1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3 
4 #include "e1000.h"
5 #include <net/ip6_checksum.h>
6 #include <linux/io.h>
7 #include <linux/prefetch.h>
8 #include <linux/bitops.h>
9 #include <linux/if_vlan.h>
10 
11 char e1000_driver_name[] = "e1000";
12 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
14 
15 /* e1000_pci_tbl - PCI Device ID Table
16  *
17  * Last entry must be all 0s
18  *
19  * Macro expands to...
20  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
21  */
22 static const struct pci_device_id e1000_pci_tbl[] = {
23 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
24 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
25 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
26 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
27 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
28 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
29 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
30 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
31 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
32 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
33 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
34 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
35 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
36 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
37 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
38 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
39 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
40 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
41 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
42 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
43 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
44 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
45 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
46 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
47 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
48 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
49 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
50 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
51 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
52 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
53 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
54 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
55 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
56 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
57 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
58 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
59 	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
60 	/* required last entry */
61 	{0,}
62 };
63 
64 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
65 
66 int e1000_up(struct e1000_adapter *adapter);
67 void e1000_down(struct e1000_adapter *adapter);
68 void e1000_reinit_locked(struct e1000_adapter *adapter);
69 void e1000_reset(struct e1000_adapter *adapter);
70 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
71 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
72 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
73 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
74 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
75 				    struct e1000_tx_ring *txdr);
76 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
77 				    struct e1000_rx_ring *rxdr);
78 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
79 				    struct e1000_tx_ring *tx_ring);
80 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
81 				    struct e1000_rx_ring *rx_ring);
82 void e1000_update_stats(struct e1000_adapter *adapter);
83 
84 static int e1000_init_module(void);
85 static void e1000_exit_module(void);
86 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
87 static void e1000_remove(struct pci_dev *pdev);
88 static int e1000_alloc_queues(struct e1000_adapter *adapter);
89 static int e1000_sw_init(struct e1000_adapter *adapter);
90 int e1000_open(struct net_device *netdev);
91 int e1000_close(struct net_device *netdev);
92 static void e1000_configure_tx(struct e1000_adapter *adapter);
93 static void e1000_configure_rx(struct e1000_adapter *adapter);
94 static void e1000_setup_rctl(struct e1000_adapter *adapter);
95 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
96 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
97 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
98 				struct e1000_tx_ring *tx_ring);
99 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
100 				struct e1000_rx_ring *rx_ring);
101 static void e1000_set_rx_mode(struct net_device *netdev);
102 static void e1000_update_phy_info_task(struct work_struct *work);
103 static void e1000_watchdog(struct work_struct *work);
104 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
105 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
106 				    struct net_device *netdev);
107 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
108 static int e1000_set_mac(struct net_device *netdev, void *p);
109 static irqreturn_t e1000_intr(int irq, void *data);
110 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
111 			       struct e1000_tx_ring *tx_ring);
112 static int e1000_clean(struct napi_struct *napi, int budget);
113 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
114 			       struct e1000_rx_ring *rx_ring,
115 			       int *work_done, int work_to_do);
116 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
117 				     struct e1000_rx_ring *rx_ring,
118 				     int *work_done, int work_to_do);
e1000_alloc_dummy_rx_buffers(struct e1000_adapter * adapter,struct e1000_rx_ring * rx_ring,int cleaned_count)119 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
120 					 struct e1000_rx_ring *rx_ring,
121 					 int cleaned_count)
122 {
123 }
124 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
125 				   struct e1000_rx_ring *rx_ring,
126 				   int cleaned_count);
127 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
128 					 struct e1000_rx_ring *rx_ring,
129 					 int cleaned_count);
130 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
131 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
132 			   int cmd);
133 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
134 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
135 static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
136 static void e1000_reset_task(struct work_struct *work);
137 static void e1000_smartspeed(struct e1000_adapter *adapter);
138 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
139 				       struct sk_buff *skb);
140 
141 static bool e1000_vlan_used(struct e1000_adapter *adapter);
142 static void e1000_vlan_mode(struct net_device *netdev,
143 			    netdev_features_t features);
144 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
145 				     bool filter_on);
146 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
147 				 __be16 proto, u16 vid);
148 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
149 				  __be16 proto, u16 vid);
150 static void e1000_restore_vlan(struct e1000_adapter *adapter);
151 
152 static int __maybe_unused e1000_suspend(struct device *dev);
153 static int __maybe_unused e1000_resume(struct device *dev);
154 static void e1000_shutdown(struct pci_dev *pdev);
155 
156 #ifdef CONFIG_NET_POLL_CONTROLLER
157 /* for netdump / net console */
158 static void e1000_netpoll (struct net_device *netdev);
159 #endif
160 
161 #define COPYBREAK_DEFAULT 256
162 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
163 module_param(copybreak, uint, 0644);
164 MODULE_PARM_DESC(copybreak,
165 	"Maximum size of packet that is copied to a new buffer on receive");
166 
167 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
168 						pci_channel_state_t state);
169 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
170 static void e1000_io_resume(struct pci_dev *pdev);
171 
172 static const struct pci_error_handlers e1000_err_handler = {
173 	.error_detected = e1000_io_error_detected,
174 	.slot_reset = e1000_io_slot_reset,
175 	.resume = e1000_io_resume,
176 };
177 
178 static SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
179 
180 static struct pci_driver e1000_driver = {
181 	.name     = e1000_driver_name,
182 	.id_table = e1000_pci_tbl,
183 	.probe    = e1000_probe,
184 	.remove   = e1000_remove,
185 	.driver = {
186 		.pm = &e1000_pm_ops,
187 	},
188 	.shutdown = e1000_shutdown,
189 	.err_handler = &e1000_err_handler
190 };
191 
192 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
193 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
194 MODULE_LICENSE("GPL v2");
195 
196 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
197 static int debug = -1;
198 module_param(debug, int, 0);
199 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
200 
201 /**
202  * e1000_get_hw_dev - helper function for getting netdev
203  * @hw: pointer to HW struct
204  *
205  * return device used by hardware layer to print debugging information
206  *
207  **/
e1000_get_hw_dev(struct e1000_hw * hw)208 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
209 {
210 	struct e1000_adapter *adapter = hw->back;
211 	return adapter->netdev;
212 }
213 
214 /**
215  * e1000_init_module - Driver Registration Routine
216  *
217  * e1000_init_module is the first routine called when the driver is
218  * loaded. All it does is register with the PCI subsystem.
219  **/
e1000_init_module(void)220 static int __init e1000_init_module(void)
221 {
222 	int ret;
223 	pr_info("%s\n", e1000_driver_string);
224 
225 	pr_info("%s\n", e1000_copyright);
226 
227 	ret = pci_register_driver(&e1000_driver);
228 	if (copybreak != COPYBREAK_DEFAULT) {
229 		if (copybreak == 0)
230 			pr_info("copybreak disabled\n");
231 		else
232 			pr_info("copybreak enabled for "
233 				   "packets <= %u bytes\n", copybreak);
234 	}
235 	return ret;
236 }
237 
238 module_init(e1000_init_module);
239 
240 /**
241  * e1000_exit_module - Driver Exit Cleanup Routine
242  *
243  * e1000_exit_module is called just before the driver is removed
244  * from memory.
245  **/
e1000_exit_module(void)246 static void __exit e1000_exit_module(void)
247 {
248 	pci_unregister_driver(&e1000_driver);
249 }
250 
251 module_exit(e1000_exit_module);
252 
e1000_request_irq(struct e1000_adapter * adapter)253 static int e1000_request_irq(struct e1000_adapter *adapter)
254 {
255 	struct net_device *netdev = adapter->netdev;
256 	irq_handler_t handler = e1000_intr;
257 	int irq_flags = IRQF_SHARED;
258 	int err;
259 
260 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
261 			  netdev);
262 	if (err) {
263 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
264 	}
265 
266 	return err;
267 }
268 
e1000_free_irq(struct e1000_adapter * adapter)269 static void e1000_free_irq(struct e1000_adapter *adapter)
270 {
271 	struct net_device *netdev = adapter->netdev;
272 
273 	free_irq(adapter->pdev->irq, netdev);
274 }
275 
276 /**
277  * e1000_irq_disable - Mask off interrupt generation on the NIC
278  * @adapter: board private structure
279  **/
e1000_irq_disable(struct e1000_adapter * adapter)280 static void e1000_irq_disable(struct e1000_adapter *adapter)
281 {
282 	struct e1000_hw *hw = &adapter->hw;
283 
284 	ew32(IMC, ~0);
285 	E1000_WRITE_FLUSH();
286 	synchronize_irq(adapter->pdev->irq);
287 }
288 
289 /**
290  * e1000_irq_enable - Enable default interrupt generation settings
291  * @adapter: board private structure
292  **/
e1000_irq_enable(struct e1000_adapter * adapter)293 static void e1000_irq_enable(struct e1000_adapter *adapter)
294 {
295 	struct e1000_hw *hw = &adapter->hw;
296 
297 	ew32(IMS, IMS_ENABLE_MASK);
298 	E1000_WRITE_FLUSH();
299 }
300 
e1000_update_mng_vlan(struct e1000_adapter * adapter)301 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
302 {
303 	struct e1000_hw *hw = &adapter->hw;
304 	struct net_device *netdev = adapter->netdev;
305 	u16 vid = hw->mng_cookie.vlan_id;
306 	u16 old_vid = adapter->mng_vlan_id;
307 
308 	if (!e1000_vlan_used(adapter))
309 		return;
310 
311 	if (!test_bit(vid, adapter->active_vlans)) {
312 		if (hw->mng_cookie.status &
313 		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
314 			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
315 			adapter->mng_vlan_id = vid;
316 		} else {
317 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
318 		}
319 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
320 		    (vid != old_vid) &&
321 		    !test_bit(old_vid, adapter->active_vlans))
322 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
323 					       old_vid);
324 	} else {
325 		adapter->mng_vlan_id = vid;
326 	}
327 }
328 
e1000_init_manageability(struct e1000_adapter * adapter)329 static void e1000_init_manageability(struct e1000_adapter *adapter)
330 {
331 	struct e1000_hw *hw = &adapter->hw;
332 
333 	if (adapter->en_mng_pt) {
334 		u32 manc = er32(MANC);
335 
336 		/* disable hardware interception of ARP */
337 		manc &= ~(E1000_MANC_ARP_EN);
338 
339 		ew32(MANC, manc);
340 	}
341 }
342 
e1000_release_manageability(struct e1000_adapter * adapter)343 static void e1000_release_manageability(struct e1000_adapter *adapter)
344 {
345 	struct e1000_hw *hw = &adapter->hw;
346 
347 	if (adapter->en_mng_pt) {
348 		u32 manc = er32(MANC);
349 
350 		/* re-enable hardware interception of ARP */
351 		manc |= E1000_MANC_ARP_EN;
352 
353 		ew32(MANC, manc);
354 	}
355 }
356 
357 /**
358  * e1000_configure - configure the hardware for RX and TX
359  * @adapter: private board structure
360  **/
e1000_configure(struct e1000_adapter * adapter)361 static void e1000_configure(struct e1000_adapter *adapter)
362 {
363 	struct net_device *netdev = adapter->netdev;
364 	int i;
365 
366 	e1000_set_rx_mode(netdev);
367 
368 	e1000_restore_vlan(adapter);
369 	e1000_init_manageability(adapter);
370 
371 	e1000_configure_tx(adapter);
372 	e1000_setup_rctl(adapter);
373 	e1000_configure_rx(adapter);
374 	/* call E1000_DESC_UNUSED which always leaves
375 	 * at least 1 descriptor unused to make sure
376 	 * next_to_use != next_to_clean
377 	 */
378 	for (i = 0; i < adapter->num_rx_queues; i++) {
379 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
380 		adapter->alloc_rx_buf(adapter, ring,
381 				      E1000_DESC_UNUSED(ring));
382 	}
383 }
384 
e1000_up(struct e1000_adapter * adapter)385 int e1000_up(struct e1000_adapter *adapter)
386 {
387 	struct e1000_hw *hw = &adapter->hw;
388 
389 	/* hardware has been reset, we need to reload some things */
390 	e1000_configure(adapter);
391 
392 	clear_bit(__E1000_DOWN, &adapter->flags);
393 
394 	napi_enable(&adapter->napi);
395 
396 	e1000_irq_enable(adapter);
397 
398 	netif_wake_queue(adapter->netdev);
399 
400 	/* fire a link change interrupt to start the watchdog */
401 	ew32(ICS, E1000_ICS_LSC);
402 	return 0;
403 }
404 
405 /**
406  * e1000_power_up_phy - restore link in case the phy was powered down
407  * @adapter: address of board private structure
408  *
409  * The phy may be powered down to save power and turn off link when the
410  * driver is unloaded and wake on lan is not enabled (among others)
411  * *** this routine MUST be followed by a call to e1000_reset ***
412  **/
e1000_power_up_phy(struct e1000_adapter * adapter)413 void e1000_power_up_phy(struct e1000_adapter *adapter)
414 {
415 	struct e1000_hw *hw = &adapter->hw;
416 	u16 mii_reg = 0;
417 
418 	/* Just clear the power down bit to wake the phy back up */
419 	if (hw->media_type == e1000_media_type_copper) {
420 		/* according to the manual, the phy will retain its
421 		 * settings across a power-down/up cycle
422 		 */
423 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
424 		mii_reg &= ~MII_CR_POWER_DOWN;
425 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
426 	}
427 }
428 
e1000_power_down_phy(struct e1000_adapter * adapter)429 static void e1000_power_down_phy(struct e1000_adapter *adapter)
430 {
431 	struct e1000_hw *hw = &adapter->hw;
432 
433 	/* Power down the PHY so no link is implied when interface is down *
434 	 * The PHY cannot be powered down if any of the following is true *
435 	 * (a) WoL is enabled
436 	 * (b) AMT is active
437 	 * (c) SoL/IDER session is active
438 	 */
439 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
440 	   hw->media_type == e1000_media_type_copper) {
441 		u16 mii_reg = 0;
442 
443 		switch (hw->mac_type) {
444 		case e1000_82540:
445 		case e1000_82545:
446 		case e1000_82545_rev_3:
447 		case e1000_82546:
448 		case e1000_ce4100:
449 		case e1000_82546_rev_3:
450 		case e1000_82541:
451 		case e1000_82541_rev_2:
452 		case e1000_82547:
453 		case e1000_82547_rev_2:
454 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
455 				goto out;
456 			break;
457 		default:
458 			goto out;
459 		}
460 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
461 		mii_reg |= MII_CR_POWER_DOWN;
462 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
463 		msleep(1);
464 	}
465 out:
466 	return;
467 }
468 
e1000_down_and_stop(struct e1000_adapter * adapter)469 static void e1000_down_and_stop(struct e1000_adapter *adapter)
470 {
471 	set_bit(__E1000_DOWN, &adapter->flags);
472 
473 	cancel_delayed_work_sync(&adapter->watchdog_task);
474 
475 	/*
476 	 * Since the watchdog task can reschedule other tasks, we should cancel
477 	 * it first, otherwise we can run into the situation when a work is
478 	 * still running after the adapter has been turned down.
479 	 */
480 
481 	cancel_delayed_work_sync(&adapter->phy_info_task);
482 	cancel_delayed_work_sync(&adapter->fifo_stall_task);
483 
484 	/* Only kill reset task if adapter is not resetting */
485 	if (!test_bit(__E1000_RESETTING, &adapter->flags))
486 		cancel_work_sync(&adapter->reset_task);
487 }
488 
e1000_down(struct e1000_adapter * adapter)489 void e1000_down(struct e1000_adapter *adapter)
490 {
491 	struct e1000_hw *hw = &adapter->hw;
492 	struct net_device *netdev = adapter->netdev;
493 	u32 rctl, tctl;
494 
495 	/* disable receives in the hardware */
496 	rctl = er32(RCTL);
497 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
498 	/* flush and sleep below */
499 
500 	netif_tx_disable(netdev);
501 
502 	/* disable transmits in the hardware */
503 	tctl = er32(TCTL);
504 	tctl &= ~E1000_TCTL_EN;
505 	ew32(TCTL, tctl);
506 	/* flush both disables and wait for them to finish */
507 	E1000_WRITE_FLUSH();
508 	msleep(10);
509 
510 	/* Set the carrier off after transmits have been disabled in the
511 	 * hardware, to avoid race conditions with e1000_watchdog() (which
512 	 * may be running concurrently to us, checking for the carrier
513 	 * bit to decide whether it should enable transmits again). Such
514 	 * a race condition would result into transmission being disabled
515 	 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
516 	 */
517 	netif_carrier_off(netdev);
518 
519 	napi_disable(&adapter->napi);
520 
521 	e1000_irq_disable(adapter);
522 
523 	/* Setting DOWN must be after irq_disable to prevent
524 	 * a screaming interrupt.  Setting DOWN also prevents
525 	 * tasks from rescheduling.
526 	 */
527 	e1000_down_and_stop(adapter);
528 
529 	adapter->link_speed = 0;
530 	adapter->link_duplex = 0;
531 
532 	e1000_reset(adapter);
533 	e1000_clean_all_tx_rings(adapter);
534 	e1000_clean_all_rx_rings(adapter);
535 }
536 
e1000_reinit_locked(struct e1000_adapter * adapter)537 void e1000_reinit_locked(struct e1000_adapter *adapter)
538 {
539 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
540 		msleep(1);
541 
542 	/* only run the task if not already down */
543 	if (!test_bit(__E1000_DOWN, &adapter->flags)) {
544 		e1000_down(adapter);
545 		e1000_up(adapter);
546 	}
547 
548 	clear_bit(__E1000_RESETTING, &adapter->flags);
549 }
550 
e1000_reset(struct e1000_adapter * adapter)551 void e1000_reset(struct e1000_adapter *adapter)
552 {
553 	struct e1000_hw *hw = &adapter->hw;
554 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
555 	bool legacy_pba_adjust = false;
556 	u16 hwm;
557 
558 	/* Repartition Pba for greater than 9k mtu
559 	 * To take effect CTRL.RST is required.
560 	 */
561 
562 	switch (hw->mac_type) {
563 	case e1000_82542_rev2_0:
564 	case e1000_82542_rev2_1:
565 	case e1000_82543:
566 	case e1000_82544:
567 	case e1000_82540:
568 	case e1000_82541:
569 	case e1000_82541_rev_2:
570 		legacy_pba_adjust = true;
571 		pba = E1000_PBA_48K;
572 		break;
573 	case e1000_82545:
574 	case e1000_82545_rev_3:
575 	case e1000_82546:
576 	case e1000_ce4100:
577 	case e1000_82546_rev_3:
578 		pba = E1000_PBA_48K;
579 		break;
580 	case e1000_82547:
581 	case e1000_82547_rev_2:
582 		legacy_pba_adjust = true;
583 		pba = E1000_PBA_30K;
584 		break;
585 	case e1000_undefined:
586 	case e1000_num_macs:
587 		break;
588 	}
589 
590 	if (legacy_pba_adjust) {
591 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
592 			pba -= 8; /* allocate more FIFO for Tx */
593 
594 		if (hw->mac_type == e1000_82547) {
595 			adapter->tx_fifo_head = 0;
596 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
597 			adapter->tx_fifo_size =
598 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
599 			atomic_set(&adapter->tx_fifo_stall, 0);
600 		}
601 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
602 		/* adjust PBA for jumbo frames */
603 		ew32(PBA, pba);
604 
605 		/* To maintain wire speed transmits, the Tx FIFO should be
606 		 * large enough to accommodate two full transmit packets,
607 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
608 		 * the Rx FIFO should be large enough to accommodate at least
609 		 * one full receive packet and is similarly rounded up and
610 		 * expressed in KB.
611 		 */
612 		pba = er32(PBA);
613 		/* upper 16 bits has Tx packet buffer allocation size in KB */
614 		tx_space = pba >> 16;
615 		/* lower 16 bits has Rx packet buffer allocation size in KB */
616 		pba &= 0xffff;
617 		/* the Tx fifo also stores 16 bytes of information about the Tx
618 		 * but don't include ethernet FCS because hardware appends it
619 		 */
620 		min_tx_space = (hw->max_frame_size +
621 				sizeof(struct e1000_tx_desc) -
622 				ETH_FCS_LEN) * 2;
623 		min_tx_space = ALIGN(min_tx_space, 1024);
624 		min_tx_space >>= 10;
625 		/* software strips receive CRC, so leave room for it */
626 		min_rx_space = hw->max_frame_size;
627 		min_rx_space = ALIGN(min_rx_space, 1024);
628 		min_rx_space >>= 10;
629 
630 		/* If current Tx allocation is less than the min Tx FIFO size,
631 		 * and the min Tx FIFO size is less than the current Rx FIFO
632 		 * allocation, take space away from current Rx allocation
633 		 */
634 		if (tx_space < min_tx_space &&
635 		    ((min_tx_space - tx_space) < pba)) {
636 			pba = pba - (min_tx_space - tx_space);
637 
638 			/* PCI/PCIx hardware has PBA alignment constraints */
639 			switch (hw->mac_type) {
640 			case e1000_82545 ... e1000_82546_rev_3:
641 				pba &= ~(E1000_PBA_8K - 1);
642 				break;
643 			default:
644 				break;
645 			}
646 
647 			/* if short on Rx space, Rx wins and must trump Tx
648 			 * adjustment or use Early Receive if available
649 			 */
650 			if (pba < min_rx_space)
651 				pba = min_rx_space;
652 		}
653 	}
654 
655 	ew32(PBA, pba);
656 
657 	/* flow control settings:
658 	 * The high water mark must be low enough to fit one full frame
659 	 * (or the size used for early receive) above it in the Rx FIFO.
