1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3 
4 /* e1000_hw.c
5  * Shared functions for accessing and configuring the MAC
6  */
7 
8 #include "e1000.h"
9 
10 static s32 e1000_check_downshift(struct e1000_hw *hw);
11 static s32 e1000_check_polarity(struct e1000_hw *hw,
12 				e1000_rev_polarity *polarity);
13 static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
14 static void e1000_clear_vfta(struct e1000_hw *hw);
15 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
16 					      bool link_up);
17 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
18 static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
19 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
20 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
21 				  u16 *max_length);
22 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
23 static s32 e1000_id_led_init(struct e1000_hw *hw);
24 static void e1000_init_rx_addrs(struct e1000_hw *hw);
25 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
26 				  struct e1000_phy_info *phy_info);
27 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
28 				  struct e1000_phy_info *phy_info);
29 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
30 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
31 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
32 static s32 e1000_set_phy_type(struct e1000_hw *hw);
33 static void e1000_phy_init_script(struct e1000_hw *hw);
34 static s32 e1000_setup_copper_link(struct e1000_hw *hw);
35 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
36 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
37 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
38 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
39 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
40 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
41 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
42 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
43 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
44 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
45 				  u16 words, u16 *data);
46 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
47 					u16 words, u16 *data);
48 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
49 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
50 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
51 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
52 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
53 				  u16 phy_data);
54 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
55 				 u16 *phy_data);
56 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
57 static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
58 static void e1000_release_eeprom(struct e1000_hw *hw);
59 static void e1000_standby_eeprom(struct e1000_hw *hw);
60 static s32 e1000_set_vco_speed(struct e1000_hw *hw);
61 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
62 static s32 e1000_set_phy_mode(struct e1000_hw *hw);
63 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
64 				u16 *data);
65 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
66 				 u16 *data);
67 
68 /* IGP cable length table */
69 static const
70 u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
71 	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
72 	5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
73 	25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
74 	40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
75 	60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
76 	90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
77 	    100,
78 	100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
79 	    110, 110,
80 	110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
81 	    120, 120
82 };
83 
84 static DEFINE_MUTEX(e1000_eeprom_lock);
85 static DEFINE_SPINLOCK(e1000_phy_lock);
86 
87 /**
88  * e1000_set_phy_type - Set the phy type member in the hw struct.
89  * @hw: Struct containing variables accessed by shared code
90  */
e1000_set_phy_type(struct e1000_hw * hw)91 static s32 e1000_set_phy_type(struct e1000_hw *hw)
92 {
93 	if (hw->mac_type == e1000_undefined)
94 		return -E1000_ERR_PHY_TYPE;
95 
96 	switch (hw->phy_id) {
97 	case M88E1000_E_PHY_ID:
98 	case M88E1000_I_PHY_ID:
99 	case M88E1011_I_PHY_ID:
100 	case M88E1111_I_PHY_ID:
101 	case M88E1118_E_PHY_ID:
102 		hw->phy_type = e1000_phy_m88;
103 		break;
104 	case IGP01E1000_I_PHY_ID:
105 		if (hw->mac_type == e1000_82541 ||
106 		    hw->mac_type == e1000_82541_rev_2 ||
107 		    hw->mac_type == e1000_82547 ||
108 		    hw->mac_type == e1000_82547_rev_2)
109 			hw->phy_type = e1000_phy_igp;
110 		break;
111 	case RTL8211B_PHY_ID:
112 		hw->phy_type = e1000_phy_8211;
113 		break;
114 	case RTL8201N_PHY_ID:
115 		hw->phy_type = e1000_phy_8201;
116 		break;
117 	default:
118 		/* Should never have loaded on this device */
119 		hw->phy_type = e1000_phy_undefined;
120 		return -E1000_ERR_PHY_TYPE;
121 	}
122 
123 	return E1000_SUCCESS;
124 }
125 
126 /**
127  * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
128  * @hw: Struct containing variables accessed by shared code
129  */
e1000_phy_init_script(struct e1000_hw * hw)130 static void e1000_phy_init_script(struct e1000_hw *hw)
131 {
132 	u16 phy_saved_data;
133 
134 	if (hw->phy_init_script) {
135 		msleep(20);
136 
137 		/* Save off the current value of register 0x2F5B to be restored
138 		 * at the end of this routine.
139 		 */
140 		e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
141 
142 		/* Disabled the PHY transmitter */
143 		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
144 		msleep(20);
145 
146 		e1000_write_phy_reg(hw, 0x0000, 0x0140);
147 		msleep(5);
148 
149 		switch (hw->mac_type) {
150 		case e1000_82541:
151 		case e1000_82547:
152 			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
153 			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
154 			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
155 			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
156 			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
157 			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
158 			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
159 			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
160 			e1000_write_phy_reg(hw, 0x2010, 0x0008);
161 			break;
162 
163 		case e1000_82541_rev_2:
164 		case e1000_82547_rev_2:
165 			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
166 			break;
167 		default:
168 			break;
169 		}
170 
171 		e1000_write_phy_reg(hw, 0x0000, 0x3300);
172 		msleep(20);
173 
174 		/* Now enable the transmitter */
175 		e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
176 
177 		if (hw->mac_type == e1000_82547) {
178 			u16 fused, fine, coarse;
179 
180 			/* Move to analog registers page */
181 			e1000_read_phy_reg(hw,
182 					   IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
183 					   &fused);
184 
185 			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
186 				e1000_read_phy_reg(hw,
187 						   IGP01E1000_ANALOG_FUSE_STATUS,
188 						   &fused);
189 
190 				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
191 				coarse =
192 				    fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
193 
194 				if (coarse >
195 				    IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
196 					coarse -=
197 					    IGP01E1000_ANALOG_FUSE_COARSE_10;
198 					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
199 				} else if (coarse ==
200 					   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
201 					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
202 
203 				fused =
204 				    (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
205 				    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
206 				    (coarse &
207 				     IGP01E1000_ANALOG_FUSE_COARSE_MASK);
208 
209 				e1000_write_phy_reg(hw,
210 						    IGP01E1000_ANALOG_FUSE_CONTROL,
211 						    fused);
212 				e1000_write_phy_reg(hw,
213 						    IGP01E1000_ANALOG_FUSE_BYPASS,
214 						    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
215 			}
216 		}
217 	}
218 }
219 
220 /**
221  * e1000_set_mac_type - Set the mac type member in the hw struct.
222  * @hw: Struct containing variables accessed by shared code
223  */
e1000_set_mac_type(struct e1000_hw * hw)224 s32 e1000_set_mac_type(struct e1000_hw *hw)
225 {
226 	switch (hw->device_id) {
227 	case E1000_DEV_ID_82542:
228 		switch (hw->revision_id) {
229 		case E1000_82542_2_0_REV_ID:
230 			hw->mac_type = e1000_82542_rev2_0;
231 			break;
232 		case E1000_82542_2_1_REV_ID:
233 			hw->mac_type = e1000_82542_rev2_1;
234 			break;
235 		default:
236 			/* Invalid 82542 revision ID */
237 			return -E1000_ERR_MAC_TYPE;
238 		}
239 		break;
240 	case E1000_DEV_ID_82543GC_FIBER:
241 	case E1000_DEV_ID_82543GC_COPPER:
242 		hw->mac_type = e1000_82543;
243 		break;
244 	case E1000_DEV_ID_82544EI_COPPER:
245 	case E1000_DEV_ID_82544EI_FIBER:
246 	case E1000_DEV_ID_82544GC_COPPER:
247 	case E1000_DEV_ID_82544GC_LOM:
248 		hw->mac_type = e1000_82544;
249 		break;
250 	case E1000_DEV_ID_82540EM:
251 	case E1000_DEV_ID_82540EM_LOM:
252 	case E1000_DEV_ID_82540EP:
253 	case E1000_DEV_ID_82540EP_LOM:
254 	case E1000_DEV_ID_82540EP_LP:
255 		hw->mac_type = e1000_82540;
256 		break;
257 	case E1000_DEV_ID_82545EM_COPPER:
258 	case E1000_DEV_ID_82545EM_FIBER:
259 		hw->mac_type = e1000_82545;
260 		break;
261 	case E1000_DEV_ID_82545GM_COPPER:
262 	case E1000_DEV_ID_82545GM_FIBER:
263 	case E1000_DEV_ID_82545GM_SERDES:
264 		hw->mac_type = e1000_82545_rev_3;
265 		break;
266 	case E1000_DEV_ID_82546EB_COPPER:
267 	case E1000_DEV_ID_82546EB_FIBER:
268 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
269 		hw->mac_type = e1000_82546;
270 		break;
271 	case E1000_DEV_ID_82546GB_COPPER:
272 	case E1000_DEV_ID_82546GB_FIBER:
273 	case E1000_DEV_ID_82546GB_SERDES:
274 	case E1000_DEV_ID_82546GB_PCIE:
275 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
276 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
277 		hw->mac_type = e1000_82546_rev_3;
278 		break;
279 	case E1000_DEV_ID_82541EI:
280 	case E1000_DEV_ID_82541EI_MOBILE:
281 	case E1000_DEV_ID_82541ER_LOM:
282 		hw->mac_type = e1000_82541;
283 		break;
284 	case E1000_DEV_ID_82541ER:
285 	case E1000_DEV_ID_82541GI:
286 	case E1000_DEV_ID_82541GI_LF:
287 	case E1000_DEV_ID_82541GI_MOBILE:
288 		hw->mac_type = e1000_82541_rev_2;
289 		break;
290 	case E1000_DEV_ID_82547EI:
291 	case E1000_DEV_ID_82547EI_MOBILE:
292 		hw->mac_type = e1000_82547;
293 		break;
294 	case E1000_DEV_ID_82547GI:
295 		hw->mac_type = e1000_82547_rev_2;
296 		break;
297 	case E1000_DEV_ID_INTEL_CE4100_GBE:
298 		hw->mac_type = e1000_ce4100;
299 		break;
300 	default:
301 		/* Should never have loaded on this device */
302 		return -E1000_ERR_MAC_TYPE;
303 	}
304 
305 	switch (hw->mac_type) {
306 	case e1000_82541:
307 	case e1000_82547:
308 	case e1000_82541_rev_2:
309 	case e1000_82547_rev_2:
310 		hw->asf_firmware_present = true;
311 		break;
312 	default:
313 		break;
314 	}
315 
316 	/* The 82543 chip does not count tx_carrier_errors properly in
317 	 * FD mode
318 	 */
319 	if (hw->mac_type == e1000_82543)
320 		hw->bad_tx_carr_stats_fd = true;
321 
322 	if (hw->mac_type > e1000_82544)
323 		hw->has_smbus = true;
324 
325 	return E1000_SUCCESS;
326 }
327 
328 /**
329  * e1000_set_media_type - Set media type and TBI compatibility.
330  * @hw: Struct containing variables accessed by shared code
331  */
e1000_set_media_type(struct e1000_hw * hw)332 void e1000_set_media_type(struct e1000_hw *hw)
333 {
334 	u32 status;
335 
336 	if (hw->mac_type != e1000_82543) {
337 		/* tbi_compatibility is only valid on 82543 */
338 		hw->tbi_compatibility_en = false;
339 	}
340 
341 	switch (hw->device_id) {
342 	case E1000_DEV_ID_82545GM_SERDES:
343 	case E1000_DEV_ID_82546GB_SERDES:
344 		hw->media_type = e1000_media_type_internal_serdes;
345 		break;
346 	default:
347 		switch (hw->mac_type) {
348 		case e1000_82542_rev2_0:
349 		case e1000_82542_rev2_1:
350 			hw->media_type = e1000_media_type_fiber;
351 			break;
352 		case e1000_ce4100:
353 			hw->media_type = e1000_media_type_copper;
354 			break;
355 		default:
356 			status = er32(STATUS);
357 			if (status & E1000_STATUS_TBIMODE) {
358 				hw->media_type = e1000_media_type_fiber;
359 				/* tbi_compatibility not valid on fiber */
360 				hw->tbi_compatibility_en = false;
361 			} else {
362 				hw->media_type = e1000_media_type_copper;
363 			}
364 			break;
365 		}
366 	}
367 }
368 
369 /**
370  * e1000_reset_hw - reset the hardware completely
371  * @hw: Struct containing variables accessed by shared code
372  *
373  * Reset the transmit and receive units; mask and clear all interrupts.
374  */
e1000_reset_hw(struct e1000_hw * hw)375 s32 e1000_reset_hw(struct e1000_hw *hw)
376 {
377 	u32 ctrl;
378 	u32 ctrl_ext;
379 	u32 manc;
380 	u32 led_ctrl;
381 	s32 ret_val;
382 
383 	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
384 	if (hw->mac_type == e1000_82542_rev2_0) {
385 		e_dbg("Disabling MWI on 82542 rev 2.0\n");
386 		e1000_pci_clear_mwi(hw);
387 	}
388 
389 	/* Clear interrupt mask to stop board from generating interrupts */
390 	e_dbg("Masking off all interrupts\n");
391 	ew32(IMC, 0xffffffff);
392 
393 	/* Disable the Transmit and Receive units.  Then delay to allow
394 	 * any pending transactions to complete before we hit the MAC with
395 	 * the global reset.
396 	 */
397 	ew32(RCTL, 0);
398 	ew32(TCTL, E1000_TCTL_PSP);
399 	E1000_WRITE_FLUSH();
400 
401 	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
402 	hw->tbi_compatibility_on = false;
403 
404 	/* Delay to allow any outstanding PCI transactions to complete before
405 	 * resetting the device
406 	 */
407 	msleep(10);
408 
409 	ctrl = er32(CTRL);
410 
411 	/* Must reset the PHY before resetting the MAC */
412 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
413 		ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
414 		E1000_WRITE_FLUSH();
415 		msleep(5);
416 	}
417 
418 	/* Issue a global reset to the MAC.  This will reset the chip's
419 	 * transmit, receive, DMA, and link units.  It will not effect
420 	 * the current PCI configuration.  The global reset bit is self-
421 	 * clearing, and should clear within a microsecond.
422 	 */
423 	e_dbg("Issuing a global reset to MAC\n");
424 
425 	switch (hw->mac_type) {
426 	case e1000_82544:
427 	case e1000_82540:
428 	case e1000_82545:
429 	case e1000_82546:
430 	case e1000_82541:
431 	case e1000_82541_rev_2:
432 		/* These controllers can't ack the 64-bit write when issuing the
433 		 * reset, so use IO-mapping as a workaround to issue the reset
434 		 */
435 		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
436 		break;
437 	case e1000_82545_rev_3:
438 	case e1000_82546_rev_3:
439 		/* Reset is performed on a shadow of the control register */
440 		ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
441 		break;
442 	case e1000_ce4100:
443 	default:
444 		ew32(CTRL, (ctrl | E1000_CTRL_RST));
445 		break;
446 	}
447 
448 	/* After MAC reset, force reload of EEPROM to restore power-on settings
449 	 * to device.  Later controllers reload the EEPROM automatically, so
450 	 * just wait for reload to complete.
451 	 */
452 	switch (hw->mac_type) {
453 	case e1000_82542_rev2_0:
454 	case e1000_82542_rev2_1:
455 	case e1000_82543:
456 	case e1000_82544:
457 		/* Wait for reset to complete */
458 		udelay(10);
459 		ctrl_ext = er32(CTRL_EXT);
460 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
461 		ew32(CTRL_EXT, ctrl_ext);
462 		E1000_WRITE_FLUSH();
463 		/* Wait for EEPROM reload */
464 		msleep(2);
465 		break;
466 	case e1000_82541:
467 	case e1000_82541_rev_2:
468 	case e1000_82547:
469 	case e1000_82547_rev_2:
470 		/* Wait for EEPROM reload */
471 		msleep(20);
472 		break;
473 	default:
474 		/* Auto read done will delay 5ms or poll based on mac type */
475 		ret_val = e1000_get_auto_rd_done(hw);
476 		if (ret_val)
477 			return ret_val;
478 		break;
479 	}
480 
481 	/* Disable HW ARPs on ASF enabled adapters */
482 	if (hw->mac_type >= e1000_82540) {
483 		manc = er32(MANC);
484 		manc &= ~(E1000_MANC_ARP_EN);
485 		ew32(MANC, manc);
486 	}
487 
488 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
489 		e1000_phy_init_script(hw);
490 
491 		/* Configure activity LED after PHY reset */
492 		led_ctrl = er32(LEDCTL);
493 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
494 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
495 		ew32(LEDCTL, led_ctrl);
496 	}
497 
498 	/* Clear interrupt mask to stop board from generating interrupts */
499 	e_dbg("Masking off all interrupts\n");
500 	ew32(IMC, 0xffffffff);
501 
502 	/* Clear any pending interrupt events. */
503 	er32(ICR);
504 
505 	/* If MWI was previously enabled, reenable it. */
506 	if (hw->mac_type == e1000_82542_rev2_0) {
507 		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
508 			e1000_pci_set_mwi(hw);
509 	}
510 
511 	return E1000_SUCCESS;
512 }
513 
514 /**
515  * e1000_init_hw - Performs basic configuration of the adapter.
516  * @hw: Struct containing variables accessed by shared code
517  *
518  * Assumes that the controller has previously been reset and is in a
519  * post-reset uninitialized state. Initializes the receive address registers,
520  * multicast table, and VLAN filter table. Calls routines to setup link
521  * configuration and flow control settings. Clears all on-chip counters. Leaves
522  * the transmit and receive units disabled and uninitialized.
523  */
e1000_init_hw(struct e1000_hw * hw)524 s32 e1000_init_hw(struct e1000_hw *hw)
525 {
526 	u32 ctrl;
527 	u32 i;
528 	s32 ret_val;
529 	u32 mta_size;
530 	u32 ctrl_ext;
531 
532 	/* Initialize Identification LED */
533 	ret_val = e1000_id_led_init(hw);
534 	if (ret_val) {
535 		e_dbg("Error Initializing Identification LED\n");
536 		return ret_val;
537 	}
538 
539 	/* Set the media type and TBI compatibility */
540 	e1000_set_media_type(hw);
541 
542 	/* Disabling VLAN filtering. */
543 	e_dbg("Initializing the IEEE VLAN\n");
544 	if (hw->mac_type < e1000_82545_rev_3)
545 		ew32(VET, 0);
546 	e1000_clear_vfta(hw);
547 
548 	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
549 	if (hw->mac_type == e1000_82542_rev2_0) {
550 		e_dbg("Disabling MWI on 82542 rev 2.0\n");
551 		e1000_pci_clear_mwi(hw);
552 		ew32(RCTL, E1000_RCTL_RST);
553 		E1000_WRITE_FLUSH();
554 		msleep(5);
555 	}
556 
557 	/* Setup the receive address. This involves initializing all of the
558 	 * Receive Address Registers (RARs 0 - 15).
559 	 */
560 	e1000_init_rx_addrs(hw);
561 
562 	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
563 	if (hw->mac_type == e1000_82542_rev2_0) {
564 		ew32(RCTL, 0);
565 		E1000_WRITE_FLUSH();
566 		msleep(1);
567 		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
568 			e1000_pci_set_mwi(hw);
569 	}
570 
571 	/* Zero out the Multicast HASH table */
572 	e_dbg("Zeroing the MTA\n");
573 	mta_size = E1000_MC_TBL_SIZE;
574 	for (i = 0; i < mta_size; i++) {
575 		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
576 		/* use write flush to prevent Memory Write Block (MWB) from
577 		 * occurring when accessing our register space
578 		 */
579 		E1000_WRITE_FLUSH();
580 	}
581 
582 	/* Set the PCI priority bit correctly in the CTRL register.  This
583 	 * determines if the adapter gives priority to receives, or if it
584 	 * gives equal priority to transmits and receives.  Valid only on
585 	 * 82542 and 82543 silicon.
586 	 */
587 	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
588 		ctrl = er32(CTRL);
589 		ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
590 	}
591 
592 	switch (hw->mac_type) {
593 	case e1000_82545_rev_3:
594 	case e1000_82546_rev_3:
595 		break;
596 	default:
597 		/* Workaround for PCI-X problem when BIOS sets MMRBC
598 		 * incorrectly.
599 		 */
600 		if (hw->bus_type == e1000_bus_type_pcix &&
601 		    e1000_pcix_get_mmrbc(hw) > 2048)
602 			e1000_pcix_set_mmrbc(hw, 2048);
603 		break;
604 	}
605 
606 	/* Call a subroutine to configure the link and setup flow control. */
607 	ret_val = e1000_setup_link(hw);
608 
609 	/* Set the transmit descriptor write-back policy */
610 	if (hw->mac_type > e1000_82544) {
611 		ctrl = er32(TXDCTL);
612 		ctrl =
613 		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
614 		    E1000_TXDCTL_FULL_TX_DESC_WB;
615 		ew32(TXDCTL, ctrl);
616 	}
617 
618 	/* Clear all of the statistics registers (clear on read).  It is
619 	 * important that we do this after we have tried to establish link
620 	 * because the symbol error count will increment wildly if there
621 	 * is no link.
622 	 */
623 	e1000_clear_hw_cntrs(hw);
624 
625 	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
626 	    hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
627 		ctrl_ext = er32(CTRL_EXT);
628 		/* Relaxed ordering must be disabled to avoid a parity
629 		 * error crash in a PCI slot.
630 		 */
631 		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
632 		ew32(CTRL_EXT, ctrl_ext);
633 	}
634 
635 	return ret_val;
636 }
637 
638 /**
639  * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
640  * @hw: Struct containing variables accessed by shared code.
641  */
e1000_adjust_serdes_amplitude(struct e1000_hw * hw)642 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
643 {
644 	u16 eeprom_data;
645 	s32 ret_val;
646 
647 	if (hw->media_type != e1000_media_type_internal_serdes)
648 		return E1000_SUCCESS;
649 
650 	switch (hw->mac_type) {
651 	case e1000_82545_rev_3:
652 	case e1000_82546_rev_3:
653 		break;
654 	default:
655 		return E1000_SUCCESS;
656 	}
657 
658 	ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
659 				    &eeprom_data);
660 	if (ret_val)
661 		return ret_val;
662 
663 	if (eeprom_data != EEPROM_RESERVED_WORD) {
664 		/* Adjust SERDES output amplitude only. */
665 		eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
666 		ret_val =
667 		    e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
668 		if (ret_val)
669 			return ret_val;
670 	}
671 
672 	return E1000_SUCCESS;
673 }
674 
675 /**
676  * e1000_setup_link - Configures flow control and link settings.
677  * @hw: Struct containing variables accessed by shared code
678  *
679  * Determines which flow control settings to use. Calls the appropriate media-
680  * specific link configuration function. Configures the flow control settings.
681  * Assuming the adapter has a valid link partner, a valid link should be
682  * established. Assumes the hardware has previously been reset and the
683  * transmitter and receiver are not enabled.
684  */
e1000_setup_link(struct e1000_hw * hw)685 s32 e1000_setup_link(struct e1000_hw *hw)
686 {
687 	u32 ctrl_ext;
688 	s32 ret_val;
689 	u16 eeprom_data;
690 
691 	/* Read and store word 0x0F of the EEPROM. This word contains bits
692 	 * that determine the hardware's default PAUSE (flow control) mode,
693 	 * a bit that determines whether the HW defaults to enabling or
694 	 * disabling auto-negotiation, and the direction of the
695 	 * SW defined pins. If there is no SW over-ride of the flow
696 	 * control setting, then the variable hw->fc will
697 	 * be initialized based on a value in the EEPROM.
698 	 */
699 	if (hw->fc == E1000_FC_DEFAULT) {
700 		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
701 					    1, &eeprom_data);
702 		if (ret_val) {
703 			e_dbg("EEPROM Read Error\n");
704 			return -E1000_ERR_EEPROM;
705 		}
706 		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
707 			hw->fc = E1000_FC_NONE;
708 		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
709 			 EEPROM_WORD0F_ASM_DIR)
710 			hw->fc = E1000_FC_TX_PAUSE;
711 		else
712 			hw->fc = E1000_FC_FULL;
713 	}
714 
715 	/* We want to save off the original Flow Control configuration just
716 	 * in case we get disconnected and then reconnected into a different
717 	 * hub or switch with different Flow Control capabilities.
