1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34
35 #include <asm/byteorder.h>
36
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_probe_helper.h>
42
43 #include "i915_debugfs.h"
44 #include "i915_drv.h"
45 #include "i915_trace.h"
46 #include "intel_atomic.h"
47 #include "intel_audio.h"
48 #include "intel_connector.h"
49 #include "intel_ddi.h"
50 #include "intel_display_types.h"
51 #include "intel_dp.h"
52 #include "intel_dp_link_training.h"
53 #include "intel_dp_mst.h"
54 #include "intel_dpio_phy.h"
55 #include "intel_fifo_underrun.h"
56 #include "intel_hdcp.h"
57 #include "intel_hdmi.h"
58 #include "intel_hotplug.h"
59 #include "intel_lspcon.h"
60 #include "intel_lvds.h"
61 #include "intel_panel.h"
62 #include "intel_psr.h"
63 #include "intel_sideband.h"
64 #include "intel_tc.h"
65 #include "intel_vdsc.h"
66
67 #define DP_DPRX_ESI_LEN 14
68
69 /* DP DSC throughput values used for slice count calculations KPixels/s */
70 #define DP_DSC_PEAK_PIXEL_RATE 2720000
71 #define DP_DSC_MAX_ENC_THROUGHPUT_0 340000
72 #define DP_DSC_MAX_ENC_THROUGHPUT_1 400000
73
74 /* DP DSC FEC Overhead factor = 1/(0.972261) */
75 #define DP_DSC_FEC_OVERHEAD_FACTOR 972261
76
77 /* Compliance test status bits */
78 #define INTEL_DP_RESOLUTION_SHIFT_MASK 0
79 #define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
80 #define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
81 #define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82
83 struct dp_link_dpll {
84 int clock;
85 struct dpll dpll;
86 };
87
88 static const struct dp_link_dpll g4x_dpll[] = {
89 { 162000,
90 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
91 { 270000,
92 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
93 };
94
95 static const struct dp_link_dpll pch_dpll[] = {
96 { 162000,
97 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
98 { 270000,
99 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
100 };
101
102 static const struct dp_link_dpll vlv_dpll[] = {
103 { 162000,
104 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
105 { 270000,
106 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
107 };
108
109 /*
110 * CHV supports eDP 1.4 that have more link rates.
111 * Below only provides the fixed rate but exclude variable rate.
112 */
113 static const struct dp_link_dpll chv_dpll[] = {
114 /*
115 * CHV requires to program fractional division for m2.
116 * m2 is stored in fixed point format using formula below
117 * (m2_int << 22) | m2_fraction
118 */
119 { 162000, /* m2_int = 32, m2_fraction = 1677722 */
120 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
121 { 270000, /* m2_int = 27, m2_fraction = 0 */
122 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
123 };
124
125 /* Constants for DP DSC configurations */
126 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
127
128 /* With Single pipe configuration, HW is capable of supporting maximum
129 * of 4 slices per line.
130 */
131 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
132
133 /**
134 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
135 * @intel_dp: DP struct
136 *
137 * If a CPU or PCH DP output is attached to an eDP panel, this function
138 * will return true, and false otherwise.
139 */
intel_dp_is_edp(struct intel_dp * intel_dp)140 bool intel_dp_is_edp(struct intel_dp *intel_dp)
141 {
142 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
143
144 return dig_port->base.type == INTEL_OUTPUT_EDP;
145 }
146
147 static void intel_dp_link_down(struct intel_encoder *encoder,
148 const struct intel_crtc_state *old_crtc_state);
149 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
150 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
151 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
152 const struct intel_crtc_state *crtc_state);
153 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
154 enum pipe pipe);
155 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
156
157 /* update sink rates from dpcd */
intel_dp_set_sink_rates(struct intel_dp * intel_dp)158 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
159 {
160 static const int dp_rates[] = {
161 162000, 270000, 540000, 810000
162 };
163 int i, max_rate;
164
165 if (drm_dp_has_quirk(&intel_dp->desc, 0,
166 DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) {
167 /* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */
168 static const int quirk_rates[] = { 162000, 270000, 324000 };
169
170 memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates));
171 intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates);
172
173 return;
174 }
175
176 max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
177
178 for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
179 if (dp_rates[i] > max_rate)
180 break;
181 intel_dp->sink_rates[i] = dp_rates[i];
182 }
183
184 intel_dp->num_sink_rates = i;
185 }
186
187 /* Get length of rates array potentially limited by max_rate. */
intel_dp_rate_limit_len(const int * rates,int len,int max_rate)188 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
189 {
190 int i;
191
192 /* Limit results by potentially reduced max rate */
193 for (i = 0; i < len; i++) {
194 if (rates[len - i - 1] <= max_rate)
195 return len - i;
196 }
197
198 return 0;
199 }
200
201 /* Get length of common rates array potentially limited by max_rate. */
intel_dp_common_len_rate_limit(const struct intel_dp * intel_dp,int max_rate)202 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
203 int max_rate)
204 {
205 return intel_dp_rate_limit_len(intel_dp->common_rates,
206 intel_dp->num_common_rates, max_rate);
207 }
208
209 /* Theoretical max between source and sink */
intel_dp_max_common_rate(struct intel_dp * intel_dp)210 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
211 {
212 return intel_dp->common_rates[intel_dp->num_common_rates - 1];
213 }
214
215 /* Theoretical max between source and sink */
intel_dp_max_common_lane_count(struct intel_dp * intel_dp)216 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
217 {
218 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
219 int source_max = dig_port->max_lanes;
220 int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
221 int fia_max = intel_tc_port_fia_max_lane_count(dig_port);
222
223 return min3(source_max, sink_max, fia_max);
224 }
225
intel_dp_max_lane_count(struct intel_dp * intel_dp)226 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
227 {
228 return intel_dp->max_link_lane_count;
229 }
230
231 int
intel_dp_link_required(int pixel_clock,int bpp)232 intel_dp_link_required(int pixel_clock, int bpp)
233 {
234 /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
235 return DIV_ROUND_UP(pixel_clock * bpp, 8);
236 }
237
238 int
intel_dp_max_data_rate(int max_link_clock,int max_lanes)239 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
240 {
241 /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
242 * link rate that is generally expressed in Gbps. Since, 8 bits of data
243 * is transmitted every LS_Clk per lane, there is no need to account for
244 * the channel encoding that is done in the PHY layer here.
