1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <stdlib.h>
5 #include <stdio.h>
6 #include <string.h>
7 #include <linux/capability.h>
8 #include <linux/kernel.h>
9 #include <linux/mman.h>
10 #include <linux/string.h>
11 #include <linux/time64.h>
12 #include <sys/types.h>
13 #include <sys/stat.h>
14 #include <sys/param.h>
15 #include <fcntl.h>
16 #include <unistd.h>
17 #include <inttypes.h>
18 #include "annotate.h"
19 #include "build-id.h"
20 #include "cap.h"
21 #include "dso.h"
22 #include "util.h" // lsdir()
23 #include "debug.h"
24 #include "event.h"
25 #include "machine.h"
26 #include "map.h"
27 #include "symbol.h"
28 #include "map_symbol.h"
29 #include "mem-events.h"
30 #include "symsrc.h"
31 #include "strlist.h"
32 #include "intlist.h"
33 #include "namespaces.h"
34 #include "header.h"
35 #include "path.h"
36 #include <linux/ctype.h>
37 #include <linux/zalloc.h>
38 
39 #include <elf.h>
40 #include <limits.h>
41 #include <symbol/kallsyms.h>
42 #include <sys/utsname.h>
43 
44 static int dso__load_kernel_sym(struct dso *dso, struct map *map);
45 static int dso__load_guest_kernel_sym(struct dso *dso, struct map *map);
46 static bool symbol__is_idle(const char *name);
47 
48 int vmlinux_path__nr_entries;
49 char **vmlinux_path;
50 
51 struct symbol_conf symbol_conf = {
52 	.nanosecs		= false,
53 	.use_modules		= true,
54 	.try_vmlinux_path	= true,
55 	.demangle		= true,
56 	.demangle_kernel	= false,
57 	.cumulate_callchain	= true,
58 	.time_quantum		= 100 * NSEC_PER_MSEC, /* 100ms */
59 	.show_hist_headers	= true,
60 	.symfs			= "",
61 	.event_group		= true,
62 	.inline_name		= true,
63 	.res_sample		= 0,
64 };
65 
66 static enum dso_binary_type binary_type_symtab[] = {
67 	DSO_BINARY_TYPE__KALLSYMS,
68 	DSO_BINARY_TYPE__GUEST_KALLSYMS,
69 	DSO_BINARY_TYPE__JAVA_JIT,
70 	DSO_BINARY_TYPE__DEBUGLINK,
71 	DSO_BINARY_TYPE__BUILD_ID_CACHE,
72 	DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO,
73 	DSO_BINARY_TYPE__FEDORA_DEBUGINFO,
74 	DSO_BINARY_TYPE__UBUNTU_DEBUGINFO,
75 	DSO_BINARY_TYPE__BUILDID_DEBUGINFO,
76 	DSO_BINARY_TYPE__SYSTEM_PATH_DSO,
77 	DSO_BINARY_TYPE__GUEST_KMODULE,
78 	DSO_BINARY_TYPE__GUEST_KMODULE_COMP,
79 	DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE,
80 	DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP,
81 	DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO,
82 	DSO_BINARY_TYPE__NOT_FOUND,
83 };
84 
85 #define DSO_BINARY_TYPE__SYMTAB_CNT ARRAY_SIZE(binary_type_symtab)
86 
symbol_type__filter(char symbol_type)87 static bool symbol_type__filter(char symbol_type)
88 {
89 	symbol_type = toupper(symbol_type);
90 	return symbol_type == 'T' || symbol_type == 'W' || symbol_type == 'D' || symbol_type == 'B';
91 }
92 
prefix_underscores_count(const char * str)93 static int prefix_underscores_count(const char *str)
94 {
95 	const char *tail = str;
96 
97 	while (*tail == '_')
98 		tail++;
99 
100 	return tail - str;
101 }
102 
arch__symbols__fixup_end(struct symbol * p,struct symbol * c)103 void __weak arch__symbols__fixup_end(struct symbol *p, struct symbol *c)
104 {
105 	p->end = c->start;
106 }
107 
arch__normalize_symbol_name(const char * name)108 const char * __weak arch__normalize_symbol_name(const char *name)
109 {
110 	return name;
111 }
112 
arch__compare_symbol_names(const char * namea,const char * nameb)113 int __weak arch__compare_symbol_names(const char *namea, const char *nameb)
114 {
115 	return strcmp(namea, nameb);
116 }
117 
arch__compare_symbol_names_n(const char * namea,const char * nameb,unsigned int n)118 int __weak arch__compare_symbol_names_n(const char *namea, const char *nameb,
119 					unsigned int n)
120 {
121 	return strncmp(namea, nameb, n);
122 }
123 
arch__choose_best_symbol(struct symbol * syma,struct symbol * symb __maybe_unused)124 int __weak arch__choose_best_symbol(struct symbol *syma,
125 				    struct symbol *symb __maybe_unused)
126 {
127 	/* Avoid "SyS" kernel syscall aliases */
128 	if (strlen(syma->name) >= 3 && !strncmp(syma->name, "SyS", 3))
129 		return SYMBOL_B;
130 	if (strlen(syma->name) >= 10 && !strncmp(syma->name, "compat_SyS", 10))
131 		return SYMBOL_B;
132 
133 	return SYMBOL_A;
134 }
135 
choose_best_symbol(struct symbol * syma,struct symbol * symb)136 static int choose_best_symbol(struct symbol *syma, struct symbol *symb)
137 {
138 	s64 a;
139 	s64 b;
140 	size_t na, nb;
141 
142 	/* Prefer a symbol with non zero length */
143 	a = syma->end - syma->start;
144 	b = symb->end - symb->start;
145 	if ((b == 0) && (a > 0))
146 		return SYMBOL_A;
147 	else if ((a == 0) && (b > 0))
148 		return SYMBOL_B;
149 
150 	/* Prefer a non weak symbol over a weak one */
151 	a = syma->binding == STB_WEAK;
152 	b = symb->binding == STB_WEAK;
153 	if (b && !a)
154 		return SYMBOL_A;
155 	if (a && !b)
156 		return SYMBOL_B;
157 
158 	/* Prefer a global symbol over a non global one */
159 	a = syma->binding == STB_GLOBAL;
160 	b = symb->binding == STB_GLOBAL;
161 	if (a && !b)
162 		return SYMBOL_A;
163 	if (b && !a)
164 		return SYMBOL_B;
165 
166 	/* Prefer a symbol with less underscores */
167 	a = prefix_underscores_count(syma->name);
168 	b = prefix_underscores_count(symb->name);
169 	if (b > a)
170 		return SYMBOL_A;
171 	else if (a > b)
172 		return SYMBOL_B;
173 
174 	/* Choose the symbol with the longest name */
175 	na = strlen(syma->name);
176 	nb = strlen(symb->name);
177 	if (na > nb)
178 		return SYMBOL_A;
179 	else if (na < nb)
180 		return SYMBOL_B;
181 
182 	return arch__choose_best_symbol(syma, symb);
183 }
184 
symbols__fixup_duplicate(struct rb_root_cached * symbols)185 void symbols__fixup_duplicate(struct rb_root_cached *symbols)
186 {
187 	struct rb_node *nd;
188 	struct symbol *curr, *next;
189 
190 	if (symbol_conf.allow_aliases)
191 		return;
192 
193 	nd = rb_first_cached(symbols);
194 
195 	while (nd) {
196 		curr = rb_entry(nd, struct symbol, rb_node);
197 again:
198 		nd = rb_next(&curr->rb_node);
199 		next = rb_entry(nd, struct symbol, rb_node);
200 
201 		if (!nd)
202 			break;
203 
204 		if (curr->start != next->start)
205 			continue;
206 
207 		if (choose_best_symbol(curr, next) == SYMBOL_A) {
208 			rb_erase_cached(&next->rb_node, symbols);
209 			symbol__delete(next);
210 			goto again;
211 		} else {
212 			nd = rb_next(&curr->rb_node);
213 			rb_erase_cached(&curr->rb_node, symbols);
214 			symbol__delete(curr);
215 		}
216 	}
217 }
218 
symbols__fixup_end(struct rb_root_cached * symbols)219 void symbols__fixup_end(struct rb_root_cached *symbols)
220 {
221 	struct rb_node *nd, *prevnd = rb_first_cached(symbols);
222 	struct symbol *curr, *prev;
223 
224 	if (prevnd == NULL)
225 		return;
226 
227 	curr = rb_entry(prevnd, struct symbol, rb_node);
228 
229 	for (nd = rb_next(prevnd); nd; nd = rb_next(nd)) {
230 		prev = curr;
231 		curr = rb_entry(nd, struct symbol, rb_node);
232 
233 		if (prev->end == prev->start && prev->end != curr->start)
234 			arch__symbols__fixup_end(prev, curr);
235 	}
236 
237 	/* Last entry */
238 	if (curr->end == curr->start)
239 		curr->end = roundup(curr->start, 4096) + 4096;
240 }
241 
map_groups__fixup_end(struct map_groups * mg)242 void map_groups__fixup_end(struct map_groups *mg)
243 {
244 	struct maps *maps = &mg->maps;
245 	struct map *next, *curr;
246 
247 	down_write(&maps->lock);
248 
249 	curr = maps__first(maps);
250 	if (curr == NULL)
251 		goto out_unlock;
252 
253 	for (next = map__next(curr); next; next = map__next(curr)) {
254 		if (!curr->end)
255 			curr->end = next->start;
256 		curr = next;
257 	}
258 
259 	/*
260 	 * We still haven't the actual symbols, so guess the
261 	 * last map final address.
262 	 */
263 	if (!curr->end)
264 		curr->end = ~0ULL;
265 
266 out_unlock:
267 	up_write(&maps->lock);
268 }
269 
symbol__new(u64 start,u64 len,u8 binding,u8 type,const char * name)270 struct symbol *symbol__new(u64 start, u64 len, u8 binding, u8 type, const char *name)
271 {
272 	size_t namelen = strlen(name) + 1;
273 	struct symbol *sym = calloc(1, (symbol_conf.priv_size +
274 					sizeof(*sym) + namelen));
275 	if (sym == NULL)
276 		return NULL;
277 
278 	if (symbol_conf.priv_size) {
279 		if (symbol_conf.init_annotation) {
280 			struct annotation *notes = (void *)sym;
281 			pthread_mutex_init(&notes->lock, NULL);
282 		}
283 		sym = ((void *)sym) + symbol_conf.priv_size;
284 	}
285 
286 	sym->start   = start;
287 	sym->end     = len ? start + len : start;
288 	sym->type    = type;
289 	sym->binding = binding;
290 	sym->namelen = namelen - 1;
291 
292 	pr_debug4("%s: %s %#" PRIx64 "-%#" PRIx64 "\n",
293 		  __func__, name, start, sym->end);
294 	memcpy(sym->name, name, namelen);
295 
296 	return sym;
297 }
298 
symbol__delete(struct symbol * sym)299 void symbol__delete(struct symbol *sym)
300 {
301 	free(((void *)sym) - symbol_conf.priv_size);
302 }
303 
symbols__delete(struct rb_root_cached * symbols)304 void symbols__delete(struct rb_root_cached *symbols)
305 {
306 	struct symbol *pos;
307 	struct rb_node *next = rb_first_cached(symbols);
308 
309 	while (next) {
310 		pos = rb_entry(next, struct symbol, rb_node);
311 		next = rb_next(&pos->rb_node);
312 		rb_erase_cached(&pos->rb_node, symbols);
313 		symbol__delete(pos);
314 	}
315 }
316 
__symbols__insert(struct rb_root_cached * symbols,struct symbol * sym,bool kernel)317 void __symbols__insert(struct rb_root_cached *symbols,
318 		       struct symbol *sym, bool kernel)
319 {
320 	struct rb_node **p = &symbols->rb_root.rb_node;
321 	struct rb_node *parent = NULL;
322 	const u64 ip = sym->start;
323 	struct symbol *s;
324 	bool leftmost = true;
325 
326 	if (kernel) {
327 		const char *name = sym->name;
328 		/*
329 		 * ppc64 uses function descriptors and appends a '.' to the
330 		 * start of every instruction address. Remove it.