660 	 * Set it to the lower of:
661 	 * - 90% of the Rx FIFO size, and
662 	 * - the full Rx FIFO size minus the early receive size (for parts
663 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
664 	 * - the full Rx FIFO size minus one full frame
665 	 */
666 	hwm = min(((pba << 10) * 9 / 10),
667 		  ((pba << 10) - hw->max_frame_size));
668 
669 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
670 	hw->fc_low_water = hw->fc_high_water - 8;
671 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
672 	hw->fc_send_xon = 1;
673 	hw->fc = hw->original_fc;
674 
675 	/* Allow time for pending master requests to run */
676 	e1000_reset_hw(hw);
677 	if (hw->mac_type >= e1000_82544)
678 		ew32(WUC, 0);
679 
680 	if (e1000_init_hw(hw))
681 		e_dev_err("Hardware Error\n");
682 	e1000_update_mng_vlan(adapter);
683 
684 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
685 	if (hw->mac_type >= e1000_82544 &&
686 	    hw->autoneg == 1 &&
687 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
688 		u32 ctrl = er32(CTRL);
689 		/* clear phy power management bit if we are in gig only mode,
690 		 * which if enabled will attempt negotiation to 100Mb, which
691 		 * can cause a loss of link at power off or driver unload
692 		 */
693 		ctrl &= ~E1000_CTRL_SWDPIN3;
694 		ew32(CTRL, ctrl);
695 	}
696 
697 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
698 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
699 
700 	e1000_reset_adaptive(hw);
701 	e1000_phy_get_info(hw, &adapter->phy_info);
702 
703 	e1000_release_manageability(adapter);
704 }
705 
706 /* Dump the eeprom for users having checksum issues */
e1000_dump_eeprom(struct e1000_adapter * adapter)707 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
708 {
709 	struct net_device *netdev = adapter->netdev;
710 	struct ethtool_eeprom eeprom;
711 	const struct ethtool_ops *ops = netdev->ethtool_ops;
712 	u8 *data;
713 	int i;
714 	u16 csum_old, csum_new = 0;
715 
716 	eeprom.len = ops->get_eeprom_len(netdev);
717 	eeprom.offset = 0;
718 
719 	data = kmalloc(eeprom.len, GFP_KERNEL);
720 	if (!data)
721 		return;
722 
723 	ops->get_eeprom(netdev, &eeprom, data);
724 
725 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
726 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
727 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
728 		csum_new += data[i] + (data[i + 1] << 8);
729 	csum_new = EEPROM_SUM - csum_new;
730 
731 	pr_err("/*********************/\n");
732 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
733 	pr_err("Calculated              : 0x%04x\n", csum_new);
734 
735 	pr_err("Offset    Values\n");
736 	pr_err("========  ======\n");
737 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
738 
739 	pr_err("Include this output when contacting your support provider.\n");
740 	pr_err("This is not a software error! Something bad happened to\n");
741 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
742 	pr_err("result in further problems, possibly loss of data,\n");
743 	pr_err("corruption or system hangs!\n");
744 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
745 	pr_err("which is invalid and requires you to set the proper MAC\n");
746 	pr_err("address manually before continuing to enable this network\n");
747 	pr_err("device. Please inspect the EEPROM dump and report the\n");
748 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
749 	pr_err("/*********************/\n");
750 
751 	kfree(data);
752 }
753 
754 /**
755  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
756  * @pdev: PCI device information struct
757  *
758  * Return true if an adapter needs ioport resources
759  **/
e1000_is_need_ioport(struct pci_dev * pdev)760 static int e1000_is_need_ioport(struct pci_dev *pdev)
761 {
762 	switch (pdev->device) {
763 	case E1000_DEV_ID_82540EM:
764 	case E1000_DEV_ID_82540EM_LOM:
765 	case E1000_DEV_ID_82540EP:
766 	case E1000_DEV_ID_82540EP_LOM:
767 	case E1000_DEV_ID_82540EP_LP:
768 	case E1000_DEV_ID_82541EI:
769 	case E1000_DEV_ID_82541EI_MOBILE:
770 	case E1000_DEV_ID_82541ER:
771 	case E1000_DEV_ID_82541ER_LOM:
772 	case E1000_DEV_ID_82541GI:
773 	case E1000_DEV_ID_82541GI_LF:
774 	case E1000_DEV_ID_82541GI_MOBILE:
775 	case E1000_DEV_ID_82544EI_COPPER:
776 	case E1000_DEV_ID_82544EI_FIBER:
777 	case E1000_DEV_ID_82544GC_COPPER:
778 	case E1000_DEV_ID_82544GC_LOM:
779 	case E1000_DEV_ID_82545EM_COPPER:
780 	case E1000_DEV_ID_82545EM_FIBER:
781 	case E1000_DEV_ID_82546EB_COPPER:
782 	case E1000_DEV_ID_82546EB_FIBER:
783 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
784 		return true;
785 	default:
786 		return false;
787 	}
788 }
789 
e1000_fix_features(struct net_device * netdev,netdev_features_t features)790 static netdev_features_t e1000_fix_features(struct net_device *netdev,
791 	netdev_features_t features)
792 {
793 	/* Since there is no support for separate Rx/Tx vlan accel
794 	 * enable/disable make sure Tx flag is always in same state as Rx.
795 	 */
796 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
797 		features |= NETIF_F_HW_VLAN_CTAG_TX;
798 	else
799 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
800 
801 	return features;
802 }
803 
e1000_set_features(struct net_device * netdev,netdev_features_t features)804 static int e1000_set_features(struct net_device *netdev,
805 	netdev_features_t features)
806 {
807 	struct e1000_adapter *adapter = netdev_priv(netdev);
808 	netdev_features_t changed = features ^ netdev->features;
809 
810 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
811 		e1000_vlan_mode(netdev, features);
812 
813 	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
814 		return 0;
815 
816 	netdev->features = features;
817 	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
818 
819 	if (netif_running(netdev))
820 		e1000_reinit_locked(adapter);
821 	else
822 		e1000_reset(adapter);
823 
824 	return 1;
825 }
826 
827 static const struct net_device_ops e1000_netdev_ops = {
828 	.ndo_open		= e1000_open,
829 	.ndo_stop		= e1000_close,
830 	.ndo_start_xmit		= e1000_xmit_frame,
831 	.ndo_set_rx_mode	= e1000_set_rx_mode,
832 	.ndo_set_mac_address	= e1000_set_mac,
833 	.ndo_tx_timeout		= e1000_tx_timeout,
834 	.ndo_change_mtu		= e1000_change_mtu,
835 	.ndo_do_ioctl		= e1000_ioctl,
836 	.ndo_validate_addr	= eth_validate_addr,
837 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
838 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
839 #ifdef CONFIG_NET_POLL_CONTROLLER
840 	.ndo_poll_controller	= e1000_netpoll,
841 #endif
842 	.ndo_fix_features	= e1000_fix_features,
843 	.ndo_set_features	= e1000_set_features,
844 };
845 
846 /**
847  * e1000_init_hw_struct - initialize members of hw struct
848  * @adapter: board private struct
849  * @hw: structure used by e1000_hw.c
850  *
851  * Factors out initialization of the e1000_hw struct to its own function
852  * that can be called very early at init (just after struct allocation).
853  * Fields are initialized based on PCI device information and
854  * OS network device settings (MTU size).
855  * Returns negative error codes if MAC type setup fails.
856  */
e1000_init_hw_struct(struct e1000_adapter * adapter,struct e1000_hw * hw)857 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
858 				struct e1000_hw *hw)
859 {
860 	struct pci_dev *pdev = adapter->pdev;
861 
862 	/* PCI config space info */
863 	hw->vendor_id = pdev->vendor;
864 	hw->device_id = pdev->device;
865 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
866 	hw->subsystem_id = pdev->subsystem_device;
867 	hw->revision_id = pdev->revision;
868 
869 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
870 
871 	hw->max_frame_size = adapter->netdev->mtu +
872 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
873 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
874 
875 	/* identify the MAC */
876 	if (e1000_set_mac_type(hw)) {
877 		e_err(probe, "Unknown MAC Type\n");
878 		return -EIO;
879 	}
880 
881 	switch (hw->mac_type) {
882 	default:
883 		break;
884 	case e1000_82541:
885 	case e1000_82547:
886 	case e1000_82541_rev_2:
887 	case e1000_82547_rev_2:
888 		hw->phy_init_script = 1;
889 		break;
890 	}
891 
892 	e1000_set_media_type(hw);
893 	e1000_get_bus_info(hw);
894 
895 	hw->wait_autoneg_complete = false;
896 	hw->tbi_compatibility_en = true;
897 	hw->adaptive_ifs = true;
898 
899 	/* Copper options */
900 
901 	if (hw->media_type == e1000_media_type_copper) {
902 		hw->mdix = AUTO_ALL_MODES;
903 		hw->disable_polarity_correction = false;
904 		hw->master_slave = E1000_MASTER_SLAVE;
905 	}
906 
907 	return 0;
908 }
909 
910 /**
911  * e1000_probe - Device Initialization Routine
912  * @pdev: PCI device information struct
913  * @ent: entry in e1000_pci_tbl
914  *
915  * Returns 0 on success, negative on failure
916  *
917  * e1000_probe initializes an adapter identified by a pci_dev structure.
918  * The OS initialization, configuring of the adapter private structure,
919  * and a hardware reset occur.
920  **/
e1000_probe(struct pci_dev * pdev,const struct pci_device_id * ent)921 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
922 {
923 	struct net_device *netdev;
924 	struct e1000_adapter *adapter = NULL;
925 	struct e1000_hw *hw;
926 
927 	static int cards_found;
928 	static int global_quad_port_a; /* global ksp3 port a indication */
929 	int i, err, pci_using_dac;
930 	u16 eeprom_data = 0;
931 	u16 tmp = 0;
932 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
933 	int bars, need_ioport;
934 	bool disable_dev = false;
935 
936 	/* do not allocate ioport bars when not needed */
937 	need_ioport = e1000_is_need_ioport(pdev);
938 	if (need_ioport) {
939 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
940 		err = pci_enable_device(pdev);
941 	} else {
942 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
943 		err = pci_enable_device_mem(pdev);
944 	}
945 	if (err)
946 		return err;
947 
948 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
949 	if (err)
950 		goto err_pci_reg;
951 
952 	pci_set_master(pdev);
953 	err = pci_save_state(pdev);
954 	if (err)
955 		goto err_alloc_etherdev;
956 
957 	err = -ENOMEM;
958 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
959 	if (!netdev)
960 		goto err_alloc_etherdev;
961 
962 	SET_NETDEV_DEV(netdev, &pdev->dev);
963 
964 	pci_set_drvdata(pdev, netdev);
965 	adapter = netdev_priv(netdev);
966 	adapter->netdev = netdev;
967 	adapter->pdev = pdev;
968 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
969 	adapter->bars = bars;
970 	adapter->need_ioport = need_ioport;
971 
972 	hw = &adapter->hw;
973 	hw->back = adapter;
974 
975 	err = -EIO;
976 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
977 	if (!hw->hw_addr)
978 		goto err_ioremap;
979 
980 	if (adapter->need_ioport) {
981 		for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
982 			if (pci_resource_len(pdev, i) == 0)
983 				continue;
984 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
985 				hw->io_base = pci_resource_start(pdev, i);
986 				break;
987 			}
988 		}
989 	}
990 
991 	/* make ready for any if (hw->...) below */
992 	err = e1000_init_hw_struct(adapter, hw);
993 	if (err)
994 		goto err_sw_init;
995 
996 	/* there is a workaround being applied below that limits
997 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
998 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
999 	 */
1000 	pci_using_dac = 0;
1001 	if ((hw->bus_type == e1000_bus_type_pcix) &&
1002 	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1003 		pci_using_dac = 1;
1004 	} else {
1005 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1006 		if (err) {
1007 			pr_err("No usable DMA config, aborting\n");
1008 			goto err_dma;
1009 		}
1010 	}
1011 
1012 	netdev->netdev_ops = &e1000_netdev_ops;
1013 	e1000_set_ethtool_ops(netdev);
1014 	netdev->watchdog_timeo = 5 * HZ;
1015 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1016 
1017 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1018 
1019 	adapter->bd_number = cards_found;
1020 
1021 	/* setup the private structure */
1022 
1023 	err = e1000_sw_init(adapter);
1024 	if (err)
1025 		goto err_sw_init;
1026 
1027 	err = -EIO;
1028 	if (hw->mac_type == e1000_ce4100) {
1029 		hw->ce4100_gbe_mdio_base_virt =
1030 					ioremap(pci_resource_start(pdev, BAR_1),
1031 						pci_resource_len(pdev, BAR_1));
1032 
1033 		if (!hw->ce4100_gbe_mdio_base_virt)
1034 			goto err_mdio_ioremap;
1035 	}
1036 
1037 	if (hw->mac_type >= e1000_82543) {
1038 		netdev->hw_features = NETIF_F_SG |
1039 				   NETIF_F_HW_CSUM |
1040 				   NETIF_F_HW_VLAN_CTAG_RX;
1041 		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1042 				   NETIF_F_HW_VLAN_CTAG_FILTER;
1043 	}
1044 
1045 	if ((hw->mac_type >= e1000_82544) &&
1046 	   (hw->mac_type != e1000_82547))
1047 		netdev->hw_features |= NETIF_F_TSO;
1048 
1049 	netdev->priv_flags |= IFF_SUPP_NOFCS;
1050 
1051 	netdev->features |= netdev->hw_features;
1052 	netdev->hw_features |= (NETIF_F_RXCSUM |
1053 				NETIF_F_RXALL |
1054 				NETIF_F_RXFCS);
1055 
1056 	if (pci_using_dac) {
1057 		netdev->features |= NETIF_F_HIGHDMA;
1058 		netdev->vlan_features |= NETIF_F_HIGHDMA;
1059 	}
1060 
1061 	netdev->vlan_features |= (NETIF_F_TSO |
1062 				  NETIF_F_HW_CSUM |
1063 				  NETIF_F_SG);
1064 
1065 	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1066 	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1067 	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1068 		netdev->priv_flags |= IFF_UNICAST_FLT;
1069 
1070 	/* MTU range: 46 - 16110 */
1071 	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1072 	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1073 
1074 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1075 
1076 	/* initialize eeprom parameters */
1077 	if (e1000_init_eeprom_params(hw)) {
1078 		e_err(probe, "EEPROM initialization failed\n");
1079 		goto err_eeprom;
1080 	}
1081 
1082 	/* before reading the EEPROM, reset the controller to
1083 	 * put the device in a known good starting state
1084 	 */
1085 
1086 	e1000_reset_hw(hw);
1087 
1088 	/* make sure the EEPROM is good */
1089 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1090 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1091 		e1000_dump_eeprom(adapter);
1092 		/* set MAC address to all zeroes to invalidate and temporary
1093 		 * disable this device for the user. This blocks regular
1094 		 * traffic while still permitting ethtool ioctls from reaching
1095 		 * the hardware as well as allowing the user to run the
1096 		 * interface after manually setting a hw addr using
1097 		 * `ip set address`
1098 		 */
1099 		memset(hw->mac_addr, 0, netdev->addr_len);
1100 	} else {
1101 		/* copy the MAC address out of the EEPROM */
1102 		if (e1000_read_mac_addr(hw))
1103 			e_err(probe, "EEPROM Read Error\n");
1104 	}
1105 	/* don't block initialization here due to bad MAC address */
1106 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1107 
1108 	if (!is_valid_ether_addr(netdev->dev_addr))
1109 		e_err(probe, "Invalid MAC Address\n");
1110 
1111 
1112 	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1113 	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1114 			  e1000_82547_tx_fifo_stall_task);
1115 	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1116 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1117 
1118 	e1000_check_options(adapter);
1119 
1120 	/* Initial Wake on LAN setting
1121 	 * If APM wake is enabled in the EEPROM,
1122 	 * enable the ACPI Magic Packet filter
1123 	 */
1124 
1125 	switch (hw->mac_type) {
1126 	case e1000_82542_rev2_0:
1127 	case e1000_82542_rev2_1:
1128 	case e1000_82543:
1129 		break;
1130 	case e1000_82544:
1131 		e1000_read_eeprom(hw,
1132 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1133 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1134 		break;
1135 	case e1000_82546:
1136 	case e1000_82546_rev_3:
1137 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1138 			e1000_read_eeprom(hw,
1139 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1140 			break;
1141 		}
1142 		fallthrough;
1143 	default:
1144 		e1000_read_eeprom(hw,
1145 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1146 		break;
1147 	}
1148 	if (eeprom_data & eeprom_apme_mask)
1149 		adapter->eeprom_wol |= E1000_WUFC_MAG;
1150 
1151 	/* now that we have the eeprom settings, apply the special cases
1152 	 * where the eeprom may be wrong or the board simply won't support
1153 	 * wake on lan on a particular port
1154 	 */
1155 	switch (pdev->device) {
1156 	case E1000_DEV_ID_82546GB_PCIE:
1157 		adapter->eeprom_wol = 0;
1158 		break;
1159 	case E1000_DEV_ID_82546EB_FIBER:
1160 	case E1000_DEV_ID_82546GB_FIBER:
1161 		/* Wake events only supported on port A for dual fiber
1162 		 * regardless of eeprom setting
1163 		 */
1164 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1165 			adapter->eeprom_wol = 0;
1166 		break;
1167 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1168 		/* if quad port adapter, disable WoL on all but port A */
1169 		if (global_quad_port_a != 0)
1170 			adapter->eeprom_wol = 0;
1171 		else
1172 			adapter->quad_port_a = true;
1173 		/* Reset for multiple quad port adapters */
1174 		if (++global_quad_port_a == 4)
1175 			global_quad_port_a = 0;
1176 		break;
1177 	}
1178 
1179 	/* initialize the wol settings based on the eeprom settings */
1180 	adapter->wol = adapter->eeprom_wol;
1181 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1182 
1183 	/* Auto detect PHY address */
1184 	if (hw->mac_type == e1000_ce4100) {
1185 		for (i = 0; i < 32; i++) {
1186 			hw->phy_addr = i;
1187 			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1188 
1189 			if (tmp != 0 && tmp != 0xFF)
1190 				break;
1191 		}
1192 
1193 		if (i >= 32)
1194 			goto err_eeprom;
1195 	}
1196 
1197 	/* reset the hardware with the new settings */
1198 	e1000_reset(adapter);
1199 
1200 	strcpy(netdev->name, "eth%d");
1201 	err = register_netdev(netdev);
1202 	if (err)
1203 		goto err_register;
1204 
1205 	e1000_vlan_filter_on_off(adapter, false);
1206 
1207 	/* print bus type/speed/width info */
1208 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1209 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1210 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1211 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1212 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1213 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1214 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1215 	       netdev->dev_addr);
1216 
1217 	/* carrier off reporting is important to ethtool even BEFORE open */
1218 	netif_carrier_off(netdev);
1219 
1220 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1221 
1222 	cards_found++;
1223 	return 0;
1224 
1225 err_register:
1226 err_eeprom:
1227 	e1000_phy_hw_reset(hw);
1228 
1229 	if (hw->flash_address)
1230 		iounmap(hw->flash_address);
1231 	kfree(adapter->tx_ring);
1232 	kfree(adapter->rx_ring);
1233 err_dma:
1234 err_sw_init:
1235 err_mdio_ioremap:
1236 	iounmap(hw->ce4100_gbe_mdio_base_virt);
1237 	iounmap(hw->hw_addr);
1238 err_ioremap:
1239 	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1240 	free_netdev(netdev);
1241 err_alloc_etherdev:
1242 	pci_release_selected_regions(pdev, bars);
1243 err_pci_reg:
1244 	if (!adapter || disable_dev)
1245 		pci_disable_device(pdev);
1246 	return err;
1247 }
1248 
1249 /**
1250  * e1000_remove - Device Removal Routine
1251  * @pdev: PCI device information struct
1252  *
1253  * e1000_remove is called by the PCI subsystem to alert the driver
1254  * that it should release a PCI device. That could be caused by a
1255  * Hot-Plug event, or because the driver is going to be removed from
1256  * memory.
1257  **/
e1000_remove(struct pci_dev * pdev)1258 static void e1000_remove(struct pci_dev *pdev)
1259 {
1260 	struct net_device *netdev = pci_get_drvdata(pdev);
1261 	struct e1000_adapter *adapter = netdev_priv(netdev);
1262 	struct e1000_hw *hw = &adapter->hw;
1263 	bool disable_dev;
1264 
1265 	e1000_down_and_stop(adapter);
1266 	e1000_release_manageability(adapter);
1267 
1268 	unregister_netdev(netdev);
1269 
1270 	e1000_phy_hw_reset(hw);
1271 
1272 	kfree(adapter->tx_ring);
1273 	kfree(adapter->rx_ring);
1274 
1275 	if (hw->mac_type == e1000_ce4100)
1276 		iounmap(hw->ce4100_gbe_mdio_base_virt);
1277 	iounmap(hw->hw_addr);
1278 	if (hw->flash_address)
1279 		iounmap(hw->flash_address);
1280 	pci_release_selected_regions(pdev, adapter->bars);
1281 
1282 	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1283 	free_netdev(netdev);
1284 
1285 	if (disable_dev)
1286 		pci_disable_device(pdev);
1287 }
1288 
1289 /**
1290  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1291  * @adapter: board private structure to initialize
1292  *
1293  * e1000_sw_init initializes the Adapter private data structure.
1294  * e1000_init_hw_struct MUST be called before this function
1295  **/
e1000_sw_init(struct e1000_adapter * adapter)1296 static int e1000_sw_init(struct e1000_adapter *adapter)
1297 {
1298 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1299 
1300 	adapter->num_tx_queues = 1;
1301 	adapter->num_rx_queues = 1;
1302 
1303 	if (e1000_alloc_queues(adapter)) {
1304 		e_err(probe, "Unable to allocate memory for queues\n");
1305 		return -ENOMEM;
1306 	}
1307 
1308 	/* Explicitly disable IRQ since the NIC can be in any state. */
1309 	e1000_irq_disable(adapter);
1310 
1311 	spin_lock_init(&adapter->stats_lock);
1312 
1313 	set_bit(__E1000_DOWN, &adapter->flags);
1314 
1315 	return 0;
1316 }
1317 
1318 /**
1319  * e1000_alloc_queues - Allocate memory for all rings
1320  * @adapter: board private structure to initialize
1321  *
1322  * We allocate one ring per queue at run-time since we don't know the
1323  * number of queues at compile-time.
1324  **/
e1000_alloc_queues(struct e1000_adapter * adapter)1325 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1326 {
1327 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1328 				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1329 	if (!adapter->tx_ring)
1330 		return -ENOMEM;
1331 
1332 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1333 				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1334 	if (!adapter->rx_ring) {
1335 		kfree(adapter->tx_ring);
1336 		return -ENOMEM;
1337 	}
1338 
1339 	return E1000_SUCCESS;
1340 }
1341 
1342 /**
1343  * e1000_open - Called when a network interface is made active
1344  * @netdev: network interface device structure
1345  *
1346  * Returns 0 on success, negative value on failure
1347  *
1348  * The open entry point is called when a network interface is made
1349  * active by the system (IFF_UP).  At this point all resources needed
1350  * for transmit and receive operations are allocated, the interrupt
1351  * handler is registered with the OS, the watchdog task is started,
1352  * and the stack is notified that the interface is ready.
1353  **/
e1000_open(struct net_device * netdev)1354 int e1000_open(struct net_device *netdev)
1355 {
1356 	struct e1000_adapter *adapter = netdev_priv(netdev);
1357 	struct e1000_hw *hw = &adapter->hw;
1358 	int err;
1359 
1360 	/* disallow open during test */
1361 	if (test_bit(__E1000_TESTING, &adapter->flags))
1362 		return -EBUSY;
1363 
1364 	netif_carrier_off(netdev);
1365 
1366 	/* allocate transmit descriptors */
1367 	err = e1000_setup_all_tx_resources(adapter);
1368 	if (err)
1369 		goto err_setup_tx;
1370 
1371 	/* allocate receive descriptors */
1372 	err = e1000_setup_all_rx_resources(adapter);
1373 	if (err)
1374 		goto err_setup_rx;
1375 
1376 	e1000_power_up_phy(adapter);
1377 
1378 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1379 	if ((hw->mng_cookie.status &
1380 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1381 		e1000_update_mng_vlan(adapter);
1382 	}
1383 
1384 	/* before we allocate an interrupt, we must be ready to handle it.