245 */
246
247 return max_link_clock * max_lanes;
248 }
249
cnl_max_source_rate(struct intel_dp * intel_dp)250 static int cnl_max_source_rate(struct intel_dp *intel_dp)
251 {
252 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
253 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
254 enum port port = dig_port->base.port;
255
256 u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
257
258 /* Low voltage SKUs are limited to max of 5.4G */
259 if (voltage == VOLTAGE_INFO_0_85V)
260 return 540000;
261
262 /* For this SKU 8.1G is supported in all ports */
263 if (IS_CNL_WITH_PORT_F(dev_priv))
264 return 810000;
265
266 /* For other SKUs, max rate on ports A and D is 5.4G */
267 if (port == PORT_A || port == PORT_D)
268 return 540000;
269
270 return 810000;
271 }
272
icl_max_source_rate(struct intel_dp * intel_dp)273 static int icl_max_source_rate(struct intel_dp *intel_dp)
274 {
275 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
276 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
277 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
278
279 if (intel_phy_is_combo(dev_priv, phy) &&
280 !IS_ELKHARTLAKE(dev_priv) &&
281 !intel_dp_is_edp(intel_dp))
282 return 540000;
283
284 return 810000;
285 }
286
287 static void
intel_dp_set_source_rates(struct intel_dp * intel_dp)288 intel_dp_set_source_rates(struct intel_dp *intel_dp)
289 {
290 /* The values must be in increasing order */
291 static const int cnl_rates[] = {
292 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
293 };
294 static const int bxt_rates[] = {
295 162000, 216000, 243000, 270000, 324000, 432000, 540000
296 };
297 static const int skl_rates[] = {
298 162000, 216000, 270000, 324000, 432000, 540000
299 };
300 static const int hsw_rates[] = {
301 162000, 270000, 540000
302 };
303 static const int g4x_rates[] = {
304 162000, 270000
305 };
306 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
307 struct intel_encoder *encoder = &dig_port->base;
308 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
309 const int *source_rates;
310 int size, max_rate = 0, vbt_max_rate;
311
312 /* This should only be done once */
313 drm_WARN_ON(&dev_priv->drm,
314 intel_dp->source_rates || intel_dp->num_source_rates);
315
316 if (INTEL_GEN(dev_priv) >= 10) {
317 source_rates = cnl_rates;
318 size = ARRAY_SIZE(cnl_rates);
319 if (IS_GEN(dev_priv, 10))
320 max_rate = cnl_max_source_rate(intel_dp);
321 else
322 max_rate = icl_max_source_rate(intel_dp);
323 } else if (IS_GEN9_LP(dev_priv)) {
324 source_rates = bxt_rates;
325 size = ARRAY_SIZE(bxt_rates);
326 } else if (IS_GEN9_BC(dev_priv)) {
327 source_rates = skl_rates;
328 size = ARRAY_SIZE(skl_rates);
329 } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
330 IS_BROADWELL(dev_priv)) {
331 source_rates = hsw_rates;
332 size = ARRAY_SIZE(hsw_rates);
333 } else {
334 source_rates = g4x_rates;
335 size = ARRAY_SIZE(g4x_rates);
336 }
337
338 vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
339 if (max_rate && vbt_max_rate)
340 max_rate = min(max_rate, vbt_max_rate);
341 else if (vbt_max_rate)
342 max_rate = vbt_max_rate;
343
344 if (max_rate)
345 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
346
347 intel_dp->source_rates = source_rates;
348 intel_dp->num_source_rates = size;
349 }
350
intersect_rates(const int * source_rates,int source_len,const int * sink_rates,int sink_len,int * common_rates)351 static int intersect_rates(const int *source_rates, int source_len,
352 const int *sink_rates, int sink_len,
353 int *common_rates)
354 {
355 int i = 0, j = 0, k = 0;
356
357 while (i < source_len && j < sink_len) {
358 if (source_rates[i] == sink_rates[j]) {
359 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
360 return k;
361 common_rates[k] = source_rates[i];
362 ++k;
363 ++i;
364 ++j;
365 } else if (source_rates[i] < sink_rates[j]) {
366 ++i;
367 } else {
368 ++j;
369 }
370 }
371 return k;
372 }
373
374 /* return index of rate in rates array, or -1 if not found */
intel_dp_rate_index(const int * rates,int len,int rate)375 static int intel_dp_rate_index(const int *rates, int len, int rate)
376 {
377 int i;
378
379 for (i = 0; i < len; i++)
380 if (rate == rates[i])
381 return i;
382
383 return -1;
384 }
385
intel_dp_set_common_rates(struct intel_dp * intel_dp)386 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
387 {
388 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
389
390 drm_WARN_ON(&i915->drm,
391 !intel_dp->num_source_rates || !intel_dp->num_sink_rates);
392
393 intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
394 intel_dp->num_source_rates,
395 intel_dp->sink_rates,
396 intel_dp->num_sink_rates,
397 intel_dp->common_rates);
398
399 /* Paranoia, there should always be something in common. */
400 if (drm_WARN_ON(&i915->drm, intel_dp->num_common_rates == 0)) {
401 intel_dp->common_rates[0] = 162000;
402 intel_dp->num_common_rates = 1;
403 }
404 }
405
intel_dp_link_params_valid(struct intel_dp * intel_dp,int link_rate,u8 lane_count)406 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
407 u8 lane_count)
408 {
409 /*
410 * FIXME: we need to synchronize the current link parameters with
411 * hardware readout. Currently fast link training doesn't work on
412 * boot-up.
413 */
414 if (link_rate == 0 ||
415 link_rate > intel_dp->max_link_rate)
416 return false;
417
418 if (lane_count == 0 ||
419 lane_count > intel_dp_max_lane_count(intel_dp))
420 return false;
421
422 return true;
423 }
424
intel_dp_can_link_train_fallback_for_edp(struct intel_dp * intel_dp,int link_rate,u8 lane_count)425 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
426 int link_rate,
427 u8 lane_count)
428 {
429 const struct drm_display_mode *fixed_mode =
430 intel_dp->attached_connector->panel.fixed_mode;
431 int mode_rate, max_rate;
432
433 mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
434 max_rate = intel_dp_max_data_rate(link_rate, lane_count);
435 if (mode_rate > max_rate)
436 return false;
437
438 return true;
439 }
440
intel_dp_get_link_train_fallback_values(struct intel_dp * intel_dp,int link_rate,u8 lane_count)441 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
442 int link_rate, u8 lane_count)
443 {
444 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
445 int index;
446
447 /*
448 * TODO: Enable fallback on MST links once MST link compute can handle
449 * the fallback params.