718 	 */
719 	if (hw->mac_type == e1000_82542_rev2_0)
720 		hw->fc &= (~E1000_FC_TX_PAUSE);
721 
722 	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
723 		hw->fc &= (~E1000_FC_RX_PAUSE);
724 
725 	hw->original_fc = hw->fc;
726 
727 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
728 
729 	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
730 	 * polarity value for the SW controlled pins, and setup the
731 	 * Extended Device Control reg with that info.
732 	 * This is needed because one of the SW controlled pins is used for
733 	 * signal detection.  So this should be done before e1000_setup_pcs_link()
734 	 * or e1000_phy_setup() is called.
735 	 */
736 	if (hw->mac_type == e1000_82543) {
737 		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
738 					    1, &eeprom_data);
739 		if (ret_val) {
740 			e_dbg("EEPROM Read Error\n");
741 			return -E1000_ERR_EEPROM;
742 		}
743 		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
744 			    SWDPIO__EXT_SHIFT);
745 		ew32(CTRL_EXT, ctrl_ext);
746 	}
747 
748 	/* Call the necessary subroutine to configure the link. */
749 	ret_val = (hw->media_type == e1000_media_type_copper) ?
750 	    e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
751 
752 	/* Initialize the flow control address, type, and PAUSE timer
753 	 * registers to their default values.  This is done even if flow
754 	 * control is disabled, because it does not hurt anything to
755 	 * initialize these registers.
756 	 */
757 	e_dbg("Initializing the Flow Control address, type and timer regs\n");
758 
759 	ew32(FCT, FLOW_CONTROL_TYPE);
760 	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
761 	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
762 
763 	ew32(FCTTV, hw->fc_pause_time);
764 
765 	/* Set the flow control receive threshold registers.  Normally,
766 	 * these registers will be set to a default threshold that may be
767 	 * adjusted later by the driver's runtime code.  However, if the
768 	 * ability to transmit pause frames in not enabled, then these
769 	 * registers will be set to 0.
770 	 */
771 	if (!(hw->fc & E1000_FC_TX_PAUSE)) {
772 		ew32(FCRTL, 0);
773 		ew32(FCRTH, 0);
774 	} else {
775 		/* We need to set up the Receive Threshold high and low water
776 		 * marks as well as (optionally) enabling the transmission of
777 		 * XON frames.
778 		 */
779 		if (hw->fc_send_xon) {
780 			ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
781 			ew32(FCRTH, hw->fc_high_water);
782 		} else {
783 			ew32(FCRTL, hw->fc_low_water);
784 			ew32(FCRTH, hw->fc_high_water);
785 		}
786 	}
787 	return ret_val;
788 }
789 
790 /**
791  * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
792  * @hw: Struct containing variables accessed by shared code
793  *
794  * Manipulates Physical Coding Sublayer functions in order to configure
795  * link. Assumes the hardware has been previously reset and the transmitter
796  * and receiver are not enabled.
797  */
e1000_setup_fiber_serdes_link(struct e1000_hw * hw)798 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
799 {
800 	u32 ctrl;
801 	u32 status;
802 	u32 txcw = 0;
803 	u32 i;
804 	u32 signal = 0;
805 	s32 ret_val;
806 
807 	/* On adapters with a MAC newer than 82544, SWDP 1 will be
808 	 * set when the optics detect a signal. On older adapters, it will be
809 	 * cleared when there is a signal.  This applies to fiber media only.
810 	 * If we're on serdes media, adjust the output amplitude to value
811 	 * set in the EEPROM.
812 	 */
813 	ctrl = er32(CTRL);
814 	if (hw->media_type == e1000_media_type_fiber)
815 		signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
816 
817 	ret_val = e1000_adjust_serdes_amplitude(hw);
818 	if (ret_val)
819 		return ret_val;
820 
821 	/* Take the link out of reset */
822 	ctrl &= ~(E1000_CTRL_LRST);
823 
824 	/* Adjust VCO speed to improve BER performance */
825 	ret_val = e1000_set_vco_speed(hw);
826 	if (ret_val)
827 		return ret_val;
828 
829 	e1000_config_collision_dist(hw);
830 
831 	/* Check for a software override of the flow control settings, and setup
832 	 * the device accordingly.  If auto-negotiation is enabled, then
833 	 * software will have to set the "PAUSE" bits to the correct value in
834 	 * the Tranmsit Config Word Register (TXCW) and re-start
835 	 * auto-negotiation.  However, if auto-negotiation is disabled, then
836 	 * software will have to manually configure the two flow control enable
837 	 * bits in the CTRL register.
838 	 *
839 	 * The possible values of the "fc" parameter are:
840 	 *  0:  Flow control is completely disabled
841 	 *  1:  Rx flow control is enabled (we can receive pause frames, but
842 	 *      not send pause frames).
843 	 *  2:  Tx flow control is enabled (we can send pause frames but we do
844 	 *      not support receiving pause frames).
845 	 *  3:  Both Rx and TX flow control (symmetric) are enabled.
846 	 */
847 	switch (hw->fc) {
848 	case E1000_FC_NONE:
849 		/* Flow ctrl is completely disabled by a software over-ride */
850 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
851 		break;
852 	case E1000_FC_RX_PAUSE:
853 		/* Rx Flow control is enabled and Tx Flow control is disabled by
854 		 * a software over-ride. Since there really isn't a way to
855 		 * advertise that we are capable of Rx Pause ONLY, we will
856 		 * advertise that we support both symmetric and asymmetric Rx
857 		 * PAUSE. Later, we will disable the adapter's ability to send
858 		 * PAUSE frames.
859 		 */
860 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
861 		break;
862 	case E1000_FC_TX_PAUSE:
863 		/* Tx Flow control is enabled, and Rx Flow control is disabled,
864 		 * by a software over-ride.
865 		 */
866 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
867 		break;
868 	case E1000_FC_FULL:
869 		/* Flow control (both Rx and Tx) is enabled by a software
870 		 * over-ride.
871 		 */
872 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
873 		break;
874 	default:
875 		e_dbg("Flow control param set incorrectly\n");
876 		return -E1000_ERR_CONFIG;
877 	}
878 
879 	/* Since auto-negotiation is enabled, take the link out of reset (the
880 	 * link will be in reset, because we previously reset the chip). This
881 	 * will restart auto-negotiation.  If auto-negotiation is successful
882 	 * then the link-up status bit will be set and the flow control enable
883 	 * bits (RFCE and TFCE) will be set according to their negotiated value.
884 	 */
885 	e_dbg("Auto-negotiation enabled\n");
886 
887 	ew32(TXCW, txcw);
888 	ew32(CTRL, ctrl);
889 	E1000_WRITE_FLUSH();
890 
891 	hw->txcw = txcw;
892 	msleep(1);
893 
894 	/* If we have a signal (the cable is plugged in) then poll for a
895 	 * "Link-Up" indication in the Device Status Register.  Time-out if a
896 	 * link isn't seen in 500 milliseconds seconds (Auto-negotiation should
897 	 * complete in less than 500 milliseconds even if the other end is doing
898 	 * it in SW). For internal serdes, we just assume a signal is present,
899 	 * then poll.
900 	 */
901 	if (hw->media_type == e1000_media_type_internal_serdes ||
902 	    (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
903 		e_dbg("Looking for Link\n");
904 		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
905 			msleep(10);
906 			status = er32(STATUS);
907 			if (status & E1000_STATUS_LU)
908 				break;
909 		}
910 		if (i == (LINK_UP_TIMEOUT / 10)) {
911 			e_dbg("Never got a valid link from auto-neg!!!\n");
912 			hw->autoneg_failed = 1;
913 			/* AutoNeg failed to achieve a link, so we'll call
914 			 * e1000_check_for_link. This routine will force the
915 			 * link up if we detect a signal. This will allow us to
916 			 * communicate with non-autonegotiating link partners.
917 			 */
918 			ret_val = e1000_check_for_link(hw);
919 			if (ret_val) {
920 				e_dbg("Error while checking for link\n");
921 				return ret_val;
922 			}
923 			hw->autoneg_failed = 0;
924 		} else {
925 			hw->autoneg_failed = 0;
926 			e_dbg("Valid Link Found\n");
927 		}
928 	} else {
929 		e_dbg("No Signal Detected\n");
930 	}
931 	return E1000_SUCCESS;
932 }
933 
934 /**
935  * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
936  * @hw: Struct containing variables accessed by shared code
937  *
938  * Commits changes to PHY configuration by calling e1000_phy_reset().
939  */
e1000_copper_link_rtl_setup(struct e1000_hw * hw)940 static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
941 {
942 	s32 ret_val;
943 
944 	/* SW reset the PHY so all changes take effect */
945 	ret_val = e1000_phy_reset(hw);
946 	if (ret_val) {
947 		e_dbg("Error Resetting the PHY\n");
948 		return ret_val;
949 	}
950 
951 	return E1000_SUCCESS;
952 }
953 
gbe_dhg_phy_setup(struct e1000_hw * hw)954 static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
955 {
956 	s32 ret_val;
957 	u32 ctrl_aux;
958 
959 	switch (hw->phy_type) {
960 	case e1000_phy_8211:
961 		ret_val = e1000_copper_link_rtl_setup(hw);
962 		if (ret_val) {
963 			e_dbg("e1000_copper_link_rtl_setup failed!\n");
964 			return ret_val;
965 		}
966 		break;
967 	case e1000_phy_8201:
968 		/* Set RMII mode */
969 		ctrl_aux = er32(CTL_AUX);
970 		ctrl_aux |= E1000_CTL_AUX_RMII;
971 		ew32(CTL_AUX, ctrl_aux);
972 		E1000_WRITE_FLUSH();
973 
974 		/* Disable the J/K bits required for receive */
975 		ctrl_aux = er32(CTL_AUX);
976 		ctrl_aux |= 0x4;
977 		ctrl_aux &= ~0x2;
978 		ew32(CTL_AUX, ctrl_aux);
979 		E1000_WRITE_FLUSH();
980 		ret_val = e1000_copper_link_rtl_setup(hw);
981 
982 		if (ret_val) {
983 			e_dbg("e1000_copper_link_rtl_setup failed!\n");
984 			return ret_val;
985 		}
986 		break;
987 	default:
988 		e_dbg("Error Resetting the PHY\n");
989 		return E1000_ERR_PHY_TYPE;
990 	}
991 
992 	return E1000_SUCCESS;
993 }
994 
995 /**
996  * e1000_copper_link_preconfig - early configuration for copper
997  * @hw: Struct containing variables accessed by shared code
998  *
999  * Make sure we have a valid PHY and change PHY mode before link setup.
1000  */
e1000_copper_link_preconfig(struct e1000_hw * hw)1001 static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1002 {
1003 	u32 ctrl;
1004 	s32 ret_val;
1005 	u16 phy_data;
1006 
1007 	ctrl = er32(CTRL);
1008 	/* With 82543, we need to force speed and duplex on the MAC equal to
1009 	 * what the PHY speed and duplex configuration is. In addition, we need
1010 	 * to perform a hardware reset on the PHY to take it out of reset.
1011 	 */
1012 	if (hw->mac_type > e1000_82543) {
1013 		ctrl |= E1000_CTRL_SLU;
1014 		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1015 		ew32(CTRL, ctrl);
1016 	} else {
1017 		ctrl |=
1018 		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1019 		ew32(CTRL, ctrl);
1020 		ret_val = e1000_phy_hw_reset(hw);
1021 		if (ret_val)
1022 			return ret_val;
1023 	}
1024 
1025 	/* Make sure we have a valid PHY */
1026 	ret_val = e1000_detect_gig_phy(hw);
1027 	if (ret_val) {
1028 		e_dbg("Error, did not detect valid phy.\n");
1029 		return ret_val;
1030 	}
1031 	e_dbg("Phy ID = %x\n", hw->phy_id);
1032 
1033 	/* Set PHY to class A mode (if necessary) */
1034 	ret_val = e1000_set_phy_mode(hw);
1035 	if (ret_val)
1036 		return ret_val;
1037 
1038 	if ((hw->mac_type == e1000_82545_rev_3) ||
1039 	    (hw->mac_type == e1000_82546_rev_3)) {
1040 		ret_val =
1041 		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1042 		phy_data |= 0x00000008;
1043 		ret_val =
1044 		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1045 	}
1046 
1047 	if (hw->mac_type <= e1000_82543 ||
1048 	    hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1049 	    hw->mac_type == e1000_82541_rev_2 ||
1050 	    hw->mac_type == e1000_82547_rev_2)
1051 		hw->phy_reset_disable = false;
1052 
1053 	return E1000_SUCCESS;
1054 }
1055 
1056 /**
1057  * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1058  * @hw: Struct containing variables accessed by shared code
1059  */
e1000_copper_link_igp_setup(struct e1000_hw * hw)1060 static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1061 {
1062 	u32 led_ctrl;
1063 	s32 ret_val;
1064 	u16 phy_data;
1065 
1066 	if (hw->phy_reset_disable)
1067 		return E1000_SUCCESS;
1068 
1069 	ret_val = e1000_phy_reset(hw);
1070 	if (ret_val) {
1071 		e_dbg("Error Resetting the PHY\n");
1072 		return ret_val;
1073 	}
1074 
1075 	/* Wait 15ms for MAC to configure PHY from eeprom settings */
1076 	msleep(15);
1077 	/* Configure activity LED after PHY reset */
1078 	led_ctrl = er32(LEDCTL);
1079 	led_ctrl &= IGP_ACTIVITY_LED_MASK;
1080 	led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1081 	ew32(LEDCTL, led_ctrl);
1082 
1083 	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1084 	if (hw->phy_type == e1000_phy_igp) {
1085 		/* disable lplu d3 during driver init */
1086 		ret_val = e1000_set_d3_lplu_state(hw, false);
1087 		if (ret_val) {
1088 			e_dbg("Error Disabling LPLU D3\n");
1089 			return ret_val;
1090 		}
1091 	}
1092 
1093 	/* Configure mdi-mdix settings */
1094 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1095 	if (ret_val)
1096 		return ret_val;
1097 
1098 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1099 		hw->dsp_config_state = e1000_dsp_config_disabled;
1100 		/* Force MDI for earlier revs of the IGP PHY */
1101 		phy_data &=
1102 		    ~(IGP01E1000_PSCR_AUTO_MDIX |
1103 		      IGP01E1000_PSCR_FORCE_MDI_MDIX);
1104 		hw->mdix = 1;
1105 
1106 	} else {
1107 		hw->dsp_config_state = e1000_dsp_config_enabled;
1108 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1109 
1110 		switch (hw->mdix) {
1111 		case 1:
1112 			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1113 			break;
1114 		case 2:
1115 			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1116 			break;
1117 		case 0:
1118 		default:
1119 			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1120 			break;
1121 		}
1122 	}
1123 	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1124 	if (ret_val)
1125 		return ret_val;
1126 
1127 	/* set auto-master slave resolution settings */
1128 	if (hw->autoneg) {
1129 		e1000_ms_type phy_ms_setting = hw->master_slave;
1130 
1131 		if (hw->ffe_config_state == e1000_ffe_config_active)
1132 			hw->ffe_config_state = e1000_ffe_config_enabled;
1133 
1134 		if (hw->dsp_config_state == e1000_dsp_config_activated)
1135 			hw->dsp_config_state = e1000_dsp_config_enabled;
1136 
1137 		/* when autonegotiation advertisement is only 1000Mbps then we
1138 		 * should disable SmartSpeed and enable Auto MasterSlave
1139 		 * resolution as hardware default.
1140 		 */
1141 		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1142 			/* Disable SmartSpeed */
1143 			ret_val =
1144 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1145 					       &phy_data);
1146 			if (ret_val)
1147 				return ret_val;
1148 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1149 			ret_val =
1150 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1151 						phy_data);
1152 			if (ret_val)
1153 				return ret_val;
1154 			/* Set auto Master/Slave resolution process */
1155 			ret_val =
1156 			    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1157 			if (ret_val)
1158 				return ret_val;
1159 			phy_data &= ~CR_1000T_MS_ENABLE;
1160 			ret_val =
1161 			    e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1162 			if (ret_val)
1163 				return ret_val;
1164 		}
1165 
1166 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1167 		if (ret_val)
1168 			return ret_val;
1169 
1170 		/* load defaults for future use */
1171 		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1172 		    ((phy_data & CR_1000T_MS_VALUE) ?
1173 		     e1000_ms_force_master :
1174 		     e1000_ms_force_slave) : e1000_ms_auto;
1175 
1176 		switch (phy_ms_setting) {
1177 		case e1000_ms_force_master:
1178 			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1179 			break;
1180 		case e1000_ms_force_slave:
1181 			phy_data |= CR_1000T_MS_ENABLE;
1182 			phy_data &= ~(CR_1000T_MS_VALUE);
1183 			break;
1184 		case e1000_ms_auto:
1185 			phy_data &= ~CR_1000T_MS_ENABLE;
1186 			break;
1187 		default:
1188 			break;
1189 		}
1190 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1191 		if (ret_val)
1192 			return ret_val;
1193 	}
1194 
1195 	return E1000_SUCCESS;
1196 }
1197 
1198 /**
1199  * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1200  * @hw: Struct containing variables accessed by shared code
1201  */
e1000_copper_link_mgp_setup(struct e1000_hw * hw)1202 static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1203 {
1204 	s32 ret_val;
1205 	u16 phy_data;
1206 
1207 	if (hw->phy_reset_disable)
1208 		return E1000_SUCCESS;
1209 
1210 	/* Enable CRS on TX. This must be set for half-duplex operation. */
1211 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1212 	if (ret_val)
1213 		return ret_val;
1214 
1215 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1216 
1217 	/* Options:
1218 	 *   MDI/MDI-X = 0 (default)
1219 	 *   0 - Auto for all speeds
1220 	 *   1 - MDI mode
1221 	 *   2 - MDI-X mode
1222 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1223 	 */
1224 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1225 
1226 	switch (hw->mdix) {
1227 	case 1:
1228 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1229 		break;
1230 	case 2:
1231 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1232 		break;
1233 	case 3:
1234 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1235 		break;
1236 	case 0:
1237 	default:
1238 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1239 		break;
1240 	}
1241 
1242 	/* Options:
1243 	 *   disable_polarity_correction = 0 (default)
1244 	 *       Automatic Correction for Reversed Cable Polarity
1245 	 *   0 - Disabled
1246 	 *   1 - Enabled
1247 	 */
1248 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1249 	if (hw->disable_polarity_correction == 1)
1250 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1251 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1252 	if (ret_val)
1253 		return ret_val;
1254 
1255 	if (hw->phy_revision < M88E1011_I_REV_4) {
1256 		/* Force TX_CLK in the Extended PHY Specific Control Register
1257 		 * to 25MHz clock.
1258 		 */
1259 		ret_val =
1260 		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1261 				       &phy_data);
1262 		if (ret_val)
1263 			return ret_val;
1264 
1265 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1266 
1267 		if ((hw->phy_revision == E1000_REVISION_2) &&
1268 		    (hw->phy_id == M88E1111_I_PHY_ID)) {
1269 			/* Vidalia Phy, set the downshift counter to 5x */
1270 			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1271 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1272 			ret_val = e1000_write_phy_reg(hw,
1273 						      M88E1000_EXT_PHY_SPEC_CTRL,
1274 						      phy_data);
1275 			if (ret_val)
1276 				return ret_val;
1277 		} else {
1278 			/* Configure Master and Slave downshift values */
1279 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1280 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1281 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1282 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1283 			ret_val = e1000_write_phy_reg(hw,
1284 						      M88E1000_EXT_PHY_SPEC_CTRL,
1285 						      phy_data);
1286 			if (ret_val)
1287 				return ret_val;
1288 		}
1289 	}
1290 
1291 	/* SW Reset the PHY so all changes take effect */
1292 	ret_val = e1000_phy_reset(hw);
1293 	if (ret_val) {
1294 		e_dbg("Error Resetting the PHY\n");
1295 		return ret_val;
1296 	}
1297 
1298 	return E1000_SUCCESS;
1299 }
1300 
1301 /**
1302  * e1000_copper_link_autoneg - setup auto-neg
1303  * @hw: Struct containing variables accessed by shared code
1304  *
1305  * Setup auto-negotiation and flow control advertisements,
1306  * and then perform auto-negotiation.
1307  */
e1000_copper_link_autoneg(struct e1000_hw * hw)1308 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1309 {
1310 	s32 ret_val;
1311 	u16 phy_data;
1312 
1313 	/* Perform some bounds checking on the hw->autoneg_advertised
1314 	 * parameter.  If this variable is zero, then set it to the default.
1315 	 */
1316 	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1317 
1318 	/* If autoneg_advertised is zero, we assume it was not defaulted
1319 	 * by the calling code so we set to advertise full capability.
1320 	 */
1321 	if (hw->autoneg_advertised == 0)
1322 		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1323 
1324 	/* IFE/RTL8201N PHY only supports 10/100 */
1325 	if (hw->phy_type == e1000_phy_8201)
1326 		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1327 
1328 	e_dbg("Reconfiguring auto-neg advertisement params\n");
1329 	ret_val = e1000_phy_setup_autoneg(hw);
1330 	if (ret_val) {
1331 		e_dbg("Error Setting up Auto-Negotiation\n");
1332 		return ret_val;
1333 	}
1334 	e_dbg("Restarting Auto-Neg\n");
1335 
1336 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1337 	 * the Auto Neg Restart bit in the PHY control register.
1338 	 */
1339 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1340 	if (ret_val)
1341 		return ret_val;
1342 
1343 	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1344 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1345 	if (ret_val)
1346 		return ret_val;
1347 
1348 	/* Does the user want to wait for Auto-Neg to complete here, or
1349 	 * check at a later time (for example, callback routine).
1350 	 */
1351 	if (hw->wait_autoneg_complete) {
1352 		ret_val = e1000_wait_autoneg(hw);
1353 		if (ret_val) {
1354 			e_dbg
1355 			    ("Error while waiting for autoneg to complete\n");
1356 			return ret_val;
1357 		}
1358 	}
1359 
1360 	hw->get_link_status = true;
1361 
1362 	return E1000_SUCCESS;
1363 }
1364 
1365 /**
1366  * e1000_copper_link_postconfig - post link setup
1367  * @hw: Struct containing variables accessed by shared code
1368  *
1369  * Config the MAC and the PHY after link is up.
1370  *   1) Set up the MAC to the current PHY speed/duplex
1371  *      if we are on 82543.  If we
1372  *      are on newer silicon, we only need to configure
1373  *      collision distance in the Transmit Control Register.
1374  *   2) Set up flow control on the MAC to that established with
1375  *      the link partner.
1376  *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
1377  */
e1000_copper_link_postconfig(struct e1000_hw * hw)1378 static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1379 {
1380 	s32 ret_val;
1381 
1382 	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
1383 		e1000_config_collision_dist(hw);
1384 	} else {
1385 		ret_val = e1000_config_mac_to_phy(hw);
1386 		if (ret_val) {
1387 			e_dbg("Error configuring MAC to PHY settings\n");
1388 			return ret_val;
1389 		}
1390 	}
1391 	ret_val = e1000_config_fc_after_link_up(hw);
1392 	if (ret_val) {
1393 		e_dbg("Error Configuring Flow Control\n");
1394 		return ret_val;
1395 	}
1396 
1397 	/* Config DSP to improve Giga link quality */
1398 	if (hw->phy_type == e1000_phy_igp) {
1399 		ret_val = e1000_config_dsp_after_link_change(hw, true);
1400 		if (ret_val) {
1401 			e_dbg("Error Configuring DSP after link up\n");
1402 			return ret_val;
1403 		}
1404 	}
1405 
1406 	return E1000_SUCCESS;
1407 }
1408 
1409 /**
1410  * e1000_setup_copper_link - phy/speed/duplex setting
1411  * @hw: Struct containing variables accessed by shared code
1412  *
1413  * Detects which PHY is present and sets up the speed and duplex
1414  */
e1000_setup_copper_link(struct e1000_hw * hw)1415 static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1416 {
1417 	s32 ret_val;
1418 	u16 i;
1419 	u16 phy_data;
1420 
1421 	/* Check if it is a valid PHY and set PHY mode if necessary. */
1422 	ret_val = e1000_copper_link_preconfig(hw);
1423 	if (ret_val)
1424 		return ret_val;
1425 
1426 	if (hw->phy_type == e1000_phy_igp) {
1427 		ret_val = e1000_copper_link_igp_setup(hw);
1428 		if (ret_val)
1429 			return ret_val;
1430 	} else if (hw->phy_type == e1000_phy_m88) {
1431 		ret_val = e1000_copper_link_mgp_setup(hw);
1432 		if (ret_val)
1433 			return ret_val;
1434 	} else {
1435 		ret_val = gbe_dhg_phy_setup(hw);
1436 		if (ret_val) {
1437 			e_dbg("gbe_dhg_phy_setup failed!\n");
1438 			return ret_val;
1439 		}
1440 	}
1441 
1442 	if (hw->autoneg) {
1443 		/* Setup autoneg and flow control advertisement
1444 		 * and perform autonegotiation
1445 		 */
1446 		ret_val = e1000_copper_link_autoneg(hw);
1447 		if (ret_val)
1448 			return ret_val;
1449 	} else {
1450 		/* PHY will be set to 10H, 10F, 100H,or 100F
1451 		 * depending on value from forced_speed_duplex.
