsupported node format, ignoring\n");
580 		return -EINVAL;
581 	}
582 
583 	fdt_for_each_subnode(child, fdt, node) {
584 		const char *uname;
585 		int err;
586 
587 		if (!of_fdt_device_is_available(fdt, child))
588 			continue;
589 
590 		uname = fdt_get_name(fdt, child, NULL);
591 
592 		err = __reserved_mem_reserve_reg(child, uname);
593 		if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL))
594 			fdt_reserved_mem_save_node(child, uname, 0, 0);
595 	}
596 	return 0;
597 }
598 
599 /*
600  * fdt_reserve_elfcorehdr() - reserves memory for elf core header
601  *
602  * This function reserves the memory occupied by an elf core header
603  * described in the device tree. This region contains all the
604  * information about primary kernel's core image and is used by a dump
605  * capture kernel to access the system memory on primary kernel.
606  */
fdt_reserve_elfcorehdr(void)607 static void __init fdt_reserve_elfcorehdr(void)
608 {
609 	if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size)
610 		return;
611 
612 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
613 		pr_warn("elfcorehdr is overlapped\n");
614 		return;
615 	}
616 
617 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
618 
619 	pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
620 		elfcorehdr_size >> 10, elfcorehdr_addr);
621 }
622 
623 /**
624  * early_init_fdt_scan_reserved_mem() - create reserved memory regions
625  *
626  * This function grabs memory from early allocator for device exclusive use
627  * defined in device tree structures. It should be called by arch specific code
628  * once the early allocator (i.e. memblock) has been fully activated.
629  */
early_init_fdt_scan_reserved_mem(void)630 void __init early_init_fdt_scan_reserved_mem(void)
631 {
632 	int n;
633 	u64 base, size;
634 
635 	if (!initial_boot_params)
636 		return;
637 
638 	fdt_scan_reserved_mem();
639 	fdt_reserve_elfcorehdr();
640 
641 	/* Process header /memreserve/ fields */
642 	for (n = 0; ; n++) {
643 		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
644 		if (!size)
645 			break;
646 		memblock_reserve(base, size);
647 	}
648 
649 	fdt_init_reserved_mem();
650 }
651 
652 /**
653  * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
654  */
early_init_fdt_reserve_self(void)655 void __init early_init_fdt_reserve_self(void)
656 {
657 	if (!initial_boot_params)
658 		return;
659 
660 	/* Reserve the dtb region */
661 	memblock_reserve(__pa(initial_boot_params),
662 			 fdt_totalsize(initial_boot_params));
663 }
664 
665 /**
666  * of_scan_flat_dt - scan flattened tree blob and call callback on each.
667  * @it: callback function
668  * @data: context data pointer
669  *
670  * This function is used to scan the flattened device-tree, it is
671  * used to extract the memory information at boot before we can
672  * unflatten the tree
673  */
of_scan_flat_dt(int (* it)(unsigned long node,const char * uname,int depth,void * data),void * data)674 int __init of_scan_flat_dt(int (*it)(unsigned long node,
675 				     const char *uname, int depth,
676 				     void *data),
677 			   void *data)
678 {
679 	const void *blob = initial_boot_params;
680 	const char *pathp;
681 	int offset, rc = 0, depth = -1;
682 
683 	if (!blob)
684 		return 0;
685 
686 	for (offset = fdt_next_node(blob, -1, &depth);
687 	     offset >= 0 && depth >= 0 && !rc;
688 	     offset = fdt_next_node(blob, offset, &depth)) {
689 
690 		pathp = fdt_get_name(blob, offset, NULL);
691 		rc = it(offset, pathp, depth, data);
692 	}
693 	return rc;
694 }
695 
696 /**
697  * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
698  * @parent: parent node
699  * @it: callback function
700  * @data: context data pointer
701  *
702  * This function is used to scan sub-nodes of a node.
