1 /*
2  *  Device State Control Registers driver
3  *
4  *  Copyright (C) 2011 Texas Instruments Incorporated
5  *  Author: Mark Salter <msalter@redhat.com>
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License version 2 as
9  *  published by the Free Software Foundation.
10  */
11 
12 /*
13  * The Device State Control Registers (DSCR) provide SoC level control over
14  * a number of peripherals. Details vary considerably among the various SoC
15  * parts. In general, the DSCR block will provide one or more configuration
16  * registers often protected by a lock register. One or more key values must
17  * be written to a lock register in order to unlock the configuration register.
18  * The configuration register may be used to enable (and disable in some
19  * cases) SoC pin drivers, peripheral clock sources (internal or pin), etc.
20  * In some cases, a configuration register is write once or the individual
21  * bits are write once. That is, you may be able to enable a device, but
22  * will not be able to disable it.
23  *
24  * In addition to device configuration, the DSCR block may provide registers
25  * which are used to reset SoC peripherals, provide device ID information,
26  * provide MAC addresses, and other miscellaneous functions.
27  */
28 
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_platform.h>
32 #include <linux/module.h>
33 #include <linux/io.h>
34 #include <linux/delay.h>
35 #include <asm/soc.h>
36 #include <asm/dscr.h>
37 
38 #define MAX_DEVSTATE_IDS   32
39 #define MAX_DEVCTL_REGS     8
40 #define MAX_DEVSTAT_REGS    8
41 #define MAX_LOCKED_REGS     4
42 #define MAX_SOC_EMACS       2
43 
44 struct rmii_reset_reg {
45 	u32 reg;
46 	u32 mask;
47 };
48 
49 /*
50  * Some registerd may be locked. In order to write to these
51  * registers, the key value must first be written to the lockreg.
52  */
53 struct locked_reg {
54 	u32 reg;	/* offset from base */
55 	u32 lockreg;	/* offset from base */
56 	u32 key;	/* unlock key */
57 };
58 
59 /*
60  * This describes a contiguous area of like control bits used to enable/disable
61  * SoC devices. Each controllable device is given an ID which is used by the
62  * individual device drivers to control the device state. These IDs start at
63  * zero and are assigned sequentially to the control bitfield ranges described
64  * by this structure.
65  */
66 struct devstate_ctl_reg {
67 	u32 reg;		/* register holding the control bits */
68 	u8  start_id;		/* start id of this range */
69 	u8  num_ids;		/* number of devices in this range */
70 	u8  enable_only;	/* bits are write-once to enable only */
71 	u8  enable;		/* value used to enable device */
72 	u8  disable;		/* value used to disable device */
73 	u8  shift;		/* starting (rightmost) bit in range */
74 	u8  nbits;		/* number of bits per device */
75 };
76 
77 
78 /*
79  * This describes a region of status bits indicating the state of
80  * various devices. This is used internally to wait for status
81  * change completion when enabling/disabling a device. Status is
82  * optional and not all device controls will have a corresponding
83  * status.
84  */
85 struct devstate_stat_reg {
86 	u32 reg;		/* register holding the status bits */
87 	u8  start_id;		/* start id of this range */
88 	u8  num_ids;		/* number of devices in this range */
89 	u8  enable;		/* value indicating enabled state */
90 	u8  disable;		/* value indicating disabled state */
91 	u8  shift;		/* starting (rightmost) bit in range */
92 	u8  nbits;		/* number of bits per device */
93 };
94 
95 struct devstate_info {
96 	struct devstate_ctl_reg *ctl;
97 	struct devstate_stat_reg *stat;
98 };
99 
100 /* These are callbacks to SOC-specific code. */
101 struct dscr_ops {
102 	void (*init)(struct device_node *node);
103 };
104 
105 struct dscr_regs {
106 	spinlock_t		lock;
107 	void __iomem		*base;
108 	u32			kick_reg[2];
109 	u32			kick_key[2];
110 	struct locked_reg	locked[MAX_LOCKED_REGS];
111 	struct devstate_info	devstate_info[MAX_DEVSTATE_IDS];
112 	struct rmii_reset_reg   rmii_resets[MAX_SOC_EMACS];
113 	struct devstate_ctl_reg devctl[MAX_DEVCTL_REGS];
114 	struct devstate_stat_reg devstat[MAX_DEVSTAT_REGS];
115 };
116 
117 static struct dscr_regs	dscr;
118 
find_locked_reg(u32 reg)119 static struct locked_reg *find_locked_reg(u32 reg)
120 {
121 	int i;
122 
123 	for (i = 0; i < MAX_LOCKED_REGS; i++)
124 		if (dscr.locked[i].key && reg == dscr.locked[i].reg)
125 			return &dscr.locked[i];
126 	return NULL;
127 }
128 
129 /*
130  * Write to a register with one lock
131  */
dscr_write_locked1(u32 reg,u32 val,u32 lock,u32 key)132 static void dscr_write_locked1(u32 reg, u32 val,
133 			       u32 lock, u32 key)
134 {
135 	void __iomem *reg_addr = dscr.base + reg;
136 	void __iomem *lock_addr = dscr.base + lock;
137 
138 	/*
139 	 * For some registers, the lock is relocked after a short number
140 	 * of cycles. We have to put the lock write and register write in
141 	 * the same fetch packet to meet this timing. The .align ensures
142 	 * the two stw instructions are in the same fetch packet.