1452 		 */
1453 		e_dbg("Forcing speed and duplex\n");
1454 		ret_val = e1000_phy_force_speed_duplex(hw);
1455 		if (ret_val) {
1456 			e_dbg("Error Forcing Speed and Duplex\n");
1457 			return ret_val;
1458 		}
1459 	}
1460 
1461 	/* Check link status. Wait up to 100 microseconds for link to become
1462 	 * valid.
1463 	 */
1464 	for (i = 0; i < 10; i++) {
1465 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1466 		if (ret_val)
1467 			return ret_val;
1468 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1469 		if (ret_val)
1470 			return ret_val;
1471 
1472 		if (phy_data & MII_SR_LINK_STATUS) {
1473 			/* Config the MAC and PHY after link is up */
1474 			ret_val = e1000_copper_link_postconfig(hw);
1475 			if (ret_val)
1476 				return ret_val;
1477 
1478 			e_dbg("Valid link established!!!\n");
1479 			return E1000_SUCCESS;
1480 		}
1481 		udelay(10);
1482 	}
1483 
1484 	e_dbg("Unable to establish link!!!\n");
1485 	return E1000_SUCCESS;
1486 }
1487 
1488 /**
1489  * e1000_phy_setup_autoneg - phy settings
1490  * @hw: Struct containing variables accessed by shared code
1491  *
1492  * Configures PHY autoneg and flow control advertisement settings
1493  */
e1000_phy_setup_autoneg(struct e1000_hw * hw)1494 s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1495 {
1496 	s32 ret_val;
1497 	u16 mii_autoneg_adv_reg;
1498 	u16 mii_1000t_ctrl_reg;
1499 
1500 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1501 	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1502 	if (ret_val)
1503 		return ret_val;
1504 
1505 	/* Read the MII 1000Base-T Control Register (Address 9). */
1506 	ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1507 	if (ret_val)
1508 		return ret_val;
1509 	else if (hw->phy_type == e1000_phy_8201)
1510 		mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1511 
1512 	/* Need to parse both autoneg_advertised and fc and set up
1513 	 * the appropriate PHY registers.  First we will parse for
1514 	 * autoneg_advertised software override.  Since we can advertise
1515 	 * a plethora of combinations, we need to check each bit
1516 	 * individually.
1517 	 */
1518 
1519 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1520 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1521 	 * the  1000Base-T Control Register (Address 9).
1522 	 */
1523 	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1524 	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1525 
1526 	e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
1527 
1528 	/* Do we want to advertise 10 Mb Half Duplex? */
1529 	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1530 		e_dbg("Advertise 10mb Half duplex\n");
1531 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1532 	}
1533 
1534 	/* Do we want to advertise 10 Mb Full Duplex? */
1535 	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1536 		e_dbg("Advertise 10mb Full duplex\n");
1537 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1538 	}
1539 
1540 	/* Do we want to advertise 100 Mb Half Duplex? */
1541 	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1542 		e_dbg("Advertise 100mb Half duplex\n");
1543 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1544 	}
1545 
1546 	/* Do we want to advertise 100 Mb Full Duplex? */
1547 	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1548 		e_dbg("Advertise 100mb Full duplex\n");
1549 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1550 	}
1551 
1552 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1553 	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1554 		e_dbg
1555 		    ("Advertise 1000mb Half duplex requested, request denied!\n");
1556 	}
1557 
1558 	/* Do we want to advertise 1000 Mb Full Duplex? */
1559 	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1560 		e_dbg("Advertise 1000mb Full duplex\n");
1561 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1562 	}
1563 
1564 	/* Check for a software override of the flow control settings, and
1565 	 * setup the PHY advertisement registers accordingly.  If
1566 	 * auto-negotiation is enabled, then software will have to set the
1567 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1568 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start
1569 	 * auto-negotiation.
1570 	 *
1571 	 * The possible values of the "fc" parameter are:
1572 	 *      0:  Flow control is completely disabled
1573 	 *      1:  Rx flow control is enabled (we can receive pause frames
1574 	 *          but not send pause frames).
1575 	 *      2:  Tx flow control is enabled (we can send pause frames
1576 	 *          but we do not support receiving pause frames).
1577 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1578 	 *  other:  No software override.  The flow control configuration
1579 	 *          in the EEPROM is used.
1580 	 */
1581 	switch (hw->fc) {
1582 	case E1000_FC_NONE:	/* 0 */
1583 		/* Flow control (RX & TX) is completely disabled by a
1584 		 * software over-ride.
1585 		 */
1586 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1587 		break;
1588 	case E1000_FC_RX_PAUSE:	/* 1 */
1589 		/* RX Flow control is enabled, and TX Flow control is
1590 		 * disabled, by a software over-ride.
1591 		 */
1592 		/* Since there really isn't a way to advertise that we are
1593 		 * capable of RX Pause ONLY, we will advertise that we
1594 		 * support both symmetric and asymmetric RX PAUSE.  Later
1595 		 * (in e1000_config_fc_after_link_up) we will disable the
1596 		 * hw's ability to send PAUSE frames.
1597 		 */
1598 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1599 		break;
1600 	case E1000_FC_TX_PAUSE:	/* 2 */
1601 		/* TX Flow control is enabled, and RX Flow control is
1602 		 * disabled, by a software over-ride.
1603 		 */
1604 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1605 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1606 		break;
1607 	case E1000_FC_FULL:	/* 3 */
1608 		/* Flow control (both RX and TX) is enabled by a software
1609 		 * over-ride.
1610 		 */
1611 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1612 		break;
1613 	default:
1614 		e_dbg("Flow control param set incorrectly\n");
1615 		return -E1000_ERR_CONFIG;
1616 	}
1617 
1618 	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1619 	if (ret_val)
1620 		return ret_val;
1621 
1622 	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1623 
1624 	if (hw->phy_type == e1000_phy_8201) {
1625 		mii_1000t_ctrl_reg = 0;
1626 	} else {
1627 		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1628 					      mii_1000t_ctrl_reg);
1629 		if (ret_val)
1630 			return ret_val;
1631 	}
1632 
1633 	return E1000_SUCCESS;
1634 }
1635 
1636 /**
1637  * e1000_phy_force_speed_duplex - force link settings
1638  * @hw: Struct containing variables accessed by shared code
1639  *
1640  * Force PHY speed and duplex settings to hw->forced_speed_duplex
1641  */
e1000_phy_force_speed_duplex(struct e1000_hw * hw)1642 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1643 {
1644 	u32 ctrl;
1645 	s32 ret_val;
1646 	u16 mii_ctrl_reg;
1647 	u16 mii_status_reg;
1648 	u16 phy_data;
1649 	u16 i;
1650 
1651 	/* Turn off Flow control if we are forcing speed and duplex. */
1652 	hw->fc = E1000_FC_NONE;
1653 
1654 	e_dbg("hw->fc = %d\n", hw->fc);
1655 
1656 	/* Read the Device Control Register. */
1657 	ctrl = er32(CTRL);
1658 
1659 	/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1660 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1661 	ctrl &= ~(DEVICE_SPEED_MASK);
1662 
1663 	/* Clear the Auto Speed Detect Enable bit. */
1664 	ctrl &= ~E1000_CTRL_ASDE;
1665 
1666 	/* Read the MII Control Register. */
1667 	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1668 	if (ret_val)
1669 		return ret_val;
1670 
1671 	/* We need to disable autoneg in order to force link and duplex. */
1672 
1673 	mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1674 
1675 	/* Are we forcing Full or Half Duplex? */
1676 	if (hw->forced_speed_duplex == e1000_100_full ||
1677 	    hw->forced_speed_duplex == e1000_10_full) {
1678 		/* We want to force full duplex so we SET the full duplex bits
1679 		 * in the Device and MII Control Registers.
1680 		 */
1681 		ctrl |= E1000_CTRL_FD;
1682 		mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1683 		e_dbg("Full Duplex\n");
1684 	} else {
1685 		/* We want to force half duplex so we CLEAR the full duplex bits
1686 		 * in the Device and MII Control Registers.
1687 		 */
1688 		ctrl &= ~E1000_CTRL_FD;
1689 		mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1690 		e_dbg("Half Duplex\n");
1691 	}
1692 
1693 	/* Are we forcing 100Mbps??? */
1694 	if (hw->forced_speed_duplex == e1000_100_full ||
1695 	    hw->forced_speed_duplex == e1000_100_half) {
1696 		/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1697 		ctrl |= E1000_CTRL_SPD_100;
1698 		mii_ctrl_reg |= MII_CR_SPEED_100;
1699 		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1700 		e_dbg("Forcing 100mb ");
1701 	} else {
1702 		/* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1703 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1704 		mii_ctrl_reg |= MII_CR_SPEED_10;
1705 		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1706 		e_dbg("Forcing 10mb ");
1707 	}
1708 
1709 	e1000_config_collision_dist(hw);
1710 
1711 	/* Write the configured values back to the Device Control Reg. */
1712 	ew32(CTRL, ctrl);
1713 
1714 	if (hw->phy_type == e1000_phy_m88) {
1715 		ret_val =
1716 		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1717 		if (ret_val)
1718 			return ret_val;
1719 
1720 		/* Clear Auto-Crossover to force MDI manually. M88E1000 requires
1721 		 * MDI forced whenever speed are duplex are forced.
1722 		 */
1723 		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1724 		ret_val =
1725 		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1726 		if (ret_val)
1727 			return ret_val;
1728 
1729 		e_dbg("M88E1000 PSCR: %x\n", phy_data);
1730 
1731 		/* Need to reset the PHY or these changes will be ignored */
1732 		mii_ctrl_reg |= MII_CR_RESET;
1733 
1734 		/* Disable MDI-X support for 10/100 */
1735 	} else {
1736 		/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1737 		 * forced whenever speed or duplex are forced.
1738 		 */
1739 		ret_val =
1740 		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1741 		if (ret_val)
1742 			return ret_val;
1743 
1744 		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1745 		phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1746 
1747 		ret_val =
1748 		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1749 		if (ret_val)
1750 			return ret_val;
1751 	}
1752 
1753 	/* Write back the modified PHY MII control register. */
1754 	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1755 	if (ret_val)
1756 		return ret_val;
1757 
1758 	udelay(1);
1759 
1760 	/* The wait_autoneg_complete flag may be a little misleading here.
1761 	 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1762 	 * But we do want to delay for a period while forcing only so we
1763 	 * don't generate false No Link messages.  So we will wait here
1764 	 * only if the user has set wait_autoneg_complete to 1, which is
1765 	 * the default.
1766 	 */
1767 	if (hw->wait_autoneg_complete) {
1768 		/* We will wait for autoneg to complete. */
1769 		e_dbg("Waiting for forced speed/duplex link.\n");
1770 		mii_status_reg = 0;
1771 
1772 		/* Wait for autoneg to complete or 4.5 seconds to expire */
1773 		for (i = PHY_FORCE_TIME; i > 0; i--) {
1774 			/* Read the MII Status Register and wait for Auto-Neg
1775 			 * Complete bit to be set.
1776 			 */
1777 			ret_val =
1778 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1779 			if (ret_val)
1780 				return ret_val;
1781 
1782 			ret_val =
1783 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1784 			if (ret_val)
1785 				return ret_val;
1786 
1787 			if (mii_status_reg & MII_SR_LINK_STATUS)
1788 				break;
1789 			msleep(100);
1790 		}
1791 		if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1792 			/* We didn't get link.  Reset the DSP and wait again
1793 			 * for link.
1794 			 */
1795 			ret_val = e1000_phy_reset_dsp(hw);
1796 			if (ret_val) {
1797 				e_dbg("Error Resetting PHY DSP\n");
1798 				return ret_val;
1799 			}
1800 		}
1801 		/* This loop will early-out if the link condition has been
1802 		 * met
1803 		 */
1804 		for (i = PHY_FORCE_TIME; i > 0; i--) {
1805 			if (mii_status_reg & MII_SR_LINK_STATUS)
1806 				break;
1807 			msleep(100);
1808 			/* Read the MII Status Register and wait for Auto-Neg
1809 			 * Complete bit to be set.
1810 			 */
1811 			ret_val =
1812 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1813 			if (ret_val)
1814 				return ret_val;
1815 
1816 			ret_val =
1817 			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1818 			if (ret_val)
1819 				return ret_val;
1820 		}
1821 	}
1822 
1823 	if (hw->phy_type == e1000_phy_m88) {
1824 		/* Because we reset the PHY above, we need to re-force TX_CLK in
1825 		 * the Extended PHY Specific Control Register to 25MHz clock.
1826 		 * This value defaults back to a 2.5MHz clock when the PHY is
1827 		 * reset.
1828 		 */
1829 		ret_val =
1830 		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1831 				       &phy_data);
1832 		if (ret_val)
1833 			return ret_val;
1834 
1835 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1836 		ret_val =
1837 		    e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1838 					phy_data);
1839 		if (ret_val)
1840 			return ret_val;
1841 
1842 		/* In addition, because of the s/w reset above, we need to
1843 		 * enable CRS on Tx.  This must be set for both full and half
1844 		 * duplex operation.
1845 		 */
1846 		ret_val =
1847 		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1848 		if (ret_val)
1849 			return ret_val;
1850 
1851 		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1852 		ret_val =
1853 		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1854 		if (ret_val)
1855 			return ret_val;
1856 
1857 		if ((hw->mac_type == e1000_82544 ||
1858 		     hw->mac_type == e1000_82543) &&
1859 		    (!hw->autoneg) &&
1860 		    (hw->forced_speed_duplex == e1000_10_full ||
1861 		     hw->forced_speed_duplex == e1000_10_half)) {
1862 			ret_val = e1000_polarity_reversal_workaround(hw);
1863 			if (ret_val)
1864 				return ret_val;
1865 		}
1866 	}
1867 	return E1000_SUCCESS;
1868 }
1869 
1870 /**
1871  * e1000_config_collision_dist - set collision distance register
1872  * @hw: Struct containing variables accessed by shared code
1873  *
1874  * Sets the collision distance in the Transmit Control register.
1875  * Link should have been established previously. Reads the speed and duplex
1876  * information from the Device Status register.
1877  */
e1000_config_collision_dist(struct e1000_hw * hw)1878 void e1000_config_collision_dist(struct e1000_hw *hw)
1879 {
1880 	u32 tctl, coll_dist;
1881 
1882 	if (hw->mac_type < e1000_82543)
1883 		coll_dist = E1000_COLLISION_DISTANCE_82542;
1884 	else
1885 		coll_dist = E1000_COLLISION_DISTANCE;
1886 
1887 	tctl = er32(TCTL);
1888 
1889 	tctl &= ~E1000_TCTL_COLD;
1890 	tctl |= coll_dist << E1000_COLD_SHIFT;
1891 
1892 	ew32(TCTL, tctl);
1893 	E1000_WRITE_FLUSH();
1894 }
1895 
1896 /**
1897  * e1000_config_mac_to_phy - sync phy and mac settings
1898  * @hw: Struct containing variables accessed by shared code
1899  *
1900  * Sets MAC speed and duplex settings to reflect the those in the PHY
1901  * The contents of the PHY register containing the needed information need to
1902  * be passed in.
1903  */
e1000_config_mac_to_phy(struct e1000_hw * hw)1904 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1905 {
1906 	u32 ctrl;
1907 	s32 ret_val;
1908 	u16 phy_data;
1909 
1910 	/* 82544 or newer MAC, Auto Speed Detection takes care of
1911 	 * MAC speed/duplex configuration.
1912 	 */
1913 	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
1914 		return E1000_SUCCESS;
1915 
1916 	/* Read the Device Control Register and set the bits to Force Speed
1917 	 * and Duplex.
1918 	 */
1919 	ctrl = er32(CTRL);
1920 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1921 	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1922 
1923 	switch (hw->phy_type) {
1924 	case e1000_phy_8201:
1925 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1926 		if (ret_val)
1927 			return ret_val;
1928 
1929 		if (phy_data & RTL_PHY_CTRL_FD)
1930 			ctrl |= E1000_CTRL_FD;
1931 		else
1932 			ctrl &= ~E1000_CTRL_FD;
1933 
1934 		if (phy_data & RTL_PHY_CTRL_SPD_100)
1935 			ctrl |= E1000_CTRL_SPD_100;
1936 		else
1937 			ctrl |= E1000_CTRL_SPD_10;
1938 
1939 		e1000_config_collision_dist(hw);
1940 		break;
1941 	default:
1942 		/* Set up duplex in the Device Control and Transmit Control
1943 		 * registers depending on negotiated values.
1944 		 */
1945 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1946 					     &phy_data);
1947 		if (ret_val)
1948 			return ret_val;
1949 
1950 		if (phy_data & M88E1000_PSSR_DPLX)
1951 			ctrl |= E1000_CTRL_FD;
1952 		else
1953 			ctrl &= ~E1000_CTRL_FD;
1954 
1955 		e1000_config_collision_dist(hw);
1956 
1957 		/* Set up speed in the Device Control register depending on
1958 		 * negotiated values.
1959 		 */
1960 		if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1961 			ctrl |= E1000_CTRL_SPD_1000;
1962 		else if ((phy_data & M88E1000_PSSR_SPEED) ==
1963 			 M88E1000_PSSR_100MBS)
1964 			ctrl |= E1000_CTRL_SPD_100;
1965 	}
1966 
1967 	/* Write the configured values back to the Device Control Reg. */
1968 	ew32(CTRL, ctrl);
1969 	return E1000_SUCCESS;
1970 }
1971 
1972 /**
1973  * e1000_force_mac_fc - force flow control settings
1974  * @hw: Struct containing variables accessed by shared code
1975  *
1976  * Forces the MAC's flow control settings.
1977  * Sets the TFCE and RFCE bits in the device control register to reflect
1978  * the adapter settings. TFCE and RFCE need to be explicitly set by
1979  * software when a Copper PHY is used because autonegotiation is managed
1980  * by the PHY rather than the MAC. Software must also configure these
1981  * bits when link is forced on a fiber connection.
1982  */
e1000_force_mac_fc(struct e1000_hw * hw)1983 s32 e1000_force_mac_fc(struct e1000_hw *hw)
1984 {
1985 	u32 ctrl;
1986 
1987 	/* Get the current configuration of the Device Control Register */
1988 	ctrl = er32(CTRL);
1989 
1990 	/* Because we didn't get link via the internal auto-negotiation
1991 	 * mechanism (we either forced link or we got link via PHY
1992 	 * auto-neg), we have to manually enable/disable transmit an
1993 	 * receive flow control.
1994 	 *
1995 	 * The "Case" statement below enables/disable flow control
1996 	 * according to the "hw->fc" parameter.
1997 	 *
1998 	 * The possible values of the "fc" parameter are:
1999 	 *      0:  Flow control is completely disabled
2000 	 *      1:  Rx flow control is enabled (we can receive pause
2001 	 *          frames but not send pause frames).
2002 	 *      2:  Tx flow control is enabled (we can send pause frames
2003 	 *          but we do not receive pause frames).
2004 	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
2005 	 *  other:  No other values should be possible at this point.
2006 	 */
2007 
2008 	switch (hw->fc) {
2009 	case E1000_FC_NONE:
2010 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2011 		break;
2012 	case E1000_FC_RX_PAUSE:
2013 		ctrl &= (~E1000_CTRL_TFCE);
2014 		ctrl |= E1000_CTRL_RFCE;
2015 		break;
2016 	case E1000_FC_TX_PAUSE:
2017 		ctrl &= (~E1000_CTRL_RFCE);
2018 		ctrl |= E1000_CTRL_TFCE;
2019 		break;
2020 	case E1000_FC_FULL:
2021 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2022 		break;
2023 	default:
2024 		e_dbg("Flow control param set incorrectly\n");
2025 		return -E1000_ERR_CONFIG;
2026 	}
2027 
2028 	/* Disable TX Flow Control for 82542 (rev 2.0) */
2029 	if (hw->mac_type == e1000_82542_rev2_0)
2030 		ctrl &= (~E1000_CTRL_TFCE);
2031 
2032 	ew32(CTRL, ctrl);
2033 	return E1000_SUCCESS;
2034 }
2035 
2036 /**
2037  * e1000_config_fc_after_link_up - configure flow control after autoneg
2038  * @hw: Struct containing variables accessed by shared code
2039  *
2040  * Configures flow control settings after link is established
2041  * Should be called immediately after a valid link has been established.
2042  * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2043  * and autonegotiation is enabled, the MAC flow control settings will be set
2044  * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2045  * and RFCE bits will be automatically set to the negotiated flow control mode.
2046  */
e1000_config_fc_after_link_up(struct e1000_hw * hw)2047 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2048 {
2049 	s32 ret_val;
2050 	u16 mii_status_reg;
2051 	u16 mii_nway_adv_reg;
2052 	u16 mii_nway_lp_ability_reg;
2053 	u16 speed;
2054 	u16 duplex;
2055 
2056 	/* Check for the case where we have fiber media and auto-neg failed
2057 	 * so we had to force link.  In this case, we need to force the
2058 	 * configuration of the MAC to match the "fc" parameter.
2059 	 */
2060 	if (((hw->media_type == e1000_media_type_fiber) &&
2061 	     (hw->autoneg_failed)) ||
2062 	    ((hw->media_type == e1000_media_type_internal_serdes) &&
2063 	     (hw->autoneg_failed)) ||
2064 	    ((hw->media_type == e1000_media_type_copper) &&
2065 	     (!hw->autoneg))) {
2066 		ret_val = e1000_force_mac_fc(hw);
2067 		if (ret_val) {
2068 			e_dbg("Error forcing flow control settings\n");
2069 			return ret_val;
2070 		}
2071 	}
2072 
2073 	/* Check for the case where we have copper media and auto-neg is
2074 	 * enabled.  In this case, we need to check and see if Auto-Neg
2075 	 * has completed, and if so, how the PHY and link partner has
2076 	 * flow control configured.
2077 	 */
2078 	if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2079 		/* Read the MII Status Register and check to see if AutoNeg
2080 		 * has completed.  We read this twice because this reg has
2081 		 * some "sticky" (latched) bits.
2082 		 */
2083 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2084 		if (ret_val)
2085 			return ret_val;
2086 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2087 		if (ret_val)
2088 			return ret_val;
2089 
2090 		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2091 			/* The AutoNeg process has completed, so we now need to
2092 			 * read both the Auto Negotiation Advertisement Register
2093 			 * (Address 4) and the Auto_Negotiation Base Page
2094 			 * Ability Register (Address 5) to determine how flow
2095 			 * control was negotiated.
2096 			 */
2097 			ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2098 						     &mii_nway_adv_reg);
2099 			if (ret_val)
2100 				return ret_val;
2101 			ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2102 						     &mii_nway_lp_ability_reg);
2103 			if (ret_val)
2104 				return ret_val;
2105 
2106 			/* Two bits in the Auto Negotiation Advertisement
2107 			 * Register (Address 4) and two bits in the Auto
2108 			 * Negotiation Base Page Ability Register (Address 5)
2109 			 * determine flow control for both the PHY and the link
2110 			 * partner.  The following table, taken out of the IEEE
2111 			 * 802.3ab/D6.0 dated March 25, 1999, describes these
2112 			 * PAUSE resolution bits and how flow control is
2113 			 * determined based upon these settings.
