1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4 /* ethtool support for e1000 */
5
6 #include "e1000.h"
7 #include <linux/jiffies.h>
8 #include <linux/uaccess.h>
9
10 enum {NETDEV_STATS, E1000_STATS};
11
12 struct e1000_stats {
13 char stat_string[ETH_GSTRING_LEN];
14 int type;
15 int sizeof_stat;
16 int stat_offset;
17 };
18
19 #define E1000_STAT(m) E1000_STATS, \
20 sizeof(((struct e1000_adapter *)0)->m), \
21 offsetof(struct e1000_adapter, m)
22 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
23 sizeof(((struct net_device *)0)->m), \
24 offsetof(struct net_device, m)
25
26 static const struct e1000_stats e1000_gstrings_stats[] = {
27 { "rx_packets", E1000_STAT(stats.gprc) },
28 { "tx_packets", E1000_STAT(stats.gptc) },
29 { "rx_bytes", E1000_STAT(stats.gorcl) },
30 { "tx_bytes", E1000_STAT(stats.gotcl) },
31 { "rx_broadcast", E1000_STAT(stats.bprc) },
32 { "tx_broadcast", E1000_STAT(stats.bptc) },
33 { "rx_multicast", E1000_STAT(stats.mprc) },
34 { "tx_multicast", E1000_STAT(stats.mptc) },
35 { "rx_errors", E1000_STAT(stats.rxerrc) },
36 { "tx_errors", E1000_STAT(stats.txerrc) },
37 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
38 { "multicast", E1000_STAT(stats.mprc) },
39 { "collisions", E1000_STAT(stats.colc) },
40 { "rx_length_errors", E1000_STAT(stats.rlerrc) },
41 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
42 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
43 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
44 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
45 { "rx_missed_errors", E1000_STAT(stats.mpc) },
46 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
47 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
48 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
49 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
50 { "tx_window_errors", E1000_STAT(stats.latecol) },
51 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
52 { "tx_deferred_ok", E1000_STAT(stats.dc) },
53 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
54 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
55 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
56 { "tx_restart_queue", E1000_STAT(restart_queue) },
57 { "rx_long_length_errors", E1000_STAT(stats.roc) },
58 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
59 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
60 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
61 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
62 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
63 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
64 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
65 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
66 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
67 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
68 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
69 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
70 { "tx_smbus", E1000_STAT(stats.mgptc) },
71 { "rx_smbus", E1000_STAT(stats.mgprc) },
72 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
73 };
74
75 #define E1000_QUEUE_STATS_LEN 0
76 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
77 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
78 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
79 "Register test (offline)", "Eeprom test (offline)",
80 "Interrupt test (offline)", "Loopback test (offline)",
81 "Link test (on/offline)"
82 };
83
84 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
85
e1000_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * cmd)86 static int e1000_get_link_ksettings(struct net_device *netdev,
87 struct ethtool_link_ksettings *cmd)
88 {
89 struct e1000_adapter *adapter = netdev_priv(netdev);
90 struct e1000_hw *hw = &adapter->hw;
91 u32 supported, advertising;
92
93 if (hw->media_type == e1000_media_type_copper) {
94 supported = (SUPPORTED_10baseT_Half |
95 SUPPORTED_10baseT_Full |
96 SUPPORTED_100baseT_Half |
97 SUPPORTED_100baseT_Full |
98 SUPPORTED_1000baseT_Full|
99 SUPPORTED_Autoneg |
100 SUPPORTED_TP);
101 advertising = ADVERTISED_TP;
102
103 if (hw->autoneg == 1) {
104 advertising |= ADVERTISED_Autoneg;
105 /* the e1000 autoneg seems to match ethtool nicely */
106 advertising |= hw->autoneg_advertised;
107 }
108
109 cmd->base.port = PORT_TP;
110 cmd->base.phy_address = hw->phy_addr;
111 } else {
112 supported = (SUPPORTED_1000baseT_Full |
113 SUPPORTED_FIBRE |
114 SUPPORTED_Autoneg);
115
116 advertising = (ADVERTISED_1000baseT_Full |
117 ADVERTISED_FIBRE |
118 ADVERTISED_Autoneg);
119
120 cmd->base.port = PORT_FIBRE;
121 }
122
123 if (er32(STATUS) & E1000_STATUS_LU) {
124 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
125 &adapter->link_duplex);
126 cmd->base.speed = adapter->link_speed;
127
128 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
129 * and HALF_DUPLEX != DUPLEX_HALF
130 */
131 if (adapter->link_duplex == FULL_DUPLEX)
132 cmd->base.duplex = DUPLEX_FULL;
133 else
134 cmd->base.duplex = DUPLEX_HALF;
135 } else {
136 cmd->base.speed = SPEED_UNKNOWN;
137 cmd->base.duplex = DUPLEX_UNKNOWN;
138 }
139
140 cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
141 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
142
143 /* MDI-X => 1; MDI => 0 */
144 if ((hw->media_type == e1000_media_type_copper) &&
145 netif_carrier_ok(netdev))
146 cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
147 ETH_TP_MDI_X : ETH_TP_MDI);
148 else
149 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
150
151 if (hw->mdix == AUTO_ALL_MODES)
152 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
153 else
154 cmd->base.eth_tp_mdix_ctrl = hw->mdix;
155
156 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
157 supported);
158 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
159 advertising);
160
161 return 0;
162 }
163
e1000_set_link_ksettings(struct net_device * netdev,const struct ethtool_link_ksettings * cmd)164 static int e1000_set_link_ksettings(struct net_device *netdev,
165 const struct ethtool_link_ksettings *cmd)
166 {
167 struct e1000_adapter *adapter = netdev_priv(netdev);
168 struct e1000_hw *hw = &adapter->hw;
169 u32 advertising;
170
171 ethtool_convert_link_mode_to_legacy_u32(&advertising,
172 cmd->link_modes.advertising);
173
174 /* MDI setting is only allowed when autoneg enabled because
175 * some hardware doesn't allow MDI setting when speed or
176 * duplex is forced.
177 */
178 if (cmd->base.eth_tp_mdix_ctrl) {
179 if (hw->media_type != e1000_media_type_copper)
180 return -EOPNOTSUPP;
181
182 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
183 (cmd->base.autoneg != AUTONEG_ENABLE)) {
184 e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
185 return -EINVAL;
186 }
187 }
188
189 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
190 msleep(1);
191
192 if (cmd->base.autoneg == AUTONEG_ENABLE) {
193 hw->autoneg = 1;
194 if (hw->media_type == e1000_media_type_fiber)
195 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
196 ADVERTISED_FIBRE |
197 ADVERTISED_Autoneg;
198 else
199 hw->autoneg_advertised = advertising |
200 ADVERTISED_TP |
201 ADVERTISED_Autoneg;
202 } else {
203 u32 speed = cmd->base.speed;
204 /* calling this overrides forced MDI setting */
205 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
206 clear_bit(__E1000_RESETTING, &adapter->flags);
207 return -EINVAL;
208 }
209 }
210
211 /* MDI-X => 2; MDI => 1; Auto => 3 */
212 if (cmd->base.eth_tp_mdix_ctrl) {
213 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
214 hw->mdix = AUTO_ALL_MODES;
215 else
216 hw->mdix = cmd->base.eth_tp_mdix_ctrl;
217 }
218
219 /* reset the link */
220
221 if (netif_running(adapter->netdev)) {
222 e1000_down(adapter);
223 e1000_up(adapter);
224 } else {
225 e1000_reset(adapter);
226 }
227 clear_bit(__E1000_RESETTING, &adapter->flags);
228 return 0;
229 }
230
e1000_get_link(struct net_device * netdev)231 static u32 e1000_get_link(struct net_device *netdev)
232 {
233 struct e1000_adapter *adapter = netdev_priv(netdev);
234
235 /* If the link is not reported up to netdev, interrupts are disabled,
236 * and so the physical link state may have changed since we last
237 * looked. Set get_link_status to make sure that the true link
238 * state is interrogated, rather than pulling a cached and possibly
239 * stale link state from the driver.
