1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /* ethtool support for e1000 */
5
6 #include <linux/netdevice.h>
7 #include <linux/interrupt.h>
8 #include <linux/ethtool.h>
9 #include <linux/pci.h>
10 #include <linux/slab.h>
11 #include <linux/delay.h>
12 #include <linux/vmalloc.h>
13 #include <linux/pm_runtime.h>
14
15 #include "e1000.h"
16
17 enum { NETDEV_STATS, E1000_STATS };
18
19 struct e1000_stats {
20 char stat_string[ETH_GSTRING_LEN];
21 int type;
22 int sizeof_stat;
23 int stat_offset;
24 };
25
26 #define E1000_STAT(str, m) { \
27 .stat_string = str, \
28 .type = E1000_STATS, \
29 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
30 .stat_offset = offsetof(struct e1000_adapter, m) }
31 #define E1000_NETDEV_STAT(str, m) { \
32 .stat_string = str, \
33 .type = NETDEV_STATS, \
34 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
35 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
36
37 static const struct e1000_stats e1000_gstrings_stats[] = {
38 E1000_STAT("rx_packets", stats.gprc),
39 E1000_STAT("tx_packets", stats.gptc),
40 E1000_STAT("rx_bytes", stats.gorc),
41 E1000_STAT("tx_bytes", stats.gotc),
42 E1000_STAT("rx_broadcast", stats.bprc),
43 E1000_STAT("tx_broadcast", stats.bptc),
44 E1000_STAT("rx_multicast", stats.mprc),
45 E1000_STAT("tx_multicast", stats.mptc),
46 E1000_NETDEV_STAT("rx_errors", rx_errors),
47 E1000_NETDEV_STAT("tx_errors", tx_errors),
48 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
49 E1000_STAT("multicast", stats.mprc),
50 E1000_STAT("collisions", stats.colc),
51 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
52 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
53 E1000_STAT("rx_crc_errors", stats.crcerrs),
54 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
55 E1000_STAT("rx_no_buffer_count", stats.rnbc),
56 E1000_STAT("rx_missed_errors", stats.mpc),
57 E1000_STAT("tx_aborted_errors", stats.ecol),
58 E1000_STAT("tx_carrier_errors", stats.tncrs),
59 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
60 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
61 E1000_STAT("tx_window_errors", stats.latecol),
62 E1000_STAT("tx_abort_late_coll", stats.latecol),
63 E1000_STAT("tx_deferred_ok", stats.dc),
64 E1000_STAT("tx_single_coll_ok", stats.scc),
65 E1000_STAT("tx_multi_coll_ok", stats.mcc),
66 E1000_STAT("tx_timeout_count", tx_timeout_count),
67 E1000_STAT("tx_restart_queue", restart_queue),
68 E1000_STAT("rx_long_length_errors", stats.roc),
69 E1000_STAT("rx_short_length_errors", stats.ruc),
70 E1000_STAT("rx_align_errors", stats.algnerrc),
71 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
72 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
73 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
74 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
75 E1000_STAT("tx_flow_control_xon", stats.xontxc),
76 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
77 E1000_STAT("rx_csum_offload_good", hw_csum_good),
78 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
79 E1000_STAT("rx_header_split", rx_hdr_split),
80 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
81 E1000_STAT("tx_smbus", stats.mgptc),
82 E1000_STAT("rx_smbus", stats.mgprc),
83 E1000_STAT("dropped_smbus", stats.mgpdc),
84 E1000_STAT("rx_dma_failed", rx_dma_failed),
85 E1000_STAT("tx_dma_failed", tx_dma_failed),
86 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
87 E1000_STAT("uncorr_ecc_errors", uncorr_errors),
88 E1000_STAT("corr_ecc_errors", corr_errors),
89 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
90 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
91 };
92
93 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
94 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
95 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
96 "Register test (offline)", "Eeprom test (offline)",
97 "Interrupt test (offline)", "Loopback test (offline)",
98 "Link test (on/offline)"
99 };
100
101 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
102
e1000_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * cmd)103 static int e1000_get_link_ksettings(struct net_device *netdev,
104 struct ethtool_link_ksettings *cmd)
105 {
106 struct e1000_adapter *adapter = netdev_priv(netdev);
107 struct e1000_hw *hw = &adapter->hw;
108 u32 speed, supported, advertising;
109
110 if (hw->phy.media_type == e1000_media_type_copper) {
111 supported = (SUPPORTED_10baseT_Half |
112 SUPPORTED_10baseT_Full |
113 SUPPORTED_100baseT_Half |
114 SUPPORTED_100baseT_Full |
115 SUPPORTED_1000baseT_Full |
116 SUPPORTED_Autoneg |
117 SUPPORTED_TP);
118 if (hw->phy.type == e1000_phy_ife)
119 supported &= ~SUPPORTED_1000baseT_Full;
120 advertising = ADVERTISED_TP;
121
122 if (hw->mac.autoneg == 1) {
123 advertising |= ADVERTISED_Autoneg;
124 /* the e1000 autoneg seems to match ethtool nicely */
125 advertising |= hw->phy.autoneg_advertised;
126 }
127
128 cmd->base.port = PORT_TP;
129 cmd->base.phy_address = hw->phy.addr;
130 } else {
131 supported = (SUPPORTED_1000baseT_Full |
132 SUPPORTED_FIBRE |
133 SUPPORTED_Autoneg);
134
135 advertising = (ADVERTISED_1000baseT_Full |
136 ADVERTISED_FIBRE |
137 ADVERTISED_Autoneg);
138
139 cmd->base.port = PORT_FIBRE;
140 }
141
142 speed = SPEED_UNKNOWN;
143 cmd->base.duplex = DUPLEX_UNKNOWN;
144
145 if (netif_running(netdev)) {
146 if (netif_carrier_ok(netdev)) {
147 speed = adapter->link_speed;
148 cmd->base.duplex = adapter->link_duplex - 1;
149 }
150 } else if (!pm_runtime_suspended(netdev->dev.parent)) {
151 u32 status = er32(STATUS);
152
153 if (status & E1000_STATUS_LU) {
154 if (status & E1000_STATUS_SPEED_1000)
155 speed = SPEED_1000;
156 else if (status & E1000_STATUS_SPEED_100)
157 speed = SPEED_100;
158 else
159 speed = SPEED_10;
160
161 if (status & E1000_STATUS_FD)
162 cmd->base.duplex = DUPLEX_FULL;
163 else
164 cmd->base.duplex = DUPLEX_HALF;
165 }
166 }
167
168 cmd->base.speed = speed;
169 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
170 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
171
172 /* MDI-X => 2; MDI =>1; Invalid =>0 */
173 if ((hw->phy.media_type == e1000_media_type_copper) &&
174 netif_carrier_ok(netdev))
175 cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
176 ETH_TP_MDI_X : ETH_TP_MDI;
177 else
178 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
179
180 if (hw->phy.mdix == AUTO_ALL_MODES)
181 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
182 else
183 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
184
185 if (hw->phy.media_type != e1000_media_type_copper)
186 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
187
188 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
189 supported);
190 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
191 advertising);
192
193 return 0;
194 }
195
e1000_set_spd_dplx(struct e1000_adapter * adapter,u32 spd,u8 dplx)196 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
197 {
198 struct e1000_mac_info *mac = &adapter->hw.mac;
199
200 mac->autoneg = 0;
201
202 /* Make sure dplx is at most 1 bit and lsb of speed is not set
203 * for the switch() below to work
204 */
205 if ((spd & 1) || (dplx & ~1))
206 goto err_inval;
207
208 /* Fiber NICs only allow 1000 gbps Full duplex */
209 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
210 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
211 goto err_inval;
212 }
213
214 switch (spd + dplx) {
215 case SPEED_10 + DUPLEX_HALF:
216 mac->forced_speed_duplex = ADVERTISE_10_HALF;
217 break;
218 case SPEED_10 + DUPLEX_FULL:
219 mac->forced_speed_duplex = ADVERTISE_10_FULL;
220 break;
221 case SPEED_100 + DUPLEX_HALF:
222 mac->forced_speed_duplex = ADVERTISE_100_HALF;
223 break;
224 case SPEED_100 + DUPLEX_FULL:
225 mac->forced_speed_duplex = ADVERTISE_100_FULL;
226 break;
227 case SPEED_1000 + DUPLEX_FULL:
228 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
229 mac->autoneg = 1;
230 adapter->hw.phy.autoneg_advertised =
231 ADVERTISE_1000_FULL;
232 } else {
233 mac->forced_speed_duplex = ADVERTISE_1000_FULL;
234 }
235 break;
236 case SPEED_1000 + DUPLEX_HALF: /* not supported */
237 default:
238 goto err_inval;
239 }
240
241 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
242 adapter->hw.phy.mdix = AUTO_ALL_MODES;
243
244 return 0;
245
246 err_inval:
247 e_err("Unsupported Speed/Duplex configuration\n");
248 return -EINVAL;
249 }
250
e1000_set_link_ksettings(struct net_device * netdev,const struct ethtool_link_ksettings * cmd)251 static int e1000_set_link_ksettings(struct net_device *netdev,
252 const struct ethtool_link_ksettings *cmd)
253 {
254 struct e1000_adapter *adapter = netdev_priv(netdev);
255 struct e1000_hw *hw = &adapter->hw;
256 int ret_val = 0;
257 u32 advertising;
258
259 ethtool_convert_link_mode_to_legacy_u32(&advertising,
260 cmd->link_modes.advertising);
261
262 pm_runtime_get_sync(netdev->dev.parent);
263
264 /* When SoL/IDER sessions are active, autoneg/speed/duplex
265 * cannot be changed
266 */
267 if (hw->phy.ops.check_reset_block &&
268 hw->phy.ops.check_reset_block(hw)) {
269 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
270 ret_val = -EINVAL;
271 goto out;
272 }
273
274 /* MDI setting is only allowed when autoneg enabled because
275 * some hardware doesn't allow MDI setting when speed or
276 * duplex is forced.