1385 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1386 	 * as soon as we call pci_request_irq, so we have to setup our
1387 	 * clean_rx handler before we do so.
1388 	 */
1389 	e1000_configure(adapter);
1390 
1391 	err = e1000_request_irq(adapter);
1392 	if (err)
1393 		goto err_req_irq;
1394 
1395 	/* From here on the code is the same as e1000_up() */
1396 	clear_bit(__E1000_DOWN, &adapter->flags);
1397 
1398 	napi_enable(&adapter->napi);
1399 
1400 	e1000_irq_enable(adapter);
1401 
1402 	netif_start_queue(netdev);
1403 
1404 	/* fire a link status change interrupt to start the watchdog */
1405 	ew32(ICS, E1000_ICS_LSC);
1406 
1407 	return E1000_SUCCESS;
1408 
1409 err_req_irq:
1410 	e1000_power_down_phy(adapter);
1411 	e1000_free_all_rx_resources(adapter);
1412 err_setup_rx:
1413 	e1000_free_all_tx_resources(adapter);
1414 err_setup_tx:
1415 	e1000_reset(adapter);
1416 
1417 	return err;
1418 }
1419 
1420 /**
1421  * e1000_close - Disables a network interface
1422  * @netdev: network interface device structure
1423  *
1424  * Returns 0, this is not allowed to fail
1425  *
1426  * The close entry point is called when an interface is de-activated
1427  * by the OS.  The hardware is still under the drivers control, but
1428  * needs to be disabled.  A global MAC reset is issued to stop the
1429  * hardware, and all transmit and receive resources are freed.
1430  **/
e1000_close(struct net_device * netdev)1431 int e1000_close(struct net_device *netdev)
1432 {
1433 	struct e1000_adapter *adapter = netdev_priv(netdev);
1434 	struct e1000_hw *hw = &adapter->hw;
1435 	int count = E1000_CHECK_RESET_COUNT;
1436 
1437 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1438 		usleep_range(10000, 20000);
1439 
1440 	WARN_ON(count < 0);
1441 
1442 	/* signal that we're down so that the reset task will no longer run */
1443 	set_bit(__E1000_DOWN, &adapter->flags);
1444 	clear_bit(__E1000_RESETTING, &adapter->flags);
1445 
1446 	e1000_down(adapter);
1447 	e1000_power_down_phy(adapter);
1448 	e1000_free_irq(adapter);
1449 
1450 	e1000_free_all_tx_resources(adapter);
1451 	e1000_free_all_rx_resources(adapter);
1452 
1453 	/* kill manageability vlan ID if supported, but not if a vlan with
1454 	 * the same ID is registered on the host OS (let 8021q kill it)
1455 	 */
1456 	if ((hw->mng_cookie.status &
1457 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1458 	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1459 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1460 				       adapter->mng_vlan_id);
1461 	}
1462 
1463 	return 0;
1464 }
1465 
1466 /**
1467  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1468  * @adapter: address of board private structure
1469  * @start: address of beginning of memory
1470  * @len: length of memory
1471  **/
e1000_check_64k_bound(struct e1000_adapter * adapter,void * start,unsigned long len)1472 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1473 				  unsigned long len)
1474 {
1475 	struct e1000_hw *hw = &adapter->hw;
1476 	unsigned long begin = (unsigned long)start;
1477 	unsigned long end = begin + len;
1478 
1479 	/* First rev 82545 and 82546 need to not allow any memory
1480 	 * write location to cross 64k boundary due to errata 23
1481 	 */
1482 	if (hw->mac_type == e1000_82545 ||
1483 	    hw->mac_type == e1000_ce4100 ||
1484 	    hw->mac_type == e1000_82546) {
1485 		return ((begin ^ (end - 1)) >> 16) == 0;
1486 	}
1487 
1488 	return true;
1489 }
1490 
1491 /**
1492  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1493  * @adapter: board private structure
1494  * @txdr:    tx descriptor ring (for a specific queue) to setup
1495  *
1496  * Return 0 on success, negative on failure
1497  **/
e1000_setup_tx_resources(struct e1000_adapter * adapter,struct e1000_tx_ring * txdr)1498 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1499 				    struct e1000_tx_ring *txdr)
1500 {
1501 	struct pci_dev *pdev = adapter->pdev;
1502 	int size;
1503 
1504 	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1505 	txdr->buffer_info = vzalloc(size);
1506 	if (!txdr->buffer_info)
1507 		return -ENOMEM;
1508 
1509 	/* round up to nearest 4K */
1510 
1511 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1512 	txdr->size = ALIGN(txdr->size, 4096);
1513 
1514 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1515 					GFP_KERNEL);
1516 	if (!txdr->desc) {
1517 setup_tx_desc_die:
1518 		vfree(txdr->buffer_info);
1519 		return -ENOMEM;
1520 	}
1521 
1522 	/* Fix for errata 23, can't cross 64kB boundary */
1523 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1524 		void *olddesc = txdr->desc;
1525 		dma_addr_t olddma = txdr->dma;
1526 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1527 		      txdr->size, txdr->desc);
1528 		/* Try again, without freeing the previous */
1529 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1530 						&txdr->dma, GFP_KERNEL);
1531 		/* Failed allocation, critical failure */
1532 		if (!txdr->desc) {
1533 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1534 					  olddma);
1535 			goto setup_tx_desc_die;
1536 		}
1537 
1538 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1539 			/* give up */
1540 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1541 					  txdr->dma);
1542 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1543 					  olddma);
1544 			e_err(probe, "Unable to allocate aligned memory "
1545 			      "for the transmit descriptor ring\n");
1546 			vfree(txdr->buffer_info);
1547 			return -ENOMEM;
1548 		} else {
1549 			/* Free old allocation, new allocation was successful */
1550 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1551 					  olddma);
1552 		}
1553 	}
1554 	memset(txdr->desc, 0, txdr->size);
1555 
1556 	txdr->next_to_use = 0;
1557 	txdr->next_to_clean = 0;
1558 
1559 	return 0;
1560 }
1561 
1562 /**
1563  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1564  * 				  (Descriptors) for all queues
1565  * @adapter: board private structure
1566  *
1567  * Return 0 on success, negative on failure
1568  **/
e1000_setup_all_tx_resources(struct e1000_adapter * adapter)1569 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1570 {
1571 	int i, err = 0;
1572 
1573 	for (i = 0; i < adapter->num_tx_queues; i++) {
1574 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1575 		if (err) {
1576 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1577 			for (i-- ; i >= 0; i--)
1578 				e1000_free_tx_resources(adapter,
1579 							&adapter->tx_ring[i]);
1580 			break;
1581 		}
1582 	}
1583 
1584 	return err;
1585 }
1586 
1587 /**
1588  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1589  * @adapter: board private structure
1590  *
1591  * Configure the Tx unit of the MAC after a reset.
1592  **/
e1000_configure_tx(struct e1000_adapter * adapter)1593 static void e1000_configure_tx(struct e1000_adapter *adapter)
1594 {
1595 	u64 tdba;
1596 	struct e1000_hw *hw = &adapter->hw;
1597 	u32 tdlen, tctl, tipg;
1598 	u32 ipgr1, ipgr2;
1599 
1600 	/* Setup the HW Tx Head and Tail descriptor pointers */
1601 
1602 	switch (adapter->num_tx_queues) {
1603 	case 1:
1604 	default:
1605 		tdba = adapter->tx_ring[0].dma;
1606 		tdlen = adapter->tx_ring[0].count *
1607 			sizeof(struct e1000_tx_desc);
1608 		ew32(TDLEN, tdlen);
1609 		ew32(TDBAH, (tdba >> 32));
1610 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1611 		ew32(TDT, 0);
1612 		ew32(TDH, 0);
1613 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1614 					   E1000_TDH : E1000_82542_TDH);
1615 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1616 					   E1000_TDT : E1000_82542_TDT);
1617 		break;
1618 	}
1619 
1620 	/* Set the default values for the Tx Inter Packet Gap timer */
1621 	if ((hw->media_type == e1000_media_type_fiber ||
1622 	     hw->media_type == e1000_media_type_internal_serdes))
1623 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1624 	else
1625 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1626 
1627 	switch (hw->mac_type) {
1628 	case e1000_82542_rev2_0:
1629 	case e1000_82542_rev2_1:
1630 		tipg = DEFAULT_82542_TIPG_IPGT;
1631 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1632 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1633 		break;
1634 	default:
1635 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1636 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1637 		break;
1638 	}
1639 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1640 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1641 	ew32(TIPG, tipg);
1642 
1643 	/* Set the Tx Interrupt Delay register */
1644 
1645 	ew32(TIDV, adapter->tx_int_delay);
1646 	if (hw->mac_type >= e1000_82540)
1647 		ew32(TADV, adapter->tx_abs_int_delay);
1648 
1649 	/* Program the Transmit Control Register */
1650 
1651 	tctl = er32(TCTL);
1652 	tctl &= ~E1000_TCTL_CT;
1653 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1654 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1655 
1656 	e1000_config_collision_dist(hw);
1657 
1658 	/* Setup Transmit Descriptor Settings for eop descriptor */
1659 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1660 
1661 	/* only set IDE if we are delaying interrupts using the timers */
1662 	if (adapter->tx_int_delay)
1663 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1664 
1665 	if (hw->mac_type < e1000_82543)
1666 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1667 	else
1668 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1669 
1670 	/* Cache if we're 82544 running in PCI-X because we'll
1671 	 * need this to apply a workaround later in the send path.
1672 	 */
1673 	if (hw->mac_type == e1000_82544 &&
1674 	    hw->bus_type == e1000_bus_type_pcix)
1675 		adapter->pcix_82544 = true;
1676 
1677 	ew32(TCTL, tctl);
1678 
1679 }
1680 
1681 /**
1682  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1683  * @adapter: board private structure
1684  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1685  *
1686  * Returns 0 on success, negative on failure
1687  **/
e1000_setup_rx_resources(struct e1000_adapter * adapter,struct e1000_rx_ring * rxdr)1688 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1689 				    struct e1000_rx_ring *rxdr)
1690 {
1691 	struct pci_dev *pdev = adapter->pdev;
1692 	int size, desc_len;
1693 
1694 	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1695 	rxdr->buffer_info = vzalloc(size);
1696 	if (!rxdr->buffer_info)
1697 		return -ENOMEM;
1698 
1699 	desc_len = sizeof(struct e1000_rx_desc);
1700 
1701 	/* Round up to nearest 4K */
1702 
1703 	rxdr->size = rxdr->count * desc_len;
1704 	rxdr->size = ALIGN(rxdr->size, 4096);
1705 
1706 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1707 					GFP_KERNEL);
1708 	if (!rxdr->desc) {
1709 setup_rx_desc_die:
1710 		vfree(rxdr->buffer_info);
1711 		return -ENOMEM;
1712 	}
1713 
1714 	/* Fix for errata 23, can't cross 64kB boundary */
1715 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1716 		void *olddesc = rxdr->desc;
1717 		dma_addr_t olddma = rxdr->dma;
1718 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1719 		      rxdr->size, rxdr->desc);
1720 		/* Try again, without freeing the previous */
1721 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1722 						&rxdr->dma, GFP_KERNEL);
1723 		/* Failed allocation, critical failure */
1724 		if (!rxdr->desc) {
1725 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1726 					  olddma);
1727 			goto setup_rx_desc_die;
1728 		}
1729 
1730 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1731 			/* give up */
1732 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1733 					  rxdr->dma);
1734 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1735 					  olddma);
1736 			e_err(probe, "Unable to allocate aligned memory for "
1737 			      "the Rx descriptor ring\n");
1738 			goto setup_rx_desc_die;
1739 		} else {
1740 			/* Free old allocation, new allocation was successful */
1741 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1742 					  olddma);
1743 		}
1744 	}
1745 	memset(rxdr->desc, 0, rxdr->size);
1746 
1747 	rxdr->next_to_clean = 0;
1748 	rxdr->next_to_use = 0;
1749 	rxdr->rx_skb_top = NULL;
1750 
1751 	return 0;
1752 }
1753 
1754 /**
1755  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1756  * 				  (Descriptors) for all queues
1757  * @adapter: board private structure
1758  *
1759  * Return 0 on success, negative on failure
1760  **/
e1000_setup_all_rx_resources(struct e1000_adapter * adapter)1761 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1762 {
1763 	int i, err = 0;
1764 
1765 	for (i = 0; i < adapter->num_rx_queues; i++) {
1766 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1767 		if (err) {
1768 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1769 			for (i-- ; i >= 0; i--)
1770 				e1000_free_rx_resources(adapter,
1771 							&adapter->rx_ring[i]);
1772 			break;
1773 		}
1774 	}
1775 
1776 	return err;
1777 }
1778 
1779 /**
1780  * e1000_setup_rctl - configure the receive control registers
1781  * @adapter: Board private structure
1782  **/
e1000_setup_rctl(struct e1000_adapter * adapter)1783 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1784 {
1785 	struct e1000_hw *hw = &adapter->hw;
1786 	u32 rctl;
1787 
1788 	rctl = er32(RCTL);
1789 
1790 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1791 
1792 	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1793 		E1000_RCTL_RDMTS_HALF |
1794 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1795 
1796 	if (hw->tbi_compatibility_on == 1)
1797 		rctl |= E1000_RCTL_SBP;
1798 	else
1799 		rctl &= ~E1000_RCTL_SBP;
1800 
1801 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1802 		rctl &= ~E1000_RCTL_LPE;
1803 	else
1804 		rctl |= E1000_RCTL_LPE;
1805 
1806 	/* Setup buffer sizes */
1807 	rctl &= ~E1000_RCTL_SZ_4096;
1808 	rctl |= E1000_RCTL_BSEX;
1809 	switch (adapter->rx_buffer_len) {
1810 	case E1000_RXBUFFER_2048:
1811 	default:
1812 		rctl |= E1000_RCTL_SZ_2048;
1813 		rctl &= ~E1000_RCTL_BSEX;
1814 		break;
1815 	case E1000_RXBUFFER_4096:
1816 		rctl |= E1000_RCTL_SZ_4096;
1817 		break;
1818 	case E1000_RXBUFFER_8192:
1819 		rctl |= E1000_RCTL_SZ_8192;
1820 		break;
1821 	case E1000_RXBUFFER_16384:
1822 		rctl |= E1000_RCTL_SZ_16384;
1823 		break;
1824 	}
1825 
1826 	/* This is useful for sniffing bad packets. */
1827 	if (adapter->netdev->features & NETIF_F_RXALL) {
1828 		/* UPE and MPE will be handled by normal PROMISC logic
1829 		 * in e1000e_set_rx_mode
1830 		 */
1831 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1832 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1833 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1834 
1835 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1836 			  E1000_RCTL_DPF | /* Allow filtered pause */
1837 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1838 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1839 		 * and that breaks VLANs.
1840 		 */
1841 	}
1842 
1843 	ew32(RCTL, rctl);
1844 }
1845 
1846 /**
1847  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1848  * @adapter: board private structure
1849  *
1850  * Configure the Rx unit of the MAC after a reset.
1851  **/
e1000_configure_rx(struct e1000_adapter * adapter)1852 static void e1000_configure_rx(struct e1000_adapter *adapter)
1853 {
1854 	u64 rdba;
1855 	struct e1000_hw *hw = &adapter->hw;
1856 	u32 rdlen, rctl, rxcsum;
1857 
1858 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1859 		rdlen = adapter->rx_ring[0].count *
1860 			sizeof(struct e1000_rx_desc);
1861 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1862 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1863 	} else {
1864 		rdlen = adapter->rx_ring[0].count *
1865 			sizeof(struct e1000_rx_desc);
1866 		adapter->clean_rx = e1000_clean_rx_irq;
1867 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1868 	}
1869 
1870 	/* disable receives while setting up the descriptors */
1871 	rctl = er32(RCTL);
1872 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1873 
1874 	/* set the Receive Delay Timer Register */
1875 	ew32(RDTR, adapter->rx_int_delay);
1876 
1877 	if (hw->mac_type >= e1000_82540) {
1878 		ew32(RADV, adapter->rx_abs_int_delay);
1879 		if (adapter->itr_setting != 0)
1880 			ew32(ITR, 1000000000 / (adapter->itr * 256));
1881 	}
1882 
1883 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1884 	 * the Base and Length of the Rx Descriptor Ring
1885 	 */
1886 	switch (adapter->num_rx_queues) {
1887 	case 1:
1888 	default:
1889 		rdba = adapter->rx_ring[0].dma;
1890 		ew32(RDLEN, rdlen);
1891 		ew32(RDBAH, (rdba >> 32));
1892 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1893 		ew32(RDT, 0);
1894 		ew32(RDH, 0);
1895 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1896 					   E1000_RDH : E1000_82542_RDH);
1897 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1898 					   E1000_RDT : E1000_82542_RDT);
1899 		break;
1900 	}
1901 
1902 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1903 	if (hw->mac_type >= e1000_82543) {
1904 		rxcsum = er32(RXCSUM);
1905 		if (adapter->rx_csum)
1906 			rxcsum |= E1000_RXCSUM_TUOFL;
1907 		else
1908 			/* don't need to clear IPPCSE as it defaults to 0 */
1909 			rxcsum &= ~E1000_RXCSUM_TUOFL;
1910 		ew32(RXCSUM, rxcsum);
1911 	}
1912 
1913 	/* Enable Receives */
1914 	ew32(RCTL, rctl | E1000_RCTL_EN);
1915 }
1916 
1917 /**
1918  * e1000_free_tx_resources - Free Tx Resources per Queue
1919  * @adapter: board private structure
1920  * @tx_ring: Tx descriptor ring for a specific queue
1921  *
1922  * Free all transmit software resources
1923  **/
e1000_free_tx_resources(struct e1000_adapter * adapter,struct e1000_tx_ring * tx_ring)1924 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1925 				    struct e1000_tx_ring *tx_ring)
1926 {
1927 	struct pci_dev *pdev = adapter->pdev;
1928 
1929 	e1000_clean_tx_ring(adapter, tx_ring);
1930 
1931 	vfree(tx_ring->buffer_info);
1932 	tx_ring->buffer_info = NULL;
1933 
1934 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1935 			  tx_ring->dma);
1936 
1937 	tx_ring->desc = NULL;
1938 }
1939 
1940 /**
1941  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1942  * @adapter: board private structure
1943  *
1944  * Free all transmit software resources
1945  **/
e1000_free_all_tx_resources(struct e1000_adapter * adapter)1946 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1947 {
1948 	int i;
1949 
1950 	for (i = 0; i < adapter->num_tx_queues; i++)
1951 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1952 }
1953 
1954 static void
e1000_unmap_and_free_tx_resource(struct e1000_adapter * adapter,struct e1000_tx_buffer * buffer_info)1955 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1956 				 struct e1000_tx_buffer *buffer_info)
1957 {
1958 	if (buffer_info->dma) {
1959 		if (buffer_info->mapped_as_page)
1960 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1961 				       buffer_info->length, DMA_TO_DEVICE);
1962 		else
1963 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1964 					 buffer_info->length,
1965 					 DMA_TO_DEVICE);
1966 		buffer_info->dma = 0;
1967 	}
1968 	if (buffer_info->skb) {
1969 		dev_kfree_skb_any(buffer_info->skb);
1970 		buffer_info->skb = NULL;
1971 	}
1972 	buffer_info->time_stamp = 0;
1973 	/* buffer_info must be completely set up in the transmit path */
1974 }
1975 
1976 /**
1977  * e1000_clean_tx_ring - Free Tx Buffers
1978  * @adapter: board private structure
1979  * @tx_ring: ring to be cleaned
1980  **/
e1000_clean_tx_ring(struct e1000_adapter * adapter,struct e1000_tx_ring * tx_ring)1981 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1982 				struct e1000_tx_ring *tx_ring)
1983 {
1984 	struct e1000_hw *hw = &adapter->hw;
1985 	struct e1000_tx_buffer *buffer_info;
1986 	unsigned long size;
1987 	unsigned int i;
1988 
1989 	/* Free all the Tx ring sk_buffs */
1990 
1991 	for (i = 0; i < tx_ring->count; i++) {
1992 		buffer_info = &tx_ring->buffer_info[i];
1993 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1994 	}
1995 
1996 	netdev_reset_queue(adapter->netdev);
1997 	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
1998 	memset(tx_ring->buffer_info, 0, size);
1999 
2000 	/* Zero out the descriptor ring */
2001 
2002 	memset(tx_ring->desc, 0, tx_ring->size);
2003 
2004 	tx_ring->next_to_use = 0;
2005 	tx_ring->next_to_clean = 0;
2006 	tx_ring->last_tx_tso = false;
2007 
2008 	writel(0, hw->hw_addr + tx_ring->tdh);
2009 	writel(0, hw->hw_addr + tx_ring->tdt);
2010 }
2011 
2012 /**
2013  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2014  * @adapter: board private structure
2015  **/
e1000_clean_all_tx_rings(struct e1000_adapter * adapter)2016 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2017 {
2018 	int i;
2019 
2020 	for (i = 0; i < adapter->num_tx_queues; i++)
2021 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2022 }
2023 
2024 /**
2025  * e1000_free_rx_resources - Free Rx Resources
2026  * @adapter: board private structure
2027  * @rx_ring: ring to clean the resources from
2028  *
2029  * Free all receive software resources
2030  **/
e1000_free_rx_resources(struct e1000_adapter * adapter,struct e1000_rx_ring * rx_ring)2031 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2032 				    struct e1000_rx_ring *rx_ring)
2033 {
2034 	struct pci_dev *pdev = adapter->pdev;
2035 
2036 	e1000_clean_rx_ring(adapter, rx_ring);
2037 
2038 	vfree(rx_ring->buffer_info);
2039 	rx_ring->buffer_info = NULL;
2040 
2041 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2042 			  rx_ring->dma);
2043 
2044 	rx_ring->desc = NULL;
2045 }
2046 
2047 /**
2048  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2049  * @adapter: board private structure
2050  *
2051  * Free all receive software resources
2052  **/
e1000_free_all_rx_resources(struct e1000_adapter * adapter)2053 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2054 {
2055 	int i;
2056 
2057 	for (i = 0; i < adapter->num_rx_queues; i++)
2058 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2059 }
2060 
2061 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
e1000_frag_len(const struct e1000_adapter * a)2062 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2063 {
2064 	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2065 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2066 }
2067 
e1000_alloc_frag(const struct e1000_adapter * a)2068 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2069 {
2070 	unsigned int len = e1000_frag_len(a);
2071 	u8 *data = netdev_alloc_frag(len);
2072 
2073 	if (likely(data))
2074 		data += E1000_HEADROOM;
2075 	return data;
2076 }
2077 
2078 /**
2079  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2080  * @adapter: board private structure
2081  * @rx_ring: ring to free buffers from
2082  **/
e1000_clean_rx_ring(struct e1000_adapter * adapter,struct e1000_rx_ring * rx_ring)2083 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2084 				struct e1000_rx_ring *rx_ring)
2085 {
2086 	struct e1000_hw *hw = &adapter->hw;
2087 	struct e1000_rx_buffer *buffer_info;
2088 	struct pci_dev *pdev = adapter->pdev;
2089 	unsigned long size;
2090 	unsigned int i;
2091 
2092 	/* Free all the Rx netfrags */
2093 	for (i = 0; i < rx_ring->count; i++) {
2094 		buffer_info = &rx_ring->buffer_info[i];
2095 		if (adapter->clean_rx == e1000_clean_rx_irq) {
2096 			if (buffer_info->dma)
2097 				dma_unmap_single(&pdev->dev, buffer_info->dma,
2098 						 adapter->rx_buffer_len,
2099 						 DMA_FROM_DEVICE);
2100 			if (buffer_info->rxbuf.data) {
2101 				skb_free_frag(buffer_info->rxbuf.data);
2102 				buffer_info->rxbuf.data = NULL;
2103 			}
2104 		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2105 			if (buffer_info->dma)
2106 				dma_unmap_page(&pdev->dev, buffer_info->dma,
2107 					       adapter->rx_buffer_len,
2108 					       DMA_FROM_DEVICE);
2109 			if (buffer_info->rxbuf.page) {
2110 				put_page(buffer_info->rxbuf.page);
2111 				buffer_info->rxbuf.page = NULL;
2112 			}
2113 		}
2114 
2115 		buffer_info->dma = 0;
2116 	}
2117 
2118 	/* there also may be some cached data from a chained receive */
2119 	napi_free_frags(&adapter->napi);
2120 	rx_ring->rx_skb_top = NULL;
2121 
2122 	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2123 	memset(rx_ring->buffer_info, 0, size);
2124 
2125 	/* Zero out the descriptor ring */
2126 	memset(rx_ring->desc, 0, rx_ring->size);
2127 
2128 	rx_ring->next_to_clean = 0;
2129 	rx_ring->next_to_use = 0;
2130 
2131 	writel(0, hw->hw_addr + rx_ring->rdh);
2132 	writel(0, hw->hw_addr + rx_ring->rdt);
2133 }
2134 
2135 /**
2136  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2137  * @adapter: board private structure
2138  **/
e1000_clean_all_rx_rings(struct e1000_adapter * adapter)2139 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2140 {
2141 	int i;
2142 
2143 	for (i = 0; i < adapter->num_rx_queues; i++)
2144 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2145 }
2146 
2147 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2148  * and memory write and invalidate disabled for certain operations
2149  */
e1000_enter_82542_rst(struct e1000_adapter * adapter)2150 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2151 {
2152 	struct e1000_hw *hw = &adapter->hw;
2153 	struct net_device *netdev = adapter->netdev;
2154 	u32 rctl;
2155 
2156 	e1000_pci_clear_mwi(hw);
2157 
2158 	rctl = er32(RCTL);
2159 	rctl |= E1000_RCTL_RST;
2160 	ew32(RCTL, rctl);
2161 	E1000_WRITE_FLUSH();
2162 	mdelay(5);
2163 
2164 	if (netif_running(netdev))
2165 		e1000_clean_all_rx_rings(adapter);
2166 }
2167 
e1000_leave_82542_rst(struct e1000_adapter * adapter)2168 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2169 {
2170 	struct e1000_hw *hw = &adapter->hw;
2171 	struct net_device *netdev = adapter->netdev;
2172 	u32 rctl;
2173 
2174 	rctl = er32(RCTL);
2175 	rctl &= ~E1000_RCTL_RST;
2176 	ew32(RCTL, rctl);
2177 	E1000_WRITE_FLUSH();
2178 	mdelay(5);
2179 
2180 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2181 		e1000_pci_set_mwi(hw);
2182 
2183 	if (netif_running(netdev)) {
2184 		/* No need to loop, because 82542 supports only 1 queue */
2185 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2186 		e1000_configure_rx(adapter);
2187 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2188 	}
2189 }
2190 
2191 /**
2192  * e1000_set_mac - Change the Ethernet Address of the NIC
2193  * @netdev: network interface device structure
2194  * @p: pointer to an address structure
2195  *
2196  * Returns 0 on success, negative on failure
2197  **/
e1000_set_mac(struct net_device * netdev,void * p)2198 static int e1000_set_mac(struct net_device *netdev, void *p)
2199 {
2200 	struct e1000_adapter *adapter = netdev_priv(netdev);
2201 	struct e1000_hw *hw = &adapter->hw;
2202 	struct sockaddr *addr = p;
2203 
2204 	if (!is_valid_ether_addr(addr->sa_data))
2205 		return -EADDRNOTAVAIL;
2206 
2207 	/* 82542 2.0 needs to be in reset to write receive address registers */
2208 
2209 	if (hw->mac_type == e1000_82542_rev2_0)
2210 		e1000_enter_82542_rst(adapter);
2211 
2212 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2213 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2214 
2215 	e1000_rar_set(hw, hw->mac_addr, 0);
2216 
2217 	if (hw->mac_type == e1000_82542_rev2_0)
2218 		e1000_leave_82542_rst(adapter);
2219 
2220 	return 0;
2221 }
2222 
2223 /**
2224  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2225  * @netdev: network interface device structure
2226  *
2227  * The set_rx_mode entry point is called whenever the unicast or multicast
2228  * address lists or the network interface flags are updated. This routine is
2229  * responsible for configuring the hardware for proper unicast, multicast,
2230  * promiscuous mode, and all-multi behavior.
