1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /* 80003ES2LAN Gigabit Ethernet Controller (Copper)
5 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
6 */
7
8 #include "e1000.h"
9
10 /* A table for the GG82563 cable length where the range is defined
11 * with a lower bound at "index" and the upper bound at
12 * "index + 5".
13 */
14 static const u16 e1000_gg82563_cable_length_table[] = {
15 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
16 };
17
18 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
19 ARRAY_SIZE(e1000_gg82563_cable_length_table)
20
21 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
22 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
23 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
24 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
25 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
26 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
27 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
28 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
29 u16 *data);
30 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
31 u16 data);
32 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
33
34 /**
35 * e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
36 * @hw: pointer to the HW structure
37 **/
e1000_init_phy_params_80003es2lan(struct e1000_hw * hw)38 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
39 {
40 struct e1000_phy_info *phy = &hw->phy;
41 s32 ret_val;
42
43 if (hw->phy.media_type != e1000_media_type_copper) {
44 phy->type = e1000_phy_none;
45 return 0;
46 } else {
47 phy->ops.power_up = e1000_power_up_phy_copper;
48 phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
49 }
50
51 phy->addr = 1;
52 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
53 phy->reset_delay_us = 100;
54 phy->type = e1000_phy_gg82563;
55
56 /* This can only be done after all function pointers are setup. */
57 ret_val = e1000e_get_phy_id(hw);
58
59 /* Verify phy id */
60 if (phy->id != GG82563_E_PHY_ID)
61 return -E1000_ERR_PHY;
62
63 return ret_val;
64 }
65
66 /**
67 * e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
68 * @hw: pointer to the HW structure
69 **/
e1000_init_nvm_params_80003es2lan(struct e1000_hw * hw)70 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
71 {
72 struct e1000_nvm_info *nvm = &hw->nvm;
73 u32 eecd = er32(EECD);
74 u16 size;
75
76 nvm->opcode_bits = 8;
77 nvm->delay_usec = 1;
78 switch (nvm->override) {
79 case e1000_nvm_override_spi_large:
80 nvm->page_size = 32;
81 nvm->address_bits = 16;
82 break;
83 case e1000_nvm_override_spi_small:
84 nvm->page_size = 8;
85 nvm->address_bits = 8;
86 break;
87 default:
88 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
89 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
90 break;
91 }
92
93 nvm->type = e1000_nvm_eeprom_spi;
94
95 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
96 E1000_EECD_SIZE_EX_SHIFT);
97
98 /* Added to a constant, "size" becomes the left-shift value
99 * for setting word_size.
100 */
101 size += NVM_WORD_SIZE_BASE_SHIFT;
102
103 /* EEPROM access above 16k is unsupported */
104 if (size > 14)
105 size = 14;
106 nvm->word_size = BIT(size);
107
108 return 0;
109 }
110
111 /**
112 * e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
113 * @hw: pointer to the HW structure
114 **/
e1000_init_mac_params_80003es2lan(struct e1000_hw * hw)115 static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
116 {
117 struct e1000_mac_info *mac = &hw->mac;
118
119 /* Set media type and media-dependent function pointers */
120 switch (hw->adapter->pdev->device) {
121 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
122 hw->phy.media_type = e1000_media_type_internal_serdes;
123 mac->ops.check_for_link = e1000e_check_for_serdes_link;
124 mac->ops.setup_physical_interface =
125 e1000e_setup_fiber_serdes_link;
126 break;
127 default:
128 hw->phy.media_type = e1000_media_type_copper;
129 mac->ops.check_for_link = e1000e_check_for_copper_link;
130 mac->ops.setup_physical_interface =
131 e1000_setup_copper_link_80003es2lan;
132 break;
133 }
134
135 /* Set mta register count */
136 mac->mta_reg_count = 128;
137 /* Set rar entry count */
138 mac->rar_entry_count = E1000_RAR_ENTRIES;
139 /* FWSM register */
140 mac->has_fwsm = true;
141 /* ARC supported; valid only if manageability features are enabled. */
142 mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
143 /* Adaptive IFS not supported */
144 mac->adaptive_ifs = false;
145
146 /* set lan id for port to determine which phy lock to use */
147 hw->mac.ops.set_lan_id(hw);
148
149 return 0;
150 }
151
e1000_get_variants_80003es2lan(struct e1000_adapter * adapter)152 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
153 {
154 struct e1000_hw *hw = &adapter->hw;
155 s32 rc;
156
157 rc = e1000_init_mac_params_80003es2lan(hw);
158 if (rc)
159 return rc;
160
161 rc = e1000_init_nvm_params_80003es2lan(hw);
162 if (rc)
163 return rc;
164
165 rc = e1000_init_phy_params_80003es2lan(hw);
166 if (rc)
167 return rc;
168
169 return 0;
170 }
171
172 /**
173 * e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
174 * @hw: pointer to the HW structure
175 *
176 * A wrapper to acquire access rights to the correct PHY.