240 */
241 if (!netif_carrier_ok(netdev))
242 adapter->hw.get_link_status = 1;
243
244 return e1000_has_link(adapter);
245 }
246
e1000_get_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)247 static void e1000_get_pauseparam(struct net_device *netdev,
248 struct ethtool_pauseparam *pause)
249 {
250 struct e1000_adapter *adapter = netdev_priv(netdev);
251 struct e1000_hw *hw = &adapter->hw;
252
253 pause->autoneg =
254 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
255
256 if (hw->fc == E1000_FC_RX_PAUSE) {
257 pause->rx_pause = 1;
258 } else if (hw->fc == E1000_FC_TX_PAUSE) {
259 pause->tx_pause = 1;
260 } else if (hw->fc == E1000_FC_FULL) {
261 pause->rx_pause = 1;
262 pause->tx_pause = 1;
263 }
264 }
265
e1000_set_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)266 static int e1000_set_pauseparam(struct net_device *netdev,
267 struct ethtool_pauseparam *pause)
268 {
269 struct e1000_adapter *adapter = netdev_priv(netdev);
270 struct e1000_hw *hw = &adapter->hw;
271 int retval = 0;
272
273 adapter->fc_autoneg = pause->autoneg;
274
275 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
276 msleep(1);
277
278 if (pause->rx_pause && pause->tx_pause)
279 hw->fc = E1000_FC_FULL;
280 else if (pause->rx_pause && !pause->tx_pause)
281 hw->fc = E1000_FC_RX_PAUSE;
282 else if (!pause->rx_pause && pause->tx_pause)
283 hw->fc = E1000_FC_TX_PAUSE;
284 else if (!pause->rx_pause && !pause->tx_pause)
285 hw->fc = E1000_FC_NONE;
286
287 hw->original_fc = hw->fc;
288
289 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
290 if (netif_running(adapter->netdev)) {
291 e1000_down(adapter);
292 e1000_up(adapter);
293 } else {
294 e1000_reset(adapter);
295 }
296 } else
297 retval = ((hw->media_type == e1000_media_type_fiber) ?
298 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
299
300 clear_bit(__E1000_RESETTING, &adapter->flags);
301 return retval;
302 }
303
e1000_get_msglevel(struct net_device * netdev)304 static u32 e1000_get_msglevel(struct net_device *netdev)
305 {
306 struct e1000_adapter *adapter = netdev_priv(netdev);
307
308 return adapter->msg_enable;
309 }
310
e1000_set_msglevel(struct net_device * netdev,u32 data)311 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
312 {
313 struct e1000_adapter *adapter = netdev_priv(netdev);
314
315 adapter->msg_enable = data;
316 }
317
e1000_get_regs_len(struct net_device * netdev)318 static int e1000_get_regs_len(struct net_device *netdev)
319 {
320 #define E1000_REGS_LEN 32
321 return E1000_REGS_LEN * sizeof(u32);
322 }
323
e1000_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)324 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
325 void *p)
326 {
327 struct e1000_adapter *adapter = netdev_priv(netdev);
328 struct e1000_hw *hw = &adapter->hw;
329 u32 *regs_buff = p;
330 u16 phy_data;
331
332 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
333
334 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
335
336 regs_buff[0] = er32(CTRL);
337 regs_buff[1] = er32(STATUS);
338
339 regs_buff[2] = er32(RCTL);
340 regs_buff[3] = er32(RDLEN);
341 regs_buff[4] = er32(RDH);
342 regs_buff[5] = er32(RDT);
343 regs_buff[6] = er32(RDTR);
344
345 regs_buff[7] = er32(TCTL);
346 regs_buff[8] = er32(TDLEN);
347 regs_buff[9] = er32(TDH);
348 regs_buff[10] = er32(TDT);
349 regs_buff[11] = er32(TIDV);
350
351 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */
352 if (hw->phy_type == e1000_phy_igp) {
353 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
354 IGP01E1000_PHY_AGC_A);
355 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
356 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
357 regs_buff[13] = (u32)phy_data; /* cable length */
358 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
359 IGP01E1000_PHY_AGC_B);
360 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
361 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
362 regs_buff[14] = (u32)phy_data; /* cable length */
363 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
364 IGP01E1000_PHY_AGC_C);
365 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
366 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
367 regs_buff[15] = (u32)phy_data; /* cable length */
368 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
369 IGP01E1000_PHY_AGC_D);
370 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
371 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
372 regs_buff[16] = (u32)phy_data; /* cable length */
373 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
374 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
375 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
376 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
377 regs_buff[18] = (u32)phy_data; /* cable polarity */
378 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
379 IGP01E1000_PHY_PCS_INIT_REG);
380 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
381 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
382 regs_buff[19] = (u32)phy_data; /* cable polarity */
383 regs_buff[20] = 0; /* polarity correction enabled (always) */
384 regs_buff[22] = 0; /* phy receive errors (unavailable) */
385 regs_buff[23] = regs_buff[18]; /* mdix mode */
386 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
387 } else {
388 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
389 regs_buff[13] = (u32)phy_data; /* cable length */
390 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
391 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
392 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
393 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
394 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
395 regs_buff[18] = regs_buff[13]; /* cable polarity */
396 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
397 regs_buff[20] = regs_buff[17]; /* polarity correction */
398 /* phy receive errors */
399 regs_buff[22] = adapter->phy_stats.receive_errors;
400 regs_buff[23] = regs_buff[13]; /* mdix mode */
401 }
402 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
403 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
404 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
405 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
406 if (hw->mac_type >= e1000_82540 &&
407 hw->media_type == e1000_media_type_copper) {
408 regs_buff[26] = er32(MANC);
409 }
410 }
411
e1000_get_eeprom_len(struct net_device * netdev)412 static int e1000_get_eeprom_len(struct net_device *netdev)
413 {
414 struct e1000_adapter *adapter = netdev_priv(netdev);
415 struct e1000_hw *hw = &adapter->hw;
416
417 return hw->eeprom.word_size * 2;
418 }
419
e1000_get_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)420 static int e1000_get_eeprom(struct net_device *netdev,
421 struct ethtool_eeprom *eeprom, u8 *bytes)
422 {
423 struct e1000_adapter *adapter = netdev_priv(netdev);
424 struct e1000_hw *hw = &adapter->hw;
425 u16 *eeprom_buff;
426 int first_word, last_word;
427 int ret_val = 0;
428 u16 i;
429
430 if (eeprom->len == 0)
431 return -EINVAL;
432
433 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
434
435 first_word = eeprom->offset >> 1;
436 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
437
438 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
439 GFP_KERNEL);
440 if (!eeprom_buff)
441 return -ENOMEM;
442
443 if (hw->eeprom.type == e1000_eeprom_spi)
444 ret_val = e1000_read_eeprom(hw, first_word,
445 last_word - first_word + 1,
446 eeprom_buff);
447 else {
448 for (i = 0; i < last_word - first_word + 1; i++) {
449 ret_val = e1000_read_eeprom(hw, first_word + i, 1,
450 &eeprom_buff[i]);
451 if (ret_val)
452 break;
453 }
454 }
455
456 /* Device's eeprom is always little-endian, word addressable */
457 for (i = 0; i < last_word - first_word + 1; i++)
458 le16_to_cpus(&eeprom_buff[i]);
459
460 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
461 eeprom->len);