450 */
451 if (intel_dp->is_mst) {
452 drm_err(&i915->drm, "Link Training Unsuccessful\n");
453 return -1;
454 }
455
456 index = intel_dp_rate_index(intel_dp->common_rates,
457 intel_dp->num_common_rates,
458 link_rate);
459 if (index > 0) {
460 if (intel_dp_is_edp(intel_dp) &&
461 !intel_dp_can_link_train_fallback_for_edp(intel_dp,
462 intel_dp->common_rates[index - 1],
463 lane_count)) {
464 drm_dbg_kms(&i915->drm,
465 "Retrying Link training for eDP with same parameters\n");
466 return 0;
467 }
468 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
469 intel_dp->max_link_lane_count = lane_count;
470 } else if (lane_count > 1) {
471 if (intel_dp_is_edp(intel_dp) &&
472 !intel_dp_can_link_train_fallback_for_edp(intel_dp,
473 intel_dp_max_common_rate(intel_dp),
474 lane_count >> 1)) {
475 drm_dbg_kms(&i915->drm,
476 "Retrying Link training for eDP with same parameters\n");
477 return 0;
478 }
479 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
480 intel_dp->max_link_lane_count = lane_count >> 1;
481 } else {
482 drm_err(&i915->drm, "Link Training Unsuccessful\n");
483 return -1;
484 }
485
486 return 0;
487 }
488
intel_dp_mode_to_fec_clock(u32 mode_clock)489 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
490 {
491 return div_u64(mul_u32_u32(mode_clock, 1000000U),
492 DP_DSC_FEC_OVERHEAD_FACTOR);
493 }
494
495 static int
small_joiner_ram_size_bits(struct drm_i915_private * i915)496 small_joiner_ram_size_bits(struct drm_i915_private *i915)
497 {
498 if (INTEL_GEN(i915) >= 11)
499 return 7680 * 8;
500 else
501 return 6144 * 8;
502 }
503
intel_dp_dsc_get_output_bpp(struct drm_i915_private * i915,u32 link_clock,u32 lane_count,u32 mode_clock,u32 mode_hdisplay)504 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
505 u32 link_clock, u32 lane_count,
506 u32 mode_clock, u32 mode_hdisplay)
507 {
508 u32 bits_per_pixel, max_bpp_small_joiner_ram;
509 int i;
510
511 /*
512 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
513 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
514 * for SST -> TimeSlotsPerMTP is 1,
515 * for MST -> TimeSlotsPerMTP has to be calculated
516 */
517 bits_per_pixel = (link_clock * lane_count * 8) /
518 intel_dp_mode_to_fec_clock(mode_clock);
519 drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
520
521 /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
522 max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
523 mode_hdisplay;
524 drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
525 max_bpp_small_joiner_ram);
526
527 /*
528 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
529 * check, output bpp from small joiner RAM check)
530 */
531 bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
532
533 /* Error out if the max bpp is less than smallest allowed valid bpp */
534 if (bits_per_pixel < valid_dsc_bpp[0]) {
535 drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
536 bits_per_pixel, valid_dsc_bpp[0]);
537 return 0;
538 }
539
540 /* Find the nearest match in the array of known BPPs from VESA */
541 for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
542 if (bits_per_pixel < valid_dsc_bpp[i + 1])
543 break;
544 }
545 bits_per_pixel = valid_dsc_bpp[i];
546
547 /*
548 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
549 * fractional part is 0
550 */
551 return bits_per_pixel << 4;
552 }
553
intel_dp_dsc_get_slice_count(struct intel_dp * intel_dp,int mode_clock,int mode_hdisplay)554 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
555 int mode_clock, int mode_hdisplay)
556 {
557 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
558 u8 min_slice_count, i;
559 int max_slice_width;
560
561 if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
562 min_slice_count = DIV_ROUND_UP(mode_clock,
563 DP_DSC_MAX_ENC_THROUGHPUT_0);
564 else
565 min_slice_count = DIV_ROUND_UP(mode_clock,
566 DP_DSC_MAX_ENC_THROUGHPUT_1);
567
568 max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
569 if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
570 drm_dbg_kms(&i915->drm,
571 "Unsupported slice width %d by DP DSC Sink device\n",
572 max_slice_width);
573 return 0;
574 }
575 /* Also take into account max slice width */
576 min_slice_count = max_t(u8, min_slice_count,
577 DIV_ROUND_UP(mode_hdisplay,
578 max_slice_width));
579
580 /* Find the closest match to the valid slice count values */
581 for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
582 if (valid_dsc_slicecount[i] >
583 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
584 false))
585 break;
586 if (min_slice_count <= valid_dsc_slicecount[i])
587 return valid_dsc_slicecount[i];
588 }
589
590 drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n",
591 min_slice_count);
592 return 0;
593 }
594
intel_dp_hdisplay_bad(struct drm_i915_private * dev_priv,int hdisplay)595 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
596 int hdisplay)
597 {
598 /*
599 * Older platforms don't like hdisplay==4096 with DP.
600 *
601 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
602 * and frame counter increment), but we don't get vblank interrupts,
603 * and the pipe underruns immediately. The link also doesn't seem
604 * to get trained properly.
605 *
606 * On CHV the vblank interrupts don't seem to disappear but
607 * otherwise the symptoms are similar.
608 *
609 * TODO: confirm the behaviour on HSW+
610 */
611 return hdisplay == 4096 && !HAS_DDI(dev_priv);
612 }
613
614 static enum drm_mode_status
intel_dp_mode_valid_downstream(struct intel_connector * connector,const struct drm_display_mode * mode,int target_clock)615 intel_dp_mode_valid_downstream(struct intel_connector *connector,
616 const struct drm_display_mode *mode,
617 int target_clock)
618 {
619 struct intel_dp *intel_dp = intel_attached_dp(connector);
620 const struct drm_display_info *info = &connector->base.display_info;
621 int tmds_clock;
622
623 if (intel_dp->dfp.max_dotclock &&
624 target_clock > intel_dp->dfp.max_dotclock)
625 return MODE_CLOCK_HIGH;
626
627 /* Assume 8bpc for the DP++/HDMI/DVI TMDS clock check */
628 tmds_clock = target_clock;
629 if (drm_mode_is_420_only(info, mode))
630 tmds_clock /= 2;
631
632 if (intel_dp->dfp.min_tmds_clock &&
633 tmds_clock < intel_dp->dfp.min_tmds_clock)
634 return MODE_CLOCK_LOW;
635 if (intel_dp->dfp.max_tmds_clock &&
636 tmds_clock > intel_dp->dfp.max_tmds_clock)
637 return MODE_CLOCK_HIGH;
638
639 return MODE_OK;
640 }
641
642 static enum drm_mode_status
intel_dp_mode_valid(struct drm_connector * connector,struct drm_display_mode * mode)643 intel_dp_mode_valid(struct drm_connector *connector,
644 struct drm_display_mode *mode)
645 {
646 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
647 struct intel_connector *intel_connector = to_intel_connector(connector);
648 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
649 struct drm_i915_private *dev_priv = to_i915(connector->dev);
650 int target_clock = mode->clock;
651 int max_rate, mode_rate, max_lanes, max_link_clock;
652 int max_dotclk = dev_priv->max_dotclk_freq;
653 u16 dsc_max_output_bpp = 0;
654 u8 dsc_slice_count = 0;
655 enum drm_mode_status status;
656
657 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
658 return MODE_NO_DBLESCAN;
659
660 if (intel_dp_is_edp(intel_dp) && fixed_mode) {
661 if (mode->hdisplay > fixed_mode->hdisplay)
662 return MODE_PANEL;
663
664 if (mode->vdisplay > fixed_mode->vdisplay)
665 return MODE_PANEL;
666
667 target_clock = fixed_mode->clock;
668 }
669
670 max_link_clock = intel_dp_max_link_rate(intel_dp);
671 max_lanes = intel_dp_max_lane_count(intel_dp);
672
673 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
674 mode_rate = intel_dp_link_required(target_clock, 18);
675
676 if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
677 return MODE_H_ILLEGAL;
678
679 /*
680 * Output bpp is stored in 6.4 format so right shift by 4 to get the
681 * integer value since we support only integer values of bpp.