703  */
of_scan_flat_dt_subnodes(unsigned long parent,int (* it)(unsigned long node,const char * uname,void * data),void * data)704 int __init of_scan_flat_dt_subnodes(unsigned long parent,
705 				    int (*it)(unsigned long node,
706 					      const char *uname,
707 					      void *data),
708 				    void *data)
709 {
710 	const void *blob = initial_boot_params;
711 	int node;
712 
713 	fdt_for_each_subnode(node, blob, parent) {
714 		const char *pathp;
715 		int rc;
716 
717 		pathp = fdt_get_name(blob, node, NULL);
718 		rc = it(node, pathp, data);
719 		if (rc)
720 			return rc;
721 	}
722 	return 0;
723 }
724 
725 /**
726  * of_get_flat_dt_subnode_by_name - get the subnode by given name
727  *
728  * @node: the parent node
729  * @uname: the name of subnode
730  * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
731  */
732 
of_get_flat_dt_subnode_by_name(unsigned long node,const char * uname)733 int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
734 {
735 	return fdt_subnode_offset(initial_boot_params, node, uname);
736 }
737 
738 /*
739  * of_get_flat_dt_root - find the root node in the flat blob
740  */
of_get_flat_dt_root(void)741 unsigned long __init of_get_flat_dt_root(void)
742 {
743 	return 0;
744 }
745 
746 /*
747  * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
748  *
749  * This function can be used within scan_flattened_dt callback to get
750  * access to properties
751  */
of_get_flat_dt_prop(unsigned long node,const char * name,int * size)752 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
753 				       int *size)
754 {
755 	return fdt_getprop(initial_boot_params, node, name, size);
756 }
757 
758 /**
759  * of_fdt_is_compatible - Return true if given node from the given blob has
760  * compat in its compatible list
761  * @blob: A device tree blob
762  * @node: node to test
763  * @compat: compatible string to compare with compatible list.
764  *
765  * Return: a non-zero value on match with smaller values returned for more
766  * specific compatible values.
767  */
of_fdt_is_compatible(const void * blob,unsigned long node,const char * compat)768 static int of_fdt_is_compatible(const void *blob,
769 		      unsigned long node, const char *compat)
770 {
771 	const char *cp;
772 	int cplen;
773 	unsigned long l, score = 0;
774 
775 	cp = fdt_getprop(blob, node, "compatible", &cplen);
776 	if (cp == NULL)
777 		return 0;
778 	while (cplen > 0) {
779 		score++;
780 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
781 			return score;
782 		l = strlen(cp) + 1;
783 		cp += l;
784 		cplen -= l;
785 	}
786 
787 	return 0;
788 }
789 
790 /**
791  * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
792  * @node: node to test
793  * @compat: compatible string to compare with compatible list.
794  */
of_flat_dt_is_compatible(unsigned long node,const char * compat)795 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
796 {
797 	return of_fdt_is_compatible(initial_boot_params, node, compat);
798 }
799 
800 /*
801  * of_flat_dt_match - Return true if node matches a list of compatible values
802  */
of_flat_dt_match(unsigned long node,const char * const * compat)803 static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
804 {
805 	unsigned int tmp, score = 0;
806 
807 	if (!compat)
808 		return 0;
809 
810 	while (*compat) {
811 		tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
812 		if (tmp && (score == 0 || (tmp < score)))
813 			score = tmp;
814 		compat++;
815 	}
816 
817 	return score;
818 }
819 
820 /*
821  * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle
822  */
of_get_flat_dt_phandle(unsigned long node)823 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
824 {
825 	return fdt_get_phandle(initial_boot_params, node);
826 }
827 
of_flat_dt_get_machine_name(void)828 const char * __init of_flat_dt_get_machine_name(void)
829 {
830 	const char *name;
831 	unsigned long dt_root = of_get_flat_dt_root();
832 
833 	name = of_get_flat_dt_prop(dt_root, "model", NULL);
834 	if (!name)
835 		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
836 	return name;
837 }
838 
839 /**
840  * of_flat_dt_match_machine - Iterate match tables to find matching machine.
841  *
842  * @default_match: A machine specific ptr to return in case of no match.
843  * @get_next_compat: callback function to return next compatible match table.
844  *
845  * Iterate through machine match tables to find the best match for the machine
846  * compatible string in the FDT.