462 kfree(eeprom_buff);
463
464 return ret_val;
465 }
466
e1000_set_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)467 static int e1000_set_eeprom(struct net_device *netdev,
468 struct ethtool_eeprom *eeprom, u8 *bytes)
469 {
470 struct e1000_adapter *adapter = netdev_priv(netdev);
471 struct e1000_hw *hw = &adapter->hw;
472 u16 *eeprom_buff;
473 void *ptr;
474 int max_len, first_word, last_word, ret_val = 0;
475 u16 i;
476
477 if (eeprom->len == 0)
478 return -EOPNOTSUPP;
479
480 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
481 return -EFAULT;
482
483 max_len = hw->eeprom.word_size * 2;
484
485 first_word = eeprom->offset >> 1;
486 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
487 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
488 if (!eeprom_buff)
489 return -ENOMEM;
490
491 ptr = (void *)eeprom_buff;
492
493 if (eeprom->offset & 1) {
494 /* need read/modify/write of first changed EEPROM word
495 * only the second byte of the word is being modified
496 */
497 ret_val = e1000_read_eeprom(hw, first_word, 1,
498 &eeprom_buff[0]);
499 ptr++;
500 }
501 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
502 /* need read/modify/write of last changed EEPROM word
503 * only the first byte of the word is being modified
504 */
505 ret_val = e1000_read_eeprom(hw, last_word, 1,
506 &eeprom_buff[last_word - first_word]);
507 }
508
509 /* Device's eeprom is always little-endian, word addressable */
510 for (i = 0; i < last_word - first_word + 1; i++)
511 le16_to_cpus(&eeprom_buff[i]);
512
513 memcpy(ptr, bytes, eeprom->len);
514
515 for (i = 0; i < last_word - first_word + 1; i++)
516 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
517
518 ret_val = e1000_write_eeprom(hw, first_word,
519 last_word - first_word + 1, eeprom_buff);
520
521 /* Update the checksum over the first part of the EEPROM if needed */
522 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
523 e1000_update_eeprom_checksum(hw);
524
525 kfree(eeprom_buff);
526 return ret_val;
527 }
528
e1000_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)529 static void e1000_get_drvinfo(struct net_device *netdev,
530 struct ethtool_drvinfo *drvinfo)
531 {
532 struct e1000_adapter *adapter = netdev_priv(netdev);
533
534 strlcpy(drvinfo->driver, e1000_driver_name,
535 sizeof(drvinfo->driver));
536
537 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
538 sizeof(drvinfo->bus_info));
539 }
540
e1000_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)541 static void e1000_get_ringparam(struct net_device *netdev,
542 struct ethtool_ringparam *ring)
543 {
544 struct e1000_adapter *adapter = netdev_priv(netdev);
545 struct e1000_hw *hw = &adapter->hw;
546 e1000_mac_type mac_type = hw->mac_type;
547 struct e1000_tx_ring *txdr = adapter->tx_ring;
548 struct e1000_rx_ring *rxdr = adapter->rx_ring;
549
550 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
551 E1000_MAX_82544_RXD;
552 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
553 E1000_MAX_82544_TXD;
554 ring->rx_pending = rxdr->count;
555 ring->tx_pending = txdr->count;
556 }
557
e1000_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)558 static int e1000_set_ringparam(struct net_device *netdev,
559 struct ethtool_ringparam *ring)
560 {
561 struct e1000_adapter *adapter = netdev_priv(netdev);
562 struct e1000_hw *hw = &adapter->hw;
563 e1000_mac_type mac_type = hw->mac_type;
564 struct e1000_tx_ring *txdr, *tx_old;
565 struct e1000_rx_ring *rxdr, *rx_old;
566 int i, err;
567
568 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
569 return -EINVAL;
570
571 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
572 msleep(1);
573
574 if (netif_running(adapter->netdev))
575 e1000_down(adapter);
576
577 tx_old = adapter->tx_ring;
578 rx_old = adapter->rx_ring;
579
580 err = -ENOMEM;
581 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
582 GFP_KERNEL);
583 if (!txdr)
584 goto err_alloc_tx;
585
586 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
587 GFP_KERNEL);
588 if (!rxdr)
589 goto err_alloc_rx;
590
591 adapter->tx_ring = txdr;
592 adapter->rx_ring = rxdr;
593
594 rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
595 rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
596 E1000_MAX_RXD : E1000_MAX_82544_RXD));
597 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
598 txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
599 txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
600 E1000_MAX_TXD : E1000_MAX_82544_TXD));
601 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
602
603 for (i = 0; i < adapter->num_tx_queues; i++)
604 txdr[i].count = txdr->count;
605 for (i = 0; i < adapter->num_rx_queues; i++)
606 rxdr[i].count = rxdr->count;
607
608 err = 0;
609 if (netif_running(adapter->netdev)) {
610 /* Try to get new resources before deleting old */
611 err = e1000_setup_all_rx_resources(adapter);
612 if (err)
613 goto err_setup_rx;
614 err = e1000_setup_all_tx_resources(adapter);
615 if (err)
616 goto err_setup_tx;
617
618 /* save the new, restore the old in order to free it,
619 * then restore the new back again
620 */
621
622 adapter->rx_ring = rx_old;
623 adapter->tx_ring = tx_old;
624 e1000_free_all_rx_resources(adapter);
625 e1000_free_all_tx_resources(adapter);
626 adapter->rx_ring = rxdr;
627 adapter->tx_ring = txdr;
628 err = e1000_up(adapter);
629 }
630 kfree(tx_old);
631 kfree(rx_old);
632
633 clear_bit(__E1000_RESETTING, &adapter->flags);
634 return err;
635
636 err_setup_tx:
637 e1000_free_all_rx_resources(adapter);
638 err_setup_rx:
639 adapter->rx_ring = rx_old;
640 adapter->tx_ring = tx_old;
641 kfree(rxdr);
642 err_alloc_rx:
643 kfree(txdr);
644 err_alloc_tx:
645 if (netif_running(adapter->netdev))
646 e1000_up(adapter);
647 clear_bit(__E1000_RESETTING, &adapter->flags);
648 return err;
649 }
650
reg_pattern_test(struct e1000_adapter * adapter,u64 * data,int reg,u32 mask,u32 write)651 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
652 u32 mask, u32 write)
653 {
654 struct e1000_hw *hw = &adapter->hw;
655 static const u32 test[] = {
656 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
657 };
658 u8 __iomem *address = hw->hw_addr + reg;
659 u32 read;
660 int i;
661
662 for (i = 0; i < ARRAY_SIZE(test); i++) {
663 writel(write & test[i], address);
664 read = readl(address);
665 if (read != (write & test[i] & mask)) {
666 e_err(drv, "pattern test reg %04X failed: "
667 "got 0x%08X expected 0x%08X\n",
668 reg, read, (write & test[i] & mask));
669 *data = reg;
670 return true;
671 }
672 }
673 return false;
674 }
675
reg_set_and_check(struct e1000_adapter * adapter,u64 * data,int reg,u32 mask,u32 write)676 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
677 u32 mask, u32 write)
678 {
679 struct e1000_hw *hw = &adapter->hw;
680 u8 __iomem *address = hw->hw_addr + reg;
681 u32 read;
682
683 writel(write & mask, address);
684 read = readl(address);
685 if ((read & mask) != (write & mask)) {
686 e_err(drv, "set/check reg %04X test failed: "
687 "got 0x%08X expected 0x%08X\n",
688 reg, (read & mask), (write & mask));
689 *data = reg;
690 return true;
691 }
692 return false;
693 }
694
695 #define REG_PATTERN_TEST(reg, mask, write) \
696 do { \
697 if (reg_pattern_test(adapter, data, \
698 (hw->mac_type >= e1000_82543) \
699 ? E1000_##reg : E1000_82542_##reg, \
700 mask, write)) \
701 return 1; \
702 } while (0)
703
704 #define REG_SET_AND_CHECK(reg, mask, write) \
705 do { \
706 if (reg_set_and_check(adapter, data, \
707 (hw->mac_type >= e1000_82543) \
708 ? E1000_##reg : E1000_82542_##reg, \
709 mask, write)) \
710 return 1; \
711 } while (0)
712
e1000_reg_test(struct e1000_adapter * adapter,u64 * data)713 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
714 {
715 u32 value, before, after;
716 u32 i, toggle;
717 struct e1000_hw *hw = &adapter->hw;
718
719 /* The status register is Read Only, so a write should fail.
