1 /*
2 * SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2018, The Linux Foundation
4 */
5
6 #include <linux/clk.h>
7 #include <linux/clk-provider.h>
8 #include <linux/iopoll.h>
9
10 #include "dsi_phy.h"
11 #include "dsi.xml.h"
12 #include "dsi_phy_7nm.xml.h"
13
14 /*
15 * DSI PLL 7nm - clock diagram (eg: DSI0): TODO: updated CPHY diagram
16 *
17 * dsi0_pll_out_div_clk dsi0_pll_bit_clk
18 * | |
19 * | |
20 * +---------+ | +----------+ | +----+
21 * dsi0vco_clk ---| out_div |--o--| divl_3_0 |--o--| /8 |-- dsi0_phy_pll_out_byteclk
22 * +---------+ | +----------+ | +----+
23 * | |
24 * | | dsi0_pll_by_2_bit_clk
25 * | | |
26 * | | +----+ | |\ dsi0_pclk_mux
27 * | |--| /2 |--o--| \ |
28 * | | +----+ | \ | +---------+
29 * | --------------| |--o--| div_7_4 |-- dsi0_phy_pll_out_dsiclk
30 * |------------------------------| / +---------+
31 * | +-----+ | /
32 * -----------| /4? |--o----------|/
33 * +-----+ | |
34 * | |dsiclk_sel
35 * |
36 * dsi0_pll_post_out_div_clk
37 */
38
39 #define VCO_REF_CLK_RATE 19200000
40 #define FRAC_BITS 18
41
42 /* Hardware is pre V4.1 */
43 #define DSI_PHY_7NM_QUIRK_PRE_V4_1 BIT(0)
44 /* Hardware is V4.1 */
45 #define DSI_PHY_7NM_QUIRK_V4_1 BIT(1)
46 /* Hardware is V4.2 */
47 #define DSI_PHY_7NM_QUIRK_V4_2 BIT(2)
48 /* Hardware is V4.3 */
49 #define DSI_PHY_7NM_QUIRK_V4_3 BIT(3)
50 /* Hardware is V5.2 */
51 #define DSI_PHY_7NM_QUIRK_V5_2 BIT(4)
52
53 struct dsi_pll_config {
54 bool enable_ssc;
55 bool ssc_center;
56 u32 ssc_freq;
57 u32 ssc_offset;
58 u32 ssc_adj_per;
59
60 /* out */
61 u32 decimal_div_start;
62 u32 frac_div_start;
63 u32 pll_clock_inverters;
64 u32 ssc_stepsize;
65 u32 ssc_div_per;
66 };
67
68 struct pll_7nm_cached_state {
69 unsigned long vco_rate;
70 u8 bit_clk_div;
71 u8 pix_clk_div;
72 u8 pll_out_div;
73 u8 pll_mux;
74 };
75
76 struct dsi_pll_7nm {
77 struct clk_hw clk_hw;
78
79 struct msm_dsi_phy *phy;
80
81 u64 vco_current_rate;
82
83 /* protects REG_DSI_7nm_PHY_CMN_CLK_CFG0 register */
84 spinlock_t postdiv_lock;
85
86 struct pll_7nm_cached_state cached_state;
87
88 struct dsi_pll_7nm *slave;
89 };
90
91 #define to_pll_7nm(x) container_of(x, struct dsi_pll_7nm, clk_hw)
92
93 /*
94 * Global list of private DSI PLL struct pointers. We need this for bonded DSI
95 * mode, where the master PLL's clk_ops needs access the slave's private data
96 */
97 static struct dsi_pll_7nm *pll_7nm_list[DSI_MAX];
98
dsi_pll_setup_config(struct dsi_pll_config * config)99 static void dsi_pll_setup_config(struct dsi_pll_config *config)
100 {
101 config->ssc_freq = 31500;
102 config->ssc_offset = 4800;
103 config->ssc_adj_per = 2;
104
105 /* TODO: ssc enable */
106 config->enable_ssc = false;
107 config->ssc_center = 0;
108 }
109
dsi_pll_calc_dec_frac(struct dsi_pll_7nm * pll,struct dsi_pll_config * config)110 static void dsi_pll_calc_dec_frac(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
111 {
112 u64 fref = VCO_REF_CLK_RATE;
113 u64 pll_freq;
114 u64 divider;
115 u64 dec, dec_multiple;
116 u32 frac;
117 u64 multiplier;
118
119 pll_freq = pll->vco_current_rate;
120
121 divider = fref * 2;
122
123 multiplier = 1 << FRAC_BITS;
124 dec_multiple = div_u64(pll_freq * multiplier, divider);
125 dec = div_u64_rem(dec_multiple, multiplier, &frac);
126
127 if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1)
128 config->pll_clock_inverters = 0x28;
129 else if ((pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
130 if (pll_freq <= 1300000000ULL)
131 config->pll_clock_inverters = 0xa0;
132 else if (pll_freq <= 2500000000ULL)
133 config->pll_clock_inverters = 0x20;
134 else if (pll_freq <= 4000000000ULL)
135 config->pll_clock_inverters = 0x00;
136 else
137 config->pll_clock_inverters = 0x40;
138 } else {
139 if (pll_freq <= 1000000000ULL)
140 config->pll_clock_inverters = 0xa0;
141 else if (pll_freq <= 2500000000ULL)
142 config->pll_clock_inverters = 0x20;
143 else if (pll_freq <= 3020000000ULL)
144 config->pll_clock_inverters = 0x00;
145 else
146 config->pll_clock_inverters = 0x40;
147 }
148
149 config->decimal_div_start = dec;
150 config->frac_div_start = frac;
151 }
152
153 #define SSC_CENTER BIT(0)
154 #define SSC_EN BIT(1)
155
dsi_pll_calc_ssc(struct dsi_pll_7nm * pll,struct dsi_pll_config * config)156 static void dsi_pll_calc_ssc(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
157 {
158 u32 ssc_per;
159 u32 ssc_mod;
160 u64 ssc_step_size;
161 u64 frac;
162
163 if (!config->enable_ssc) {
164 DBG("SSC not enabled\n");
165 return;
166 }
167
168 ssc_per = DIV_ROUND_CLOSEST(VCO_REF_CLK_RATE, config->ssc_freq) / 2 - 1;
169 ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1);
170 ssc_per -= ssc_mod;
171
172 frac = config->frac_div_start;
173 ssc_step_size = config->decimal_div_start;
174 ssc_step_size *= (1 << FRAC_BITS);
175 ssc_step_size += frac;
176 ssc_step_size *= config->ssc_offset;
177 ssc_step_size *= (config->ssc_adj_per + 1);
178 ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1));
179 ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000);
180
181 config->ssc_div_per = ssc_per;
182 config->ssc_stepsize = ssc_step_size;
183
184 pr_debug("SCC: Dec:%d, frac:%llu, frac_bits:%d\n",
185 config->decimal_div_start, frac, FRAC_BITS);
186 pr_debug("SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n",
187 ssc_per, (u32)ssc_step_size, config->ssc_adj_per);
188 }
189
dsi_pll_ssc_commit(struct dsi_pll_7nm * pll,struct dsi_pll_config * config)190 static void dsi_pll_ssc_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
191 {
192 void __iomem *base = pll->phy->pll_base;