847  */
of_flat_dt_match_machine(const void * default_match,const void * (* get_next_compat)(const char * const **))848 const void * __init of_flat_dt_match_machine(const void *default_match,
849 		const void * (*get_next_compat)(const char * const**))
850 {
851 	const void *data = NULL;
852 	const void *best_data = default_match;
853 	const char *const *compat;
854 	unsigned long dt_root;
855 	unsigned int best_score = ~1, score = 0;
856 
857 	dt_root = of_get_flat_dt_root();
858 	while ((data = get_next_compat(&compat))) {
859 		score = of_flat_dt_match(dt_root, compat);
860 		if (score > 0 && score < best_score) {
861 			best_data = data;
862 			best_score = score;
863 		}
864 	}
865 	if (!best_data) {
866 		const char *prop;
867 		int size;
868 
869 		pr_err("\n unrecognized device tree list:\n[ ");
870 
871 		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
872 		if (prop) {
873 			while (size > 0) {
874 				printk("'%s' ", prop);
875 				size -= strlen(prop) + 1;
876 				prop += strlen(prop) + 1;
877 			}
878 		}
879 		printk("]\n\n");
880 		return NULL;
881 	}
882 
883 	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
884 
885 	return best_data;
886 }
887 
__early_init_dt_declare_initrd(unsigned long start,unsigned long end)888 static void __early_init_dt_declare_initrd(unsigned long start,
889 					   unsigned long end)
890 {
891 	/*
892 	 * __va() is not yet available this early on some platforms. In that
893 	 * case, the platform uses phys_initrd_start/phys_initrd_size instead
894 	 * and does the VA conversion itself.
895 	 */
896 	if (!IS_ENABLED(CONFIG_ARM64) &&
897 	    !(IS_ENABLED(CONFIG_RISCV) && IS_ENABLED(CONFIG_64BIT))) {
898 		initrd_start = (unsigned long)__va(start);
899 		initrd_end = (unsigned long)__va(end);
900 		initrd_below_start_ok = 1;
901 	}
902 }
903 
904 /**
905  * early_init_dt_check_for_initrd - Decode initrd location from flat tree
906  * @node: reference to node containing initrd location ('chosen')
907  */
early_init_dt_check_for_initrd(unsigned long node)908 static void __init early_init_dt_check_for_initrd(unsigned long node)
909 {
910 	u64 start, end;
911 	int len;
912 	const __be32 *prop;
913 
914 	if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
915 		return;
916 
917 	pr_debug("Looking for initrd properties... ");
918 
919 	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
920 	if (!prop)
921 		return;
922 	start = of_read_number(prop, len/4);
923 
924 	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
925 	if (!prop)
926 		return;
927 	end = of_read_number(prop, len/4);
928 	if (start > end)
929 		return;
930 
931 	__early_init_dt_declare_initrd(start, end);
932 	phys_initrd_start = start;
933 	phys_initrd_size = end - start;
934 
935 	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n", start, end);
936 }
937 
938 /**
939  * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat
940  * tree
941  * @node: reference to node containing elfcorehdr location ('chosen')
942  */
early_init_dt_check_for_elfcorehdr(unsigned long node)943 static void __init early_init_dt_check_for_elfcorehdr(unsigned long node)
944 {
945 	const __be32 *prop;
946 	int len;
947 
948 	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
949 		return;
950 
951 	pr_debug("Looking for elfcorehdr property... ");
952 
953 	prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
954 	if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
955 		return;
956 
957 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
958 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop);
959 
960 	pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n",
961 		 elfcorehdr_addr, elfcorehdr_size);
962 }
963 
964 static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND;
965 
966 /*
967  * The main usage of linux,usable-memory-range is for crash dump kernel.
968  * Originally, the number of usable-memory regions is one. Now there may
969  * be two regions, low region and high region.
970  * To make compatibility with existing user-space and older kdump, the low
971  * region is always the last range of linux,usable-memory-range if exist.