2114 			 * NOTE:  DC = Don't Care
2115 			 *
2116 			 *   LOCAL DEVICE  |   LINK PARTNER
2117 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2118 			 *-------|---------|-------|---------|------------------
2119 			 *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
2120 			 *   0   |    1    |   0   |   DC    | E1000_FC_NONE
2121 			 *   0   |    1    |   1   |    0    | E1000_FC_NONE
2122 			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2123 			 *   1   |    0    |   0   |   DC    | E1000_FC_NONE
2124 			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2125 			 *   1   |    1    |   0   |    0    | E1000_FC_NONE
2126 			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2127 			 *
2128 			 */
2129 			/* Are both PAUSE bits set to 1?  If so, this implies
2130 			 * Symmetric Flow Control is enabled at both ends.  The
2131 			 * ASM_DIR bits are irrelevant per the spec.
2132 			 *
2133 			 * For Symmetric Flow Control:
2134 			 *
2135 			 *   LOCAL DEVICE  |   LINK PARTNER
2136 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2137 			 *-------|---------|-------|---------|------------------
2138 			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2139 			 *
2140 			 */
2141 			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2142 			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2143 				/* Now we need to check if the user selected Rx
2144 				 * ONLY of pause frames.  In this case, we had
2145 				 * to advertise FULL flow control because we
2146 				 * could not advertise Rx ONLY. Hence, we must
2147 				 * now check to see if we need to turn OFF the
2148 				 * TRANSMISSION of PAUSE frames.
2149 				 */
2150 				if (hw->original_fc == E1000_FC_FULL) {
2151 					hw->fc = E1000_FC_FULL;
2152 					e_dbg("Flow Control = FULL.\n");
2153 				} else {
2154 					hw->fc = E1000_FC_RX_PAUSE;
2155 					e_dbg
2156 					    ("Flow Control = RX PAUSE frames only.\n");
2157 				}
2158 			}
2159 			/* For receiving PAUSE frames ONLY.
2160 			 *
2161 			 *   LOCAL DEVICE  |   LINK PARTNER
2162 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2163 			 *-------|---------|-------|---------|------------------
2164 			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2165 			 *
2166 			 */
2167 			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2168 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2169 				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2170 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2171 				hw->fc = E1000_FC_TX_PAUSE;
2172 				e_dbg
2173 				    ("Flow Control = TX PAUSE frames only.\n");
2174 			}
2175 			/* For transmitting PAUSE frames ONLY.
2176 			 *
2177 			 *   LOCAL DEVICE  |   LINK PARTNER
2178 			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2179 			 *-------|---------|-------|---------|------------------
2180 			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2181 			 *
2182 			 */
2183 			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2184 				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2185 				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2186 				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2187 				hw->fc = E1000_FC_RX_PAUSE;
2188 				e_dbg
2189 				    ("Flow Control = RX PAUSE frames only.\n");
2190 			}
2191 			/* Per the IEEE spec, at this point flow control should
2192 			 * be disabled.  However, we want to consider that we
2193 			 * could be connected to a legacy switch that doesn't
2194 			 * advertise desired flow control, but can be forced on
2195 			 * the link partner.  So if we advertised no flow
2196 			 * control, that is what we will resolve to.  If we
2197 			 * advertised some kind of receive capability (Rx Pause
2198 			 * Only or Full Flow Control) and the link partner
2199 			 * advertised none, we will configure ourselves to
2200 			 * enable Rx Flow Control only.  We can do this safely
2201 			 * for two reasons:  If the link partner really
2202 			 * didn't want flow control enabled, and we enable Rx,
2203 			 * no harm done since we won't be receiving any PAUSE
2204 			 * frames anyway.  If the intent on the link partner was
2205 			 * to have flow control enabled, then by us enabling Rx
2206 			 * only, we can at least receive pause frames and
2207 			 * process them. This is a good idea because in most
2208 			 * cases, since we are predominantly a server NIC, more
2209 			 * times than not we will be asked to delay transmission
2210 			 * of packets than asking our link partner to pause
2211 			 * transmission of frames.
2212 			 */
2213 			else if ((hw->original_fc == E1000_FC_NONE ||
2214 				  hw->original_fc == E1000_FC_TX_PAUSE) ||
2215 				 hw->fc_strict_ieee) {
2216 				hw->fc = E1000_FC_NONE;
2217 				e_dbg("Flow Control = NONE.\n");
2218 			} else {
2219 				hw->fc = E1000_FC_RX_PAUSE;
2220 				e_dbg
2221 				    ("Flow Control = RX PAUSE frames only.\n");
2222 			}
2223 
2224 			/* Now we need to do one last check...  If we auto-
2225 			 * negotiated to HALF DUPLEX, flow control should not be
2226 			 * enabled per IEEE 802.3 spec.
2227 			 */
2228 			ret_val =
2229 			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2230 			if (ret_val) {
2231 				e_dbg
2232 				    ("Error getting link speed and duplex\n");
2233 				return ret_val;
2234 			}
2235 
2236 			if (duplex == HALF_DUPLEX)
2237 				hw->fc = E1000_FC_NONE;
2238 
2239 			/* Now we call a subroutine to actually force the MAC
2240 			 * controller to use the correct flow control settings.
2241 			 */
2242 			ret_val = e1000_force_mac_fc(hw);
2243 			if (ret_val) {
2244 				e_dbg
2245 				    ("Error forcing flow control settings\n");
2246 				return ret_val;
2247 			}
2248 		} else {
2249 			e_dbg
2250 			    ("Copper PHY and Auto Neg has not completed.\n");
2251 		}
2252 	}
2253 	return E1000_SUCCESS;
2254 }
2255 
2256 /**
2257  * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2258  * @hw: pointer to the HW structure
2259  *
2260  * Checks for link up on the hardware.  If link is not up and we have
2261  * a signal, then we need to force link up.
2262  */
e1000_check_for_serdes_link_generic(struct e1000_hw * hw)2263 static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
2264 {
2265 	u32 rxcw;
2266 	u32 ctrl;
2267 	u32 status;
2268 	s32 ret_val = E1000_SUCCESS;
2269 
2270 	ctrl = er32(CTRL);
2271 	status = er32(STATUS);
2272 	rxcw = er32(RXCW);
2273 
2274 	/* If we don't have link (auto-negotiation failed or link partner
2275 	 * cannot auto-negotiate), and our link partner is not trying to
2276 	 * auto-negotiate with us (we are receiving idles or data),
2277 	 * we need to force link up. We also need to give auto-negotiation
2278 	 * time to complete.
2279 	 */
2280 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2281 	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2282 		if (hw->autoneg_failed == 0) {
2283 			hw->autoneg_failed = 1;
2284 			goto out;
2285 		}
2286 		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
2287 
2288 		/* Disable auto-negotiation in the TXCW register */
2289 		ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2290 
2291 		/* Force link-up and also force full-duplex. */
2292 		ctrl = er32(CTRL);
2293 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2294 		ew32(CTRL, ctrl);
2295 
2296 		/* Configure Flow Control after forcing link up. */
2297 		ret_val = e1000_config_fc_after_link_up(hw);
2298 		if (ret_val) {
2299 			e_dbg("Error configuring flow control\n");
2300 			goto out;
2301 		}
2302 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2303 		/* If we are forcing link and we are receiving /C/ ordered
2304 		 * sets, re-enable auto-negotiation in the TXCW register
2305 		 * and disable forced link in the Device Control register
2306 		 * in an attempt to auto-negotiate with our link partner.
2307 		 */
2308 		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
2309 		ew32(TXCW, hw->txcw);
2310 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2311 
2312 		hw->serdes_has_link = true;
2313 	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2314 		/* If we force link for non-auto-negotiation switch, check
2315 		 * link status based on MAC synchronization for internal
2316 		 * serdes media type.
2317 		 */
2318 		/* SYNCH bit and IV bit are sticky. */
2319 		udelay(10);
2320 		rxcw = er32(RXCW);
2321 		if (rxcw & E1000_RXCW_SYNCH) {
2322 			if (!(rxcw & E1000_RXCW_IV)) {
2323 				hw->serdes_has_link = true;
2324 				e_dbg("SERDES: Link up - forced.\n");
2325 			}
2326 		} else {
2327 			hw->serdes_has_link = false;
2328 			e_dbg("SERDES: Link down - force failed.\n");
2329 		}
2330 	}
2331 
2332 	if (E1000_TXCW_ANE & er32(TXCW)) {
2333 		status = er32(STATUS);
2334 		if (status & E1000_STATUS_LU) {
2335 			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
2336 			udelay(10);
2337 			rxcw = er32(RXCW);
2338 			if (rxcw & E1000_RXCW_SYNCH) {
2339 				if (!(rxcw & E1000_RXCW_IV)) {
2340 					hw->serdes_has_link = true;
2341 					e_dbg("SERDES: Link up - autoneg "
2342 						 "completed successfully.\n");
2343 				} else {
2344 					hw->serdes_has_link = false;
2345 					e_dbg("SERDES: Link down - invalid"
2346 						 "codewords detected in autoneg.\n");
2347 				}
2348 			} else {
2349 				hw->serdes_has_link = false;
2350 				e_dbg("SERDES: Link down - no sync.\n");
2351 			}
2352 		} else {
2353 			hw->serdes_has_link = false;
2354 			e_dbg("SERDES: Link down - autoneg failed\n");
2355 		}
2356 	}
2357 
2358       out:
2359 	return ret_val;
2360 }
2361 
2362 /**
2363  * e1000_check_for_link
2364  * @hw: Struct containing variables accessed by shared code
2365  *
2366  * Checks to see if the link status of the hardware has changed.
2367  * Called by any function that needs to check the link status of the adapter.
2368  */
e1000_check_for_link(struct e1000_hw * hw)2369 s32 e1000_check_for_link(struct e1000_hw *hw)
2370 {
2371 	u32 status;
2372 	u32 rctl;
2373 	u32 icr;
2374 	s32 ret_val;
2375 	u16 phy_data;
2376 
2377 	er32(CTRL);
2378 	status = er32(STATUS);
2379 
2380 	/* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2381 	 * set when the optics detect a signal. On older adapters, it will be
2382 	 * cleared when there is a signal.  This applies to fiber media only.
2383 	 */
2384 	if ((hw->media_type == e1000_media_type_fiber) ||
2385 	    (hw->media_type == e1000_media_type_internal_serdes)) {
2386 		er32(RXCW);
2387 
2388 		if (hw->media_type == e1000_media_type_fiber) {
2389 			if (status & E1000_STATUS_LU)
2390 				hw->get_link_status = false;
2391 		}
2392 	}
2393 
2394 	/* If we have a copper PHY then we only want to go out to the PHY
2395 	 * registers to see if Auto-Neg has completed and/or if our link
2396 	 * status has changed.  The get_link_status flag will be set if we
2397 	 * receive a Link Status Change interrupt or we have Rx Sequence
2398 	 * Errors.
2399 	 */
2400 	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2401 		/* First we want to see if the MII Status Register reports
2402 		 * link.  If so, then we want to get the current speed/duplex
2403 		 * of the PHY.
2404 		 * Read the register twice since the link bit is sticky.
2405 		 */
2406 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2407 		if (ret_val)
2408 			return ret_val;
2409 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2410 		if (ret_val)
2411 			return ret_val;
2412 
2413 		if (phy_data & MII_SR_LINK_STATUS) {
2414 			hw->get_link_status = false;
2415 			/* Check if there was DownShift, must be checked
2416 			 * immediately after link-up
2417 			 */
2418 			e1000_check_downshift(hw);
2419 
2420 			/* If we are on 82544 or 82543 silicon and speed/duplex
2421 			 * are forced to 10H or 10F, then we will implement the
2422 			 * polarity reversal workaround.  We disable interrupts
2423 			 * first, and upon returning, place the devices
2424 			 * interrupt state to its previous value except for the
2425 			 * link status change interrupt which will
2426 			 * happen due to the execution of this workaround.
2427 			 */
2428 
2429 			if ((hw->mac_type == e1000_82544 ||
2430 			     hw->mac_type == e1000_82543) &&
2431 			    (!hw->autoneg) &&
2432 			    (hw->forced_speed_duplex == e1000_10_full ||
2433 			     hw->forced_speed_duplex == e1000_10_half)) {
2434 				ew32(IMC, 0xffffffff);
2435 				ret_val =
2436 				    e1000_polarity_reversal_workaround(hw);
2437 				icr = er32(ICR);
2438 				ew32(ICS, (icr & ~E1000_ICS_LSC));
2439 				ew32(IMS, IMS_ENABLE_MASK);
2440 			}
2441 
2442 		} else {
2443 			/* No link detected */
2444 			e1000_config_dsp_after_link_change(hw, false);
2445 			return 0;
2446 		}
2447 
2448 		/* If we are forcing speed/duplex, then we simply return since
2449 		 * we have already determined whether we have link or not.
2450 		 */
2451 		if (!hw->autoneg)
2452 			return -E1000_ERR_CONFIG;
2453 
2454 		/* optimize the dsp settings for the igp phy */
2455 		e1000_config_dsp_after_link_change(hw, true);
2456 
2457 		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
2458 		 * have Si on board that is 82544 or newer, Auto
2459 		 * Speed Detection takes care of MAC speed/duplex
2460 		 * configuration.  So we only need to configure Collision
2461 		 * Distance in the MAC.  Otherwise, we need to force
2462 		 * speed/duplex on the MAC to the current PHY speed/duplex
2463 		 * settings.
2464 		 */
2465 		if ((hw->mac_type >= e1000_82544) &&
2466 		    (hw->mac_type != e1000_ce4100))
2467 			e1000_config_collision_dist(hw);
2468 		else {
2469 			ret_val = e1000_config_mac_to_phy(hw);
2470 			if (ret_val) {
2471 				e_dbg
2472 				    ("Error configuring MAC to PHY settings\n");
2473 				return ret_val;
2474 			}
2475 		}
2476 
2477 		/* Configure Flow Control now that Auto-Neg has completed.
2478 		 * First, we need to restore the desired flow control settings
2479 		 * because we may have had to re-autoneg with a different link
2480 		 * partner.
2481 		 */
2482 		ret_val = e1000_config_fc_after_link_up(hw);
2483 		if (ret_val) {
2484 			e_dbg("Error configuring flow control\n");
2485 			return ret_val;
2486 		}
2487 
2488 		/* At this point we know that we are on copper and we have
2489 		 * auto-negotiated link.  These are conditions for checking the
2490 		 * link partner capability register.  We use the link speed to
2491 		 * determine if TBI compatibility needs to be turned on or off.
2492 		 * If the link is not at gigabit speed, then TBI compatibility
2493 		 * is not needed.  If we are at gigabit speed, we turn on TBI
2494 		 * compatibility.
2495 		 */
2496 		if (hw->tbi_compatibility_en) {
2497 			u16 speed, duplex;
2498 
2499 			ret_val =
2500 			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2501 
2502 			if (ret_val) {
2503 				e_dbg
2504 				    ("Error getting link speed and duplex\n");
2505 				return ret_val;
2506 			}
2507 			if (speed != SPEED_1000) {
2508 				/* If link speed is not set to gigabit speed, we
2509 				 * do not need to enable TBI compatibility.
2510 				 */
2511 				if (hw->tbi_compatibility_on) {
2512 					/* If we previously were in the mode,
2513 					 * turn it off.
2514 					 */
2515 					rctl = er32(RCTL);
2516 					rctl &= ~E1000_RCTL_SBP;
2517 					ew32(RCTL, rctl);
2518 					hw->tbi_compatibility_on = false;
2519 				}
2520 			} else {
2521 				/* If TBI compatibility is was previously off,
2522 				 * turn it on. For compatibility with a TBI link
2523 				 * partner, we will store bad packets. Some
2524 				 * frames have an additional byte on the end and
2525 				 * will look like CRC errors to the hardware.
2526 				 */
2527 				if (!hw->tbi_compatibility_on) {
2528 					hw->tbi_compatibility_on = true;
2529 					rctl = er32(RCTL);
2530 					rctl |= E1000_RCTL_SBP;
2531 					ew32(RCTL, rctl);
2532 				}
2533 			}
2534 		}
2535 	}
2536 
2537 	if ((hw->media_type == e1000_media_type_fiber) ||
2538 	    (hw->media_type == e1000_media_type_internal_serdes))
2539 		e1000_check_for_serdes_link_generic(hw);
2540 
2541 	return E1000_SUCCESS;
2542 }
2543 
2544 /**
2545  * e1000_get_speed_and_duplex
2546  * @hw: Struct containing variables accessed by shared code
2547  * @speed: Speed of the connection
2548  * @duplex: Duplex setting of the connection
2549  *
2550  * Detects the current speed and duplex settings of the hardware.
2551  */
e1000_get_speed_and_duplex(struct e1000_hw * hw,u16 * speed,u16 * duplex)2552 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
2553 {
2554 	u32 status;
2555 	s32 ret_val;
2556 	u16 phy_data;
2557 
2558 	if (hw->mac_type >= e1000_82543) {
2559 		status = er32(STATUS);
2560 		if (status & E1000_STATUS_SPEED_1000) {
2561 			*speed = SPEED_1000;
2562 			e_dbg("1000 Mbs, ");
2563 		} else if (status & E1000_STATUS_SPEED_100) {
2564 			*speed = SPEED_100;
2565 			e_dbg("100 Mbs, ");
2566 		} else {
2567 			*speed = SPEED_10;
2568 			e_dbg("10 Mbs, ");
2569 		}
2570 
2571 		if (status & E1000_STATUS_FD) {
2572 			*duplex = FULL_DUPLEX;
2573 			e_dbg("Full Duplex\n");
2574 		} else {
2575 			*duplex = HALF_DUPLEX;
2576 			e_dbg(" Half Duplex\n");
2577 		}
2578 	} else {
2579 		e_dbg("1000 Mbs, Full Duplex\n");
2580 		*speed = SPEED_1000;
2581 		*duplex = FULL_DUPLEX;
2582 	}
2583 
2584 	/* IGP01 PHY may advertise full duplex operation after speed downgrade
2585 	 * even if it is operating at half duplex.  Here we set the duplex
2586 	 * settings to match the duplex in the link partner's capabilities.
2587 	 */
2588 	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2589 		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2590 		if (ret_val)
2591 			return ret_val;
2592 
2593 		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2594 			*duplex = HALF_DUPLEX;
2595 		else {
2596 			ret_val =
2597 			    e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2598 			if (ret_val)
2599 				return ret_val;
2600 			if ((*speed == SPEED_100 &&
2601 			     !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
2602 			    (*speed == SPEED_10 &&
2603 			     !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2604 				*duplex = HALF_DUPLEX;
2605 		}
2606 	}
2607 
2608 	return E1000_SUCCESS;
2609 }
2610 
2611 /**
2612  * e1000_wait_autoneg
2613  * @hw: Struct containing variables accessed by shared code
2614  *
2615  * Blocks until autoneg completes or times out (~4.5 seconds)
2616  */
e1000_wait_autoneg(struct e1000_hw * hw)2617 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2618 {
2619 	s32 ret_val;
2620 	u16 i;
2621 	u16 phy_data;
2622 
2623 	e_dbg("Waiting for Auto-Neg to complete.\n");
2624 
2625 	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
2626 	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2627 		/* Read the MII Status Register and wait for Auto-Neg
2628 		 * Complete bit to be set.
2629 		 */
2630 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2631 		if (ret_val)
2632 			return ret_val;
2633 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2634 		if (ret_val)
2635 			return ret_val;
2636 		if (phy_data & MII_SR_AUTONEG_COMPLETE)
2637 			return E1000_SUCCESS;
2638 
2639 		msleep(100);
2640 	}
2641 	return E1000_SUCCESS;
2642 }
2643 
2644 /**
2645  * e1000_raise_mdi_clk - Raises the Management Data Clock
2646  * @hw: Struct containing variables accessed by shared code
2647  * @ctrl: Device control register's current value
2648  */
e1000_raise_mdi_clk(struct e1000_hw * hw,u32 * ctrl)2649 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2650 {
2651 	/* Raise the clock input to the Management Data Clock (by setting the
2652 	 * MDC bit), and then delay 10 microseconds.
2653 	 */
2654 	ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2655 	E1000_WRITE_FLUSH();
2656 	udelay(10);
2657 }
2658 
2659 /**
2660  * e1000_lower_mdi_clk - Lowers the Management Data Clock
2661  * @hw: Struct containing variables accessed by shared code
2662  * @ctrl: Device control register's current value
2663  */
e1000_lower_mdi_clk(struct e1000_hw * hw,u32 * ctrl)2664 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2665 {
2666 	/* Lower the clock input to the Management Data Clock (by clearing the
2667 	 * MDC bit), and then delay 10 microseconds.
2668 	 */
2669 	ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2670 	E1000_WRITE_FLUSH();
2671 	udelay(10);
2672 }
2673 
2674 /**
2675  * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2676  * @hw: Struct containing variables accessed by shared code
2677  * @data: Data to send out to the PHY
2678  * @count: Number of bits to shift out
2679  *
2680  * Bits are shifted out in MSB to LSB order.
2681  */
e1000_shift_out_mdi_bits(struct e1000_hw * hw,u32 data,u16 count)2682 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
2683 {
2684 	u32 ctrl;
2685 	u32 mask;
2686 
2687 	/* We need to shift "count" number of bits out to the PHY. So, the value
2688 	 * in the "data" parameter will be shifted out to the PHY one bit at a
2689 	 * time. In order to do this, "data" must be broken down into bits.
2690 	 */
2691 	mask = 0x01;
2692 	mask <<= (count - 1);
2693 
2694 	ctrl = er32(CTRL);
2695 
2696 	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2697 	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2698 
2699 	while (mask) {
2700 		/* A "1" is shifted out to the PHY by setting the MDIO bit to
2701 		 * "1" and then raising and lowering the Management Data Clock.
2702 		 * A "0" is shifted out to the PHY by setting the MDIO bit to
2703 		 * "0" and then raising and lowering the clock.
2704 		 */
2705 		if (data & mask)
2706 			ctrl |= E1000_CTRL_MDIO;
2707 		else
2708 			ctrl &= ~E1000_CTRL_MDIO;
2709 
2710 		ew32(CTRL, ctrl);
2711 		E1000_WRITE_FLUSH();
2712 
2713 		udelay(10);
2714 
2715 		e1000_raise_mdi_clk(hw, &ctrl);
2716 		e1000_lower_mdi_clk(hw, &ctrl);
2717 
2718 		mask = mask >> 1;
2719 	}
2720 }
2721 
2722 /**
2723  * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2724  * @hw: Struct containing variables accessed by shared code
2725  *
2726  * Bits are shifted in MSB to LSB order.
2727  */
e1000_shift_in_mdi_bits(struct e1000_hw * hw)2728 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2729 {
2730 	u32 ctrl;
2731 	u16 data = 0;
2732 	u8 i;
2733 
2734 	/* In order to read a register from the PHY, we need to shift in a total
2735 	 * of 18 bits from the PHY. The first two bit (turnaround) times are
2736 	 * used to avoid contention on the MDIO pin when a read operation is
2737 	 * performed. These two bits are ignored by us and thrown away. Bits are
2738 	 * "shifted in" by raising the input to the Management Data Clock
2739 	 * (setting the MDC bit), and then reading the value of the MDIO bit.
2740 	 */
2741 	ctrl = er32(CTRL);
2742 
2743 	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
2744 	 * input.
2745 	 */
2746 	ctrl &= ~E1000_CTRL_MDIO_DIR;
2747 	ctrl &= ~E1000_CTRL_MDIO;
2748 
2749 	ew32(CTRL, ctrl);
2750 	E1000_WRITE_FLUSH();
2751 
2752 	/* Raise and Lower the clock before reading in the data. This accounts
2753 	 * for the turnaround bits. The first clock occurred when we clocked out
2754 	 * the last bit of the Register Address.
2755 	 */
2756 	e1000_raise_mdi_clk(hw, &ctrl);
2757 	e1000_lower_mdi_clk(hw, &ctrl);
2758 
2759 	for (data = 0, i = 0; i < 16; i++) {
2760 		data = data << 1;
2761 		e1000_raise_mdi_clk(hw, &ctrl);
2762 		ctrl = er32(CTRL);
2763 		/* Check to see if we shifted in a "1". */
2764 		if (ctrl & E1000_CTRL_MDIO)
2765 			data |= 1;
2766 		e1000_lower_mdi_clk(hw, &ctrl);
2767 	}
2768 
2769 	e1000_raise_mdi_clk(hw, &ctrl);
2770 	e1000_lower_mdi_clk(hw, &ctrl);
2771 
2772 	return data;
2773 }
2774 
2775 /**
2776  * e1000_read_phy_reg - read a phy register
2777  * @hw: Struct containing variables accessed by shared code
2778  * @reg_addr: address of the PHY register to read
2779  * @phy_data: pointer to the value on the PHY register
2780  *
2781  * Reads the value from a PHY register, if the value is on a specific non zero
2782  * page, sets the page first.