177 **/
e1000_acquire_phy_80003es2lan(struct e1000_hw * hw)178 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
179 {
180 u16 mask;
181
182 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
183 return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
184 }
185
186 /**
187 * e1000_release_phy_80003es2lan - Release rights to access PHY
188 * @hw: pointer to the HW structure
189 *
190 * A wrapper to release access rights to the correct PHY.
191 **/
e1000_release_phy_80003es2lan(struct e1000_hw * hw)192 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
193 {
194 u16 mask;
195
196 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
197 e1000_release_swfw_sync_80003es2lan(hw, mask);
198 }
199
200 /**
201 * e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
202 * @hw: pointer to the HW structure
203 *
204 * Acquire the semaphore to access the Kumeran interface.
205 *
206 **/
e1000_acquire_mac_csr_80003es2lan(struct e1000_hw * hw)207 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
208 {
209 u16 mask;
210
211 mask = E1000_SWFW_CSR_SM;
212
213 return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
214 }
215
216 /**
217 * e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
218 * @hw: pointer to the HW structure
219 *
220 * Release the semaphore used to access the Kumeran interface
221 **/
e1000_release_mac_csr_80003es2lan(struct e1000_hw * hw)222 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
223 {
224 u16 mask;
225
226 mask = E1000_SWFW_CSR_SM;
227
228 e1000_release_swfw_sync_80003es2lan(hw, mask);
229 }
230
231 /**
232 * e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
233 * @hw: pointer to the HW structure
234 *
235 * Acquire the semaphore to access the EEPROM.
236 **/
e1000_acquire_nvm_80003es2lan(struct e1000_hw * hw)237 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
238 {
239 s32 ret_val;
240
241 ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
242 if (ret_val)
243 return ret_val;
244
245 ret_val = e1000e_acquire_nvm(hw);
246
247 if (ret_val)
248 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
249
250 return ret_val;
251 }
252
253 /**
254 * e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
255 * @hw: pointer to the HW structure
256 *
257 * Release the semaphore used to access the EEPROM.
258 **/
e1000_release_nvm_80003es2lan(struct e1000_hw * hw)259 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
260 {
261 e1000e_release_nvm(hw);
262 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
263 }
264
265 /**
266 * e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
267 * @hw: pointer to the HW structure
268 * @mask: specifies which semaphore to acquire
269 *
270 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
271 * will also specify which port we're acquiring the lock for.
272 **/
e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw * hw,u16 mask)273 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
274 {
275 u32 swfw_sync;
276 u32 swmask = mask;
277 u32 fwmask = mask << 16;
278 s32 i = 0;
279 s32 timeout = 50;
280
281 while (i < timeout) {
282 if (e1000e_get_hw_semaphore(hw))
283 return -E1000_ERR_SWFW_SYNC;
284
285 swfw_sync = er32(SW_FW_SYNC);
286 if (!(swfw_sync & (fwmask | swmask)))
287 break;
288
289 /* Firmware currently using resource (fwmask)
290 * or other software thread using resource (swmask)
291 */
292 e1000e_put_hw_semaphore(hw);
293 mdelay(5);
294 i++;
295 }
296
297 if (i == timeout) {
298 e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
299 return -E1000_ERR_SWFW_SYNC;
300 }
301
302 swfw_sync |= swmask;
303 ew32(SW_FW_SYNC, swfw_sync);
304
305 e1000e_put_hw_semaphore(hw);
306
307 return 0;
308 }
309
310 /**
311 * e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
312 * @hw: pointer to the HW structure
313 * @mask: specifies which semaphore to acquire
314 *
315 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
316 * will also specify which port we're releasing the lock for.
317 **/
e1000_release_swfw_sync_80003es2lan(struct e1000_hw * hw,u16 mask)318 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
319 {
320 u32 swfw_sync;
321
322 while (e1000e_get_hw_semaphore(hw) != 0)
323 ; /* Empty */
324
325 swfw_sync = er32(SW_FW_SYNC);
326 swfw_sync &= ~mask;
327 ew32(SW_FW_SYNC, swfw_sync);
328
329 e1000e_put_hw_semaphore(hw);
330 }
331
332 /**
333 * e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
334 * @hw: pointer to the HW structure
335 * @offset: offset of the register to read
336 * @data: pointer to the data returned from the operation
337 *
338 * Read the GG82563 PHY register.
339 **/
e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw * hw,u32 offset,u16 * data)340 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
341 u32 offset, u16 *data)
342 {
343 s32 ret_val;
344 u32 page_select;
345 u16 temp;
346
347 ret_val = e1000_acquire_phy_80003es2lan(hw);
348 if (ret_val)
349 return ret_val;
350
351 /* Select Configuration Page */
352 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
353 page_select = GG82563_PHY_PAGE_SELECT;
354 } else {
355 /* Use Alternative Page Select register to access
356 * registers 30 and 31
357 */
358 page_select = GG82563_PHY_PAGE_SELECT_ALT;
359 }
360
361 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
362 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
363 if (ret_val) {
364 e1000_release_phy_80003es2lan(hw);
365 return ret_val;
366 }
367
368 if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
369 /* The "ready" bit in the MDIC register may be incorrectly set
370 * before the device has completed the "Page Select" MDI
371 * transaction. So we wait 200us after each MDI command...