331 		 */
332 		if (name[0] == '.')
333 			name++;
334 		sym->idle = symbol__is_idle(name);
335 	}
336 
337 	while (*p != NULL) {
338 		parent = *p;
339 		s = rb_entry(parent, struct symbol, rb_node);
340 		if (ip < s->start)
341 			p = &(*p)->rb_left;
342 		else {
343 			p = &(*p)->rb_right;
344 			leftmost = false;
345 		}
346 	}
347 	rb_link_node(&sym->rb_node, parent, p);
348 	rb_insert_color_cached(&sym->rb_node, symbols, leftmost);
349 }
350 
symbols__insert(struct rb_root_cached * symbols,struct symbol * sym)351 void symbols__insert(struct rb_root_cached *symbols, struct symbol *sym)
352 {
353 	__symbols__insert(symbols, sym, false);
354 }
355 
symbols__find(struct rb_root_cached * symbols,u64 ip)356 static struct symbol *symbols__find(struct rb_root_cached *symbols, u64 ip)
357 {
358 	struct rb_node *n;
359 
360 	if (symbols == NULL)
361 		return NULL;
362 
363 	n = symbols->rb_root.rb_node;
364 
365 	while (n) {
366 		struct symbol *s = rb_entry(n, struct symbol, rb_node);
367 
368 		if (ip < s->start)
369 			n = n->rb_left;
370 		else if (ip > s->end || (ip == s->end && ip != s->start))
371 			n = n->rb_right;
372 		else
373 			return s;
374 	}
375 
376 	return NULL;
377 }
378 
symbols__first(struct rb_root_cached * symbols)379 static struct symbol *symbols__first(struct rb_root_cached *symbols)
380 {
381 	struct rb_node *n = rb_first_cached(symbols);
382 
383 	if (n)
384 		return rb_entry(n, struct symbol, rb_node);
385 
386 	return NULL;
387 }
388 
symbols__last(struct rb_root_cached * symbols)389 static struct symbol *symbols__last(struct rb_root_cached *symbols)
390 {
391 	struct rb_node *n = rb_last(&symbols->rb_root);
392 
393 	if (n)
394 		return rb_entry(n, struct symbol, rb_node);
395 
396 	return NULL;
397 }
398 
symbols__next(struct symbol * sym)399 static struct symbol *symbols__next(struct symbol *sym)
400 {
401 	struct rb_node *n = rb_next(&sym->rb_node);
402 
403 	if (n)
404 		return rb_entry(n, struct symbol, rb_node);
405 
406 	return NULL;
407 }
408 
symbols__insert_by_name(struct rb_root_cached * symbols,struct symbol * sym)409 static void symbols__insert_by_name(struct rb_root_cached *symbols, struct symbol *sym)
410 {
411 	struct rb_node **p = &symbols->rb_root.rb_node;
412 	struct rb_node *parent = NULL;
413 	struct symbol_name_rb_node *symn, *s;
414 	bool leftmost = true;
415 
416 	symn = container_of(sym, struct symbol_name_rb_node, sym);
417 
418 	while (*p != NULL) {
419 		parent = *p;
420 		s = rb_entry(parent, struct symbol_name_rb_node, rb_node);
421 		if (strcmp(sym->name, s->sym.name) < 0)
422 			p = &(*p)->rb_left;
423 		else {
424 			p = &(*p)->rb_right;
425 			leftmost = false;
426 		}
427 	}
428 	rb_link_node(&symn->rb_node, parent, p);
429 	rb_insert_color_cached(&symn->rb_node, symbols, leftmost);
430 }
431 
symbols__sort_by_name(struct rb_root_cached * symbols,struct rb_root_cached * source)432 static void symbols__sort_by_name(struct rb_root_cached *symbols,
433 				  struct rb_root_cached *source)
434 {
435 	struct rb_node *nd;
436 
437 	for (nd = rb_first_cached(source); nd; nd = rb_next(nd)) {
438 		struct symbol *pos = rb_entry(nd, struct symbol, rb_node);
439 		symbols__insert_by_name(symbols, pos);
440 	}
441 }
442 
symbol__match_symbol_name(const char * name,const char * str,enum symbol_tag_include includes)443 int symbol__match_symbol_name(const char *name, const char *str,
444 			      enum symbol_tag_include includes)
445 {
446 	const char *versioning;
447 
448 	if (includes == SYMBOL_TAG_INCLUDE__DEFAULT_ONLY &&
449 	    (versioning = strstr(name, "@@"))) {
450 		int len = strlen(str);
451 
452 		if (len < versioning - name)
453 			len = versioning - name;
454 
455 		return arch__compare_symbol_names_n(name, str, len);
456 	} else
457 		return arch__compare_symbol_names(name, str);
458 }
459 
symbols__find_by_name(struct rb_root_cached * symbols,const char * name,enum symbol_tag_include includes)460 static struct symbol *symbols__find_by_name(struct rb_root_cached *symbols,
461 					    const char *name,
462 					    enum symbol_tag_include includes)
463 {
464 	struct rb_node *n;
465 	struct symbol_name_rb_node *s = NULL;
466 
467 	if (symbols == NULL)
468 		return NULL;
469 
470 	n = symbols->rb_root.rb_node;
471 
472 	while (n) {
473 		int cmp;
474 
475 		s = rb_entry(n, struct symbol_name_rb_node, rb_node);
476 		cmp = symbol__match_symbol_name(s->sym.name, name, includes);
477 
478 		if (cmp > 0)
479 			n = n->rb_left;
480 		else if (cmp < 0)
481 			n = n->rb_right;
482 		else
483 			break;
484 	}
485 
486 	if (n == NULL)
487 		return NULL;
488 
489 	if (includes != SYMBOL_TAG_INCLUDE__DEFAULT_ONLY)
490 		/* return first symbol that has same name (if any) */
491 		for (n = rb_prev(n); n; n = rb_prev(n)) {
492 			struct symbol_name_rb_node *tmp;
493 
494 			tmp = rb_entry(n, struct symbol_name_rb_node, rb_node);
495 			if (arch__compare_symbol_names(tmp->sym.name, s->sym.name))
496 				break;
497 
498 			s = tmp;
499 		}
500 
501 	return &s->sym;
502 }
503 
dso__reset_find_symbol_cache(struct dso * dso)504 void dso__reset_find_symbol_cache(struct dso *dso)
505 {
506 	dso->last_find_result.addr   = 0;
507 	dso->last_find_result.symbol = NULL;
508 }
509 
dso__insert_symbol(struct dso * dso,struct symbol * sym)510 void dso__insert_symbol(struct dso *dso, struct symbol *sym)
511 {
512 	__symbols__insert(&dso->symbols, sym, dso->kernel);
513 
514 	/* update the symbol cache if necessary */
515 	if (dso->last_find_result.addr >= sym->start &&
516 	    (dso->last_find_result.addr < sym->end ||
517 	    sym->start == sym->end)) {
518 		dso->last_find_result.symbol = sym;
519 	}
520 }
521 
dso__find_symbol(struct dso * dso,u64 addr)522 struct symbol *dso__find_symbol(struct dso *dso, u64 addr)
523 {
524 	if (dso->last_find_result.addr != addr || dso->last_find_result.symbol == NULL) {
525 		dso->last_find_result.addr   = addr;
526 		dso->last_find_result.symbol = symbols__find(&dso->symbols, addr);
527 	}
528 
529 	return dso->last_find_result.symbol;
530 }
531 
dso__first_symbol(struct dso * dso)532 struct symbol *dso__first_symbol(struct dso *dso)
533 {
534 	return symbols__first(&dso->symbols);
535 }
536 
dso__last_symbol(struct dso * dso)537 struct symbol *dso__last_symbol(struct dso *dso)
538 {
539 	return symbols__last(&dso->symbols);
540 }
541 
dso__next_symbol(struct symbol * sym)542 struct symbol *dso__next_symbol(struct symbol *sym)
543 {
544 	return symbols__next(sym);
545 }
546 
symbol__next_by_name(struct symbol * sym)547 struct symbol *symbol__next_by_name(struct symbol *sym)
548 {
549 	struct symbol_name_rb_node *s = container_of(sym, struct symbol_name_rb_node, sym);
550 	struct rb_node *n = rb_next(&s->rb_node);
551 
552 	return n ? &rb_entry(n, struct symbol_name_rb_node, rb_node)->sym : NULL;
553 }
554 
555  /*
556   * Returns first symbol that matched with @name.
557   */
dso__find_symbol_by_name(struct dso * dso,const char * name)558 struct symbol *dso__find_symbol_by_name(struct dso *dso, const char *name)
559 {
560 	struct symbol *s = symbols__find_by_name(&dso->symbol_names, name,
561 						 SYMBOL_TAG_INCLUDE__NONE);
562 	if (!s)
563 		s = symbols__find_by_name(&dso->symbol_names, name,
564 					  SYMBOL_TAG_INCLUDE__DEFAULT_ONLY);
565 	return s;
566 }
567 
dso__sort_by_name(struct dso * dso)568 void dso__sort_by_name(struct dso *dso)
569 {
570 	dso__set_sorted_by_name(dso);
571 	return symbols__sort_by_name(&dso->symbol_names, &dso->symbols);
572 }
573 
modules__parse(const char * filename,void * arg,int (* process_module)(void * arg,const char * name,u64 start,u64 size))574 int modules__parse(const char *filename, void *arg,
575 		   int (*process_module)(void *arg, const char *name,
576 					 u64 start, u64 size))
577 {
578 	char *line = NULL;
579 	size_t n;
580 	FILE *file;
581 	int err = 0;
582 
583 	file = fopen(filename, "r");
584 	if (file == NULL)
585 		return -1;
586 
587 	while (1) {
588 		char name[PATH_MAX];
589 		u64 start, size;
590 		char *sep, *endptr;
591 		ssize_t line_len;
592 
593 		line_len = getline(&line, &n, file);
594 		if (line_len < 0) {
595 			if (feof(file))
596 				break;
597 			err = -1;
598 			goto out;
599 		}
600 
601 		if (!line) {
602 			err = -1;
603 			goto out;
604 		}
605 
606 		line[--line_len] = '\0'; /* \n */
607 
608 		sep = strrchr(line, 'x');
609 		if (sep == NULL)
610 			continue;
611 
612 		hex2u64(sep + 1, &start);
613 
614 		sep = strchr(line, ' ');
615 		if (sep == NULL)
616 			continue;
617 
618 		*sep = '\0';
619 
620 		scnprintf(name, sizeof(name), "[%s]", line);
621 
622 		size = strtoul(sep + 1, &endptr, 0);
623 		if (*endptr != ' ' && *endptr != '\t')
624 			continue;
625 
626 		err = process_module(arg, name, start, size);
627 		if (err)
628 			break;
629 	}
630 out:
631 	free(line);
632 	fclose(file);
633 	return err;
634 }
635 
636 /*
637  * These are symbols in the kernel image, so make sure that
638  * sym is from a kernel DSO.