193
194 if (config->enable_ssc) {
195 pr_debug("SSC is enabled\n");
196
197 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_LOW_1,
198 config->ssc_stepsize & 0xff);
199 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_HIGH_1,
200 config->ssc_stepsize >> 8);
201 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_LOW_1,
202 config->ssc_div_per & 0xff);
203 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_HIGH_1,
204 config->ssc_div_per >> 8);
205 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_LOW_1,
206 config->ssc_adj_per & 0xff);
207 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_HIGH_1,
208 config->ssc_adj_per >> 8);
209 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_CONTROL,
210 SSC_EN | (config->ssc_center ? SSC_CENTER : 0));
211 }
212 }
213
dsi_pll_config_hzindep_reg(struct dsi_pll_7nm * pll)214 static void dsi_pll_config_hzindep_reg(struct dsi_pll_7nm *pll)
215 {
216 void __iomem *base = pll->phy->pll_base;
217 u8 analog_controls_five_1 = 0x01, vco_config_1 = 0x00;
218
219 if (!(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1))
220 if (pll->vco_current_rate >= 3100000000ULL)
221 analog_controls_five_1 = 0x03;
222
223 if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
224 if (pll->vco_current_rate < 1520000000ULL)
225 vco_config_1 = 0x08;
226 else if (pll->vco_current_rate < 2990000000ULL)
227 vco_config_1 = 0x01;
228 }
229
230 if ((pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_2) ||
231 (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3)) {
232 if (pll->vco_current_rate < 1520000000ULL)
233 vco_config_1 = 0x08;
234 else if (pll->vco_current_rate >= 2990000000ULL)
235 vco_config_1 = 0x01;
236 }
237
238 if ((pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
239 if (pll->vco_current_rate < 1557000000ULL)
240 vco_config_1 = 0x08;
241 else
242 vco_config_1 = 0x01;
243 }
244
245 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE_1,
246 analog_controls_five_1);
247 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_VCO_CONFIG_1, vco_config_1);
248 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE, 0x01);
249 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_TWO, 0x03);
250 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_THREE, 0x00);
251 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_DSM_DIVIDER, 0x00);
252 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FEEDBACK_DIVIDER, 0x4e);
253 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CALIBRATION_SETTINGS, 0x40);
254 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_BAND_SEL_CAL_SETTINGS_THREE, 0xba);
255 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FREQ_DETECT_SETTINGS_ONE, 0x0c);
256 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_OUTDIV, 0x00);
257 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CORE_OVERRIDE, 0x00);
258 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_DIGITAL_TIMERS_TWO, 0x08);
259 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_PROP_GAIN_RATE_1, 0x0a);
260 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_BAND_SEL_RATE_1, 0xc0);
261 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x84);
262 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x82);
263 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_FL_INT_GAIN_PFILT_BAND_1, 0x4c);
264 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_OVERRIDE, 0x80);
265 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x29);
266 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x2f);
267 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_IFILT, 0x2a);
268 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_IFILT,
269 !(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1) ? 0x3f : 0x22);
270
271 if (!(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1)) {
272 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22);
273 if (pll->slave)
274 dsi_phy_write(pll->slave->phy->pll_base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22);
275 }
276 }
277
dsi_pll_commit(struct dsi_pll_7nm * pll,struct dsi_pll_config * config)278 static void dsi_pll_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
279 {
280 void __iomem *base = pll->phy->pll_base;
281
282 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CORE_INPUT_OVERRIDE, 0x12);
283 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1,
284 config->decimal_div_start);
285 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1,
286 config->frac_div_start & 0xff);
287 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1,
288 (config->frac_div_start & 0xff00) >> 8);
289 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1,
290 (config->frac_div_start & 0x30000) >> 16);
291 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCKDET_RATE_1, 0x40);
292 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_DELAY, 0x06);
293 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CMODE_1,
294 pll->phy->cphy_mode ? 0x00 : 0x10);
295 dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CLOCK_INVERTERS,
296 config->pll_clock_inverters);
297 }
298
dsi_pll_7nm_vco_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)299 static int dsi_pll_7nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
300 unsigned long parent_rate)
301 {
302 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
303 struct dsi_pll_config config;
304
305 DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_7nm->phy->id, rate,
306 parent_rate);
307
308 pll_7nm->vco_current_rate = rate;
309