372 */
373 usleep_range(200, 400);
374
375 /* ...and verify the command was successful. */
376 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
377
378 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
379 e1000_release_phy_80003es2lan(hw);
380 return -E1000_ERR_PHY;
381 }
382
383 usleep_range(200, 400);
384
385 ret_val = e1000e_read_phy_reg_mdic(hw,
386 MAX_PHY_REG_ADDRESS & offset,
387 data);
388
389 usleep_range(200, 400);
390 } else {
391 ret_val = e1000e_read_phy_reg_mdic(hw,
392 MAX_PHY_REG_ADDRESS & offset,
393 data);
394 }
395
396 e1000_release_phy_80003es2lan(hw);
397
398 return ret_val;
399 }
400
401 /**
402 * e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
403 * @hw: pointer to the HW structure
404 * @offset: offset of the register to read
405 * @data: value to write to the register
406 *
407 * Write to the GG82563 PHY register.
408 **/
e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw * hw,u32 offset,u16 data)409 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
410 u32 offset, u16 data)
411 {
412 s32 ret_val;
413 u32 page_select;
414 u16 temp;
415
416 ret_val = e1000_acquire_phy_80003es2lan(hw);
417 if (ret_val)
418 return ret_val;
419
420 /* Select Configuration Page */
421 if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
422 page_select = GG82563_PHY_PAGE_SELECT;
423 } else {
424 /* Use Alternative Page Select register to access
425 * registers 30 and 31
426 */
427 page_select = GG82563_PHY_PAGE_SELECT_ALT;
428 }
429
430 temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
431 ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
432 if (ret_val) {
433 e1000_release_phy_80003es2lan(hw);
434 return ret_val;
435 }
436
437 if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
438 /* The "ready" bit in the MDIC register may be incorrectly set
439 * before the device has completed the "Page Select" MDI
440 * transaction. So we wait 200us after each MDI command...
441 */
442 usleep_range(200, 400);
443
444 /* ...and verify the command was successful. */
445 ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
446
447 if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
448 e1000_release_phy_80003es2lan(hw);
449 return -E1000_ERR_PHY;
450 }
451
452 usleep_range(200, 400);
453
454 ret_val = e1000e_write_phy_reg_mdic(hw,
455 MAX_PHY_REG_ADDRESS &
456 offset, data);
457
458 usleep_range(200, 400);
459 } else {
460 ret_val = e1000e_write_phy_reg_mdic(hw,
461 MAX_PHY_REG_ADDRESS &
462 offset, data);
463 }
464
465 e1000_release_phy_80003es2lan(hw);
466
467 return ret_val;
468 }
469
470 /**
471 * e1000_write_nvm_80003es2lan - Write to ESB2 NVM
472 * @hw: pointer to the HW structure
473 * @offset: offset of the register to read
474 * @words: number of words to write
475 * @data: buffer of data to write to the NVM
476 *
477 * Write "words" of data to the ESB2 NVM.
478 **/
e1000_write_nvm_80003es2lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)479 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
480 u16 words, u16 *data)
481 {
482 return e1000e_write_nvm_spi(hw, offset, words, data);
483 }
484
485 /**
486 * e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
487 * @hw: pointer to the HW structure
488 *
489 * Wait a specific amount of time for manageability processes to complete.
490 * This is a function pointer entry point called by the phy module.
491 **/
e1000_get_cfg_done_80003es2lan(struct e1000_hw * hw)492 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
493 {
494 s32 timeout = PHY_CFG_TIMEOUT;
495 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
496
497 if (hw->bus.func == 1)
498 mask = E1000_NVM_CFG_DONE_PORT_1;
499
500 while (timeout) {
501 if (er32(EEMNGCTL) & mask)
502 break;
503 usleep_range(1000, 2000);
504 timeout--;
505 }
506 if (!timeout) {
507 e_dbg("MNG configuration cycle has not completed.\n");
508 return -E1000_ERR_RESET;
509 }
510
511 return 0;
512 }
513
514 /**
515 * e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
516 * @hw: pointer to the HW structure
517 *
518 * Force the speed and duplex settings onto the PHY. This is a
519 * function pointer entry point called by the phy module.
520 **/
e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw * hw)521 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
522 {
523 s32 ret_val;
524 u16 phy_data;
525 bool link;
526
527 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
528 * forced whenever speed and duplex are forced.
529 */
530 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
531 if (ret_val)
532 return ret_val;
533
534 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
535 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
536 if (ret_val)
537 return ret_val;
538
539 e_dbg("GG82563 PSCR: %X\n", phy_data);
540
541 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
542 if (ret_val)
543 return ret_val;
544
545 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
546
547 /* Reset the phy to commit changes. */
548 phy_data |= BMCR_RESET;
549
550 ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
551 if (ret_val)
552 return ret_val;
553
554 udelay(1);
555
556 if (hw->phy.autoneg_wait_to_complete) {
557 e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
558
559 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
560 100000, &link);
561 if (ret_val)
562 return ret_val;
563
564 if (!link) {
565 /* We didn't get link.
566 * Reset the DSP and cross our fingers.
