1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /* Linux PRO/1000 Ethernet Driver main header file */
5
6 #ifndef _E1000_H_
7 #define _E1000_H_
8
9 #include <linux/bitops.h>
10 #include <linux/types.h>
11 #include <linux/timer.h>
12 #include <linux/workqueue.h>
13 #include <linux/io.h>
14 #include <linux/netdevice.h>
15 #include <linux/pci.h>
16 #include <linux/crc32.h>
17 #include <linux/if_vlan.h>
18 #include <linux/timecounter.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/ptp_clock_kernel.h>
21 #include <linux/ptp_classify.h>
22 #include <linux/mii.h>
23 #include <linux/mdio.h>
24 #include <linux/pm_qos.h>
25 #include "hw.h"
26
27 struct e1000_info;
28
29 #define e_dbg(format, arg...) \
30 netdev_dbg(hw->adapter->netdev, format, ## arg)
31 #define e_err(format, arg...) \
32 netdev_err(adapter->netdev, format, ## arg)
33 #define e_info(format, arg...) \
34 netdev_info(adapter->netdev, format, ## arg)
35 #define e_warn(format, arg...) \
36 netdev_warn(adapter->netdev, format, ## arg)
37 #define e_notice(format, arg...) \
38 netdev_notice(adapter->netdev, format, ## arg)
39
40 /* Interrupt modes, as used by the IntMode parameter */
41 #define E1000E_INT_MODE_LEGACY 0
42 #define E1000E_INT_MODE_MSI 1
43 #define E1000E_INT_MODE_MSIX 2
44
45 /* Tx/Rx descriptor defines */
46 #define E1000_DEFAULT_TXD 256
47 #define E1000_MAX_TXD 4096
48 #define E1000_MIN_TXD 64
49
50 #define E1000_DEFAULT_RXD 256
51 #define E1000_MAX_RXD 4096
52 #define E1000_MIN_RXD 64
53
54 #define E1000_MIN_ITR_USECS 10 /* 100000 irq/sec */
55 #define E1000_MAX_ITR_USECS 10000 /* 100 irq/sec */
56
57 #define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */
58
59 /* How many Tx Descriptors do we need to call netif_wake_queue ? */
60 /* How many Rx Buffers do we bundle into one write to the hardware ? */
61 #define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */
62
63 #define AUTO_ALL_MODES 0
64 #define E1000_EEPROM_APME 0x0400
65
66 #define E1000_MNG_VLAN_NONE (-1)
67
68 #define DEFAULT_JUMBO 9234
69
70 /* Time to wait before putting the device into D3 if there's no link (in ms). */
71 #define LINK_TIMEOUT 100
72
73 /* Count for polling __E1000_RESET condition every 10-20msec.
74 * Experimentation has shown the reset can take approximately 210msec.