972  */
973 #define MAX_USABLE_RANGES		2
974 
975 /**
976  * early_init_dt_check_for_usable_mem_range - Decode usable memory range
977  * location from flat tree
978  */
early_init_dt_check_for_usable_mem_range(void)979 void __init early_init_dt_check_for_usable_mem_range(void)
980 {
981 	struct memblock_region rgn[MAX_USABLE_RANGES] = {0};
982 	const __be32 *prop, *endp;
983 	int len, i;
984 	unsigned long node = chosen_node_offset;
985 
986 	if ((long)node < 0)
987 		return;
988 
989 	pr_debug("Looking for usable-memory-range property... ");
990 
991 	prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
992 	if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells)))
993 		return;
994 
995 	endp = prop + (len / sizeof(__be32));
996 	for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) {
997 		rgn[i].base = dt_mem_next_cell(dt_root_addr_cells, &prop);
998 		rgn[i].size = dt_mem_next_cell(dt_root_size_cells, &prop);
999 
1000 		pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n",
1001 			 i, &rgn[i].base, &rgn[i].size);
1002 	}
1003 
1004 	memblock_cap_memory_range(rgn[0].base, rgn[0].size);
1005 	for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++)
1006 		memblock_add(rgn[i].base, rgn[i].size);
1007 }
1008 
1009 #ifdef CONFIG_SERIAL_EARLYCON
1010 
early_init_dt_scan_chosen_stdout(void)1011 int __init early_init_dt_scan_chosen_stdout(void)
1012 {
1013 	int offset;
1014 	const char *p, *q, *options = NULL;
1015 	int l;
1016 	const struct earlycon_id *match;
1017 	const void *fdt = initial_boot_params;
1018 	int ret;
1019 
1020 	offset = fdt_path_offset(fdt, "/chosen");
1021 	if (offset < 0)
1022 		offset = fdt_path_offset(fdt, "/chosen@0");
1023 	if (offset < 0)
1024 		return -ENOENT;
1025 
1026 	p = fdt_getprop(fdt, offset, "stdout-path", &l);
1027 	if (!p)
1028 		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
1029 	if (!p || !l)
1030 		return -ENOENT;
1031 
1032 	q = strchrnul(p, ':');
1033 	if (*q != '\0')
1034 		options = q + 1;
1035 	l = q - p;
1036 
1037 	/* Get the node specified by stdout-path */
1038 	offset = fdt_path_offset_namelen(fdt, p, l);
1039 	if (offset < 0) {
1040 		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
1041 		return 0;
1042 	}
1043 
1044 	for (match = __earlycon_table; match < __earlycon_table_end; match++) {
1045 		if (!match->compatible[0])
1046 			continue;
1047 
1048 		if (fdt_node_check_compatible(fdt, offset, match->compatible))
1049 			continue;
1050 
1051 		ret = of_setup_earlycon(match, offset, options);
1052 		if (!ret || ret == -EALREADY)
1053 			return 0;
1054 	}
1055 	return -ENODEV;
1056 }
1057 #endif
1058 
1059 /*
1060  * early_init_dt_scan_root - fetch the top level address and size cells
1061  */
early_init_dt_scan_root(void)1062 int __init early_init_dt_scan_root(void)
1063 {
1064 	const __be32 *prop;
1065 	const void *fdt = initial_boot_params;
1066 	int node = fdt_path_offset(fdt, "/");
1067 
1068 	if (node < 0)
1069 		return -ENODEV;
1070 
1071 	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
1072 	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
1073 
1074 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1075 	if (prop)
1076 		dt_root_size_cells = be32_to_cpup(prop);
1077 	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
1078 
1079 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1080 	if (prop)
1081 		dt_root_addr_cells = be32_to_cpup(prop);
1082 	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1083 
1084 	return 0;
1085 }
1086 
dt_mem_next_cell(int s,const __be32 ** cellp)1087 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
1088 {
1089 	const __be32 *p = *cellp;
1090 
1091 	*cellp = p + s;
1092 	return of_read_number(p, s);
1093 }
1094 
1095 /*
1096  * early_init_dt_scan_memory - Look for and parse memory nodes
1097  */
early_init_dt_scan_memory(void)1098 int __init early_init_dt_scan_memory(void)
1099 {
1100 	int node, found_memory = 0;
1101 	const void *fdt = initial_boot_params;
1102 
1103 	fdt_for_each_subnode(node, fdt, 0) {
1104 		const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1105 		const __be32 *reg, *endp;
1106 		int l;
1107 		bool hotpluggable;
1108 
1109 		/* We are scanning "memory" nodes only */
1110 		if (type == NULL || strcmp(type, "memory") != 0)
1111 			continue;
1112 
1113 		if (!of_fdt_device_is_available(fdt, node))
1114 			continue;
1115 
1116 		reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1117 		if (reg == NULL)
1118 			reg = of_get_flat_dt_prop(node, "reg", &l);