277 */
278 if (cmd->base.eth_tp_mdix_ctrl) {
279 if (hw->phy.media_type != e1000_media_type_copper) {
280 ret_val = -EOPNOTSUPP;
281 goto out;
282 }
283
284 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
285 (cmd->base.autoneg != AUTONEG_ENABLE)) {
286 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
287 ret_val = -EINVAL;
288 goto out;
289 }
290 }
291
292 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
293 usleep_range(1000, 2000);
294
295 if (cmd->base.autoneg == AUTONEG_ENABLE) {
296 hw->mac.autoneg = 1;
297 if (hw->phy.media_type == e1000_media_type_fiber)
298 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
299 ADVERTISED_FIBRE | ADVERTISED_Autoneg;
300 else
301 hw->phy.autoneg_advertised = advertising |
302 ADVERTISED_TP | ADVERTISED_Autoneg;
303 advertising = hw->phy.autoneg_advertised;
304 if (adapter->fc_autoneg)
305 hw->fc.requested_mode = e1000_fc_default;
306 } else {
307 u32 speed = cmd->base.speed;
308 /* calling this overrides forced MDI setting */
309 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
310 ret_val = -EINVAL;
311 goto out;
312 }
313 }
314
315 /* MDI-X => 2; MDI => 1; Auto => 3 */
316 if (cmd->base.eth_tp_mdix_ctrl) {
317 /* fix up the value for auto (3 => 0) as zero is mapped
318 * internally to auto
319 */
320 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
321 hw->phy.mdix = AUTO_ALL_MODES;
322 else
323 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
324 }
325
326 /* reset the link */
327 if (netif_running(adapter->netdev)) {
328 e1000e_down(adapter, true);
329 e1000e_up(adapter);
330 } else {
331 e1000e_reset(adapter);
332 }
333
334 out:
335 pm_runtime_put_sync(netdev->dev.parent);
336 clear_bit(__E1000_RESETTING, &adapter->state);
337 return ret_val;
338 }
339
e1000_get_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)340 static void e1000_get_pauseparam(struct net_device *netdev,
341 struct ethtool_pauseparam *pause)
342 {
343 struct e1000_adapter *adapter = netdev_priv(netdev);
344 struct e1000_hw *hw = &adapter->hw;
345
346 pause->autoneg =
347 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
348
349 if (hw->fc.current_mode == e1000_fc_rx_pause) {
350 pause->rx_pause = 1;
351 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
352 pause->tx_pause = 1;
353 } else if (hw->fc.current_mode == e1000_fc_full) {
354 pause->rx_pause = 1;
355 pause->tx_pause = 1;
356 }
357 }
358
e1000_set_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)359 static int e1000_set_pauseparam(struct net_device *netdev,
360 struct ethtool_pauseparam *pause)
361 {
362 struct e1000_adapter *adapter = netdev_priv(netdev);
363 struct e1000_hw *hw = &adapter->hw;
364 int retval = 0;
365
366 adapter->fc_autoneg = pause->autoneg;
367
368 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
369 usleep_range(1000, 2000);
370
371 pm_runtime_get_sync(netdev->dev.parent);
372
373 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
374 hw->fc.requested_mode = e1000_fc_default;
375 if (netif_running(adapter->netdev)) {
376 e1000e_down(adapter, true);
377 e1000e_up(adapter);
378 } else {
379 e1000e_reset(adapter);
380 }
381 } else {
382 if (pause->rx_pause && pause->tx_pause)
383 hw->fc.requested_mode = e1000_fc_full;
384 else if (pause->rx_pause && !pause->tx_pause)
385 hw->fc.requested_mode = e1000_fc_rx_pause;
386 else if (!pause->rx_pause && pause->tx_pause)
387 hw->fc.requested_mode = e1000_fc_tx_pause;
388 else if (!pause->rx_pause && !pause->tx_pause)
389 hw->fc.requested_mode = e1000_fc_none;
390
391 hw->fc.current_mode = hw->fc.requested_mode;
392
393 if (hw->phy.media_type == e1000_media_type_fiber) {
394 retval = hw->mac.ops.setup_link(hw);
395 /* implicit goto out */
396 } else {
397 retval = e1000e_force_mac_fc(hw);
398 if (retval)
399 goto out;
400 e1000e_set_fc_watermarks(hw);
401 }
402 }
403
404 out:
405 pm_runtime_put_sync(netdev->dev.parent);
406 clear_bit(__E1000_RESETTING, &adapter->state);
407 return retval;
408 }
409
e1000_get_msglevel(struct net_device * netdev)410 static u32 e1000_get_msglevel(struct net_device *netdev)
411 {
412 struct e1000_adapter *adapter = netdev_priv(netdev);
413 return adapter->msg_enable;
414 }
415
e1000_set_msglevel(struct net_device * netdev,u32 data)416 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
417 {
418 struct e1000_adapter *adapter = netdev_priv(netdev);
419 adapter->msg_enable = data;
420 }
421
e1000_get_regs_len(struct net_device __always_unused * netdev)422 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
423 {
424 #define E1000_REGS_LEN 32 /* overestimate */
425 return E1000_REGS_LEN * sizeof(u32);
426 }
427
e1000_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)428 static void e1000_get_regs(struct net_device *netdev,
429 struct ethtool_regs *regs, void *p)
430 {
431 struct e1000_adapter *adapter = netdev_priv(netdev);
432 struct e1000_hw *hw = &adapter->hw;
433 u32 *regs_buff = p;
434 u16 phy_data;
435
436 pm_runtime_get_sync(netdev->dev.parent);
437
438 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
439
440 regs->version = (1u << 24) |
441 (adapter->pdev->revision << 16) |
442 adapter->pdev->device;
443
444 regs_buff[0] = er32(CTRL);
445 regs_buff[1] = er32(STATUS);
446
447 regs_buff[2] = er32(RCTL);
448 regs_buff[3] = er32(RDLEN(0));
449 regs_buff[4] = er32(RDH(0));
450 regs_buff[5] = er32(RDT(0));
451 regs_buff[6] = er32(RDTR);
452
453 regs_buff[7] = er32(TCTL);
454 regs_buff[8] = er32(TDLEN(0));
455 regs_buff[9] = er32(TDH(0));
456 regs_buff[10] = er32(TDT(0));
457 regs_buff[11] = er32(TIDV);
458
459 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
460
461 /* ethtool doesn't use anything past this point, so all this
462 * code is likely legacy junk for apps that may or may not exist
463 */
464 if (hw->phy.type == e1000_phy_m88) {
465 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
466 regs_buff[13] = (u32)phy_data; /* cable length */
467 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
468 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
469 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
470 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
471 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
472 regs_buff[18] = regs_buff[13]; /* cable polarity */
473 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
474 regs_buff[20] = regs_buff[17]; /* polarity correction */
475 /* phy receive errors */
476 regs_buff[22] = adapter->phy_stats.receive_errors;
477 regs_buff[23] = regs_buff[13]; /* mdix mode */
478 }
479 regs_buff[21] = 0; /* was idle_errors */
480 e1e_rphy(hw, MII_STAT1000, &phy_data);
481 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
482 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
483
484 pm_runtime_put_sync(netdev->dev.parent);
485 }
486
e1000_get_eeprom_len(struct net_device * netdev)487 static int e1000_get_eeprom_len(struct net_device *netdev)
488 {
489 struct e1000_adapter *adapter = netdev_priv(netdev);
490 return adapter->hw.nvm.word_size * 2;
491 }
492
e1000_get_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)493 static int e1000_get_eeprom(struct net_device *netdev,
494 struct ethtool_eeprom *eeprom, u8 *bytes)
495 {
496 struct e1000_adapter *adapter = netdev_priv(netdev);
497 struct e1000_hw *hw = &adapter->hw;
498 u16 *eeprom_buff;
499 int first_word;
500 int last_word;
501 int ret_val = 0;
502 u16 i;
503
504 if (eeprom->len == 0)
505 return -EINVAL;
506
507 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
508
509 first_word = eeprom->offset >> 1;
510 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
511
512 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
513 GFP_KERNEL);
514 if (!eeprom_buff)
515 return -ENOMEM;
516
517 pm_runtime_get_sync(netdev->dev.parent);
518
519 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
520 ret_val = e1000_read_nvm(hw, first_word,
521 last_word - first_word + 1,
522 eeprom_buff);
523 } else {
524 for (i = 0; i < last_word - first_word + 1; i++) {
525 ret_val = e1000_read_nvm(hw, first_word + i, 1,
526 &eeprom_buff[i]);
527 if (ret_val)
528 break;
529 }
530 }
531
532 pm_runtime_put_sync(netdev->dev.parent);
533
534 if (ret_val) {
535 /* a read error occurred, throw away the result */
536 memset(eeprom_buff, 0xff, sizeof(u16) *
537 (last_word - first_word + 1));
538 } else {
539 /* Device's eeprom is always little-endian, word addressable */
540 for (i = 0; i < last_word - first_word + 1; i++)
541 le16_to_cpus(&eeprom_buff[i]);
542 }
543
544 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
545 kfree(eeprom_buff);
546
547 return ret_val;
548 }
549
e1000_set_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)550 static int e1000_set_eeprom(struct net_device *netdev,