310 dsi_pll_setup_config(&config);
311
312 dsi_pll_calc_dec_frac(pll_7nm, &config);
313
314 dsi_pll_calc_ssc(pll_7nm, &config);
315
316 dsi_pll_commit(pll_7nm, &config);
317
318 dsi_pll_config_hzindep_reg(pll_7nm);
319
320 dsi_pll_ssc_commit(pll_7nm, &config);
321
322 /* flush, ensure all register writes are done*/
323 wmb();
324
325 return 0;
326 }
327
dsi_pll_7nm_lock_status(struct dsi_pll_7nm * pll)328 static int dsi_pll_7nm_lock_status(struct dsi_pll_7nm *pll)
329 {
330 int rc;
331 u32 status = 0;
332 u32 const delay_us = 100;
333 u32 const timeout_us = 5000;
334
335 rc = readl_poll_timeout_atomic(pll->phy->pll_base +
336 REG_DSI_7nm_PHY_PLL_COMMON_STATUS_ONE,
337 status,
338 ((status & BIT(0)) > 0),
339 delay_us,
340 timeout_us);
341 if (rc)
342 pr_err("DSI PLL(%d) lock failed, status=0x%08x\n",
343 pll->phy->id, status);
344
345 return rc;
346 }
347
dsi_pll_disable_pll_bias(struct dsi_pll_7nm * pll)348 static void dsi_pll_disable_pll_bias(struct dsi_pll_7nm *pll)
349 {
350 u32 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0);
351
352 dsi_phy_write(pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0);
353 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0, data & ~BIT(5));
354 ndelay(250);
355 }
356
dsi_pll_enable_pll_bias(struct dsi_pll_7nm * pll)357 static void dsi_pll_enable_pll_bias(struct dsi_pll_7nm *pll)
358 {
359 u32 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0);
360
361 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0, data | BIT(5));
362 dsi_phy_write(pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0xc0);
363 ndelay(250);
364 }
365
dsi_pll_disable_global_clk(struct dsi_pll_7nm * pll)366 static void dsi_pll_disable_global_clk(struct dsi_pll_7nm *pll)
367 {
368 u32 data;
369
370 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
371 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, data & ~BIT(5));
372 }
373
dsi_pll_enable_global_clk(struct dsi_pll_7nm * pll)374 static void dsi_pll_enable_global_clk(struct dsi_pll_7nm *pll)
375 {
376 u32 data;
377
378 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x04);
379
380 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
381 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1,
382 data | BIT(5) | BIT(4));
383 }
384
dsi_pll_phy_dig_reset(struct dsi_pll_7nm * pll)385 static void dsi_pll_phy_dig_reset(struct dsi_pll_7nm *pll)
386 {
387 /*
388 * Reset the PHY digital domain. This would be needed when
389 * coming out of a CX or analog rail power collapse while
390 * ensuring that the pads maintain LP00 or LP11 state
391 */
392 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, BIT(0));
393 wmb(); /* Ensure that the reset is deasserted */
394 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, 0x0);
395 wmb(); /* Ensure that the reset is deasserted */
396 }
397
dsi_pll_7nm_vco_prepare(struct clk_hw * hw)398 static int dsi_pll_7nm_vco_prepare(struct clk_hw *hw)
399 {
400 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
401 int rc;
402
403 dsi_pll_enable_pll_bias(pll_7nm);
404 if (pll_7nm->slave)
405 dsi_pll_enable_pll_bias(pll_7nm->slave);
406
407 /* Start PLL */
408 dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0x01);
409
410 /*
411 * ensure all PLL configurations are written prior to checking
412 * for PLL lock.
413 */
414 wmb();
415
416 /* Check for PLL lock */
417 rc = dsi_pll_7nm_lock_status(pll_7nm);
418 if (rc) {
419 pr_err("PLL(%d) lock failed\n", pll_7nm->phy->id);
420 goto error;
421 }
422
423 pll_7nm->phy->pll_on = true;
424
425 /*
426 * assert power on reset for PHY digital in case the PLL is
427 * enabled after CX of analog domain power collapse. This needs
428 * to be done before enabling the global clk.
429 */
430 dsi_pll_phy_dig_reset(pll_7nm);
431 if (pll_7nm->slave)
432 dsi_pll_phy_dig_reset(pll_7nm->slave);
433
434 dsi_pll_enable_global_clk(pll_7nm);
435 if (pll_7nm->slave)
436 dsi_pll_enable_global_clk(pll_7nm->slave);
437
438 error:
439 return rc;
440 }
441
dsi_pll_disable_sub(struct dsi_pll_7nm * pll)442 static void dsi_pll_disable_sub(struct dsi_pll_7nm *pll)
443 {
444 dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0);
445 dsi_pll_disable_pll_bias(pll);
446 }
447
dsi_pll_7nm_vco_unprepare(struct clk_hw * hw)448 static void dsi_pll_7nm_vco_unprepare(struct clk_hw *hw)
449 {
450 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
451
452 /*
453 * To avoid any stray glitches while abruptly powering down the PLL
454 * make sure to gate the clock using the clock enable bit before
455 * powering down the PLL
456 */
457 dsi_pll_disable_global_clk(pll_7nm);
458 dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0);
459 dsi_pll_disable_sub(pll_7nm);
460 if (pll_7nm->slave) {
461 dsi_pll_disable_global_clk(pll_7nm->slave);
462 dsi_pll_disable_sub(pll_7nm->slave);
463 }
464 /* flush, ensure all register writes are done */
465 wmb();
466 pll_7nm->phy->pll_on = false;
467 }
468
dsi_pll_7nm_vco_recalc_rate(struct clk_hw * hw,unsigned long parent_rate)469 static unsigned long dsi_pll_7nm_vco_recalc_rate(struct clk_hw *hw,
470 unsigned long parent_rate)
471 {
472 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
473 void __iomem *base = pll_7nm->phy->pll_base;
474 u64 ref_clk = VCO_REF_CLK_RATE;
475 u64 vco_rate = 0x0;
476 u64 multiplier;
477 u32 frac;
478 u32 dec;
479 u64 pll_freq, tmp64;
480
481 dec = dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1);
482 dec &= 0xff;
483
484 frac = dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1);