720 * Some bits that get toggled are ignored.
721 */
722
723 /* there are several bits on newer hardware that are r/w */
724 toggle = 0xFFFFF833;
725
726 before = er32(STATUS);
727 value = (er32(STATUS) & toggle);
728 ew32(STATUS, toggle);
729 after = er32(STATUS) & toggle;
730 if (value != after) {
731 e_err(drv, "failed STATUS register test got: "
732 "0x%08X expected: 0x%08X\n", after, value);
733 *data = 1;
734 return 1;
735 }
736 /* restore previous status */
737 ew32(STATUS, before);
738
739 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
740 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
741 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
742 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
743
744 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
745 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
746 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
747 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
748 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
749 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
750 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
751 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
752 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
753 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
754
755 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
756
757 before = 0x06DFB3FE;
758 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
759 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
760
761 if (hw->mac_type >= e1000_82543) {
762 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
763 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
764 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
765 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
766 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
767 value = E1000_RAR_ENTRIES;
768 for (i = 0; i < value; i++) {
769 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
770 0x8003FFFF, 0xFFFFFFFF);
771 }
772 } else {
773 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
774 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
775 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
776 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
777 }
778
779 value = E1000_MC_TBL_SIZE;
780 for (i = 0; i < value; i++)
781 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
782
783 *data = 0;
784 return 0;
785 }
786
e1000_eeprom_test(struct e1000_adapter * adapter,u64 * data)787 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
788 {
789 struct e1000_hw *hw = &adapter->hw;
790 u16 temp;
791 u16 checksum = 0;
792 u16 i;
793
794 *data = 0;
795 /* Read and add up the contents of the EEPROM */
796 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
797 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
798 *data = 1;
799 break;
800 }
801 checksum += temp;
802 }
803
804 /* If Checksum is not Correct return error else test passed */
805 if ((checksum != (u16)EEPROM_SUM) && !(*data))
806 *data = 2;
807
808 return *data;
809 }
810
e1000_test_intr(int irq,void * data)811 static irqreturn_t e1000_test_intr(int irq, void *data)
812 {
813 struct net_device *netdev = (struct net_device *)data;
814 struct e1000_adapter *adapter = netdev_priv(netdev);
815 struct e1000_hw *hw = &adapter->hw;
816
817 adapter->test_icr |= er32(ICR);
818
819 return IRQ_HANDLED;
820 }
821
e1000_intr_test(struct e1000_adapter * adapter,u64 * data)822 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
823 {
824 struct net_device *netdev = adapter->netdev;
825 u32 mask, i = 0;
826 bool shared_int = true;
827 u32 irq = adapter->pdev->irq;
828 struct e1000_hw *hw = &adapter->hw;
829
830 *data = 0;
831
832 /* NOTE: we don't test MSI interrupts here, yet
833 * Hook up test interrupt handler just for this test
834 */
835 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
836 netdev))
837 shared_int = false;
838 else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
839 netdev->name, netdev)) {
840 *data = 1;
841 return -1;
842 }
843 e_info(hw, "testing %s interrupt\n", (shared_int ?
844 "shared" : "unshared"));
845
846 /* Disable all the interrupts */
847 ew32(IMC, 0xFFFFFFFF);
848 E1000_WRITE_FLUSH();
849 msleep(10);
850
851 /* Test each interrupt */
852 for (; i < 10; i++) {
853 /* Interrupt to test */
854 mask = 1 << i;
855
856 if (!shared_int) {
857 /* Disable the interrupt to be reported in
858 * the cause register and then force the same
859 * interrupt and see if one gets posted. If
860 * an interrupt was posted to the bus, the
861 * test failed.
862 */
863 adapter->test_icr = 0;
864 ew32(IMC, mask);
865 ew32(ICS, mask);
866 E1000_WRITE_FLUSH();
867 msleep(10);
868
869 if (adapter->test_icr & mask) {
870 *data = 3;
871 break;
872 }
873 }
874
875 /* Enable the interrupt to be reported in
876 * the cause register and then force the same
877 * interrupt and see if one gets posted. If
878 * an interrupt was not posted to the bus, the
879 * test failed.
880 */
881 adapter->test_icr = 0;
882 ew32(IMS, mask);
883 ew32(ICS, mask);
884 E1000_WRITE_FLUSH();
885 msleep(10);
886
887 if (!(adapter->test_icr & mask)) {
888 *data = 4;
889 break;
890 }
891
892 if (!shared_int) {
893 /* Disable the other interrupts to be reported in
894 * the cause register and then force the other
895 * interrupts and see if any get posted. If
896 * an interrupt was posted to the bus, the
897 * test failed.
898 */
899 adapter->test_icr = 0;
900 ew32(IMC, ~mask & 0x00007FFF);
901 ew32(ICS, ~mask & 0x00007FFF);
902 E1000_WRITE_FLUSH();
903 msleep(10);
904
905 if (adapter->test_icr) {
906 *data = 5;
907 break;
908 }
909 }
910 }
911
912 /* Disable all the interrupts */
913 ew32(IMC, 0xFFFFFFFF);
914 E1000_WRITE_FLUSH();
915 msleep(10);
916
917 /* Unhook test interrupt handler */
918 free_irq(irq, netdev);
919
920 return *data;
921 }
922
e1000_free_desc_rings(struct e1000_adapter * adapter)923 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
924 {
925 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
926 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
927 struct pci_dev *pdev = adapter->pdev;
928 int i;
929
930 if (txdr->desc && txdr->buffer_info) {
931 for (i = 0; i < txdr->count; i++) {
932 if (txdr->buffer_info[i].dma)
933 dma_unmap_single(&pdev->dev,
934 txdr->buffer_info[i].dma,
935 txdr->buffer_info[i].length,
936 DMA_TO_DEVICE);
937 dev_kfree_skb(txdr->buffer_info[i].skb);
938 }
939 }
940
941 if (rxdr->desc && rxdr->buffer_info) {
942 for (i = 0; i < rxdr->count; i++) {
943 if (rxdr->buffer_info[i].dma)
944 dma_unmap_single(&pdev->dev,
945 rxdr->buffer_info[i].dma,
946 E1000_RXBUFFER_2048,
947 DMA_FROM_DEVICE);
948 kfree(rxdr->buffer_info[i].rxbuf.data);
949 }
950 }
951
952 if (txdr->desc) {
953 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
954 txdr->dma);
955 txdr->desc = NULL;
956 }
957 if (rxdr->desc) {
958 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
959 rxdr->dma);
960 rxdr->desc = NULL;
961 }
962
963 kfree(txdr->buffer_info);
964 txdr->buffer_info = NULL;
965 kfree(rxdr->buffer_info);
966 rxdr->buffer_info = NULL;
967 }
968
e1000_setup_desc_rings(struct e1000_adapter * adapter)969 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
970 {
971 struct e1000_hw *hw = &adapter->hw;
972 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
973 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
974 struct pci_dev *pdev = adapter->pdev;
975 u32 rctl;
976 int i, ret_val;
977
978 /* Setup Tx descriptor ring and Tx buffers */
979
980 if (!txdr->count)
981 txdr->count = E1000_DEFAULT_TXD;
982
983 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
984 GFP_KERNEL);
985 if (!txdr->buffer_info) {
986 ret_val = 1;
987 goto err_nomem;
988 }
989
990 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
991 txdr->size = ALIGN(txdr->size, 4096);
992 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
993 GFP_KERNEL);