75 */
76 #define E1000_CHECK_RESET_COUNT 25
77
78 #define PCICFG_DESC_RING_STATUS 0xe4
79 #define FLUSH_DESC_REQUIRED 0x100
80
81 /* in the case of WTHRESH, it appears at least the 82571/2 hardware
82 * writes back 4 descriptors when WTHRESH=5, and 3 descriptors when
83 * WTHRESH=4, so a setting of 5 gives the most efficient bus
84 * utilization but to avoid possible Tx stalls, set it to 1
85 */
86 #define E1000_TXDCTL_DMA_BURST_ENABLE \
87 (E1000_TXDCTL_GRAN | /* set descriptor granularity */ \
88 E1000_TXDCTL_COUNT_DESC | \
89 (1u << 16) | /* wthresh must be +1 more than desired */\
90 (1u << 8) | /* hthresh */ \
91 0x1f) /* pthresh */
92
93 #define E1000_RXDCTL_DMA_BURST_ENABLE \
94 (0x01000000 | /* set descriptor granularity */ \
95 (4u << 16) | /* set writeback threshold */ \
96 (4u << 8) | /* set prefetch threshold */ \
97 0x20) /* set hthresh */
98
99 #define E1000_TIDV_FPD BIT(31)
100 #define E1000_RDTR_FPD BIT(31)
101
102 enum e1000_boards {
103 board_82571,
104 board_82572,
105 board_82573,
106 board_82574,
107 board_82583,
108 board_80003es2lan,
109 board_ich8lan,
110 board_ich9lan,
111 board_ich10lan,
112 board_pchlan,
113 board_pch2lan,
114 board_pch_lpt,
115 board_pch_spt,
116 board_pch_cnp
117 };
118
119 struct e1000_ps_page {
120 struct page *page;
121 u64 dma; /* must be u64 - written to hw */
122 };
123
124 /* wrappers around a pointer to a socket buffer,
125 * so a DMA handle can be stored along with the buffer
126 */
127 struct e1000_buffer {
128 dma_addr_t dma;
129 struct sk_buff *skb;
130 union {
131 /* Tx */
132 struct {
133 unsigned long time_stamp;
134 u16 length;
135 u16 next_to_watch;
136 unsigned int segs;
137 unsigned int bytecount;
138 u16 mapped_as_page;
139 };
140 /* Rx */
141 struct {
142 /* arrays of page information for packet split */
143 struct e1000_ps_page *ps_pages;
144 struct page *page;
145 };
146 };
147 };
148
149 struct e1000_ring {
150 struct e1000_adapter *adapter; /* back pointer to adapter */
151 void *desc; /* pointer to ring memory */
152 dma_addr_t dma; /* phys address of ring */
153 unsigned int size; /* length of ring in bytes */
154 unsigned int count; /* number of desc. in ring */
155
156 u16 next_to_use;
157 u16 next_to_clean;
158
159 void __iomem *head;
160 void __iomem *tail;
161
162 /* array of buffer information structs */
163 struct e1000_buffer *buffer_info;
164
165 char name[IFNAMSIZ + 5];
166 u32 ims_val;
167 u32 itr_val;
168 void __iomem *itr_register;
169 int set_itr;
170
171 struct sk_buff *rx_skb_top;
172 };
173
174 /* PHY register snapshot values */
175 struct e1000_phy_regs {
176 u16 bmcr; /* basic mode control register */
177 u16 bmsr; /* basic mode status register */
178 u16 advertise; /* auto-negotiation advertisement */
179 u16 lpa; /* link partner ability register */
180 u16 expansion; /* auto-negotiation expansion reg */
181 u16 ctrl1000; /* 1000BASE-T control register */
182 u16 stat1000; /* 1000BASE-T status register */
183 u16 estatus; /* extended status register */
184 };
185
186 /* board specific private data structure */
187 struct e1000_adapter {
188 struct timer_list watchdog_timer;
189 struct timer_list phy_info_timer;
190 struct timer_list blink_timer;
191
192 struct work_struct reset_task;
193 struct work_struct watchdog_task;
194
195 const struct e1000_info *ei;
196
197 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
198 u32 bd_number;
199 u32 rx_buffer_len;
200 u16 mng_vlan_id;
201 u16 link_speed;
202 u16 link_duplex;
203 u16 eeprom_vers;
204
205 /* track device up/down/testing state */
206 unsigned long state;
207
208 /* Interrupt Throttle Rate */
209 u32 itr;
210 u32 itr_setting;
211 u16 tx_itr;
212 u16 rx_itr;
213