639  */
symbol__is_idle(const char * name)640 static bool symbol__is_idle(const char *name)
641 {
642 	const char * const idle_symbols[] = {
643 		"arch_cpu_idle",
644 		"cpu_idle",
645 		"cpu_startup_entry",
646 		"intel_idle",
647 		"default_idle",
648 		"native_safe_halt",
649 		"enter_idle",
650 		"exit_idle",
651 		"mwait_idle",
652 		"mwait_idle_with_hints",
653 		"poll_idle",
654 		"ppc64_runlatch_off",
655 		"pseries_dedicated_idle_sleep",
656 		NULL
657 	};
658 	int i;
659 
660 	for (i = 0; idle_symbols[i]; i++) {
661 		if (!strcmp(idle_symbols[i], name))
662 			return true;
663 	}
664 
665 	return false;
666 }
667 
map__process_kallsym_symbol(void * arg,const char * name,char type,u64 start)668 static int map__process_kallsym_symbol(void *arg, const char *name,
669 				       char type, u64 start)
670 {
671 	struct symbol *sym;
672 	struct dso *dso = arg;
673 	struct rb_root_cached *root = &dso->symbols;
674 
675 	if (!symbol_type__filter(type))
676 		return 0;
677 
678 	/*
679 	 * module symbols are not sorted so we add all
680 	 * symbols, setting length to 0, and rely on
681 	 * symbols__fixup_end() to fix it up.
682 	 */
683 	sym = symbol__new(start, 0, kallsyms2elf_binding(type), kallsyms2elf_type(type), name);
684 	if (sym == NULL)
685 		return -ENOMEM;
686 	/*
687 	 * We will pass the symbols to the filter later, in
688 	 * map__split_kallsyms, when we have split the maps per module
689 	 */
690 	__symbols__insert(root, sym, !strchr(name, '['));
691 
692 	return 0;
693 }
694 
695 /*
696  * Loads the function entries in /proc/kallsyms into kernel_map->dso,
697  * so that we can in the next step set the symbol ->end address and then
698  * call kernel_maps__split_kallsyms.
699  */
dso__load_all_kallsyms(struct dso * dso,const char * filename)700 static int dso__load_all_kallsyms(struct dso *dso, const char *filename)
701 {
702 	return kallsyms__parse(filename, dso, map__process_kallsym_symbol);
703 }
704 
map_groups__split_kallsyms_for_kcore(struct map_groups * kmaps,struct dso * dso)705 static int map_groups__split_kallsyms_for_kcore(struct map_groups *kmaps, struct dso *dso)
706 {
707 	struct map *curr_map;
708 	struct symbol *pos;
709 	int count = 0;
710 	struct rb_root_cached old_root = dso->symbols;
711 	struct rb_root_cached *root = &dso->symbols;
712 	struct rb_node *next = rb_first_cached(root);
713 
714 	if (!kmaps)
715 		return -1;
716 
717 	*root = RB_ROOT_CACHED;
718 
719 	while (next) {
720 		char *module;
721 
722 		pos = rb_entry(next, struct symbol, rb_node);
723 		next = rb_next(&pos->rb_node);
724 
725 		rb_erase_cached(&pos->rb_node, &old_root);
726 		RB_CLEAR_NODE(&pos->rb_node);
727 		module = strchr(pos->name, '\t');
728 		if (module)
729 			*module = '\0';
730 
731 		curr_map = map_groups__find(kmaps, pos->start);
732 
733 		if (!curr_map) {
734 			symbol__delete(pos);
735 			continue;
736 		}
737 
738 		pos->start -= curr_map->start - curr_map->pgoff;
739 		if (pos->end > curr_map->end)
740 			pos->end = curr_map->end;
741 		if (pos->end)
742 			pos->end -= curr_map->start - curr_map->pgoff;
743 		symbols__insert(&curr_map->dso->symbols, pos);
744 		++count;
745 	}
746 
747 	/* Symbols have been adjusted */
748 	dso->adjust_symbols = 1;
749 
750 	return count;
751 }
752 
753 /*
754  * Split the symbols into maps, making sure there are no overlaps, i.e. the
755  * kernel range is broken in several maps, named [kernel].N, as we don't have
756  * the original ELF section names vmlinux have.
757  */
map_groups__split_kallsyms(struct map_groups * kmaps,struct dso * dso,u64 delta,struct map * initial_map)758 static int map_groups__split_kallsyms(struct map_groups *kmaps, struct dso *dso, u64 delta,
759 				      struct map *initial_map)
760 {
761 	struct machine *machine;
762 	struct map *curr_map = initial_map;
763 	struct symbol *pos;
764 	int count = 0, moved = 0;
765 	struct rb_root_cached *root = &dso->symbols;
766 	struct rb_node *next = rb_first_cached(root);
767 	int kernel_range = 0;
768 	bool x86_64;
769 
770 	if (!kmaps)
771 		return -1;
772 
773 	machine = kmaps->machine;
774 
775 	x86_64 = machine__is(machine, "x86_64");
776 
777 	while (next) {
778 		char *module;
779 
780 		pos = rb_entry(next, struct symbol, rb_node);
781 		next = rb_next(&pos->rb_node);
782 
783 		module = strchr(pos->name, '\t');
784 		if (module) {
785 			if (!symbol_conf.use_modules)
786 				goto discard_symbol;
787 
788 			*module++ = '\0';
789 
790 			if (strcmp(curr_map->dso->short_name, module)) {
791 				if (curr_map != initial_map &&
792 				    dso->kernel == DSO_TYPE_GUEST_KERNEL &&
793 				    machine__is_default_guest(machine)) {
794 					/*
795 					 * We assume all symbols of a module are
796 					 * continuous in * kallsyms, so curr_map
797 					 * points to a module and all its
798 					 * symbols are in its kmap. Mark it as
799 					 * loaded.
800 					 */
801 					dso__set_loaded(curr_map->dso);
802 				}
803 
804 				curr_map = map_groups__find_by_name(kmaps, module);
805 				if (curr_map == NULL) {
806 					pr_debug("%s/proc/{kallsyms,modules} "
807 					         "inconsistency while looking "
808 						 "for \"%s\" module!\n",
809 						 machine->root_dir, module);
810 					curr_map = initial_map;
811 					goto discard_symbol;
812 				}
813 
814 				if (curr_map->dso->loaded &&
815 				    !machine__is_default_guest(machine))
816 					goto discard_symbol;
817 			}
818 			/*
819 			 * So that we look just like we get from .ko files,
820 			 * i.e. not prelinked, relative to initial_map->start.
821 			 */
822 			pos->start = curr_map->map_ip(curr_map, pos->start);
823 			pos->end   = curr_map->map_ip(curr_map, pos->end);
824 		} else if (x86_64 && is_entry_trampoline(pos->name)) {
825 			/*
826 			 * These symbols are not needed anymore since the
827 			 * trampoline maps refer to the text section and it's
828 			 * symbols instead. Avoid having to deal with
829 			 * relocations, and the assumption that the first symbol
830 			 * is the start of kernel text, by simply removing the
831 			 * symbols at this point.