994 if (!txdr->desc) {
995 ret_val = 2;
996 goto err_nomem;
997 }
998 txdr->next_to_use = txdr->next_to_clean = 0;
999
1000 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1001 ew32(TDBAH, ((u64)txdr->dma >> 32));
1002 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1003 ew32(TDH, 0);
1004 ew32(TDT, 0);
1005 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1006 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1007 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1008
1009 for (i = 0; i < txdr->count; i++) {
1010 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1011 struct sk_buff *skb;
1012 unsigned int size = 1024;
1013
1014 skb = alloc_skb(size, GFP_KERNEL);
1015 if (!skb) {
1016 ret_val = 3;
1017 goto err_nomem;
1018 }
1019 skb_put(skb, size);
1020 txdr->buffer_info[i].skb = skb;
1021 txdr->buffer_info[i].length = skb->len;
1022 txdr->buffer_info[i].dma =
1023 dma_map_single(&pdev->dev, skb->data, skb->len,
1024 DMA_TO_DEVICE);
1025 if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1026 ret_val = 4;
1027 goto err_nomem;
1028 }
1029 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1030 tx_desc->lower.data = cpu_to_le32(skb->len);
1031 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1032 E1000_TXD_CMD_IFCS |
1033 E1000_TXD_CMD_RPS);
1034 tx_desc->upper.data = 0;
1035 }
1036
1037 /* Setup Rx descriptor ring and Rx buffers */
1038
1039 if (!rxdr->count)
1040 rxdr->count = E1000_DEFAULT_RXD;
1041
1042 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1043 GFP_KERNEL);
1044 if (!rxdr->buffer_info) {
1045 ret_val = 5;
1046 goto err_nomem;
1047 }
1048
1049 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1050 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1051 GFP_KERNEL);
1052 if (!rxdr->desc) {
1053 ret_val = 6;
1054 goto err_nomem;
1055 }
1056 rxdr->next_to_use = rxdr->next_to_clean = 0;
1057
1058 rctl = er32(RCTL);
1059 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1060 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1061 ew32(RDBAH, ((u64)rxdr->dma >> 32));
1062 ew32(RDLEN, rxdr->size);
1063 ew32(RDH, 0);
1064 ew32(RDT, 0);
1065 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1066 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1067 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1068 ew32(RCTL, rctl);
1069
1070 for (i = 0; i < rxdr->count; i++) {
1071 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1072 u8 *buf;
1073
1074 buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1075 GFP_KERNEL);
1076 if (!buf) {
1077 ret_val = 7;
1078 goto err_nomem;
1079 }
1080 rxdr->buffer_info[i].rxbuf.data = buf;
1081
1082 rxdr->buffer_info[i].dma =
1083 dma_map_single(&pdev->dev,
1084 buf + NET_SKB_PAD + NET_IP_ALIGN,
1085 E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1086 if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1087 ret_val = 8;
1088 goto err_nomem;
1089 }
1090 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1091 }
1092
1093 return 0;
1094
1095 err_nomem:
1096 e1000_free_desc_rings(adapter);
1097 return ret_val;
1098 }
1099
e1000_phy_disable_receiver(struct e1000_adapter * adapter)1100 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1101 {
1102 struct e1000_hw *hw = &adapter->hw;
1103
1104 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1105 e1000_write_phy_reg(hw, 29, 0x001F);
1106 e1000_write_phy_reg(hw, 30, 0x8FFC);
1107 e1000_write_phy_reg(hw, 29, 0x001A);
1108 e1000_write_phy_reg(hw, 30, 0x8FF0);
1109 }
1110
e1000_phy_reset_clk_and_crs(struct e1000_adapter * adapter)1111 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1112 {
1113 struct e1000_hw *hw = &adapter->hw;
1114 u16 phy_reg;
1115
1116 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1117 * Extended PHY Specific Control Register to 25MHz clock. This
1118 * value defaults back to a 2.5MHz clock when the PHY is reset.
1119 */
1120 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1121 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1122 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1123
1124 /* In addition, because of the s/w reset above, we need to enable
1125 * CRS on TX. This must be set for both full and half duplex
1126 * operation.
1127 */
1128 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1129 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1130 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1131 }
1132
e1000_nonintegrated_phy_loopback(struct e1000_adapter * adapter)1133 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1134 {
1135 struct e1000_hw *hw = &adapter->hw;
1136 u32 ctrl_reg;
1137 u16 phy_reg;
1138
1139 /* Setup the Device Control Register for PHY loopback test. */
1140
1141 ctrl_reg = er32(CTRL);
1142 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1143 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1144 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1145 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1146 E1000_CTRL_FD); /* Force Duplex to FULL */
1147
1148 ew32(CTRL, ctrl_reg);
1149
1150 /* Read the PHY Specific Control Register (0x10) */
1151 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1152
1153 /* Clear Auto-Crossover bits in PHY Specific Control Register
1154 * (bits 6:5).
1155 */
1156 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1157 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1158
1159 /* Perform software reset on the PHY */
1160 e1000_phy_reset(hw);
1161
1162 /* Have to setup TX_CLK and TX_CRS after software reset */
1163 e1000_phy_reset_clk_and_crs(adapter);
1164
1165 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1166
1167 /* Wait for reset to complete. */
1168 udelay(500);
1169
1170 /* Have to setup TX_CLK and TX_CRS after software reset */
1171 e1000_phy_reset_clk_and_crs(adapter);
1172
1173 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1174 e1000_phy_disable_receiver(adapter);
1175
1176 /* Set the loopback bit in the PHY control register. */
1177 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1178 phy_reg |= MII_CR_LOOPBACK;
1179 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1180
1181 /* Setup TX_CLK and TX_CRS one more time. */
1182 e1000_phy_reset_clk_and_crs(adapter);
1183
1184 /* Check Phy Configuration */
1185 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1186 if (phy_reg != 0x4100)
1187 return 9;
1188
1189 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1190 if (phy_reg != 0x0070)
1191 return 10;
1192
1193 e1000_read_phy_reg(hw, 29, &phy_reg);
1194 if (phy_reg != 0x001A)
1195 return 11;
1196
1197 return 0;
1198 }
1199
e1000_integrated_phy_loopback(struct e1000_adapter * adapter)1200 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1201 {
1202 struct e1000_hw *hw = &adapter->hw;
1203 u32 ctrl_reg = 0;
1204 u32 stat_reg = 0;
1205
1206 hw->autoneg = false;
1207
1208 if (hw->phy_type == e1000_phy_m88) {
1209 /* Auto-MDI/MDIX Off */
1210 e1000_write_phy_reg(hw,
1211 M88E1000_PHY_SPEC_CTRL, 0x0808);
1212 /* reset to update Auto-MDI/MDIX */
1213 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1214 /* autoneg off */
1215 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1216 }
1217
1218 ctrl_reg = er32(CTRL);
1219
1220 /* force 1000, set loopback */
1221 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1222
1223 /* Now set up the MAC to the same speed/duplex as the PHY. */
1224 ctrl_reg = er32(CTRL);
1225 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1226 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1227 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1228 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1229 E1000_CTRL_FD); /* Force Duplex to FULL */
1230
1231 if (hw->media_type == e1000_media_type_copper &&
1232 hw->phy_type == e1000_phy_m88)
1233 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1234 else {
1235 /* Set the ILOS bit on the fiber Nic is half
1236 * duplex link is detected.