2783  */
e1000_read_phy_reg(struct e1000_hw * hw,u32 reg_addr,u16 * phy_data)2784 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
2785 {
2786 	u32 ret_val;
2787 	unsigned long flags;
2788 
2789 	spin_lock_irqsave(&e1000_phy_lock, flags);
2790 
2791 	if ((hw->phy_type == e1000_phy_igp) &&
2792 	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2793 		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2794 						 (u16) reg_addr);
2795 		if (ret_val)
2796 			goto out;
2797 	}
2798 
2799 	ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2800 					phy_data);
2801 out:
2802 	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2803 
2804 	return ret_val;
2805 }
2806 
e1000_read_phy_reg_ex(struct e1000_hw * hw,u32 reg_addr,u16 * phy_data)2807 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2808 				 u16 *phy_data)
2809 {
2810 	u32 i;
2811 	u32 mdic = 0;
2812 	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2813 
2814 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2815 		e_dbg("PHY Address %d is out of range\n", reg_addr);
2816 		return -E1000_ERR_PARAM;
2817 	}
2818 
2819 	if (hw->mac_type > e1000_82543) {
2820 		/* Set up Op-code, Phy Address, and register address in the MDI
2821 		 * Control register.  The MAC will take care of interfacing with
2822 		 * the PHY to retrieve the desired data.
2823 		 */
2824 		if (hw->mac_type == e1000_ce4100) {
2825 			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2826 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2827 				(INTEL_CE_GBE_MDIC_OP_READ) |
2828 				(INTEL_CE_GBE_MDIC_GO));
2829 
2830 			writel(mdic, E1000_MDIO_CMD);
2831 
2832 			/* Poll the ready bit to see if the MDI read
2833 			 * completed
2834 			 */
2835 			for (i = 0; i < 64; i++) {
2836 				udelay(50);
2837 				mdic = readl(E1000_MDIO_CMD);
2838 				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2839 					break;
2840 			}
2841 
2842 			if (mdic & INTEL_CE_GBE_MDIC_GO) {
2843 				e_dbg("MDI Read did not complete\n");
2844 				return -E1000_ERR_PHY;
2845 			}
2846 
2847 			mdic = readl(E1000_MDIO_STS);
2848 			if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2849 				e_dbg("MDI Read Error\n");
2850 				return -E1000_ERR_PHY;
2851 			}
2852 			*phy_data = (u16)mdic;
2853 		} else {
2854 			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2855 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2856 				(E1000_MDIC_OP_READ));
2857 
2858 			ew32(MDIC, mdic);
2859 
2860 			/* Poll the ready bit to see if the MDI read
2861 			 * completed
2862 			 */
2863 			for (i = 0; i < 64; i++) {
2864 				udelay(50);
2865 				mdic = er32(MDIC);
2866 				if (mdic & E1000_MDIC_READY)
2867 					break;
2868 			}
2869 			if (!(mdic & E1000_MDIC_READY)) {
2870 				e_dbg("MDI Read did not complete\n");
2871 				return -E1000_ERR_PHY;
2872 			}
2873 			if (mdic & E1000_MDIC_ERROR) {
2874 				e_dbg("MDI Error\n");
2875 				return -E1000_ERR_PHY;
2876 			}
2877 			*phy_data = (u16)mdic;
2878 		}
2879 	} else {
2880 		/* We must first send a preamble through the MDIO pin to signal
2881 		 * the beginning of an MII instruction.  This is done by sending
2882 		 * 32 consecutive "1" bits.
2883 		 */
2884 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2885 
2886 		/* Now combine the next few fields that are required for a read
2887 		 * operation.  We use this method instead of calling the
2888 		 * e1000_shift_out_mdi_bits routine five different times. The
2889 		 * format of a MII read instruction consists of a shift out of
2890 		 * 14 bits and is defined as follows:
2891 		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2892 		 * followed by a shift in of 18 bits.  This first two bits
2893 		 * shifted in are TurnAround bits used to avoid contention on
2894 		 * the MDIO pin when a READ operation is performed.  These two
2895 		 * bits are thrown away followed by a shift in of 16 bits which
2896 		 * contains the desired data.
2897 		 */
2898 		mdic = ((reg_addr) | (phy_addr << 5) |
2899 			(PHY_OP_READ << 10) | (PHY_SOF << 12));
2900 
2901 		e1000_shift_out_mdi_bits(hw, mdic, 14);
2902 
2903 		/* Now that we've shifted out the read command to the MII, we
2904 		 * need to "shift in" the 16-bit value (18 total bits) of the
2905 		 * requested PHY register address.
2906 		 */
2907 		*phy_data = e1000_shift_in_mdi_bits(hw);
2908 	}
2909 	return E1000_SUCCESS;
2910 }
2911 
2912 /**
2913  * e1000_write_phy_reg - write a phy register
2914  *
2915  * @hw: Struct containing variables accessed by shared code
2916  * @reg_addr: address of the PHY register to write
2917  * @phy_data: data to write to the PHY
2918  *
2919  * Writes a value to a PHY register
2920  */
e1000_write_phy_reg(struct e1000_hw * hw,u32 reg_addr,u16 phy_data)2921 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
2922 {
2923 	u32 ret_val;
2924 	unsigned long flags;
2925 
2926 	spin_lock_irqsave(&e1000_phy_lock, flags);
2927 
2928 	if ((hw->phy_type == e1000_phy_igp) &&
2929 	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2930 		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2931 						 (u16)reg_addr);
2932 		if (ret_val) {
2933 			spin_unlock_irqrestore(&e1000_phy_lock, flags);
2934 			return ret_val;
2935 		}
2936 	}
2937 
2938 	ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2939 					 phy_data);
2940 	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2941 
2942 	return ret_val;
2943 }
2944 
e1000_write_phy_reg_ex(struct e1000_hw * hw,u32 reg_addr,u16 phy_data)2945 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2946 				  u16 phy_data)
2947 {
2948 	u32 i;
2949 	u32 mdic = 0;
2950 	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2951 
2952 	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2953 		e_dbg("PHY Address %d is out of range\n", reg_addr);
2954 		return -E1000_ERR_PARAM;
2955 	}
2956 
2957 	if (hw->mac_type > e1000_82543) {
2958 		/* Set up Op-code, Phy Address, register address, and data
2959 		 * intended for the PHY register in the MDI Control register.
2960 		 * The MAC will take care of interfacing with the PHY to send
2961 		 * the desired data.
2962 		 */
2963 		if (hw->mac_type == e1000_ce4100) {
2964 			mdic = (((u32)phy_data) |
2965 				(reg_addr << E1000_MDIC_REG_SHIFT) |
2966 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2967 				(INTEL_CE_GBE_MDIC_OP_WRITE) |
2968 				(INTEL_CE_GBE_MDIC_GO));
2969 
2970 			writel(mdic, E1000_MDIO_CMD);
2971 
2972 			/* Poll the ready bit to see if the MDI read
2973 			 * completed
2974 			 */
2975 			for (i = 0; i < 640; i++) {
2976 				udelay(5);
2977 				mdic = readl(E1000_MDIO_CMD);
2978 				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2979 					break;
2980 			}
2981 			if (mdic & INTEL_CE_GBE_MDIC_GO) {
2982 				e_dbg("MDI Write did not complete\n");
2983 				return -E1000_ERR_PHY;
2984 			}
2985 		} else {
2986 			mdic = (((u32)phy_data) |
2987 				(reg_addr << E1000_MDIC_REG_SHIFT) |
2988 				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2989 				(E1000_MDIC_OP_WRITE));
2990 
2991 			ew32(MDIC, mdic);
2992 
2993 			/* Poll the ready bit to see if the MDI read
2994 			 * completed
2995 			 */
2996 			for (i = 0; i < 641; i++) {
2997 				udelay(5);
2998 				mdic = er32(MDIC);
2999 				if (mdic & E1000_MDIC_READY)
3000 					break;
3001 			}
3002 			if (!(mdic & E1000_MDIC_READY)) {
3003 				e_dbg("MDI Write did not complete\n");
3004 				return -E1000_ERR_PHY;
3005 			}
3006 		}
3007 	} else {
3008 		/* We'll need to use the SW defined pins to shift the write
3009 		 * command out to the PHY. We first send a preamble to the PHY
3010 		 * to signal the beginning of the MII instruction.  This is done
3011 		 * by sending 32 consecutive "1" bits.
3012 		 */
3013 		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3014 
3015 		/* Now combine the remaining required fields that will indicate
3016 		 * a write operation. We use this method instead of calling the
3017 		 * e1000_shift_out_mdi_bits routine for each field in the
3018 		 * command. The format of a MII write instruction is as follows:
3019 		 * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>.
3020 		 */
3021 		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3022 			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3023 		mdic <<= 16;
3024 		mdic |= (u32)phy_data;
3025 
3026 		e1000_shift_out_mdi_bits(hw, mdic, 32);
3027 	}
3028 
3029 	return E1000_SUCCESS;
3030 }
3031 
3032 /**
3033  * e1000_phy_hw_reset - reset the phy, hardware style
3034  * @hw: Struct containing variables accessed by shared code
3035  *
3036  * Returns the PHY to the power-on reset state
3037  */
e1000_phy_hw_reset(struct e1000_hw * hw)3038 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3039 {
3040 	u32 ctrl, ctrl_ext;
3041 	u32 led_ctrl;
3042 
3043 	e_dbg("Resetting Phy...\n");
3044 
3045 	if (hw->mac_type > e1000_82543) {
3046 		/* Read the device control register and assert the
3047 		 * E1000_CTRL_PHY_RST bit. Then, take it out of reset.
3048 		 * For e1000 hardware, we delay for 10ms between the assert
3049 		 * and de-assert.
3050 		 */
3051 		ctrl = er32(CTRL);
3052 		ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3053 		E1000_WRITE_FLUSH();
3054 
3055 		msleep(10);
3056 
3057 		ew32(CTRL, ctrl);
3058 		E1000_WRITE_FLUSH();
3059 
3060 	} else {
3061 		/* Read the Extended Device Control Register, assert the
3062 		 * PHY_RESET_DIR bit to put the PHY into reset. Then, take it
3063 		 * out of reset.
3064 		 */
3065 		ctrl_ext = er32(CTRL_EXT);
3066 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3067 		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3068 		ew32(CTRL_EXT, ctrl_ext);
3069 		E1000_WRITE_FLUSH();
3070 		msleep(10);
3071 		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3072 		ew32(CTRL_EXT, ctrl_ext);
3073 		E1000_WRITE_FLUSH();
3074 	}
3075 	udelay(150);
3076 
3077 	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3078 		/* Configure activity LED after PHY reset */
3079 		led_ctrl = er32(LEDCTL);
3080 		led_ctrl &= IGP_ACTIVITY_LED_MASK;
3081 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3082 		ew32(LEDCTL, led_ctrl);
3083 	}
3084 
3085 	/* Wait for FW to finish PHY configuration. */
3086 	return e1000_get_phy_cfg_done(hw);
3087 }
3088 
3089 /**
3090  * e1000_phy_reset - reset the phy to commit settings
3091  * @hw: Struct containing variables accessed by shared code
3092  *
3093  * Resets the PHY
3094  * Sets bit 15 of the MII Control register
3095  */
e1000_phy_reset(struct e1000_hw * hw)3096 s32 e1000_phy_reset(struct e1000_hw *hw)
3097 {
3098 	s32 ret_val;
3099 	u16 phy_data;
3100 
3101 	switch (hw->phy_type) {
3102 	case e1000_phy_igp:
3103 		ret_val = e1000_phy_hw_reset(hw);
3104 		if (ret_val)
3105 			return ret_val;
3106 		break;
3107 	default:
3108 		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3109 		if (ret_val)
3110 			return ret_val;
3111 
3112 		phy_data |= MII_CR_RESET;
3113 		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3114 		if (ret_val)
3115 			return ret_val;
3116 
3117 		udelay(1);
3118 		break;
3119 	}
3120 
3121 	if (hw->phy_type == e1000_phy_igp)
3122 		e1000_phy_init_script(hw);
3123 
3124 	return E1000_SUCCESS;
3125 }
3126 
3127 /**
3128  * e1000_detect_gig_phy - check the phy type
3129  * @hw: Struct containing variables accessed by shared code
3130  *
3131  * Probes the expected PHY address for known PHY IDs
3132  */
e1000_detect_gig_phy(struct e1000_hw * hw)3133 static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
3134 {
3135 	s32 phy_init_status, ret_val;
3136 	u16 phy_id_high, phy_id_low;
3137 	bool match = false;
3138 
3139 	if (hw->phy_id != 0)
3140 		return E1000_SUCCESS;
3141 
3142 	/* Read the PHY ID Registers to identify which PHY is onboard. */
3143 	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3144 	if (ret_val)
3145 		return ret_val;
3146 
3147 	hw->phy_id = (u32)(phy_id_high << 16);
3148 	udelay(20);
3149 	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3150 	if (ret_val)
3151 		return ret_val;
3152 
3153 	hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK);
3154 	hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK;
3155 
3156 	switch (hw->mac_type) {
3157 	case e1000_82543:
3158 		if (hw->phy_id == M88E1000_E_PHY_ID)
3159 			match = true;
3160 		break;
3161 	case e1000_82544:
3162 		if (hw->phy_id == M88E1000_I_PHY_ID)
3163 			match = true;
3164 		break;
3165 	case e1000_82540:
3166 	case e1000_82545:
3167 	case e1000_82545_rev_3:
3168 	case e1000_82546:
3169 	case e1000_82546_rev_3:
3170 		if (hw->phy_id == M88E1011_I_PHY_ID)
3171 			match = true;
3172 		break;
3173 	case e1000_ce4100:
3174 		if ((hw->phy_id == RTL8211B_PHY_ID) ||
3175 		    (hw->phy_id == RTL8201N_PHY_ID) ||
3176 		    (hw->phy_id == M88E1118_E_PHY_ID))
3177 			match = true;
3178 		break;
3179 	case e1000_82541:
3180 	case e1000_82541_rev_2:
3181 	case e1000_82547:
3182 	case e1000_82547_rev_2:
3183 		if (hw->phy_id == IGP01E1000_I_PHY_ID)
3184 			match = true;
3185 		break;
3186 	default:
3187 		e_dbg("Invalid MAC type %d\n", hw->mac_type);
3188 		return -E1000_ERR_CONFIG;
3189 	}
3190 	phy_init_status = e1000_set_phy_type(hw);
3191 
3192 	if ((match) && (phy_init_status == E1000_SUCCESS)) {
3193 		e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
3194 		return E1000_SUCCESS;
3195 	}
3196 	e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
3197 	return -E1000_ERR_PHY;
3198 }
3199 
3200 /**
3201  * e1000_phy_reset_dsp - reset DSP
3202  * @hw: Struct containing variables accessed by shared code
3203  *
3204  * Resets the PHY's DSP
3205  */
e1000_phy_reset_dsp(struct e1000_hw * hw)3206 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
3207 {
3208 	s32 ret_val;
3209 
3210 	do {
3211 		ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3212 		if (ret_val)
3213 			break;
3214 		ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3215 		if (ret_val)
3216 			break;
3217 		ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3218 		if (ret_val)
3219 			break;
3220 		ret_val = E1000_SUCCESS;
3221 	} while (0);
3222 
3223 	return ret_val;
3224 }
3225 
3226 /**
3227  * e1000_phy_igp_get_info - get igp specific registers
3228  * @hw: Struct containing variables accessed by shared code
3229  * @phy_info: PHY information structure
3230  *
3231  * Get PHY information from various PHY registers for igp PHY only.
3232  */
e1000_phy_igp_get_info(struct e1000_hw * hw,struct e1000_phy_info * phy_info)3233 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3234 				  struct e1000_phy_info *phy_info)
3235 {
3236 	s32 ret_val;
3237 	u16 phy_data, min_length, max_length, average;
3238 	e1000_rev_polarity polarity;
3239 
3240 	/* The downshift status is checked only once, after link is established,
3241 	 * and it stored in the hw->speed_downgraded parameter.
3242 	 */
3243 	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3244 
3245 	/* IGP01E1000 does not need to support it. */
3246 	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3247 
3248 	/* IGP01E1000 always correct polarity reversal */
3249 	phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3250 
3251 	/* Check polarity status */
3252 	ret_val = e1000_check_polarity(hw, &polarity);
3253 	if (ret_val)
3254 		return ret_val;
3255 
3256 	phy_info->cable_polarity = polarity;
3257 
3258 	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3259 	if (ret_val)
3260 		return ret_val;
3261 
3262 	phy_info->mdix_mode =
3263 	    (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
3264 				 IGP01E1000_PSSR_MDIX_SHIFT);
3265 
3266 	if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3267 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
3268 		/* Local/Remote Receiver Information are only valid @ 1000
3269 		 * Mbps
3270 		 */
3271 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3272 		if (ret_val)
3273 			return ret_val;
3274 
3275 		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3276 				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3277 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3278 		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3279 				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3280 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3281 
3282 		/* Get cable length */
3283 		ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3284 		if (ret_val)
3285 			return ret_val;
3286 
3287 		/* Translate to old method */
3288 		average = (max_length + min_length) / 2;
3289 
3290 		if (average <= e1000_igp_cable_length_50)
3291 			phy_info->cable_length = e1000_cable_length_50;
3292 		else if (average <= e1000_igp_cable_length_80)
3293 			phy_info->cable_length = e1000_cable_length_50_80;
3294 		else if (average <= e1000_igp_cable_length_110)
3295 			phy_info->cable_length = e1000_cable_length_80_110;
3296 		else if (average <= e1000_igp_cable_length_140)
3297 			phy_info->cable_length = e1000_cable_length_110_140;
3298 		else
3299 			phy_info->cable_length = e1000_cable_length_140;
3300 	}
3301 
3302 	return E1000_SUCCESS;
3303 }
3304 
3305 /**
3306  * e1000_phy_m88_get_info - get m88 specific registers
3307  * @hw: Struct containing variables accessed by shared code
3308  * @phy_info: PHY information structure
3309  *
3310  * Get PHY information from various PHY registers for m88 PHY only.
3311  */
e1000_phy_m88_get_info(struct e1000_hw * hw,struct e1000_phy_info * phy_info)3312 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3313 				  struct e1000_phy_info *phy_info)
3314 {
3315 	s32 ret_val;
3316 	u16 phy_data;
3317 	e1000_rev_polarity polarity;
3318 
3319 	/* The downshift status is checked only once, after link is established,
3320 	 * and it stored in the hw->speed_downgraded parameter.
3321 	 */
3322 	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3323 
3324 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3325 	if (ret_val)
3326 		return ret_val;
3327 
3328 	phy_info->extended_10bt_distance =
3329 	    ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3330 	     M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
3331 	    e1000_10bt_ext_dist_enable_lower :
3332 	    e1000_10bt_ext_dist_enable_normal;
3333 
3334 	phy_info->polarity_correction =
3335 	    ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3336 	     M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
3337 	    e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
3338 
3339 	/* Check polarity status */
3340 	ret_val = e1000_check_polarity(hw, &polarity);
3341 	if (ret_val)
3342 		return ret_val;
3343 	phy_info->cable_polarity = polarity;
3344 
3345 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3346 	if (ret_val)
3347 		return ret_val;
3348 
3349 	phy_info->mdix_mode =
3350 	    (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
3351 				 M88E1000_PSSR_MDIX_SHIFT);
3352 
3353 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3354 		/* Cable Length Estimation and Local/Remote Receiver Information
3355 		 * are only valid at 1000 Mbps.
3356 		 */
3357 		phy_info->cable_length =
3358 		    (e1000_cable_length) ((phy_data &
3359 					   M88E1000_PSSR_CABLE_LENGTH) >>
3360 					  M88E1000_PSSR_CABLE_LENGTH_SHIFT);
3361 
3362 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3363 		if (ret_val)
3364 			return ret_val;
3365 
3366 		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3367 				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3368 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3369 		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3370 				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3371 		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3372 	}
3373 
3374 	return E1000_SUCCESS;
3375 }
3376 
3377 /**
3378  * e1000_phy_get_info - request phy info
3379  * @hw: Struct containing variables accessed by shared code
3380  * @phy_info: PHY information structure
3381  *
3382  * Get PHY information from various PHY registers
3383  */
e1000_phy_get_info(struct e1000_hw * hw,struct e1000_phy_info * phy_info)3384 s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
3385 {
3386 	s32 ret_val;
3387 	u16 phy_data;
3388 
3389 	phy_info->cable_length = e1000_cable_length_undefined;
3390 	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3391 	phy_info->cable_polarity = e1000_rev_polarity_undefined;
3392 	phy_info->downshift = e1000_downshift_undefined;
3393 	phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3394 	phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3395 	phy_info->local_rx = e1000_1000t_rx_status_undefined;
3396 	phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3397 
3398 	if (hw->media_type != e1000_media_type_copper) {
3399 		e_dbg("PHY info is only valid for copper media\n");
3400 		return -E1000_ERR_CONFIG;
3401 	}
3402 
3403 	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3404 	if (ret_val)
3405 		return ret_val;
3406 
3407 	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3408 	if (ret_val)
3409 		return ret_val;
3410 
3411 	if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3412 		e_dbg("PHY info is only valid if link is up\n");
3413 		return -E1000_ERR_CONFIG;
3414 	}
3415 
3416 	if (hw->phy_type == e1000_phy_igp)
3417 		return e1000_phy_igp_get_info(hw, phy_info);
3418 	else if ((hw->phy_type == e1000_phy_8211) ||
3419 		 (hw->phy_type == e1000_phy_8201))
3420 		return E1000_SUCCESS;
3421 	else
3422 		return e1000_phy_m88_get_info(hw, phy_info);
3423 }
3424 
e1000_validate_mdi_setting(struct e1000_hw * hw)3425 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
3426 {
3427 	if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3428 		e_dbg("Invalid MDI setting detected\n");
3429 		hw->mdix = 1;
3430 		return -E1000_ERR_CONFIG;
3431 	}
3432 	return E1000_SUCCESS;
3433 }
3434 
3435 /**
3436  * e1000_init_eeprom_params - initialize sw eeprom vars
3437  * @hw: Struct containing variables accessed by shared code
3438  *
3439  * Sets up eeprom variables in the hw struct.  Must be called after mac_type
3440  * is configured.
3441  */
e1000_init_eeprom_params(struct e1000_hw * hw)3442 s32 e1000_init_eeprom_params(struct e1000_hw *hw)
3443 {
3444 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3445 	u32 eecd = er32(EECD);
3446 	s32 ret_val = E1000_SUCCESS;
3447 	u16 eeprom_size;
3448 
3449 	switch (hw->mac_type) {
3450 	case e1000_82542_rev2_0:
3451 	case e1000_82542_rev2_1:
3452 	case e1000_82543:
3453 	case e1000_82544:
3454 		eeprom->type = e1000_eeprom_microwire;
3455 		eeprom->word_size = 64;
3456 		eeprom->opcode_bits = 3;
3457 		eeprom->address_bits = 6;
3458 		eeprom->delay_usec = 50;
3459 		break;
3460 	case e1000_82540:
3461 	case e1000_82545:
3462 	case e1000_82545_rev_3:
3463 	case e1000_82546:
3464 	case e1000_82546_rev_3:
3465 		eeprom->type = e1000_eeprom_microwire;
3466 		eeprom->opcode_bits = 3;
3467 		eeprom->delay_usec = 50;
3468 		if (eecd & E1000_EECD_SIZE) {
3469 			eeprom->word_size = 256;
3470 			eeprom->address_bits = 8;
3471 		} else {
3472 			eeprom->word_size = 64;
3473 			eeprom->address_bits = 6;
3474 		}
3475 		break;
3476 	case e1000_82541:
3477 	case e1000_82541_rev_2:
3478 	case e1000_82547:
3479 	case e1000_82547_rev_2:
3480 		if (eecd & E1000_EECD_TYPE) {
3481 			eeprom->type = e1000_eeprom_spi;
3482 			eeprom->opcode_bits = 8;
3483 			eeprom->delay_usec = 1;
3484 			if (eecd & E1000_EECD_ADDR_BITS) {
3485 				eeprom->page_size = 32;
3486 				eeprom->address_bits = 16;
3487 			} else {
3488 				eeprom->page_size = 8;
3489 				eeprom->address_bits = 8;
3490 			}
3491 		} else {
3492 			eeprom->type = e1000_eeprom_microwire;
3493 			eeprom->opcode_bits = 3;
3494 			eeprom->delay_usec = 50;
3495 			if (eecd & E1000_EECD_ADDR_BITS) {
3496 				eeprom->word_size = 256;
3497 				eeprom->address_bits = 8;
3498 			} else {
3499 				eeprom->word_size = 64;
3500 				eeprom->address_bits = 6;
3501 			}
3502 		}
3503 		break;
3504 	default:
3505 		break;
3506 	}
3507 
3508 	if (eeprom->type == e1000_eeprom_spi) {
3509 		/* eeprom_size will be an enum [0..8] that maps to eeprom sizes
3510 		 * 128B to 32KB (incremented by powers of 2).