143 	 */
144 	asm volatile ("b	.s2	0f\n"
145 		      "nop	5\n"
146 		      "    .align 5\n"
147 		      "0:\n"
148 		      "stw	.D1T2	%3,*%2\n"
149 		      "stw	.D1T2	%1,*%0\n"
150 		      :
151 		      : "a"(reg_addr), "b"(val), "a"(lock_addr), "b"(key)
152 		);
153 
154 	/* in case the hw doesn't reset the lock */
155 	soc_writel(0, lock_addr);
156 }
157 
158 /*
159  * Write to a register protected by two lock registers
160  */
dscr_write_locked2(u32 reg,u32 val,u32 lock0,u32 key0,u32 lock1,u32 key1)161 static void dscr_write_locked2(u32 reg, u32 val,
162 			       u32 lock0, u32 key0,
163 			       u32 lock1, u32 key1)
164 {
165 	soc_writel(key0, dscr.base + lock0);
166 	soc_writel(key1, dscr.base + lock1);
167 	soc_writel(val, dscr.base + reg);
168 	soc_writel(0, dscr.base + lock0);
169 	soc_writel(0, dscr.base + lock1);
170 }
171 
dscr_write(u32 reg,u32 val)172 static void dscr_write(u32 reg, u32 val)
173 {
174 	struct locked_reg *lock;
175 
176 	lock = find_locked_reg(reg);
177 	if (lock)
178 		dscr_write_locked1(reg, val, lock->lockreg, lock->key);
179 	else if (dscr.kick_key[0])
180 		dscr_write_locked2(reg, val, dscr.kick_reg[0], dscr.kick_key[0],
181 				   dscr.kick_reg[1], dscr.kick_key[1]);
182 	else
183 		soc_writel(val, dscr.base + reg);
184 }
185 
186 
187 /*
188  * Drivers can use this interface to enable/disable SoC IP blocks.
189  */
dscr_set_devstate(int id,enum dscr_devstate_t state)190 void dscr_set_devstate(int id, enum dscr_devstate_t state)
191 {
192 	struct devstate_ctl_reg *ctl;
193 	struct devstate_stat_reg *stat;
194 	struct devstate_info *info;
195 	u32 ctl_val, val;
196 	int ctl_shift, ctl_mask;
197 	unsigned long flags;
198 
199 	if (!dscr.base)
200 		return;
201 
202 	if (id < 0 || id >= MAX_DEVSTATE_IDS)
203 		return;
204 
205 	info = &dscr.devstate_info[id];
206 	ctl = info->ctl;
207 	stat = info->stat;
208 
209 	if (ctl == NULL)
210 		return;
211 
212 	ctl_shift = ctl->shift + ctl->nbits * (id - ctl->start_id);
213 	ctl_mask = ((1 << ctl->nbits) - 1) << ctl_shift;
214 
215 	switch (state) {
216 	case DSCR_DEVSTATE_ENABLED:
217 		ctl_val = ctl->enable << ctl_shift;
218 		break;
219 	case DSCR_DEVSTATE_DISABLED:
220 		if (ctl->enable_only)
221 			return;
222 		ctl_val = ctl->disable << ctl_shift;
223 		break;
224 	default:
225 		return;
226 	}
227 
228 	spin_lock_irqsave(&dscr.lock, flags);
229 
230 	val = soc_readl(dscr.base + ctl->reg);
231 	val &= ~ctl_mask;
232 	val |= ctl_val;
233 
234 	dscr_write(ctl->reg, val);
235 
236 	spin_unlock_irqrestore(&dscr.lock, flags);
237 
238 	if (!stat)
239 		return;
240 
241 	ctl_shift = stat->shift + stat->nbits * (id - stat->start_id);
242 
243 	if (state == DSCR_DEVSTATE_ENABLED)
244 		ctl_val = stat->enable;
245 	else
246 		ctl_val = stat->disable;
247 
248 	do {
249 		val = soc_readl(dscr.base + stat->reg);
250 		val >>= ctl_shift;
251 		val &= ((1 << stat->nbits) - 1);
252 	} while (val != ctl_val);
253 }
254 EXPORT_SYMBOL(dscr_set_devstate);
255 
256 /*
257  * Drivers can use this to reset RMII module.