2231  **/
e1000_set_rx_mode(struct net_device * netdev)2232 static void e1000_set_rx_mode(struct net_device *netdev)
2233 {
2234 	struct e1000_adapter *adapter = netdev_priv(netdev);
2235 	struct e1000_hw *hw = &adapter->hw;
2236 	struct netdev_hw_addr *ha;
2237 	bool use_uc = false;
2238 	u32 rctl;
2239 	u32 hash_value;
2240 	int i, rar_entries = E1000_RAR_ENTRIES;
2241 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2242 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2243 
2244 	if (!mcarray)
2245 		return;
2246 
2247 	/* Check for Promiscuous and All Multicast modes */
2248 
2249 	rctl = er32(RCTL);
2250 
2251 	if (netdev->flags & IFF_PROMISC) {
2252 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2253 		rctl &= ~E1000_RCTL_VFE;
2254 	} else {
2255 		if (netdev->flags & IFF_ALLMULTI)
2256 			rctl |= E1000_RCTL_MPE;
2257 		else
2258 			rctl &= ~E1000_RCTL_MPE;
2259 		/* Enable VLAN filter if there is a VLAN */
2260 		if (e1000_vlan_used(adapter))
2261 			rctl |= E1000_RCTL_VFE;
2262 	}
2263 
2264 	if (netdev_uc_count(netdev) > rar_entries - 1) {
2265 		rctl |= E1000_RCTL_UPE;
2266 	} else if (!(netdev->flags & IFF_PROMISC)) {
2267 		rctl &= ~E1000_RCTL_UPE;
2268 		use_uc = true;
2269 	}
2270 
2271 	ew32(RCTL, rctl);
2272 
2273 	/* 82542 2.0 needs to be in reset to write receive address registers */
2274 
2275 	if (hw->mac_type == e1000_82542_rev2_0)
2276 		e1000_enter_82542_rst(adapter);
2277 
2278 	/* load the first 14 addresses into the exact filters 1-14. Unicast
2279 	 * addresses take precedence to avoid disabling unicast filtering
2280 	 * when possible.
2281 	 *
2282 	 * RAR 0 is used for the station MAC address
2283 	 * if there are not 14 addresses, go ahead and clear the filters
2284 	 */
2285 	i = 1;
2286 	if (use_uc)
2287 		netdev_for_each_uc_addr(ha, netdev) {
2288 			if (i == rar_entries)
2289 				break;
2290 			e1000_rar_set(hw, ha->addr, i++);
2291 		}
2292 
2293 	netdev_for_each_mc_addr(ha, netdev) {
2294 		if (i == rar_entries) {
2295 			/* load any remaining addresses into the hash table */
2296 			u32 hash_reg, hash_bit, mta;
2297 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2298 			hash_reg = (hash_value >> 5) & 0x7F;
2299 			hash_bit = hash_value & 0x1F;
2300 			mta = (1 << hash_bit);
2301 			mcarray[hash_reg] |= mta;
2302 		} else {
2303 			e1000_rar_set(hw, ha->addr, i++);
2304 		}
2305 	}
2306 
2307 	for (; i < rar_entries; i++) {
2308 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2309 		E1000_WRITE_FLUSH();
2310 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2311 		E1000_WRITE_FLUSH();
2312 	}
2313 
2314 	/* write the hash table completely, write from bottom to avoid
2315 	 * both stupid write combining chipsets, and flushing each write
2316 	 */
2317 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2318 		/* If we are on an 82544 has an errata where writing odd
2319 		 * offsets overwrites the previous even offset, but writing
2320 		 * backwards over the range solves the issue by always
2321 		 * writing the odd offset first
2322 		 */
2323 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2324 	}
2325 	E1000_WRITE_FLUSH();
2326 
2327 	if (hw->mac_type == e1000_82542_rev2_0)
2328 		e1000_leave_82542_rst(adapter);
2329 
2330 	kfree(mcarray);
2331 }
2332 
2333 /**
2334  * e1000_update_phy_info_task - get phy info
2335  * @work: work struct contained inside adapter struct
2336  *
2337  * Need to wait a few seconds after link up to get diagnostic information from
2338  * the phy
2339  */
e1000_update_phy_info_task(struct work_struct * work)2340 static void e1000_update_phy_info_task(struct work_struct *work)
2341 {
2342 	struct e1000_adapter *adapter = container_of(work,
2343 						     struct e1000_adapter,
2344 						     phy_info_task.work);
2345 
2346 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2347 }
2348 
2349 /**
2350  * e1000_82547_tx_fifo_stall_task - task to complete work
2351  * @work: work struct contained inside adapter struct
2352  **/
e1000_82547_tx_fifo_stall_task(struct work_struct * work)2353 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2354 {
2355 	struct e1000_adapter *adapter = container_of(work,
2356 						     struct e1000_adapter,
2357 						     fifo_stall_task.work);
2358 	struct e1000_hw *hw = &adapter->hw;
2359 	struct net_device *netdev = adapter->netdev;
2360 	u32 tctl;
2361 
2362 	if (atomic_read(&adapter->tx_fifo_stall)) {
2363 		if ((er32(TDT) == er32(TDH)) &&
2364 		   (er32(TDFT) == er32(TDFH)) &&
2365 		   (er32(TDFTS) == er32(TDFHS))) {
2366 			tctl = er32(TCTL);
2367 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2368 			ew32(TDFT, adapter->tx_head_addr);
2369 			ew32(TDFH, adapter->tx_head_addr);
2370 			ew32(TDFTS, adapter->tx_head_addr);
2371 			ew32(TDFHS, adapter->tx_head_addr);
2372 			ew32(TCTL, tctl);
2373 			E1000_WRITE_FLUSH();
2374 
2375 			adapter->tx_fifo_head = 0;
2376 			atomic_set(&adapter->tx_fifo_stall, 0);
2377 			netif_wake_queue(netdev);
2378 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2379 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2380 		}
2381 	}
2382 }
2383 
e1000_has_link(struct e1000_adapter * adapter)2384 bool e1000_has_link(struct e1000_adapter *adapter)
2385 {
2386 	struct e1000_hw *hw = &adapter->hw;
2387 	bool link_active = false;
2388 
2389 	/* get_link_status is set on LSC (link status) interrupt or rx
2390 	 * sequence error interrupt (except on intel ce4100).
2391 	 * get_link_status will stay false until the
2392 	 * e1000_check_for_link establishes link for copper adapters
2393 	 * ONLY
2394 	 */
2395 	switch (hw->media_type) {
2396 	case e1000_media_type_copper:
2397 		if (hw->mac_type == e1000_ce4100)
2398 			hw->get_link_status = 1;
2399 		if (hw->get_link_status) {
2400 			e1000_check_for_link(hw);
2401 			link_active = !hw->get_link_status;
2402 		} else {
2403 			link_active = true;
2404 		}
2405 		break;
2406 	case e1000_media_type_fiber:
2407 		e1000_check_for_link(hw);
2408 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2409 		break;
2410 	case e1000_media_type_internal_serdes:
2411 		e1000_check_for_link(hw);
2412 		link_active = hw->serdes_has_link;
2413 		break;
2414 	default:
2415 		break;
2416 	}
2417 
2418 	return link_active;
2419 }
2420 
2421 /**
2422  * e1000_watchdog - work function
2423  * @work: work struct contained inside adapter struct
2424  **/
e1000_watchdog(struct work_struct * work)2425 static void e1000_watchdog(struct work_struct *work)
2426 {
2427 	struct e1000_adapter *adapter = container_of(work,
2428 						     struct e1000_adapter,
2429 						     watchdog_task.work);
2430 	struct e1000_hw *hw = &adapter->hw;
2431 	struct net_device *netdev = adapter->netdev;
2432 	struct e1000_tx_ring *txdr = adapter->tx_ring;
2433 	u32 link, tctl;
2434 
2435 	link = e1000_has_link(adapter);
2436 	if ((netif_carrier_ok(netdev)) && link)
2437 		goto link_up;
2438 
2439 	if (link) {
2440 		if (!netif_carrier_ok(netdev)) {
2441 			u32 ctrl;
2442 			/* update snapshot of PHY registers on LSC */
2443 			e1000_get_speed_and_duplex(hw,
2444 						   &adapter->link_speed,
2445 						   &adapter->link_duplex);
2446 
2447 			ctrl = er32(CTRL);
2448 			pr_info("%s NIC Link is Up %d Mbps %s, "
2449 				"Flow Control: %s\n",
2450 				netdev->name,
2451 				adapter->link_speed,
2452 				adapter->link_duplex == FULL_DUPLEX ?
2453 				"Full Duplex" : "Half Duplex",
2454 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2455 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2456 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2457 				E1000_CTRL_TFCE) ? "TX" : "None")));
2458 
2459 			/* adjust timeout factor according to speed/duplex */
2460 			adapter->tx_timeout_factor = 1;
2461 			switch (adapter->link_speed) {
2462 			case SPEED_10:
2463 				adapter->tx_timeout_factor = 16;
2464 				break;
2465 			case SPEED_100:
2466 				/* maybe add some timeout factor ? */
2467 				break;
2468 			}
2469 
2470 			/* enable transmits in the hardware */
2471 			tctl = er32(TCTL);
2472 			tctl |= E1000_TCTL_EN;
2473 			ew32(TCTL, tctl);
2474 
2475 			netif_carrier_on(netdev);
2476 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2477 				schedule_delayed_work(&adapter->phy_info_task,
2478 						      2 * HZ);
2479 			adapter->smartspeed = 0;
2480 		}
2481 	} else {
2482 		if (netif_carrier_ok(netdev)) {
2483 			adapter->link_speed = 0;
2484 			adapter->link_duplex = 0;
2485 			pr_info("%s NIC Link is Down\n",
2486 				netdev->name);
2487 			netif_carrier_off(netdev);
2488 
2489 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2490 				schedule_delayed_work(&adapter->phy_info_task,
2491 						      2 * HZ);
2492 		}
2493 
2494 		e1000_smartspeed(adapter);
2495 	}
2496 
2497 link_up:
2498 	e1000_update_stats(adapter);
2499 
2500 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2501 	adapter->tpt_old = adapter->stats.tpt;
2502 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2503 	adapter->colc_old = adapter->stats.colc;
2504 
2505 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2506 	adapter->gorcl_old = adapter->stats.gorcl;
2507 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2508 	adapter->gotcl_old = adapter->stats.gotcl;
2509 
2510 	e1000_update_adaptive(hw);
2511 
2512 	if (!netif_carrier_ok(netdev)) {
2513 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2514 			/* We've lost link, so the controller stops DMA,
2515 			 * but we've got queued Tx work that's never going
2516 			 * to get done, so reset controller to flush Tx.
2517 			 * (Do the reset outside of interrupt context).
2518 			 */
2519 			adapter->tx_timeout_count++;
2520 			schedule_work(&adapter->reset_task);
2521 			/* exit immediately since reset is imminent */
2522 			return;
2523 		}
2524 	}
2525 
2526 	/* Simple mode for Interrupt Throttle Rate (ITR) */
2527 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2528 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2529 		 * Total asymmetrical Tx or Rx gets ITR=8000;
2530 		 * everyone else is between 2000-8000.
2531 		 */
2532 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2533 		u32 dif = (adapter->gotcl > adapter->gorcl ?
2534 			    adapter->gotcl - adapter->gorcl :
2535 			    adapter->gorcl - adapter->gotcl) / 10000;
2536 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2537 
2538 		ew32(ITR, 1000000000 / (itr * 256));
2539 	}
2540 
2541 	/* Cause software interrupt to ensure rx ring is cleaned */
2542 	ew32(ICS, E1000_ICS_RXDMT0);
2543 
2544 	/* Force detection of hung controller every watchdog period */
2545 	adapter->detect_tx_hung = true;
2546 
2547 	/* Reschedule the task */
2548 	if (!test_bit(__E1000_DOWN, &adapter->flags))
2549 		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2550 }
2551 
2552 enum latency_range {
2553 	lowest_latency = 0,
2554 	low_latency = 1,
2555 	bulk_latency = 2,
2556 	latency_invalid = 255
2557 };
2558 
2559 /**
2560  * e1000_update_itr - update the dynamic ITR value based on statistics
2561  * @adapter: pointer to adapter
2562  * @itr_setting: current adapter->itr
2563  * @packets: the number of packets during this measurement interval
2564  * @bytes: the number of bytes during this measurement interval
2565  *
2566  *      Stores a new ITR value based on packets and byte
2567  *      counts during the last interrupt.  The advantage of per interrupt
2568  *      computation is faster updates and more accurate ITR for the current
2569  *      traffic pattern.  Constants in this function were computed
2570  *      based on theoretical maximum wire speed and thresholds were set based
2571  *      on testing data as well as attempting to minimize response time
2572  *      while increasing bulk throughput.
2573  *      this functionality is controlled by the InterruptThrottleRate module
2574  *      parameter (see e1000_param.c)
2575  **/
e1000_update_itr(struct e1000_adapter * adapter,u16 itr_setting,int packets,int bytes)2576 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2577 				     u16 itr_setting, int packets, int bytes)
2578 {
2579 	unsigned int retval = itr_setting;
2580 	struct e1000_hw *hw = &adapter->hw;
2581 
2582 	if (unlikely(hw->mac_type < e1000_82540))
2583 		goto update_itr_done;
2584 
2585 	if (packets == 0)
2586 		goto update_itr_done;
2587 
2588 	switch (itr_setting) {
2589 	case lowest_latency:
2590 		/* jumbo frames get bulk treatment*/
2591 		if (bytes/packets > 8000)
2592 			retval = bulk_latency;
2593 		else if ((packets < 5) && (bytes > 512))
2594 			retval = low_latency;
2595 		break;
2596 	case low_latency:  /* 50 usec aka 20000 ints/s */
2597 		if (bytes > 10000) {
2598 			/* jumbo frames need bulk latency setting */
2599 			if (bytes/packets > 8000)
2600 				retval = bulk_latency;
2601 			else if ((packets < 10) || ((bytes/packets) > 1200))
2602 				retval = bulk_latency;
2603 			else if ((packets > 35))
2604 				retval = lowest_latency;
2605 		} else if (bytes/packets > 2000)
2606 			retval = bulk_latency;
2607 		else if (packets <= 2 && bytes < 512)
2608 			retval = lowest_latency;
2609 		break;
2610 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2611 		if (bytes > 25000) {
2612 			if (packets > 35)
2613 				retval = low_latency;
2614 		} else if (bytes < 6000) {
2615 			retval = low_latency;
2616 		}
2617 		break;
2618 	}
2619 
2620 update_itr_done:
2621 	return retval;
2622 }
2623 
e1000_set_itr(struct e1000_adapter * adapter)2624 static void e1000_set_itr(struct e1000_adapter *adapter)
2625 {
2626 	struct e1000_hw *hw = &adapter->hw;
2627 	u16 current_itr;
2628 	u32 new_itr = adapter->itr;
2629 
2630 	if (unlikely(hw->mac_type < e1000_82540))
2631 		return;
2632 
2633 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2634 	if (unlikely(adapter->link_speed != SPEED_1000)) {
2635 		current_itr = 0;
2636 		new_itr = 4000;
2637 		goto set_itr_now;
2638 	}
2639 
2640 	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2641 					   adapter->total_tx_packets,
2642 					   adapter->total_tx_bytes);
2643 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2644 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2645 		adapter->tx_itr = low_latency;
2646 
2647 	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2648 					   adapter->total_rx_packets,
2649 					   adapter->total_rx_bytes);
2650 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2651 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2652 		adapter->rx_itr = low_latency;
2653 
2654 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2655 
2656 	switch (current_itr) {
2657 	/* counts and packets in update_itr are dependent on these numbers */
2658 	case lowest_latency:
2659 		new_itr = 70000;
2660 		break;
2661 	case low_latency:
2662 		new_itr = 20000; /* aka hwitr = ~200 */
2663 		break;
2664 	case bulk_latency:
2665 		new_itr = 4000;
2666 		break;
2667 	default:
2668 		break;
2669 	}
2670 
2671 set_itr_now:
2672 	if (new_itr != adapter->itr) {
2673 		/* this attempts to bias the interrupt rate towards Bulk
2674 		 * by adding intermediate steps when interrupt rate is
2675 		 * increasing
2676 		 */
2677 		new_itr = new_itr > adapter->itr ?