682 */
683 if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
684 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
685 if (intel_dp_is_edp(intel_dp)) {
686 dsc_max_output_bpp =
687 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
688 dsc_slice_count =
689 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
690 true);
691 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
692 dsc_max_output_bpp =
693 intel_dp_dsc_get_output_bpp(dev_priv,
694 max_link_clock,
695 max_lanes,
696 target_clock,
697 mode->hdisplay) >> 4;
698 dsc_slice_count =
699 intel_dp_dsc_get_slice_count(intel_dp,
700 target_clock,
701 mode->hdisplay);
702 }
703 }
704
705 if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
706 target_clock > max_dotclk)
707 return MODE_CLOCK_HIGH;
708
709 if (mode->clock < 10000)
710 return MODE_CLOCK_LOW;
711
712 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
713 return MODE_H_ILLEGAL;
714
715 status = intel_dp_mode_valid_downstream(intel_connector,
716 mode, target_clock);
717 if (status != MODE_OK)
718 return status;
719
720 return intel_mode_valid_max_plane_size(dev_priv, mode);
721 }
722
intel_dp_pack_aux(const u8 * src,int src_bytes)723 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
724 {
725 int i;
726 u32 v = 0;
727
728 if (src_bytes > 4)
729 src_bytes = 4;
730 for (i = 0; i < src_bytes; i++)
731 v |= ((u32)src[i]) << ((3 - i) * 8);
732 return v;
733 }
734
intel_dp_unpack_aux(u32 src,u8 * dst,int dst_bytes)735 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
736 {
737 int i;
738 if (dst_bytes > 4)
739 dst_bytes = 4;
740 for (i = 0; i < dst_bytes; i++)
741 dst[i] = src >> ((3-i) * 8);
742 }
743
744 static void
745 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
746 static void
747 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
748 bool force_disable_vdd);
749 static void
750 intel_dp_pps_init(struct intel_dp *intel_dp);
751
752 static intel_wakeref_t
pps_lock(struct intel_dp * intel_dp)753 pps_lock(struct intel_dp *intel_dp)
754 {
755 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
756 intel_wakeref_t wakeref;
757
758 /*
759 * See intel_power_sequencer_reset() why we need
760 * a power domain reference here.
761 */
762 wakeref = intel_display_power_get(dev_priv,
763 intel_aux_power_domain(dp_to_dig_port(intel_dp)));
764
765 mutex_lock(&dev_priv->pps_mutex);
766
767 return wakeref;
768 }
769
770 static intel_wakeref_t
pps_unlock(struct intel_dp * intel_dp,intel_wakeref_t wakeref)771 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
772 {
773 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
774
775 mutex_unlock(&dev_priv->pps_mutex);
776 intel_display_power_put(dev_priv,
777 intel_aux_power_domain(dp_to_dig_port(intel_dp)),
778 wakeref);
779 return 0;
780 }
781
782 #define with_pps_lock(dp, wf) \
783 for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
784
785 static void
vlv_power_sequencer_kick(struct intel_dp * intel_dp)786 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
787 {
788 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
789 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
790 enum pipe pipe = intel_dp->pps_pipe;
791 bool pll_enabled, release_cl_override = false;
792 enum dpio_phy phy = DPIO_PHY(pipe);
793 enum dpio_channel ch = vlv_pipe_to_channel(pipe);
794 u32 DP;
795
796 if (drm_WARN(&dev_priv->drm,
797 intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
798 "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
799 pipe_name(pipe), dig_port->base.base.base.id,
800 dig_port->base.base.name))
801 return;
802
803 drm_dbg_kms(&dev_priv->drm,
804 "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
805 pipe_name(pipe), dig_port->base.base.base.id,
806 dig_port->base.base.name);
807
808 /* Preserve the BIOS-computed detected bit. This is
809 * supposed to be read-only.
810 */
811 DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
812 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
813 DP |= DP_PORT_WIDTH(1);
814 DP |= DP_LINK_TRAIN_PAT_1;
815
816 if (IS_CHERRYVIEW(dev_priv))
817 DP |= DP_PIPE_SEL_CHV(pipe);
818 else
819 DP |= DP_PIPE_SEL(pipe);
820
821 pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
822
823 /*
824 * The DPLL for the pipe must be enabled for this to work.
825 * So enable temporarily it if it's not already enabled.
826 */
827 if (!pll_enabled) {
828 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
829 !chv_phy_powergate_ch(dev_priv, phy, ch, true);
830
831 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
832 &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
833 drm_err(&dev_priv->drm,
834 "Failed to force on pll for pipe %c!\n",
835 pipe_name(pipe));
836 return;
837 }
838 }
839
840 /*
841 * Similar magic as in intel_dp_enable_port().
842 * We _must_ do this port enable + disable trick
843 * to make this power sequencer lock onto the port.
844 * Otherwise even VDD force bit won't work.
845 */
846 intel_de_write(dev_priv, intel_dp->output_reg, DP);
847 intel_de_posting_read(dev_priv, intel_dp->output_reg);
848
849 intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
850 intel_de_posting_read(dev_priv, intel_dp->output_reg);
851
852 intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
853 intel_de_posting_read(dev_priv, intel_dp->output_reg);
854
855 if (!pll_enabled) {
856 vlv_force_pll_off(dev_priv, pipe);
857
858 if (release_cl_override)
859 chv_phy_powergate_ch(dev_priv, phy, ch, false);
860 }
861 }
862
vlv_find_free_pps(struct drm_i915_private * dev_priv)863 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
864 {
865 struct intel_encoder *encoder;
866 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
867
868 /*
869 * We don't have power sequencer currently.
870 * Pick one that's not used by other ports.