1119 		if (reg == NULL)
1120 			continue;
1121 
1122 		endp = reg + (l / sizeof(__be32));
1123 		hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
1124 
1125 		pr_debug("memory scan node %s, reg size %d,\n",
1126 			 fdt_get_name(fdt, node, NULL), l);
1127 
1128 		while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1129 			u64 base, size;
1130 
1131 			base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1132 			size = dt_mem_next_cell(dt_root_size_cells, &reg);
1133 
1134 			if (size == 0)
1135 				continue;
1136 			pr_debug(" - %llx, %llx\n", base, size);
1137 
1138 			early_init_dt_add_memory_arch(base, size);
1139 
1140 			found_memory = 1;
1141 
1142 			if (!hotpluggable)
1143 				continue;
1144 
1145 			if (memblock_mark_hotplug(base, size))
1146 				pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1147 					base, base + size);
1148 		}
1149 	}
1150 	return found_memory;
1151 }
1152 
early_init_dt_scan_chosen(char * cmdline)1153 int __init early_init_dt_scan_chosen(char *cmdline)
1154 {
1155 	int l, node;
1156 	const char *p;
1157 	const void *rng_seed;
1158 	const void *fdt = initial_boot_params;
1159 
1160 	node = fdt_path_offset(fdt, "/chosen");
1161 	if (node < 0)
1162 		node = fdt_path_offset(fdt, "/chosen@0");
1163 	if (node < 0)
1164 		/* Handle the cmdline config options even if no /chosen node */
1165 		goto handle_cmdline;
1166 
1167 	chosen_node_offset = node;
1168 
1169 	early_init_dt_check_for_initrd(node);
1170 	early_init_dt_check_for_elfcorehdr(node);
1171 
1172 	rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1173 	if (rng_seed && l > 0) {
1174 		add_bootloader_randomness(rng_seed, l);
1175 
1176 		/* try to clear seed so it won't be found. */
1177 		fdt_nop_property(initial_boot_params, node, "rng-seed");
1178 
1179 		/* update CRC check value */
1180 		of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1181 				fdt_totalsize(initial_boot_params));
1182 	}
1183 
1184 	/* Retrieve command line */
1185 	p = of_get_flat_dt_prop(node, "bootargs", &l);
1186 	if (p != NULL && l > 0)
1187 		strscpy(cmdline, p, min(l, COMMAND_LINE_SIZE));
1188 
1189 handle_cmdline:
1190 	/*
1191 	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1192 	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1193 	 * is set in which case we override whatever was found earlier.
1194 	 */
1195 #ifdef CONFIG_CMDLINE
1196 #if defined(CONFIG_CMDLINE_EXTEND)
1197 	strlcat(cmdline, " ", COMMAND_LINE_SIZE);
1198 	strlcat(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1199 #elif defined(CONFIG_CMDLINE_FORCE)
1200 	strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1201 #else
1202 	/* No arguments from boot loader, use kernel's  cmdl*/
1203 	if (!((char *)cmdline)[0])
1204 		strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1205 #endif
1206 #endif /* CONFIG_CMDLINE */
1207 
1208 	pr_debug("Command line is: %s\n", (char *)cmdline);
1209 
1210 	return 0;
1211 }
1212 
1213 #ifndef MIN_MEMBLOCK_ADDR
1214 #define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1215 #endif
1216 #ifndef MAX_MEMBLOCK_ADDR
1217 #define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1218 #endif
1219 
early_init_dt_add_memory_arch(u64 base,u64 size)1220 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1221 {
1222 	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1223 
1224 	if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1225 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1226 			base, base + size);
1227 		return;
1228 	}
1229 
1230 	if (!PAGE_ALIGNED(base)) {
1231 		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1232 		base = PAGE_ALIGN(base);
1233 	}
1234 	size &= PAGE_MASK;
1235 
1236 	if (base > MAX_MEMBLOCK_ADDR) {
1237 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1238 			base, base + size);
1239 		return;
1240 	}
1241 
1242 	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1243 		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1244 			((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1245 		size = MAX_MEMBLOCK_ADDR - base + 1;
1246 	}
1247 
1248 	if (base + size < phys_offset) {
1249 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1250 			base, base + size);
1251 		return;
1252 	}
1253 	if (base < phys_offset) {
1254 		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1255 			base, phys_offset);
1256 		size -= phys_offset - base;
1257 		base = phys_offset;
1258 	}
1259 	memblock_add(base, size);
1260 }
1261 