3511 		 */
3512 		/* Set to default value for initial eeprom read. */
3513 		eeprom->word_size = 64;
3514 		ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3515 		if (ret_val)
3516 			return ret_val;
3517 		eeprom_size =
3518 		    (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3519 		/* 256B eeprom size was not supported in earlier hardware, so we
3520 		 * bump eeprom_size up one to ensure that "1" (which maps to
3521 		 * 256B) is never the result used in the shifting logic below.
3522 		 */
3523 		if (eeprom_size)
3524 			eeprom_size++;
3525 
3526 		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3527 	}
3528 	return ret_val;
3529 }
3530 
3531 /**
3532  * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3533  * @hw: Struct containing variables accessed by shared code
3534  * @eecd: EECD's current value
3535  */
e1000_raise_ee_clk(struct e1000_hw * hw,u32 * eecd)3536 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
3537 {
3538 	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
3539 	 * wait <delay> microseconds.
3540 	 */
3541 	*eecd = *eecd | E1000_EECD_SK;
3542 	ew32(EECD, *eecd);
3543 	E1000_WRITE_FLUSH();
3544 	udelay(hw->eeprom.delay_usec);
3545 }
3546 
3547 /**
3548  * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3549  * @hw: Struct containing variables accessed by shared code
3550  * @eecd: EECD's current value
3551  */
e1000_lower_ee_clk(struct e1000_hw * hw,u32 * eecd)3552 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
3553 {
3554 	/* Lower the clock input to the EEPROM (by clearing the SK bit), and
3555 	 * then wait 50 microseconds.
3556 	 */
3557 	*eecd = *eecd & ~E1000_EECD_SK;
3558 	ew32(EECD, *eecd);
3559 	E1000_WRITE_FLUSH();
3560 	udelay(hw->eeprom.delay_usec);
3561 }
3562 
3563 /**
3564  * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3565  * @hw: Struct containing variables accessed by shared code
3566  * @data: data to send to the EEPROM
3567  * @count: number of bits to shift out
3568  */
e1000_shift_out_ee_bits(struct e1000_hw * hw,u16 data,u16 count)3569 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
3570 {
3571 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3572 	u32 eecd;
3573 	u32 mask;
3574 
3575 	/* We need to shift "count" bits out to the EEPROM. So, value in the
3576 	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3577 	 * In order to do this, "data" must be broken down into bits.
3578 	 */
3579 	mask = 0x01 << (count - 1);
3580 	eecd = er32(EECD);
3581 	if (eeprom->type == e1000_eeprom_microwire)
3582 		eecd &= ~E1000_EECD_DO;
3583 	else if (eeprom->type == e1000_eeprom_spi)
3584 		eecd |= E1000_EECD_DO;
3585 
3586 	do {
3587 		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a
3588 		 * "1", and then raising and then lowering the clock (the SK bit
3589 		 * controls the clock input to the EEPROM).  A "0" is shifted
3590 		 * out to the EEPROM by setting "DI" to "0" and then raising and
3591 		 * then lowering the clock.
3592 		 */
3593 		eecd &= ~E1000_EECD_DI;
3594 
3595 		if (data & mask)
3596 			eecd |= E1000_EECD_DI;
3597 
3598 		ew32(EECD, eecd);
3599 		E1000_WRITE_FLUSH();
3600 
3601 		udelay(eeprom->delay_usec);
3602 
3603 		e1000_raise_ee_clk(hw, &eecd);
3604 		e1000_lower_ee_clk(hw, &eecd);
3605 
3606 		mask = mask >> 1;
3607 
3608 	} while (mask);
3609 
3610 	/* We leave the "DI" bit set to "0" when we leave this routine. */
3611 	eecd &= ~E1000_EECD_DI;
3612 	ew32(EECD, eecd);
3613 }
3614 
3615 /**
3616  * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3617  * @hw: Struct containing variables accessed by shared code
3618  * @count: number of bits to shift in
3619  */
e1000_shift_in_ee_bits(struct e1000_hw * hw,u16 count)3620 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
3621 {
3622 	u32 eecd;
3623 	u32 i;
3624 	u16 data;
3625 
3626 	/* In order to read a register from the EEPROM, we need to shift 'count'
3627 	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3628 	 * input to the EEPROM (setting the SK bit), and then reading the value
3629 	 * of the "DO" bit.  During this "shifting in" process the "DI" bit
3630 	 * should always be clear.
3631 	 */
3632 
3633 	eecd = er32(EECD);
3634 
3635 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3636 	data = 0;
3637 
3638 	for (i = 0; i < count; i++) {
3639 		data = data << 1;
3640 		e1000_raise_ee_clk(hw, &eecd);
3641 
3642 		eecd = er32(EECD);
3643 
3644 		eecd &= ~(E1000_EECD_DI);
3645 		if (eecd & E1000_EECD_DO)
3646 			data |= 1;
3647 
3648 		e1000_lower_ee_clk(hw, &eecd);
3649 	}
3650 
3651 	return data;
3652 }
3653 
3654 /**
3655  * e1000_acquire_eeprom - Prepares EEPROM for access
3656  * @hw: Struct containing variables accessed by shared code
3657  *
3658  * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3659  * function should be called before issuing a command to the EEPROM.
3660  */
e1000_acquire_eeprom(struct e1000_hw * hw)3661 static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
3662 {
3663 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3664 	u32 eecd, i = 0;
3665 
3666 	eecd = er32(EECD);
3667 
3668 	/* Request EEPROM Access */
3669 	if (hw->mac_type > e1000_82544) {
3670 		eecd |= E1000_EECD_REQ;
3671 		ew32(EECD, eecd);
3672 		eecd = er32(EECD);
3673 		while ((!(eecd & E1000_EECD_GNT)) &&
3674 		       (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3675 			i++;
3676 			udelay(5);
3677 			eecd = er32(EECD);
3678 		}
3679 		if (!(eecd & E1000_EECD_GNT)) {
3680 			eecd &= ~E1000_EECD_REQ;
3681 			ew32(EECD, eecd);
3682 			e_dbg("Could not acquire EEPROM grant\n");
3683 			return -E1000_ERR_EEPROM;
3684 		}
3685 	}
3686 
3687 	/* Setup EEPROM for Read/Write */
3688 
3689 	if (eeprom->type == e1000_eeprom_microwire) {
3690 		/* Clear SK and DI */
3691 		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3692 		ew32(EECD, eecd);
3693 
3694 		/* Set CS */
3695 		eecd |= E1000_EECD_CS;
3696 		ew32(EECD, eecd);
3697 	} else if (eeprom->type == e1000_eeprom_spi) {
3698 		/* Clear SK and CS */
3699 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3700 		ew32(EECD, eecd);
3701 		E1000_WRITE_FLUSH();
3702 		udelay(1);
3703 	}
3704 
3705 	return E1000_SUCCESS;
3706 }
3707 
3708 /**
3709  * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3710  * @hw: Struct containing variables accessed by shared code
3711  */
e1000_standby_eeprom(struct e1000_hw * hw)3712 static void e1000_standby_eeprom(struct e1000_hw *hw)
3713 {
3714 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3715 	u32 eecd;
3716 
3717 	eecd = er32(EECD);
3718 
3719 	if (eeprom->type == e1000_eeprom_microwire) {
3720 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3721 		ew32(EECD, eecd);
3722 		E1000_WRITE_FLUSH();
3723 		udelay(eeprom->delay_usec);
3724 
3725 		/* Clock high */
3726 		eecd |= E1000_EECD_SK;
3727 		ew32(EECD, eecd);
3728 		E1000_WRITE_FLUSH();
3729 		udelay(eeprom->delay_usec);
3730 
3731 		/* Select EEPROM */
3732 		eecd |= E1000_EECD_CS;
3733 		ew32(EECD, eecd);
3734 		E1000_WRITE_FLUSH();
3735 		udelay(eeprom->delay_usec);
3736 
3737 		/* Clock low */
3738 		eecd &= ~E1000_EECD_SK;
3739 		ew32(EECD, eecd);
3740 		E1000_WRITE_FLUSH();
3741 		udelay(eeprom->delay_usec);
3742 	} else if (eeprom->type == e1000_eeprom_spi) {
3743 		/* Toggle CS to flush commands */
3744 		eecd |= E1000_EECD_CS;
3745 		ew32(EECD, eecd);
3746 		E1000_WRITE_FLUSH();
3747 		udelay(eeprom->delay_usec);
3748 		eecd &= ~E1000_EECD_CS;
3749 		ew32(EECD, eecd);
3750 		E1000_WRITE_FLUSH();
3751 		udelay(eeprom->delay_usec);
3752 	}
3753 }
3754 
3755 /**
3756  * e1000_release_eeprom - drop chip select
3757  * @hw: Struct containing variables accessed by shared code
3758  *
3759  * Terminates a command by inverting the EEPROM's chip select pin
3760  */
e1000_release_eeprom(struct e1000_hw * hw)3761 static void e1000_release_eeprom(struct e1000_hw *hw)
3762 {
3763 	u32 eecd;
3764 
3765 	eecd = er32(EECD);
3766 
3767 	if (hw->eeprom.type == e1000_eeprom_spi) {
3768 		eecd |= E1000_EECD_CS;	/* Pull CS high */
3769 		eecd &= ~E1000_EECD_SK;	/* Lower SCK */
3770 
3771 		ew32(EECD, eecd);
3772 		E1000_WRITE_FLUSH();
3773 
3774 		udelay(hw->eeprom.delay_usec);
3775 	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
3776 		/* cleanup eeprom */
3777 
3778 		/* CS on Microwire is active-high */
3779 		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3780 
3781 		ew32(EECD, eecd);
3782 
3783 		/* Rising edge of clock */
3784 		eecd |= E1000_EECD_SK;
3785 		ew32(EECD, eecd);
3786 		E1000_WRITE_FLUSH();
3787 		udelay(hw->eeprom.delay_usec);
3788 
3789 		/* Falling edge of clock */
3790 		eecd &= ~E1000_EECD_SK;
3791 		ew32(EECD, eecd);
3792 		E1000_WRITE_FLUSH();
3793 		udelay(hw->eeprom.delay_usec);
3794 	}
3795 
3796 	/* Stop requesting EEPROM access */
3797 	if (hw->mac_type > e1000_82544) {
3798 		eecd &= ~E1000_EECD_REQ;
3799 		ew32(EECD, eecd);
3800 	}
3801 }
3802 
3803 /**
3804  * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3805  * @hw: Struct containing variables accessed by shared code
3806  */
e1000_spi_eeprom_ready(struct e1000_hw * hw)3807 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3808 {
3809 	u16 retry_count = 0;
3810 	u8 spi_stat_reg;
3811 
3812 	/* Read "Status Register" repeatedly until the LSB is cleared.  The
3813 	 * EEPROM will signal that the command has been completed by clearing
3814 	 * bit 0 of the internal status register.  If it's not cleared within
3815 	 * 5 milliseconds, then error out.
3816 	 */
3817 	retry_count = 0;
3818 	do {
3819 		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3820 					hw->eeprom.opcode_bits);
3821 		spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8);
3822 		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3823 			break;
3824 
3825 		udelay(5);
3826 		retry_count += 5;
3827 
3828 		e1000_standby_eeprom(hw);
3829 	} while (retry_count < EEPROM_MAX_RETRY_SPI);
3830 
3831 	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3832 	 * only 0-5mSec on 5V devices)
3833 	 */
3834 	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
3835 		e_dbg("SPI EEPROM Status error\n");
3836 		return -E1000_ERR_EEPROM;
3837 	}
3838 
3839 	return E1000_SUCCESS;
3840 }
3841 
3842 /**
3843  * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3844  * @hw: Struct containing variables accessed by shared code
3845  * @offset: offset of  word in the EEPROM to read
3846  * @data: word read from the EEPROM
3847  * @words: number of words to read
3848  */
e1000_read_eeprom(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3849 s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3850 {
3851 	s32 ret;
3852 
3853 	mutex_lock(&e1000_eeprom_lock);
3854 	ret = e1000_do_read_eeprom(hw, offset, words, data);
3855 	mutex_unlock(&e1000_eeprom_lock);
3856 	return ret;
3857 }
3858 
e1000_do_read_eeprom(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3859 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3860 				u16 *data)
3861 {
3862 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3863 	u32 i = 0;
3864 
3865 	if (hw->mac_type == e1000_ce4100) {
3866 		GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3867 				      data);
3868 		return E1000_SUCCESS;
3869 	}
3870 
3871 	/* A check for invalid values:  offset too large, too many words, and
3872 	 * not enough words.
3873 	 */
3874 	if ((offset >= eeprom->word_size) ||
3875 	    (words > eeprom->word_size - offset) ||
3876 	    (words == 0)) {
3877 		e_dbg("\"words\" parameter out of bounds. Words = %d,"
3878 		      "size = %d\n", offset, eeprom->word_size);
3879 		return -E1000_ERR_EEPROM;
3880 	}
3881 
3882 	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3883 	 * directly. In this case, we need to acquire the EEPROM so that
3884 	 * FW or other port software does not interrupt.
3885 	 */
3886 	/* Prepare the EEPROM for bit-bang reading */
3887 	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3888 		return -E1000_ERR_EEPROM;
3889 
3890 	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
3891 	 * acquired the EEPROM at this point, so any returns should release it
3892 	 */
3893 	if (eeprom->type == e1000_eeprom_spi) {
3894 		u16 word_in;
3895 		u8 read_opcode = EEPROM_READ_OPCODE_SPI;
3896 
3897 		if (e1000_spi_eeprom_ready(hw)) {
3898 			e1000_release_eeprom(hw);
3899 			return -E1000_ERR_EEPROM;
3900 		}
3901 
3902 		e1000_standby_eeprom(hw);
3903 
3904 		/* Some SPI eeproms use the 8th address bit embedded in the
3905 		 * opcode
3906 		 */
3907 		if ((eeprom->address_bits == 8) && (offset >= 128))
3908 			read_opcode |= EEPROM_A8_OPCODE_SPI;
3909 
3910 		/* Send the READ command (opcode + addr)  */
3911 		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3912 		e1000_shift_out_ee_bits(hw, (u16)(offset * 2),
3913 					eeprom->address_bits);
3914 
3915 		/* Read the data.  The address of the eeprom internally
3916 		 * increments with each byte (spi) being read, saving on the
3917 		 * overhead of eeprom setup and tear-down.  The address counter
3918 		 * will roll over if reading beyond the size of the eeprom, thus
3919 		 * allowing the entire memory to be read starting from any
3920 		 * offset.
3921 		 */
3922 		for (i = 0; i < words; i++) {
3923 			word_in = e1000_shift_in_ee_bits(hw, 16);
3924 			data[i] = (word_in >> 8) | (word_in << 8);
3925 		}
3926 	} else if (eeprom->type == e1000_eeprom_microwire) {
3927 		for (i = 0; i < words; i++) {
3928 			/* Send the READ command (opcode + addr)  */
3929 			e1000_shift_out_ee_bits(hw,
3930 						EEPROM_READ_OPCODE_MICROWIRE,
3931 						eeprom->opcode_bits);
3932 			e1000_shift_out_ee_bits(hw, (u16)(offset + i),
3933 						eeprom->address_bits);
3934 
3935 			/* Read the data.  For microwire, each word requires the
3936 			 * overhead of eeprom setup and tear-down.
3937 			 */
3938 			data[i] = e1000_shift_in_ee_bits(hw, 16);
3939 			e1000_standby_eeprom(hw);
3940 			cond_resched();
3941 		}
3942 	}
3943 
3944 	/* End this read operation */
3945 	e1000_release_eeprom(hw);
3946 
3947 	return E1000_SUCCESS;
3948 }
3949 
3950 /**
3951  * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
3952  * @hw: Struct containing variables accessed by shared code
3953  *
3954  * Reads the first 64 16 bit words of the EEPROM and sums the values read.
3955  * If the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
3956  * valid.
3957  */
e1000_validate_eeprom_checksum(struct e1000_hw * hw)3958 s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
3959 {
3960 	u16 checksum = 0;
3961 	u16 i, eeprom_data;
3962 
3963 	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
3964 		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3965 			e_dbg("EEPROM Read Error\n");
3966 			return -E1000_ERR_EEPROM;
3967 		}
3968 		checksum += eeprom_data;
3969 	}
3970 
3971 #ifdef CONFIG_PARISC
3972 	/* This is a signature and not a checksum on HP c8000 */
3973 	if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
3974 		return E1000_SUCCESS;
3975 
3976 #endif
3977 	if (checksum == (u16)EEPROM_SUM)
3978 		return E1000_SUCCESS;
3979 	else {
3980 		e_dbg("EEPROM Checksum Invalid\n");
3981 		return -E1000_ERR_EEPROM;
3982 	}
3983 }
3984 
3985 /**
3986  * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
3987  * @hw: Struct containing variables accessed by shared code
3988  *
3989  * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
3990  * Writes the difference to word offset 63 of the EEPROM.
3991  */
e1000_update_eeprom_checksum(struct e1000_hw * hw)3992 s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
3993 {
3994 	u16 checksum = 0;
3995 	u16 i, eeprom_data;
3996 
3997 	for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
3998 		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3999 			e_dbg("EEPROM Read Error\n");
4000 			return -E1000_ERR_EEPROM;
4001 		}
4002 		checksum += eeprom_data;
4003 	}
4004 	checksum = (u16)EEPROM_SUM - checksum;
4005 	if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4006 		e_dbg("EEPROM Write Error\n");
4007 		return -E1000_ERR_EEPROM;
4008 	}
4009 	return E1000_SUCCESS;
4010 }
4011 
4012 /**
4013  * e1000_write_eeprom - write words to the different EEPROM types.
4014  * @hw: Struct containing variables accessed by shared code
4015  * @offset: offset within the EEPROM to be written to
4016  * @words: number of words to write
4017  * @data: 16 bit word to be written to the EEPROM
4018  *
4019  * If e1000_update_eeprom_checksum is not called after this function, the
4020  * EEPROM will most likely contain an invalid checksum.
4021  */
e1000_write_eeprom(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)4022 s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4023 {
4024 	s32 ret;
4025 
4026 	mutex_lock(&e1000_eeprom_lock);
4027 	ret = e1000_do_write_eeprom(hw, offset, words, data);
4028 	mutex_unlock(&e1000_eeprom_lock);
4029 	return ret;
4030 }
4031 
e1000_do_write_eeprom(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)4032 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4033 				 u16 *data)
4034 {
4035 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4036 	s32 status = 0;
4037 
4038 	if (hw->mac_type == e1000_ce4100) {
4039 		GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4040 				       data);
4041 		return E1000_SUCCESS;
4042 	}
4043 
4044 	/* A check for invalid values:  offset too large, too many words, and
4045 	 * not enough words.
4046 	 */
4047 	if ((offset >= eeprom->word_size) ||
4048 	    (words > eeprom->word_size - offset) ||
4049 	    (words == 0)) {
4050 		e_dbg("\"words\" parameter out of bounds\n");
4051 		return -E1000_ERR_EEPROM;
4052 	}
4053 
4054 	/* Prepare the EEPROM for writing  */
4055 	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4056 		return -E1000_ERR_EEPROM;
4057 
4058 	if (eeprom->type == e1000_eeprom_microwire) {
4059 		status = e1000_write_eeprom_microwire(hw, offset, words, data);
4060 	} else {
4061 		status = e1000_write_eeprom_spi(hw, offset, words, data);
4062 		msleep(10);
4063 	}
4064 
4065 	/* Done with writing */
4066 	e1000_release_eeprom(hw);
4067 
4068 	return status;
4069 }
4070 
4071 /**
4072  * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4073  * @hw: Struct containing variables accessed by shared code
4074  * @offset: offset within the EEPROM to be written to
4075  * @words: number of words to write
4076  * @data: pointer to array of 8 bit words to be written to the EEPROM
4077  */
e1000_write_eeprom_spi(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)4078 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4079 				  u16 *data)
4080 {
4081 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4082 	u16 widx = 0;
4083 
4084 	while (widx < words) {
4085 		u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
4086 
4087 		if (e1000_spi_eeprom_ready(hw))
4088 			return -E1000_ERR_EEPROM;
4089 
4090 		e1000_standby_eeprom(hw);
4091 		cond_resched();
4092 
4093 		/*  Send the WRITE ENABLE command (8 bit opcode )  */
4094 		e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4095 					eeprom->opcode_bits);
4096 
4097 		e1000_standby_eeprom(hw);
4098 
4099 		/* Some SPI eeproms use the 8th address bit embedded in the
4100 		 * opcode
4101 		 */
4102 		if ((eeprom->address_bits == 8) && (offset >= 128))
4103 			write_opcode |= EEPROM_A8_OPCODE_SPI;
4104 
4105 		/* Send the Write command (8-bit opcode + addr) */
4106 		e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4107 
4108 		e1000_shift_out_ee_bits(hw, (u16)((offset + widx) * 2),
4109 					eeprom->address_bits);
4110 
4111 		/* Send the data */
4112 
4113 		/* Loop to allow for up to whole page write (32 bytes) of
4114 		 * eeprom
4115 		 */
4116 		while (widx < words) {
4117 			u16 word_out = data[widx];
4118 
4119 			word_out = (word_out >> 8) | (word_out << 8);
4120 			e1000_shift_out_ee_bits(hw, word_out, 16);
4121 			widx++;
4122 
4123 			/* Some larger eeprom sizes are capable of a 32-byte
4124 			 * PAGE WRITE operation, while the smaller eeproms are
4125 			 * capable of an 8-byte PAGE WRITE operation.  Break the
4126 			 * inner loop to pass new address
4127 			 */
4128 			if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4129 				e1000_standby_eeprom(hw);
4130 				break;
4131 			}
4132 		}
4133 	}
4134 
4135 	return E1000_SUCCESS;
4136 }
4137 
4138 /**
4139  * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4140  * @hw: Struct containing variables accessed by shared code
4141  * @offset: offset within the EEPROM to be written to
4142  * @words: number of words to write
4143  * @data: pointer to array of 8 bit words to be written to the EEPROM
4144  */
e1000_write_eeprom_microwire(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)4145 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4146 					u16 words, u16 *data)
4147 {
4148 	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4149 	u32 eecd;
4150 	u16 words_written = 0;
4151 	u16 i = 0;
4152 
4153 	/* Send the write enable command to the EEPROM (3-bit opcode plus
4154 	 * 6/8-bit dummy address beginning with 11).  It's less work to include
4155 	 * the 11 of the dummy address as part of the opcode than it is to shift
4156 	 * it over the correct number of bits for the address.  This puts the
4157 	 * EEPROM into write/erase mode.
4158 	 */
4159 	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4160 				(u16)(eeprom->opcode_bits + 2));
4161 
4162 	e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4163 
4164 	/* Prepare the EEPROM */
4165 	e1000_standby_eeprom(hw);
4166 
4167 	while (words_written < words) {
4168 		/* Send the Write command (3-bit opcode + addr) */
4169 		e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4170 					eeprom->opcode_bits);
4171 
4172 		e1000_shift_out_ee_bits(hw, (u16)(offset + words_written),
4173 					eeprom->address_bits);
4174 
4175 		/* Send the data */
4176 		e1000_shift_out_ee_bits(hw, data[words_written], 16);
4177 
4178 		/* Toggle the CS line.  This in effect tells the EEPROM to
4179 		 * execute the previous command.