871 */
872 for_each_intel_dp(&dev_priv->drm, encoder) {
873 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
874
875 if (encoder->type == INTEL_OUTPUT_EDP) {
876 drm_WARN_ON(&dev_priv->drm,
877 intel_dp->active_pipe != INVALID_PIPE &&
878 intel_dp->active_pipe !=
879 intel_dp->pps_pipe);
880
881 if (intel_dp->pps_pipe != INVALID_PIPE)
882 pipes &= ~(1 << intel_dp->pps_pipe);
883 } else {
884 drm_WARN_ON(&dev_priv->drm,
885 intel_dp->pps_pipe != INVALID_PIPE);
886
887 if (intel_dp->active_pipe != INVALID_PIPE)
888 pipes &= ~(1 << intel_dp->active_pipe);
889 }
890 }
891
892 if (pipes == 0)
893 return INVALID_PIPE;
894
895 return ffs(pipes) - 1;
896 }
897
898 static enum pipe
vlv_power_sequencer_pipe(struct intel_dp * intel_dp)899 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
900 {
901 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
902 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
903 enum pipe pipe;
904
905 lockdep_assert_held(&dev_priv->pps_mutex);
906
907 /* We should never land here with regular DP ports */
908 drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
909
910 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE &&
911 intel_dp->active_pipe != intel_dp->pps_pipe);
912
913 if (intel_dp->pps_pipe != INVALID_PIPE)
914 return intel_dp->pps_pipe;
915
916 pipe = vlv_find_free_pps(dev_priv);
917
918 /*
919 * Didn't find one. This should not happen since there
920 * are two power sequencers and up to two eDP ports.
921 */
922 if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE))
923 pipe = PIPE_A;
924
925 vlv_steal_power_sequencer(dev_priv, pipe);
926 intel_dp->pps_pipe = pipe;
927
928 drm_dbg_kms(&dev_priv->drm,
929 "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
930 pipe_name(intel_dp->pps_pipe),
931 dig_port->base.base.base.id,
932 dig_port->base.base.name);
933
934 /* init power sequencer on this pipe and port */
935 intel_dp_init_panel_power_sequencer(intel_dp);
936 intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
937
938 /*
939 * Even vdd force doesn't work until we've made
940 * the power sequencer lock in on the port.
941 */
942 vlv_power_sequencer_kick(intel_dp);
943
944 return intel_dp->pps_pipe;
945 }
946
947 static int
bxt_power_sequencer_idx(struct intel_dp * intel_dp)948 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
949 {
950 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
951 int backlight_controller = dev_priv->vbt.backlight.controller;
952
953 lockdep_assert_held(&dev_priv->pps_mutex);
954
955 /* We should never land here with regular DP ports */
956 drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
957
958 if (!intel_dp->pps_reset)
959 return backlight_controller;
960
961 intel_dp->pps_reset = false;
962
963 /*
964 * Only the HW needs to be reprogrammed, the SW state is fixed and
965 * has been setup during connector init.
966 */
967 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
968
969 return backlight_controller;
970 }
971
972 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
973 enum pipe pipe);
974
vlv_pipe_has_pp_on(struct drm_i915_private * dev_priv,enum pipe pipe)975 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
976 enum pipe pipe)
977 {
978 return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
979 }
980
vlv_pipe_has_vdd_on(struct drm_i915_private * dev_priv,enum pipe pipe)981 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
982 enum pipe pipe)
983 {
984 return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
985 }
986
vlv_pipe_any(struct drm_i915_private * dev_priv,enum pipe pipe)987 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
988 enum pipe pipe)
989 {
990 return true;
991 }
992
993 static enum pipe
vlv_initial_pps_pipe(struct drm_i915_private * dev_priv,enum port port,vlv_pipe_check pipe_check)994 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
995 enum port port,
996 vlv_pipe_check pipe_check)
997 {
998 enum pipe pipe;
999
1000 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
1001 u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
1002 PANEL_PORT_SELECT_MASK;
1003
1004 if (port_sel != PANEL_PORT_SELECT_VLV(port))
1005 continue;
1006
1007 if (!pipe_check(dev_priv, pipe))
1008 continue;
1009
1010 return pipe;
1011 }
1012
1013 return INVALID_PIPE;
1014 }
1015
1016 static void
vlv_initial_power_sequencer_setup(struct intel_dp * intel_dp)1017 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
1018 {
1019 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1020 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1021 enum port port = dig_port->base.port;
1022
1023 lockdep_assert_held(&dev_priv->pps_mutex);
1024
1025 /* try to find a pipe with this port selected */
1026 /* first pick one where the panel is on */
1027 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1028 vlv_pipe_has_pp_on);
1029 /* didn't find one? pick one where vdd is on */
1030 if (intel_dp->pps_pipe == INVALID_PIPE)
1031 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1032 vlv_pipe_has_vdd_on);
1033 /* didn't find one? pick one with just the correct port */
1034 if (intel_dp->pps_pipe == INVALID_PIPE)
1035 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1036 vlv_pipe_any);
1037
1038 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
1039 if (intel_dp->pps_pipe == INVALID_PIPE) {
1040 drm_dbg_kms(&dev_priv->drm,
1041 "no initial power sequencer for [ENCODER:%d:%s]\n",
1042 dig_port->base.base.base.id,
1043 dig_port->base.base.name);
1044 return;
1045 }
1046
1047 drm_dbg_kms(&dev_priv->drm,
1048 "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1049 dig_port->base.base.base.id,
1050 dig_port->base.base.name,
1051 pipe_name(intel_dp->pps_pipe));
1052
1053 intel_dp_init_panel_power_sequencer(intel_dp);
1054 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1055 }
1056
intel_power_sequencer_reset(struct drm_i915_private * dev_priv)1057 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1058 {
1059 struct intel_encoder *encoder;
1060
1061 if (drm_WARN_ON(&dev_priv->drm,
1062 !(IS_VALLEYVIEW(dev_priv) ||
1063 IS_CHERRYVIEW(dev_priv) ||
1064 IS_GEN9_LP(dev_priv))))
1065 return;
1066
1067 /*
1068 * We can't grab pps_mutex here due to deadlock with power_domain
1069 * mutex when power_domain functions are called while holding pps_mutex.
1070 * That also means that in order to use pps_pipe the code needs to
1071 * hold both a power domain reference and pps_mutex, and the power domain
1072 * reference get/put must be done while _not_ holding pps_mutex.
1073 * pps_{lock,unlock}() do these steps in the correct order, so one
1074 * should use them always.