2678 			  min(adapter->itr + (new_itr >> 2), new_itr) :
2679 			  new_itr;
2680 		adapter->itr = new_itr;
2681 		ew32(ITR, 1000000000 / (new_itr * 256));
2682 	}
2683 }
2684 
2685 #define E1000_TX_FLAGS_CSUM		0x00000001
2686 #define E1000_TX_FLAGS_VLAN		0x00000002
2687 #define E1000_TX_FLAGS_TSO		0x00000004
2688 #define E1000_TX_FLAGS_IPV4		0x00000008
2689 #define E1000_TX_FLAGS_NO_FCS		0x00000010
2690 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2691 #define E1000_TX_FLAGS_VLAN_SHIFT	16
2692 
e1000_tso(struct e1000_adapter * adapter,struct e1000_tx_ring * tx_ring,struct sk_buff * skb,__be16 protocol)2693 static int e1000_tso(struct e1000_adapter *adapter,
2694 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2695 		     __be16 protocol)
2696 {
2697 	struct e1000_context_desc *context_desc;
2698 	struct e1000_tx_buffer *buffer_info;
2699 	unsigned int i;
2700 	u32 cmd_length = 0;
2701 	u16 ipcse = 0, tucse, mss;
2702 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2703 
2704 	if (skb_is_gso(skb)) {
2705 		int err;
2706 
2707 		err = skb_cow_head(skb, 0);
2708 		if (err < 0)
2709 			return err;
2710 
2711 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2712 		mss = skb_shinfo(skb)->gso_size;
2713 		if (protocol == htons(ETH_P_IP)) {
2714 			struct iphdr *iph = ip_hdr(skb);
2715 			iph->tot_len = 0;
2716 			iph->check = 0;
2717 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2718 								 iph->daddr, 0,
2719 								 IPPROTO_TCP,
2720 								 0);
2721 			cmd_length = E1000_TXD_CMD_IP;
2722 			ipcse = skb_transport_offset(skb) - 1;
2723 		} else if (skb_is_gso_v6(skb)) {
2724 			tcp_v6_gso_csum_prep(skb);
2725 			ipcse = 0;
2726 		}
2727 		ipcss = skb_network_offset(skb);
2728 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2729 		tucss = skb_transport_offset(skb);
2730 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2731 		tucse = 0;
2732 
2733 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2734 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2735 
2736 		i = tx_ring->next_to_use;
2737 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2738 		buffer_info = &tx_ring->buffer_info[i];
2739 
2740 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2741 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2742 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2743 		context_desc->upper_setup.tcp_fields.tucss = tucss;
2744 		context_desc->upper_setup.tcp_fields.tucso = tucso;
2745 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2746 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2747 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2748 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2749 
2750 		buffer_info->time_stamp = jiffies;
2751 		buffer_info->next_to_watch = i;
2752 
2753 		if (++i == tx_ring->count)
2754 			i = 0;
2755 
2756 		tx_ring->next_to_use = i;
2757 
2758 		return true;
2759 	}
2760 	return false;
2761 }
2762 
e1000_tx_csum(struct e1000_adapter * adapter,struct e1000_tx_ring * tx_ring,struct sk_buff * skb,__be16 protocol)2763 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2764 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2765 			  __be16 protocol)
2766 {
2767 	struct e1000_context_desc *context_desc;
2768 	struct e1000_tx_buffer *buffer_info;
2769 	unsigned int i;
2770 	u8 css;
2771 	u32 cmd_len = E1000_TXD_CMD_DEXT;
2772 
2773 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2774 		return false;
2775 
2776 	switch (protocol) {
2777 	case cpu_to_be16(ETH_P_IP):
2778 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2779 			cmd_len |= E1000_TXD_CMD_TCP;
2780 		break;
2781 	case cpu_to_be16(ETH_P_IPV6):
2782 		/* XXX not handling all IPV6 headers */
2783 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2784 			cmd_len |= E1000_TXD_CMD_TCP;
2785 		break;
2786 	default:
2787 		if (unlikely(net_ratelimit()))
2788 			e_warn(drv, "checksum_partial proto=%x!\n",
2789 			       skb->protocol);
2790 		break;
2791 	}
2792 
2793 	css = skb_checksum_start_offset(skb);
2794 
2795 	i = tx_ring->next_to_use;
2796 	buffer_info = &tx_ring->buffer_info[i];
2797 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2798 
2799 	context_desc->lower_setup.ip_config = 0;
2800 	context_desc->upper_setup.tcp_fields.tucss = css;
2801 	context_desc->upper_setup.tcp_fields.tucso =
2802 		css + skb->csum_offset;
2803 	context_desc->upper_setup.tcp_fields.tucse = 0;
2804 	context_desc->tcp_seg_setup.data = 0;
2805 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2806 
2807 	buffer_info->time_stamp = jiffies;
2808 	buffer_info->next_to_watch = i;
2809 
2810 	if (unlikely(++i == tx_ring->count))
2811 		i = 0;
2812 
2813 	tx_ring->next_to_use = i;
2814 
2815 	return true;
2816 }
2817 
2818 #define E1000_MAX_TXD_PWR	12
2819 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2820 
e1000_tx_map(struct e1000_adapter * adapter,struct e1000_tx_ring * tx_ring,struct sk_buff * skb,unsigned int first,unsigned int max_per_txd,unsigned int nr_frags,unsigned int mss)2821 static int e1000_tx_map(struct e1000_adapter *adapter,
2822 			struct e1000_tx_ring *tx_ring,
2823 			struct sk_buff *skb, unsigned int first,
2824 			unsigned int max_per_txd, unsigned int nr_frags,
2825 			unsigned int mss)
2826 {
2827 	struct e1000_hw *hw = &adapter->hw;
2828 	struct pci_dev *pdev = adapter->pdev;
2829 	struct e1000_tx_buffer *buffer_info;
2830 	unsigned int len = skb_headlen(skb);
2831 	unsigned int offset = 0, size, count = 0, i;
2832 	unsigned int f, bytecount, segs;
2833 
2834 	i = tx_ring->next_to_use;
2835 
2836 	while (len) {
2837 		buffer_info = &tx_ring->buffer_info[i];
2838 		size = min(len, max_per_txd);
2839 		/* Workaround for Controller erratum --
2840 		 * descriptor for non-tso packet in a linear SKB that follows a
2841 		 * tso gets written back prematurely before the data is fully
2842 		 * DMA'd to the controller
2843 		 */
2844 		if (!skb->data_len && tx_ring->last_tx_tso &&
2845 		    !skb_is_gso(skb)) {
2846 			tx_ring->last_tx_tso = false;
2847 			size -= 4;
2848 		}
2849 
2850 		/* Workaround for premature desc write-backs
2851 		 * in TSO mode.  Append 4-byte sentinel desc
2852 		 */
2853 		if (unlikely(mss && !nr_frags && size == len && size > 8))
2854 			size -= 4;
2855 		/* work-around for errata 10 and it applies
2856 		 * to all controllers in PCI-X mode
2857 		 * The fix is to make sure that the first descriptor of a
2858 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2859 		 */
2860 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2861 			     (size > 2015) && count == 0))
2862 			size = 2015;
2863 
2864 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2865 		 * terminating buffers within evenly-aligned dwords.
2866 		 */
2867 		if (unlikely(adapter->pcix_82544 &&
2868 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2869 		   size > 4))
2870 			size -= 4;
2871 
2872 		buffer_info->length = size;
2873 		/* set time_stamp *before* dma to help avoid a possible race */
2874 		buffer_info->time_stamp = jiffies;
2875 		buffer_info->mapped_as_page = false;
2876 		buffer_info->dma = dma_map_single(&pdev->dev,
2877 						  skb->data + offset,
2878 						  size, DMA_TO_DEVICE);
2879 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2880 			goto dma_error;
2881 		buffer_info->next_to_watch = i;
2882 
2883 		len -= size;
2884 		offset += size;
2885 		count++;
2886 		if (len) {
2887 			i++;
2888 			if (unlikely(i == tx_ring->count))
2889 				i = 0;
2890 		}
2891 	}
2892 
2893 	for (f = 0; f < nr_frags; f++) {
2894 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2895 
2896 		len = skb_frag_size(frag);
2897 		offset = 0;
2898 
2899 		while (len) {
2900 			unsigned long bufend;
2901 			i++;
2902 			if (unlikely(i == tx_ring->count))
2903 				i = 0;
2904 
2905 			buffer_info = &tx_ring->buffer_info[i];
2906 			size = min(len, max_per_txd);
2907 			/* Workaround for premature desc write-backs
2908 			 * in TSO mode.  Append 4-byte sentinel desc
2909 			 */
2910 			if (unlikely(mss && f == (nr_frags-1) &&
2911 			    size == len && size > 8))
2912 				size -= 4;
2913 			/* Workaround for potential 82544 hang in PCI-X.
2914 			 * Avoid terminating buffers within evenly-aligned
2915 			 * dwords.
2916 			 */
2917 			bufend = (unsigned long)
2918 				page_to_phys(skb_frag_page(frag));
2919 			bufend += offset + size - 1;
2920 			if (unlikely(adapter->pcix_82544 &&
2921 				     !(bufend & 4) &&
2922 				     size > 4))
2923 				size -= 4;
2924 
2925 			buffer_info->length = size;
2926 			buffer_info->time_stamp = jiffies;
2927 			buffer_info->mapped_as_page = true;
2928 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2929 						offset, size, DMA_TO_DEVICE);
2930 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2931 				goto dma_error;
2932 			buffer_info->next_to_watch = i;
2933 
2934 			len -= size;
2935 			offset += size;
2936 			count++;
2937 		}
2938 	}
2939 
2940 	segs = skb_shinfo(skb)->gso_segs ?: 1;
2941 	/* multiply data chunks by size of headers */
2942 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2943 
2944 	tx_ring->buffer_info[i].skb = skb;
2945 	tx_ring->buffer_info[i].segs = segs;
2946 	tx_ring->buffer_info[i].bytecount = bytecount;
2947 	tx_ring->buffer_info[first].next_to_watch = i;
2948 
2949 	return count;
2950 
2951 dma_error:
2952 	dev_err(&pdev->dev, "TX DMA map failed\n");
2953 	buffer_info->dma = 0;
2954 	if (count)
2955 		count--;
2956 
2957 	while (count--) {
2958 		if (i == 0)
2959 			i += tx_ring->count;
2960 		i--;
2961 		buffer_info = &tx_ring->buffer_info[i];
2962 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2963 	}
2964 
2965 	return 0;
2966 }
2967 
e1000_tx_queue(struct e1000_adapter * adapter,struct e1000_tx_ring * tx_ring,int tx_flags,int count)2968 static void e1000_tx_queue(struct e1000_adapter *adapter,
2969 			   struct e1000_tx_ring *tx_ring, int tx_flags,
2970 			   int count)
2971 {
2972 	struct e1000_tx_desc *tx_desc = NULL;
2973 	struct e1000_tx_buffer *buffer_info;
2974 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2975 	unsigned int i;
2976 
2977 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2978 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2979 			     E1000_TXD_CMD_TSE;
2980 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2981 
2982 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2983 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2984 	}
2985 
2986 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2987 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2988 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2989 	}
2990 
2991 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2992 		txd_lower |= E1000_TXD_CMD_VLE;
2993 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2994 	}
2995 
2996 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2997 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
2998 
2999 	i = tx_ring->next_to_use;
3000 
3001 	while (count--) {
3002 		buffer_info = &tx_ring->buffer_info[i];
3003 		tx_desc = E1000_TX_DESC(*tx_ring, i);
3004 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3005 		tx_desc->lower.data =
3006 			cpu_to_le32(txd_lower | buffer_info->length);
3007 		tx_desc->upper.data = cpu_to_le32(txd_upper);
3008 		if (unlikely(++i == tx_ring->count))
3009 			i = 0;
3010 	}
3011 
3012 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3013 
3014 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3015 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3016 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3017 
3018 	/* Force memory writes to complete before letting h/w
3019 	 * know there are new descriptors to fetch.  (Only
3020 	 * applicable for weak-ordered memory model archs,
3021 	 * such as IA-64).
3022 	 */
3023 	dma_wmb();
3024 
3025 	tx_ring->next_to_use = i;
3026 }
3027 
3028 /* 82547 workaround to avoid controller hang in half-duplex environment.
3029  * The workaround is to avoid queuing a large packet that would span
3030  * the internal Tx FIFO ring boundary by notifying the stack to resend
3031  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3032  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3033  * to the beginning of the Tx FIFO.
3034  */
3035 
3036 #define E1000_FIFO_HDR			0x10
3037 #define E1000_82547_PAD_LEN		0x3E0
3038 
e1000_82547_fifo_workaround(struct e1000_adapter * adapter,struct sk_buff * skb)3039 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3040 				       struct sk_buff *skb)
3041 {
3042 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3043 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3044 
3045 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3046 
3047 	if (adapter->link_duplex != HALF_DUPLEX)
3048 		goto no_fifo_stall_required;
3049 
3050 	if (atomic_read(&adapter->tx_fifo_stall))
3051 		return 1;
3052 
3053 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3054 		atomic_set(&adapter->tx_fifo_stall, 1);
3055 		return 1;
3056 	}
3057 
3058 no_fifo_stall_required:
3059 	adapter->tx_fifo_head += skb_fifo_len;
3060 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3061 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3062 	return 0;
3063 }
3064 
__e1000_maybe_stop_tx(struct net_device * netdev,int size)3065 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3066 {
3067 	struct e1000_adapter *adapter = netdev_priv(netdev);
3068 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3069 
3070 	netif_stop_queue(netdev);
3071 	/* Herbert's original patch had:
3072 	 *  smp_mb__after_netif_stop_queue();
3073 	 * but since that doesn't exist yet, just open code it.
3074 	 */
3075 	smp_mb();
3076 
3077 	/* We need to check again in a case another CPU has just
3078 	 * made room available.
3079 	 */
3080 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3081 		return -EBUSY;
3082 
3083 	/* A reprieve! */
3084 	netif_start_queue(netdev);
3085 	++adapter->restart_queue;
3086 	return 0;
3087 }
3088 
e1000_maybe_stop_tx(struct net_device * netdev,struct e1000_tx_ring * tx_ring,int size)3089 static int e1000_maybe_stop_tx(struct net_device *netdev,
3090 			       struct e1000_tx_ring *tx_ring, int size)
3091 {
3092 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3093 		return 0;
3094 	return __e1000_maybe_stop_tx(netdev, size);
3095 }
3096 
3097 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
e1000_xmit_frame(struct sk_buff * skb,struct net_device * netdev)3098 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3099 				    struct net_device *netdev)
3100 {
3101 	struct e1000_adapter *adapter = netdev_priv(netdev);
3102 	struct e1000_hw *hw = &adapter->hw;
3103 	struct e1000_tx_ring *tx_ring;
3104 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3105 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3106 	unsigned int tx_flags = 0;
3107 	unsigned int len = skb_headlen(skb);
3108 	unsigned int nr_frags;
3109 	unsigned int mss;
3110 	int count = 0;
3111 	int tso;
3112 	unsigned int f;
3113 	__be16 protocol = vlan_get_protocol(skb);
3114 
3115 	/* This goes back to the question of how to logically map a Tx queue
3116 	 * to a flow.  Right now, performance is impacted slightly negatively
3117 	 * if using multiple Tx queues.  If the stack breaks away from a
3118 	 * single qdisc implementation, we can look at this again.
3119 	 */
3120 	tx_ring = adapter->tx_ring;
3121 
3122 	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3123 	 * packets may get corrupted during padding by HW.
3124 	 * To WA this issue, pad all small packets manually.
3125 	 */
3126 	if (eth_skb_pad(skb))
3127 		return NETDEV_TX_OK;
3128 
3129 	mss = skb_shinfo(skb)->gso_size;
3130 	/* The controller does a simple calculation to
3131 	 * make sure there is enough room in the FIFO before
3132 	 * initiating the DMA for each buffer.  The calc is:
3133 	 * 4 = ceil(buffer len/mss).  To make sure we don't
3134 	 * overrun the FIFO, adjust the max buffer len if mss
3135 	 * drops.
3136 	 */
3137 	if (mss) {
3138 		u8 hdr_len;
3139 		max_per_txd = min(mss << 2, max_per_txd);
3140 		max_txd_pwr = fls(max_per_txd) - 1;
3141 
3142 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3143 		if (skb->data_len && hdr_len == len) {
3144 			switch (hw->mac_type) {
3145 			case e1000_82544: {
3146 				unsigned int pull_size;
3147 
3148 				/* Make sure we have room to chop off 4 bytes,
3149 				 * and that the end alignment will work out to
3150 				 * this hardware's requirements
3151 				 * NOTE: this is a TSO only workaround
3152 				 * if end byte alignment not correct move us
3153 				 * into the next dword
3154 				 */
3155 				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3156 				    & 4)
3157 					break;
3158 				pull_size = min((unsigned int)4, skb->data_len);
3159 				if (!__pskb_pull_tail(skb, pull_size)) {
3160 					e_err(drv, "__pskb_pull_tail "
3161 					      "failed.\n");
3162 					dev_kfree_skb_any(skb);
3163 					return NETDEV_TX_OK;
3164 				}
3165 				len = skb_headlen(skb);
3166 				break;
3167 			}
3168 			default:
3169 				/* do nothing */
3170 				break;
3171 			}
3172 		}
3173 	}
3174 
3175 	/* reserve a descriptor for the offload context */
3176 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3177 		count++;
3178 	count++;
3179 
3180 	/* Controller Erratum workaround */
3181 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3182 		count++;
3183 
3184 	count += TXD_USE_COUNT(len, max_txd_pwr);
3185 
3186 	if (adapter->pcix_82544)
3187 		count++;
3188 
3189 	/* work-around for errata 10 and it applies to all controllers
3190 	 * in PCI-X mode, so add one more descriptor to the count
3191 	 */
3192 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3193 			(len > 2015)))
3194 		count++;
3195 
3196 	nr_frags = skb_shinfo(skb)->nr_frags;
3197 	for (f = 0; f < nr_frags; f++)
3198 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3199 				       max_txd_pwr);
3200 	if (adapter->pcix_82544)
3201 		count += nr_frags;
3202 
3203 	/* need: count + 2 desc gap to keep tail from touching
3204 	 * head, otherwise try next time
3205 	 */
3206 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3207 		return NETDEV_TX_BUSY;
3208 
3209 	if (unlikely((hw->mac_type == e1000_82547) &&
3210 		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3211 		netif_stop_queue(netdev);
3212 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3213 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3214 		return NETDEV_TX_BUSY;
3215 	}
3216 
3217 	if (skb_vlan_tag_present(skb)) {
3218 		tx_flags |= E1000_TX_FLAGS_VLAN;
3219 		tx_flags |= (skb_vlan_tag_get(skb) <<
3220 			     E1000_TX_FLAGS_VLAN_SHIFT);
3221 	}
3222 
3223 	first = tx_ring->next_to_use;
3224 
3225 	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3226 	if (tso < 0) {
3227 		dev_kfree_skb_any(skb);
3228 		return NETDEV_TX_OK;
3229 	}
3230 
3231 	if (likely(tso)) {
3232 		if (likely(hw->mac_type != e1000_82544))
3233 			tx_ring->last_tx_tso = true;
3234 		tx_flags |= E1000_TX_FLAGS_TSO;
3235 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3236 		tx_flags |= E1000_TX_FLAGS_CSUM;
3237 
3238 	if (protocol == htons(ETH_P_IP))
3239 		tx_flags |= E1000_TX_FLAGS_IPV4;
3240 
3241 	if (unlikely(skb->no_fcs))
3242 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3243 
3244 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3245 			     nr_frags, mss);
3246 
3247 	if (count) {
3248 		/* The descriptors needed is higher than other Intel drivers
3249 		 * due to a number of workarounds.  The breakdown is below:
3250 		 * Data descriptors: MAX_SKB_FRAGS + 1
3251 		 * Context Descriptor: 1
3252 		 * Keep head from touching tail: 2
3253 		 * Workarounds: 3
3254 		 */
3255 		int desc_needed = MAX_SKB_FRAGS + 7;
3256 
3257 		netdev_sent_queue(netdev, skb->len);
3258 		skb_tx_timestamp(skb);
3259 
3260 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3261 
3262 		/* 82544 potentially requires twice as many data descriptors
3263 		 * in order to guarantee buffers don't end on evenly-aligned
3264 		 * dwords
3265 		 */
3266 		if (adapter->pcix_82544)
3267 			desc_needed += MAX_SKB_FRAGS + 1;
3268 
3269 		/* Make sure there is space in the ring for the next send. */
3270 		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3271 
3272 		if (!netdev_xmit_more() ||
3273 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3274 			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3275 		}
3276 	} else {
3277 		dev_kfree_skb_any(skb);
3278 		tx_ring->buffer_info[first].time_stamp = 0;
3279 		tx_ring->next_to_use = first;
3280 	}
3281 
3282 	return NETDEV_TX_OK;
3283 }
3284 
3285 #define NUM_REGS 38 /* 1 based count */
e1000_regdump(struct e1000_adapter * adapter)3286 static void e1000_regdump(struct e1000_adapter *adapter)
3287 {
3288 	struct e1000_hw *hw = &adapter->hw;
3289 	u32 regs[NUM_REGS];
3290 	u32 *regs_buff = regs;
3291 	int i = 0;
3292 
3293 	static const char * const reg_name[] = {
3294 		"CTRL",  "STATUS",
3295 		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3296 		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3297 		"TIDV", "TXDCTL", "TADV", "TARC0",
3298 		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3299 		"TXDCTL1", "TARC1",
3300 		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3301 		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3302 		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3303 	};
3304 
3305 	regs_buff[0]  = er32(CTRL);
3306 	regs_buff[1]  = er32(STATUS);
3307 
3308 	regs_buff[2]  = er32(RCTL);
3309 	regs_buff[3]  = er32(RDLEN);
3310 	regs_buff[4]  = er32(RDH);
3311 	regs_buff[5]  = er32(RDT);
3312 	regs_buff[6]  = er32(RDTR);
3313 
3314 	regs_buff[7]  = er32(TCTL);
3315 	regs_buff[8]  = er32(TDBAL);
3316 	regs_buff[9]  = er32(TDBAH);
3317 	regs_buff[10] = er32(TDLEN);
3318 	regs_buff[11] = er32(TDH);
3319 	regs_buff[12] = er32(TDT);
3320 	regs_buff[13] = er32(TIDV);
3321 	regs_buff[14] = er32(TXDCTL);
3322 	regs_buff[15] = er32(TADV);
3323 	regs_buff[16] = er32(TARC0);
3324 
3325 	regs_buff[17] = er32(TDBAL1);
3326 	regs_buff[18] = er32(TDBAH1);
3327 	regs_buff[19] = er32(TDLEN1);
3328 	regs_buff[20] = er32(TDH1);
3329 	regs_buff[21] = er32(TDT1);
3330 	regs_buff[22] = er32(TXDCTL1);
3331 	regs_buff[23] = er32(TARC1);
3332 	regs_buff[24] = er32(CTRL_EXT);
3333 	regs_buff[25] = er32(ERT);
3334 	regs_buff[26] = er32(RDBAL0);
3335 	regs_buff[27] = er32(RDBAH0);
3336 	regs_buff[28] = er32(TDFH);
3337 	regs_buff[29] = er32(TDFT);
3338 	regs_buff[30] = er32(TDFHS);
3339 	regs_buff[31] = er32(TDFTS);
3340 	regs_buff[32] = er32(TDFPC);
3341 	regs_buff[33] = er32(RDFH);
3342 	regs_buff[34] = er32(RDFT);
3343 	regs_buff[35] = er32(RDFHS);
3344 	regs_buff[36] = er32(RDFTS);
3345 	regs_buff[37] = er32(RDFPC);
3346 
3347 	pr_info("Register dump\n");
3348 	for (i = 0; i < NUM_REGS; i++)
3349 		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3350 }
3351 
3352 /*
3353  * e1000_dump: Print registers, tx ring and rx ring
3354  */
e1000_dump(struct e1000_adapter * adapter)3355 static void e1000_dump(struct e1000_adapter *adapter)
3356 {
3357 	/* this code doesn't handle multiple rings */
3358 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3359 	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3360 	int i;
3361 
3362 	if (!netif_msg_hw(adapter))
3363 		return;
3364 
3365 	/* Print Registers */
3366 	e1000_regdump(adapter);
3367 
3368 	/* transmit dump */
3369 	pr_info("TX Desc ring0 dump\n");
3370 
3371 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3372 	 *
3373 	 * Legacy Transmit Descriptor
3374 	 *   +--------------------------------------------------------------+
3375 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3376 	 *   +--------------------------------------------------------------+
3377 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3378 	 *   +--------------------------------------------------------------+
3379 	 *   63       48 47        36 35    32 31     24 23    16 15        0
3380 	 *
3381 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3382 	 *   63      48 47    40 39       32 31             16 15    8 7      0
3383 	 *   +----------------------------------------------------------------+
3384 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3385 	 *   +----------------------------------------------------------------+
3386 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3387 	 *   +----------------------------------------------------------------+
3388 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3389 	 *
3390 	 * Extended Data Descriptor (DTYP=0x1)
3391 	 *   +----------------------------------------------------------------+
3392 	 * 0 |                     Buffer Address [63:0]                      |
3393 	 *   +----------------------------------------------------------------+
3394 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3395 	 *   +----------------------------------------------------------------+
3396 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3397 	 */
3398 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3399 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3400 
3401 	if (!netif_msg_tx_done(adapter))
3402 		goto rx_ring_summary;
3403 
3404 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3405 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3406 		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3407 		struct my_u { __le64 a; __le64 b; };
3408 		struct my_u *u = (struct my_u *)tx_desc;
3409 		const char *type;
3410 
3411 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3412 			type = "NTC/U";
3413 		else if (i == tx_ring->next_to_use)
3414 			type = "NTU";
3415 		else if (i == tx_ring->next_to_clean)
3416 			type = "NTC";
3417 		else
3418 			type = "";
3419 
3420 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3421 			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3422 			le64_to_cpu(u->a), le64_to_cpu(u->b),
3423 			(u64)buffer_info->dma, buffer_info->length,
3424 			buffer_info->next_to_watch,
3425 			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3426 	}
3427 
3428 rx_ring_summary:
3429 	/* receive dump */
3430 	pr_info("\nRX Desc ring dump\n");
3431 
3432 	/* Legacy Receive Descriptor Format
3433 	 *
3434 	 * +-----------------------------------------------------+
3435 	 * |                Buffer Address [63:0]                |
3436 	 * +-----------------------------------------------------+
3437 	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3438 	 * +-----------------------------------------------------+
3439 	 * 63       48 47    40 39      32 31         16 15      0
3440 	 */
3441 	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3442 
3443 	if (!netif_msg_rx_status(adapter))
3444 		goto exit;
3445 
3446 	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3447 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3448 		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3449 		struct my_u { __le64 a; __le64 b; };
3450 		struct my_u *u = (struct my_u *)rx_desc;
3451 		const char *type;
3452 
3453 		if (i == rx_ring->next_to_use)
3454 			type = "NTU";
3455 		else if (i == rx_ring->next_to_clean)
3456 			type = "NTC";
3457 		else
3458 			type = "";
3459 
3460 		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3461 			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3462 			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3463 	} /* for */
3464 
3465 	/* dump the descriptor caches */
3466 	/* rx */
3467 	pr_info("Rx descriptor cache in 64bit format\n");
3468 	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3469 		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3470 			i,
3471 			readl(adapter->hw.hw_addr + i+4),
3472 			readl(adapter->hw.hw_addr + i),
3473 			readl(adapter->hw.hw_addr + i+12),
3474 			readl(adapter->hw.hw_addr + i+8));
3475 	}
3476 	/* tx */
3477 	pr_info("Tx descriptor cache in 64bit format\n");
3478 	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3479 		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3480 			i,
3481 			readl(adapter->hw.hw_addr + i+4),
3482 			readl(adapter->hw.hw_addr + i),
3483 			readl(adapter->hw.hw_addr + i+12),
3484 			readl(adapter->hw.hw_addr + i+8));
3485 	}
3486 exit:
3487 	return;
3488 }
3489 
3490 /**
3491  * e1000_tx_timeout - Respond to a Tx Hang
3492  * @netdev: network interface device structure
3493  * @txqueue: number of the Tx queue that hung (unused)
3494  **/
e1000_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)3495 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3496 {
3497 	struct e1000_adapter *adapter = netdev_priv(netdev);
3498 
3499 	/* Do the reset outside of interrupt context */
3500 	adapter->tx_timeout_count++;
3501 	schedule_work(&adapter->reset_task);
3502 }
3503 
e1000_reset_task(struct work_struct * work)3504 static void e1000_reset_task(struct work_struct *work)
3505 {
3506 	struct e1000_adapter *adapter =
3507 		container_of(work, struct e1000_adapter, reset_task);
3508 
3509 	e_err(drv, "Reset adapter\n");
3510 	e1000_reinit_locked(adapter);
3511 }
3512 
3513 /**
3514  * e1000_change_mtu - Change the Maximum Transfer Unit
3515  * @netdev: network interface device structure
3516  * @new_mtu: new value for maximum frame size
3517  *
3518  * Returns 0 on success, negative on failure
3519  **/
e1000_change_mtu(struct net_device * netdev,int new_mtu)3520 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3521 {
3522 	struct e1000_adapter *adapter = netdev_priv(netdev);
3523 	struct e1000_hw *hw = &adapter->hw;
3524 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3525 
3526 	/* Adapter-specific max frame size limits. */
3527 	switch (hw->mac_type) {
3528 	case e1000_undefined ... e1000_82542_rev2_1:
3529 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3530 			e_err(probe, "Jumbo Frames not supported.\n");
3531 			return -EINVAL;
3532 		}
3533 		break;
3534 	default:
3535 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3536 		break;
3537 	}
3538 
3539 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3540 		msleep(1);
3541 	/* e1000_down has a dependency on max_frame_size */
3542 	hw->max_frame_size = max_frame;
3543 	if (netif_running(netdev)) {
3544 		/* prevent buffers from being reallocated */
3545 		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3546 		e1000_down(adapter);
3547 	}
3548 
3549 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3550 	 * means we reserve 2 more, this pushes us to allocate from the next
3551 	 * larger slab size.