258  */
dscr_rmii_reset(int id,int assert)259 void dscr_rmii_reset(int id, int assert)
260 {
261 	struct rmii_reset_reg *r;
262 	unsigned long flags;
263 	u32 val;
264 
265 	if (id < 0 || id >= MAX_SOC_EMACS)
266 		return;
267 
268 	r = &dscr.rmii_resets[id];
269 	if (r->mask == 0)
270 		return;
271 
272 	spin_lock_irqsave(&dscr.lock, flags);
273 
274 	val = soc_readl(dscr.base + r->reg);
275 	if (assert)
276 		dscr_write(r->reg, val | r->mask);
277 	else
278 		dscr_write(r->reg, val & ~(r->mask));
279 
280 	spin_unlock_irqrestore(&dscr.lock, flags);
281 }
282 EXPORT_SYMBOL(dscr_rmii_reset);
283 
dscr_parse_devstat(struct device_node * node,void __iomem * base)284 static void __init dscr_parse_devstat(struct device_node *node,
285 				      void __iomem *base)
286 {
287 	u32 val;
288 	int err;
289 
290 	err = of_property_read_u32_array(node, "ti,dscr-devstat", &val, 1);
291 	if (!err)
292 		c6x_devstat = soc_readl(base + val);
293 	printk(KERN_INFO "DEVSTAT: %08x\n", c6x_devstat);
294 }
295 
dscr_parse_silicon_rev(struct device_node * node,void __iomem * base)296 static void __init dscr_parse_silicon_rev(struct device_node *node,
297 					 void __iomem *base)
298 {
299 	u32 vals[3];
300 	int err;
301 
302 	err = of_property_read_u32_array(node, "ti,dscr-silicon-rev", vals, 3);
303 	if (!err) {
304 		c6x_silicon_rev = soc_readl(base + vals[0]);
305 		c6x_silicon_rev >>= vals[1];
306 		c6x_silicon_rev &= vals[2];
307 	}
308 }
309 
310 /*
311  * Some SoCs will have a pair of fuse registers which hold
312  * an ethernet MAC address. The "ti,dscr-mac-fuse-regs"
313  * property is a mapping from fuse register bytes to MAC
314  * address bytes. The expected format is:
315  *
316  *	ti,dscr-mac-fuse-regs = <reg0 b3 b2 b1 b0
317  *				 reg1 b3 b2 b1 b0>
318  *
319  * reg0 and reg1 are the offsets of the two fuse registers.
320  * b3-b0 positionally represent bytes within the fuse register.
321  * b3 is the most significant byte and b0 is the least.
322  * Allowable values for b3-b0 are:
323  *
324  *	  0 = fuse register byte not used in MAC address
325  *      1-6 = index+1 into c6x_fuse_mac[]
326  */
dscr_parse_mac_fuse(struct device_node * node,void __iomem * base)327 static void __init dscr_parse_mac_fuse(struct device_node *node,
328 				       void __iomem *base)
329 {
330 	u32 vals[10], fuse;
331 	int f, i, j, err;
332 
333 	err = of_property_read_u32_array(node, "ti,dscr-mac-fuse-regs",
334 					 vals, 10);
335 	if (err)
336 		return;
337 
338 	for (f = 0; f < 2; f++) {
339 		fuse = soc_readl(base + vals[f * 5]);
340 		for (j = (f * 5) + 1, i = 24; i >= 0; i -= 8, j++)
341 			if (vals[j] && vals[j] <= 6)
342 				c6x_fuse_mac[vals[j] - 1] = fuse >> i;
343 	}
344 }
345 
dscr_parse_rmii_resets(struct device_node * node,void __iomem * base)346 static void __init dscr_parse_rmii_resets(struct device_node *node,
347 					  void __iomem *base)
348 {
349 	const __be32 *p;
350 	int i, size;
351 
352 	/* look for RMII reset registers */
353 	p = of_get_property(node, "ti,dscr-rmii-resets", &size);
354 	if (p) {
355 		/* parse all the reg/mask pairs we can handle */
356 		size /= (sizeof(*p) * 2);
357 		if (size > MAX_SOC_EMACS)
358 			size = MAX_SOC_EMACS;
359 
360 		for (i = 0; i < size; i++) {
361 			dscr.rmii_resets[i].reg = be32_to_cpup(p++);
362 			dscr.rmii_resets[i].mask = be32_to_cpup(p++);
363 		}
364 	}
365 }
366 
367 
dscr_parse_privperm(struct device_node * node,void __iomem * base)368 static void __init dscr_parse_privperm(struct device_node *node,
369 				       void __iomem *base)
370 {
371 	u32 vals[2];
372 	int err;
373 
374 	err = of_property_read_u32_array(node, "ti,dscr-privperm", vals, 2);
375 	if (err)
376 		return;
377 	dscr_write(vals[0], vals[1]);
378 }
379 
380 /*
381  * SoCs may have "locked" DSCR registers which can only be written
382  * to only after writing a key value to a lock registers. These
383  * regisers can be described with the "ti,dscr-locked-regs" property.