1075 */
1076
1077 for_each_intel_dp(&dev_priv->drm, encoder) {
1078 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1079
1080 drm_WARN_ON(&dev_priv->drm,
1081 intel_dp->active_pipe != INVALID_PIPE);
1082
1083 if (encoder->type != INTEL_OUTPUT_EDP)
1084 continue;
1085
1086 if (IS_GEN9_LP(dev_priv))
1087 intel_dp->pps_reset = true;
1088 else
1089 intel_dp->pps_pipe = INVALID_PIPE;
1090 }
1091 }
1092
1093 struct pps_registers {
1094 i915_reg_t pp_ctrl;
1095 i915_reg_t pp_stat;
1096 i915_reg_t pp_on;
1097 i915_reg_t pp_off;
1098 i915_reg_t pp_div;
1099 };
1100
intel_pps_get_registers(struct intel_dp * intel_dp,struct pps_registers * regs)1101 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1102 struct pps_registers *regs)
1103 {
1104 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1105 int pps_idx = 0;
1106
1107 memset(regs, 0, sizeof(*regs));
1108
1109 if (IS_GEN9_LP(dev_priv))
1110 pps_idx = bxt_power_sequencer_idx(intel_dp);
1111 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1112 pps_idx = vlv_power_sequencer_pipe(intel_dp);
1113
1114 regs->pp_ctrl = PP_CONTROL(pps_idx);
1115 regs->pp_stat = PP_STATUS(pps_idx);
1116 regs->pp_on = PP_ON_DELAYS(pps_idx);
1117 regs->pp_off = PP_OFF_DELAYS(pps_idx);
1118
1119 /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1120 if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1121 regs->pp_div = INVALID_MMIO_REG;
1122 else
1123 regs->pp_div = PP_DIVISOR(pps_idx);
1124 }
1125
1126 static i915_reg_t
_pp_ctrl_reg(struct intel_dp * intel_dp)1127 _pp_ctrl_reg(struct intel_dp *intel_dp)
1128 {
1129 struct pps_registers regs;
1130
1131 intel_pps_get_registers(intel_dp, ®s);
1132
1133 return regs.pp_ctrl;
1134 }
1135
1136 static i915_reg_t
_pp_stat_reg(struct intel_dp * intel_dp)1137 _pp_stat_reg(struct intel_dp *intel_dp)
1138 {
1139 struct pps_registers regs;
1140
1141 intel_pps_get_registers(intel_dp, ®s);
1142
1143 return regs.pp_stat;
1144 }
1145
1146 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1147 This function only applicable when panel PM state is not to be tracked */
edp_notify_handler(struct notifier_block * this,unsigned long code,void * unused)1148 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1149 void *unused)
1150 {
1151 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1152 edp_notifier);
1153 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1154 intel_wakeref_t wakeref;
1155
1156 if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1157 return 0;
1158
1159 with_pps_lock(intel_dp, wakeref) {
1160 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1161 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1162 i915_reg_t pp_ctrl_reg, pp_div_reg;
1163 u32 pp_div;
1164
1165 pp_ctrl_reg = PP_CONTROL(pipe);
1166 pp_div_reg = PP_DIVISOR(pipe);
1167 pp_div = intel_de_read(dev_priv, pp_div_reg);
1168 pp_div &= PP_REFERENCE_DIVIDER_MASK;
1169
1170 /* 0x1F write to PP_DIV_REG sets max cycle delay */
1171 intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F);
1172 intel_de_write(dev_priv, pp_ctrl_reg,
1173 PANEL_UNLOCK_REGS);
1174 msleep(intel_dp->panel_power_cycle_delay);
1175 }
1176 }
1177
1178 return 0;
1179 }
1180
edp_have_panel_power(struct intel_dp * intel_dp)1181 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1182 {
1183 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1184
1185 lockdep_assert_held(&dev_priv->pps_mutex);
1186
1187 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1188 intel_dp->pps_pipe == INVALID_PIPE)
1189 return false;
1190
1191 return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1192 }
1193
edp_have_panel_vdd(struct intel_dp * intel_dp)1194 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1195 {
1196 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1197
1198 lockdep_assert_held(&dev_priv->pps_mutex);
1199
1200 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1201 intel_dp->pps_pipe == INVALID_PIPE)
1202 return false;
1203
1204 return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1205 }
1206
1207 static void
intel_dp_check_edp(struct intel_dp * intel_dp)1208 intel_dp_check_edp(struct intel_dp *intel_dp)
1209 {
1210 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1211
1212 if (!intel_dp_is_edp(intel_dp))
1213 return;
1214
1215 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1216 drm_WARN(&dev_priv->drm, 1,
1217 "eDP powered off while attempting aux channel communication.\n");
1218 drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1219 intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
1220 intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1221 }
1222 }
1223
1224 static u32
intel_dp_aux_wait_done(struct intel_dp * intel_dp)1225 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1226 {
1227 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1228 i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1229 const unsigned int timeout_ms = 10;
1230 u32 status;
1231 bool done;
1232
1233 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1234 done = wait_event_timeout(i915->gmbus_wait_queue, C,
1235 msecs_to_jiffies_timeout(timeout_ms));
1236
1237 /* just trace the final value */
1238 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1239
1240 if (!done)
1241 drm_err(&i915->drm,
1242 "%s: did not complete or timeout within %ums (status 0x%08x)\n",
1243 intel_dp->aux.name, timeout_ms, status);
1244 #undef C
1245
1246 return status;
1247 }
1248
g4x_get_aux_clock_divider(struct intel_dp * intel_dp,int index)1249 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1250 {
1251 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1252
1253 if (index)
1254 return 0;
1255
1256 /*
1257 * The clock divider is based off the hrawclk, and would like to run at
1258 * 2MHz. So, take the hrawclk value and divide by 2000 and use that
1259 */
1260 return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1261 }
1262
ilk_get_aux_clock_divider(struct intel_dp * intel_dp,int index)1263 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1264 {
1265 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1266 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1267 u32 freq;
1268
1269 if (index)
1270 return 0;
1271
1272 /*
1273 * The clock divider is based off the cdclk or PCH rawclk, and would
1274 * like to run at 2MHz. So, take the cdclk or PCH rawclk value and
1275 * divide by 2000 and use that
1276 */
1277 if (dig_port->aux_ch == AUX_CH_A)
1278 freq = dev_priv->cdclk.hw.cdclk;
1279 else
1280 freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
1281 return DIV_ROUND_CLOSEST(freq, 2000);
1282 }
1283
hsw_get_aux_clock_divider(struct intel_dp * intel_dp,int index)1284 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1285 {
1286 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1287 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1288
1289 if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1290 /* Workaround for non-ULT HSW */
1291 switch (index) {
1292 case 0: return 63;
1293 case 1: return 72;
1294 default: return 0;
1295 }
1296 }
1297
1298 return ilk_get_aux_clock_divider(intel_dp, index);
1299 }
1300
skl_get_aux_clock_divider(struct intel_dp * intel_dp,int index)1301 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1302 {
1303 /*
1304 * SKL doesn't need us to program the AUX clock divider (Hardware will
1305 * derive the clock from CDCLK automatically). We still implement the
1306 * get_aux_clock_divider vfunc to plug-in into the existing code.