1237 */
1238 stat_reg = er32(STATUS);
1239 if ((stat_reg & E1000_STATUS_FD) == 0)
1240 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1241 }
1242
1243 ew32(CTRL, ctrl_reg);
1244
1245 /* Disable the receiver on the PHY so when a cable is plugged in, the
1246 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1247 */
1248 if (hw->phy_type == e1000_phy_m88)
1249 e1000_phy_disable_receiver(adapter);
1250
1251 udelay(500);
1252
1253 return 0;
1254 }
1255
e1000_set_phy_loopback(struct e1000_adapter * adapter)1256 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1257 {
1258 struct e1000_hw *hw = &adapter->hw;
1259 u16 phy_reg = 0;
1260 u16 count = 0;
1261
1262 switch (hw->mac_type) {
1263 case e1000_82543:
1264 if (hw->media_type == e1000_media_type_copper) {
1265 /* Attempt to setup Loopback mode on Non-integrated PHY.
1266 * Some PHY registers get corrupted at random, so
1267 * attempt this 10 times.
1268 */
1269 while (e1000_nonintegrated_phy_loopback(adapter) &&
1270 count++ < 10);
1271 if (count < 11)
1272 return 0;
1273 }
1274 break;
1275
1276 case e1000_82544:
1277 case e1000_82540:
1278 case e1000_82545:
1279 case e1000_82545_rev_3:
1280 case e1000_82546:
1281 case e1000_82546_rev_3:
1282 case e1000_82541:
1283 case e1000_82541_rev_2:
1284 case e1000_82547:
1285 case e1000_82547_rev_2:
1286 return e1000_integrated_phy_loopback(adapter);
1287 default:
1288 /* Default PHY loopback work is to read the MII
1289 * control register and assert bit 14 (loopback mode).
1290 */
1291 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1292 phy_reg |= MII_CR_LOOPBACK;
1293 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1294 return 0;
1295 }
1296
1297 return 8;
1298 }
1299
e1000_setup_loopback_test(struct e1000_adapter * adapter)1300 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1301 {
1302 struct e1000_hw *hw = &adapter->hw;
1303 u32 rctl;
1304
1305 if (hw->media_type == e1000_media_type_fiber ||
1306 hw->media_type == e1000_media_type_internal_serdes) {
1307 switch (hw->mac_type) {
1308 case e1000_82545:
1309 case e1000_82546:
1310 case e1000_82545_rev_3:
1311 case e1000_82546_rev_3:
1312 return e1000_set_phy_loopback(adapter);
1313 default:
1314 rctl = er32(RCTL);
1315 rctl |= E1000_RCTL_LBM_TCVR;
1316 ew32(RCTL, rctl);
1317 return 0;
1318 }
1319 } else if (hw->media_type == e1000_media_type_copper) {
1320 return e1000_set_phy_loopback(adapter);
1321 }
1322
1323 return 7;
1324 }
1325
e1000_loopback_cleanup(struct e1000_adapter * adapter)1326 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1327 {
1328 struct e1000_hw *hw = &adapter->hw;
1329 u32 rctl;
1330 u16 phy_reg;
1331
1332 rctl = er32(RCTL);
1333 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1334 ew32(RCTL, rctl);
1335
1336 switch (hw->mac_type) {
1337 case e1000_82545:
1338 case e1000_82546:
1339 case e1000_82545_rev_3:
1340 case e1000_82546_rev_3:
1341 default:
1342 hw->autoneg = true;
1343 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1344 if (phy_reg & MII_CR_LOOPBACK) {
1345 phy_reg &= ~MII_CR_LOOPBACK;
1346 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1347 e1000_phy_reset(hw);
1348 }
1349 break;
1350 }
1351 }
1352
e1000_create_lbtest_frame(struct sk_buff * skb,unsigned int frame_size)1353 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1354 unsigned int frame_size)
1355 {
1356 memset(skb->data, 0xFF, frame_size);
1357 frame_size &= ~1;
1358 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1359 skb->data[frame_size / 2 + 10] = 0xBE;
1360 skb->data[frame_size / 2 + 12] = 0xAF;
1361 }
1362
e1000_check_lbtest_frame(const unsigned char * data,unsigned int frame_size)1363 static int e1000_check_lbtest_frame(const unsigned char *data,
1364 unsigned int frame_size)
1365 {
1366 frame_size &= ~1;
1367 if (*(data + 3) == 0xFF) {
1368 if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1369 (*(data + frame_size / 2 + 12) == 0xAF)) {
1370 return 0;
1371 }
1372 }
1373 return 13;
1374 }
1375
e1000_run_loopback_test(struct e1000_adapter * adapter)1376 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1377 {
1378 struct e1000_hw *hw = &adapter->hw;
1379 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1380 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1381 struct pci_dev *pdev = adapter->pdev;
1382 int i, j, k, l, lc, good_cnt, ret_val = 0;
1383 unsigned long time;
1384
1385 ew32(RDT, rxdr->count - 1);
1386
1387 /* Calculate the loop count based on the largest descriptor ring
1388 * The idea is to wrap the largest ring a number of times using 64
1389 * send/receive pairs during each loop
1390 */
1391
1392 if (rxdr->count <= txdr->count)
1393 lc = ((txdr->count / 64) * 2) + 1;
1394 else
1395 lc = ((rxdr->count / 64) * 2) + 1;
1396
1397 k = l = 0;
1398 for (j = 0; j <= lc; j++) { /* loop count loop */
1399 for (i = 0; i < 64; i++) { /* send the packets */
1400 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1401 1024);
1402 dma_sync_single_for_device(&pdev->dev,
1403 txdr->buffer_info[k].dma,
1404 txdr->buffer_info[k].length,
1405 DMA_TO_DEVICE);
1406 if (unlikely(++k == txdr->count))
1407 k = 0;
1408 }
1409 ew32(TDT, k);
1410 E1000_WRITE_FLUSH();
1411 msleep(200);
1412 time = jiffies; /* set the start time for the receive */
1413 good_cnt = 0;
1414 do { /* receive the sent packets */
1415 dma_sync_single_for_cpu(&pdev->dev,
1416 rxdr->buffer_info[l].dma,
1417 E1000_RXBUFFER_2048,
1418 DMA_FROM_DEVICE);
1419
1420 ret_val = e1000_check_lbtest_frame(
1421 rxdr->buffer_info[l].rxbuf.data +
1422 NET_SKB_PAD + NET_IP_ALIGN,
1423 1024);
1424 if (!ret_val)
1425 good_cnt++;
1426 if (unlikely(++l == rxdr->count))
1427 l = 0;
1428 /* time + 20 msecs (200 msecs on 2.4) is more than
1429 * enough time to complete the receives, if it's
1430 * exceeded, break and error off
1431 */
1432 } while (good_cnt < 64 && time_after(time + 20, jiffies));
1433
1434 if (good_cnt != 64) {
1435 ret_val = 13; /* ret_val is the same as mis-compare */
1436 break;
1437 }
1438 if (time_after_eq(jiffies, time + 2)) {
1439 ret_val = 14; /* error code for time out error */
1440 break;
1441 }
1442 } /* end loop count loop */
1443 return ret_val;
1444 }
1445
e1000_loopback_test(struct e1000_adapter * adapter,u64 * data)1446 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1447 {
1448 *data = e1000_setup_desc_rings(adapter);
1449 if (*data)
1450 goto out;
1451 *data = e1000_setup_loopback_test(adapter);
1452 if (*data)
1453 goto err_loopback;
1454 *data = e1000_run_loopback_test(adapter);
1455 e1000_loopback_cleanup(adapter);
1456