384  * This property provides a list of register descriptions with each
385  * description consisting of three values.
386  *
387  *	ti,dscr-locked-regs = <reg0 lockreg0 key0
388  *                               ...
389  *                             regN lockregN keyN>;
390  *
391  * reg is the offset of the locked register
392  * lockreg is the offset of the lock register
393  * key is the unlock key written to lockreg
394  *
395  */
dscr_parse_locked_regs(struct device_node * node,void __iomem * base)396 static void __init dscr_parse_locked_regs(struct device_node *node,
397 					  void __iomem *base)
398 {
399 	struct locked_reg *r;
400 	const __be32 *p;
401 	int i, size;
402 
403 	p = of_get_property(node, "ti,dscr-locked-regs", &size);
404 	if (p) {
405 		/* parse all the register descriptions we can handle */
406 		size /= (sizeof(*p) * 3);
407 		if (size > MAX_LOCKED_REGS)
408 			size = MAX_LOCKED_REGS;
409 
410 		for (i = 0; i < size; i++) {
411 			r = &dscr.locked[i];
412 
413 			r->reg = be32_to_cpup(p++);
414 			r->lockreg = be32_to_cpup(p++);
415 			r->key = be32_to_cpup(p++);
416 		}
417 	}
418 }
419 
420 /*
421  * SoCs may have DSCR registers which are only write enabled after
422  * writing specific key values to two registers. The two key registers
423  * and the key values can be parsed from a "ti,dscr-kick-regs"
424  * propety with the following layout:
425  *
426  *	ti,dscr-kick-regs = <kickreg0 key0 kickreg1 key1>
427  *
428  * kickreg is the offset of the "kick" register
429  * key is the value which unlocks writing for protected regs
430  */
dscr_parse_kick_regs(struct device_node * node,void __iomem * base)431 static void __init dscr_parse_kick_regs(struct device_node *node,
432 					void __iomem *base)
433 {
434 	u32 vals[4];
435 	int err;
436 
437 	err = of_property_read_u32_array(node, "ti,dscr-kick-regs", vals, 4);
438 	if (!err) {
439 		dscr.kick_reg[0] = vals[0];
440 		dscr.kick_key[0] = vals[1];
441 		dscr.kick_reg[1] = vals[2];
442 		dscr.kick_key[1] = vals[3];
443 	}
444 }
445 
446 
447 /*
448  * SoCs may provide controls to enable/disable individual IP blocks. These
449  * controls in the DSCR usually control pin drivers but also may control
450  * clocking and or resets. The device tree is used to describe the bitfields
451  * in registers used to control device state. The number of bits and their
452  * values may vary even within the same register.