567 */
568 ret_val = e1000e_phy_reset_dsp(hw);
569 if (ret_val)
570 return ret_val;
571 }
572
573 /* Try once more */
574 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
575 100000, &link);
576 if (ret_val)
577 return ret_val;
578 }
579
580 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
581 if (ret_val)
582 return ret_val;
583
584 /* Resetting the phy means we need to verify the TX_CLK corresponds
585 * to the link speed. 10Mbps -> 2.5MHz, else 25MHz.
586 */
587 phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
588 if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
589 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
590 else
591 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
592
593 /* In addition, we must re-enable CRS on Tx for both half and full
594 * duplex.
595 */
596 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
597 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
598
599 return ret_val;
600 }
601
602 /**
603 * e1000_get_cable_length_80003es2lan - Set approximate cable length
604 * @hw: pointer to the HW structure
605 *
606 * Find the approximate cable length as measured by the GG82563 PHY.
607 * This is a function pointer entry point called by the phy module.
608 **/
e1000_get_cable_length_80003es2lan(struct e1000_hw * hw)609 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
610 {
611 struct e1000_phy_info *phy = &hw->phy;
612 s32 ret_val;
613 u16 phy_data, index;
614
615 ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
616 if (ret_val)
617 return ret_val;
618
619 index = phy_data & GG82563_DSPD_CABLE_LENGTH;
620
621 if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
622 return -E1000_ERR_PHY;
623
624 phy->min_cable_length = e1000_gg82563_cable_length_table[index];
625 phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
626
627 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
628
629 return 0;
630 }
631
632 /**
633 * e1000_get_link_up_info_80003es2lan - Report speed and duplex
634 * @hw: pointer to the HW structure
635 * @speed: pointer to speed buffer
636 * @duplex: pointer to duplex buffer
637 *
638 * Retrieve the current speed and duplex configuration.
639 **/
e1000_get_link_up_info_80003es2lan(struct e1000_hw * hw,u16 * speed,u16 * duplex)640 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
641 u16 *duplex)
642 {
643 s32 ret_val;
644
645 if (hw->phy.media_type == e1000_media_type_copper) {
646 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
647 hw->phy.ops.cfg_on_link_up(hw);
648 } else {
649 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
650 speed,
651 duplex);
652 }
653
654 return ret_val;
655 }
656
657 /**
658 * e1000_reset_hw_80003es2lan - Reset the ESB2 controller
659 * @hw: pointer to the HW structure
660 *
661 * Perform a global reset to the ESB2 controller.
662 **/
e1000_reset_hw_80003es2lan(struct e1000_hw * hw)663 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
664 {
665 u32 ctrl;
666 s32 ret_val;
667 u16 kum_reg_data;
668
669 /* Prevent the PCI-E bus from sticking if there is no TLP connection
670 * on the last TLP read/write transaction when MAC is reset.
671 */
672 ret_val = e1000e_disable_pcie_master(hw);
673 if (ret_val)
674 e_dbg("PCI-E Master disable polling has failed.\n");
675
676 e_dbg("Masking off all interrupts\n");
677 ew32(IMC, 0xffffffff);
678
679 ew32(RCTL, 0);
680 ew32(TCTL, E1000_TCTL_PSP);
681 e1e_flush();
682
683 usleep_range(10000, 11000);
684
685 ctrl = er32(CTRL);
686
687 ret_val = e1000_acquire_phy_80003es2lan(hw);
688 if (ret_val)
689 return ret_val;
690
691 e_dbg("Issuing a global reset to MAC\n");
692 ew32(CTRL, ctrl | E1000_CTRL_RST);
693 e1000_release_phy_80003es2lan(hw);
694
695 /* Disable IBIST slave mode (far-end loopback) */
696 ret_val =
697 e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
698 &kum_reg_data);
699 if (!ret_val) {
700 kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
701 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
702 E1000_KMRNCTRLSTA_INBAND_PARAM,
703 kum_reg_data);
704 if (ret_val)
705 e_dbg("Error disabling far-end loopback\n");
706 } else {
707 e_dbg("Error disabling far-end loopback\n");
708 }
709
710 ret_val = e1000e_get_auto_rd_done(hw);
711 if (ret_val)
712 /* We don't want to continue accessing MAC registers. */
713 return ret_val;
714
715 /* Clear any pending interrupt events. */
716 ew32(IMC, 0xffffffff);
717 er32(ICR);
718
719 return e1000_check_alt_mac_addr_generic(hw);
720 }
721
722 /**
723 * e1000_init_hw_80003es2lan - Initialize the ESB2 controller
724 * @hw: pointer to the HW structure