1307 */
1308 return index ? 0 : 1;
1309 }
1310
g4x_get_aux_send_ctl(struct intel_dp * intel_dp,int send_bytes,u32 aux_clock_divider)1311 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1312 int send_bytes,
1313 u32 aux_clock_divider)
1314 {
1315 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1316 struct drm_i915_private *dev_priv =
1317 to_i915(dig_port->base.base.dev);
1318 u32 precharge, timeout;
1319
1320 if (IS_GEN(dev_priv, 6))
1321 precharge = 3;
1322 else
1323 precharge = 5;
1324
1325 if (IS_BROADWELL(dev_priv))
1326 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1327 else
1328 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1329
1330 return DP_AUX_CH_CTL_SEND_BUSY |
1331 DP_AUX_CH_CTL_DONE |
1332 DP_AUX_CH_CTL_INTERRUPT |
1333 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1334 timeout |
1335 DP_AUX_CH_CTL_RECEIVE_ERROR |
1336 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1337 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1338 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1339 }
1340
skl_get_aux_send_ctl(struct intel_dp * intel_dp,int send_bytes,u32 unused)1341 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1342 int send_bytes,
1343 u32 unused)
1344 {
1345 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1346 struct drm_i915_private *i915 =
1347 to_i915(dig_port->base.base.dev);
1348 enum phy phy = intel_port_to_phy(i915, dig_port->base.port);
1349 u32 ret;
1350
1351 ret = DP_AUX_CH_CTL_SEND_BUSY |
1352 DP_AUX_CH_CTL_DONE |
1353 DP_AUX_CH_CTL_INTERRUPT |
1354 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1355 DP_AUX_CH_CTL_TIME_OUT_MAX |
1356 DP_AUX_CH_CTL_RECEIVE_ERROR |
1357 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1358 DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1359 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1360
1361 if (intel_phy_is_tc(i915, phy) &&
1362 dig_port->tc_mode == TC_PORT_TBT_ALT)
1363 ret |= DP_AUX_CH_CTL_TBT_IO;
1364
1365 return ret;
1366 }
1367
1368 static int
intel_dp_aux_xfer(struct intel_dp * intel_dp,const u8 * send,int send_bytes,u8 * recv,int recv_size,u32 aux_send_ctl_flags)1369 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1370 const u8 *send, int send_bytes,
1371 u8 *recv, int recv_size,
1372 u32 aux_send_ctl_flags)
1373 {
1374 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1375 struct drm_i915_private *i915 =
1376 to_i915(dig_port->base.base.dev);
1377 struct intel_uncore *uncore = &i915->uncore;
1378 enum phy phy = intel_port_to_phy(i915, dig_port->base.port);
1379 bool is_tc_port = intel_phy_is_tc(i915, phy);
1380 i915_reg_t ch_ctl, ch_data[5];
1381 u32 aux_clock_divider;
1382 enum intel_display_power_domain aux_domain;
1383 intel_wakeref_t aux_wakeref;
1384 intel_wakeref_t pps_wakeref;
1385 int i, ret, recv_bytes;
1386 int try, clock = 0;
1387 u32 status;
1388 bool vdd;
1389
1390 ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1391 for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1392 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1393
1394 if (is_tc_port)
1395 intel_tc_port_lock(dig_port);
1396
1397 aux_domain = intel_aux_power_domain(dig_port);
1398
1399 aux_wakeref = intel_display_power_get(i915, aux_domain);
1400 pps_wakeref = pps_lock(intel_dp);
1401
1402 /*
1403 * We will be called with VDD already enabled for dpcd/edid/oui reads.
1404 * In such cases we want to leave VDD enabled and it's up to upper layers
1405 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1406 * ourselves.
1407 */
1408 vdd = edp_panel_vdd_on(intel_dp);
1409
1410 /* dp aux is extremely sensitive to irq latency, hence request the
1411 * lowest possible wakeup latency and so prevent the cpu from going into
1412 * deep sleep states.
1413 */
1414 cpu_latency_qos_update_request(&i915->pm_qos, 0);
1415
1416 intel_dp_check_edp(intel_dp);
1417
1418 /* Try to wait for any previous AUX channel activity */
1419 for (try = 0; try < 3; try++) {
1420 status = intel_uncore_read_notrace(uncore, ch_ctl);
1421 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1422 break;
1423 msleep(1);
1424 }
1425 /* just trace the final value */
1426 trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1427
1428 if (try == 3) {
1429 const u32 status = intel_uncore_read(uncore, ch_ctl);
1430
1431 if (status != intel_dp->aux_busy_last_status) {
1432 drm_WARN(&i915->drm, 1,
1433 "%s: not started (status 0x%08x)\n",
1434 intel_dp->aux.name, status);
1435 intel_dp->aux_busy_last_status = status;
1436 }
1437
1438 ret = -EBUSY;
1439 goto out;
1440 }
1441
1442 /* Only 5 data registers! */
1443 if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
1444 ret = -E2BIG;
1445 goto out;
1446 }
1447
1448 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1449 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1450 send_bytes,
1451 aux_clock_divider);
1452
1453 send_ctl |= aux_send_ctl_flags;
1454
1455 /* Must try at least 3 times according to DP spec */
1456 for (try = 0; try < 5; try++) {
1457 /* Load the send data into the aux channel data registers */
1458 for (i = 0; i < send_bytes; i += 4)
1459 intel_uncore_write(uncore,
1460 ch_data[i >> 2],
1461 intel_dp_pack_aux(send + i,
1462 send_bytes - i));
1463
1464 /* Send the command and wait for it to complete */
1465 intel_uncore_write(uncore, ch_ctl, send_ctl);
1466
1467 status = intel_dp_aux_wait_done(intel_dp);
1468
1469 /* Clear done status and any errors */
1470 intel_uncore_write(uncore,
1471 ch_ctl,
1472 status |
1473 DP_AUX_CH_CTL_DONE |
1474 DP_AUX_CH_CTL_TIME_OUT_ERROR |
1475 DP_AUX_CH_CTL_RECEIVE_ERROR);
1476
1477 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1478 * 400us delay required for errors and timeouts
1479 * Timeout errors from the HW already meet this
1480 * requirement so skip to next iteration
1481 */
1482 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1483 continue;
1484
1485 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1486 usleep_range(400, 500);
1487 continue;
1488 }
1489 if (status & DP_AUX_CH_CTL_DONE)
1490 goto done;
1491 }
1492 }
1493
1494 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1495 drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
1496 intel_dp->aux.name, status);
1497 ret = -EBUSY;
1498 goto out;
1499 }
1500
1501 done:
1502 /* Check for timeout or receive error.
1503 * Timeouts occur when the sink is not connected
1504 */
1505 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1506 drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
1507 intel_dp->aux.name, status);
1508 ret = -EIO;
1509 goto out;
1510 }
1511
1512 /* Timeouts occur when the device isn't connected, so they're
1513 * "normal" -- don't fill the kernel log with these */
1514 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1515 drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
1516 intel_dp->aux.name, status);
1517 ret = -ETIMEDOUT;
1518 goto out;
1519 }
1520
1521 /* Unload any bytes sent back from the other side */
1522 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1523 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1524
1525 /*
1526 * By BSpec: "Message sizes of 0 or >20 are not allowed."
1527 * We have no idea of what happened so we return -EBUSY so
1528 * drm layer takes care for the necessary retries.