485 frac |= ((dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1) &
486 0xff) << 8);
487 frac |= ((dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1) &
488 0x3) << 16);
489
490 /*
491 * TODO:
492 * 1. Assumes prescaler is disabled
493 */
494 multiplier = 1 << FRAC_BITS;
495 pll_freq = dec * (ref_clk * 2);
496 tmp64 = (ref_clk * 2 * frac);
497 pll_freq += div_u64(tmp64, multiplier);
498
499 vco_rate = pll_freq;
500 pll_7nm->vco_current_rate = vco_rate;
501
502 DBG("DSI PLL%d returning vco rate = %lu, dec = %x, frac = %x",
503 pll_7nm->phy->id, (unsigned long)vco_rate, dec, frac);
504
505 return (unsigned long)vco_rate;
506 }
507
dsi_pll_7nm_clk_round_rate(struct clk_hw * hw,unsigned long rate,unsigned long * parent_rate)508 static long dsi_pll_7nm_clk_round_rate(struct clk_hw *hw,
509 unsigned long rate, unsigned long *parent_rate)
510 {
511 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
512
513 if (rate < pll_7nm->phy->cfg->min_pll_rate)
514 return pll_7nm->phy->cfg->min_pll_rate;
515 else if (rate > pll_7nm->phy->cfg->max_pll_rate)
516 return pll_7nm->phy->cfg->max_pll_rate;
517 else
518 return rate;
519 }
520
521 static const struct clk_ops clk_ops_dsi_pll_7nm_vco = {
522 .round_rate = dsi_pll_7nm_clk_round_rate,
523 .set_rate = dsi_pll_7nm_vco_set_rate,
524 .recalc_rate = dsi_pll_7nm_vco_recalc_rate,
525 .prepare = dsi_pll_7nm_vco_prepare,
526 .unprepare = dsi_pll_7nm_vco_unprepare,
527 };
528
529 /*
530 * PLL Callbacks
531 */
532
dsi_7nm_pll_save_state(struct msm_dsi_phy * phy)533 static void dsi_7nm_pll_save_state(struct msm_dsi_phy *phy)
534 {
535 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
536 struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
537 void __iomem *phy_base = pll_7nm->phy->base;
538 u32 cmn_clk_cfg0, cmn_clk_cfg1;
539
540 cached->pll_out_div = dsi_phy_read(pll_7nm->phy->pll_base +
541 REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
542 cached->pll_out_div &= 0x3;
543
544 cmn_clk_cfg0 = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0);
545 cached->bit_clk_div = cmn_clk_cfg0 & 0xf;
546 cached->pix_clk_div = (cmn_clk_cfg0 & 0xf0) >> 4;
547
548 cmn_clk_cfg1 = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
549 cached->pll_mux = cmn_clk_cfg1 & 0x3;
550
551 DBG("DSI PLL%d outdiv %x bit_clk_div %x pix_clk_div %x pll_mux %x",
552 pll_7nm->phy->id, cached->pll_out_div, cached->bit_clk_div,
553 cached->pix_clk_div, cached->pll_mux);
554 }
555
dsi_7nm_pll_restore_state(struct msm_dsi_phy * phy)556 static int dsi_7nm_pll_restore_state(struct msm_dsi_phy *phy)
557 {
558 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
559 struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
560 void __iomem *phy_base = pll_7nm->phy->base;
561 u32 val;
562 int ret;
563
564 val = dsi_phy_read(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
565 val &= ~0x3;
566 val |= cached->pll_out_div;
567 dsi_phy_write(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE, val);
568
569 dsi_phy_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0,
570 cached->bit_clk_div | (cached->pix_clk_div << 4));
571
572 val = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
573 val &= ~0x3;
574 val |= cached->pll_mux;
575 dsi_phy_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, val);
576
577 ret = dsi_pll_7nm_vco_set_rate(phy->vco_hw,
578 pll_7nm->vco_current_rate,
579 VCO_REF_CLK_RATE);
580 if (ret) {
581 DRM_DEV_ERROR(&pll_7nm->phy->pdev->dev,
582 "restore vco rate failed. ret=%d\n", ret);
583 return ret;
584 }
585
586 DBG("DSI PLL%d", pll_7nm->phy->id);
587
588 return 0;
589 }
590
dsi_7nm_set_usecase(struct msm_dsi_phy * phy)591 static int dsi_7nm_set_usecase(struct msm_dsi_phy *phy)
592 {
593 struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
594 void __iomem *base = phy->base;
595 u32 data = 0x0; /* internal PLL */
596
597 DBG("DSI PLL%d", pll_7nm->phy->id);
598
599 switch (phy->usecase) {
600 case MSM_DSI_PHY_STANDALONE:
601 break;
602 case MSM_DSI_PHY_MASTER:
603 pll_7nm->slave = pll_7nm_list[(pll_7nm->phy->id + 1) % DSI_MAX];
604 break;
605 case MSM_DSI_PHY_SLAVE:
606 data = 0x1; /* external PLL */
607 break;
608 default:
609 return -EINVAL;
610 }
611
612 /* set PLL src */
613 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, (data << 2));
614
615 return 0;
616 }
617
618 /*
619 * The post dividers and mux clocks are created using the standard divider and
620 * mux API. Unlike the 14nm PHY, the slave PLL doesn't need its dividers/mux
621 * state to follow the master PLL's divider/mux state. Therefore, we don't
622 * require special clock ops that also configure the slave PLL registers
623 */
pll_7nm_register(struct dsi_pll_7nm * pll_7nm,struct clk_hw ** provided_clocks)624 static int pll_7nm_register(struct dsi_pll_7nm *pll_7nm, struct clk_hw **provided_clocks)
625 {
626 char clk_name[32];
627 struct clk_init_data vco_init = {
628 .parent_data = &(const struct clk_parent_data) {
629 .fw_name = "ref",
630 },
631 .num_parents = 1,
632 .name = clk_name,
633 .flags = CLK_IGNORE_UNUSED,
634 .ops = &clk_ops_dsi_pll_7nm_vco,
635 };
636 struct device *dev = &pll_7nm->phy->pdev->dev;
637 struct clk_hw *hw, *pll_out_div, *pll_bit, *pll_by_2_bit;
638 struct clk_hw *pll_post_out_div, *phy_pll_out_dsi_parent;
639 int ret;
640
641 DBG("DSI%d", pll_7nm->phy->id);
642
643 snprintf(clk_name, sizeof(clk_name), "dsi%dvco_clk", pll_7nm->phy->id);
644 pll_7nm->clk_hw.init = &vco_init;
645
646 ret = devm_clk_hw_register(dev, &pll_7nm->clk_hw);
647 if (ret)
648 return ret;
649