214 /* Tx - one ring per active queue */
215 struct e1000_ring *tx_ring ____cacheline_aligned_in_smp;
216 u32 tx_fifo_limit;
217
218 struct napi_struct napi;
219
220 unsigned int uncorr_errors; /* uncorrectable ECC errors */
221 unsigned int corr_errors; /* correctable ECC errors */
222 unsigned int restart_queue;
223 u32 txd_cmd;
224
225 bool detect_tx_hung;
226 bool tx_hang_recheck;
227 u8 tx_timeout_factor;
228
229 u32 tx_int_delay;
230 u32 tx_abs_int_delay;
231
232 unsigned int total_tx_bytes;
233 unsigned int total_tx_packets;
234 unsigned int total_rx_bytes;
235 unsigned int total_rx_packets;
236
237 /* Tx stats */
238 u64 tpt_old;
239 u64 colc_old;
240 u32 gotc;
241 u64 gotc_old;
242 u32 tx_timeout_count;
243 u32 tx_fifo_head;
244 u32 tx_head_addr;
245 u32 tx_fifo_size;
246 u32 tx_dma_failed;
247 u32 tx_hwtstamp_timeouts;
248 u32 tx_hwtstamp_skipped;
249
250 /* Rx */
251 bool (*clean_rx)(struct e1000_ring *ring, int *work_done,
252 int work_to_do) ____cacheline_aligned_in_smp;
253 void (*alloc_rx_buf)(struct e1000_ring *ring, int cleaned_count,
254 gfp_t gfp);
255 struct e1000_ring *rx_ring;
256
257 u32 rx_int_delay;
258 u32 rx_abs_int_delay;
259
260 /* Rx stats */
261 u64 hw_csum_err;
262 u64 hw_csum_good;
263 u64 rx_hdr_split;
264 u32 gorc;
265 u64 gorc_old;
266 u32 alloc_rx_buff_failed;
267 u32 rx_dma_failed;
268 u32 rx_hwtstamp_cleared;
269
270 unsigned int rx_ps_pages;
271 u16 rx_ps_bsize0;
272 u32 max_frame_size;
273 u32 min_frame_size;
274
275 /* OS defined structs */
276 struct net_device *netdev;
277 struct pci_dev *pdev;
278
279 /* structs defined in e1000_hw.h */
280 struct e1000_hw hw;
281
282 spinlock_t stats64_lock; /* protects statistics counters */
283 struct e1000_hw_stats stats;
284 struct e1000_phy_info phy_info;
285 struct e1000_phy_stats phy_stats;
286
287 /* Snapshot of PHY registers */
288 struct e1000_phy_regs phy_regs;
289
290 struct e1000_ring test_tx_ring;
291 struct e1000_ring test_rx_ring;
292 u32 test_icr;
293
294 u32 msg_enable;
295 unsigned int num_vectors;
296 struct msix_entry *msix_entries;
297 int int_mode;
298 u32 eiac_mask;
299
300 u32 eeprom_wol;
301 u32 wol;
302 u32 pba;
303 u32 max_hw_frame_size;
304
305 bool fc_autoneg;
306
307 unsigned int flags;
308 unsigned int flags2;
309 struct work_struct downshift_task;
310 struct work_struct update_phy_task;
311 struct work_struct print_hang_task;
312
313 int phy_hang_count;
314
315 u16 tx_ring_count;
316 u16 rx_ring_count;
317
318 struct hwtstamp_config hwtstamp_config;
319 struct delayed_work systim_overflow_work;
320 struct sk_buff *tx_hwtstamp_skb;
321 unsigned long tx_hwtstamp_start;
322 struct work_struct tx_hwtstamp_work;
323 spinlock_t systim_lock; /* protects SYSTIML/H regsters */
324 struct cyclecounter cc;
325 struct timecounter tc;
326 struct ptp_clock *ptp_clock;
327 struct ptp_clock_info ptp_clock_info;
328 struct pm_qos_request pm_qos_req;
329 s32 ptp_delta;
330
331 u16 eee_advert;
332 };
333
334 struct e1000_info {
335 enum e1000_mac_type mac;
336 unsigned int flags;
337 unsigned int flags2;
338 u32 pba;
339 u32 max_hw_frame_size;
340 s32 (*get_variants)(struct e1000_adapter *);
341 const struct e1000_mac_operations *mac_ops;
342 const struct e1000_phy_operations *phy_ops;
343 const struct e1000_nvm_operations *nvm_ops;
344 };
345
346 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca);
347
348 /* The system time is maintained by a 64-bit counter comprised of the 32-bit
349 * SYSTIMH and SYSTIML registers. How the counter increments (and therefore
350 * its resolution) is based on the contents of the TIMINCA register - it
351 * increments every incperiod (bits 31:24) clock ticks by incvalue (bits 23:0).