3552 	 * i.e. RXBUFFER_2048 --> size-4096 slab
3553 	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3554 	 * fragmented skbs
3555 	 */
3556 
3557 	if (max_frame <= E1000_RXBUFFER_2048)
3558 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3559 	else
3560 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3561 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3562 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3563 		adapter->rx_buffer_len = PAGE_SIZE;
3564 #endif
3565 
3566 	/* adjust allocation if LPE protects us, and we aren't using SBP */
3567 	if (!hw->tbi_compatibility_on &&
3568 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3569 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3570 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3571 
3572 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
3573 		   netdev->mtu, new_mtu);
3574 	netdev->mtu = new_mtu;
3575 
3576 	if (netif_running(netdev))
3577 		e1000_up(adapter);
3578 	else
3579 		e1000_reset(adapter);
3580 
3581 	clear_bit(__E1000_RESETTING, &adapter->flags);
3582 
3583 	return 0;
3584 }
3585 
3586 /**
3587  * e1000_update_stats - Update the board statistics counters
3588  * @adapter: board private structure
3589  **/
e1000_update_stats(struct e1000_adapter * adapter)3590 void e1000_update_stats(struct e1000_adapter *adapter)
3591 {
3592 	struct net_device *netdev = adapter->netdev;
3593 	struct e1000_hw *hw = &adapter->hw;
3594 	struct pci_dev *pdev = adapter->pdev;
3595 	unsigned long flags;
3596 	u16 phy_tmp;
3597 
3598 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3599 
3600 	/* Prevent stats update while adapter is being reset, or if the pci
3601 	 * connection is down.
3602 	 */
3603 	if (adapter->link_speed == 0)
3604 		return;
3605 	if (pci_channel_offline(pdev))
3606 		return;
3607 
3608 	spin_lock_irqsave(&adapter->stats_lock, flags);
3609 
3610 	/* these counters are modified from e1000_tbi_adjust_stats,
3611 	 * called from the interrupt context, so they must only
3612 	 * be written while holding adapter->stats_lock
3613 	 */
3614 
3615 	adapter->stats.crcerrs += er32(CRCERRS);
3616 	adapter->stats.gprc += er32(GPRC);
3617 	adapter->stats.gorcl += er32(GORCL);
3618 	adapter->stats.gorch += er32(GORCH);
3619 	adapter->stats.bprc += er32(BPRC);
3620 	adapter->stats.mprc += er32(MPRC);
3621 	adapter->stats.roc += er32(ROC);
3622 
3623 	adapter->stats.prc64 += er32(PRC64);
3624 	adapter->stats.prc127 += er32(PRC127);
3625 	adapter->stats.prc255 += er32(PRC255);
3626 	adapter->stats.prc511 += er32(PRC511);
3627 	adapter->stats.prc1023 += er32(PRC1023);
3628 	adapter->stats.prc1522 += er32(PRC1522);
3629 
3630 	adapter->stats.symerrs += er32(SYMERRS);
3631 	adapter->stats.mpc += er32(MPC);
3632 	adapter->stats.scc += er32(SCC);
3633 	adapter->stats.ecol += er32(ECOL);
3634 	adapter->stats.mcc += er32(MCC);
3635 	adapter->stats.latecol += er32(LATECOL);
3636 	adapter->stats.dc += er32(DC);
3637 	adapter->stats.sec += er32(SEC);
3638 	adapter->stats.rlec += er32(RLEC);
3639 	adapter->stats.xonrxc += er32(XONRXC);
3640 	adapter->stats.xontxc += er32(XONTXC);
3641 	adapter->stats.xoffrxc += er32(XOFFRXC);
3642 	adapter->stats.xofftxc += er32(XOFFTXC);
3643 	adapter->stats.fcruc += er32(FCRUC);
3644 	adapter->stats.gptc += er32(GPTC);
3645 	adapter->stats.gotcl += er32(GOTCL);
3646 	adapter->stats.gotch += er32(GOTCH);
3647 	adapter->stats.rnbc += er32(RNBC);
3648 	adapter->stats.ruc += er32(RUC);
3649 	adapter->stats.rfc += er32(RFC);
3650 	adapter->stats.rjc += er32(RJC);
3651 	adapter->stats.torl += er32(TORL);
3652 	adapter->stats.torh += er32(TORH);
3653 	adapter->stats.totl += er32(TOTL);
3654 	adapter->stats.toth += er32(TOTH);
3655 	adapter->stats.tpr += er32(TPR);
3656 
3657 	adapter->stats.ptc64 += er32(PTC64);
3658 	adapter->stats.ptc127 += er32(PTC127);
3659 	adapter->stats.ptc255 += er32(PTC255);
3660 	adapter->stats.ptc511 += er32(PTC511);
3661 	adapter->stats.ptc1023 += er32(PTC1023);
3662 	adapter->stats.ptc1522 += er32(PTC1522);
3663 
3664 	adapter->stats.mptc += er32(MPTC);
3665 	adapter->stats.bptc += er32(BPTC);
3666 
3667 	/* used for adaptive IFS */
3668 
3669 	hw->tx_packet_delta = er32(TPT);
3670 	adapter->stats.tpt += hw->tx_packet_delta;
3671 	hw->collision_delta = er32(COLC);
3672 	adapter->stats.colc += hw->collision_delta;
3673 
3674 	if (hw->mac_type >= e1000_82543) {
3675 		adapter->stats.algnerrc += er32(ALGNERRC);
3676 		adapter->stats.rxerrc += er32(RXERRC);
3677 		adapter->stats.tncrs += er32(TNCRS);
3678 		adapter->stats.cexterr += er32(CEXTERR);
3679 		adapter->stats.tsctc += er32(TSCTC);
3680 		adapter->stats.tsctfc += er32(TSCTFC);
3681 	}
3682 
3683 	/* Fill out the OS statistics structure */
3684 	netdev->stats.multicast = adapter->stats.mprc;
3685 	netdev->stats.collisions = adapter->stats.colc;
3686 
3687 	/* Rx Errors */
3688 
3689 	/* RLEC on some newer hardware can be incorrect so build
3690 	 * our own version based on RUC and ROC
3691 	 */
3692 	netdev->stats.rx_errors = adapter->stats.rxerrc +
3693 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3694 		adapter->stats.ruc + adapter->stats.roc +
3695 		adapter->stats.cexterr;
3696 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3697 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3698 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3699 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3700 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3701 
3702 	/* Tx Errors */
3703 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3704 	netdev->stats.tx_errors = adapter->stats.txerrc;
3705 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3706 	netdev->stats.tx_window_errors = adapter->stats.latecol;
3707 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3708 	if (hw->bad_tx_carr_stats_fd &&
3709 	    adapter->link_duplex == FULL_DUPLEX) {
3710 		netdev->stats.tx_carrier_errors = 0;
3711 		adapter->stats.tncrs = 0;
3712 	}
3713 
3714 	/* Tx Dropped needs to be maintained elsewhere */
3715 
3716 	/* Phy Stats */
3717 	if (hw->media_type == e1000_media_type_copper) {
3718 		if ((adapter->link_speed == SPEED_1000) &&
3719 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3720 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3721 			adapter->phy_stats.idle_errors += phy_tmp;
3722 		}
3723 
3724 		if ((hw->mac_type <= e1000_82546) &&
3725 		   (hw->phy_type == e1000_phy_m88) &&
3726 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3727 			adapter->phy_stats.receive_errors += phy_tmp;
3728 	}
3729 
3730 	/* Management Stats */
3731 	if (hw->has_smbus) {
3732 		adapter->stats.mgptc += er32(MGTPTC);
3733 		adapter->stats.mgprc += er32(MGTPRC);
3734 		adapter->stats.mgpdc += er32(MGTPDC);
3735 	}
3736 
3737 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3738 }
3739 
3740 /**
3741  * e1000_intr - Interrupt Handler
3742  * @irq: interrupt number
3743  * @data: pointer to a network interface device structure
3744  **/
e1000_intr(int irq,void * data)3745 static irqreturn_t e1000_intr(int irq, void *data)
3746 {
3747 	struct net_device *netdev = data;
3748 	struct e1000_adapter *adapter = netdev_priv(netdev);
3749 	struct e1000_hw *hw = &adapter->hw;
3750 	u32 icr = er32(ICR);
3751 
3752 	if (unlikely((!icr)))
3753 		return IRQ_NONE;  /* Not our interrupt */
3754 
3755 	/* we might have caused the interrupt, but the above
3756 	 * read cleared it, and just in case the driver is
3757 	 * down there is nothing to do so return handled
3758 	 */
3759 	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3760 		return IRQ_HANDLED;
3761 
3762 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3763 		hw->get_link_status = 1;
3764 		/* guard against interrupt when we're going down */
3765 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3766 			schedule_delayed_work(&adapter->watchdog_task, 1);
3767 	}
3768 
3769 	/* disable interrupts, without the synchronize_irq bit */
3770 	ew32(IMC, ~0);
3771 	E1000_WRITE_FLUSH();
3772 
3773 	if (likely(napi_schedule_prep(&adapter->napi))) {
3774 		adapter->total_tx_bytes = 0;
3775 		adapter->total_tx_packets = 0;
3776 		adapter->total_rx_bytes = 0;
3777 		adapter->total_rx_packets = 0;
3778 		__napi_schedule(&adapter->napi);
3779 	} else {
3780 		/* this really should not happen! if it does it is basically a
3781 		 * bug, but not a hard error, so enable ints and continue
3782 		 */
3783 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3784 			e1000_irq_enable(adapter);
3785 	}
3786 
3787 	return IRQ_HANDLED;
3788 }
3789 
3790 /**
3791  * e1000_clean - NAPI Rx polling callback
3792  * @napi: napi struct containing references to driver info
3793  * @budget: budget given to driver for receive packets
3794  **/
e1000_clean(struct napi_struct * napi,int budget)3795 static int e1000_clean(struct napi_struct *napi, int budget)
3796 {
3797 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3798 						     napi);
3799 	int tx_clean_complete = 0, work_done = 0;
3800 
3801 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3802 
3803 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3804 
3805 	if (!tx_clean_complete || work_done == budget)
3806 		return budget;
3807 
3808 	/* Exit the polling mode, but don't re-enable interrupts if stack might
3809 	 * poll us due to busy-polling
3810 	 */
3811 	if (likely(napi_complete_done(napi, work_done))) {
3812 		if (likely(adapter->itr_setting & 3))
3813 			e1000_set_itr(adapter);
3814 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3815 			e1000_irq_enable(adapter);
3816 	}
3817 
3818 	return work_done;
3819 }
3820 
3821 /**
3822  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3823  * @adapter: board private structure
3824  * @tx_ring: ring to clean
3825  **/
e1000_clean_tx_irq(struct e1000_adapter * adapter,struct e1000_tx_ring * tx_ring)3826 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3827 			       struct e1000_tx_ring *tx_ring)
3828 {
3829 	struct e1000_hw *hw = &adapter->hw;
3830 	struct net_device *netdev = adapter->netdev;
3831 	struct e1000_tx_desc *tx_desc, *eop_desc;
3832 	struct e1000_tx_buffer *buffer_info;
3833 	unsigned int i, eop;
3834 	unsigned int count = 0;
3835 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3836 	unsigned int bytes_compl = 0, pkts_compl = 0;
3837 
3838 	i = tx_ring->next_to_clean;
3839 	eop = tx_ring->buffer_info[i].next_to_watch;
3840 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3841 
3842 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3843 	       (count < tx_ring->count)) {
3844 		bool cleaned = false;
3845 		dma_rmb();	/* read buffer_info after eop_desc */
3846 		for ( ; !cleaned; count++) {
3847 			tx_desc = E1000_TX_DESC(*tx_ring, i);
3848 			buffer_info = &tx_ring->buffer_info[i];
3849 			cleaned = (i == eop);
3850 
3851 			if (cleaned) {
3852 				total_tx_packets += buffer_info->segs;
3853 				total_tx_bytes += buffer_info->bytecount;
3854 				if (buffer_info->skb) {
3855 					bytes_compl += buffer_info->skb->len;
3856 					pkts_compl++;
3857 				}
3858 
3859 			}
3860 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3861 			tx_desc->upper.data = 0;
3862 
3863 			if (unlikely(++i == tx_ring->count))
3864 				i = 0;
3865 		}
3866 
3867 		eop = tx_ring->buffer_info[i].next_to_watch;
3868 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3869 	}
3870 
3871 	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3872 	 * which will reuse the cleaned buffers.
3873 	 */
3874 	smp_store_release(&tx_ring->next_to_clean, i);
3875 
3876 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3877 
3878 #define TX_WAKE_THRESHOLD 32
3879 	if (unlikely(count && netif_carrier_ok(netdev) &&
3880 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3881 		/* Make sure that anybody stopping the queue after this
3882 		 * sees the new next_to_clean.
3883 		 */
3884 		smp_mb();
3885 
3886 		if (netif_queue_stopped(netdev) &&
3887 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3888 			netif_wake_queue(netdev);
3889 			++adapter->restart_queue;
3890 		}
3891 	}
3892 
3893 	if (adapter->detect_tx_hung) {
3894 		/* Detect a transmit hang in hardware, this serializes the
3895 		 * check with the clearing of time_stamp and movement of i
3896 		 */
3897 		adapter->detect_tx_hung = false;
3898 		if (tx_ring->buffer_info[eop].time_stamp &&
3899 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3900 			       (adapter->tx_timeout_factor * HZ)) &&
3901 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3902 
3903 			/* detected Tx unit hang */
3904 			e_err(drv, "Detected Tx Unit Hang\n"
3905 			      "  Tx Queue             <%lu>\n"
3906 			      "  TDH                  <%x>\n"
3907 			      "  TDT                  <%x>\n"
3908 			      "  next_to_use          <%x>\n"
3909 			      "  next_to_clean        <%x>\n"
3910 			      "buffer_info[next_to_clean]\n"
3911 			      "  time_stamp           <%lx>\n"
3912 			      "  next_to_watch        <%x>\n"
3913 			      "  jiffies              <%lx>\n"
3914 			      "  next_to_watch.status <%x>\n",
3915 				(unsigned long)(tx_ring - adapter->tx_ring),
3916 				readl(hw->hw_addr + tx_ring->tdh),
3917 				readl(hw->hw_addr + tx_ring->tdt),
3918 				tx_ring->next_to_use,
3919 				tx_ring->next_to_clean,
3920 				tx_ring->buffer_info[eop].time_stamp,
3921 				eop,
3922 				jiffies,
3923 				eop_desc->upper.fields.status);
3924 			e1000_dump(adapter);
3925 			netif_stop_queue(netdev);
3926 		}
3927 	}
3928 	adapter->total_tx_bytes += total_tx_bytes;
3929 	adapter->total_tx_packets += total_tx_packets;
3930 	netdev->stats.tx_bytes += total_tx_bytes;
3931 	netdev->stats.tx_packets += total_tx_packets;
3932 	return count < tx_ring->count;
3933 }
3934 
3935 /**
3936  * e1000_rx_checksum - Receive Checksum Offload for 82543
3937  * @adapter:     board private structure
3938  * @status_err:  receive descriptor status and error fields
3939  * @csum:        receive descriptor csum field
3940  * @skb:         socket buffer with received data
3941  **/
e1000_rx_checksum(struct e1000_adapter * adapter,u32 status_err,u32 csum,struct sk_buff * skb)3942 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3943 			      u32 csum, struct sk_buff *skb)
3944 {
3945 	struct e1000_hw *hw = &adapter->hw;
3946 	u16 status = (u16)status_err;
3947 	u8 errors = (u8)(status_err >> 24);
3948 
3949 	skb_checksum_none_assert(skb);
3950 
3951 	/* 82543 or newer only */
3952 	if (unlikely(hw->mac_type < e1000_82543))
3953 		return;
3954 	/* Ignore Checksum bit is set */
3955 	if (unlikely(status & E1000_RXD_STAT_IXSM))
3956 		return;
3957 	/* TCP/UDP checksum error bit is set */
3958 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3959 		/* let the stack verify checksum errors */
3960 		adapter->hw_csum_err++;
3961 		return;
3962 	}
3963 	/* TCP/UDP Checksum has not been calculated */
3964 	if (!(status & E1000_RXD_STAT_TCPCS))
3965 		return;
3966 
3967 	/* It must be a TCP or UDP packet with a valid checksum */
3968 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3969 		/* TCP checksum is good */
3970 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3971 	}
3972 	adapter->hw_csum_good++;
3973 }
3974 
3975 /**
3976  * e1000_consume_page - helper function for jumbo Rx path
3977  * @bi: software descriptor shadow data
3978  * @skb: skb being modified
3979  * @length: length of data being added
3980  **/
e1000_consume_page(struct e1000_rx_buffer * bi,struct sk_buff * skb,u16 length)3981 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3982 			       u16 length)
3983 {
3984 	bi->rxbuf.page = NULL;
3985 	skb->len += length;
3986 	skb->data_len += length;
3987 	skb->truesize += PAGE_SIZE;
3988 }
3989 
3990 /**
3991  * e1000_receive_skb - helper function to handle rx indications
3992  * @adapter: board private structure
3993  * @status: descriptor status field as written by hardware
3994  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3995  * @skb: pointer to sk_buff to be indicated to stack
3996  */
e1000_receive_skb(struct e1000_adapter * adapter,u8 status,__le16 vlan,struct sk_buff * skb)3997 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3998 			      __le16 vlan, struct sk_buff *skb)
3999 {
4000 	skb->protocol = eth_type_trans(skb, adapter->netdev);
4001 
4002 	if (status & E1000_RXD_STAT_VP) {
4003 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4004 
4005 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4006 	}
4007 	napi_gro_receive(&adapter->napi, skb);
4008 }
4009 
4010 /**
4011  * e1000_tbi_adjust_stats
4012  * @hw: Struct containing variables accessed by shared code
4013  * @stats: point to stats struct
4014  * @frame_len: The length of the frame in question
4015  * @mac_addr: The Ethernet destination address of the frame in question
4016  *
4017  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4018  */
e1000_tbi_adjust_stats(struct e1000_hw * hw,struct e1000_hw_stats * stats,u32 frame_len,const u8 * mac_addr)4019 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4020 				   struct e1000_hw_stats *stats,
4021 				   u32 frame_len, const u8 *mac_addr)
4022 {
4023 	u64 carry_bit;
4024 
4025 	/* First adjust the frame length. */
4026 	frame_len--;
4027 	/* We need to adjust the statistics counters, since the hardware
4028 	 * counters overcount this packet as a CRC error and undercount
4029 	 * the packet as a good packet
4030 	 */
4031 	/* This packet should not be counted as a CRC error. */
4032 	stats->crcerrs--;
4033 	/* This packet does count as a Good Packet Received. */
4034 	stats->gprc++;
4035 
4036 	/* Adjust the Good Octets received counters */
4037 	carry_bit = 0x80000000 & stats->gorcl;
4038 	stats->gorcl += frame_len;
4039 	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4040 	 * Received Count) was one before the addition,
4041 	 * AND it is zero after, then we lost the carry out,
4042 	 * need to add one to Gorch (Good Octets Received Count High).