650 snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_out_div_clk", pll_7nm->phy->id);
651
652 pll_out_div = devm_clk_hw_register_divider_parent_hw(dev, clk_name,
653 &pll_7nm->clk_hw, CLK_SET_RATE_PARENT,
654 pll_7nm->phy->pll_base +
655 REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE,
656 0, 2, CLK_DIVIDER_POWER_OF_TWO, NULL);
657 if (IS_ERR(pll_out_div)) {
658 ret = PTR_ERR(pll_out_div);
659 goto fail;
660 }
661
662 snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_bit_clk", pll_7nm->phy->id);
663
664 /* BIT CLK: DIV_CTRL_3_0 */
665 pll_bit = devm_clk_hw_register_divider_parent_hw(dev, clk_name,
666 pll_out_div, CLK_SET_RATE_PARENT,
667 pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG0,
668 0, 4, CLK_DIVIDER_ONE_BASED, &pll_7nm->postdiv_lock);
669 if (IS_ERR(pll_bit)) {
670 ret = PTR_ERR(pll_bit);
671 goto fail;
672 }
673
674 snprintf(clk_name, sizeof(clk_name), "dsi%d_phy_pll_out_byteclk", pll_7nm->phy->id);
675
676 /* DSI Byte clock = VCO_CLK / OUT_DIV / BIT_DIV / 8 */
677 hw = devm_clk_hw_register_fixed_factor_parent_hw(dev, clk_name,
678 pll_bit, CLK_SET_RATE_PARENT, 1,
679 pll_7nm->phy->cphy_mode ? 7 : 8);
680 if (IS_ERR(hw)) {
681 ret = PTR_ERR(hw);
682 goto fail;
683 }
684
685 provided_clocks[DSI_BYTE_PLL_CLK] = hw;
686
687 snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_by_2_bit_clk", pll_7nm->phy->id);
688
689 pll_by_2_bit = devm_clk_hw_register_fixed_factor_parent_hw(dev,
690 clk_name, pll_bit, 0, 1, 2);
691 if (IS_ERR(pll_by_2_bit)) {
692 ret = PTR_ERR(pll_by_2_bit);
693 goto fail;
694 }
695
696 snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_post_out_div_clk", pll_7nm->phy->id);
697
698 if (pll_7nm->phy->cphy_mode)
699 pll_post_out_div = devm_clk_hw_register_fixed_factor_parent_hw(
700 dev, clk_name, pll_out_div, 0, 2, 7);
701 else
702 pll_post_out_div = devm_clk_hw_register_fixed_factor_parent_hw(
703 dev, clk_name, pll_out_div, 0, 1, 4);
704 if (IS_ERR(pll_post_out_div)) {
705 ret = PTR_ERR(pll_post_out_div);
706 goto fail;
707 }
708
709 /* in CPHY mode, pclk_mux will always have post_out_div as parent
710 * don't register a pclk_mux clock and just use post_out_div instead
711 */
712 if (pll_7nm->phy->cphy_mode) {
713 u32 data;
714
715 data = dsi_phy_read(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
716 dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, data | 3);
717
718 phy_pll_out_dsi_parent = pll_post_out_div;
719 } else {
720 snprintf(clk_name, sizeof(clk_name), "dsi%d_pclk_mux", pll_7nm->phy->id);
721
722 hw = devm_clk_hw_register_mux_parent_hws(dev, clk_name,
723 ((const struct clk_hw *[]){
724 pll_bit,
725 pll_by_2_bit,
726 }), 2, 0, pll_7nm->phy->base +
727 REG_DSI_7nm_PHY_CMN_CLK_CFG1,
728 0, 1, 0, NULL);
729 if (IS_ERR(hw)) {
730 ret = PTR_ERR(hw);
731 goto fail;
732 }
733
734 phy_pll_out_dsi_parent = hw;
735 }
736
737 snprintf(clk_name, sizeof(clk_name), "dsi%d_phy_pll_out_dsiclk", pll_7nm->phy->id);
738
739 /* PIX CLK DIV : DIV_CTRL_7_4*/
740 hw = devm_clk_hw_register_divider_parent_hw(dev, clk_name,
741 phy_pll_out_dsi_parent, 0,
742 pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG0,
743 4, 4, CLK_DIVIDER_ONE_BASED, &pll_7nm->postdiv_lock);
744 if (IS_ERR(hw)) {
745 ret = PTR_ERR(hw);
746 goto fail;
747 }
748
749 provided_clocks[DSI_PIXEL_PLL_CLK] = hw;
750
751 return 0;
752
753 fail:
754
755 return ret;
756 }
757
dsi_pll_7nm_init(struct msm_dsi_phy * phy)758 static int dsi_pll_7nm_init(struct msm_dsi_phy *phy)
759 {
760 struct platform_device *pdev = phy->pdev;
761 struct dsi_pll_7nm *pll_7nm;
762 int ret;
763
764 pll_7nm = devm_kzalloc(&pdev->dev, sizeof(*pll_7nm), GFP_KERNEL);
765 if (!pll_7nm)
766 return -ENOMEM;
767
768 DBG("DSI PLL%d", phy->id);
769
770 pll_7nm_list[phy->id] = pll_7nm;
771
772 spin_lock_init(&pll_7nm->postdiv_lock);
773
774 pll_7nm->phy = phy;
775
776 ret = pll_7nm_register(pll_7nm, phy->provided_clocks->hws);
777 if (ret) {
778 DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
779 return ret;
780 }
781
782 phy->vco_hw = &pll_7nm->clk_hw;
783
784 /* TODO: Remove this when we have proper display handover support */
785 msm_dsi_phy_pll_save_state(phy);
786
787 return 0;
788 }
789
dsi_phy_hw_v4_0_is_pll_on(struct msm_dsi_phy * phy)790 static int dsi_phy_hw_v4_0_is_pll_on(struct msm_dsi_phy *phy)
791 {
792 void __iomem *base = phy->base;
793 u32 data = 0;
794
795 data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL);
796 mb(); /* make sure read happened */
797
798 return (data & BIT(0));
799 }
800
dsi_phy_hw_v4_0_config_lpcdrx(struct msm_dsi_phy * phy,bool enable)801 static void dsi_phy_hw_v4_0_config_lpcdrx(struct msm_dsi_phy *phy, bool enable)
802 {
803 void __iomem *lane_base = phy->lane_base;
804 int phy_lane_0 = 0; /* TODO: Support all lane swap configs */
805
806 /*
807 * LPRX and CDRX need to enabled only for physical data lane
808 * corresponding to the logical data lane 0
809 */
810 if (enable)
811 dsi_phy_write(lane_base +
812 REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0), 0x3);
813 else
814 dsi_phy_write(lane_base +
815 REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0), 0);
816 }
817
dsi_phy_hw_v4_0_lane_settings(struct msm_dsi_phy * phy)818 static void dsi_phy_hw_v4_0_lane_settings(struct msm_dsi_phy *phy)
819 {
820 int i;
821 const u8 tx_dctrl_0[] = { 0x00, 0x00, 0x00, 0x04, 0x01 };
822 const u8 tx_dctrl_1[] = { 0x40, 0x40, 0x40, 0x46, 0x41 };
823 const u8 *tx_dctrl = tx_dctrl_0;
824 void __iomem *lane_base = phy->lane_base;
825
826 if (!(phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1))