352 * For the best accuracy, the incperiod should be as small as possible. The
353 * incvalue is scaled by a factor as large as possible (while still fitting
354 * in bits 23:0) so that relatively small clock corrections can be made.
355 *
356 * As a result, a shift of INCVALUE_SHIFT_n is used to fit a value of
357 * INCVALUE_n into the TIMINCA register allowing 32+8+(24-INCVALUE_SHIFT_n)
358 * bits to count nanoseconds leaving the rest for fractional nonseconds.
359 */
360 #define INCVALUE_96MHZ 125
361 #define INCVALUE_SHIFT_96MHZ 17
362 #define INCPERIOD_SHIFT_96MHZ 2
363 #define INCPERIOD_96MHZ (12 >> INCPERIOD_SHIFT_96MHZ)
364
365 #define INCVALUE_25MHZ 40
366 #define INCVALUE_SHIFT_25MHZ 18
367 #define INCPERIOD_25MHZ 1
368
369 #define INCVALUE_24MHZ 125
370 #define INCVALUE_SHIFT_24MHZ 14
371 #define INCPERIOD_24MHZ 3
372
373 #define INCVALUE_38400KHZ 26
374 #define INCVALUE_SHIFT_38400KHZ 19
375 #define INCPERIOD_38400KHZ 1
376
377 /* Another drawback of scaling the incvalue by a large factor is the
378 * 64-bit SYSTIM register overflows more quickly. This is dealt with
379 * by simply reading the clock before it overflows.
380 *
381 * Clock ns bits Overflows after
382 * ~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~
383 * 96MHz 47-bit 2^(47-INCPERIOD_SHIFT_96MHz) / 10^9 / 3600 = 9.77 hrs
384 * 25MHz 46-bit 2^46 / 10^9 / 3600 = 19.55 hours
385 */
386 #define E1000_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 60 * 4)
387 #define E1000_MAX_82574_SYSTIM_REREADS 50
388 #define E1000_82574_SYSTIM_EPSILON (1ULL << 35ULL)
389
390 /* hardware capability, feature, and workaround flags */
391 #define FLAG_HAS_AMT BIT(0)
392 #define FLAG_HAS_FLASH BIT(1)
393 #define FLAG_HAS_HW_VLAN_FILTER BIT(2)
394 #define FLAG_HAS_WOL BIT(3)
395 /* reserved BIT(4) */
396 #define FLAG_HAS_CTRLEXT_ON_LOAD BIT(5)
397 #define FLAG_HAS_SWSM_ON_LOAD BIT(6)
398 #define FLAG_HAS_JUMBO_FRAMES BIT(7)
399 #define FLAG_READ_ONLY_NVM BIT(8)
400 #define FLAG_IS_ICH BIT(9)
401 #define FLAG_HAS_MSIX BIT(10)
402 #define FLAG_HAS_SMART_POWER_DOWN BIT(11)
403 #define FLAG_IS_QUAD_PORT_A BIT(12)
404 #define FLAG_IS_QUAD_PORT BIT(13)
405 #define FLAG_HAS_HW_TIMESTAMP BIT(14)
406 #define FLAG_APME_IN_WUC BIT(15)
407 #define FLAG_APME_IN_CTRL3 BIT(16)
408 #define FLAG_APME_CHECK_PORT_B BIT(17)
409 #define FLAG_DISABLE_FC_PAUSE_TIME BIT(18)
410 #define FLAG_NO_WAKE_UCAST BIT(19)
411 #define FLAG_MNG_PT_ENABLED BIT(20)
412 #define FLAG_RESET_OVERWRITES_LAA BIT(21)
413 #define FLAG_TARC_SPEED_MODE_BIT BIT(22)
414 #define FLAG_TARC_SET_BIT_ZERO BIT(23)
415 #define FLAG_RX_NEEDS_RESTART BIT(24)
416 #define FLAG_LSC_GIG_SPEED_DROP BIT(25)
417 #define FLAG_SMART_POWER_DOWN BIT(26)
418 #define FLAG_MSI_ENABLED BIT(27)
419 /* reserved BIT(28) */
420 #define FLAG_TSO_FORCE BIT(29)
421 #define FLAG_RESTART_NOW BIT(30)
422 #define FLAG_MSI_TEST_FAILED BIT(31)
423
424 #define FLAG2_CRC_STRIPPING BIT(0)
425 #define FLAG2_HAS_PHY_WAKEUP BIT(1)
426 #define FLAG2_IS_DISCARDING BIT(2)
427 #define FLAG2_DISABLE_ASPM_L1 BIT(3)
428 #define FLAG2_HAS_PHY_STATS BIT(4)