832 			 */
833 			goto discard_symbol;
834 		} else if (curr_map != initial_map) {
835 			char dso_name[PATH_MAX];
836 			struct dso *ndso;
837 
838 			if (delta) {
839 				/* Kernel was relocated at boot time */
840 				pos->start -= delta;
841 				pos->end -= delta;
842 			}
843 
844 			if (count == 0) {
845 				curr_map = initial_map;
846 				goto add_symbol;
847 			}
848 
849 			if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
850 				snprintf(dso_name, sizeof(dso_name),
851 					"[guest.kernel].%d",
852 					kernel_range++);
853 			else
854 				snprintf(dso_name, sizeof(dso_name),
855 					"[kernel].%d",
856 					kernel_range++);
857 
858 			ndso = dso__new(dso_name);
859 			if (ndso == NULL)
860 				return -1;
861 
862 			ndso->kernel = dso->kernel;
863 
864 			curr_map = map__new2(pos->start, ndso);
865 			if (curr_map == NULL) {
866 				dso__put(ndso);
867 				return -1;
868 			}
869 
870 			curr_map->map_ip = curr_map->unmap_ip = identity__map_ip;
871 			map_groups__insert(kmaps, curr_map);
872 			++kernel_range;
873 		} else if (delta) {
874 			/* Kernel was relocated at boot time */
875 			pos->start -= delta;
876 			pos->end -= delta;
877 		}
878 add_symbol:
879 		if (curr_map != initial_map) {
880 			rb_erase_cached(&pos->rb_node, root);
881 			symbols__insert(&curr_map->dso->symbols, pos);
882 			++moved;
883 		} else
884 			++count;
885 
886 		continue;
887 discard_symbol:
888 		rb_erase_cached(&pos->rb_node, root);
889 		symbol__delete(pos);
890 	}
891 
892 	if (curr_map != initial_map &&
893 	    dso->kernel == DSO_TYPE_GUEST_KERNEL &&
894 	    machine__is_default_guest(kmaps->machine)) {
895 		dso__set_loaded(curr_map->dso);
896 	}
897 
898 	return count + moved;
899 }
900 
symbol__restricted_filename(const char * filename,const char * restricted_filename)901 bool symbol__restricted_filename(const char *filename,
902 				 const char *restricted_filename)
903 {
904 	bool restricted = false;
905 
906 	if (symbol_conf.kptr_restrict) {
907 		char *r = realpath(filename, NULL);
908 
909 		if (r != NULL) {
910 			restricted = strcmp(r, restricted_filename) == 0;
911 			free(r);
912 			return restricted;
913 		}
914 	}
915 
916 	return restricted;
917 }
918 
919 struct module_info {
920 	struct rb_node rb_node;
921 	char *name;
922 	u64 start;
923 };
924 
add_module(struct module_info * mi,struct rb_root * modules)925 static void add_module(struct module_info *mi, struct rb_root *modules)
926 {
927 	struct rb_node **p = &modules->rb_node;
928 	struct rb_node *parent = NULL;
929 	struct module_info *m;
930 
931 	while (*p != NULL) {
932 		parent = *p;
933 		m = rb_entry(parent, struct module_info, rb_node);
934 		if (strcmp(mi->name, m->name) < 0)
935 			p = &(*p)->rb_left;
936 		else
937 			p = &(*p)->rb_right;
938 	}
939 	rb_link_node(&mi->rb_node, parent, p);
940 	rb_insert_color(&mi->rb_node, modules);
941 }
942 
delete_modules(struct rb_root * modules)943 static void delete_modules(struct rb_root *modules)
944 {
945 	struct module_info *mi;
946 	struct rb_node *next = rb_first(modules);
947 
948 	while (next) {
949 		mi = rb_entry(next, struct module_info, rb_node);
950 		next = rb_next(&mi->rb_node);
951 		rb_erase(&mi->rb_node, modules);
952 		zfree(&mi->name);
953 		free(mi);
954 	}
955 }
956 
find_module(const char * name,struct rb_root * modules)957 static struct module_info *find_module(const char *name,
958 				       struct rb_root *modules)
959 {
960 	struct rb_node *n = modules->rb_node;
961 
962 	while (n) {
963 		struct module_info *m;
964 		int cmp;
965 
966 		m = rb_entry(n, struct module_info, rb_node);
967 		cmp = strcmp(name, m->name);
968 		if (cmp < 0)
969 			n = n->rb_left;
970 		else if (cmp > 0)
971 			n = n->rb_right;
972 		else
973 			return m;
974 	}
975 
976 	return NULL;
977 }
978 
__read_proc_modules(void * arg,const char * name,u64 start,u64 size __maybe_unused)979 static int __read_proc_modules(void *arg, const char *name, u64 start,
980 			       u64 size __maybe_unused)
981 {
982 	struct rb_root *modules = arg;
983 	struct module_info *mi;
984 
985 	mi = zalloc(sizeof(struct module_info));
986 	if (!mi)
987 		return -ENOMEM;
988 
989 	mi->name = strdup(name);
990 	mi->start = start;
991 
992 	if (!mi->name) {
993 		free(mi);
994 		return -ENOMEM;
995 	}
996 
997 	add_module(mi, modules);
998 
999 	return 0;
1000 }
1001 
read_proc_modules(const char * filename,struct rb_root * modules)1002 static int read_proc_modules(const char *filename, struct rb_root *modules)
1003 {
1004 	if (symbol__restricted_filename(filename, "/proc/modules"))
1005 		return -1;
1006 
1007 	if (modules__parse(filename, modules, __read_proc_modules)) {
1008 		delete_modules(modules);
1009 		return -1;
1010 	}
1011 
1012 	return 0;
1013 }
1014 
compare_proc_modules(const char * from,const char * to)1015 int compare_proc_modules(const char *from, const char *to)
1016 {
1017 	struct rb_root from_modules = RB_ROOT;
1018 	struct rb_root to_modules = RB_ROOT;
1019 	struct rb_node *from_node, *to_node;
1020 	struct module_info *from_m, *to_m;
1021 	int ret = -1;
1022 
1023 	if (read_proc_modules(from, &from_modules))
1024 		return -1;
1025 
1026 	if (read_proc_modules(to, &to_modules))
1027 		goto out_delete_from;
1028 
1029 	from_node = rb_first(&from_modules);
1030 	to_node = rb_first(&to_modules);
1031 	while (from_node) {
1032 		if (!to_node)
1033 			break;
1034 
1035 		from_m = rb_entry(from_node, struct module_info, rb_node);
1036 		to_m = rb_entry(to_node, struct module_info, rb_node);
1037 
1038 		if (from_m->start != to_m->start ||
1039 		    strcmp(from_m->name, to_m->name))
1040 			break;
1041 
1042 		from_node = rb_next(from_node);
1043 		to_node = rb_next(to_node);
1044 	}
1045 
1046 	if (!from_node && !to_node)
1047 		ret = 0;
1048 
1049 	delete_modules(&to_modules);
1050 out_delete_from:
1051 	delete_modules(&from_modules);
1052 
1053 	return ret;
1054 }
1055 
map_groups__first(struct map_groups * mg)1056 struct map *map_groups__first(struct map_groups *mg)
1057 {
1058 	return maps__first(&mg->maps);
1059 }
1060 
do_validate_kcore_modules(const char * filename,struct map_groups * kmaps)1061 static int do_validate_kcore_modules(const char *filename,
1062 				  struct map_groups *kmaps)
1063 {
1064 	struct rb_root modules = RB_ROOT;
1065 	struct map *old_map;
1066 	int err;
1067 
1068 	err = read_proc_modules(filename, &modules);
1069 	if (err)
1070 		return err;
1071 
1072 	old_map = map_groups__first(kmaps);
1073 	while (old_map) {
1074 		struct map *next = map_groups__next(old_map);
1075 		struct module_info *mi;
1076 
1077 		if (!__map__is_kmodule(old_map)) {
1078 			old_map = next;
1079 			continue;
1080 		}
1081 
1082 		/* Module must be in memory at the same address */
1083 		mi = find_module(old_map->dso->short_name, &modules);
1084 		if (!mi || mi->start != old_map->start) {
1085 			err = -EINVAL;
1086 			goto out;
1087 		}
1088 
1089 		old_map = next;
1090 	}
1091 out:
1092 	delete_modules(&modules);
1093 	return err;
1094 }
1095 
1096 /*
1097  * If kallsyms is referenced by name then we look for filename in the same
1098  * directory.
1099  */
filename_from_kallsyms_filename(char * filename,const char * base_name,const char * kallsyms_filename)1100 static bool filename_from_kallsyms_filename(char *filename,
1101 					    const char *base_name,
1102 					    const char *kallsyms_filename)
1103 {
1104 	char *name;
1105 
1106 	strcpy(filename, kallsyms_filename);
1107 	name = strrchr(filename, '/');
1108 	if (!name)
1109 		return false;
1110 
1111 	name += 1;
1112 
1113 	if (!strcmp(name, "kallsyms")) {
1114 		strcpy(name, base_name);
1115 		return true;
1116 	}
1117 
1118 	return false;
1119 }
1120 
validate_kcore_modules(const char * kallsyms_filename,struct map * map)1121 static int validate_kcore_modules(const char *kallsyms_filename,
1122 				  struct map *map)
1123 {
1124 	struct map_groups *kmaps = map__kmaps(map);
1125 	char modules_filename[PATH_MAX];
1126 
1127 	if (!kmaps)
1128 		return -EINVAL;
1129 
1130 	if (!filename_from_kallsyms_filename(modules_filename, "modules",
1131 					     kallsyms_filename))
1132 		return -EINVAL;
1133 
1134 	if (do_validate_kcore_modules(modules_filename, kmaps))
1135 		return -EINVAL;
1136 
1137 	return 0;
1138 }
1139 
validate_kcore_addresses(const char * kallsyms_filename,struct map * map)1140 static int validate_kcore_addresses(const char *kallsyms_filename,
1141 				    struct map *map)
1142 {
1143 	struct kmap *kmap = map__kmap(map);
1144 
1145 	if (!kmap)
1146 		return -EINVAL;
1147 
1148 	if (kmap->ref_reloc_sym && kmap->ref_reloc_sym->name) {
1149 		u64 start;
1150 
1151 		if (kallsyms__get_function_start(kallsyms_filename,
1152 						 kmap->ref_reloc_sym->name, &start))
1153 			return -ENOENT;
1154 		if (start != kmap->ref_reloc_sym->addr)
1155 			return -EINVAL;
1156 	}
1157 
1158 	return validate_kcore_modules(kallsyms_filename, map);
1159 }
1160 
1161 struct kcore_mapfn_data {
1162 	struct dso *dso;
1163 	struct list_head maps;
1164 };
1165 
kcore_mapfn(u64 start,u64 len,u64 pgoff,void * data)1166 static int kcore_mapfn(u64 start, u64 len, u64 pgoff, void *data)
1167 {
1168 	struct kcore_mapfn_data *md = data;
1169 	struct map *map;
1170 
1171 	map = map__new2(start, md->dso);
1172 	if (map == NULL)
1173 		return -ENOMEM;
1174 
1175 	map->end = map->start + len;
1176 	map->pgoff = pgoff;
1177 
1178 	list_add(&map->node, &md->maps);
1179 
1180 	return 0;
1181 }
1182 
1183 /*
1184  * Merges map into map_groups by splitting the new map
1185  * within the existing map regions.
1186  */
map_groups__merge_in(struct map_groups * kmaps,struct map * new_map)1187 int map_groups__merge_in(struct map_groups *kmaps, struct map *new_map)
1188 {
1189 	struct map *old_map;
1190 	LIST_HEAD(merged);
1191 
1192 	for (old_map = map_groups__first(kmaps); old_map;
1193 	     old_map = map_groups__next(old_map)) {
1194 
1195 		/* no overload with this one */
1196 		if (new_map->end < old_map->start ||
1197 		    new_map->start >= old_map->end)
1198 			continue;
1199 
1200 		if (new_map->start < old_map->start) {
1201 			/*
1202 			 * |new......
1203 			 *       |old....
1204 			 */
1205 			if (new_map->end < old_map->end) {
1206 				/*
1207 				 * |new......|     -> |new..|
1208 				 *       |old....| ->       |old....|
1209 				 */
1210 				new_map->end = old_map->start;
1211 			} else {
1212 				/*
1213 				 * |new.............| -> |new..|       |new..|
1214 				 *       |old....|    ->       |old....|
1215 				 */
1216 				struct map *m = map__clone(new_map);
1217 
1218 				if (!m)
1219 					return -ENOMEM;
1220 
1221 				m->end = old_map->start;
1222 				list_add_tail(&m->node, &merged);
1223 				new_map->start = old_map->end;
1224 			}
1225 		} else {
1226 			/*
1227 			 *      |new......
1228 			 * |old....