827 tx_dctrl = tx_dctrl_1;
828
829 /* Strength ctrl settings */
830 for (i = 0; i < 5; i++) {
831 /*
832 * Disable LPRX and CDRX for all lanes. And later on, it will
833 * be only enabled for the physical data lane corresponding
834 * to the logical data lane 0
835 */
836 dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_LPRX_CTRL(i), 0);
837 dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_PIN_SWAP(i), 0x0);
838 }
839
840 dsi_phy_hw_v4_0_config_lpcdrx(phy, true);
841
842 /* other settings */
843 for (i = 0; i < 5; i++) {
844 dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG0(i), 0x0);
845 dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG1(i), 0x0);
846 dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG2(i), i == 4 ? 0x8a : 0xa);
847 dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_TX_DCTRL(i), tx_dctrl[i]);
848 }
849 }
850
dsi_7nm_phy_enable(struct msm_dsi_phy * phy,struct msm_dsi_phy_clk_request * clk_req)851 static int dsi_7nm_phy_enable(struct msm_dsi_phy *phy,
852 struct msm_dsi_phy_clk_request *clk_req)
853 {
854 int ret;
855 u32 status;
856 u32 const delay_us = 5;
857 u32 const timeout_us = 1000;
858 struct msm_dsi_dphy_timing *timing = &phy->timing;
859 void __iomem *base = phy->base;
860 bool less_than_1500_mhz;
861 u32 vreg_ctrl_0, vreg_ctrl_1, lane_ctrl0;
862 u32 glbl_pemph_ctrl_0;
863 u32 glbl_str_swi_cal_sel_ctrl, glbl_hstx_str_ctrl_0;
864 u32 glbl_rescode_top_ctrl, glbl_rescode_bot_ctrl;
865 u32 data;
866
867 DBG("");
868
869 if (phy->cphy_mode)
870 ret = msm_dsi_cphy_timing_calc_v4(timing, clk_req);
871 else
872 ret = msm_dsi_dphy_timing_calc_v4(timing, clk_req);
873 if (ret) {
874 DRM_DEV_ERROR(&phy->pdev->dev,
875 "%s: PHY timing calculation failed\n", __func__);
876 return -EINVAL;
877 }
878
879 if (dsi_phy_hw_v4_0_is_pll_on(phy))
880 pr_warn("PLL turned on before configuring PHY\n");
881
882 /* Request for REFGEN READY */
883 if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3) ||
884 (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
885 dsi_phy_write(phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE10, 0x1);
886 udelay(500);
887 }
888
889 /* wait for REFGEN READY */
890 ret = readl_poll_timeout_atomic(base + REG_DSI_7nm_PHY_CMN_PHY_STATUS,
891 status, (status & BIT(0)),
892 delay_us, timeout_us);
893 if (ret) {
894 pr_err("Ref gen not ready. Aborting\n");
895 return -EINVAL;
896 }
897
898 /* TODO: CPHY enable path (this is for DPHY only) */
899
900 /* Alter PHY configurations if data rate less than 1.5GHZ*/
901 less_than_1500_mhz = (clk_req->bitclk_rate <= 1500000000);
902
903 glbl_str_swi_cal_sel_ctrl = 0x00;
904 if (phy->cphy_mode) {
905 vreg_ctrl_0 = 0x51;
906 vreg_ctrl_1 = 0x55;
907 glbl_hstx_str_ctrl_0 = 0x00;
908 glbl_pemph_ctrl_0 = 0x11;
909 lane_ctrl0 = 0x17;
910 } else {
911 vreg_ctrl_0 = less_than_1500_mhz ? 0x53 : 0x52;
912 vreg_ctrl_1 = 0x5c;
913 glbl_hstx_str_ctrl_0 = 0x88;
914 glbl_pemph_ctrl_0 = 0x00;
915 lane_ctrl0 = 0x1f;
916 }
917
918 if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
919 if (phy->cphy_mode) {
920 vreg_ctrl_0 = 0x45;
921 vreg_ctrl_1 = 0x45;
922 glbl_rescode_top_ctrl = 0x00;
923 glbl_rescode_bot_ctrl = 0x00;
924 } else {
925 vreg_ctrl_0 = 0x44;
926 vreg_ctrl_1 = 0x19;
927 glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3c : 0x03;
928 glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x3c;
929 }
930 } else if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3)) {
931 if (phy->cphy_mode) {
932 glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d : 0x01;
933 glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x3b;
934 } else {
935 glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d : 0x01;
936 glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x39;
937 }
938 } else if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_2) {
939 if (phy->cphy_mode) {
940 glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d : 0x01;
941 glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x3b;
942 } else {
943 glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3c : 0x00;
944 glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x39;
945 }
946 } else if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
947 if (phy->cphy_mode) {
948 glbl_hstx_str_ctrl_0 = 0x88;
949 glbl_rescode_top_ctrl = 0x00;
950 glbl_rescode_bot_ctrl = 0x3c;
951 } else {
952 glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d : 0x00;
953 glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x39 : 0x3c;
954 }
955 } else {
956 if (phy->cphy_mode) {
957 glbl_str_swi_cal_sel_ctrl = 0x03;
958 glbl_hstx_str_ctrl_0 = 0x66;
959 } else {
960 vreg_ctrl_0 = less_than_1500_mhz ? 0x5B : 0x59;
961 glbl_str_swi_cal_sel_ctrl = less_than_1500_mhz ? 0x03 : 0x00;
962 glbl_hstx_str_ctrl_0 = less_than_1500_mhz ? 0x66 : 0x88;
963 }
964 glbl_rescode_top_ctrl = 0x03;
965 glbl_rescode_bot_ctrl = 0x3c;
966 }
967
968 /* de-assert digital and pll power down */
969 data = BIT(6) | BIT(5);
970 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, data);
971
972 /* Assert PLL core reset */
973 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0x00);
974
975 /* turn off resync FIFO */
976 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0x00);
977
978 /* program CMN_CTRL_4 for minor_ver 2 chipsets*/
979 if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2) ||
980 (dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_REVISION_ID0) & (0xf0)) == 0x20)
981 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_4, 0x04);