453  *
454  * The layout of these bitfields is described by the ti,dscr-devstate-ctl-regs
455  * property. This property is a list where each element describes a contiguous
456  * range of control fields with like properties. Each element of the list
457  * consists of 7 cells with the following values:
458  *
459  *   start_id num_ids reg enable disable start_bit nbits
460  *
461  * start_id is device id for the first device control in the range
462  * num_ids is the number of device controls in the range
463  * reg is the offset of the register holding the control bits
464  * enable is the value to enable a device
465  * disable is the value to disable a device (0xffffffff if cannot disable)
466  * start_bit is the bit number of the first bit in the range
467  * nbits is the number of bits per device control
468  */
dscr_parse_devstate_ctl_regs(struct device_node * node,void __iomem * base)469 static void __init dscr_parse_devstate_ctl_regs(struct device_node *node,
470 						void __iomem *base)
471 {
472 	struct devstate_ctl_reg *r;
473 	const __be32 *p;
474 	int i, j, size;
475 
476 	p = of_get_property(node, "ti,dscr-devstate-ctl-regs", &size);
477 	if (p) {
478 		/* parse all the ranges we can handle */
479 		size /= (sizeof(*p) * 7);
480 		if (size > MAX_DEVCTL_REGS)
481 			size = MAX_DEVCTL_REGS;
482 
483 		for (i = 0; i < size; i++) {
484 			r = &dscr.devctl[i];
485 
486 			r->start_id = be32_to_cpup(p++);
487 			r->num_ids = be32_to_cpup(p++);
488 			r->reg = be32_to_cpup(p++);
489 			r->enable = be32_to_cpup(p++);
490 			r->disable = be32_to_cpup(p++);
491 			if (r->disable == 0xffffffff)
492 				r->enable_only = 1;
493 			r->shift = be32_to_cpup(p++);
494 			r->nbits = be32_to_cpup(p++);
495 
496 			for (j = r->start_id;
497 			     j < (r->start_id + r->num_ids);
498 			     j++)
499 				dscr.devstate_info[j].ctl = r;
500 		}
501 	}
502 }
503 
504 /*
505  * SoCs may provide status registers indicating the state (enabled/disabled) of
506  * devices on the SoC. The device tree is used to describe the bitfields in
507  * registers used to provide device status. The number of bits and their
508  * values used to provide status may vary even within the same register.
509  *
510  * The layout of these bitfields is described by the ti,dscr-devstate-stat-regs
511  * property. This property is a list where each element describes a contiguous
512  * range of status fields with like properties. Each element of the list
513  * consists of 7 cells with the following values:
514  *
515  *   start_id num_ids reg enable disable start_bit nbits
516  *
517  * start_id is device id for the first device status in the range
518  * num_ids is the number of devices covered by the range
519  * reg is the offset of the register holding the status bits
520  * enable is the value indicating device is enabled
521  * disable is the value indicating device is disabled
522  * start_bit is the bit number of the first bit in the range
523  * nbits is the number of bits per device status
524  */
dscr_parse_devstate_stat_regs(struct device_node * node,void __iomem * base)525 static void __init dscr_parse_devstate_stat_regs(struct device_node *node,
526 						 void __iomem *base)
527 {
528 	struct devstate_stat_reg *r;
529 	const __be32 *p;
530 	int i, j, size;
531 
532 	p = of_get_property(node, "ti,dscr-devstate-stat-regs", &size);
533 	if (p) {
534 		/* parse all the ranges we can handle */
535 		size /= (sizeof(*p) * 7);
536 		if (size > MAX_DEVSTAT_REGS)
537 			size = MAX_DEVSTAT_REGS;
538 
539 		for (i = 0; i < size; i++) {
540 			r = &dscr.devstat[i];
541 
542 			r->start_id = be32_to_cpup(p++);
543 			r->num_ids = be32_to_cpup(p++);
544 			r->reg = be32_to_cpup(p++);
545 			r->enable = be32_to_cpup(p++);
546 			r->disable = be32_to_cpup(p++);
547 			r->shift = be32_to_cpup(p++);
548 			r->nbits = be32_to_cpup(p++);
549 
550 			for (j = r->start_id;
551 			     j < (r->start_id + r->num_ids);
552 			     j++)
553 				dscr.devstate_info[j].stat = r;
554 		}
555 	}
556 }
557 
558 static struct of_device_id dscr_ids[] __initdata = {
559 	{ .compatible = "ti,c64x+dscr" },
560 	{}
561 };
562 
563 /*
564  * Probe for DSCR area.
565  *
566  * This has to be done early on in case timer or interrupt controller
567  * needs something. e.g. On C6455 SoC, timer must be enabled through
568  * DSCR before it is functional.
569  */
dscr_probe(void)570 void __init dscr_probe(void)
571 {
572 	struct device_node *node;
573 	void __iomem *base;
574 
575 	spin_lock_init(&dscr.lock);
576 
577 	node = of_find_matching_node(NULL, dscr_ids);
578 	if (!node)
579 		return;
580 
581 	base = of_iomap(node, 0);
582 	if (!base) {
583 		of_node_put(node);
584 		return;
585 	}
586 
587 	dscr.base = base;
588 
589 	dscr_parse_devstat(node, base);
590 	dscr_parse_silicon_rev(node, base);
591 	dscr_parse_mac_fuse(node, base);
592 	dscr_parse_rmii_resets(node, base);
593 	dscr_parse_locked_regs(node, base);
594 	dscr_parse_kick_regs(node, base);
595 	dscr_parse_devstate_ctl_regs(node, base);
596 	dscr_parse_devstate_stat_regs(node, base);
597 	dscr_parse_privperm(node, base);
598 }
599