1229 			 */
1230 			if (new_map->end < old_map->end) {
1231 				/*
1232 				 *      |new..|   -> x
1233 				 * |old.........| -> |old.........|
1234 				 */
1235 				map__put(new_map);
1236 				new_map = NULL;
1237 				break;
1238 			} else {
1239 				/*
1240 				 *      |new......| ->         |new...|
1241 				 * |old....|        -> |old....|
1242 				 */
1243 				new_map->start = old_map->end;
1244 			}
1245 		}
1246 	}
1247 
1248 	while (!list_empty(&merged)) {
1249 		old_map = list_entry(merged.next, struct map, node);
1250 		list_del_init(&old_map->node);
1251 		map_groups__insert(kmaps, old_map);
1252 		map__put(old_map);
1253 	}
1254 
1255 	if (new_map) {
1256 		map_groups__insert(kmaps, new_map);
1257 		map__put(new_map);
1258 	}
1259 	return 0;
1260 }
1261 
dso__load_kcore(struct dso * dso,struct map * map,const char * kallsyms_filename)1262 static int dso__load_kcore(struct dso *dso, struct map *map,
1263 			   const char *kallsyms_filename)
1264 {
1265 	struct map_groups *kmaps = map__kmaps(map);
1266 	struct kcore_mapfn_data md;
1267 	struct map *old_map, *new_map, *replacement_map = NULL;
1268 	struct machine *machine;
1269 	bool is_64_bit;
1270 	int err, fd;
1271 	char kcore_filename[PATH_MAX];
1272 	u64 stext;
1273 
1274 	if (!kmaps)
1275 		return -EINVAL;
1276 
1277 	machine = kmaps->machine;
1278 
1279 	/* This function requires that the map is the kernel map */
1280 	if (!__map__is_kernel(map))
1281 		return -EINVAL;
1282 
1283 	if (!filename_from_kallsyms_filename(kcore_filename, "kcore",
1284 					     kallsyms_filename))
1285 		return -EINVAL;
1286 
1287 	/* Modules and kernel must be present at their original addresses */
1288 	if (validate_kcore_addresses(kallsyms_filename, map))
1289 		return -EINVAL;
1290 
1291 	md.dso = dso;
1292 	INIT_LIST_HEAD(&md.maps);
1293 
1294 	fd = open(kcore_filename, O_RDONLY);
1295 	if (fd < 0) {
1296 		pr_debug("Failed to open %s. Note /proc/kcore requires CAP_SYS_RAWIO capability to access.\n",
1297 			 kcore_filename);
1298 		return -EINVAL;
1299 	}
1300 
1301 	/* Read new maps into temporary lists */
1302 	err = file__read_maps(fd, map->prot & PROT_EXEC, kcore_mapfn, &md,
1303 			      &is_64_bit);
1304 	if (err)
1305 		goto out_err;
1306 	dso->is_64_bit = is_64_bit;
1307 
1308 	if (list_empty(&md.maps)) {
1309 		err = -EINVAL;
1310 		goto out_err;
1311 	}
1312 
1313 	/* Remove old maps */
1314 	old_map = map_groups__first(kmaps);
1315 	while (old_map) {
1316 		struct map *next = map_groups__next(old_map);
1317 
1318 		/*
1319 		 * We need to preserve eBPF maps even if they are
1320 		 * covered by kcore, because we need to access
1321 		 * eBPF dso for source data.
1322 		 */
1323 		if (old_map != map && !__map__is_bpf_prog(old_map))
1324 			map_groups__remove(kmaps, old_map);
1325 		old_map = next;
1326 	}
1327 	machine->trampolines_mapped = false;
1328 
1329 	/* Find the kernel map using the '_stext' symbol */
1330 	if (!kallsyms__get_function_start(kallsyms_filename, "_stext", &stext)) {
1331 		list_for_each_entry(new_map, &md.maps, node) {
1332 			if (stext >= new_map->start && stext < new_map->end) {
1333 				replacement_map = new_map;
1334 				break;
1335 			}
1336 		}
1337 	}
1338 
1339 	if (!replacement_map)
1340 		replacement_map = list_entry(md.maps.next, struct map, node);
1341 
1342 	/* Add new maps */
1343 	while (!list_empty(&md.maps)) {
1344 		new_map = list_entry(md.maps.next, struct map, node);
1345 		list_del_init(&new_map->node);
1346 		if (new_map == replacement_map) {
1347 			map->start	= new_map->start;
1348 			map->end	= new_map->end;
1349 			map->pgoff	= new_map->pgoff;
1350 			map->map_ip	= new_map->map_ip;
1351 			map->unmap_ip	= new_map->unmap_ip;
1352 			/* Ensure maps are correctly ordered */
1353 			map__get(map);
1354 			map_groups__remove(kmaps, map);
1355 			map_groups__insert(kmaps, map);
1356 			map__put(map);
1357 			map__put(new_map);
1358 		} else {
1359 			/*
1360 			 * Merge kcore map into existing maps,
1361 			 * and ensure that current maps (eBPF)
1362 			 * stay intact.
1363 			 */
1364 			if (map_groups__merge_in(kmaps, new_map))
1365 				goto out_err;
1366 		}
1367 	}
1368 
1369 	if (machine__is(machine, "x86_64")) {
1370 		u64 addr;
1371 
1372 		/*
1373 		 * If one of the corresponding symbols is there, assume the
1374 		 * entry trampoline maps are too.
1375 		 */
1376 		if (!kallsyms__get_function_start(kallsyms_filename,
1377 						  ENTRY_TRAMPOLINE_NAME,
1378 						  &addr))
1379 			machine->trampolines_mapped = true;
1380 	}
1381 
1382 	/*
1383 	 * Set the data type and long name so that kcore can be read via
1384 	 * dso__data_read_addr().
1385 	 */
1386 	if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
1387 		dso->binary_type = DSO_BINARY_TYPE__GUEST_KCORE;
1388 	else
1389 		dso->binary_type = DSO_BINARY_TYPE__KCORE;
1390 	dso__set_long_name(dso, strdup(kcore_filename), true);
1391 
1392 	close(fd);
1393 
1394 	if (map->prot & PROT_EXEC)
1395 		pr_debug("Using %s for kernel object code\n", kcore_filename);
1396 	else
1397 		pr_debug("Using %s for kernel data\n", kcore_filename);
1398 
1399 	return 0;
1400 
1401 out_err:
1402 	while (!list_empty(&md.maps)) {
1403 		map = list_entry(md.maps.next, struct map, node);
1404 		list_del_init(&map->node);
1405 		map__put(map);
1406 	}
1407 	close(fd);
1408 	return -EINVAL;
1409 }
1410 
1411 /*
1412  * If the kernel is relocated at boot time, kallsyms won't match.  Compute the
1413  * delta based on the relocation reference symbol.
1414  */
kallsyms__delta(struct kmap * kmap,const char * filename,u64 * delta)1415 static int kallsyms__delta(struct kmap *kmap, const char *filename, u64 *delta)
1416 {
1417 	u64 addr;
1418 
1419 	if (!kmap->ref_reloc_sym || !kmap->ref_reloc_sym->name)
1420 		return 0;
1421 
1422 	if (kallsyms__get_function_start(filename, kmap->ref_reloc_sym->name, &addr))
1423 		return -1;
1424 
1425 	*delta = addr - kmap->ref_reloc_sym->addr;
1426 	return 0;
1427 }
1428 
__dso__load_kallsyms(struct dso * dso,const char * filename,struct map * map,bool no_kcore)1429 int __dso__load_kallsyms(struct dso *dso, const char *filename,
1430 			 struct map *map, bool no_kcore)
1431 {
1432 	struct kmap *kmap = map__kmap(map);
1433 	u64 delta = 0;
1434 
1435 	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1436 		return -1;
1437 
1438 	if (!kmap || !kmap->kmaps)
1439 		return -1;
1440 
1441 	if (dso__load_all_kallsyms(dso, filename) < 0)
1442 		return -1;
1443 
1444 	if (kallsyms__delta(kmap, filename, &delta))
1445 		return -1;
1446 
1447 	symbols__fixup_end(&dso->symbols);
1448 	symbols__fixup_duplicate(&dso->symbols);
1449 
1450 	if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
1451 		dso->symtab_type = DSO_BINARY_TYPE__GUEST_KALLSYMS;
1452 	else
1453 		dso->symtab_type = DSO_BINARY_TYPE__KALLSYMS;
1454 
1455 	if (!no_kcore && !dso__load_kcore(dso, map, filename))
1456 		return map_groups__split_kallsyms_for_kcore(kmap->kmaps, dso);
1457 	else
1458 		return map_groups__split_kallsyms(kmap->kmaps, dso, delta, map);
1459 }
1460 
dso__load_kallsyms(struct dso * dso,const char * filename,struct map * map)1461 int dso__load_kallsyms(struct dso *dso, const char *filename,
1462 		       struct map *map)
1463 {
1464 	return __dso__load_kallsyms(dso, filename, map, false);
1465 }
1466 
dso__load_perf_map(const char * map_path,struct dso * dso)1467 static int dso__load_perf_map(const char *map_path, struct dso *dso)
1468 {
1469 	char *line = NULL;
1470 	size_t n;
1471 	FILE *file;
1472 	int nr_syms = 0;
1473 
1474 	file = fopen(map_path, "r");
1475 	if (file == NULL)
1476 		goto out_failure;
1477 
1478 	while (!feof(file)) {
1479 		u64 start, size;
1480 		struct symbol *sym;
1481 		int line_len, len;
1482 
1483 		line_len = getline(&line, &n, file);
1484 		if (line_len < 0)
1485 			break;
1486 
1487 		if (!line)
1488 			goto out_failure;
1489 
1490 		line[--line_len] = '\0'; /* \n */
1491 
1492 		len = hex2u64(line, &start);
1493 
1494 		len++;
1495 		if (len + 2 >= line_len)
1496 			continue;
1497 
1498 		len += hex2u64(line + len, &size);
1499 
1500 		len++;
1501 		if (len + 2 >= line_len)
1502 			continue;
1503 
1504 		sym = symbol__new(start, size, STB_GLOBAL, STT_FUNC, line + len);
1505 
1506 		if (sym == NULL)
1507 			goto out_delete_line;
1508 
1509 		symbols__insert(&dso->symbols, sym);
1510 		nr_syms++;
1511 	}
1512 
1513 	free(line);
1514 	fclose(file);
1515 
1516 	return nr_syms;
1517 
1518 out_delete_line:
1519 	free(line);
1520 out_failure:
1521 	return -1;
1522 }
1523 
dso__is_compatible_symtab_type(struct dso * dso,bool kmod,enum dso_binary_type type)1524 static bool dso__is_compatible_symtab_type(struct dso *dso, bool kmod,
1525 					   enum dso_binary_type type)
1526 {
1527 	switch (type) {
1528 	case DSO_BINARY_TYPE__JAVA_JIT:
1529 	case DSO_BINARY_TYPE__DEBUGLINK:
1530 	case DSO_BINARY_TYPE__SYSTEM_PATH_DSO:
1531 	case DSO_BINARY_TYPE__FEDORA_DEBUGINFO:
1532 	case DSO_BINARY_TYPE__UBUNTU_DEBUGINFO:
1533 	case DSO_BINARY_TYPE__BUILDID_DEBUGINFO:
1534 	case DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO:
1535 		return !kmod && dso->kernel == DSO_TYPE_USER;
1536 
1537 	case DSO_BINARY_TYPE__KALLSYMS:
1538 	case DSO_BINARY_TYPE__VMLINUX:
1539 	case DSO_BINARY_TYPE__KCORE:
1540 		return dso->kernel == DSO_TYPE_KERNEL;
1541 
1542 	case DSO_BINARY_TYPE__GUEST_KALLSYMS:
1543 	case DSO_BINARY_TYPE__GUEST_VMLINUX:
1544 	case DSO_BINARY_TYPE__GUEST_KCORE:
1545 		return dso->kernel == DSO_TYPE_GUEST_KERNEL;
1546 
1547 	case DSO_BINARY_TYPE__GUEST_KMODULE:
1548 	case DSO_BINARY_TYPE__GUEST_KMODULE_COMP:
1549 	case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE:
1550 	case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP:
1551 		/*
1552 		 * kernel modules know their symtab type - it's set when
1553 		 * creating a module dso in machine__findnew_module_map().