725 *
726 * Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
727 **/
e1000_init_hw_80003es2lan(struct e1000_hw * hw)728 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
729 {
730 struct e1000_mac_info *mac = &hw->mac;
731 u32 reg_data;
732 s32 ret_val;
733 u16 kum_reg_data;
734 u16 i;
735
736 e1000_initialize_hw_bits_80003es2lan(hw);
737
738 /* Initialize identification LED */
739 ret_val = mac->ops.id_led_init(hw);
740 /* An error is not fatal and we should not stop init due to this */
741 if (ret_val)
742 e_dbg("Error initializing identification LED\n");
743
744 /* Disabling VLAN filtering */
745 e_dbg("Initializing the IEEE VLAN\n");
746 mac->ops.clear_vfta(hw);
747
748 /* Setup the receive address. */
749 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
750
751 /* Zero out the Multicast HASH table */
752 e_dbg("Zeroing the MTA\n");
753 for (i = 0; i < mac->mta_reg_count; i++)
754 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
755
756 /* Setup link and flow control */
757 ret_val = mac->ops.setup_link(hw);
758 if (ret_val)
759 return ret_val;
760
761 /* Disable IBIST slave mode (far-end loopback) */
762 ret_val =
763 e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
764 &kum_reg_data);
765 if (!ret_val) {
766 kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
767 ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
768 E1000_KMRNCTRLSTA_INBAND_PARAM,
769 kum_reg_data);
770 if (ret_val)
771 e_dbg("Error disabling far-end loopback\n");
772 } else {
773 e_dbg("Error disabling far-end loopback\n");
774 }
775
776 /* Set the transmit descriptor write-back policy */
777 reg_data = er32(TXDCTL(0));
778 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
779 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
780 ew32(TXDCTL(0), reg_data);
781
782 /* ...for both queues. */
783 reg_data = er32(TXDCTL(1));
784 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
785 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
786 ew32(TXDCTL(1), reg_data);
787
788 /* Enable retransmit on late collisions */
789 reg_data = er32(TCTL);
790 reg_data |= E1000_TCTL_RTLC;
791 ew32(TCTL, reg_data);
792
793 /* Configure Gigabit Carry Extend Padding */
794 reg_data = er32(TCTL_EXT);
795 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
796 reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
797 ew32(TCTL_EXT, reg_data);
798
799 /* Configure Transmit Inter-Packet Gap */
800 reg_data = er32(TIPG);
801 reg_data &= ~E1000_TIPG_IPGT_MASK;
802 reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
803 ew32(TIPG, reg_data);
804
805 reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
806 reg_data &= ~0x00100000;
807 E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
808
809 /* default to true to enable the MDIC W/A */
810 hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
811
812 ret_val =
813 e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
814 E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
815 if (!ret_val) {
816 if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
817 E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
818 hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
819 }
820
821 /* Clear all of the statistics registers (clear on read). It is
822 * important that we do this after we have tried to establish link
823 * because the symbol error count will increment wildly if there
824 * is no link.
825 */
826 e1000_clear_hw_cntrs_80003es2lan(hw);
827
828 return ret_val;
829 }
830
831 /**
832 * e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
833 * @hw: pointer to the HW structure
834 *
835 * Initializes required hardware-dependent bits needed for normal operation.
836 **/
e1000_initialize_hw_bits_80003es2lan(struct e1000_hw * hw)837 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
838 {
839 u32 reg;
840
841 /* Transmit Descriptor Control 0 */
842 reg = er32(TXDCTL(0));
843 reg |= BIT(22);
844 ew32(TXDCTL(0), reg);
845
846 /* Transmit Descriptor Control 1 */
847 reg = er32(TXDCTL(1));
848 reg |= BIT(22);
849 ew32(TXDCTL(1), reg);
850
851 /* Transmit Arbitration Control 0 */
852 reg = er32(TARC(0));
853 reg &= ~(0xF << 27); /* 30:27 */
854 if (hw->phy.media_type != e1000_media_type_copper)
855 reg &= ~BIT(20);
856 ew32(TARC(0), reg);
857
858 /* Transmit Arbitration Control 1 */
859 reg = er32(TARC(1));
860 if (er32(TCTL) & E1000_TCTL_MULR)
861 reg &= ~BIT(28);
862 else
863 reg |= BIT(28);
864 ew32(TARC(1), reg);
865
866 /* Disable IPv6 extension header parsing because some malformed
867 * IPv6 headers can hang the Rx.