4180 		 */
4181 		e1000_standby_eeprom(hw);
4182 
4183 		/* Read DO repeatedly until it is high (equal to '1').  The
4184 		 * EEPROM will signal that the command has been completed by
4185 		 * raising the DO signal. If DO does not go high in 10
4186 		 * milliseconds, then error out.
4187 		 */
4188 		for (i = 0; i < 200; i++) {
4189 			eecd = er32(EECD);
4190 			if (eecd & E1000_EECD_DO)
4191 				break;
4192 			udelay(50);
4193 		}
4194 		if (i == 200) {
4195 			e_dbg("EEPROM Write did not complete\n");
4196 			return -E1000_ERR_EEPROM;
4197 		}
4198 
4199 		/* Recover from write */
4200 		e1000_standby_eeprom(hw);
4201 		cond_resched();
4202 
4203 		words_written++;
4204 	}
4205 
4206 	/* Send the write disable command to the EEPROM (3-bit opcode plus
4207 	 * 6/8-bit dummy address beginning with 10).  It's less work to include
4208 	 * the 10 of the dummy address as part of the opcode than it is to shift
4209 	 * it over the correct number of bits for the address.  This takes the
4210 	 * EEPROM out of write/erase mode.
4211 	 */
4212 	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4213 				(u16)(eeprom->opcode_bits + 2));
4214 
4215 	e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2));
4216 
4217 	return E1000_SUCCESS;
4218 }
4219 
4220 /**
4221  * e1000_read_mac_addr - read the adapters MAC from eeprom
4222  * @hw: Struct containing variables accessed by shared code
4223  *
4224  * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4225  * second function of dual function devices
4226  */
e1000_read_mac_addr(struct e1000_hw * hw)4227 s32 e1000_read_mac_addr(struct e1000_hw *hw)
4228 {
4229 	u16 offset;
4230 	u16 eeprom_data, i;
4231 
4232 	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4233 		offset = i >> 1;
4234 		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4235 			e_dbg("EEPROM Read Error\n");
4236 			return -E1000_ERR_EEPROM;
4237 		}
4238 		hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF);
4239 		hw->perm_mac_addr[i + 1] = (u8)(eeprom_data >> 8);
4240 	}
4241 
4242 	switch (hw->mac_type) {
4243 	default:
4244 		break;
4245 	case e1000_82546:
4246 	case e1000_82546_rev_3:
4247 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
4248 			hw->perm_mac_addr[5] ^= 0x01;
4249 		break;
4250 	}
4251 
4252 	for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4253 		hw->mac_addr[i] = hw->perm_mac_addr[i];
4254 	return E1000_SUCCESS;
4255 }
4256 
4257 /**
4258  * e1000_init_rx_addrs - Initializes receive address filters.
4259  * @hw: Struct containing variables accessed by shared code
4260  *
4261  * Places the MAC address in receive address register 0 and clears the rest
4262  * of the receive address registers. Clears the multicast table. Assumes
4263  * the receiver is in reset when the routine is called.
4264  */
e1000_init_rx_addrs(struct e1000_hw * hw)4265 static void e1000_init_rx_addrs(struct e1000_hw *hw)
4266 {
4267 	u32 i;
4268 	u32 rar_num;
4269 
4270 	/* Setup the receive address. */
4271 	e_dbg("Programming MAC Address into RAR[0]\n");
4272 
4273 	e1000_rar_set(hw, hw->mac_addr, 0);
4274 
4275 	rar_num = E1000_RAR_ENTRIES;
4276 
4277 	/* Zero out the following 14 receive addresses. RAR[15] is for
4278 	 * manageability
4279 	 */
4280 	e_dbg("Clearing RAR[1-14]\n");
4281 	for (i = 1; i < rar_num; i++) {
4282 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4283 		E1000_WRITE_FLUSH();
4284 		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4285 		E1000_WRITE_FLUSH();
4286 	}
4287 }
4288 
4289 /**
4290  * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4291  * @hw: Struct containing variables accessed by shared code
4292  * @mc_addr: the multicast address to hash
4293  */
e1000_hash_mc_addr(struct e1000_hw * hw,u8 * mc_addr)4294 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4295 {
4296 	u32 hash_value = 0;
4297 
4298 	/* The portion of the address that is used for the hash table is
4299 	 * determined by the mc_filter_type setting.
4300 	 */
4301 	switch (hw->mc_filter_type) {
4302 		/* [0] [1] [2] [3] [4] [5]
4303 		 * 01  AA  00  12  34  56
4304 		 * LSB                 MSB
4305 		 */
4306 	case 0:
4307 		/* [47:36] i.e. 0x563 for above example address */
4308 		hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
4309 		break;
4310 	case 1:
4311 		/* [46:35] i.e. 0xAC6 for above example address */
4312 		hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
4313 		break;
4314 	case 2:
4315 		/* [45:34] i.e. 0x5D8 for above example address */
4316 		hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
4317 		break;
4318 	case 3:
4319 		/* [43:32] i.e. 0x634 for above example address */
4320 		hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
4321 		break;
4322 	}
4323 
4324 	hash_value &= 0xFFF;
4325 	return hash_value;
4326 }
4327 
4328 /**
4329  * e1000_rar_set - Puts an ethernet address into a receive address register.
4330  * @hw: Struct containing variables accessed by shared code
4331  * @addr: Address to put into receive address register
4332  * @index: Receive address register to write
4333  */
e1000_rar_set(struct e1000_hw * hw,u8 * addr,u32 index)4334 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
4335 {
4336 	u32 rar_low, rar_high;
4337 
4338 	/* HW expects these in little endian so we reverse the byte order
4339 	 * from network order (big endian) to little endian
4340 	 */
4341 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
4342 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
4343 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
4344 
4345 	/* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4346 	 * unit hang.
4347 	 *
4348 	 * Description:
4349 	 * If there are any Rx frames queued up or otherwise present in the HW
4350 	 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4351 	 * hang.  To work around this issue, we have to disable receives and
4352 	 * flush out all Rx frames before we enable RSS. To do so, we modify we
4353 	 * redirect all Rx traffic to manageability and then reset the HW.
4354 	 * This flushes away Rx frames, and (since the redirections to
4355 	 * manageability persists across resets) keeps new ones from coming in
4356 	 * while we work.  Then, we clear the Address Valid AV bit for all MAC
4357 	 * addresses and undo the re-direction to manageability.
4358 	 * Now, frames are coming in again, but the MAC won't accept them, so
4359 	 * far so good.  We now proceed to initialize RSS (if necessary) and
4360 	 * configure the Rx unit.  Last, we re-enable the AV bits and continue
4361 	 * on our merry way.
4362 	 */
4363 	switch (hw->mac_type) {
4364 	default:
4365 		/* Indicate to hardware the Address is Valid. */
4366 		rar_high |= E1000_RAH_AV;
4367 		break;
4368 	}
4369 
4370 	E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4371 	E1000_WRITE_FLUSH();
4372 	E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4373 	E1000_WRITE_FLUSH();
4374 }
4375 
4376 /**
4377  * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4378  * @hw: Struct containing variables accessed by shared code
4379  * @offset: Offset in VLAN filter table to write
4380  * @value: Value to write into VLAN filter table
4381  */
e1000_write_vfta(struct e1000_hw * hw,u32 offset,u32 value)4382 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
4383 {
4384 	u32 temp;
4385 
4386 	if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4387 		temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4388 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4389 		E1000_WRITE_FLUSH();
4390 		E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4391 		E1000_WRITE_FLUSH();
4392 	} else {
4393 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4394 		E1000_WRITE_FLUSH();
4395 	}
4396 }
4397 
4398 /**
4399  * e1000_clear_vfta - Clears the VLAN filter table
4400  * @hw: Struct containing variables accessed by shared code
4401  */
e1000_clear_vfta(struct e1000_hw * hw)4402 static void e1000_clear_vfta(struct e1000_hw *hw)
4403 {
4404 	u32 offset;
4405 
4406 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4407 		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
4408 		E1000_WRITE_FLUSH();
4409 	}
4410 }
4411 
e1000_id_led_init(struct e1000_hw * hw)4412 static s32 e1000_id_led_init(struct e1000_hw *hw)
4413 {
4414 	u32 ledctl;
4415 	const u32 ledctl_mask = 0x000000FF;
4416 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4417 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4418 	u16 eeprom_data, i, temp;
4419 	const u16 led_mask = 0x0F;
4420 
4421 	if (hw->mac_type < e1000_82540) {
4422 		/* Nothing to do */
4423 		return E1000_SUCCESS;
4424 	}
4425 
4426 	ledctl = er32(LEDCTL);
4427 	hw->ledctl_default = ledctl;
4428 	hw->ledctl_mode1 = hw->ledctl_default;
4429 	hw->ledctl_mode2 = hw->ledctl_default;
4430 
4431 	if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4432 		e_dbg("EEPROM Read Error\n");
4433 		return -E1000_ERR_EEPROM;
4434 	}
4435 
4436 	if ((eeprom_data == ID_LED_RESERVED_0000) ||
4437 	    (eeprom_data == ID_LED_RESERVED_FFFF)) {
4438 		eeprom_data = ID_LED_DEFAULT;
4439 	}
4440 
4441 	for (i = 0; i < 4; i++) {
4442 		temp = (eeprom_data >> (i << 2)) & led_mask;
4443 		switch (temp) {
4444 		case ID_LED_ON1_DEF2:
4445 		case ID_LED_ON1_ON2:
4446 		case ID_LED_ON1_OFF2:
4447 			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4448 			hw->ledctl_mode1 |= ledctl_on << (i << 3);
4449 			break;
4450 		case ID_LED_OFF1_DEF2:
4451 		case ID_LED_OFF1_ON2:
4452 		case ID_LED_OFF1_OFF2:
4453 			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4454 			hw->ledctl_mode1 |= ledctl_off << (i << 3);
4455 			break;
4456 		default:
4457 			/* Do nothing */
4458 			break;
4459 		}
4460 		switch (temp) {
4461 		case ID_LED_DEF1_ON2:
4462 		case ID_LED_ON1_ON2:
4463 		case ID_LED_OFF1_ON2:
4464 			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4465 			hw->ledctl_mode2 |= ledctl_on << (i << 3);
4466 			break;
4467 		case ID_LED_DEF1_OFF2:
4468 		case ID_LED_ON1_OFF2:
4469 		case ID_LED_OFF1_OFF2:
4470 			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4471 			hw->ledctl_mode2 |= ledctl_off << (i << 3);
4472 			break;
4473 		default:
4474 			/* Do nothing */
4475 			break;
4476 		}
4477 	}
4478 	return E1000_SUCCESS;
4479 }
4480 
4481 /**
4482  * e1000_setup_led
4483  * @hw: Struct containing variables accessed by shared code
4484  *
4485  * Prepares SW controlable LED for use and saves the current state of the LED.
4486  */
e1000_setup_led(struct e1000_hw * hw)4487 s32 e1000_setup_led(struct e1000_hw *hw)
4488 {
4489 	u32 ledctl;
4490 	s32 ret_val = E1000_SUCCESS;
4491 
4492 	switch (hw->mac_type) {
4493 	case e1000_82542_rev2_0:
4494 	case e1000_82542_rev2_1:
4495 	case e1000_82543:
4496 	case e1000_82544:
4497 		/* No setup necessary */
4498 		break;
4499 	case e1000_82541:
4500 	case e1000_82547:
4501 	case e1000_82541_rev_2:
4502 	case e1000_82547_rev_2:
4503 		/* Turn off PHY Smart Power Down (if enabled) */
4504 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4505 					     &hw->phy_spd_default);
4506 		if (ret_val)
4507 			return ret_val;
4508 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4509 					      (u16)(hw->phy_spd_default &
4510 						     ~IGP01E1000_GMII_SPD));
4511 		if (ret_val)
4512 			return ret_val;
4513 		fallthrough;
4514 	default:
4515 		if (hw->media_type == e1000_media_type_fiber) {
4516 			ledctl = er32(LEDCTL);
4517 			/* Save current LEDCTL settings */
4518 			hw->ledctl_default = ledctl;
4519 			/* Turn off LED0 */
4520 			ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4521 				    E1000_LEDCTL_LED0_BLINK |
4522 				    E1000_LEDCTL_LED0_MODE_MASK);
4523 			ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4524 				   E1000_LEDCTL_LED0_MODE_SHIFT);
4525 			ew32(LEDCTL, ledctl);
4526 		} else if (hw->media_type == e1000_media_type_copper)
4527 			ew32(LEDCTL, hw->ledctl_mode1);
4528 		break;
4529 	}
4530 
4531 	return E1000_SUCCESS;
4532 }
4533 
4534 /**
4535  * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4536  * @hw: Struct containing variables accessed by shared code
4537  */
e1000_cleanup_led(struct e1000_hw * hw)4538 s32 e1000_cleanup_led(struct e1000_hw *hw)
4539 {
4540 	s32 ret_val = E1000_SUCCESS;
4541 
4542 	switch (hw->mac_type) {
4543 	case e1000_82542_rev2_0:
4544 	case e1000_82542_rev2_1:
4545 	case e1000_82543:
4546 	case e1000_82544:
4547 		/* No cleanup necessary */
4548 		break;
4549 	case e1000_82541:
4550 	case e1000_82547:
4551 	case e1000_82541_rev_2:
4552 	case e1000_82547_rev_2:
4553 		/* Turn on PHY Smart Power Down (if previously enabled) */
4554 		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4555 					      hw->phy_spd_default);
4556 		if (ret_val)
4557 			return ret_val;
4558 		fallthrough;
4559 	default:
4560 		/* Restore LEDCTL settings */
4561 		ew32(LEDCTL, hw->ledctl_default);
4562 		break;
4563 	}
4564 
4565 	return E1000_SUCCESS;
4566 }
4567 
4568 /**
4569  * e1000_led_on - Turns on the software controllable LED
4570  * @hw: Struct containing variables accessed by shared code
4571  */
e1000_led_on(struct e1000_hw * hw)4572 s32 e1000_led_on(struct e1000_hw *hw)
4573 {
4574 	u32 ctrl = er32(CTRL);
4575 
4576 	switch (hw->mac_type) {
4577 	case e1000_82542_rev2_0:
4578 	case e1000_82542_rev2_1:
4579 	case e1000_82543:
4580 		/* Set SW Defineable Pin 0 to turn on the LED */
4581 		ctrl |= E1000_CTRL_SWDPIN0;
4582 		ctrl |= E1000_CTRL_SWDPIO0;
4583 		break;
4584 	case e1000_82544:
4585 		if (hw->media_type == e1000_media_type_fiber) {
4586 			/* Set SW Defineable Pin 0 to turn on the LED */
4587 			ctrl |= E1000_CTRL_SWDPIN0;
4588 			ctrl |= E1000_CTRL_SWDPIO0;
4589 		} else {
4590 			/* Clear SW Defineable Pin 0 to turn on the LED */
4591 			ctrl &= ~E1000_CTRL_SWDPIN0;
4592 			ctrl |= E1000_CTRL_SWDPIO0;
4593 		}
4594 		break;
4595 	default:
4596 		if (hw->media_type == e1000_media_type_fiber) {
4597 			/* Clear SW Defineable Pin 0 to turn on the LED */
4598 			ctrl &= ~E1000_CTRL_SWDPIN0;
4599 			ctrl |= E1000_CTRL_SWDPIO0;
4600 		} else if (hw->media_type == e1000_media_type_copper) {
4601 			ew32(LEDCTL, hw->ledctl_mode2);
4602 			return E1000_SUCCESS;
4603 		}
4604 		break;
4605 	}
4606 
4607 	ew32(CTRL, ctrl);
4608 
4609 	return E1000_SUCCESS;
4610 }
4611 
4612 /**
4613  * e1000_led_off - Turns off the software controllable LED
4614  * @hw: Struct containing variables accessed by shared code
4615  */
e1000_led_off(struct e1000_hw * hw)4616 s32 e1000_led_off(struct e1000_hw *hw)
4617 {
4618 	u32 ctrl = er32(CTRL);
4619 
4620 	switch (hw->mac_type) {
4621 	case e1000_82542_rev2_0:
4622 	case e1000_82542_rev2_1:
4623 	case e1000_82543:
4624 		/* Clear SW Defineable Pin 0 to turn off the LED */
4625 		ctrl &= ~E1000_CTRL_SWDPIN0;
4626 		ctrl |= E1000_CTRL_SWDPIO0;
4627 		break;
4628 	case e1000_82544:
4629 		if (hw->media_type == e1000_media_type_fiber) {
4630 			/* Clear SW Defineable Pin 0 to turn off the LED */
4631 			ctrl &= ~E1000_CTRL_SWDPIN0;
4632 			ctrl |= E1000_CTRL_SWDPIO0;
4633 		} else {
4634 			/* Set SW Defineable Pin 0 to turn off the LED */
4635 			ctrl |= E1000_CTRL_SWDPIN0;
4636 			ctrl |= E1000_CTRL_SWDPIO0;
4637 		}
4638 		break;
4639 	default:
4640 		if (hw->media_type == e1000_media_type_fiber) {
4641 			/* Set SW Defineable Pin 0 to turn off the LED */
4642 			ctrl |= E1000_CTRL_SWDPIN0;
4643 			ctrl |= E1000_CTRL_SWDPIO0;
4644 		} else if (hw->media_type == e1000_media_type_copper) {
4645 			ew32(LEDCTL, hw->ledctl_mode1);
4646 			return E1000_SUCCESS;
4647 		}
4648 		break;
4649 	}
4650 
4651 	ew32(CTRL, ctrl);
4652 
4653 	return E1000_SUCCESS;
4654 }
4655 
4656 /**
4657  * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4658  * @hw: Struct containing variables accessed by shared code
4659  */
e1000_clear_hw_cntrs(struct e1000_hw * hw)4660 static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
4661 {
4662 	er32(CRCERRS);
4663 	er32(SYMERRS);
4664 	er32(MPC);
4665 	er32(SCC);
4666 	er32(ECOL);
4667 	er32(MCC);
4668 	er32(LATECOL);
4669 	er32(COLC);
4670 	er32(DC);
4671 	er32(SEC);
4672 	er32(RLEC);
4673 	er32(XONRXC);
4674 	er32(XONTXC);
4675 	er32(XOFFRXC);
4676 	er32(XOFFTXC);
4677 	er32(FCRUC);
4678 
4679 	er32(PRC64);
4680 	er32(PRC127);
4681 	er32(PRC255);
4682 	er32(PRC511);
4683 	er32(PRC1023);
4684 	er32(PRC1522);
4685 
4686 	er32(GPRC);
4687 	er32(BPRC);
4688 	er32(MPRC);
4689 	er32(GPTC);
4690 	er32(GORCL);
4691 	er32(GORCH);
4692 	er32(GOTCL);
4693 	er32(GOTCH);
4694 	er32(RNBC);
4695 	er32(RUC);
4696 	er32(RFC);
4697 	er32(ROC);
4698 	er32(RJC);
4699 	er32(TORL);
4700 	er32(TORH);
4701 	er32(TOTL);
4702 	er32(TOTH);
4703 	er32(TPR);
4704 	er32(TPT);
4705 
4706 	er32(PTC64);
4707 	er32(PTC127);
4708 	er32(PTC255);
4709 	er32(PTC511);
4710 	er32(PTC1023);
4711 	er32(PTC1522);
4712 
4713 	er32(MPTC);
4714 	er32(BPTC);
4715 
4716 	if (hw->mac_type < e1000_82543)
4717 		return;
4718 
4719 	er32(ALGNERRC);
4720 	er32(RXERRC);
4721 	er32(TNCRS);
4722 	er32(CEXTERR);
4723 	er32(TSCTC);
4724 	er32(TSCTFC);
4725 
4726 	if (hw->mac_type <= e1000_82544)
4727 		return;
4728 
4729 	er32(MGTPRC);
4730 	er32(MGTPDC);
4731 	er32(MGTPTC);
4732 }
4733 
4734 /**
4735  * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4736  * @hw: Struct containing variables accessed by shared code
4737  *
4738  * Call this after e1000_init_hw. You may override the IFS defaults by setting
4739  * hw->ifs_params_forced to true. However, you must initialize hw->
4740  * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4741  * before calling this function.
4742  */
e1000_reset_adaptive(struct e1000_hw * hw)4743 void e1000_reset_adaptive(struct e1000_hw *hw)
4744 {
4745 	if (hw->adaptive_ifs) {
4746 		if (!hw->ifs_params_forced) {
4747 			hw->current_ifs_val = 0;
4748 			hw->ifs_min_val = IFS_MIN;
4749 			hw->ifs_max_val = IFS_MAX;
4750 			hw->ifs_step_size = IFS_STEP;
4751 			hw->ifs_ratio = IFS_RATIO;
4752 		}
4753 		hw->in_ifs_mode = false;
4754 		ew32(AIT, 0);
4755 	} else {
4756 		e_dbg("Not in Adaptive IFS mode!\n");
4757 	}
4758 }
4759 
4760 /**
4761  * e1000_update_adaptive - update adaptive IFS
4762  * @hw: Struct containing variables accessed by shared code
4763  *
4764  * Called during the callback/watchdog routine to update IFS value based on
4765  * the ratio of transmits to collisions.
4766  */
e1000_update_adaptive(struct e1000_hw * hw)4767 void e1000_update_adaptive(struct e1000_hw *hw)
4768 {
4769 	if (hw->adaptive_ifs) {
4770 		if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
4771 			if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4772 				hw->in_ifs_mode = true;
4773 				if (hw->current_ifs_val < hw->ifs_max_val) {
4774 					if (hw->current_ifs_val == 0)
4775 						hw->current_ifs_val =
4776 						    hw->ifs_min_val;
4777 					else
4778 						hw->current_ifs_val +=
4779 						    hw->ifs_step_size;
4780 					ew32(AIT, hw->current_ifs_val);
4781 				}
4782 			}
4783 		} else {
4784 			if (hw->in_ifs_mode &&
4785 			    (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4786 				hw->current_ifs_val = 0;
4787 				hw->in_ifs_mode = false;
4788 				ew32(AIT, 0);
4789 			}
4790 		}
4791 	} else {
4792 		e_dbg("Not in Adaptive IFS mode!\n");
4793 	}
4794 }
4795 
4796 /**
4797  * e1000_get_bus_info
4798  * @hw: Struct containing variables accessed by shared code
4799  *
4800  * Gets the current PCI bus type, speed, and width of the hardware
4801  */
e1000_get_bus_info(struct e1000_hw * hw)4802 void e1000_get_bus_info(struct e1000_hw *hw)
4803 {
4804 	u32 status;
4805 
4806 	switch (hw->mac_type) {
4807 	case e1000_82542_rev2_0:
4808 	case e1000_82542_rev2_1:
4809 		hw->bus_type = e1000_bus_type_pci;
4810 		hw->bus_speed = e1000_bus_speed_unknown;
4811 		hw->bus_width = e1000_bus_width_unknown;
4812 		break;
4813 	default:
4814 		status = er32(STATUS);
4815 		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4816 		    e1000_bus_type_pcix : e1000_bus_type_pci;
4817 
4818 		if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4819 			hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4820 			    e1000_bus_speed_66 : e1000_bus_speed_120;
4821 		} else if (hw->bus_type == e1000_bus_type_pci) {
4822 			hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4823 			    e1000_bus_speed_66 : e1000_bus_speed_33;
4824 		} else {
4825 			switch (status & E1000_STATUS_PCIX_SPEED) {
4826 			case E1000_STATUS_PCIX_SPEED_66:
4827 				hw->bus_speed = e1000_bus_speed_66;
4828 				break;
4829 			case E1000_STATUS_PCIX_SPEED_100:
4830 				hw->bus_speed = e1000_bus_speed_100;
4831 				break;
4832 			case E1000_STATUS_PCIX_SPEED_133:
4833 				hw->bus_speed = e1000_bus_speed_133;
4834 				break;
4835 			default:
4836 				hw->bus_speed = e1000_bus_speed_reserved;
4837 				break;
4838 			}
4839 		}
4840 		hw->bus_width = (status & E1000_STATUS_BUS64) ?
4841 		    e1000_bus_width_64 : e1000_bus_width_32;
4842 		break;
4843 	}
4844 }
4845 
4846 /**
4847  * e1000_write_reg_io
4848  * @hw: Struct containing variables accessed by shared code
4849  * @offset: offset to write to
4850  * @value: value to write
4851  *
4852  * Writes a value to one of the devices registers using port I/O (as opposed to
4853  * memory mapped I/O). Only 82544 and newer devices support port I/O.