1554 		 */
1555 		return kmod && dso->symtab_type == type;
1556 
1557 	case DSO_BINARY_TYPE__BUILD_ID_CACHE:
1558 	case DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO:
1559 		return true;
1560 
1561 	case DSO_BINARY_TYPE__BPF_PROG_INFO:
1562 	case DSO_BINARY_TYPE__NOT_FOUND:
1563 	default:
1564 		return false;
1565 	}
1566 }
1567 
1568 /* Checks for the existence of the perf-<pid>.map file in two different
1569  * locations.  First, if the process is a separate mount namespace, check in
1570  * that namespace using the pid of the innermost pid namespace.  If's not in a
1571  * namespace, or the file can't be found there, try in the mount namespace of
1572  * the tracing process using our view of its pid.
1573  */
dso__find_perf_map(char * filebuf,size_t bufsz,struct nsinfo ** nsip)1574 static int dso__find_perf_map(char *filebuf, size_t bufsz,
1575 			      struct nsinfo **nsip)
1576 {
1577 	struct nscookie nsc;
1578 	struct nsinfo *nsi;
1579 	struct nsinfo *nnsi;
1580 	int rc = -1;
1581 
1582 	nsi = *nsip;
1583 
1584 	if (nsi->need_setns) {
1585 		snprintf(filebuf, bufsz, "/tmp/perf-%d.map", nsi->nstgid);
1586 		nsinfo__mountns_enter(nsi, &nsc);
1587 		rc = access(filebuf, R_OK);
1588 		nsinfo__mountns_exit(&nsc);
1589 		if (rc == 0)
1590 			return rc;
1591 	}
1592 
1593 	nnsi = nsinfo__copy(nsi);
1594 	if (nnsi) {
1595 		nsinfo__put(nsi);
1596 
1597 		nnsi->need_setns = false;
1598 		snprintf(filebuf, bufsz, "/tmp/perf-%d.map", nnsi->tgid);
1599 		*nsip = nnsi;
1600 		rc = 0;
1601 	}
1602 
1603 	return rc;
1604 }
1605 
dso__load(struct dso * dso,struct map * map)1606 int dso__load(struct dso *dso, struct map *map)
1607 {
1608 	char *name;
1609 	int ret = -1;
1610 	u_int i;
1611 	struct machine *machine;
1612 	char *root_dir = (char *) "";
1613 	int ss_pos = 0;
1614 	struct symsrc ss_[2];
1615 	struct symsrc *syms_ss = NULL, *runtime_ss = NULL;
1616 	bool kmod;
1617 	bool perfmap;
1618 	unsigned char build_id[BUILD_ID_SIZE];
1619 	struct nscookie nsc;
1620 	char newmapname[PATH_MAX];
1621 	const char *map_path = dso->long_name;
1622 
1623 	perfmap = strncmp(dso->name, "/tmp/perf-", 10) == 0;
1624 	if (perfmap) {
1625 		if (dso->nsinfo && (dso__find_perf_map(newmapname,
1626 		    sizeof(newmapname), &dso->nsinfo) == 0)) {
1627 			map_path = newmapname;
1628 		}
1629 	}
1630 
1631 	nsinfo__mountns_enter(dso->nsinfo, &nsc);
1632 	pthread_mutex_lock(&dso->lock);
1633 
1634 	/* check again under the dso->lock */
1635 	if (dso__loaded(dso)) {
1636 		ret = 1;
1637 		goto out;
1638 	}
1639 
1640 	if (map->groups && map->groups->machine)
1641 		machine = map->groups->machine;
1642 	else
1643 		machine = NULL;
1644 
1645 	if (dso->kernel) {
1646 		if (dso->kernel == DSO_TYPE_KERNEL)
1647 			ret = dso__load_kernel_sym(dso, map);
1648 		else if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
1649 			ret = dso__load_guest_kernel_sym(dso, map);
1650 
1651 		if (machine__is(machine, "x86_64"))
1652 			machine__map_x86_64_entry_trampolines(machine, dso);
1653 		goto out;
1654 	}
1655 
1656 	dso->adjust_symbols = 0;
1657 
1658 	if (perfmap) {
1659 		ret = dso__load_perf_map(map_path, dso);
1660 		dso->symtab_type = ret > 0 ? DSO_BINARY_TYPE__JAVA_JIT :
1661 					     DSO_BINARY_TYPE__NOT_FOUND;
1662 		goto out;
1663 	}
1664 
1665 	if (machine)
1666 		root_dir = machine->root_dir;
1667 
1668 	name = malloc(PATH_MAX);
1669 	if (!name)
1670 		goto out;
1671 
1672 	kmod = dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1673 		dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP ||
1674 		dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE ||
1675 		dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE_COMP;
1676 
1677 
1678 	/*
1679 	 * Read the build id if possible. This is required for
1680 	 * DSO_BINARY_TYPE__BUILDID_DEBUGINFO to work
1681 	 */
1682 	if (!dso->has_build_id &&
1683 	    is_regular_file(dso->long_name)) {
1684 	    __symbol__join_symfs(name, PATH_MAX, dso->long_name);
1685 	    if (filename__read_build_id(name, build_id, BUILD_ID_SIZE) > 0)
1686 		dso__set_build_id(dso, build_id);
1687 	}
1688 
1689 	/*
1690 	 * Iterate over candidate debug images.
1691 	 * Keep track of "interesting" ones (those which have a symtab, dynsym,
1692 	 * and/or opd section) for processing.
1693 	 */
1694 	for (i = 0; i < DSO_BINARY_TYPE__SYMTAB_CNT; i++) {
1695 		struct symsrc *ss = &ss_[ss_pos];
1696 		bool next_slot = false;
1697 		bool is_reg;
1698 		bool nsexit;
1699 		int sirc = -1;
1700 
1701 		enum dso_binary_type symtab_type = binary_type_symtab[i];
1702 
1703 		nsexit = (symtab_type == DSO_BINARY_TYPE__BUILD_ID_CACHE ||
1704 		    symtab_type == DSO_BINARY_TYPE__BUILD_ID_CACHE_DEBUGINFO);
1705 
1706 		if (!dso__is_compatible_symtab_type(dso, kmod, symtab_type))
1707 			continue;
1708 
1709 		if (dso__read_binary_type_filename(dso, symtab_type,
1710 						   root_dir, name, PATH_MAX))
1711 			continue;
1712 
1713 		if (nsexit)
1714 			nsinfo__mountns_exit(&nsc);
1715 
1716 		is_reg = is_regular_file(name);
1717 		if (is_reg)
1718 			sirc = symsrc__init(ss, dso, name, symtab_type);
1719 
1720 		if (nsexit)
1721 			nsinfo__mountns_enter(dso->nsinfo, &nsc);
1722 
1723 		if (!is_reg || sirc < 0)
1724 			continue;
1725 
1726 		if (!syms_ss && symsrc__has_symtab(ss)) {
1727 			syms_ss = ss;
1728 			next_slot = true;
1729 			if (!dso->symsrc_filename)
1730 				dso->symsrc_filename = strdup(name);
1731 		}
1732 
1733 		if (!runtime_ss && symsrc__possibly_runtime(ss)) {
1734 			runtime_ss = ss;
1735 			next_slot = true;
1736 		}
1737 
1738 		if (next_slot) {
1739 			ss_pos++;
1740 
1741 			if (syms_ss && runtime_ss)
1742 				break;
1743 		} else {
1744 			symsrc__destroy(ss);
1745 		}
1746 
1747 	}
1748 
1749 	if (!runtime_ss && !syms_ss)
1750 		goto out_free;
1751 
1752 	if (runtime_ss && !syms_ss) {
1753 		syms_ss = runtime_ss;
1754 	}
1755 
1756 	/* We'll have to hope for the best */
1757 	if (!runtime_ss && syms_ss)
1758 		runtime_ss = syms_ss;
1759 
1760 	if (syms_ss)
1761 		ret = dso__load_sym(dso, map, syms_ss, runtime_ss, kmod);
1762 	else
1763 		ret = -1;
1764 
1765 	if (ret > 0) {
1766 		int nr_plt;
1767 
1768 		nr_plt = dso__synthesize_plt_symbols(dso, runtime_ss);
1769 		if (nr_plt > 0)
1770 			ret += nr_plt;
1771 	}
1772 
1773 	for (; ss_pos > 0; ss_pos--)
1774 		symsrc__destroy(&ss_[ss_pos - 1]);
1775 out_free:
1776 	free(name);
1777 	if (ret < 0 && strstr(dso->name, " (deleted)") != NULL)
1778 		ret = 0;
1779 out:
1780 	dso__set_loaded(dso);
1781 	pthread_mutex_unlock(&dso->lock);
1782 	nsinfo__mountns_exit(&nsc);
1783 
1784 	return ret;
1785 }
1786 
map_groups__find_by_name(struct map_groups * mg,const char * name)1787 struct map *map_groups__find_by_name(struct map_groups *mg, const char *name)
1788 {
1789 	struct maps *maps = &mg->maps;
1790 	struct map *map;
1791 	struct rb_node *node;
1792 
1793 	down_read(&maps->lock);
1794 
1795 	for (node = maps->names.rb_node; node; ) {
1796 		int rc;
1797 
1798 		map = rb_entry(node, struct map, rb_node_name);
1799 
1800 		rc = strcmp(map->dso->short_name, name);
1801 		if (rc < 0)
1802 			node = node->rb_left;
1803 		else if (rc > 0)
1804 			node = node->rb_right;
1805 		else
1806 
1807 			goto out_unlock;
1808 	}
1809 
1810 	map = NULL;
1811 
1812 out_unlock:
1813 	up_read(&maps->lock);
1814 	return map;
1815 }
1816 
dso__load_vmlinux(struct dso * dso,struct map * map,const char * vmlinux,bool vmlinux_allocated)1817 int dso__load_vmlinux(struct dso *dso, struct map *map,
1818 		      const char *vmlinux, bool vmlinux_allocated)
1819 {
1820 	int err = -1;
1821 	struct symsrc ss;
1822 	char symfs_vmlinux[PATH_MAX];
1823 	enum dso_binary_type symtab_type;
1824 
1825 	if (vmlinux[0] == '/')
1826 		snprintf(symfs_vmlinux, sizeof(symfs_vmlinux), "%s", vmlinux);
1827 	else
1828 		symbol__join_symfs(symfs_vmlinux, vmlinux);
1829 
1830 	if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
1831 		symtab_type = DSO_BINARY_TYPE__GUEST_VMLINUX;
1832 	else
1833 		symtab_type = DSO_BINARY_TYPE__VMLINUX;
1834 
1835 	if (symsrc__init(&ss, dso, symfs_vmlinux, symtab_type))
1836 		return -1;
1837 
1838 	err = dso__load_sym(dso, map, &ss, &ss, 0);
1839 	symsrc__destroy(&ss);
1840 
1841 	if (err > 0) {
1842 		if (dso->kernel == DSO_TYPE_GUEST_KERNEL)
1843 			dso->binary_type = DSO_BINARY_TYPE__GUEST_VMLINUX;
1844 		else
1845 			dso->binary_type = DSO_BINARY_TYPE__VMLINUX;
1846 		dso__set_long_name(dso, vmlinux, vmlinux_allocated);
1847 		dso__set_loaded(dso);
1848 		pr_debug("Using %s for symbols\n", symfs_vmlinux);
1849 	}
1850 
1851 	return err;
1852 }
1853 
dso__load_vmlinux_path(struct dso * dso,struct map * map)1854 int dso__load_vmlinux_path(struct dso *dso, struct map *map)
1855 {
1856 	int i, err = 0;
1857 	char *filename = NULL;
1858 
1859 	pr_debug("Looking at the vmlinux_path (%d entries long)\n",
1860 		 vmlinux_path__nr_entries + 1);
1861 
1862 	for (i = 0; i < vmlinux_path__nr_entries; ++i) {
1863 		err = dso__load_vmlinux(dso, map, vmlinux_path[i], false);
1864 		if (err > 0)
1865 			goto out;
1866 	}
1867 
1868 	if (!symbol_conf.ignore_vmlinux_buildid)
1869 		filename = dso__build_id_filename(dso, NULL, 0, false);
1870 	if (filename != NULL) {
1871 		err = dso__load_vmlinux(dso, map, filename, true);
1872 		if (err > 0)
1873 			goto out;
1874 		free(filename);
1875 	}
1876 out:
1877 	return err;
1878 }
1879 
visible_dir_filter(const char * name,struct dirent * d)1880 static bool visible_dir_filter(const char *name, struct dirent *d)
1881 {
1882 	if (d->d_type != DT_DIR)
1883 		return false;
1884 	return lsdir_no_dot_filter(name, d);
1885 }
1886 
find_matching_kcore(struct map * map,char * dir,size_t dir_sz)1887 static int find_matching_kcore(struct map *map, char *dir, size_t dir_sz)
1888 {
1889 	char kallsyms_filename[PATH_MAX];
1890 	int ret = -1;
1891 	struct strlist *dirs;
1892 	struct str_node *nd;
1893 
1894 	dirs = lsdir(dir, visible_dir_filter);
1895 	if (!dirs)
1896 		return -1;
1897 
1898 	strlist__for_each_entry(nd, dirs) {
1899 		scnprintf(kallsyms_filename, sizeof(kallsyms_filename),
1900 			  "%s/%s/kallsyms", dir, nd->s);
1901 		if (!validate_kcore_addresses(kallsyms_filename, map)) {
1902 			strlcpy(dir, kallsyms_filename, dir_sz);
1903 			ret = 0;
1904 			break;
1905 		}
1906 	}
1907 
1908 	strlist__delete(dirs);
1909 
1910 	return ret;
1911 }
1912 
1913 /*
1914  * Use open(O_RDONLY) to check readability directly instead of access(R_OK)
1915  * since access(R_OK) only checks with real UID/GID but open() use effective
1916  * UID/GID and actual capabilities (e.g. /proc/kcore requires CAP_SYS_RAWIO).