868 */
869 reg = er32(RFCTL);
870 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
871 ew32(RFCTL, reg);
872 }
873
874 /**
875 * e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
876 * @hw: pointer to the HW structure
877 *
878 * Setup some GG82563 PHY registers for obtaining link
879 **/
e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw * hw)880 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
881 {
882 struct e1000_phy_info *phy = &hw->phy;
883 s32 ret_val;
884 u32 reg;
885 u16 data;
886
887 ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
888 if (ret_val)
889 return ret_val;
890
891 data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
892 /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
893 data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
894
895 ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
896 if (ret_val)
897 return ret_val;
898
899 /* Options:
900 * MDI/MDI-X = 0 (default)
901 * 0 - Auto for all speeds
902 * 1 - MDI mode
903 * 2 - MDI-X mode
904 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
905 */
906 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
907 if (ret_val)
908 return ret_val;
909
910 data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
911
912 switch (phy->mdix) {
913 case 1:
914 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
915 break;
916 case 2:
917 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
918 break;
919 case 0:
920 default:
921 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
922 break;
923 }
924
925 /* Options:
926 * disable_polarity_correction = 0 (default)
927 * Automatic Correction for Reversed Cable Polarity
928 * 0 - Disabled
929 * 1 - Enabled
930 */
931 data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
932 if (phy->disable_polarity_correction)
933 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
934
935 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
936 if (ret_val)
937 return ret_val;
938
939 /* SW Reset the PHY so all changes take effect */
940 ret_val = hw->phy.ops.commit(hw);
941 if (ret_val) {
942 e_dbg("Error Resetting the PHY\n");
943 return ret_val;
944 }
945
946 /* Bypass Rx and Tx FIFO's */
947 reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
948 data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
949 E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
950 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
951 if (ret_val)
952 return ret_val;
953
954 reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
955 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
956 if (ret_val)
957 return ret_val;
958 data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
959 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
960 if (ret_val)
961 return ret_val;
962
963 ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
964 if (ret_val)
965 return ret_val;
966
967 data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
968 ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
969 if (ret_val)
970 return ret_val;
971
972 reg = er32(CTRL_EXT);
973 reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
974 ew32(CTRL_EXT, reg);
975
976 ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
977 if (ret_val)
978 return ret_val;
979
980 /* Do not init these registers when the HW is in IAMT mode, since the
981 * firmware will have already initialized them. We only initialize
982 * them if the HW is not in IAMT mode.
983 */
984 if (!hw->mac.ops.check_mng_mode(hw)) {
985 /* Enable Electrical Idle on the PHY */
986 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
987 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
988 if (ret_val)
989 return ret_val;
990
991 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
992 if (ret_val)
993 return ret_val;
994
995 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
996 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
997 if (ret_val)
998 return ret_val;
999 }
1000
1001 /* Workaround: Disable padding in Kumeran interface in the MAC
1002 * and in the PHY to avoid CRC errors.
1003 */
1004 ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1005 if (ret_val)
1006 return ret_val;
1007
1008 data |= GG82563_ICR_DIS_PADDING;
1009 ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1010 if (ret_val)
1011 return ret_val;
1012
1013 return 0;
1014 }
1015
1016 /**
1017 * e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1018 * @hw: pointer to the HW structure
1019 *
1020 * Essentially a wrapper for setting up all things "copper" related.
1021 * This is a function pointer entry point called by the mac module.
1022 **/
e1000_setup_copper_link_80003es2lan(struct e1000_hw * hw)1023 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1024 {
1025 u32 ctrl;
1026 s32 ret_val;
1027 u16 reg_data;
1028
1029 ctrl = er32(CTRL);
1030 ctrl |= E1000_CTRL_SLU;
1031 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1032 ew32(CTRL, ctrl);
1033
1034 /* Set the mac to wait the maximum time between each
1035 * iteration and increase the max iterations when
1036 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1037 */
1038 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1039 0xFFFF);
1040 if (ret_val)
1041 return ret_val;
1042 ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1043 ®_data);
1044 if (ret_val)
1045 return ret_val;
1046 reg_data |= 0x3F;
1047 ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1048 reg_data);
1049 if (ret_val)
1050 return ret_val;
1051 ret_val =
1052 e1000_read_kmrn_reg_80003es2lan(hw,
1053 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1054 ®_data);
1055 if (ret_val)
1056 return ret_val;
1057 reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1058 ret_val =
1059 e1000_write_kmrn_reg_80003es2lan(hw,
1060 E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1061 reg_data);
1062 if (ret_val)
1063 return ret_val;
1064
1065 ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1066 if (ret_val)
1067 return ret_val;
1068
1069 return e1000e_setup_copper_link(hw);
1070 }
1071
1072 /**
1073 * e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1074 * @hw: pointer to the HW structure
1075 *
1076 * Configure the KMRN interface by applying last minute quirks for
1077 * 10/100 operation.
1078 **/
e1000_cfg_on_link_up_80003es2lan(struct e1000_hw * hw)1079 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1080 {
1081 s32 ret_val = 0;
1082 u16 speed;
1083 u16 duplex;
1084
1085 if (hw->phy.media_type == e1000_media_type_copper) {
1086 ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1087 &duplex);
1088 if (ret_val)
1089 return ret_val;
1090
1091 if (speed == SPEED_1000)
1092 ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1093 else
1094 ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1095 }
1096
1097 return ret_val;
1098 }
1099
1100 /**
1101 * e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1102 * @hw: pointer to the HW structure
1103 * @duplex: current duplex setting
1104 *
1105 * Configure the KMRN interface by applying last minute quirks for
1106 * 10/100 operation.
1107 **/
e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw * hw,u16 duplex)1108 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1109 {
1110 s32 ret_val;
1111 u32 tipg;
1112 u32 i = 0;
1113 u16 reg_data, reg_data2;
1114
1115 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1116 ret_val =
1117 e1000_write_kmrn_reg_80003es2lan(hw,
1118 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1119 reg_data);
1120 if (ret_val)
1121 return ret_val;
1122
1123 /* Configure Transmit Inter-Packet Gap */
1124 tipg = er32(TIPG);
1125 tipg &= ~E1000_TIPG_IPGT_MASK;
1126 tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1127 ew32(TIPG, tipg);
1128
1129 do {
1130 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
1131 if (ret_val)
1132 return ret_val;
1133
1134 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2);
1135 if (ret_val)
1136 return ret_val;
1137 i++;
1138 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1139
1140 if (duplex == HALF_DUPLEX)
1141 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1142 else
1143 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1144
1145 return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1146 }
1147
1148 /**
1149 * e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1150 * @hw: pointer to the HW structure
1151 *
1152 * Configure the KMRN interface by applying last minute quirks for
1153 * gigabit operation.