1457 err_loopback:
1458 e1000_free_desc_rings(adapter);
1459 out:
1460 return *data;
1461 }
1462
e1000_link_test(struct e1000_adapter * adapter,u64 * data)1463 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1464 {
1465 struct e1000_hw *hw = &adapter->hw;
1466 *data = 0;
1467 if (hw->media_type == e1000_media_type_internal_serdes) {
1468 int i = 0;
1469
1470 hw->serdes_has_link = false;
1471
1472 /* On some blade server designs, link establishment
1473 * could take as long as 2-3 minutes
1474 */
1475 do {
1476 e1000_check_for_link(hw);
1477 if (hw->serdes_has_link)
1478 return *data;
1479 msleep(20);
1480 } while (i++ < 3750);
1481
1482 *data = 1;
1483 } else {
1484 e1000_check_for_link(hw);
1485 if (hw->autoneg) /* if auto_neg is set wait for it */
1486 msleep(4000);
1487
1488 if (!(er32(STATUS) & E1000_STATUS_LU))
1489 *data = 1;
1490 }
1491 return *data;
1492 }
1493
e1000_get_sset_count(struct net_device * netdev,int sset)1494 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1495 {
1496 switch (sset) {
1497 case ETH_SS_TEST:
1498 return E1000_TEST_LEN;
1499 case ETH_SS_STATS:
1500 return E1000_STATS_LEN;
1501 default:
1502 return -EOPNOTSUPP;
1503 }
1504 }
1505
e1000_diag_test(struct net_device * netdev,struct ethtool_test * eth_test,u64 * data)1506 static void e1000_diag_test(struct net_device *netdev,
1507 struct ethtool_test *eth_test, u64 *data)
1508 {
1509 struct e1000_adapter *adapter = netdev_priv(netdev);
1510 struct e1000_hw *hw = &adapter->hw;
1511 bool if_running = netif_running(netdev);
1512
1513 set_bit(__E1000_TESTING, &adapter->flags);
1514 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1515 /* Offline tests */
1516
1517 /* save speed, duplex, autoneg settings */
1518 u16 autoneg_advertised = hw->autoneg_advertised;
1519 u8 forced_speed_duplex = hw->forced_speed_duplex;
1520 u8 autoneg = hw->autoneg;
1521
1522 e_info(hw, "offline testing starting\n");
1523
1524 /* Link test performed before hardware reset so autoneg doesn't
1525 * interfere with test result
1526 */
1527 if (e1000_link_test(adapter, &data[4]))
1528 eth_test->flags |= ETH_TEST_FL_FAILED;
1529
1530 if (if_running)
1531 /* indicate we're in test mode */
1532 e1000_close(netdev);
1533 else
1534 e1000_reset(adapter);
1535
1536 if (e1000_reg_test(adapter, &data[0]))
1537 eth_test->flags |= ETH_TEST_FL_FAILED;
1538
1539 e1000_reset(adapter);
1540 if (e1000_eeprom_test(adapter, &data[1]))
1541 eth_test->flags |= ETH_TEST_FL_FAILED;
1542
1543 e1000_reset(adapter);
1544 if (e1000_intr_test(adapter, &data[2]))
1545 eth_test->flags |= ETH_TEST_FL_FAILED;
1546
1547 e1000_reset(adapter);
1548 /* make sure the phy is powered up */
1549 e1000_power_up_phy(adapter);
1550 if (e1000_loopback_test(adapter, &data[3]))
1551 eth_test->flags |= ETH_TEST_FL_FAILED;
1552
1553 /* restore speed, duplex, autoneg settings */
1554 hw->autoneg_advertised = autoneg_advertised;
1555 hw->forced_speed_duplex = forced_speed_duplex;
1556 hw->autoneg = autoneg;
1557
1558 e1000_reset(adapter);
1559 clear_bit(__E1000_TESTING, &adapter->flags);
1560 if (if_running)
1561 e1000_open(netdev);
1562 } else {
1563 e_info(hw, "online testing starting\n");
1564 /* Online tests */
1565 if (e1000_link_test(adapter, &data[4]))
1566 eth_test->flags |= ETH_TEST_FL_FAILED;
1567
1568 /* Online tests aren't run; pass by default */
1569 data[0] = 0;
1570 data[1] = 0;
1571 data[2] = 0;
1572 data[3] = 0;
1573
1574 clear_bit(__E1000_TESTING, &adapter->flags);
1575 }
1576 msleep_interruptible(4 * 1000);
1577 }
1578
e1000_wol_exclusion(struct e1000_adapter * adapter,struct ethtool_wolinfo * wol)1579 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1580 struct ethtool_wolinfo *wol)
1581 {
1582 struct e1000_hw *hw = &adapter->hw;
1583 int retval = 1; /* fail by default */
1584
1585 switch (hw->device_id) {
1586 case E1000_DEV_ID_82542:
1587 case E1000_DEV_ID_82543GC_FIBER:
1588 case E1000_DEV_ID_82543GC_COPPER:
1589 case E1000_DEV_ID_82544EI_FIBER:
1590 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1591 case E1000_DEV_ID_82545EM_FIBER:
1592 case E1000_DEV_ID_82545EM_COPPER:
1593 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1594 case E1000_DEV_ID_82546GB_PCIE:
1595 /* these don't support WoL at all */
1596 wol->supported = 0;
1597 break;
1598 case E1000_DEV_ID_82546EB_FIBER:
1599 case E1000_DEV_ID_82546GB_FIBER:
1600 /* Wake events not supported on port B */
1601 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1602 wol->supported = 0;
1603 break;
1604 }
1605 /* return success for non excluded adapter ports */
1606 retval = 0;
1607 break;
1608 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1609 /* quad port adapters only support WoL on port A */
1610 if (!adapter->quad_port_a) {
1611 wol->supported = 0;
1612 break;
1613 }
1614 /* return success for non excluded adapter ports */
1615 retval = 0;
1616 break;
1617 default:
1618 /* dual port cards only support WoL on port A from now on
1619 * unless it was enabled in the eeprom for port B
1620 * so exclude FUNC_1 ports from having WoL enabled
1621 */
1622 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1623 !adapter->eeprom_wol) {
1624 wol->supported = 0;
1625 break;
1626 }
1627
1628 retval = 0;
1629 }
1630
1631 return retval;
1632 }
1633
e1000_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)1634 static void e1000_get_wol(struct net_device *netdev,
1635 struct ethtool_wolinfo *wol)
1636 {
1637 struct e1000_adapter *adapter = netdev_priv(netdev);
1638 struct e1000_hw *hw = &adapter->hw;
1639
1640 wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1641 wol->wolopts = 0;
1642
1643 /* this function will set ->supported = 0 and return 1 if wol is not
1644 * supported by this hardware
1645 */
1646 if (e1000_wol_exclusion(adapter, wol) ||
1647 !device_can_wakeup(&adapter->pdev->dev))
1648 return;
1649
1650 /* apply any specific unsupported masks here */
1651 switch (hw->device_id) {
1652 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1653 /* KSP3 does not support UCAST wake-ups */
1654 wol->supported &= ~WAKE_UCAST;
1655
1656 if (adapter->wol & E1000_WUFC_EX)
1657 e_err(drv, "Interface does not support directed "
1658 "(unicast) frame wake-up packets\n");
1659 break;
1660 default:
1661 break;
1662 }
1663
1664 if (adapter->wol & E1000_WUFC_EX)
1665 wol->wolopts |= WAKE_UCAST;
1666 if (adapter->wol & E1000_WUFC_MC)
1667 wol->wolopts |= WAKE_MCAST;
1668 if (adapter->wol & E1000_WUFC_BC)
1669 wol->wolopts |= WAKE_BCAST;
1670 if (adapter->wol & E1000_WUFC_MAG)
1671 wol->wolopts |= WAKE_MAGIC;
1672 }
1673