1917  */
filename__readable(const char * file)1918 static bool filename__readable(const char *file)
1919 {
1920 	int fd = open(file, O_RDONLY);
1921 	if (fd < 0)
1922 		return false;
1923 	close(fd);
1924 	return true;
1925 }
1926 
dso__find_kallsyms(struct dso * dso,struct map * map)1927 static char *dso__find_kallsyms(struct dso *dso, struct map *map)
1928 {
1929 	u8 host_build_id[BUILD_ID_SIZE];
1930 	char sbuild_id[SBUILD_ID_SIZE];
1931 	bool is_host = false;
1932 	char path[PATH_MAX];
1933 
1934 	if (!dso->has_build_id) {
1935 		/*
1936 		 * Last resort, if we don't have a build-id and couldn't find
1937 		 * any vmlinux file, try the running kernel kallsyms table.
1938 		 */
1939 		goto proc_kallsyms;
1940 	}
1941 
1942 	if (sysfs__read_build_id("/sys/kernel/notes", host_build_id,
1943 				 sizeof(host_build_id)) == 0)
1944 		is_host = dso__build_id_equal(dso, host_build_id);
1945 
1946 	/* Try a fast path for /proc/kallsyms if possible */
1947 	if (is_host) {
1948 		/*
1949 		 * Do not check the build-id cache, unless we know we cannot use
1950 		 * /proc/kcore or module maps don't match to /proc/kallsyms.
1951 		 * To check readability of /proc/kcore, do not use access(R_OK)
1952 		 * since /proc/kcore requires CAP_SYS_RAWIO to read and access
1953 		 * can't check it.
1954 		 */
1955 		if (filename__readable("/proc/kcore") &&
1956 		    !validate_kcore_addresses("/proc/kallsyms", map))
1957 			goto proc_kallsyms;
1958 	}
1959 
1960 	build_id__sprintf(dso->build_id, sizeof(dso->build_id), sbuild_id);
1961 
1962 	/* Find kallsyms in build-id cache with kcore */
1963 	scnprintf(path, sizeof(path), "%s/%s/%s",
1964 		  buildid_dir, DSO__NAME_KCORE, sbuild_id);
1965 
1966 	if (!find_matching_kcore(map, path, sizeof(path)))
1967 		return strdup(path);
1968 
1969 	/* Use current /proc/kallsyms if possible */
1970 	if (is_host) {
1971 proc_kallsyms:
1972 		return strdup("/proc/kallsyms");
1973 	}
1974 
1975 	/* Finally, find a cache of kallsyms */
1976 	if (!build_id_cache__kallsyms_path(sbuild_id, path, sizeof(path))) {
1977 		pr_err("No kallsyms or vmlinux with build-id %s was found\n",
1978 		       sbuild_id);
1979 		return NULL;
1980 	}
1981 
1982 	return strdup(path);
1983 }
1984 
dso__load_kernel_sym(struct dso * dso,struct map * map)1985 static int dso__load_kernel_sym(struct dso *dso, struct map *map)
1986 {
1987 	int err;
1988 	const char *kallsyms_filename = NULL;
1989 	char *kallsyms_allocated_filename = NULL;
1990 	/*
1991 	 * Step 1: if the user specified a kallsyms or vmlinux filename, use
1992 	 * it and only it, reporting errors to the user if it cannot be used.
1993 	 *
1994 	 * For instance, try to analyse an ARM perf.data file _without_ a
1995 	 * build-id, or if the user specifies the wrong path to the right
1996 	 * vmlinux file, obviously we can't fallback to another vmlinux (a
1997 	 * x86_86 one, on the machine where analysis is being performed, say),
1998 	 * or worse, /proc/kallsyms.
1999 	 *
2000 	 * If the specified file _has_ a build-id and there is a build-id
2001 	 * section in the perf.data file, we will still do the expected
2002 	 * validation in dso__load_vmlinux and will bail out if they don't
2003 	 * match.
2004 	 */
2005 	if (symbol_conf.kallsyms_name != NULL) {
2006 		kallsyms_filename = symbol_conf.kallsyms_name;
2007 		goto do_kallsyms;
2008 	}
2009 
2010 	if (!symbol_conf.ignore_vmlinux && symbol_conf.vmlinux_name != NULL) {
2011 		return dso__load_vmlinux(dso, map, symbol_conf.vmlinux_name, false);
2012 	}
2013 
2014 	if (!symbol_conf.ignore_vmlinux && vmlinux_path != NULL) {
2015 		err = dso__load_vmlinux_path(dso, map);
2016 		if (err > 0)
2017 			return err;
2018 	}
2019 
2020 	/* do not try local files if a symfs was given */
2021 	if (symbol_conf.symfs[0] != 0)
2022 		return -1;
2023 
2024 	kallsyms_allocated_filename = dso__find_kallsyms(dso, map);
2025 	if (!kallsyms_allocated_filename)
2026 		return -1;
2027 
2028 	kallsyms_filename = kallsyms_allocated_filename;
2029 
2030 do_kallsyms:
2031 	err = dso__load_kallsyms(dso, kallsyms_filename, map);
2032 	if (err > 0)
2033 		pr_debug("Using %s for symbols\n", kallsyms_filename);
2034 	free(kallsyms_allocated_filename);
2035 
2036 	if (err > 0 && !dso__is_kcore(dso)) {
2037 		dso->binary_type = DSO_BINARY_TYPE__KALLSYMS;
2038 		dso__set_long_name(dso, DSO__NAME_KALLSYMS, false);
2039 		map__fixup_start(map);
2040 		map__fixup_end(map);
2041 	}
2042 
2043 	return err;
2044 }
2045 
dso__load_guest_kernel_sym(struct dso * dso,struct map * map)2046 static int dso__load_guest_kernel_sym(struct dso *dso, struct map *map)
2047 {
2048 	int err;
2049 	const char *kallsyms_filename = NULL;
2050 	struct machine *machine;
2051 	char path[PATH_MAX];
2052 
2053 	if (!map->groups) {
2054 		pr_debug("Guest kernel map hasn't the point to groups\n");
2055 		return -1;
2056 	}
2057 	machine = map->groups->machine;
2058 
2059 	if (machine__is_default_guest(machine)) {
2060 		/*
2061 		 * if the user specified a vmlinux filename, use it and only
2062 		 * it, reporting errors to the user if it cannot be used.