4043 	 * This could be simplified if all environments supported
4044 	 * 64-bit integers.
4045 	 */
4046 	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4047 		stats->gorch++;
4048 	/* Is this a broadcast or multicast?  Check broadcast first,
4049 	 * since the test for a multicast frame will test positive on
4050 	 * a broadcast frame.
4051 	 */
4052 	if (is_broadcast_ether_addr(mac_addr))
4053 		stats->bprc++;
4054 	else if (is_multicast_ether_addr(mac_addr))
4055 		stats->mprc++;
4056 
4057 	if (frame_len == hw->max_frame_size) {
4058 		/* In this case, the hardware has overcounted the number of
4059 		 * oversize frames.
4060 		 */
4061 		if (stats->roc > 0)
4062 			stats->roc--;
4063 	}
4064 
4065 	/* Adjust the bin counters when the extra byte put the frame in the
4066 	 * wrong bin. Remember that the frame_len was adjusted above.
4067 	 */
4068 	if (frame_len == 64) {
4069 		stats->prc64++;
4070 		stats->prc127--;
4071 	} else if (frame_len == 127) {
4072 		stats->prc127++;
4073 		stats->prc255--;
4074 	} else if (frame_len == 255) {
4075 		stats->prc255++;
4076 		stats->prc511--;
4077 	} else if (frame_len == 511) {
4078 		stats->prc511++;
4079 		stats->prc1023--;
4080 	} else if (frame_len == 1023) {
4081 		stats->prc1023++;
4082 		stats->prc1522--;
4083 	} else if (frame_len == 1522) {
4084 		stats->prc1522++;
4085 	}
4086 }
4087 
e1000_tbi_should_accept(struct e1000_adapter * adapter,u8 status,u8 errors,u32 length,const u8 * data)4088 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4089 				    u8 status, u8 errors,
4090 				    u32 length, const u8 *data)
4091 {
4092 	struct e1000_hw *hw = &adapter->hw;
4093 	u8 last_byte = *(data + length - 1);
4094 
4095 	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4096 		unsigned long irq_flags;
4097 
4098 		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4099 		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4100 		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4101 
4102 		return true;
4103 	}
4104 
4105 	return false;
4106 }
4107 
e1000_alloc_rx_skb(struct e1000_adapter * adapter,unsigned int bufsz)4108 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4109 					  unsigned int bufsz)
4110 {
4111 	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4112 
4113 	if (unlikely(!skb))
4114 		adapter->alloc_rx_buff_failed++;
4115 	return skb;
4116 }
4117 
4118 /**
4119  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4120  * @adapter: board private structure
4121  * @rx_ring: ring to clean
4122  * @work_done: amount of napi work completed this call
4123  * @work_to_do: max amount of work allowed for this call to do
4124  *
4125  * the return value indicates whether actual cleaning was done, there
4126  * is no guarantee that everything was cleaned
4127  */
e1000_clean_jumbo_rx_irq(struct e1000_adapter * adapter,struct e1000_rx_ring * rx_ring,int * work_done,int work_to_do)4128 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4129 				     struct e1000_rx_ring *rx_ring,
4130 				     int *work_done, int work_to_do)
4131 {
4132 	struct net_device *netdev = adapter->netdev;
4133 	struct pci_dev *pdev = adapter->pdev;
4134 	struct e1000_rx_desc *rx_desc, *next_rxd;
4135 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4136 	u32 length;
4137 	unsigned int i;
4138 	int cleaned_count = 0;
4139 	bool cleaned = false;
4140 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4141 
4142 	i = rx_ring->next_to_clean;
4143 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4144 	buffer_info = &rx_ring->buffer_info[i];
4145 
4146 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4147 		struct sk_buff *skb;
4148 		u8 status;
4149 
4150 		if (*work_done >= work_to_do)
4151 			break;
4152 		(*work_done)++;
4153 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4154 
4155 		status = rx_desc->status;
4156 
4157 		if (++i == rx_ring->count)
4158 			i = 0;
4159 
4160 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4161 		prefetch(next_rxd);
4162 
4163 		next_buffer = &rx_ring->buffer_info[i];
4164 
4165 		cleaned = true;
4166 		cleaned_count++;
4167 		dma_unmap_page(&pdev->dev, buffer_info->dma,
4168 			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4169 		buffer_info->dma = 0;
4170 
4171 		length = le16_to_cpu(rx_desc->length);
4172 
4173 		/* errors is only valid for DD + EOP descriptors */
4174 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4175 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4176 			u8 *mapped = page_address(buffer_info->rxbuf.page);
4177 
4178 			if (e1000_tbi_should_accept(adapter, status,
4179 						    rx_desc->errors,
4180 						    length, mapped)) {
4181 				length--;
4182 			} else if (netdev->features & NETIF_F_RXALL) {
4183 				goto process_skb;
4184 			} else {
4185 				/* an error means any chain goes out the window
4186 				 * too
4187 				 */
4188 				dev_kfree_skb(rx_ring->rx_skb_top);
4189 				rx_ring->rx_skb_top = NULL;
4190 				goto next_desc;
4191 			}
4192 		}
4193 
4194 #define rxtop rx_ring->rx_skb_top
4195 process_skb:
4196 		if (!(status & E1000_RXD_STAT_EOP)) {
4197 			/* this descriptor is only the beginning (or middle) */
4198 			if (!rxtop) {
4199 				/* this is the beginning of a chain */
4200 				rxtop = napi_get_frags(&adapter->napi);
4201 				if (!rxtop)
4202 					break;
4203 
4204 				skb_fill_page_desc(rxtop, 0,
4205 						   buffer_info->rxbuf.page,
4206 						   0, length);
4207 			} else {
4208 				/* this is the middle of a chain */
4209 				skb_fill_page_desc(rxtop,
4210 				    skb_shinfo(rxtop)->nr_frags,
4211 				    buffer_info->rxbuf.page, 0, length);
4212 			}
4213 			e1000_consume_page(buffer_info, rxtop, length);
4214 			goto next_desc;
4215 		} else {
4216 			if (rxtop) {
4217 				/* end of the chain */
4218 				skb_fill_page_desc(rxtop,
4219 				    skb_shinfo(rxtop)->nr_frags,
4220 				    buffer_info->rxbuf.page, 0, length);
4221 				skb = rxtop;
4222 				rxtop = NULL;
4223 				e1000_consume_page(buffer_info, skb, length);
4224 			} else {
4225 				struct page *p;
4226 				/* no chain, got EOP, this buf is the packet
4227 				 * copybreak to save the put_page/alloc_page
4228 				 */
4229 				p = buffer_info->rxbuf.page;
4230 				if (length <= copybreak) {
4231 					u8 *vaddr;
4232 
4233 					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4234 						length -= 4;
4235 					skb = e1000_alloc_rx_skb(adapter,
4236 								 length);
4237 					if (!skb)
4238 						break;
4239 
4240 					vaddr = kmap_atomic(p);
4241 					memcpy(skb_tail_pointer(skb), vaddr,
4242 					       length);
4243 					kunmap_atomic(vaddr);
4244 					/* re-use the page, so don't erase
4245 					 * buffer_info->rxbuf.page
4246 					 */
4247 					skb_put(skb, length);
4248 					e1000_rx_checksum(adapter,
4249 							  status | rx_desc->errors << 24,
4250 							  le16_to_cpu(rx_desc->csum), skb);
4251 
4252 					total_rx_bytes += skb->len;
4253 					total_rx_packets++;
4254 
4255 					e1000_receive_skb(adapter, status,
4256 							  rx_desc->special, skb);
4257 					goto next_desc;
4258 				} else {
4259 					skb = napi_get_frags(&adapter->napi);
4260 					if (!skb) {
4261 						adapter->alloc_rx_buff_failed++;
4262 						break;
4263 					}
4264 					skb_fill_page_desc(skb, 0, p, 0,
4265 							   length);
4266 					e1000_consume_page(buffer_info, skb,
4267 							   length);
4268 				}
4269 			}
4270 		}
4271 
4272 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4273 		e1000_rx_checksum(adapter,
4274 				  (u32)(status) |
4275 				  ((u32)(rx_desc->errors) << 24),
4276 				  le16_to_cpu(rx_desc->csum), skb);
4277 
4278 		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4279 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4280 			pskb_trim(skb, skb->len - 4);
4281 		total_rx_packets++;
4282 
4283 		if (status & E1000_RXD_STAT_VP) {
4284 			__le16 vlan = rx_desc->special;
4285 			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4286 
4287 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4288 		}
4289 
4290 		napi_gro_frags(&adapter->napi);
4291 
4292 next_desc:
4293 		rx_desc->status = 0;
4294 
4295 		/* return some buffers to hardware, one at a time is too slow */
4296 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4297 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4298 			cleaned_count = 0;
4299 		}
4300 
4301 		/* use prefetched values */
4302 		rx_desc = next_rxd;
4303 		buffer_info = next_buffer;
4304 	}
4305 	rx_ring->next_to_clean = i;
4306 
4307 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4308 	if (cleaned_count)
4309 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4310 
4311 	adapter->total_rx_packets += total_rx_packets;
4312 	adapter->total_rx_bytes += total_rx_bytes;
4313 	netdev->stats.rx_bytes += total_rx_bytes;
4314 	netdev->stats.rx_packets += total_rx_packets;
4315 	return cleaned;
4316 }
4317 
4318 /* this should improve performance for small packets with large amounts
4319  * of reassembly being done in the stack
4320  */
e1000_copybreak(struct e1000_adapter * adapter,struct e1000_rx_buffer * buffer_info,u32 length,const void * data)4321 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4322 				       struct e1000_rx_buffer *buffer_info,
4323 				       u32 length, const void *data)
4324 {
4325 	struct sk_buff *skb;
4326 
4327 	if (length > copybreak)
4328 		return NULL;
4329 
4330 	skb = e1000_alloc_rx_skb(adapter, length);
4331 	if (!skb)
4332 		return NULL;
4333 
4334 	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4335 				length, DMA_FROM_DEVICE);
4336 
4337 	skb_put_data(skb, data, length);
4338 
4339 	return skb;
4340 }
4341 
4342 /**
4343  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4344  * @adapter: board private structure
4345  * @rx_ring: ring to clean
4346  * @work_done: amount of napi work completed this call
4347  * @work_to_do: max amount of work allowed for this call to do
4348  */
e1000_clean_rx_irq(struct e1000_adapter * adapter,struct e1000_rx_ring * rx_ring,int * work_done,int work_to_do)4349 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4350 			       struct e1000_rx_ring *rx_ring,
4351 			       int *work_done, int work_to_do)
4352 {
4353 	struct net_device *netdev = adapter->netdev;
4354 	struct pci_dev *pdev = adapter->pdev;
4355 	struct e1000_rx_desc *rx_desc, *next_rxd;
4356 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4357 	u32 length;
4358 	unsigned int i;
4359 	int cleaned_count = 0;
4360 	bool cleaned = false;
4361 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4362 
4363 	i = rx_ring->next_to_clean;
4364 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4365 	buffer_info = &rx_ring->buffer_info[i];
4366 
4367 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4368 		struct sk_buff *skb;
4369 		u8 *data;
4370 		u8 status;
4371 
4372 		if (*work_done >= work_to_do)
4373 			break;
4374 		(*work_done)++;
4375 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4376 
4377 		status = rx_desc->status;
4378 		length = le16_to_cpu(rx_desc->length);
4379 
4380 		data = buffer_info->rxbuf.data;
4381 		prefetch(data);
4382 		skb = e1000_copybreak(adapter, buffer_info, length, data);
4383 		if (!skb) {
4384 			unsigned int frag_len = e1000_frag_len(adapter);
4385 
4386 			skb = build_skb(data - E1000_HEADROOM, frag_len);
4387 			if (!skb) {
4388 				adapter->alloc_rx_buff_failed++;
4389 				break;
4390 			}
4391 
4392 			skb_reserve(skb, E1000_HEADROOM);
4393 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4394 					 adapter->rx_buffer_len,
4395 					 DMA_FROM_DEVICE);
4396 			buffer_info->dma = 0;
4397 			buffer_info->rxbuf.data = NULL;
4398 		}
4399 
4400 		if (++i == rx_ring->count)
4401 			i = 0;
4402 
4403 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4404 		prefetch(next_rxd);
4405 
4406 		next_buffer = &rx_ring->buffer_info[i];
4407 
4408 		cleaned = true;
4409 		cleaned_count++;
4410 
4411 		/* !EOP means multiple descriptors were used to store a single
4412 		 * packet, if thats the case we need to toss it.  In fact, we
4413 		 * to toss every packet with the EOP bit clear and the next
4414 		 * frame that _does_ have the EOP bit set, as it is by
4415 		 * definition only a frame fragment
4416 		 */
4417 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4418 			adapter->discarding = true;
4419 
4420 		if (adapter->discarding) {
4421 			/* All receives must fit into a single buffer */
4422 			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4423 			dev_kfree_skb(skb);
4424 			if (status & E1000_RXD_STAT_EOP)
4425 				adapter->discarding = false;
4426 			goto next_desc;
4427 		}
4428 
4429 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4430 			if (e1000_tbi_should_accept(adapter, status,
4431 						    rx_desc->errors,
4432 						    length, data)) {
4433 				length--;
4434 			} else if (netdev->features & NETIF_F_RXALL) {
4435 				goto process_skb;
4436 			} else {
4437 				dev_kfree_skb(skb);
4438 				goto next_desc;
4439 			}
4440 		}
4441 
4442 process_skb:
4443 		total_rx_bytes += (length - 4); /* don't count FCS */
4444 		total_rx_packets++;
4445 
4446 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4447 			/* adjust length to remove Ethernet CRC, this must be
4448 			 * done after the TBI_ACCEPT workaround above
4449 			 */
4450 			length -= 4;
4451 
4452 		if (buffer_info->rxbuf.data == NULL)
4453 			skb_put(skb, length);
4454 		else /* copybreak skb */
4455 			skb_trim(skb, length);
4456 
4457 		/* Receive Checksum Offload */
4458 		e1000_rx_checksum(adapter,
4459 				  (u32)(status) |
4460 				  ((u32)(rx_desc->errors) << 24),
4461 				  le16_to_cpu(rx_desc->csum), skb);
4462 
4463 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4464 
4465 next_desc:
4466 		rx_desc->status = 0;
4467 
4468 		/* return some buffers to hardware, one at a time is too slow */
4469 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4470 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4471 			cleaned_count = 0;
4472 		}
4473 
4474 		/* use prefetched values */
4475 		rx_desc = next_rxd;
4476 		buffer_info = next_buffer;
4477 	}
4478 	rx_ring->next_to_clean = i;
4479 
4480 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4481 	if (cleaned_count)
4482 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4483 
4484 	adapter->total_rx_packets += total_rx_packets;
4485 	adapter->total_rx_bytes += total_rx_bytes;
4486 	netdev->stats.rx_bytes += total_rx_bytes;
4487 	netdev->stats.rx_packets += total_rx_packets;
4488 	return cleaned;
4489 }
4490 
4491 /**
4492  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4493  * @adapter: address of board private structure
4494  * @rx_ring: pointer to receive ring structure
4495  * @cleaned_count: number of buffers to allocate this pass
4496  **/
4497 static void
e1000_alloc_jumbo_rx_buffers(struct e1000_adapter * adapter,struct e1000_rx_ring * rx_ring,int cleaned_count)4498 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4499 			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4500 {
4501 	struct pci_dev *pdev = adapter->pdev;
4502 	struct e1000_rx_desc *rx_desc;
4503 	struct e1000_rx_buffer *buffer_info;
4504 	unsigned int i;
4505 
4506 	i = rx_ring->next_to_use;
4507 	buffer_info = &rx_ring->buffer_info[i];
4508 
4509 	while (cleaned_count--) {
4510 		/* allocate a new page if necessary */
4511 		if (!buffer_info->rxbuf.page) {
4512 			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4513 			if (unlikely(!buffer_info->rxbuf.page)) {
4514 				adapter->alloc_rx_buff_failed++;
4515 				break;
4516 			}
4517 		}
4518 
4519 		if (!buffer_info->dma) {
4520 			buffer_info->dma = dma_map_page(&pdev->dev,
4521 							buffer_info->rxbuf.page, 0,
4522 							adapter->rx_buffer_len,
4523 							DMA_FROM_DEVICE);
4524 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4525 				put_page(buffer_info->rxbuf.page);
4526 				buffer_info->rxbuf.page = NULL;
4527 				buffer_info->dma = 0;
4528 				adapter->alloc_rx_buff_failed++;
4529 				break;
4530 			}
4531 		}
4532 
4533 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4534 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4535 
4536 		if (unlikely(++i == rx_ring->count))
4537 			i = 0;
4538 		buffer_info = &rx_ring->buffer_info[i];
4539 	}
4540 
4541 	if (likely(rx_ring->next_to_use != i)) {
4542 		rx_ring->next_to_use = i;
4543 		if (unlikely(i-- == 0))
4544 			i = (rx_ring->count - 1);
4545 
4546 		/* Force memory writes to complete before letting h/w
4547 		 * know there are new descriptors to fetch.  (Only
4548 		 * applicable for weak-ordered memory model archs,
4549 		 * such as IA-64).
4550 		 */
4551 		dma_wmb();
4552 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4553 	}
4554 }
4555 
4556 /**
4557  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4558  * @adapter: address of board private structure
4559  * @rx_ring: pointer to ring struct
4560  * @cleaned_count: number of new Rx buffers to try to allocate
4561  **/
e1000_alloc_rx_buffers(struct e1000_adapter * adapter,struct e1000_rx_ring * rx_ring,int cleaned_count)4562 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4563 				   struct e1000_rx_ring *rx_ring,
4564 				   int cleaned_count)
4565 {
4566 	struct e1000_hw *hw = &adapter->hw;
4567 	struct pci_dev *pdev = adapter->pdev;
4568 	struct e1000_rx_desc *rx_desc;
4569 	struct e1000_rx_buffer *buffer_info;
4570 	unsigned int i;
4571 	unsigned int bufsz = adapter->rx_buffer_len;
4572 
4573 	i = rx_ring->next_to_use;
4574 	buffer_info = &rx_ring->buffer_info[i];
4575 
4576 	while (cleaned_count--) {
4577 		void *data;
4578 
4579 		if (buffer_info->rxbuf.data)
4580 			goto skip;
4581 
4582 		data = e1000_alloc_frag(adapter);
4583 		if (!data) {
4584 			/* Better luck next round */
4585 			adapter->alloc_rx_buff_failed++;
4586 			break;
4587 		}
4588 
4589 		/* Fix for errata 23, can't cross 64kB boundary */
4590 		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4591 			void *olddata = data;
4592 			e_err(rx_err, "skb align check failed: %u bytes at "
4593 			      "%p\n", bufsz, data);
4594 			/* Try again, without freeing the previous */
4595 			data = e1000_alloc_frag(adapter);
4596 			/* Failed allocation, critical failure */
4597 			if (!data) {
4598 				skb_free_frag(olddata);
4599 				adapter->alloc_rx_buff_failed++;
4600 				break;
4601 			}
4602 
4603 			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4604 				/* give up */
4605 				skb_free_frag(data);
4606 				skb_free_frag(olddata);
4607 				adapter->alloc_rx_buff_failed++;
4608 				break;
4609 			}
4610 
4611 			/* Use new allocation */
4612 			skb_free_frag(olddata);
4613 		}
4614 		buffer_info->dma = dma_map_single(&pdev->dev,
4615 						  data,
4616 						  adapter->rx_buffer_len,
4617 						  DMA_FROM_DEVICE);
4618 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4619 			skb_free_frag(data);
4620 			buffer_info->dma = 0;
4621 			adapter->alloc_rx_buff_failed++;
4622 			break;
4623 		}
4624 
4625 		/* XXX if it was allocated cleanly it will never map to a
4626 		 * boundary crossing
4627 		 */
4628 
4629 		/* Fix for errata 23, can't cross 64kB boundary */
4630 		if (!e1000_check_64k_bound(adapter,
4631 					(void *)(unsigned long)buffer_info->dma,
4632 					adapter->rx_buffer_len)) {
4633 			e_err(rx_err, "dma align check failed: %u bytes at "
4634 			      "%p\n", adapter->rx_buffer_len,
4635 			      (void *)(unsigned long)buffer_info->dma);
4636 
4637 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4638 					 adapter->rx_buffer_len,
4639 					 DMA_FROM_DEVICE);
4640 
4641 			skb_free_frag(data);
4642 			buffer_info->rxbuf.data = NULL;
4643 			buffer_info->dma = 0;
4644 
4645 			adapter->alloc_rx_buff_failed++;
4646 			break;
4647 		}
4648 		buffer_info->rxbuf.data = data;
4649  skip:
4650 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4651 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4652 
4653 		if (unlikely(++i == rx_ring->count))
4654 			i = 0;
4655 		buffer_info = &rx_ring->buffer_info[i];
4656 	}
4657 
4658 	if (likely(rx_ring->next_to_use != i)) {
4659 		rx_ring->next_to_use = i;
4660 		if (unlikely(i-- == 0))
4661 			i = (rx_ring->count - 1);
4662 
4663 		/* Force memory writes to complete before letting h/w
4664 		 * know there are new descriptors to fetch.  (Only
4665 		 * applicable for weak-ordered memory model archs,
4666 		 * such as IA-64).