551 struct ethtool_eeprom *eeprom, u8 *bytes)
552 {
553 struct e1000_adapter *adapter = netdev_priv(netdev);
554 struct e1000_hw *hw = &adapter->hw;
555 u16 *eeprom_buff;
556 void *ptr;
557 int max_len;
558 int first_word;
559 int last_word;
560 int ret_val = 0;
561 u16 i;
562
563 if (eeprom->len == 0)
564 return -EOPNOTSUPP;
565
566 if (eeprom->magic !=
567 (adapter->pdev->vendor | (adapter->pdev->device << 16)))
568 return -EFAULT;
569
570 if (adapter->flags & FLAG_READ_ONLY_NVM)
571 return -EINVAL;
572
573 max_len = hw->nvm.word_size * 2;
574
575 first_word = eeprom->offset >> 1;
576 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
577 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
578 if (!eeprom_buff)
579 return -ENOMEM;
580
581 ptr = (void *)eeprom_buff;
582
583 pm_runtime_get_sync(netdev->dev.parent);
584
585 if (eeprom->offset & 1) {
586 /* need read/modify/write of first changed EEPROM word */
587 /* only the second byte of the word is being modified */
588 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
589 ptr++;
590 }
591 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
592 /* need read/modify/write of last changed EEPROM word */
593 /* only the first byte of the word is being modified */
594 ret_val = e1000_read_nvm(hw, last_word, 1,
595 &eeprom_buff[last_word - first_word]);
596
597 if (ret_val)
598 goto out;
599
600 /* Device's eeprom is always little-endian, word addressable */
601 for (i = 0; i < last_word - first_word + 1; i++)
602 le16_to_cpus(&eeprom_buff[i]);
603
604 memcpy(ptr, bytes, eeprom->len);
605
606 for (i = 0; i < last_word - first_word + 1; i++)
607 cpu_to_le16s(&eeprom_buff[i]);
608
609 ret_val = e1000_write_nvm(hw, first_word,
610 last_word - first_word + 1, eeprom_buff);
611
612 if (ret_val)
613 goto out;
614
615 /* Update the checksum over the first part of the EEPROM if needed
616 * and flush shadow RAM for applicable controllers
617 */
618 if ((first_word <= NVM_CHECKSUM_REG) ||
619 (hw->mac.type == e1000_82583) ||
620 (hw->mac.type == e1000_82574) ||
621 (hw->mac.type == e1000_82573))
622 ret_val = e1000e_update_nvm_checksum(hw);
623
624 out:
625 pm_runtime_put_sync(netdev->dev.parent);
626 kfree(eeprom_buff);
627 return ret_val;
628 }
629
e1000_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)630 static void e1000_get_drvinfo(struct net_device *netdev,
631 struct ethtool_drvinfo *drvinfo)
632 {
633 struct e1000_adapter *adapter = netdev_priv(netdev);
634
635 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
636 strlcpy(drvinfo->version, e1000e_driver_version,
637 sizeof(drvinfo->version));
638
639 /* EEPROM image version # is reported as firmware version # for
640 * PCI-E controllers
641 */
642 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
643 "%d.%d-%d",
644 (adapter->eeprom_vers & 0xF000) >> 12,
645 (adapter->eeprom_vers & 0x0FF0) >> 4,
646 (adapter->eeprom_vers & 0x000F));
647
648 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
649 sizeof(drvinfo->bus_info));
650 }
651
e1000_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)652 static void e1000_get_ringparam(struct net_device *netdev,
653 struct ethtool_ringparam *ring)
654 {
655 struct e1000_adapter *adapter = netdev_priv(netdev);
656
657 ring->rx_max_pending = E1000_MAX_RXD;
658 ring->tx_max_pending = E1000_MAX_TXD;
659 ring->rx_pending = adapter->rx_ring_count;
660 ring->tx_pending = adapter->tx_ring_count;
661 }
662
e1000_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)663 static int e1000_set_ringparam(struct net_device *netdev,
664 struct ethtool_ringparam *ring)
665 {
666 struct e1000_adapter *adapter = netdev_priv(netdev);
667 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
668 int err = 0, size = sizeof(struct e1000_ring);
669 bool set_tx = false, set_rx = false;
670 u16 new_rx_count, new_tx_count;
671
672 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
673 return -EINVAL;
674
675 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
676 E1000_MAX_RXD);
677 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
678
679 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
680 E1000_MAX_TXD);
681 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
682
683 if ((new_tx_count == adapter->tx_ring_count) &&
684 (new_rx_count == adapter->rx_ring_count))
685 /* nothing to do */
686 return 0;
687
688 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
689 usleep_range(1000, 2000);
690
691 if (!netif_running(adapter->netdev)) {
692 /* Set counts now and allocate resources during open() */
693 adapter->tx_ring->count = new_tx_count;
694 adapter->rx_ring->count = new_rx_count;
695 adapter->tx_ring_count = new_tx_count;
696 adapter->rx_ring_count = new_rx_count;
697 goto clear_reset;
698 }
699
700 set_tx = (new_tx_count != adapter->tx_ring_count);
701 set_rx = (new_rx_count != adapter->rx_ring_count);
702
703 /* Allocate temporary storage for ring updates */
704 if (set_tx) {
705 temp_tx = vmalloc(size);
706 if (!temp_tx) {
707 err = -ENOMEM;
708 goto free_temp;
709 }
710 }
711 if (set_rx) {
712 temp_rx = vmalloc(size);
713 if (!temp_rx) {
714 err = -ENOMEM;
715 goto free_temp;
716 }
717 }
718
719 pm_runtime_get_sync(netdev->dev.parent);
720
721 e1000e_down(adapter, true);
722
723 /* We can't just free everything and then setup again, because the
724 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
725 * structs. First, attempt to allocate new resources...
726 */
727 if (set_tx) {
728 memcpy(temp_tx, adapter->tx_ring, size);
729 temp_tx->count = new_tx_count;
730 err = e1000e_setup_tx_resources(temp_tx);
731 if (err)
732 goto err_setup;
733 }
734 if (set_rx) {
735 memcpy(temp_rx, adapter->rx_ring, size);
736 temp_rx->count = new_rx_count;
737 err = e1000e_setup_rx_resources(temp_rx);
738 if (err)
739 goto err_setup_rx;
740 }
741
742 /* ...then free the old resources and copy back any new ring data */
743 if (set_tx) {
744 e1000e_free_tx_resources(adapter->tx_ring);
745 memcpy(adapter->tx_ring, temp_tx, size);
746 adapter->tx_ring_count = new_tx_count;
747 }
748 if (set_rx) {
749 e1000e_free_rx_resources(adapter->rx_ring);
750 memcpy(adapter->rx_ring, temp_rx, size);
751 adapter->rx_ring_count = new_rx_count;
752 }
753
754 err_setup_rx:
755 if (err && set_tx)
756 e1000e_free_tx_resources(temp_tx);
757 err_setup:
758 e1000e_up(adapter);
759 pm_runtime_put_sync(netdev->dev.parent);
760 free_temp:
761 vfree(temp_tx);
762 vfree(temp_rx);
763 clear_reset:
764 clear_bit(__E1000_RESETTING, &adapter->state);
765 return err;
766 }
767
reg_pattern_test(struct e1000_adapter * adapter,u64 * data,int reg,int offset,u32 mask,u32 write)768 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
769 int reg, int offset, u32 mask, u32 write)
770 {
771 u32 pat, val;
772 static const u32 test[] = {
773 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
774 };
775 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
776 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
777 (test[pat] & write));
778 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
779 if (val != (test[pat] & write & mask)) {
780 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
781 reg + (offset << 2), val,
782 (test[pat] & write & mask));
783 *data = reg;
784 return true;
785 }
786 }
787 return false;
788 }
789
reg_set_and_check(struct e1000_adapter * adapter,u64 * data,int reg,u32 mask,u32 write)790 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
791 int reg, u32 mask, u32 write)
792 {
793 u32 val;
794
795 __ew32(&adapter->hw, reg, write & mask);
796 val = __er32(&adapter->hw, reg);
797 if ((write & mask) != (val & mask)) {
798 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
799 reg, (val & mask), (write & mask));
800 *data = reg;
801 return true;
802 }
803 return false;
804 }
805
806 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
807 do { \
808 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
809 return 1; \
810 } while (0)
811 #define REG_PATTERN_TEST(reg, mask, write) \
812 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
813
814 #define REG_SET_AND_CHECK(reg, mask, write) \
815 do { \
816 if (reg_set_and_check(adapter, data, reg, mask, write)) \
817 return 1; \
818 } while (0)
819
e1000_reg_test(struct e1000_adapter * adapter,u64 * data)820 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
821 {
822 struct e1000_hw *hw = &adapter->hw;
823 struct e1000_mac_info *mac = &adapter->hw.mac;
824 u32 value;
825 u32 before;
826 u32 after;
827 u32 i;
828 u32 toggle;
829 u32 mask;
830 u32 wlock_mac = 0;
831
832 /* The status register is Read Only, so a write should fail.
833 * Some bits that get toggled are ignored. There are several bits
834 * on newer hardware that are r/w.