2063 		 * Or use file guest_kallsyms inputted by user on commandline
2064 		 */
2065 		if (symbol_conf.default_guest_vmlinux_name != NULL) {
2066 			err = dso__load_vmlinux(dso, map,
2067 						symbol_conf.default_guest_vmlinux_name,
2068 						false);
2069 			return err;
2070 		}
2071 
2072 		kallsyms_filename = symbol_conf.default_guest_kallsyms;
2073 		if (!kallsyms_filename)
2074 			return -1;
2075 	} else {
2076 		sprintf(path, "%s/proc/kallsyms", machine->root_dir);
2077 		kallsyms_filename = path;
2078 	}
2079 
2080 	err = dso__load_kallsyms(dso, kallsyms_filename, map);
2081 	if (err > 0)
2082 		pr_debug("Using %s for symbols\n", kallsyms_filename);
2083 	if (err > 0 && !dso__is_kcore(dso)) {
2084 		dso->binary_type = DSO_BINARY_TYPE__GUEST_KALLSYMS;
2085 		dso__set_long_name(dso, machine->mmap_name, false);
2086 		map__fixup_start(map);
2087 		map__fixup_end(map);
2088 	}
2089 
2090 	return err;
2091 }
2092 
vmlinux_path__exit(void)2093 static void vmlinux_path__exit(void)
2094 {
2095 	while (--vmlinux_path__nr_entries >= 0)
2096 		zfree(&vmlinux_path[vmlinux_path__nr_entries]);
2097 	vmlinux_path__nr_entries = 0;
2098 
2099 	zfree(&vmlinux_path);
2100 }
2101 
2102 static const char * const vmlinux_paths[] = {
2103 	"vmlinux",
2104 	"/boot/vmlinux"
2105 };
2106 
2107 static const char * const vmlinux_paths_upd[] = {
2108 	"/boot/vmlinux-%s",
2109 	"/usr/lib/debug/boot/vmlinux-%s",
2110 	"/lib/modules/%s/build/vmlinux",
2111 	"/usr/lib/debug/lib/modules/%s/vmlinux",
2112 	"/usr/lib/debug/boot/vmlinux-%s.debug"
2113 };
2114 
vmlinux_path__add(const char * new_entry)2115 static int vmlinux_path__add(const char *new_entry)
2116 {
2117 	vmlinux_path[vmlinux_path__nr_entries] = strdup(new_entry);
2118 	if (vmlinux_path[vmlinux_path__nr_entries] == NULL)
2119 		return -1;
2120 	++vmlinux_path__nr_entries;
2121 
2122 	return 0;
2123 }
2124 
vmlinux_path__init(struct perf_env * env)2125 static int vmlinux_path__init(struct perf_env *env)
2126 {
2127 	struct utsname uts;
2128 	char bf[PATH_MAX];
2129 	char *kernel_version;
2130 	unsigned int i;
2131 
2132 	vmlinux_path = malloc(sizeof(char *) * (ARRAY_SIZE(vmlinux_paths) +
2133 			      ARRAY_SIZE(vmlinux_paths_upd)));
2134 	if (vmlinux_path == NULL)
2135 		return -1;
2136 
2137 	for (i = 0; i < ARRAY_SIZE(vmlinux_paths); i++)
2138 		if (vmlinux_path__add(vmlinux_paths[i]) < 0)
2139 			goto out_fail;
2140 
2141 	/* only try kernel version if no symfs was given */
2142 	if (symbol_conf.symfs[0] != 0)
2143 		return 0;
2144 
2145 	if (env) {
2146 		kernel_version = env->os_release;
2147 	} else {
2148 		if (uname(&uts) < 0)
2149 			goto out_fail;
2150 
2151 		kernel_version = uts.release;
2152 	}
2153 
2154 	for (i = 0; i < ARRAY_SIZE(vmlinux_paths_upd); i++) {
2155 		snprintf(bf, sizeof(bf), vmlinux_paths_upd[i], kernel_version);
2156 		if (vmlinux_path__add(bf) < 0)
2157 			goto out_fail;
2158 	}
2159 
2160 	return 0;
2161 
2162 out_fail:
2163 	vmlinux_path__exit();
2164 	return -1;
2165 }
2166 
setup_list(struct strlist ** list,const char * list_str,const char * list_name)2167 int setup_list(struct strlist **list, const char *list_str,
2168 		      const char *list_name)
2169 {
2170 	if (list_str == NULL)
2171 		return 0;
2172 
2173 	*list = strlist__new(list_str, NULL);
2174 	if (!*list) {
2175 		pr_err("problems parsing %s list\n", list_name);
2176 		return -1;
2177 	}
2178 
2179 	symbol_conf.has_filter = true;
2180 	return 0;
2181 }
2182 
setup_intlist(struct intlist ** list,const char * list_str,const char * list_name)2183 int setup_intlist(struct intlist **list, const char *list_str,
2184 		  const char *list_name)
2185 {
2186 	if (list_str == NULL)
2187 		return 0;
2188 
2189 	*list = intlist__new(list_str);
2190 	if (!*list) {
2191 		pr_err("problems parsing %s list\n", list_name);
2192 		return -1;
2193 	}
2194 	return 0;
2195 }
2196 
symbol__read_kptr_restrict(void)2197 static bool symbol__read_kptr_restrict(void)
2198 {
2199 	bool value = false;
2200 	FILE *fp = fopen("/proc/sys/kernel/kptr_restrict", "r");
2201 
2202 	if (fp != NULL) {
2203 		char line[8];
2204 
2205 		if (fgets(line, sizeof(line), fp) != NULL)
2206 			value = perf_cap__capable(CAP_SYSLOG) ?
2207 					(atoi(line) >= 2) :
2208 					(atoi(line) != 0);
2209 
2210 		fclose(fp);
2211 	}
2212 
2213 	/* Per kernel/kallsyms.c:
2214 	 * we also restrict when perf_event_paranoid > 1 w/o CAP_SYSLOG
2215 	 */
2216 	if (perf_event_paranoid() > 1 && !perf_cap__capable(CAP_SYSLOG))
2217 		value = true;
2218 
2219 	return value;
2220 }
2221 
symbol__annotation_init(void)2222 int symbol__annotation_init(void)
2223 {
2224 	if (symbol_conf.init_annotation)
2225 		return 0;
2226 
2227 	if (symbol_conf.initialized) {
2228 		pr_err("Annotation needs to be init before symbol__init()\n");
2229 		return -1;
2230 	}
2231 
2232 	symbol_conf.priv_size += sizeof(struct annotation);
2233 	symbol_conf.init_annotation = true;
2234 	return 0;
2235 }
2236 
symbol__init(struct perf_env * env)2237 int symbol__init(struct perf_env *env)
2238 {
2239 	const char *symfs;
2240 
2241 	if (symbol_conf.initialized)
2242 		return 0;
2243 
2244 	symbol_conf.priv_size = PERF_ALIGN(symbol_conf.priv_size, sizeof(u64));
2245 
2246 	symbol__elf_init();
2247 
2248 	if (symbol_conf.sort_by_name)
2249 		symbol_conf.priv_size += (sizeof(struct symbol_name_rb_node) -
2250 					  sizeof(struct symbol));
2251 
2252 	if (symbol_conf.try_vmlinux_path && vmlinux_path__init(env) < 0)
2253 		return -1;
2254 
2255 	if (symbol_conf.field_sep && *symbol_conf.field_sep == '.') {
2256 		pr_err("'.' is the only non valid --field-separator argument\n");
2257 		return -1;
2258 	}
2259 
2260 	if (setup_list(&symbol_conf.dso_list,
2261 		       symbol_conf.dso_list_str, "dso") < 0)
2262 		return -1;
2263 
2264 	if (setup_list(&symbol_conf.comm_list,
2265 		       symbol_conf.comm_list_str, "comm") < 0)
2266 		goto out_free_dso_list;
2267 
2268 	if (setup_intlist(&symbol_conf.pid_list,
2269 		       symbol_conf.pid_list_str, "pid") < 0)
2270 		goto out_free_comm_list;
2271 
2272 	if (setup_intlist(&symbol_conf.tid_list,
2273 		       symbol_conf.tid_list_str, "tid") < 0)
2274 		goto out_free_pid_list;
2275 
2276 	if (setup_list(&symbol_conf.sym_list,
2277 		       symbol_conf.sym_list_str, "symbol") < 0)
2278 		goto out_free_tid_list;
2279 
2280 	if (setup_list(&symbol_conf.bt_stop_list,
2281 		       symbol_conf.bt_stop_list_str, "symbol") < 0)
2282 		goto out_free_sym_list;
2283 
2284 	/*
2285 	 * A path to symbols of "/" is identical to ""
2286 	 * reset here for simplicity.
2287 	 */
2288 	symfs = realpath(symbol_conf.symfs, NULL);
2289 	if (symfs == NULL)
2290 		symfs = symbol_conf.symfs;
2291 	if (strcmp(symfs, "/") == 0)
2292 		symbol_conf.symfs = "";
2293 	if (symfs != symbol_conf.symfs)
2294 		free((void *)symfs);
2295 
2296 	symbol_conf.kptr_restrict = symbol__read_kptr_restrict();
2297 
2298 	symbol_conf.initialized = true;
2299 	return 0;
2300 
2301 out_free_sym_list:
2302 	strlist__delete(symbol_conf.sym_list);
2303 out_free_tid_list:
2304 	intlist__delete(symbol_conf.tid_list);
2305 out_free_pid_list:
2306 	intlist__delete(symbol_conf.pid_list);
2307 out_free_comm_list:
2308 	strlist__delete(symbol_conf.comm_list);
2309 out_free_dso_list:
2310 	strlist__delete(symbol_conf.dso_list);
2311 	return -1;
2312 }
2313 
symbol__exit(void)2314 void symbol__exit(void)
2315 {
2316 	if (!symbol_conf.initialized)
2317 		return;
2318 	strlist__delete(symbol_conf.bt_stop_list);
2319 	strlist__delete(symbol_conf.sym_list);
2320 	strlist__delete(symbol_conf.dso_list);
2321 	strlist__delete(symbol_conf.comm_list);
2322 	intlist__delete(symbol_conf.tid_list);
2323 	intlist__delete(symbol_conf.pid_list);
2324 	vmlinux_path__exit();
2325 	symbol_conf.sym_list = symbol_conf.dso_list = symbol_conf.comm_list = NULL;
2326 	symbol_conf.bt_stop_list = NULL;
2327 	symbol_conf.initialized = false;
2328 }
2329 
symbol__config_symfs(const struct option * opt __maybe_unused,const char * dir,int unset __maybe_unused)2330 int symbol__config_symfs(const struct option *opt __maybe_unused,
2331 			 const char *dir, int unset __maybe_unused)
2332 {
2333 	char *bf = NULL;
2334 	int ret;
2335 
2336 	symbol_conf.symfs = strdup(dir);
2337 	if (symbol_conf.symfs == NULL)
2338 		return -ENOMEM;
2339 
2340 	/* skip the locally configured cache if a symfs is given, and
2341 	 * config buildid dir to symfs/.debug
2342 	 */
2343 	ret = asprintf(&bf, "%s/%s", dir, ".debug");
2344 	if (ret < 0)
2345 		return -ENOMEM;
2346 
2347 	set_buildid_dir(bf);
2348 
2349 	free(bf);
2350 	return 0;
2351 }
2352 
mem_info__get(struct mem_info * mi)2353 struct mem_info *mem_info__get(struct mem_info *mi)
2354 {
2355 	if (mi)
2356 		refcount_inc(&mi->refcnt);
2357 	return mi;
2358 }
2359 
mem_info__put(struct mem_info * mi)2360 void mem_info__put(struct mem_info *mi)
2361 {
2362 	if (mi && refcount_dec_and_test(&mi->refcnt))
2363 		free(mi);
2364 }
2365 
mem_info__new(void)2366 struct mem_info *mem_info__new(void)
2367 {
2368 	struct mem_info *mi = zalloc(sizeof(*mi));
2369 
2370 	if (mi)
2371 		refcount_set(&mi->refcnt, 1);
2372 	return mi;
2373 }
2374 
block_info__get(struct block_info * bi)2375 struct block_info *block_info__get(struct block_info *bi)
2376 {
2377 	if (bi)
2378 		refcount_inc(&bi->refcnt);
2379 	return bi;
2380 }
2381 
block_info__put(struct block_info * bi)2382 void block_info__put(struct block_info *bi)
2383 {
2384 	if (bi && refcount_dec_and_test(&bi->refcnt))
2385 		free(bi);
2386 }
2387 
block_info__new(void)2388 struct block_info *block_info__new(void)
2389 {
2390 	struct block_info *bi = zalloc(sizeof(*bi));
2391 
2392 	if (bi)
2393 		refcount_set(&bi->refcnt, 1);
2394 	return bi;
2395 }
2396