early_init_dt_alloc_memory_arch(u64 size,u64 align)1262 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1263 {
1264 	void *ptr = memblock_alloc(size, align);
1265 
1266 	if (!ptr)
1267 		panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1268 		      __func__, size, align);
1269 
1270 	return ptr;
1271 }
1272 
early_init_dt_verify(void * params)1273 bool __init early_init_dt_verify(void *params)
1274 {
1275 	if (!params)
1276 		return false;
1277 
1278 	/* check device tree validity */
1279 	if (fdt_check_header(params))
1280 		return false;
1281 
1282 	/* Setup flat device-tree pointer */
1283 	initial_boot_params = params;
1284 	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1285 				fdt_totalsize(initial_boot_params));
1286 	return true;
1287 }
1288 
1289 
early_init_dt_scan_nodes(void)1290 void __init early_init_dt_scan_nodes(void)
1291 {
1292 	int rc;
1293 
1294 	/* Initialize {size,address}-cells info */
1295 	early_init_dt_scan_root();
1296 
1297 	/* Retrieve various information from the /chosen node */
1298 	rc = early_init_dt_scan_chosen(boot_command_line);
1299 	if (rc)
1300 		pr_warn("No chosen node found, continuing without\n");
1301 
1302 	/* Setup memory, calling early_init_dt_add_memory_arch */
1303 	early_init_dt_scan_memory();
1304 
1305 	/* Handle linux,usable-memory-range property */
1306 	early_init_dt_check_for_usable_mem_range();
1307 }
1308 
early_init_dt_scan(void * params)1309 bool __init early_init_dt_scan(void *params)
1310 {
1311 	bool status;
1312 
1313 	status = early_init_dt_verify(params);
1314 	if (!status)
1315 		return false;
1316 
1317 	early_init_dt_scan_nodes();
1318 	return true;
1319 }
1320 
1321 /**
1322  * unflatten_device_tree - create tree of device_nodes from flat blob
1323  *
1324  * unflattens the device-tree passed by the firmware, creating the
1325  * tree of struct device_node. It also fills the "name" and "type"
1326  * pointers of the nodes so the normal device-tree walking functions
1327  * can be used.
1328  */
unflatten_device_tree(void)1329 void __init unflatten_device_tree(void)
1330 {
1331 	__unflatten_device_tree(initial_boot_params, NULL, &of_root,
1332 				early_init_dt_alloc_memory_arch, false);
1333 
1334 	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1335 	of_alias_scan(early_init_dt_alloc_memory_arch);
1336 
1337 	unittest_unflatten_overlay_base();
1338 }
1339 
1340 /**
1341  * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1342  *
1343  * Copies and unflattens the device-tree passed by the firmware, creating the
1344  * tree of struct device_node. It also fills the "name" and "type"
1345  * pointers of the nodes so the normal device-tree walking functions
1346  * can be used. This should only be used when the FDT memory has not been
1347  * reserved such is the case when the FDT is built-in to the kernel init
1348  * section. If the FDT memory is reserved already then unflatten_device_tree
1349  * should be used instead.
1350  */
unflatten_and_copy_device_tree(void)1351 void __init unflatten_and_copy_device_tree(void)
1352 {
1353 	int size;
1354 	void *dt;
1355 
1356 	if (!initial_boot_params) {
1357 		pr_warn("No valid device tree found, continuing without\n");
1358 		return;
1359 	}
1360 
1361 	size = fdt_totalsize(initial_boot_params);
1362 	dt = early_init_dt_alloc_memory_arch(size,
1363 					     roundup_pow_of_two(FDT_V17_SIZE));
1364 
1365 	if (dt) {
1366 		memcpy(dt, initial_boot_params, size);
1367 		initial_boot_params = dt;
1368 	}
1369 	unflatten_device_tree();
1370 }
1371 
1372 #ifdef CONFIG_SYSFS
of_fdt_raw_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)1373 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1374 			       struct bin_attribute *bin_attr,
1375 			       char *buf, loff_t off, size_t count)
1376 {
1377 	memcpy(buf, initial_boot_params + off, count);
1378 	return count;
1379 }
1380 
of_fdt_raw_init(void)1381 static int __init of_fdt_raw_init(void)
1382 {
1383 	static struct bin_attribute of_fdt_raw_attr =
1384 		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1385 
1386 	if (!initial_boot_params)
1387 		return 0;
1388 
1389 	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1390 				     fdt_totalsize(initial_boot_params))) {
1391 		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1392 		return 0;
1393 	}
1394 	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1395 	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1396 }
1397 late_initcall(of_fdt_raw_init);
1398 #endif
1399 
1400 #endif /* CONFIG_OF_EARLY_FLATTREE */
1401