4667 		 */
4668 		dma_wmb();
4669 		writel(i, hw->hw_addr + rx_ring->rdt);
4670 	}
4671 }
4672 
4673 /**
4674  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4675  * @adapter: address of board private structure
4676  **/
e1000_smartspeed(struct e1000_adapter * adapter)4677 static void e1000_smartspeed(struct e1000_adapter *adapter)
4678 {
4679 	struct e1000_hw *hw = &adapter->hw;
4680 	u16 phy_status;
4681 	u16 phy_ctrl;
4682 
4683 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4684 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4685 		return;
4686 
4687 	if (adapter->smartspeed == 0) {
4688 		/* If Master/Slave config fault is asserted twice,
4689 		 * we assume back-to-back
4690 		 */
4691 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4692 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4693 			return;
4694 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4695 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4696 			return;
4697 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4698 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4699 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4700 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4701 					    phy_ctrl);
4702 			adapter->smartspeed++;
4703 			if (!e1000_phy_setup_autoneg(hw) &&
4704 			   !e1000_read_phy_reg(hw, PHY_CTRL,
4705 					       &phy_ctrl)) {
4706 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4707 					     MII_CR_RESTART_AUTO_NEG);
4708 				e1000_write_phy_reg(hw, PHY_CTRL,
4709 						    phy_ctrl);
4710 			}
4711 		}
4712 		return;
4713 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4714 		/* If still no link, perhaps using 2/3 pair cable */
4715 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4716 		phy_ctrl |= CR_1000T_MS_ENABLE;
4717 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4718 		if (!e1000_phy_setup_autoneg(hw) &&
4719 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4720 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4721 				     MII_CR_RESTART_AUTO_NEG);
4722 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4723 		}
4724 	}
4725 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4726 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4727 		adapter->smartspeed = 0;
4728 }
4729 
4730 /**
4731  * e1000_ioctl - handle ioctl calls
4732  * @netdev: pointer to our netdev
4733  * @ifr: pointer to interface request structure
4734  * @cmd: ioctl data
4735  **/
e1000_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)4736 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4737 {
4738 	switch (cmd) {
4739 	case SIOCGMIIPHY:
4740 	case SIOCGMIIREG:
4741 	case SIOCSMIIREG:
4742 		return e1000_mii_ioctl(netdev, ifr, cmd);
4743 	default:
4744 		return -EOPNOTSUPP;
4745 	}
4746 }
4747 
4748 /**
4749  * e1000_mii_ioctl -
4750  * @netdev: pointer to our netdev
4751  * @ifr: pointer to interface request structure
4752  * @cmd: ioctl data
4753  **/
e1000_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)4754 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4755 			   int cmd)
4756 {
4757 	struct e1000_adapter *adapter = netdev_priv(netdev);
4758 	struct e1000_hw *hw = &adapter->hw;
4759 	struct mii_ioctl_data *data = if_mii(ifr);
4760 	int retval;
4761 	u16 mii_reg;
4762 	unsigned long flags;
4763 
4764 	if (hw->media_type != e1000_media_type_copper)
4765 		return -EOPNOTSUPP;
4766 
4767 	switch (cmd) {
4768 	case SIOCGMIIPHY:
4769 		data->phy_id = hw->phy_addr;
4770 		break;
4771 	case SIOCGMIIREG:
4772 		spin_lock_irqsave(&adapter->stats_lock, flags);
4773 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4774 				   &data->val_out)) {
4775 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4776 			return -EIO;
4777 		}
4778 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4779 		break;
4780 	case SIOCSMIIREG:
4781 		if (data->reg_num & ~(0x1F))
4782 			return -EFAULT;
4783 		mii_reg = data->val_in;
4784 		spin_lock_irqsave(&adapter->stats_lock, flags);
4785 		if (e1000_write_phy_reg(hw, data->reg_num,
4786 					mii_reg)) {
4787 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4788 			return -EIO;
4789 		}
4790 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4791 		if (hw->media_type == e1000_media_type_copper) {
4792 			switch (data->reg_num) {
4793 			case PHY_CTRL:
4794 				if (mii_reg & MII_CR_POWER_DOWN)
4795 					break;
4796 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4797 					hw->autoneg = 1;
4798 					hw->autoneg_advertised = 0x2F;
4799 				} else {
4800 					u32 speed;
4801 					if (mii_reg & 0x40)
4802 						speed = SPEED_1000;
4803 					else if (mii_reg & 0x2000)
4804 						speed = SPEED_100;
4805 					else
4806 						speed = SPEED_10;
4807 					retval = e1000_set_spd_dplx(
4808 						adapter, speed,
4809 						((mii_reg & 0x100)
4810 						 ? DUPLEX_FULL :
4811 						 DUPLEX_HALF));
4812 					if (retval)
4813 						return retval;
4814 				}
4815 				if (netif_running(adapter->netdev))
4816 					e1000_reinit_locked(adapter);
4817 				else
4818 					e1000_reset(adapter);
4819 				break;
4820 			case M88E1000_PHY_SPEC_CTRL:
4821 			case M88E1000_EXT_PHY_SPEC_CTRL:
4822 				if (e1000_phy_reset(hw))
4823 					return -EIO;
4824 				break;
4825 			}
4826 		} else {
4827 			switch (data->reg_num) {
4828 			case PHY_CTRL:
4829 				if (mii_reg & MII_CR_POWER_DOWN)
4830 					break;
4831 				if (netif_running(adapter->netdev))
4832 					e1000_reinit_locked(adapter);
4833 				else
4834 					e1000_reset(adapter);
4835 				break;
4836 			}
4837 		}
4838 		break;
4839 	default:
4840 		return -EOPNOTSUPP;
4841 	}
4842 	return E1000_SUCCESS;
4843 }
4844 
e1000_pci_set_mwi(struct e1000_hw * hw)4845 void e1000_pci_set_mwi(struct e1000_hw *hw)
4846 {
4847 	struct e1000_adapter *adapter = hw->back;
4848 	int ret_val = pci_set_mwi(adapter->pdev);
4849 
4850 	if (ret_val)
4851 		e_err(probe, "Error in setting MWI\n");
4852 }
4853 
e1000_pci_clear_mwi(struct e1000_hw * hw)4854 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4855 {
4856 	struct e1000_adapter *adapter = hw->back;
4857 
4858 	pci_clear_mwi(adapter->pdev);
4859 }
4860 
e1000_pcix_get_mmrbc(struct e1000_hw * hw)4861 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4862 {
4863 	struct e1000_adapter *adapter = hw->back;
4864 	return pcix_get_mmrbc(adapter->pdev);
4865 }
4866 
e1000_pcix_set_mmrbc(struct e1000_hw * hw,int mmrbc)4867 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4868 {
4869 	struct e1000_adapter *adapter = hw->back;
4870 	pcix_set_mmrbc(adapter->pdev, mmrbc);
4871 }
4872 
e1000_io_write(struct e1000_hw * hw,unsigned long port,u32 value)4873 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4874 {
4875 	outl(value, port);
4876 }
4877 
e1000_vlan_used(struct e1000_adapter * adapter)4878 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4879 {
4880 	u16 vid;
4881 
4882 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4883 		return true;
4884 	return false;
4885 }
4886 
__e1000_vlan_mode(struct e1000_adapter * adapter,netdev_features_t features)4887 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4888 			      netdev_features_t features)
4889 {
4890 	struct e1000_hw *hw = &adapter->hw;
4891 	u32 ctrl;
4892 
4893 	ctrl = er32(CTRL);
4894 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4895 		/* enable VLAN tag insert/strip */
4896 		ctrl |= E1000_CTRL_VME;
4897 	} else {
4898 		/* disable VLAN tag insert/strip */
4899 		ctrl &= ~E1000_CTRL_VME;
4900 	}
4901 	ew32(CTRL, ctrl);
4902 }
e1000_vlan_filter_on_off(struct e1000_adapter * adapter,bool filter_on)4903 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4904 				     bool filter_on)
4905 {
4906 	struct e1000_hw *hw = &adapter->hw;
4907 	u32 rctl;
4908 
4909 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4910 		e1000_irq_disable(adapter);
4911 
4912 	__e1000_vlan_mode(adapter, adapter->netdev->features);
4913 	if (filter_on) {
4914 		/* enable VLAN receive filtering */
4915 		rctl = er32(RCTL);
4916 		rctl &= ~E1000_RCTL_CFIEN;
4917 		if (!(adapter->netdev->flags & IFF_PROMISC))
4918 			rctl |= E1000_RCTL_VFE;
4919 		ew32(RCTL, rctl);
4920 		e1000_update_mng_vlan(adapter);
4921 	} else {
4922 		/* disable VLAN receive filtering */
4923 		rctl = er32(RCTL);
4924 		rctl &= ~E1000_RCTL_VFE;
4925 		ew32(RCTL, rctl);
4926 	}
4927 
4928 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4929 		e1000_irq_enable(adapter);
4930 }
4931 
e1000_vlan_mode(struct net_device * netdev,netdev_features_t features)4932 static void e1000_vlan_mode(struct net_device *netdev,
4933 			    netdev_features_t features)
4934 {
4935 	struct e1000_adapter *adapter = netdev_priv(netdev);
4936 
4937 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4938 		e1000_irq_disable(adapter);
4939 
4940 	__e1000_vlan_mode(adapter, features);
4941 
4942 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4943 		e1000_irq_enable(adapter);
4944 }
4945 
e1000_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)4946 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4947 				 __be16 proto, u16 vid)
4948 {
4949 	struct e1000_adapter *adapter = netdev_priv(netdev);
4950 	struct e1000_hw *hw = &adapter->hw;
4951 	u32 vfta, index;
4952 
4953 	if ((hw->mng_cookie.status &
4954 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4955 	    (vid == adapter->mng_vlan_id))
4956 		return 0;
4957 
4958 	if (!e1000_vlan_used(adapter))
4959 		e1000_vlan_filter_on_off(adapter, true);
4960 
4961 	/* add VID to filter table */
4962 	index = (vid >> 5) & 0x7F;
4963 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4964 	vfta |= (1 << (vid & 0x1F));
4965 	e1000_write_vfta(hw, index, vfta);
4966 
4967 	set_bit(vid, adapter->active_vlans);
4968 
4969 	return 0;
4970 }
4971 
e1000_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)4972 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4973 				  __be16 proto, u16 vid)
4974 {
4975 	struct e1000_adapter *adapter = netdev_priv(netdev);
4976 	struct e1000_hw *hw = &adapter->hw;
4977 	u32 vfta, index;
4978 
4979 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4980 		e1000_irq_disable(adapter);
4981 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4982 		e1000_irq_enable(adapter);
4983 
4984 	/* remove VID from filter table */
4985 	index = (vid >> 5) & 0x7F;
4986 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4987 	vfta &= ~(1 << (vid & 0x1F));
4988 	e1000_write_vfta(hw, index, vfta);
4989 
4990 	clear_bit(vid, adapter->active_vlans);
4991 
4992 	if (!e1000_vlan_used(adapter))
4993 		e1000_vlan_filter_on_off(adapter, false);
4994 
4995 	return 0;
4996 }
4997 
e1000_restore_vlan(struct e1000_adapter * adapter)4998 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4999 {
5000 	u16 vid;
5001 
5002 	if (!e1000_vlan_used(adapter))
5003 		return;
5004 
5005 	e1000_vlan_filter_on_off(adapter, true);
5006 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5007 		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5008 }
5009 
e1000_set_spd_dplx(struct e1000_adapter * adapter,u32 spd,u8 dplx)5010 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5011 {
5012 	struct e1000_hw *hw = &adapter->hw;
5013 
5014 	hw->autoneg = 0;
5015 
5016 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5017 	 * for the switch() below to work
5018 	 */
5019 	if ((spd & 1) || (dplx & ~1))
5020 		goto err_inval;
5021 
5022 	/* Fiber NICs only allow 1000 gbps Full duplex */
5023 	if ((hw->media_type == e1000_media_type_fiber) &&
5024 	    spd != SPEED_1000 &&
5025 	    dplx != DUPLEX_FULL)
5026 		goto err_inval;
5027 
5028 	switch (spd + dplx) {
5029 	case SPEED_10 + DUPLEX_HALF:
5030 		hw->forced_speed_duplex = e1000_10_half;
5031 		break;
5032 	case SPEED_10 + DUPLEX_FULL:
5033 		hw->forced_speed_duplex = e1000_10_full;
5034 		break;
5035 	case SPEED_100 + DUPLEX_HALF:
5036 		hw->forced_speed_duplex = e1000_100_half;
5037 		break;
5038 	case SPEED_100 + DUPLEX_FULL:
5039 		hw->forced_speed_duplex = e1000_100_full;
5040 		break;
5041 	case SPEED_1000 + DUPLEX_FULL:
5042 		hw->autoneg = 1;
5043 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5044 		break;
5045 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5046 	default:
5047 		goto err_inval;
5048 	}
5049 
5050 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5051 	hw->mdix = AUTO_ALL_MODES;
5052 
5053 	return 0;
5054 
5055 err_inval:
5056 	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5057 	return -EINVAL;
5058 }
5059 
__e1000_shutdown(struct pci_dev * pdev,bool * enable_wake)5060 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5061 {
5062 	struct net_device *netdev = pci_get_drvdata(pdev);
5063 	struct e1000_adapter *adapter = netdev_priv(netdev);
5064 	struct e1000_hw *hw = &adapter->hw;
5065 	u32 ctrl, ctrl_ext, rctl, status;
5066 	u32 wufc = adapter->wol;
5067 
5068 	netif_device_detach(netdev);
5069 
5070 	if (netif_running(netdev)) {
5071 		int count = E1000_CHECK_RESET_COUNT;
5072 
5073 		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5074 			usleep_range(10000, 20000);
5075 
5076 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5077 		e1000_down(adapter);
5078 	}
5079 
5080 	status = er32(STATUS);
5081 	if (status & E1000_STATUS_LU)
5082 		wufc &= ~E1000_WUFC_LNKC;
5083 
5084 	if (wufc) {
5085 		e1000_setup_rctl(adapter);
5086 		e1000_set_rx_mode(netdev);
5087 
5088 		rctl = er32(RCTL);
5089 
5090 		/* turn on all-multi mode if wake on multicast is enabled */
5091 		if (wufc & E1000_WUFC_MC)
5092 			rctl |= E1000_RCTL_MPE;
5093 
5094 		/* enable receives in the hardware */
5095 		ew32(RCTL, rctl | E1000_RCTL_EN);
5096 
5097 		if (hw->mac_type >= e1000_82540) {
5098 			ctrl = er32(CTRL);
5099 			/* advertise wake from D3Cold */
5100 			#define E1000_CTRL_ADVD3WUC 0x00100000
5101 			/* phy power management enable */
5102 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5103 			ctrl |= E1000_CTRL_ADVD3WUC |
5104 				E1000_CTRL_EN_PHY_PWR_MGMT;
5105 			ew32(CTRL, ctrl);
5106 		}
5107 
5108 		if (hw->media_type == e1000_media_type_fiber ||
5109 		    hw->media_type == e1000_media_type_internal_serdes) {
5110 			/* keep the laser running in D3 */
5111 			ctrl_ext = er32(CTRL_EXT);
5112 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5113 			ew32(CTRL_EXT, ctrl_ext);
5114 		}
5115 
5116 		ew32(WUC, E1000_WUC_PME_EN);
5117 		ew32(WUFC, wufc);
5118 	} else {
5119 		ew32(WUC, 0);
5120 		ew32(WUFC, 0);
5121 	}
5122 
5123 	e1000_release_manageability(adapter);
5124 
5125 	*enable_wake = !!wufc;
5126 
5127 	/* make sure adapter isn't asleep if manageability is enabled */
5128 	if (adapter->en_mng_pt)
5129 		*enable_wake = true;
5130 
5131 	if (netif_running(netdev))
5132 		e1000_free_irq(adapter);
5133 
5134 	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5135 		pci_disable_device(pdev);
5136 
5137 	return 0;
5138 }
5139 
e1000_suspend(struct device * dev)5140 static int __maybe_unused e1000_suspend(struct device *dev)
5141 {
5142 	int retval;
5143 	struct pci_dev *pdev = to_pci_dev(dev);
5144 	bool wake;
5145 
5146 	retval = __e1000_shutdown(pdev, &wake);
5147 	device_set_wakeup_enable(dev, wake);
5148 
5149 	return retval;
5150 }
5151 
e1000_resume(struct device * dev)5152 static int __maybe_unused e1000_resume(struct device *dev)
5153 {
5154 	struct pci_dev *pdev = to_pci_dev(dev);
5155 	struct net_device *netdev = pci_get_drvdata(pdev);
5156 	struct e1000_adapter *adapter = netdev_priv(netdev);
5157 	struct e1000_hw *hw = &adapter->hw;
5158 	u32 err;
5159 
5160 	if (adapter->need_ioport)
5161 		err = pci_enable_device(pdev);
5162 	else
5163 		err = pci_enable_device_mem(pdev);
5164 	if (err) {
5165 		pr_err("Cannot enable PCI device from suspend\n");
5166 		return err;
5167 	}
5168 
5169 	/* flush memory to make sure state is correct */
5170 	smp_mb__before_atomic();
5171 	clear_bit(__E1000_DISABLED, &adapter->flags);
5172 	pci_set_master(pdev);
5173 
5174 	pci_enable_wake(pdev, PCI_D3hot, 0);
5175 	pci_enable_wake(pdev, PCI_D3cold, 0);
5176 
5177 	if (netif_running(netdev)) {
5178 		err = e1000_request_irq(adapter);
5179 		if (err)
5180 			return err;
5181 	}
5182 
5183 	e1000_power_up_phy(adapter);
5184 	e1000_reset(adapter);
5185 	ew32(WUS, ~0);
5186 
5187 	e1000_init_manageability(adapter);
5188 
5189 	if (netif_running(netdev))
5190 		e1000_up(adapter);
5191 
5192 	netif_device_attach(netdev);
5193 
5194 	return 0;
5195 }
5196 
e1000_shutdown(struct pci_dev * pdev)5197 static void e1000_shutdown(struct pci_dev *pdev)
5198 {
5199 	bool wake;
5200 
5201 	__e1000_shutdown(pdev, &wake);
5202 
5203 	if (system_state == SYSTEM_POWER_OFF) {
5204 		pci_wake_from_d3(pdev, wake);
5205 		pci_set_power_state(pdev, PCI_D3hot);
5206 	}
5207 }
5208 
5209 #ifdef CONFIG_NET_POLL_CONTROLLER
5210 /* Polling 'interrupt' - used by things like netconsole to send skbs
5211  * without having to re-enable interrupts. It's not called while
5212  * the interrupt routine is executing.
5213  */
e1000_netpoll(struct net_device * netdev)5214 static void e1000_netpoll(struct net_device *netdev)
5215 {
5216 	struct e1000_adapter *adapter = netdev_priv(netdev);
5217 
5218 	if (disable_hardirq(adapter->pdev->irq))
5219 		e1000_intr(adapter->pdev->irq, netdev);
5220 	enable_irq(adapter->pdev->irq);
5221 }
5222 #endif
5223 
5224 /**
5225  * e1000_io_error_detected - called when PCI error is detected
5226  * @pdev: Pointer to PCI device
5227  * @state: The current pci connection state
5228  *
5229  * This function is called after a PCI bus error affecting
5230  * this device has been detected.
5231  */
e1000_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)5232 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5233 						pci_channel_state_t state)
5234 {
5235 	struct net_device *netdev = pci_get_drvdata(pdev);
5236 	struct e1000_adapter *adapter = netdev_priv(netdev);
5237 
5238 	netif_device_detach(netdev);
5239 
5240 	if (state == pci_channel_io_perm_failure)
5241 		return PCI_ERS_RESULT_DISCONNECT;
5242 
5243 	if (netif_running(netdev))
5244 		e1000_down(adapter);
5245 
5246 	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5247 		pci_disable_device(pdev);
5248 
5249 	/* Request a slot slot reset. */
5250 	return PCI_ERS_RESULT_NEED_RESET;
5251 }
5252 
5253 /**
5254  * e1000_io_slot_reset - called after the pci bus has been reset.
5255  * @pdev: Pointer to PCI device
5256  *
5257  * Restart the card from scratch, as if from a cold-boot. Implementation
5258  * resembles the first-half of the e1000_resume routine.
5259  */
e1000_io_slot_reset(struct pci_dev * pdev)5260 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5261 {
5262 	struct net_device *netdev = pci_get_drvdata(pdev);
5263 	struct e1000_adapter *adapter = netdev_priv(netdev);
5264 	struct e1000_hw *hw = &adapter->hw;
5265 	int err;
5266 
5267 	if (adapter->need_ioport)
5268 		err = pci_enable_device(pdev);
5269 	else
5270 		err = pci_enable_device_mem(pdev);
5271 	if (err) {
5272 		pr_err("Cannot re-enable PCI device after reset.\n");
5273 		return PCI_ERS_RESULT_DISCONNECT;
5274 	}
5275 
5276 	/* flush memory to make sure state is correct */
5277 	smp_mb__before_atomic();
5278 	clear_bit(__E1000_DISABLED, &adapter->flags);
5279 	pci_set_master(pdev);
5280 
5281 	pci_enable_wake(pdev, PCI_D3hot, 0);
5282 	pci_enable_wake(pdev, PCI_D3cold, 0);
5283 
5284 	e1000_reset(adapter);
5285 	ew32(WUS, ~0);
5286 
5287 	return PCI_ERS_RESULT_RECOVERED;
5288 }
5289 
5290 /**
5291  * e1000_io_resume - called when traffic can start flowing again.
5292  * @pdev: Pointer to PCI device
5293  *
5294  * This callback is called when the error recovery driver tells us that
5295  * its OK to resume normal operation. Implementation resembles the
5296  * second-half of the e1000_resume routine.
5297  */
e1000_io_resume(struct pci_dev * pdev)5298 static void e1000_io_resume(struct pci_dev *pdev)
5299 {
5300 	struct net_device *netdev = pci_get_drvdata(pdev);
5301 	struct e1000_adapter *adapter = netdev_priv(netdev);
5302 
5303 	e1000_init_manageability(adapter);
5304 
5305 	if (netif_running(netdev)) {
5306 		if (e1000_up(adapter)) {
5307 			pr_info("can't bring device back up after reset\n");
5308 			return;
5309 		}
5310 	}
5311 
5312 	netif_device_attach(netdev);
5313 }
5314 
5315 /* e1000_main.c */
5316