835 */
836 switch (mac->type) {
837 case e1000_82571:
838 case e1000_82572:
839 case e1000_80003es2lan:
840 toggle = 0x7FFFF3FF;
841 break;
842 default:
843 toggle = 0x7FFFF033;
844 break;
845 }
846
847 before = er32(STATUS);
848 value = (er32(STATUS) & toggle);
849 ew32(STATUS, toggle);
850 after = er32(STATUS) & toggle;
851 if (value != after) {
852 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
853 after, value);
854 *data = 1;
855 return 1;
856 }
857 /* restore previous status */
858 ew32(STATUS, before);
859
860 if (!(adapter->flags & FLAG_IS_ICH)) {
861 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
862 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
863 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
864 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
865 }
866
867 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
868 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
869 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
870 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
871 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
872 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
873 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
874 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
875 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
876 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
877
878 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
879
880 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
881 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
882 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
883
884 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
885 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
886 if (!(adapter->flags & FLAG_IS_ICH))
887 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
888 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
889 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
890 mask = 0x8003FFFF;
891 switch (mac->type) {
892 case e1000_ich10lan:
893 case e1000_pchlan:
894 case e1000_pch2lan:
895 case e1000_pch_lpt:
896 case e1000_pch_spt:
897 /* fall through */
898 case e1000_pch_cnp:
899 mask |= BIT(18);
900 break;
901 default:
902 break;
903 }
904
905 if (mac->type >= e1000_pch_lpt)
906 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
907 E1000_FWSM_WLOCK_MAC_SHIFT;
908
909 for (i = 0; i < mac->rar_entry_count; i++) {
910 if (mac->type >= e1000_pch_lpt) {
911 /* Cannot test write-protected SHRAL[n] registers */
912 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
913 continue;
914
915 /* SHRAH[9] different than the others */
916 if (i == 10)
917 mask |= BIT(30);
918 else
919 mask &= ~BIT(30);
920 }
921 if (mac->type == e1000_pch2lan) {
922 /* SHRAH[0,1,2] different than previous */
923 if (i == 1)
924 mask &= 0xFFF4FFFF;
925 /* SHRAH[3] different than SHRAH[0,1,2] */
926 if (i == 4)
927 mask |= BIT(30);
928 /* RAR[1-6] owned by management engine - skipping */
929 if (i > 0)
930 i += 6;
931 }
932
933 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
934 0xFFFFFFFF);
935 /* reset index to actual value */
936 if ((mac->type == e1000_pch2lan) && (i > 6))
937 i -= 6;
938 }
939
940 for (i = 0; i < mac->mta_reg_count; i++)
941 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
942
943 *data = 0;
944
945 return 0;
946 }
947
e1000_eeprom_test(struct e1000_adapter * adapter,u64 * data)948 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
949 {
950 u16 temp;
951 u16 checksum = 0;
952 u16 i;
953
954 *data = 0;
955 /* Read and add up the contents of the EEPROM */
956 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
957 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
958 *data = 1;
959 return *data;
960 }
961 checksum += temp;
962 }
963
964 /* If Checksum is not Correct return error else test passed */
965 if ((checksum != (u16)NVM_SUM) && !(*data))
966 *data = 2;
967
968 return *data;
969 }
970
e1000_test_intr(int __always_unused irq,void * data)971 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
972 {
973 struct net_device *netdev = (struct net_device *)data;
974 struct e1000_adapter *adapter = netdev_priv(netdev);
975 struct e1000_hw *hw = &adapter->hw;
976
977 adapter->test_icr |= er32(ICR);
978
979 return IRQ_HANDLED;
980 }
981
e1000_intr_test(struct e1000_adapter * adapter,u64 * data)982 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
983 {
984 struct net_device *netdev = adapter->netdev;
985 struct e1000_hw *hw = &adapter->hw;
986 u32 mask;
987 u32 shared_int = 1;
988 u32 irq = adapter->pdev->irq;
989 int i;
990 int ret_val = 0;
991 int int_mode = E1000E_INT_MODE_LEGACY;
992
993 *data = 0;
994
995 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
996 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
997 int_mode = adapter->int_mode;
998 e1000e_reset_interrupt_capability(adapter);
999 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1000 e1000e_set_interrupt_capability(adapter);
1001 }
1002 /* Hook up test interrupt handler just for this test */
1003 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1004 netdev)) {
1005 shared_int = 0;
1006 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1007 netdev)) {
1008 *data = 1;
1009 ret_val = -1;
1010 goto out;
1011 }
1012 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1013
1014 /* Disable all the interrupts */
1015 ew32(IMC, 0xFFFFFFFF);
1016 e1e_flush();
1017 usleep_range(10000, 11000);
1018
1019 /* Test each interrupt */
1020 for (i = 0; i < 10; i++) {
1021 /* Interrupt to test */
1022 mask = BIT(i);
1023
1024 if (adapter->flags & FLAG_IS_ICH) {
1025 switch (mask) {
1026 case E1000_ICR_RXSEQ:
1027 continue;
1028 case 0x00000100:
1029 if (adapter->hw.mac.type == e1000_ich8lan ||
1030 adapter->hw.mac.type == e1000_ich9lan)
1031 continue;
1032 break;
1033 default:
1034 break;
1035 }
1036 }
1037
1038 if (!shared_int) {
1039 /* Disable the interrupt to be reported in
1040 * the cause register and then force the same
1041 * interrupt and see if one gets posted. If
1042 * an interrupt was posted to the bus, the
1043 * test failed.
1044 */
1045 adapter->test_icr = 0;
1046 ew32(IMC, mask);
1047 ew32(ICS, mask);
1048 e1e_flush();
1049 usleep_range(10000, 11000);
1050
1051 if (adapter->test_icr & mask) {
1052 *data = 3;
1053 break;
1054 }
1055 }
1056
1057 /* Enable the interrupt to be reported in
1058 * the cause register and then force the same
1059 * interrupt and see if one gets posted. If
1060 * an interrupt was not posted to the bus, the
1061 * test failed.
1062 */
1063 adapter->test_icr = 0;
1064 ew32(IMS, mask);
1065 ew32(ICS, mask);
1066 e1e_flush();
1067 usleep_range(10000, 11000);
1068
1069 if (!(adapter->test_icr & mask)) {
1070 *data = 4;
1071 break;
1072 }
1073
1074 if (!shared_int) {
1075 /* Disable the other interrupts to be reported in
1076 * the cause register and then force the other
1077 * interrupts and see if any get posted. If
1078 * an interrupt was posted to the bus, the
1079 * test failed.
1080 */
1081 adapter->test_icr = 0;
1082 ew32(IMC, ~mask & 0x00007FFF);
1083 ew32(ICS, ~mask & 0x00007FFF);
1084 e1e_flush();
1085 usleep_range(10000, 11000);
1086
1087 if (adapter->test_icr) {
1088 *data = 5;
1089 break;
1090 }
1091 }
1092 }
1093
1094 /* Disable all the interrupts */
1095 ew32(IMC, 0xFFFFFFFF);
1096 e1e_flush();
1097 usleep_range(10000, 11000);
1098
1099 /* Unhook test interrupt handler */
1100 free_irq(irq, netdev);
1101
1102 out:
1103 if (int_mode == E1000E_INT_MODE_MSIX) {
1104 e1000e_reset_interrupt_capability(adapter);
1105 adapter->int_mode = int_mode;
1106 e1000e_set_interrupt_capability(adapter);
1107 }
1108
1109 return ret_val;
1110 }
1111
e1000_free_desc_rings(struct e1000_adapter * adapter)1112 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1113 {
1114 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1115 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1116 struct pci_dev *pdev = adapter->pdev;
1117 struct e1000_buffer *buffer_info;
1118 int i;
1119
1120 if (tx_ring->desc && tx_ring->buffer_info) {
1121 for (i = 0; i < tx_ring->count; i++) {
1122 buffer_info = &tx_ring->buffer_info[i];
1123
1124 if (buffer_info->dma)
1125 dma_unmap_single(&pdev->dev,
1126 buffer_info->dma,
1127 buffer_info->length,
1128 DMA_TO_DEVICE);
1129 dev_kfree_skb(buffer_info->skb);
1130 }
1131 }
1132
1133 if (rx_ring->desc && rx_ring->buffer_info) {
1134 for (i = 0; i < rx_ring->count; i++) {
1135 buffer_info = &rx_ring->buffer_info[i];
1136
1137 if (buffer_info->dma)
1138 dma_unmap_single(&pdev->dev,
1139 buffer_info->dma,
1140 2048, DMA_FROM_DEVICE);
1141 dev_kfree_skb(buffer_info->skb);
1142 }
1143 }
1144
1145 if (tx_ring->desc) {
1146 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1147 tx_ring->dma);
1148 tx_ring->desc = NULL;
1149 }
1150 if (rx_ring->desc) {
1151 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1152 rx_ring->dma);