4854  */
e1000_write_reg_io(struct e1000_hw * hw,u32 offset,u32 value)4855 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
4856 {
4857 	unsigned long io_addr = hw->io_base;
4858 	unsigned long io_data = hw->io_base + 4;
4859 
4860 	e1000_io_write(hw, io_addr, offset);
4861 	e1000_io_write(hw, io_data, value);
4862 }
4863 
4864 /**
4865  * e1000_get_cable_length - Estimates the cable length.
4866  * @hw: Struct containing variables accessed by shared code
4867  * @min_length: The estimated minimum length
4868  * @max_length: The estimated maximum length
4869  *
4870  * returns: - E1000_ERR_XXX
4871  *            E1000_SUCCESS
4872  *
4873  * This function always returns a ranged length (minimum & maximum).
4874  * So for M88 phy's, this function interprets the one value returned from the
4875  * register to the minimum and maximum range.
4876  * For IGP phy's, the function calculates the range by the AGC registers.
4877  */
e1000_get_cable_length(struct e1000_hw * hw,u16 * min_length,u16 * max_length)4878 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
4879 				  u16 *max_length)
4880 {
4881 	s32 ret_val;
4882 	u16 agc_value = 0;
4883 	u16 i, phy_data;
4884 	u16 cable_length;
4885 
4886 	*min_length = *max_length = 0;
4887 
4888 	/* Use old method for Phy older than IGP */
4889 	if (hw->phy_type == e1000_phy_m88) {
4890 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
4891 					     &phy_data);
4892 		if (ret_val)
4893 			return ret_val;
4894 		cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
4895 		    M88E1000_PSSR_CABLE_LENGTH_SHIFT;
4896 
4897 		/* Convert the enum value to ranged values */
4898 		switch (cable_length) {
4899 		case e1000_cable_length_50:
4900 			*min_length = 0;
4901 			*max_length = e1000_igp_cable_length_50;
4902 			break;
4903 		case e1000_cable_length_50_80:
4904 			*min_length = e1000_igp_cable_length_50;
4905 			*max_length = e1000_igp_cable_length_80;
4906 			break;
4907 		case e1000_cable_length_80_110:
4908 			*min_length = e1000_igp_cable_length_80;
4909 			*max_length = e1000_igp_cable_length_110;
4910 			break;
4911 		case e1000_cable_length_110_140:
4912 			*min_length = e1000_igp_cable_length_110;
4913 			*max_length = e1000_igp_cable_length_140;
4914 			break;
4915 		case e1000_cable_length_140:
4916 			*min_length = e1000_igp_cable_length_140;
4917 			*max_length = e1000_igp_cable_length_170;
4918 			break;
4919 		default:
4920 			return -E1000_ERR_PHY;
4921 		}
4922 	} else if (hw->phy_type == e1000_phy_igp) {	/* For IGP PHY */
4923 		u16 cur_agc_value;
4924 		u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
4925 		static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
4926 		       IGP01E1000_PHY_AGC_A,
4927 		       IGP01E1000_PHY_AGC_B,
4928 		       IGP01E1000_PHY_AGC_C,
4929 		       IGP01E1000_PHY_AGC_D
4930 		};
4931 		/* Read the AGC registers for all channels */
4932 		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
4933 			ret_val =
4934 			    e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
4935 			if (ret_val)
4936 				return ret_val;
4937 
4938 			cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
4939 
4940 			/* Value bound check. */
4941 			if ((cur_agc_value >=
4942 			     IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
4943 			    (cur_agc_value == 0))
4944 				return -E1000_ERR_PHY;
4945 
4946 			agc_value += cur_agc_value;
4947 
4948 			/* Update minimal AGC value. */
4949 			if (min_agc_value > cur_agc_value)
4950 				min_agc_value = cur_agc_value;
4951 		}
4952 
4953 		/* Remove the minimal AGC result for length < 50m */
4954 		if (agc_value <
4955 		    IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
4956 			agc_value -= min_agc_value;
4957 
4958 			/* Get the average length of the remaining 3 channels */
4959 			agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
4960 		} else {
4961 			/* Get the average length of all the 4 channels. */
4962 			agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
4963 		}
4964 
4965 		/* Set the range of the calculated length. */
4966 		*min_length = ((e1000_igp_cable_length_table[agc_value] -
4967 				IGP01E1000_AGC_RANGE) > 0) ?
4968 		    (e1000_igp_cable_length_table[agc_value] -
4969 		     IGP01E1000_AGC_RANGE) : 0;
4970 		*max_length = e1000_igp_cable_length_table[agc_value] +
4971 		    IGP01E1000_AGC_RANGE;
4972 	}
4973 
4974 	return E1000_SUCCESS;
4975 }
4976 
4977 /**
4978  * e1000_check_polarity - Check the cable polarity
4979  * @hw: Struct containing variables accessed by shared code
4980  * @polarity: output parameter : 0 - Polarity is not reversed
4981  *                               1 - Polarity is reversed.
4982  *
4983  * returns: - E1000_ERR_XXX
4984  *            E1000_SUCCESS
4985  *
4986  * For phy's older than IGP, this function simply reads the polarity bit in the
4987  * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
4988  * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
4989  * return 0.  If the link speed is 1000 Mbps the polarity status is in the
4990  * IGP01E1000_PHY_PCS_INIT_REG.
4991  */
e1000_check_polarity(struct e1000_hw * hw,e1000_rev_polarity * polarity)4992 static s32 e1000_check_polarity(struct e1000_hw *hw,
4993 				e1000_rev_polarity *polarity)
4994 {
4995 	s32 ret_val;
4996 	u16 phy_data;
4997 
4998 	if (hw->phy_type == e1000_phy_m88) {
4999 		/* return the Polarity bit in the Status register. */
5000 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5001 					     &phy_data);
5002 		if (ret_val)
5003 			return ret_val;
5004 		*polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
5005 			     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
5006 		    e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
5007 
5008 	} else if (hw->phy_type == e1000_phy_igp) {
5009 		/* Read the Status register to check the speed */
5010 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5011 					     &phy_data);
5012 		if (ret_val)
5013 			return ret_val;
5014 
5015 		/* If speed is 1000 Mbps, must read the
5016 		 * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status
5017 		 */
5018 		if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5019 		    IGP01E1000_PSSR_SPEED_1000MBPS) {
5020 			/* Read the GIG initialization PCS register (0x00B4) */
5021 			ret_val =
5022 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5023 					       &phy_data);
5024 			if (ret_val)
5025 				return ret_val;
5026 
5027 			/* Check the polarity bits */
5028 			*polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5029 			    e1000_rev_polarity_reversed :
5030 			    e1000_rev_polarity_normal;
5031 		} else {
5032 			/* For 10 Mbps, read the polarity bit in the status
5033 			 * register. (for 100 Mbps this bit is always 0)
5034 			 */
5035 			*polarity =
5036 			    (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5037 			    e1000_rev_polarity_reversed :
5038 			    e1000_rev_polarity_normal;
5039 		}
5040 	}
5041 	return E1000_SUCCESS;
5042 }
5043 
5044 /**
5045  * e1000_check_downshift - Check if Downshift occurred
5046  * @hw: Struct containing variables accessed by shared code
5047  *
5048  * returns: - E1000_ERR_XXX
5049  *            E1000_SUCCESS
5050  *
5051  * For phy's older than IGP, this function reads the Downshift bit in the Phy
5052  * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
5053  * Link Health register.  In IGP this bit is latched high, so the driver must
5054  * read it immediately after link is established.
5055  */
e1000_check_downshift(struct e1000_hw * hw)5056 static s32 e1000_check_downshift(struct e1000_hw *hw)
5057 {
5058 	s32 ret_val;
5059 	u16 phy_data;
5060 
5061 	if (hw->phy_type == e1000_phy_igp) {
5062 		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5063 					     &phy_data);
5064 		if (ret_val)
5065 			return ret_val;
5066 
5067 		hw->speed_downgraded =
5068 		    (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5069 	} else if (hw->phy_type == e1000_phy_m88) {
5070 		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5071 					     &phy_data);
5072 		if (ret_val)
5073 			return ret_val;
5074 
5075 		hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5076 		    M88E1000_PSSR_DOWNSHIFT_SHIFT;
5077 	}
5078 
5079 	return E1000_SUCCESS;
5080 }
5081 
5082 static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5083 	IGP01E1000_PHY_AGC_PARAM_A,
5084 	IGP01E1000_PHY_AGC_PARAM_B,
5085 	IGP01E1000_PHY_AGC_PARAM_C,
5086 	IGP01E1000_PHY_AGC_PARAM_D
5087 };
5088 
e1000_1000Mb_check_cable_length(struct e1000_hw * hw)5089 static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5090 {
5091 	u16 min_length, max_length;
5092 	u16 phy_data, i;
5093 	s32 ret_val;
5094 
5095 	ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5096 	if (ret_val)
5097 		return ret_val;
5098 
5099 	if (hw->dsp_config_state != e1000_dsp_config_enabled)
5100 		return 0;
5101 
5102 	if (min_length >= e1000_igp_cable_length_50) {
5103 		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5104 			ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5105 						     &phy_data);
5106 			if (ret_val)
5107 				return ret_val;
5108 
5109 			phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5110 
5111 			ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5112 						      phy_data);
5113 			if (ret_val)
5114 				return ret_val;
5115 		}
5116 		hw->dsp_config_state = e1000_dsp_config_activated;
5117 	} else {
5118 		u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5119 		u32 idle_errs = 0;
5120 
5121 		/* clear previous idle error counts */
5122 		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5123 		if (ret_val)
5124 			return ret_val;
5125 
5126 		for (i = 0; i < ffe_idle_err_timeout; i++) {
5127 			udelay(1000);
5128 			ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5129 						     &phy_data);
5130 			if (ret_val)
5131 				return ret_val;
5132 
5133 			idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5134 			if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5135 				hw->ffe_config_state = e1000_ffe_config_active;
5136 
5137 				ret_val = e1000_write_phy_reg(hw,
5138 							      IGP01E1000_PHY_DSP_FFE,
5139 							      IGP01E1000_PHY_DSP_FFE_CM_CP);
5140 				if (ret_val)
5141 					return ret_val;
5142 				break;
5143 			}
5144 
5145 			if (idle_errs)
5146 				ffe_idle_err_timeout =
5147 					    FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5148 		}
5149 	}
5150 
5151 	return 0;
5152 }
5153 
5154 /**
5155  * e1000_config_dsp_after_link_change
5156  * @hw: Struct containing variables accessed by shared code
5157  * @link_up: was link up at the time this was called
5158  *
5159  * returns: - E1000_ERR_PHY if fail to read/write the PHY
5160  *            E1000_SUCCESS at any other case.
5161  *
5162  * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5163  * gigabit link is achieved to improve link quality.
5164  */
5165 
e1000_config_dsp_after_link_change(struct e1000_hw * hw,bool link_up)5166 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
5167 {
5168 	s32 ret_val;
5169 	u16 phy_data, phy_saved_data, speed, duplex, i;
5170 
5171 	if (hw->phy_type != e1000_phy_igp)
5172 		return E1000_SUCCESS;
5173 
5174 	if (link_up) {
5175 		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5176 		if (ret_val) {
5177 			e_dbg("Error getting link speed and duplex\n");
5178 			return ret_val;
5179 		}
5180 
5181 		if (speed == SPEED_1000) {
5182 			ret_val = e1000_1000Mb_check_cable_length(hw);
5183 			if (ret_val)
5184 				return ret_val;
5185 		}
5186 	} else {
5187 		if (hw->dsp_config_state == e1000_dsp_config_activated) {
5188 			/* Save off the current value of register 0x2F5B to be
5189 			 * restored at the end of the routines.
5190 			 */
5191 			ret_val =
5192 			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5193 
5194 			if (ret_val)
5195 				return ret_val;
5196 
5197 			/* Disable the PHY transmitter */
5198 			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5199 
5200 			if (ret_val)
5201 				return ret_val;
5202 
5203 			msleep(20);
5204 
5205 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5206 						      IGP01E1000_IEEE_FORCE_GIGA);
5207 			if (ret_val)
5208 				return ret_val;
5209 			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5210 				ret_val =
5211 				    e1000_read_phy_reg(hw, dsp_reg_array[i],
5212 						       &phy_data);
5213 				if (ret_val)
5214 					return ret_val;
5215 
5216 				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5217 				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5218 
5219 				ret_val =
5220 				    e1000_write_phy_reg(hw, dsp_reg_array[i],
5221 							phy_data);
5222 				if (ret_val)
5223 					return ret_val;
5224 			}
5225 
5226 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5227 						      IGP01E1000_IEEE_RESTART_AUTONEG);
5228 			if (ret_val)
5229 				return ret_val;
5230 
5231 			msleep(20);
5232 
5233 			/* Now enable the transmitter */
5234 			ret_val =
5235 			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5236 
5237 			if (ret_val)
5238 				return ret_val;
5239 
5240 			hw->dsp_config_state = e1000_dsp_config_enabled;
5241 		}
5242 
5243 		if (hw->ffe_config_state == e1000_ffe_config_active) {
5244 			/* Save off the current value of register 0x2F5B to be
5245 			 * restored at the end of the routines.
5246 			 */
5247 			ret_val =
5248 			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5249 
5250 			if (ret_val)
5251 				return ret_val;
5252 
5253 			/* Disable the PHY transmitter */
5254 			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5255 
5256 			if (ret_val)
5257 				return ret_val;
5258 
5259 			msleep(20);
5260 
5261 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5262 						      IGP01E1000_IEEE_FORCE_GIGA);
5263 			if (ret_val)
5264 				return ret_val;
5265 			ret_val =
5266 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5267 						IGP01E1000_PHY_DSP_FFE_DEFAULT);
5268 			if (ret_val)
5269 				return ret_val;
5270 
5271 			ret_val = e1000_write_phy_reg(hw, 0x0000,
5272 						      IGP01E1000_IEEE_RESTART_AUTONEG);
5273 			if (ret_val)
5274 				return ret_val;
5275 
5276 			msleep(20);
5277 
5278 			/* Now enable the transmitter */
5279 			ret_val =
5280 			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5281 
5282 			if (ret_val)
5283 				return ret_val;
5284 
5285 			hw->ffe_config_state = e1000_ffe_config_enabled;
5286 		}
5287 	}
5288 	return E1000_SUCCESS;
5289 }
5290 
5291 /**
5292  * e1000_set_phy_mode - Set PHY to class A mode
5293  * @hw: Struct containing variables accessed by shared code
5294  *
5295  * Assumes the following operations will follow to enable the new class mode.
5296  *  1. Do a PHY soft reset
5297  *  2. Restart auto-negotiation or force link.
5298  */
e1000_set_phy_mode(struct e1000_hw * hw)5299 static s32 e1000_set_phy_mode(struct e1000_hw *hw)
5300 {
5301 	s32 ret_val;
5302 	u16 eeprom_data;
5303 
5304 	if ((hw->mac_type == e1000_82545_rev_3) &&
5305 	    (hw->media_type == e1000_media_type_copper)) {
5306 		ret_val =
5307 		    e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5308 				      &eeprom_data);
5309 		if (ret_val)
5310 			return ret_val;
5311 
5312 		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5313 		    (eeprom_data & EEPROM_PHY_CLASS_A)) {
5314 			ret_val =
5315 			    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5316 						0x000B);
5317 			if (ret_val)
5318 				return ret_val;
5319 			ret_val =
5320 			    e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5321 						0x8104);
5322 			if (ret_val)
5323 				return ret_val;
5324 
5325 			hw->phy_reset_disable = false;
5326 		}
5327 	}
5328 
5329 	return E1000_SUCCESS;
5330 }
5331 
5332 /**
5333  * e1000_set_d3_lplu_state - set d3 link power state
5334  * @hw: Struct containing variables accessed by shared code
5335  * @active: true to enable lplu false to disable lplu.
5336  *
5337  * This function sets the lplu state according to the active flag.  When
5338  * activating lplu this function also disables smart speed and vise versa.
5339  * lplu will not be activated unless the device autonegotiation advertisement
5340  * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5341  *
5342  * returns: - E1000_ERR_PHY if fail to read/write the PHY
5343  *            E1000_SUCCESS at any other case.
5344  */
e1000_set_d3_lplu_state(struct e1000_hw * hw,bool active)5345 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
5346 {
5347 	s32 ret_val;
5348 	u16 phy_data;
5349 
5350 	if (hw->phy_type != e1000_phy_igp)
5351 		return E1000_SUCCESS;
5352 
5353 	/* During driver activity LPLU should not be used or it will attain link
5354 	 * from the lowest speeds starting from 10Mbps. The capability is used
5355 	 * for Dx transitions and states
5356 	 */
5357 	if (hw->mac_type == e1000_82541_rev_2 ||
5358 	    hw->mac_type == e1000_82547_rev_2) {
5359 		ret_val =
5360 		    e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5361 		if (ret_val)
5362 			return ret_val;
5363 	}
5364 
5365 	if (!active) {
5366 		if (hw->mac_type == e1000_82541_rev_2 ||
5367 		    hw->mac_type == e1000_82547_rev_2) {
5368 			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5369 			ret_val =
5370 			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5371 						phy_data);
5372 			if (ret_val)
5373 				return ret_val;
5374 		}
5375 
5376 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
5377 		 * during Dx states where the power conservation is most
5378 		 * important.  During driver activity we should enable
5379 		 * SmartSpeed, so performance is maintained.
5380 		 */
5381 		if (hw->smart_speed == e1000_smart_speed_on) {
5382 			ret_val =
5383 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5384 					       &phy_data);
5385 			if (ret_val)
5386 				return ret_val;
5387 
5388 			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5389 			ret_val =
5390 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5391 						phy_data);
5392 			if (ret_val)
5393 				return ret_val;
5394 		} else if (hw->smart_speed == e1000_smart_speed_off) {
5395 			ret_val =
5396 			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5397 					       &phy_data);
5398 			if (ret_val)
5399 				return ret_val;
5400 
5401 			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5402 			ret_val =
5403 			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5404 						phy_data);
5405 			if (ret_val)
5406 				return ret_val;
5407 		}
5408 	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
5409 		   (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
5410 		   (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
5411 		if (hw->mac_type == e1000_82541_rev_2 ||
5412 		    hw->mac_type == e1000_82547_rev_2) {
5413 			phy_data |= IGP01E1000_GMII_FLEX_SPD;
5414 			ret_val =
5415 			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5416 						phy_data);
5417 			if (ret_val)
5418 				return ret_val;
5419 		}
5420 
5421 		/* When LPLU is enabled we should disable SmartSpeed */
5422 		ret_val =
5423 		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5424 				       &phy_data);
5425 		if (ret_val)
5426 			return ret_val;
5427 
5428 		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5429 		ret_val =
5430 		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5431 					phy_data);
5432 		if (ret_val)
5433 			return ret_val;
5434 	}
5435 	return E1000_SUCCESS;
5436 }
5437 
5438 /**
5439  * e1000_set_vco_speed
5440  * @hw: Struct containing variables accessed by shared code
5441  *
5442  * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5443  */
e1000_set_vco_speed(struct e1000_hw * hw)5444 static s32 e1000_set_vco_speed(struct e1000_hw *hw)
5445 {
5446 	s32 ret_val;
5447 	u16 default_page = 0;
5448 	u16 phy_data;
5449 
5450 	switch (hw->mac_type) {
5451 	case e1000_82545_rev_3:
5452 	case e1000_82546_rev_3:
5453 		break;
5454 	default:
5455 		return E1000_SUCCESS;
5456 	}
5457 
5458 	/* Set PHY register 30, page 5, bit 8 to 0 */
5459 
5460 	ret_val =
5461 	    e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5462 	if (ret_val)
5463 		return ret_val;
5464 
5465 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5466 	if (ret_val)
5467 		return ret_val;
5468 
5469 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5470 	if (ret_val)
5471 		return ret_val;
5472 
5473 	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5474 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5475 	if (ret_val)
5476 		return ret_val;
5477 
5478 	/* Set PHY register 30, page 4, bit 11 to 1 */
5479 
5480 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5481 	if (ret_val)
5482 		return ret_val;
5483 
5484 	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5485 	if (ret_val)
5486 		return ret_val;
5487 
5488 	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5489 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5490 	if (ret_val)
5491 		return ret_val;
5492 
5493 	ret_val =
5494 	    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5495 	if (ret_val)
5496 		return ret_val;
5497 
5498 	return E1000_SUCCESS;
5499 }
5500 
5501 /**
5502  * e1000_enable_mng_pass_thru - check for bmc pass through
5503  * @hw: Struct containing variables accessed by shared code
5504  *
5505  * Verifies the hardware needs to allow ARPs to be processed by the host
5506  * returns: - true/false
5507  */
e1000_enable_mng_pass_thru(struct e1000_hw * hw)5508 u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
5509 {
5510 	u32 manc;
5511 
5512 	if (hw->asf_firmware_present) {
5513 		manc = er32(MANC);
5514 
5515 		if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5516 		    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5517 			return false;
5518 		if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5519 			return true;
5520 	}
5521 	return false;
5522 }
5523 
e1000_polarity_reversal_workaround(struct e1000_hw * hw)5524 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
5525 {
5526 	s32 ret_val;
5527 	u16 mii_status_reg;
5528 	u16 i;
5529 
5530 	/* Polarity reversal workaround for forced 10F/10H links. */
5531 
5532 	/* Disable the transmitter on the PHY */
5533 
5534 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5535 	if (ret_val)
5536 		return ret_val;
5537 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5538 	if (ret_val)
5539 		return ret_val;
5540 
5541 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5542 	if (ret_val)
5543 		return ret_val;
5544 
5545 	/* This loop will early-out if the NO link condition has been met. */
5546 	for (i = PHY_FORCE_TIME; i > 0; i--) {
5547 		/* Read the MII Status Register and wait for Link Status bit
5548 		 * to be clear.
5549 		 */
5550 
5551 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5552 		if (ret_val)
5553 			return ret_val;
5554 
5555 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5556 		if (ret_val)
5557 			return ret_val;
5558 
5559 		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5560 			break;
5561 		msleep(100);
5562 	}
5563 
5564 	/* Recommended delay time after link has been lost */
5565 	msleep(1000);
5566 
5567 	/* Now we will re-enable th transmitter on the PHY */
5568 
5569 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5570 	if (ret_val)
5571 		return ret_val;
5572 	msleep(50);
5573 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5574 	if (ret_val)
5575 		return ret_val;
5576 	msleep(50);
5577 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5578 	if (ret_val)
5579 		return ret_val;
5580 	msleep(50);
5581 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5582 	if (ret_val)
5583 		return ret_val;
5584 
5585 	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5586 	if (ret_val)
5587 		return ret_val;
5588 
5589 	/* This loop will early-out if the link condition has been met. */
5590 	for (i = PHY_FORCE_TIME; i > 0; i--) {
5591 		/* Read the MII Status Register and wait for Link Status bit
5592 		 * to be set.
5593 		 */
5594 
5595 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5596 		if (ret_val)
5597 			return ret_val;
5598 
5599 		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5600 		if (ret_val)
5601 			return ret_val;
5602 
5603 		if (mii_status_reg & MII_SR_LINK_STATUS)
5604 			break;
5605 		msleep(100);
5606 	}
5607 	return E1000_SUCCESS;
5608 }
5609 
5610 /**
5611  * e1000_get_auto_rd_done
5612  * @hw: Struct containing variables accessed by shared code
5613  *
5614  * Check for EEPROM Auto Read bit done.
5615  * returns: - E1000_ERR_RESET if fail to reset MAC
5616  *            E1000_SUCCESS at any other case.
5617  */
e1000_get_auto_rd_done(struct e1000_hw * hw)5618 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
5619 {
5620 	msleep(5);
5621 	return E1000_SUCCESS;
5622 }
5623 
5624 /**
5625  * e1000_get_phy_cfg_done
5626  * @hw: Struct containing variables accessed by shared code
5627  *
5628  * Checks if the PHY configuration is done
5629  * returns: - E1000_ERR_RESET if fail to reset MAC
5630  *            E1000_SUCCESS at any other case.
5631  */
e1000_get_phy_cfg_done(struct e1000_hw * hw)5632 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
5633 {
5634 	msleep(10);
5635 	return E1000_SUCCESS;
5636 }
5637