429 #define FLAG2_HAS_EEE BIT(5)
430 #define FLAG2_DMA_BURST BIT(6)
431 #define FLAG2_DISABLE_ASPM_L0S BIT(7)
432 #define FLAG2_DISABLE_AIM BIT(8)
433 #define FLAG2_CHECK_PHY_HANG BIT(9)
434 #define FLAG2_NO_DISABLE_RX BIT(10)
435 #define FLAG2_PCIM2PCI_ARBITER_WA BIT(11)
436 #define FLAG2_DFLT_CRC_STRIPPING BIT(12)
437 #define FLAG2_CHECK_RX_HWTSTAMP BIT(13)
438 #define FLAG2_CHECK_SYSTIM_OVERFLOW BIT(14)
439
440 #define E1000_RX_DESC_PS(R, i) \
441 (&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
442 #define E1000_RX_DESC_EXT(R, i) \
443 (&(((union e1000_rx_desc_extended *)((R).desc))[i]))
444 #define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i]))
445 #define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc)
446 #define E1000_CONTEXT_DESC(R, i) E1000_GET_DESC(R, i, e1000_context_desc)
447
448 enum e1000_state_t {
449 __E1000_TESTING,
450 __E1000_RESETTING,
451 __E1000_ACCESS_SHARED_RESOURCE,
452 __E1000_DOWN
453 };
454
455 enum latency_range {
456 lowest_latency = 0,
457 low_latency = 1,
458 bulk_latency = 2,
459 latency_invalid = 255
460 };
461
462 extern char e1000e_driver_name[];
463
464 void e1000e_check_options(struct e1000_adapter *adapter);
465 void e1000e_set_ethtool_ops(struct net_device *netdev);
466
467 int e1000e_open(struct net_device *netdev);
468 int e1000e_close(struct net_device *netdev);
469 void e1000e_up(struct e1000_adapter *adapter);
470 void e1000e_down(struct e1000_adapter *adapter, bool reset);
471 void e1000e_reinit_locked(struct e1000_adapter *adapter);
472 void e1000e_reset(struct e1000_adapter *adapter);
473 void e1000e_power_up_phy(struct e1000_adapter *adapter);
474 int e1000e_setup_rx_resources(struct e1000_ring *ring);
475 int e1000e_setup_tx_resources(struct e1000_ring *ring);
476 void e1000e_free_rx_resources(struct e1000_ring *ring);
477 void e1000e_free_tx_resources(struct e1000_ring *ring);
478 void e1000e_get_stats64(struct net_device *netdev,
479 struct rtnl_link_stats64 *stats);
480 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter);
481 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter);
482 void e1000e_get_hw_control(struct e1000_adapter *adapter);
483 void e1000e_release_hw_control(struct e1000_adapter *adapter);
484 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr);
485
486 extern unsigned int copybreak;
487
488 extern const struct e1000_info e1000_82571_info;
489 extern const struct e1000_info e1000_82572_info;
490 extern const struct e1000_info e1000_82573_info;
491 extern const struct e1000_info e1000_82574_info;
492 extern const struct e1000_info e1000_82583_info;
493 extern const struct e1000_info e1000_ich8_info;
494 extern const struct e1000_info e1000_ich9_info;
495 extern const struct e1000_info e1000_ich10_info;
496 extern const struct e1000_info e1000_pch_info;
497 extern const struct e1000_info e1000_pch2_info;
498 extern const struct e1000_info e1000_pch_lpt_info;
499 extern const struct e1000_info e1000_pch_spt_info;
500 extern const struct e1000_info e1000_pch_cnp_info;
501 extern const struct e1000_info e1000_es2_info;