1153 rx_ring->desc = NULL;
1154 }
1155
1156 kfree(tx_ring->buffer_info);
1157 tx_ring->buffer_info = NULL;
1158 kfree(rx_ring->buffer_info);
1159 rx_ring->buffer_info = NULL;
1160 }
1161
e1000_setup_desc_rings(struct e1000_adapter * adapter)1162 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1163 {
1164 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1165 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1166 struct pci_dev *pdev = adapter->pdev;
1167 struct e1000_hw *hw = &adapter->hw;
1168 u32 rctl;
1169 int i;
1170 int ret_val;
1171
1172 /* Setup Tx descriptor ring and Tx buffers */
1173
1174 if (!tx_ring->count)
1175 tx_ring->count = E1000_DEFAULT_TXD;
1176
1177 tx_ring->buffer_info = kcalloc(tx_ring->count,
1178 sizeof(struct e1000_buffer), GFP_KERNEL);
1179 if (!tx_ring->buffer_info) {
1180 ret_val = 1;
1181 goto err_nomem;
1182 }
1183
1184 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1185 tx_ring->size = ALIGN(tx_ring->size, 4096);
1186 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1187 &tx_ring->dma, GFP_KERNEL);
1188 if (!tx_ring->desc) {
1189 ret_val = 2;
1190 goto err_nomem;
1191 }
1192 tx_ring->next_to_use = 0;
1193 tx_ring->next_to_clean = 0;
1194
1195 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1196 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1197 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1198 ew32(TDH(0), 0);
1199 ew32(TDT(0), 0);
1200 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1201 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1202 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1203
1204 for (i = 0; i < tx_ring->count; i++) {
1205 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1206 struct sk_buff *skb;
1207 unsigned int skb_size = 1024;
1208
1209 skb = alloc_skb(skb_size, GFP_KERNEL);
1210 if (!skb) {
1211 ret_val = 3;
1212 goto err_nomem;
1213 }
1214 skb_put(skb, skb_size);
1215 tx_ring->buffer_info[i].skb = skb;
1216 tx_ring->buffer_info[i].length = skb->len;
1217 tx_ring->buffer_info[i].dma =
1218 dma_map_single(&pdev->dev, skb->data, skb->len,
1219 DMA_TO_DEVICE);
1220 if (dma_mapping_error(&pdev->dev,
1221 tx_ring->buffer_info[i].dma)) {
1222 ret_val = 4;
1223 goto err_nomem;
1224 }
1225 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1226 tx_desc->lower.data = cpu_to_le32(skb->len);
1227 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1228 E1000_TXD_CMD_IFCS |
1229 E1000_TXD_CMD_RS);
1230 tx_desc->upper.data = 0;
1231 }
1232
1233 /* Setup Rx descriptor ring and Rx buffers */
1234
1235 if (!rx_ring->count)
1236 rx_ring->count = E1000_DEFAULT_RXD;
1237
1238 rx_ring->buffer_info = kcalloc(rx_ring->count,
1239 sizeof(struct e1000_buffer), GFP_KERNEL);
1240 if (!rx_ring->buffer_info) {
1241 ret_val = 5;
1242 goto err_nomem;
1243 }
1244
1245 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1246 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1247 &rx_ring->dma, GFP_KERNEL);
1248 if (!rx_ring->desc) {
1249 ret_val = 6;
1250 goto err_nomem;
1251 }
1252 rx_ring->next_to_use = 0;
1253 rx_ring->next_to_clean = 0;
1254
1255 rctl = er32(RCTL);
1256 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1257 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1258 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1259 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1260 ew32(RDLEN(0), rx_ring->size);
1261 ew32(RDH(0), 0);
1262 ew32(RDT(0), 0);
1263 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1264 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1265 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1266 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1267 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1268 ew32(RCTL, rctl);
1269
1270 for (i = 0; i < rx_ring->count; i++) {
1271 union e1000_rx_desc_extended *rx_desc;
1272 struct sk_buff *skb;
1273
1274 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1275 if (!skb) {
1276 ret_val = 7;
1277 goto err_nomem;
1278 }
1279 skb_reserve(skb, NET_IP_ALIGN);
1280 rx_ring->buffer_info[i].skb = skb;
1281 rx_ring->buffer_info[i].dma =
1282 dma_map_single(&pdev->dev, skb->data, 2048,
1283 DMA_FROM_DEVICE);
1284 if (dma_mapping_error(&pdev->dev,
1285 rx_ring->buffer_info[i].dma)) {
1286 ret_val = 8;
1287 goto err_nomem;
1288 }
1289 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1290 rx_desc->read.buffer_addr =
1291 cpu_to_le64(rx_ring->buffer_info[i].dma);
1292 memset(skb->data, 0x00, skb->len);
1293 }
1294
1295 return 0;
1296
1297 err_nomem:
1298 e1000_free_desc_rings(adapter);
1299 return ret_val;
1300 }
1301
e1000_phy_disable_receiver(struct e1000_adapter * adapter)1302 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1303 {
1304 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1305 e1e_wphy(&adapter->hw, 29, 0x001F);
1306 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1307 e1e_wphy(&adapter->hw, 29, 0x001A);
1308 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1309 }
1310
e1000_integrated_phy_loopback(struct e1000_adapter * adapter)1311 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1312 {
1313 struct e1000_hw *hw = &adapter->hw;
1314 u32 ctrl_reg = 0;
1315 u16 phy_reg = 0;
1316 s32 ret_val = 0;
1317
1318 hw->mac.autoneg = 0;
1319
1320 if (hw->phy.type == e1000_phy_ife) {
1321 /* force 100, set loopback */
1322 e1e_wphy(hw, MII_BMCR, 0x6100);
1323
1324 /* Now set up the MAC to the same speed/duplex as the PHY. */
1325 ctrl_reg = er32(CTRL);
1326 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1327 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1328 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1329 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1330 E1000_CTRL_FD); /* Force Duplex to FULL */
1331
1332 ew32(CTRL, ctrl_reg);
1333 e1e_flush();
1334 usleep_range(500, 1000);
1335
1336 return 0;
1337 }
1338
1339 /* Specific PHY configuration for loopback */
1340 switch (hw->phy.type) {
1341 case e1000_phy_m88:
1342 /* Auto-MDI/MDIX Off */
1343 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1344 /* reset to update Auto-MDI/MDIX */
1345 e1e_wphy(hw, MII_BMCR, 0x9140);
1346 /* autoneg off */
1347 e1e_wphy(hw, MII_BMCR, 0x8140);
1348 break;
1349 case e1000_phy_gg82563:
1350 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1351 break;
1352 case e1000_phy_bm:
1353 /* Set Default MAC Interface speed to 1GB */
1354 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1355 phy_reg &= ~0x0007;
1356 phy_reg |= 0x006;
1357 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1358 /* Assert SW reset for above settings to take effect */
1359 hw->phy.ops.commit(hw);
1360 usleep_range(1000, 2000);
1361 /* Force Full Duplex */
1362 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1363 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1364 /* Set Link Up (in force link) */
1365 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1366 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1367 /* Force Link */
1368 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1369 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1370 /* Set Early Link Enable */
1371 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1372 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1373 break;
1374 case e1000_phy_82577:
1375 case e1000_phy_82578:
1376 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1377 ret_val = hw->phy.ops.acquire(hw);
1378 if (ret_val) {
1379 e_err("Cannot setup 1Gbps loopback.\n");
1380 return ret_val;
1381 }
1382 e1000_configure_k1_ich8lan(hw, false);
1383 hw->phy.ops.release(hw);
1384 break;
1385 case e1000_phy_82579:
1386 /* Disable PHY energy detect power down */
1387 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1388 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1389 /* Disable full chip energy detect */
1390 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1391 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1392 /* Enable loopback on the PHY */
1393 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1394 break;
1395 default:
1396 break;
1397 }
1398
1399 /* force 1000, set loopback */
1400 e1e_wphy(hw, MII_BMCR, 0x4140);
1401 msleep(250);
1402
1403 /* Now set up the MAC to the same speed/duplex as the PHY. */
1404 ctrl_reg = er32(CTRL);
1405 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1406 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1407 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1408 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1409 E1000_CTRL_FD); /* Force Duplex to FULL */
1410
1411 if (adapter->flags & FLAG_IS_ICH)
1412 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1413
1414 if (hw->phy.media_type == e1000_media_type_copper &&
1415 hw->phy.type == e1000_phy_m88) {
1416 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1417 } else {
1418 /* Set the ILOS bit on the fiber Nic if half duplex link is
1419 * detected.