1154 **/
e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw * hw)1155 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1156 {
1157 s32 ret_val;
1158 u16 reg_data, reg_data2;
1159 u32 tipg;
1160 u32 i = 0;
1161
1162 reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1163 ret_val =
1164 e1000_write_kmrn_reg_80003es2lan(hw,
1165 E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1166 reg_data);
1167 if (ret_val)
1168 return ret_val;
1169
1170 /* Configure Transmit Inter-Packet Gap */
1171 tipg = er32(TIPG);
1172 tipg &= ~E1000_TIPG_IPGT_MASK;
1173 tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1174 ew32(TIPG, tipg);
1175
1176 do {
1177 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
1178 if (ret_val)
1179 return ret_val;
1180
1181 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data2);
1182 if (ret_val)
1183 return ret_val;
1184 i++;
1185 } while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1186
1187 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1188
1189 return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1190 }
1191
1192 /**
1193 * e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1194 * @hw: pointer to the HW structure
1195 * @offset: register offset to be read
1196 * @data: pointer to the read data
1197 *
1198 * Acquire semaphore, then read the PHY register at offset
1199 * using the kumeran interface. The information retrieved is stored in data.
1200 * Release the semaphore before exiting.
1201 **/
e1000_read_kmrn_reg_80003es2lan(struct e1000_hw * hw,u32 offset,u16 * data)1202 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1203 u16 *data)
1204 {
1205 u32 kmrnctrlsta;
1206 s32 ret_val;
1207
1208 ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1209 if (ret_val)
1210 return ret_val;
1211
1212 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1213 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1214 ew32(KMRNCTRLSTA, kmrnctrlsta);
1215 e1e_flush();
1216
1217 udelay(2);
1218
1219 kmrnctrlsta = er32(KMRNCTRLSTA);
1220 *data = (u16)kmrnctrlsta;
1221
1222 e1000_release_mac_csr_80003es2lan(hw);
1223
1224 return ret_val;
1225 }
1226
1227 /**
1228 * e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1229 * @hw: pointer to the HW structure
1230 * @offset: register offset to write to
1231 * @data: data to write at register offset
1232 *
1233 * Acquire semaphore, then write the data to PHY register
1234 * at the offset using the kumeran interface. Release semaphore
1235 * before exiting.
1236 **/
e1000_write_kmrn_reg_80003es2lan(struct e1000_hw * hw,u32 offset,u16 data)1237 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1238 u16 data)
1239 {
1240 u32 kmrnctrlsta;
1241 s32 ret_val;
1242
1243 ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1244 if (ret_val)
1245 return ret_val;
1246
1247 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1248 E1000_KMRNCTRLSTA_OFFSET) | data;
1249 ew32(KMRNCTRLSTA, kmrnctrlsta);
1250 e1e_flush();
1251
1252 udelay(2);
1253
1254 e1000_release_mac_csr_80003es2lan(hw);
1255
1256 return ret_val;
1257 }
1258
1259 /**
1260 * e1000_read_mac_addr_80003es2lan - Read device MAC address
1261 * @hw: pointer to the HW structure
1262 **/
e1000_read_mac_addr_80003es2lan(struct e1000_hw * hw)1263 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1264 {
1265 s32 ret_val;
1266
1267 /* If there's an alternate MAC address place it in RAR0
1268 * so that it will override the Si installed default perm
1269 * address.
1270 */
1271 ret_val = e1000_check_alt_mac_addr_generic(hw);
1272 if (ret_val)
1273 return ret_val;
1274
1275 return e1000_read_mac_addr_generic(hw);
1276 }
1277
1278 /**
1279 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1280 * @hw: pointer to the HW structure
1281 *
1282 * In the case of a PHY power down to save power, or to turn off link during a
1283 * driver unload, or wake on lan is not enabled, remove the link.
1284 **/
e1000_power_down_phy_copper_80003es2lan(struct e1000_hw * hw)1285 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1286 {
1287 /* If the management interface is not enabled, then power down */
1288 if (!(hw->mac.ops.check_mng_mode(hw) ||
1289 hw->phy.ops.check_reset_block(hw)))
1290 e1000_power_down_phy_copper(hw);
1291 }
1292
1293 /**
1294 * e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1295 * @hw: pointer to the HW structure
1296 *
1297 * Clears the hardware counters by reading the counter registers.