982
983 /* Configure PHY lane swap (TODO: we need to calculate this) */
984 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CFG0, 0x21);
985 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CFG1, 0x84);
986
987 if (phy->cphy_mode)
988 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_CTRL, BIT(6));
989
990 /* Enable LDO */
991 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_0, vreg_ctrl_0);
992 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_1, vreg_ctrl_1);
993
994 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x00);
995 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_STR_SWI_CAL_SEL_CTRL,
996 glbl_str_swi_cal_sel_ctrl);
997 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_HSTX_STR_CTRL_0,
998 glbl_hstx_str_ctrl_0);
999 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_PEMPH_CTRL_0,
1000 glbl_pemph_ctrl_0);
1001 if (phy->cphy_mode)
1002 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_PEMPH_CTRL_1, 0x01);
1003 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_TOP_CTRL,
1004 glbl_rescode_top_ctrl);
1005 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_BOT_CTRL,
1006 glbl_rescode_bot_ctrl);
1007 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_LPTX_STR_CTRL, 0x55);
1008
1009 /* Remove power down from all blocks */
1010 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, 0x7f);
1011
1012 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0, lane_ctrl0);
1013
1014 /* Select full-rate mode */
1015 if (!phy->cphy_mode)
1016 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_2, 0x40);
1017
1018 ret = dsi_7nm_set_usecase(phy);
1019 if (ret) {
1020 DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n",
1021 __func__, ret);
1022 return ret;
1023 }
1024
1025 /* DSI PHY timings */
1026 if (phy->cphy_mode) {
1027 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_0, 0x00);
1028 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_4, timing->hs_exit);
1029 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_5,
1030 timing->shared_timings.clk_pre);
1031 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_6, timing->clk_prepare);
1032 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_7,
1033 timing->shared_timings.clk_post);
1034 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_8, timing->hs_rqst);
1035 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_9, 0x02);
1036 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_10, 0x04);
1037 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_11, 0x00);
1038 } else {
1039 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_0, 0x00);
1040 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_1, timing->clk_zero);
1041 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_2, timing->clk_prepare);
1042 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_3, timing->clk_trail);
1043 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_4, timing->hs_exit);
1044 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_5, timing->hs_zero);
1045 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_6, timing->hs_prepare);
1046 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_7, timing->hs_trail);
1047 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_8, timing->hs_rqst);
1048 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_9, 0x02);
1049 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_10, 0x04);
1050 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_11, 0x00);
1051 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_12,
1052 timing->shared_timings.clk_pre);
1053 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_13,
1054 timing->shared_timings.clk_post);
1055 }
1056
1057 /* DSI lane settings */
1058 dsi_phy_hw_v4_0_lane_settings(phy);
1059
1060 DBG("DSI%d PHY enabled", phy->id);
1061
1062 return 0;
1063 }
1064
dsi_7nm_set_continuous_clock(struct msm_dsi_phy * phy,bool enable)1065 static bool dsi_7nm_set_continuous_clock(struct msm_dsi_phy *phy, bool enable)
1066 {
1067 void __iomem *base = phy->base;
1068 u32 data;
1069
1070 data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL1);
1071 if (enable)
1072 data |= BIT(5) | BIT(6);
1073 else
1074 data &= ~(BIT(5) | BIT(6));
1075 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL1, data);
1076
1077 return enable;
1078 }
1079
dsi_7nm_phy_disable(struct msm_dsi_phy * phy)1080 static void dsi_7nm_phy_disable(struct msm_dsi_phy *phy)
1081 {
1082 void __iomem *base = phy->base;
1083 u32 data;
1084
1085 DBG("");
1086
1087 if (dsi_phy_hw_v4_0_is_pll_on(phy))
1088 pr_warn("Turning OFF PHY while PLL is on\n");
1089
1090 dsi_phy_hw_v4_0_config_lpcdrx(phy, false);
1091
1092 /* Turn off REFGEN Vote */
1093 if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3) ||
1094 (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
1095 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE10, 0x0);
1096 wmb();
1097 /* Delay to ensure HW removes vote before PHY shut down */
1098 udelay(2);
1099 }
1100
1101 data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_CTRL_0);
1102
1103 /* disable all lanes */
1104 data &= ~0x1F;
1105 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, data);
1106 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0, 0);
1107
1108 /* Turn off all PHY blocks */
1109 dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, 0x00);
1110 /* make sure phy is turned off */
1111 wmb();
1112
1113 DBG("DSI%d PHY disabled", phy->id);
1114 }
1115
1116 static const struct regulator_bulk_data dsi_phy_7nm_36mA_regulators[] = {