1420 */
1421 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1422 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1423 }
1424
1425 ew32(CTRL, ctrl_reg);
1426
1427 /* Disable the receiver on the PHY so when a cable is plugged in, the
1428 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1429 */
1430 if (hw->phy.type == e1000_phy_m88)
1431 e1000_phy_disable_receiver(adapter);
1432
1433 usleep_range(500, 1000);
1434
1435 return 0;
1436 }
1437
e1000_set_82571_fiber_loopback(struct e1000_adapter * adapter)1438 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1439 {
1440 struct e1000_hw *hw = &adapter->hw;
1441 u32 ctrl = er32(CTRL);
1442 int link;
1443
1444 /* special requirements for 82571/82572 fiber adapters */
1445
1446 /* jump through hoops to make sure link is up because serdes
1447 * link is hardwired up
1448 */
1449 ctrl |= E1000_CTRL_SLU;
1450 ew32(CTRL, ctrl);
1451
1452 /* disable autoneg */
1453 ctrl = er32(TXCW);
1454 ctrl &= ~BIT(31);
1455 ew32(TXCW, ctrl);
1456
1457 link = (er32(STATUS) & E1000_STATUS_LU);
1458
1459 if (!link) {
1460 /* set invert loss of signal */
1461 ctrl = er32(CTRL);
1462 ctrl |= E1000_CTRL_ILOS;
1463 ew32(CTRL, ctrl);
1464 }
1465
1466 /* special write to serdes control register to enable SerDes analog
1467 * loopback
1468 */
1469 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1470 e1e_flush();
1471 usleep_range(10000, 11000);
1472
1473 return 0;
1474 }
1475
1476 /* only call this for fiber/serdes connections to es2lan */
e1000_set_es2lan_mac_loopback(struct e1000_adapter * adapter)1477 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1478 {
1479 struct e1000_hw *hw = &adapter->hw;
1480 u32 ctrlext = er32(CTRL_EXT);
1481 u32 ctrl = er32(CTRL);
1482
1483 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1484 * on mac_type 80003es2lan)
1485 */
1486 adapter->tx_fifo_head = ctrlext;
1487
1488 /* clear the serdes mode bits, putting the device into mac loopback */
1489 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1490 ew32(CTRL_EXT, ctrlext);
1491
1492 /* force speed to 1000/FD, link up */
1493 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1494 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1495 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1496 ew32(CTRL, ctrl);
1497
1498 /* set mac loopback */
1499 ctrl = er32(RCTL);
1500 ctrl |= E1000_RCTL_LBM_MAC;
1501 ew32(RCTL, ctrl);
1502
1503 /* set testing mode parameters (no need to reset later) */
1504 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1505 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1506 ew32(KMRNCTRLSTA,
1507 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1508
1509 return 0;
1510 }
1511
e1000_setup_loopback_test(struct e1000_adapter * adapter)1512 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1513 {
1514 struct e1000_hw *hw = &adapter->hw;
1515 u32 rctl, fext_nvm11, tarc0;
1516
1517 if (hw->mac.type >= e1000_pch_spt) {
1518 fext_nvm11 = er32(FEXTNVM11);
1519 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1520 ew32(FEXTNVM11, fext_nvm11);
1521 tarc0 = er32(TARC(0));
1522 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1523 tarc0 &= 0xcfffffff;
1524 /* set bit 29 (value of MULR requests is now 2) */
1525 tarc0 |= 0x20000000;
1526 ew32(TARC(0), tarc0);
1527 }
1528 if (hw->phy.media_type == e1000_media_type_fiber ||
1529 hw->phy.media_type == e1000_media_type_internal_serdes) {
1530 switch (hw->mac.type) {
1531 case e1000_80003es2lan:
1532 return e1000_set_es2lan_mac_loopback(adapter);
1533 case e1000_82571:
1534 case e1000_82572:
1535 return e1000_set_82571_fiber_loopback(adapter);
1536 default:
1537 rctl = er32(RCTL);
1538 rctl |= E1000_RCTL_LBM_TCVR;
1539 ew32(RCTL, rctl);
1540 return 0;
1541 }
1542 } else if (hw->phy.media_type == e1000_media_type_copper) {
1543 return e1000_integrated_phy_loopback(adapter);
1544 }
1545
1546 return 7;
1547 }
1548
e1000_loopback_cleanup(struct e1000_adapter * adapter)1549 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1550 {
1551 struct e1000_hw *hw = &adapter->hw;
1552 u32 rctl, fext_nvm11, tarc0;
1553 u16 phy_reg;
1554
1555 rctl = er32(RCTL);
1556 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1557 ew32(RCTL, rctl);
1558
1559 switch (hw->mac.type) {
1560 case e1000_pch_spt:
1561 case e1000_pch_cnp:
1562 fext_nvm11 = er32(FEXTNVM11);
1563 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1564 ew32(FEXTNVM11, fext_nvm11);
1565 tarc0 = er32(TARC(0));
1566 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1567 /* set bit 29 (value of MULR requests is now 0) */
1568 tarc0 &= 0xcfffffff;
1569 ew32(TARC(0), tarc0);
1570 /* fall through */
1571 case e1000_80003es2lan:
1572 if (hw->phy.media_type == e1000_media_type_fiber ||
1573 hw->phy.media_type == e1000_media_type_internal_serdes) {
1574 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1575 ew32(CTRL_EXT, adapter->tx_fifo_head);
1576 adapter->tx_fifo_head = 0;
1577 }
1578 /* fall through */
1579 case e1000_82571:
1580 case e1000_82572:
1581 if (hw->phy.media_type == e1000_media_type_fiber ||
1582 hw->phy.media_type == e1000_media_type_internal_serdes) {
1583 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1584 e1e_flush();
1585 usleep_range(10000, 11000);
1586 break;
1587 }
1588 /* Fall Through */
1589 default:
1590 hw->mac.autoneg = 1;
1591 if (hw->phy.type == e1000_phy_gg82563)
1592 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1593 e1e_rphy(hw, MII_BMCR, &phy_reg);
1594 if (phy_reg & BMCR_LOOPBACK) {
1595 phy_reg &= ~BMCR_LOOPBACK;
1596 e1e_wphy(hw, MII_BMCR, phy_reg);
1597 if (hw->phy.ops.commit)
1598 hw->phy.ops.commit(hw);
1599 }
1600 break;
1601 }
1602 }
1603
e1000_create_lbtest_frame(struct sk_buff * skb,unsigned int frame_size)1604 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1605 unsigned int frame_size)
1606 {
1607 memset(skb->data, 0xFF, frame_size);
1608 frame_size &= ~1;
1609 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1610 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1611 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1612 }
1613
e1000_check_lbtest_frame(struct sk_buff * skb,unsigned int frame_size)1614 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1615 unsigned int frame_size)
1616 {
1617 frame_size &= ~1;
1618 if (*(skb->data + 3) == 0xFF)
1619 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1620 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1621 return 0;
1622 return 13;
1623 }
1624
e1000_run_loopback_test(struct e1000_adapter * adapter)1625 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1626 {
1627 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1628 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1629 struct pci_dev *pdev = adapter->pdev;
1630 struct e1000_hw *hw = &adapter->hw;
1631 struct e1000_buffer *buffer_info;
1632 int i, j, k, l;
1633 int lc;
1634 int good_cnt;
1635 int ret_val = 0;
1636 unsigned long time;
1637
1638 ew32(RDT(0), rx_ring->count - 1);
1639
1640 /* Calculate the loop count based on the largest descriptor ring
1641 * The idea is to wrap the largest ring a number of times using 64
1642 * send/receive pairs during each loop
1643 */
1644
1645 if (rx_ring->count <= tx_ring->count)
1646 lc = ((tx_ring->count / 64) * 2) + 1;
1647 else
1648 lc = ((rx_ring->count / 64) * 2) + 1;
1649
1650 k = 0;
1651 l = 0;
1652 /* loop count loop */
1653 for (j = 0; j <= lc; j++) {
1654 /* send the packets */
1655 for (i = 0; i < 64; i++) {
1656 buffer_info = &tx_ring->buffer_info[k];
1657
1658 e1000_create_lbtest_frame(buffer_info->skb, 1024);
1659 dma_sync_single_for_device(&pdev->dev,
1660 buffer_info->dma,
1661 buffer_info->length,
1662 DMA_TO_DEVICE);
1663 k++;
1664 if (k == tx_ring->count)
1665 k = 0;
1666 }
1667 ew32(TDT(0), k);
1668 e1e_flush();
1669 msleep(200);
1670 time = jiffies; /* set the start time for the receive */
1671 good_cnt = 0;
1672 /* receive the sent packets */
1673 do {
1674 buffer_info = &rx_ring->buffer_info[l];
1675
1676 dma_sync_single_for_cpu(&pdev->dev,
1677 buffer_info->dma, 2048,
1678 DMA_FROM_DEVICE);
1679
1680 ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1681 1024);
1682 if (!ret_val)
1683 good_cnt++;
1684 l++;
1685 if (l == rx_ring->count)
1686 l = 0;
1687 /* time + 20 msecs (200 msecs on 2.4) is more than
1688 * enough time to complete the receives, if it's
1689 * exceeded, break and error off
1690 */
1691 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1692 if (good_cnt != 64) {
1693 ret_val = 13; /* ret_val is the same as mis-compare */
1694 break;
1695 }
1696 if (time_after(jiffies, time + 20)) {
1697 ret_val = 14; /* error code for time out error */
1698 break;
1699 }
1700 }
1701 return ret_val;
1702 }
1703
e1000_loopback_test(struct e1000_adapter * adapter,u64 * data)1704 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1705 {
1706 struct e1000_hw *hw = &adapter->hw;
1707
1708 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1709 if (hw->phy.ops.check_reset_block &&
1710 hw->phy.ops.check_reset_block(hw)) {
1711 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1712 *data = 0;
1713 goto out;
1714 }
1715
1716 *data = e1000_setup_desc_rings(adapter);
1717 if (*data)
1718 goto out;
1719
1720 *data = e1000_setup_loopback_test(adapter);
1721 if (*data)
1722 goto err_loopback;
1723
1724 *data = e1000_run_loopback_test(adapter);
1725 e1000_loopback_cleanup(adapter);
1726
1727 err_loopback:
1728 e1000_free_desc_rings(adapter);
1729 out:
1730 return *data;
1731 }
1732
e1000_link_test(struct e1000_adapter * adapter,u64 * data)1733 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1734 {
1735 struct e1000_hw *hw = &adapter->hw;
1736
1737 *data = 0;
1738 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1739 int i = 0;
1740
1741 hw->mac.serdes_has_link = false;
1742
1743 /* On some blade server designs, link establishment
1744 * could take as long as 2-3 minutes
1745 */
1746 do {
1747 hw->mac.ops.check_for_link(hw);
1748 if (hw->mac.serdes_has_link)
1749 return *data;
1750 msleep(20);
1751 } while (i++ < 3750);
1752
1753 *data = 1;
1754 } else {
1755 hw->mac.ops.check_for_link(hw);
1756 if (hw->mac.autoneg)
1757 /* On some Phy/switch combinations, link establishment
1758 * can take a few seconds more than expected.