1298 **/
e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw * hw)1299 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1300 {
1301 e1000e_clear_hw_cntrs_base(hw);
1302
1303 er32(PRC64);
1304 er32(PRC127);
1305 er32(PRC255);
1306 er32(PRC511);
1307 er32(PRC1023);
1308 er32(PRC1522);
1309 er32(PTC64);
1310 er32(PTC127);
1311 er32(PTC255);
1312 er32(PTC511);
1313 er32(PTC1023);
1314 er32(PTC1522);
1315
1316 er32(ALGNERRC);
1317 er32(RXERRC);
1318 er32(TNCRS);
1319 er32(CEXTERR);
1320 er32(TSCTC);
1321 er32(TSCTFC);
1322
1323 er32(MGTPRC);
1324 er32(MGTPDC);
1325 er32(MGTPTC);
1326
1327 er32(IAC);
1328 er32(ICRXOC);
1329
1330 er32(ICRXPTC);
1331 er32(ICRXATC);
1332 er32(ICTXPTC);
1333 er32(ICTXATC);
1334 er32(ICTXQEC);
1335 er32(ICTXQMTC);
1336 er32(ICRXDMTC);
1337 }
1338
1339 static const struct e1000_mac_operations es2_mac_ops = {
1340 .read_mac_addr = e1000_read_mac_addr_80003es2lan,
1341 .id_led_init = e1000e_id_led_init_generic,
1342 .blink_led = e1000e_blink_led_generic,
1343 .check_mng_mode = e1000e_check_mng_mode_generic,
1344 /* check_for_link dependent on media type */
1345 .cleanup_led = e1000e_cleanup_led_generic,
1346 .clear_hw_cntrs = e1000_clear_hw_cntrs_80003es2lan,
1347 .get_bus_info = e1000e_get_bus_info_pcie,
1348 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
1349 .get_link_up_info = e1000_get_link_up_info_80003es2lan,
1350 .led_on = e1000e_led_on_generic,
1351 .led_off = e1000e_led_off_generic,
1352 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
1353 .write_vfta = e1000_write_vfta_generic,
1354 .clear_vfta = e1000_clear_vfta_generic,
1355 .reset_hw = e1000_reset_hw_80003es2lan,
1356 .init_hw = e1000_init_hw_80003es2lan,
1357 .setup_link = e1000e_setup_link_generic,
1358 /* setup_physical_interface dependent on media type */
1359 .setup_led = e1000e_setup_led_generic,
1360 .config_collision_dist = e1000e_config_collision_dist_generic,
1361 .rar_set = e1000e_rar_set_generic,
1362 .rar_get_count = e1000e_rar_get_count_generic,
1363 };
1364
1365 static const struct e1000_phy_operations es2_phy_ops = {
1366 .acquire = e1000_acquire_phy_80003es2lan,
1367 .check_polarity = e1000_check_polarity_m88,
1368 .check_reset_block = e1000e_check_reset_block_generic,
1369 .commit = e1000e_phy_sw_reset,
1370 .force_speed_duplex = e1000_phy_force_speed_duplex_80003es2lan,
1371 .get_cfg_done = e1000_get_cfg_done_80003es2lan,
1372 .get_cable_length = e1000_get_cable_length_80003es2lan,
1373 .get_info = e1000e_get_phy_info_m88,
1374 .read_reg = e1000_read_phy_reg_gg82563_80003es2lan,
1375 .release = e1000_release_phy_80003es2lan,
1376 .reset = e1000e_phy_hw_reset_generic,
1377 .set_d0_lplu_state = NULL,
1378 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1379 .write_reg = e1000_write_phy_reg_gg82563_80003es2lan,
1380 .cfg_on_link_up = e1000_cfg_on_link_up_80003es2lan,
1381 };
1382
1383 static const struct e1000_nvm_operations es2_nvm_ops = {
1384 .acquire = e1000_acquire_nvm_80003es2lan,
1385 .read = e1000e_read_nvm_eerd,
1386 .release = e1000_release_nvm_80003es2lan,
1387 .reload = e1000e_reload_nvm_generic,
1388 .update = e1000e_update_nvm_checksum_generic,
1389 .valid_led_default = e1000e_valid_led_default,
1390 .validate = e1000e_validate_nvm_checksum_generic,
1391 .write = e1000_write_nvm_80003es2lan,
1392 };
1393
1394 const struct e1000_info e1000_es2_info = {
1395 .mac = e1000_80003es2lan,
1396 .flags = FLAG_HAS_HW_VLAN_FILTER
1397 | FLAG_HAS_JUMBO_FRAMES
1398 | FLAG_HAS_WOL
1399 | FLAG_APME_IN_CTRL3
1400 | FLAG_HAS_CTRLEXT_ON_LOAD
1401 | FLAG_RX_NEEDS_RESTART /* errata */
1402 | FLAG_TARC_SET_BIT_ZERO /* errata */
1403 | FLAG_APME_CHECK_PORT_B
1404 | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1405 .flags2 = FLAG2_DMA_BURST,
1406 .pba = 38,
1407 .max_hw_frame_size = DEFAULT_JUMBO,
1408 .get_variants = e1000_get_variants_80003es2lan,
1409 .mac_ops = &es2_mac_ops,
1410 .phy_ops = &es2_phy_ops,
1411 .nvm_ops = &es2_nvm_ops,
1412 };
1413