1117 { .supply = "vdds", .init_load_uA = 36000 },
1118 };
1119
1120 static const struct regulator_bulk_data dsi_phy_7nm_37750uA_regulators[] = {
1121 { .supply = "vdds", .init_load_uA = 37550 },
1122 };
1123
1124 static const struct regulator_bulk_data dsi_phy_7nm_97800uA_regulators[] = {
1125 { .supply = "vdds", .init_load_uA = 97800 },
1126 };
1127
1128 static const struct regulator_bulk_data dsi_phy_7nm_98400uA_regulators[] = {
1129 { .supply = "vdds", .init_load_uA = 98400 },
1130 };
1131
1132 const struct msm_dsi_phy_cfg dsi_phy_7nm_cfgs = {
1133 .has_phy_lane = true,
1134 .regulator_data = dsi_phy_7nm_36mA_regulators,
1135 .num_regulators = ARRAY_SIZE(dsi_phy_7nm_36mA_regulators),
1136 .ops = {
1137 .enable = dsi_7nm_phy_enable,
1138 .disable = dsi_7nm_phy_disable,
1139 .pll_init = dsi_pll_7nm_init,
1140 .save_pll_state = dsi_7nm_pll_save_state,
1141 .restore_pll_state = dsi_7nm_pll_restore_state,
1142 .set_continuous_clock = dsi_7nm_set_continuous_clock,
1143 },
1144 .min_pll_rate = 600000000UL,
1145 #ifdef CONFIG_64BIT
1146 .max_pll_rate = 5000000000UL,
1147 #else
1148 .max_pll_rate = ULONG_MAX,
1149 #endif
1150 .io_start = { 0xae94400, 0xae96400 },
1151 .num_dsi_phy = 2,
1152 .quirks = DSI_PHY_7NM_QUIRK_V4_1,
1153 };
1154
1155 const struct msm_dsi_phy_cfg dsi_phy_7nm_6375_cfgs = {
1156 .has_phy_lane = true,
1157 .ops = {
1158 .enable = dsi_7nm_phy_enable,
1159 .disable = dsi_7nm_phy_disable,
1160 .pll_init = dsi_pll_7nm_init,
1161 .save_pll_state = dsi_7nm_pll_save_state,
1162 .restore_pll_state = dsi_7nm_pll_restore_state,
1163 },
1164 .min_pll_rate = 600000000UL,
1165 #ifdef CONFIG_64BIT
1166 .max_pll_rate = 5000000000ULL,
1167 #else
1168 .max_pll_rate = ULONG_MAX,
1169 #endif
1170 .io_start = { 0x5e94400 },
1171 .num_dsi_phy = 1,
1172 .quirks = DSI_PHY_7NM_QUIRK_V4_1,
1173 };
1174
1175 const struct msm_dsi_phy_cfg dsi_phy_7nm_8150_cfgs = {
1176 .has_phy_lane = true,
1177 .regulator_data = dsi_phy_7nm_36mA_regulators,
1178 .num_regulators = ARRAY_SIZE(dsi_phy_7nm_36mA_regulators),
1179 .ops = {
1180 .enable = dsi_7nm_phy_enable,
1181 .disable = dsi_7nm_phy_disable,
1182 .pll_init = dsi_pll_7nm_init,
1183 .save_pll_state = dsi_7nm_pll_save_state,
1184 .restore_pll_state = dsi_7nm_pll_restore_state,
1185 .set_continuous_clock = dsi_7nm_set_continuous_clock,
1186 },
1187 .min_pll_rate = 1000000000UL,
1188 .max_pll_rate = 3500000000UL,
1189 .io_start = { 0xae94400, 0xae96400 },
1190 .num_dsi_phy = 2,
1191 .quirks = DSI_PHY_7NM_QUIRK_PRE_V4_1,
1192 };
1193
1194 const struct msm_dsi_phy_cfg dsi_phy_7nm_7280_cfgs = {
1195 .has_phy_lane = true,
1196 .regulator_data = dsi_phy_7nm_37750uA_regulators,
1197 .num_regulators = ARRAY_SIZE(dsi_phy_7nm_37750uA_regulators),
1198 .ops = {
1199 .enable = dsi_7nm_phy_enable,
1200 .disable = dsi_7nm_phy_disable,
1201 .pll_init = dsi_pll_7nm_init,
1202 .save_pll_state = dsi_7nm_pll_save_state,
1203 .restore_pll_state = dsi_7nm_pll_restore_state,
1204 },
1205 .min_pll_rate = 600000000UL,
1206 #ifdef CONFIG_64BIT
1207 .max_pll_rate = 5000000000ULL,
1208 #else
1209 .max_pll_rate = ULONG_MAX,
1210 #endif
1211 .io_start = { 0xae94400 },
1212 .num_dsi_phy = 1,
1213 .quirks = DSI_PHY_7NM_QUIRK_V4_1,
1214 };
1215
1216 const struct msm_dsi_phy_cfg dsi_phy_5nm_8350_cfgs = {
1217 .has_phy_lane = true,
1218 .regulator_data = dsi_phy_7nm_37750uA_regulators,
1219 .num_regulators = ARRAY_SIZE(dsi_phy_7nm_37750uA_regulators),
1220 .ops = {
1221 .enable = dsi_7nm_phy_enable,
1222 .disable = dsi_7nm_phy_disable,
1223 .pll_init = dsi_pll_7nm_init,
1224 .save_pll_state = dsi_7nm_pll_save_state,
1225 .restore_pll_state = dsi_7nm_pll_restore_state,
1226 .set_continuous_clock = dsi_7nm_set_continuous_clock,
1227 },
1228 .min_pll_rate = 600000000UL,
1229 #ifdef CONFIG_64BIT
1230 .max_pll_rate = 5000000000UL,
1231 #else
1232 .max_pll_rate = ULONG_MAX,
1233 #endif
1234 .io_start = { 0xae94400, 0xae96400 },
1235 .num_dsi_phy = 2,
1236 .quirks = DSI_PHY_7NM_QUIRK_V4_2,
1237 };
1238
1239 const struct msm_dsi_phy_cfg dsi_phy_5nm_8450_cfgs = {
1240 .has_phy_lane = true,
1241 .regulator_data = dsi_phy_7nm_97800uA_regulators,
1242 .num_regulators = ARRAY_SIZE(dsi_phy_7nm_97800uA_regulators),
1243 .ops = {
1244 .enable = dsi_7nm_phy_enable,
1245 .disable = dsi_7nm_phy_disable,
1246 .pll_init = dsi_pll_7nm_init,
1247 .save_pll_state = dsi_7nm_pll_save_state,
1248 .restore_pll_state = dsi_7nm_pll_restore_state,
1249 .set_continuous_clock = dsi_7nm_set_continuous_clock,
1250 },
1251 .min_pll_rate = 600000000UL,
1252 #ifdef CONFIG_64BIT
1253 .max_pll_rate = 5000000000UL,
1254 #else
1255 .max_pll_rate = ULONG_MAX,
1256 #endif
1257 .io_start = { 0xae94400, 0xae96400 },
1258 .num_dsi_phy = 2,
1259 .quirks = DSI_PHY_7NM_QUIRK_V4_3,
1260 };
1261
1262 const struct msm_dsi_phy_cfg dsi_phy_4nm_8550_cfgs = {
1263 .has_phy_lane = true,
1264 .regulator_data = dsi_phy_7nm_98400uA_regulators,
1265 .num_regulators = ARRAY_SIZE(dsi_phy_7nm_98400uA_regulators),
1266 .ops = {
1267 .enable = dsi_7nm_phy_enable,
1268 .disable = dsi_7nm_phy_disable,
1269 .pll_init = dsi_pll_7nm_init,
1270 .save_pll_state = dsi_7nm_pll_save_state,
1271 .restore_pll_state = dsi_7nm_pll_restore_state,
1272 .set_continuous_clock = dsi_7nm_set_continuous_clock,
1273 },
1274 .min_pll_rate = 600000000UL,
1275 #ifdef CONFIG_64BIT
1276 .max_pll_rate = 5000000000UL,
1277 #else
1278 .max_pll_rate = ULONG_MAX,
1279 #endif
1280 .io_start = { 0xae95000, 0xae97000 },
1281 .num_dsi_phy = 2,
1282 .quirks = DSI_PHY_7NM_QUIRK_V5_2,
1283 };
1284