1759 */
1760 msleep_interruptible(5000);
1761
1762 if (!(er32(STATUS) & E1000_STATUS_LU))
1763 *data = 1;
1764 }
1765 return *data;
1766 }
1767
e1000e_get_sset_count(struct net_device __always_unused * netdev,int sset)1768 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1769 int sset)
1770 {
1771 switch (sset) {
1772 case ETH_SS_TEST:
1773 return E1000_TEST_LEN;
1774 case ETH_SS_STATS:
1775 return E1000_STATS_LEN;
1776 default:
1777 return -EOPNOTSUPP;
1778 }
1779 }
1780
e1000_diag_test(struct net_device * netdev,struct ethtool_test * eth_test,u64 * data)1781 static void e1000_diag_test(struct net_device *netdev,
1782 struct ethtool_test *eth_test, u64 *data)
1783 {
1784 struct e1000_adapter *adapter = netdev_priv(netdev);
1785 u16 autoneg_advertised;
1786 u8 forced_speed_duplex;
1787 u8 autoneg;
1788 bool if_running = netif_running(netdev);
1789
1790 pm_runtime_get_sync(netdev->dev.parent);
1791
1792 set_bit(__E1000_TESTING, &adapter->state);
1793
1794 if (!if_running) {
1795 /* Get control of and reset hardware */
1796 if (adapter->flags & FLAG_HAS_AMT)
1797 e1000e_get_hw_control(adapter);
1798
1799 e1000e_power_up_phy(adapter);
1800
1801 adapter->hw.phy.autoneg_wait_to_complete = 1;
1802 e1000e_reset(adapter);
1803 adapter->hw.phy.autoneg_wait_to_complete = 0;
1804 }
1805
1806 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1807 /* Offline tests */
1808
1809 /* save speed, duplex, autoneg settings */
1810 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1811 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1812 autoneg = adapter->hw.mac.autoneg;
1813
1814 e_info("offline testing starting\n");
1815
1816 if (if_running)
1817 /* indicate we're in test mode */
1818 e1000e_close(netdev);
1819
1820 if (e1000_reg_test(adapter, &data[0]))
1821 eth_test->flags |= ETH_TEST_FL_FAILED;
1822
1823 e1000e_reset(adapter);
1824 if (e1000_eeprom_test(adapter, &data[1]))
1825 eth_test->flags |= ETH_TEST_FL_FAILED;
1826
1827 e1000e_reset(adapter);
1828 if (e1000_intr_test(adapter, &data[2]))
1829 eth_test->flags |= ETH_TEST_FL_FAILED;
1830
1831 e1000e_reset(adapter);
1832 if (e1000_loopback_test(adapter, &data[3]))
1833 eth_test->flags |= ETH_TEST_FL_FAILED;
1834
1835 /* force this routine to wait until autoneg complete/timeout */
1836 adapter->hw.phy.autoneg_wait_to_complete = 1;
1837 e1000e_reset(adapter);
1838 adapter->hw.phy.autoneg_wait_to_complete = 0;
1839
1840 if (e1000_link_test(adapter, &data[4]))
1841 eth_test->flags |= ETH_TEST_FL_FAILED;
1842
1843 /* restore speed, duplex, autoneg settings */
1844 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1845 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1846 adapter->hw.mac.autoneg = autoneg;
1847 e1000e_reset(adapter);
1848
1849 clear_bit(__E1000_TESTING, &adapter->state);
1850 if (if_running)
1851 e1000e_open(netdev);
1852 } else {
1853 /* Online tests */
1854
1855 e_info("online testing starting\n");
1856
1857 /* register, eeprom, intr and loopback tests not run online */
1858 data[0] = 0;
1859 data[1] = 0;
1860 data[2] = 0;
1861 data[3] = 0;
1862
1863 if (e1000_link_test(adapter, &data[4]))
1864 eth_test->flags |= ETH_TEST_FL_FAILED;
1865
1866 clear_bit(__E1000_TESTING, &adapter->state);
1867 }
1868
1869 if (!if_running) {
1870 e1000e_reset(adapter);
1871
1872 if (adapter->flags & FLAG_HAS_AMT)
1873 e1000e_release_hw_control(adapter);
1874 }
1875
1876 msleep_interruptible(4 * 1000);
1877
1878 pm_runtime_put_sync(netdev->dev.parent);
1879 }
1880
e1000_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)1881 static void e1000_get_wol(struct net_device *netdev,
1882 struct ethtool_wolinfo *wol)
1883 {
1884 struct e1000_adapter *adapter = netdev_priv(netdev);
1885
1886 wol->supported = 0;
1887 wol->wolopts = 0;
1888
1889 if (!(adapter->flags & FLAG_HAS_WOL) ||
1890 !device_can_wakeup(&adapter->pdev->dev))
1891 return;
1892
1893 wol->supported = WAKE_UCAST | WAKE_MCAST |
1894 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1895
1896 /* apply any specific unsupported masks here */
1897 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1898 wol->supported &= ~WAKE_UCAST;
1899
1900 if (adapter->wol & E1000_WUFC_EX)
1901 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1902 }
1903
1904 if (adapter->wol & E1000_WUFC_EX)
1905 wol->wolopts |= WAKE_UCAST;
1906 if (adapter->wol & E1000_WUFC_MC)
1907 wol->wolopts |= WAKE_MCAST;
1908 if (adapter->wol & E1000_WUFC_BC)
1909 wol->wolopts |= WAKE_BCAST;
1910 if (adapter->wol & E1000_WUFC_MAG)
1911 wol->wolopts |= WAKE_MAGIC;
1912 if (adapter->wol & E1000_WUFC_LNKC)
1913 wol->wolopts |= WAKE_PHY;
1914 }
1915
e1000_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)1916 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1917 {
1918 struct e1000_adapter *adapter = netdev_priv(netdev);
1919
1920 if (!(adapter->flags & FLAG_HAS_WOL) ||
1921 !device_can_wakeup(&adapter->pdev->dev) ||
1922 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1923 WAKE_MAGIC | WAKE_PHY)))
1924 return -EOPNOTSUPP;
1925
1926 /* these settings will always override what we currently have */
1927 adapter->wol = 0;
1928
1929 if (wol->wolopts & WAKE_UCAST)
1930 adapter->wol |= E1000_WUFC_EX;
1931 if (wol->wolopts & WAKE_MCAST)
1932 adapter->wol |= E1000_WUFC_MC;
1933 if (wol->wolopts & WAKE_BCAST)
1934 adapter->wol |= E1000_WUFC_BC;
1935 if (wol->wolopts & WAKE_MAGIC)
1936 adapter->wol |= E1000_WUFC_MAG;
1937 if (wol->wolopts & WAKE_PHY)
1938 adapter->wol |= E1000_WUFC_LNKC;
1939
1940 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1941
1942 return 0;
1943 }
1944
e1000_set_phys_id(struct net_device * netdev,enum ethtool_phys_id_state state)1945 static int e1000_set_phys_id(struct net_device *netdev,
1946 enum ethtool_phys_id_state state)
1947 {
1948 struct e1000_adapter *adapter = netdev_priv(netdev);
1949 struct e1000_hw *hw = &adapter->hw;
1950
1951 switch (state) {
1952 case ETHTOOL_ID_ACTIVE:
1953 pm_runtime_get_sync(netdev->dev.parent);
1954
1955 if (!hw->mac.ops.blink_led)
1956 return 2; /* cycle on/off twice per second */
1957
1958 hw->mac.ops.blink_led(hw);
1959 break;
1960
1961 case ETHTOOL_ID_INACTIVE:
1962 if (hw->phy.type == e1000_phy_ife)
1963 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1964 hw->mac.ops.led_off(hw);
1965 hw->mac.ops.cleanup_led(hw);
1966 pm_runtime_put_sync(netdev->dev.parent);
1967 break;
1968
1969 case ETHTOOL_ID_ON:
1970 hw->mac.ops.led_on(hw);
1971 break;
1972
1973 case ETHTOOL_ID_OFF:
1974 hw->mac.ops.led_off(hw);
1975 break;
1976 }
1977
1978 return 0;
1979 }
1980
e1000_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec)1981 static int e1000_get_coalesce(struct net_device *netdev,
1982 struct ethtool_coalesce *ec)
1983 {
1984 struct e1000_adapter *adapter = netdev_priv(netdev);
1985
1986 if (adapter->itr_setting <= 4)
1987 ec->rx_coalesce_usecs = adapter->itr_setting;
1988 else
1989 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1990
1991 return 0;
1992 }
1993
e1000_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec)1994 static int e1000_set_coalesce(struct net_device *netdev,
1995 struct ethtool_coalesce *ec)
1996 {
1997 struct e1000_adapter *adapter = netdev_priv(netdev);
1998
1999 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2000 ((ec->rx_coalesce_usecs > 4) &&
2001 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2002 (ec->rx_coalesce_usecs == 2))
2003 return -EINVAL;
2004
2005 if (ec->rx_coalesce_usecs == 4) {
2006 adapter->itr_setting = 4;
2007 adapter->itr = adapter->itr_setting;
2008 } else if (ec->rx_coalesce_usecs <= 3) {
2009 adapter->itr = 20000;
2010 adapter->itr_setting = ec->rx_coalesce_usecs;
2011 } else {
2012 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2013 adapter->itr_setting = adapter->itr & ~3;
2014 }
2015
2016 pm_runtime_get_sync(netdev->dev.parent);
2017
2018 if (adapter->itr_setting != 0)
2019 e1000e_write_itr(adapter, adapter->itr);
2020 else
2021 e1000e_write_itr(adapter, 0);
2022
2023 pm_runtime_put_sync(netdev->dev.parent);
2024
2025 return 0;
2026 }
2027
e1000_nway_reset(struct net_device * netdev)2028 static int e1000_nway_reset(struct net_device *netdev)
2029 {
2030 struct e1000_adapter *adapter = netdev_priv(netdev);
2031
2032 if (!netif_running(netdev))
2033 return -EAGAIN;
2034
2035 if (!adapter->hw.mac.autoneg)
2036 return -EINVAL;
2037
2038 pm_runtime_get_sync(netdev->dev.parent);
2039 e1000e_reinit_locked(adapter);
2040 pm_runtime_put_sync(netdev->dev.parent);
2041
2042 return 0;
2043 }
2044
e1000_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats __always_unused * stats,u64 * data)2045 static void e1000_get_ethtool_stats(struct net_device *netdev,
2046 struct ethtool_stats __always_unused *stats,
2047 u64 *data)
2048 {
2049 struct e1000_adapter *adapter = netdev_priv(netdev);
2050 struct rtnl_link_stats64 net_stats;
2051 int i;
2052 char *p = NULL;
2053
2054 pm_runtime_get_sync(netdev->dev.parent);
2055