e1000_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)1674 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1675 {
1676 struct e1000_adapter *adapter = netdev_priv(netdev);
1677 struct e1000_hw *hw = &adapter->hw;
1678
1679 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1680 return -EOPNOTSUPP;
1681
1682 if (e1000_wol_exclusion(adapter, wol) ||
1683 !device_can_wakeup(&adapter->pdev->dev))
1684 return wol->wolopts ? -EOPNOTSUPP : 0;
1685
1686 switch (hw->device_id) {
1687 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1688 if (wol->wolopts & WAKE_UCAST) {
1689 e_err(drv, "Interface does not support directed "
1690 "(unicast) frame wake-up packets\n");
1691 return -EOPNOTSUPP;
1692 }
1693 break;
1694 default:
1695 break;
1696 }
1697
1698 /* these settings will always override what we currently have */
1699 adapter->wol = 0;
1700
1701 if (wol->wolopts & WAKE_UCAST)
1702 adapter->wol |= E1000_WUFC_EX;
1703 if (wol->wolopts & WAKE_MCAST)
1704 adapter->wol |= E1000_WUFC_MC;
1705 if (wol->wolopts & WAKE_BCAST)
1706 adapter->wol |= E1000_WUFC_BC;
1707 if (wol->wolopts & WAKE_MAGIC)
1708 adapter->wol |= E1000_WUFC_MAG;
1709
1710 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1711
1712 return 0;
1713 }
1714
e1000_set_phys_id(struct net_device * netdev,enum ethtool_phys_id_state state)1715 static int e1000_set_phys_id(struct net_device *netdev,
1716 enum ethtool_phys_id_state state)
1717 {
1718 struct e1000_adapter *adapter = netdev_priv(netdev);
1719 struct e1000_hw *hw = &adapter->hw;
1720
1721 switch (state) {
1722 case ETHTOOL_ID_ACTIVE:
1723 e1000_setup_led(hw);
1724 return 2;
1725
1726 case ETHTOOL_ID_ON:
1727 e1000_led_on(hw);
1728 break;
1729
1730 case ETHTOOL_ID_OFF:
1731 e1000_led_off(hw);
1732 break;
1733
1734 case ETHTOOL_ID_INACTIVE:
1735 e1000_cleanup_led(hw);
1736 }
1737
1738 return 0;
1739 }
1740
e1000_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec)1741 static int e1000_get_coalesce(struct net_device *netdev,
1742 struct ethtool_coalesce *ec)
1743 {
1744 struct e1000_adapter *adapter = netdev_priv(netdev);
1745
1746 if (adapter->hw.mac_type < e1000_82545)
1747 return -EOPNOTSUPP;
1748
1749 if (adapter->itr_setting <= 4)
1750 ec->rx_coalesce_usecs = adapter->itr_setting;
1751 else
1752 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1753
1754 return 0;
1755 }
1756
e1000_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec)1757 static int e1000_set_coalesce(struct net_device *netdev,
1758 struct ethtool_coalesce *ec)
1759 {
1760 struct e1000_adapter *adapter = netdev_priv(netdev);
1761 struct e1000_hw *hw = &adapter->hw;
1762
1763 if (hw->mac_type < e1000_82545)
1764 return -EOPNOTSUPP;
1765
1766 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1767 ((ec->rx_coalesce_usecs > 4) &&
1768 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1769 (ec->rx_coalesce_usecs == 2))
1770 return -EINVAL;
1771
1772 if (ec->rx_coalesce_usecs == 4) {
1773 adapter->itr = adapter->itr_setting = 4;
1774 } else if (ec->rx_coalesce_usecs <= 3) {
1775 adapter->itr = 20000;
1776 adapter->itr_setting = ec->rx_coalesce_usecs;
1777 } else {
1778 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1779 adapter->itr_setting = adapter->itr & ~3;
1780 }
1781
1782 if (adapter->itr_setting != 0)
1783 ew32(ITR, 1000000000 / (adapter->itr * 256));
1784 else
1785 ew32(ITR, 0);
1786
1787 return 0;
1788 }
1789
e1000_nway_reset(struct net_device * netdev)1790 static int e1000_nway_reset(struct net_device *netdev)
1791 {
1792 struct e1000_adapter *adapter = netdev_priv(netdev);
1793
1794 if (netif_running(netdev))
1795 e1000_reinit_locked(adapter);
1796 return 0;
1797 }
1798
e1000_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats * stats,u64 * data)1799 static void e1000_get_ethtool_stats(struct net_device *netdev,
1800 struct ethtool_stats *stats, u64 *data)
1801 {
1802 struct e1000_adapter *adapter = netdev_priv(netdev);
1803 int i;
1804 const struct e1000_stats *stat = e1000_gstrings_stats;
1805
1806 e1000_update_stats(adapter);
1807 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) {
1808 char *p;
1809
1810 switch (stat->type) {
1811 case NETDEV_STATS:
1812 p = (char *)netdev + stat->stat_offset;
1813 break;
1814 case E1000_STATS:
1815 p = (char *)adapter + stat->stat_offset;
1816 break;
1817 default:
1818 netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n",
1819 stat->type, i);
1820 continue;
1821 }
1822
1823 if (stat->sizeof_stat == sizeof(u64))
1824 data[i] = *(u64 *)p;
1825 else
1826 data[i] = *(u32 *)p;
1827 }
1828 /* BUG_ON(i != E1000_STATS_LEN); */
1829 }
1830
e1000_get_strings(struct net_device * netdev,u32 stringset,u8 * data)1831 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1832 u8 *data)
1833 {
1834 u8 *p = data;
1835 int i;
1836
1837 switch (stringset) {
1838 case ETH_SS_TEST:
1839 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1840 break;
1841 case ETH_SS_STATS:
1842 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1843 memcpy(p, e1000_gstrings_stats[i].stat_string,
1844 ETH_GSTRING_LEN);
1845 p += ETH_GSTRING_LEN;
1846 }
1847 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1848 break;
1849 }
1850 }
1851
1852 static const struct ethtool_ops e1000_ethtool_ops = {
1853 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
1854 .get_drvinfo = e1000_get_drvinfo,
1855 .get_regs_len = e1000_get_regs_len,
1856 .get_regs = e1000_get_regs,
1857 .get_wol = e1000_get_wol,
1858 .set_wol = e1000_set_wol,
1859 .get_msglevel = e1000_get_msglevel,
1860 .set_msglevel = e1000_set_msglevel,
1861 .nway_reset = e1000_nway_reset,
1862 .get_link = e1000_get_link,
1863 .get_eeprom_len = e1000_get_eeprom_len,
1864 .get_eeprom = e1000_get_eeprom,
1865 .set_eeprom = e1000_set_eeprom,
1866 .get_ringparam = e1000_get_ringparam,
1867 .set_ringparam = e1000_set_ringparam,
1868 .get_pauseparam = e1000_get_pauseparam,
1869 .set_pauseparam = e1000_set_pauseparam,
1870 .self_test = e1000_diag_test,
1871 .get_strings = e1000_get_strings,
1872 .set_phys_id = e1000_set_phys_id,
1873 .get_ethtool_stats = e1000_get_ethtool_stats,
1874 .get_sset_count = e1000_get_sset_count,
1875 .get_coalesce = e1000_get_coalesce,
1876 .set_coalesce = e1000_set_coalesce,
1877 .get_ts_info = ethtool_op_get_ts_info,
1878 .get_link_ksettings = e1000_get_link_ksettings,
1879 .set_link_ksettings = e1000_set_link_ksettings,
1880 };
1881
e1000_set_ethtool_ops(struct net_device * netdev)1882 void e1000_set_ethtool_ops(struct net_device *netdev)
1883 {
1884 netdev->ethtool_ops = &e1000_ethtool_ops;
1885 }
1886