502
503 void e1000e_ptp_init(struct e1000_adapter *adapter);
504 void e1000e_ptp_remove(struct e1000_adapter *adapter);
505
506 u64 e1000e_read_systim(struct e1000_adapter *adapter,
507 struct ptp_system_timestamp *sts);
508
e1000_phy_hw_reset(struct e1000_hw * hw)509 static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
510 {
511 return hw->phy.ops.reset(hw);
512 }
513
e1e_rphy(struct e1000_hw * hw,u32 offset,u16 * data)514 static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data)
515 {
516 return hw->phy.ops.read_reg(hw, offset, data);
517 }
518
e1e_rphy_locked(struct e1000_hw * hw,u32 offset,u16 * data)519 static inline s32 e1e_rphy_locked(struct e1000_hw *hw, u32 offset, u16 *data)
520 {
521 return hw->phy.ops.read_reg_locked(hw, offset, data);
522 }
523
e1e_wphy(struct e1000_hw * hw,u32 offset,u16 data)524 static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data)
525 {
526 return hw->phy.ops.write_reg(hw, offset, data);
527 }
528
e1e_wphy_locked(struct e1000_hw * hw,u32 offset,u16 data)529 static inline s32 e1e_wphy_locked(struct e1000_hw *hw, u32 offset, u16 data)
530 {
531 return hw->phy.ops.write_reg_locked(hw, offset, data);
532 }
533
534 void e1000e_reload_nvm_generic(struct e1000_hw *hw);
535
e1000e_read_mac_addr(struct e1000_hw * hw)536 static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw)
537 {
538 if (hw->mac.ops.read_mac_addr)
539 return hw->mac.ops.read_mac_addr(hw);
540
541 return e1000_read_mac_addr_generic(hw);
542 }
543
e1000_validate_nvm_checksum(struct e1000_hw * hw)544 static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
545 {
546 return hw->nvm.ops.validate(hw);
547 }
548
e1000e_update_nvm_checksum(struct e1000_hw * hw)549 static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw)
550 {
551 return hw->nvm.ops.update(hw);
552 }
553
e1000_read_nvm(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)554 static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words,
555 u16 *data)
556 {
557 return hw->nvm.ops.read(hw, offset, words, data);
558 }
559
e1000_write_nvm(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)560 static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words,
561 u16 *data)
562 {
563 return hw->nvm.ops.write(hw, offset, words, data);
564 }
565
e1000_get_phy_info(struct e1000_hw * hw)566 static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
567 {
568 return hw->phy.ops.get_info(hw);
569 }
570
__er32(struct e1000_hw * hw,unsigned long reg)571 static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
572 {
573 return readl(hw->hw_addr + reg);
574 }
575
576 #define er32(reg) __er32(hw, E1000_##reg)
577
578 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val);
579
580 #define ew32(reg, val) __ew32(hw, E1000_##reg, (val))
581
582 #define e1e_flush() er32(STATUS)
583
584 #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
585 (__ew32((a), (reg + ((offset) << 2)), (value)))
586
587 #define E1000_READ_REG_ARRAY(a, reg, offset) \
588 (readl((a)->hw_addr + reg + ((offset) << 2)))
589
590 #endif /* _E1000_H_ */
591