2056 dev_get_stats(netdev, &net_stats);
2057
2058 pm_runtime_put_sync(netdev->dev.parent);
2059
2060 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2061 switch (e1000_gstrings_stats[i].type) {
2062 case NETDEV_STATS:
2063 p = (char *)&net_stats +
2064 e1000_gstrings_stats[i].stat_offset;
2065 break;
2066 case E1000_STATS:
2067 p = (char *)adapter +
2068 e1000_gstrings_stats[i].stat_offset;
2069 break;
2070 default:
2071 data[i] = 0;
2072 continue;
2073 }
2074
2075 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2076 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2077 }
2078 }
2079
e1000_get_strings(struct net_device __always_unused * netdev,u32 stringset,u8 * data)2080 static void e1000_get_strings(struct net_device __always_unused *netdev,
2081 u32 stringset, u8 *data)
2082 {
2083 u8 *p = data;
2084 int i;
2085
2086 switch (stringset) {
2087 case ETH_SS_TEST:
2088 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2089 break;
2090 case ETH_SS_STATS:
2091 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2092 memcpy(p, e1000_gstrings_stats[i].stat_string,
2093 ETH_GSTRING_LEN);
2094 p += ETH_GSTRING_LEN;
2095 }
2096 break;
2097 }
2098 }
2099
e1000_get_rxnfc(struct net_device * netdev,struct ethtool_rxnfc * info,u32 __always_unused * rule_locs)2100 static int e1000_get_rxnfc(struct net_device *netdev,
2101 struct ethtool_rxnfc *info,
2102 u32 __always_unused *rule_locs)
2103 {
2104 info->data = 0;
2105
2106 switch (info->cmd) {
2107 case ETHTOOL_GRXFH: {
2108 struct e1000_adapter *adapter = netdev_priv(netdev);
2109 struct e1000_hw *hw = &adapter->hw;
2110 u32 mrqc;
2111
2112 pm_runtime_get_sync(netdev->dev.parent);
2113 mrqc = er32(MRQC);
2114 pm_runtime_put_sync(netdev->dev.parent);
2115
2116 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2117 return 0;
2118
2119 switch (info->flow_type) {
2120 case TCP_V4_FLOW:
2121 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2122 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2123 /* fall through */
2124 case UDP_V4_FLOW:
2125 case SCTP_V4_FLOW:
2126 case AH_ESP_V4_FLOW:
2127 case IPV4_FLOW:
2128 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2129 info->data |= RXH_IP_SRC | RXH_IP_DST;
2130 break;
2131 case TCP_V6_FLOW:
2132 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2133 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2134 /* fall through */
2135 case UDP_V6_FLOW:
2136 case SCTP_V6_FLOW:
2137 case AH_ESP_V6_FLOW:
2138 case IPV6_FLOW:
2139 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2140 info->data |= RXH_IP_SRC | RXH_IP_DST;
2141 break;
2142 default:
2143 break;
2144 }
2145 return 0;
2146 }
2147 default:
2148 return -EOPNOTSUPP;
2149 }
2150 }
2151
e1000e_get_eee(struct net_device * netdev,struct ethtool_eee * edata)2152 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2153 {
2154 struct e1000_adapter *adapter = netdev_priv(netdev);
2155 struct e1000_hw *hw = &adapter->hw;
2156 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2157 u32 ret_val;
2158
2159 if (!(adapter->flags2 & FLAG2_HAS_EEE))
2160 return -EOPNOTSUPP;
2161
2162 switch (hw->phy.type) {
2163 case e1000_phy_82579:
2164 cap_addr = I82579_EEE_CAPABILITY;
2165 lpa_addr = I82579_EEE_LP_ABILITY;
2166 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2167 break;
2168 case e1000_phy_i217:
2169 cap_addr = I217_EEE_CAPABILITY;
2170 lpa_addr = I217_EEE_LP_ABILITY;
2171 pcs_stat_addr = I217_EEE_PCS_STATUS;
2172 break;
2173 default:
2174 return -EOPNOTSUPP;
2175 }
2176
2177 pm_runtime_get_sync(netdev->dev.parent);
2178
2179 ret_val = hw->phy.ops.acquire(hw);
2180 if (ret_val) {
2181 pm_runtime_put_sync(netdev->dev.parent);
2182 return -EBUSY;
2183 }
2184
2185 /* EEE Capability */
2186 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2187 if (ret_val)
2188 goto release;
2189 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2190
2191 /* EEE Advertised */
2192 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2193
2194 /* EEE Link Partner Advertised */
2195 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2196 if (ret_val)
2197 goto release;
2198 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2199
2200 /* EEE PCS Status */
2201 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2202 if (ret_val)
2203 goto release;
2204 if (hw->phy.type == e1000_phy_82579)
2205 phy_data <<= 8;
2206
2207 /* Result of the EEE auto negotiation - there is no register that
2208 * has the status of the EEE negotiation so do a best-guess based
2209 * on whether Tx or Rx LPI indications have been received.
2210 */
2211 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2212 edata->eee_active = true;
2213
2214 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2215 edata->tx_lpi_enabled = true;
2216 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2217
2218 release:
2219 hw->phy.ops.release(hw);
2220 if (ret_val)
2221 ret_val = -ENODATA;
2222
2223 pm_runtime_put_sync(netdev->dev.parent);
2224
2225 return ret_val;
2226 }
2227
e1000e_set_eee(struct net_device * netdev,struct ethtool_eee * edata)2228 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2229 {
2230 struct e1000_adapter *adapter = netdev_priv(netdev);
2231 struct e1000_hw *hw = &adapter->hw;
2232 struct ethtool_eee eee_curr;
2233 s32 ret_val;
2234
2235 ret_val = e1000e_get_eee(netdev, &eee_curr);
2236 if (ret_val)
2237 return ret_val;
2238
2239 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2240 e_err("Setting EEE tx-lpi is not supported\n");
2241 return -EINVAL;
2242 }
2243
2244 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2245 e_err("Setting EEE Tx LPI timer is not supported\n");
2246 return -EINVAL;
2247 }
2248
2249 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2250 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2251 return -EINVAL;
2252 }
2253
2254 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2255
2256 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2257
2258 pm_runtime_get_sync(netdev->dev.parent);
2259
2260 /* reset the link */
2261 if (netif_running(netdev))
2262 e1000e_reinit_locked(adapter);
2263 else
2264 e1000e_reset(adapter);
2265
2266 pm_runtime_put_sync(netdev->dev.parent);
2267
2268 return 0;
2269 }
2270
e1000e_get_ts_info(struct net_device * netdev,struct ethtool_ts_info * info)2271 static int e1000e_get_ts_info(struct net_device *netdev,
2272 struct ethtool_ts_info *info)
2273 {
2274 struct e1000_adapter *adapter = netdev_priv(netdev);
2275
2276 ethtool_op_get_ts_info(netdev, info);
2277
2278 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2279 return 0;
2280
2281 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2282 SOF_TIMESTAMPING_RX_HARDWARE |
2283 SOF_TIMESTAMPING_RAW_HARDWARE);
2284
2285 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2286
2287 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2288 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2289 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2290 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2291 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2292 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2293 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2294 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2295 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2296 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2297 BIT(HWTSTAMP_FILTER_ALL));
2298
2299 if (adapter->ptp_clock)
2300 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2301
2302 return 0;
2303 }
2304
2305 static const struct ethtool_ops e1000_ethtool_ops = {
2306 .get_drvinfo = e1000_get_drvinfo,
2307 .get_regs_len = e1000_get_regs_len,
2308 .get_regs = e1000_get_regs,
2309 .get_wol = e1000_get_wol,
2310 .set_wol = e1000_set_wol,
2311 .get_msglevel = e1000_get_msglevel,
2312 .set_msglevel = e1000_set_msglevel,
2313 .nway_reset = e1000_nway_reset,
2314 .get_link = ethtool_op_get_link,
2315 .get_eeprom_len = e1000_get_eeprom_len,
2316 .get_eeprom = e1000_get_eeprom,
2317 .set_eeprom = e1000_set_eeprom,
2318 .get_ringparam = e1000_get_ringparam,
2319 .set_ringparam = e1000_set_ringparam,
2320 .get_pauseparam = e1000_get_pauseparam,
2321 .set_pauseparam = e1000_set_pauseparam,
2322 .self_test = e1000_diag_test,
2323 .get_strings = e1000_get_strings,
2324 .set_phys_id = e1000_set_phys_id,
2325 .get_ethtool_stats = e1000_get_ethtool_stats,
2326 .get_sset_count = e1000e_get_sset_count,
2327 .get_coalesce = e1000_get_coalesce,
2328 .set_coalesce = e1000_set_coalesce,
2329 .get_rxnfc = e1000_get_rxnfc,
2330 .get_ts_info = e1000e_get_ts_info,
2331 .get_eee = e1000e_get_eee,
2332 .set_eee = e1000e_set_eee,
2333 .get_link_ksettings = e1000_get_link_ksettings,
2334 .set_link_ksettings = e1000_set_link_ksettings,
2335 };
2336
e1000e_set_ethtool_ops(struct net_device * netdev)2337 void e1000e_set_ethtool_ops(struct net_device *netdev)
2338 {
2339 netdev->ethtool_ops = &e1000_ethtool_ops;
2340 }
2341