1529 */
1530 if (recv_bytes == 0 || recv_bytes > 20) {
1531 drm_dbg_kms(&i915->drm,
1532 "%s: Forbidden recv_bytes = %d on aux transaction\n",
1533 intel_dp->aux.name, recv_bytes);
1534 ret = -EBUSY;
1535 goto out;
1536 }
1537
1538 if (recv_bytes > recv_size)
1539 recv_bytes = recv_size;
1540
1541 for (i = 0; i < recv_bytes; i += 4)
1542 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1543 recv + i, recv_bytes - i);
1544
1545 ret = recv_bytes;
1546 out:
1547 cpu_latency_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1548
1549 if (vdd)
1550 edp_panel_vdd_off(intel_dp, false);
1551
1552 pps_unlock(intel_dp, pps_wakeref);
1553 intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1554
1555 if (is_tc_port)
1556 intel_tc_port_unlock(dig_port);
1557
1558 return ret;
1559 }
1560
1561 #define BARE_ADDRESS_SIZE 3
1562 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
1563
1564 static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],const struct drm_dp_aux_msg * msg)1565 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1566 const struct drm_dp_aux_msg *msg)
1567 {
1568 txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1569 txbuf[1] = (msg->address >> 8) & 0xff;
1570 txbuf[2] = msg->address & 0xff;
1571 txbuf[3] = msg->size - 1;
1572 }
1573
intel_dp_aux_xfer_flags(const struct drm_dp_aux_msg * msg)1574 static u32 intel_dp_aux_xfer_flags(const struct drm_dp_aux_msg *msg)
1575 {
1576 /*
1577 * If we're trying to send the HDCP Aksv, we need to set a the Aksv
1578 * select bit to inform the hardware to send the Aksv after our header
1579 * since we can't access that data from software.
1580 */
1581 if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_NATIVE_WRITE &&
1582 msg->address == DP_AUX_HDCP_AKSV)
1583 return DP_AUX_CH_CTL_AUX_AKSV_SELECT;
1584
1585 return 0;
1586 }
1587
1588 static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux * aux,struct drm_dp_aux_msg * msg)1589 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1590 {
1591 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1592 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1593 u8 txbuf[20], rxbuf[20];
1594 size_t txsize, rxsize;
1595 u32 flags = intel_dp_aux_xfer_flags(msg);
1596 int ret;
1597
1598 intel_dp_aux_header(txbuf, msg);
1599
1600 switch (msg->request & ~DP_AUX_I2C_MOT) {
1601 case DP_AUX_NATIVE_WRITE:
1602 case DP_AUX_I2C_WRITE:
1603 case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1604 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1605 rxsize = 2; /* 0 or 1 data bytes */
1606
1607 if (drm_WARN_ON(&i915->drm, txsize > 20))
1608 return -E2BIG;
1609
1610 drm_WARN_ON(&i915->drm, !msg->buffer != !msg->size);
1611
1612 if (msg->buffer)
1613 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1614
1615 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1616 rxbuf, rxsize, flags);
1617 if (ret > 0) {
1618 msg->reply = rxbuf[0] >> 4;
1619
1620 if (ret > 1) {
1621 /* Number of bytes written in a short write. */
1622 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1623 } else {
1624 /* Return payload size. */
1625 ret = msg->size;
1626 }
1627 }
1628 break;
1629
1630 case DP_AUX_NATIVE_READ:
1631 case DP_AUX_I2C_READ:
1632 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1633 rxsize = msg->size + 1;
1634
1635 if (drm_WARN_ON(&i915->drm, rxsize > 20))
1636 return -E2BIG;
1637
1638 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1639 rxbuf, rxsize, flags);
1640 if (ret > 0) {
1641 msg->reply = rxbuf[0] >> 4;
1642 /*
1643 * Assume happy day, and copy the data. The caller is
1644 * expected to check msg->reply before touching it.
1645 *
1646 * Return payload size.
1647 */
1648 ret--;
1649 memcpy(msg->buffer, rxbuf + 1, ret);
1650 }
1651 break;
1652
1653 default:
1654 ret = -EINVAL;
1655 break;
1656 }
1657
1658 return ret;
1659 }
1660
1661
g4x_aux_ctl_reg(struct intel_dp * intel_dp)1662 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1663 {
1664 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1665 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1666 enum aux_ch aux_ch = dig_port->aux_ch;
1667
1668 switch (aux_ch) {
1669 case AUX_CH_B:
1670 case AUX_CH_C:
1671 case AUX_CH_D:
1672 return DP_AUX_CH_CTL(aux_ch);
1673 default:
1674 MISSING_CASE(aux_ch);
1675 return DP_AUX_CH_CTL(AUX_CH_B);
1676 }
1677 }
1678
g4x_aux_data_reg(struct intel_dp * intel_dp,int index)1679 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1680 {
1681 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1682 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1683 enum aux_ch aux_ch = dig_port->aux_ch;
1684
1685 switch (aux_ch) {
1686 case AUX_CH_B:
1687 case AUX_CH_C:
1688 case AUX_CH_D:
1689 return DP_AUX_CH_DATA(aux_ch, index);
1690 default:
1691 MISSING_CASE(aux_ch);
1692 return DP_AUX_CH_DATA(AUX_CH_B, index);
1693 }
1694 }
1695
ilk_aux_ctl_reg(struct intel_dp * intel_dp)1696 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1697 {
1698 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1699 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1700 enum aux_ch aux_ch = dig_port->aux_ch;
1701
1702 switch (aux_ch) {
1703 case AUX_CH_A:
1704 return DP_AUX_CH_CTL(aux_ch);
1705 case AUX_CH_B:
1706 case AUX_CH_C:
1707 case AUX_CH_D:
1708 return PCH_DP_AUX_CH_CTL(aux_ch);
1709 default:
1710 MISSING_CASE(aux_ch);
1711 return DP_AUX_CH_CTL(AUX_CH_A);
1712 }
1713 }
1714
ilk_aux_data_reg(struct intel_dp * intel_dp,int index)1715 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1716 {
1717 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1718 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1719 enum aux_ch aux_ch = dig_port->aux_ch;
1720
1721 switch (aux_ch) {
1722 case AUX_CH_A:
1723 return DP_AUX_CH_DATA(aux_ch, index);
1724 case AUX_CH_B:
1725 case AUX_CH_C:
1726 case AUX_CH_D:
1727 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1728 default:
1729 MISSING_CASE(aux_ch);
1730 return DP_AUX_CH_DATA(AUX_CH_A, index);
1731 }
1732 }
1733
skl_aux_ctl_reg(struct intel_dp * intel_dp)1734 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1735 {
1736 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1737 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1738 enum aux_ch aux_ch = dig_port->aux_ch;
1739
1740 switch (aux_ch) {
1741 case AUX_CH_A:
1742 case AUX_CH_B:
1743 case AUX_CH_C:
1744 case AUX_CH_D:
1745 case AUX_CH_E:
1746 case AUX_CH_F:
1747 case AUX_CH_G:
1748 return DP_AUX_CH_CTL(aux_ch);
1749 default:
1750 MISSING_CASE(aux_ch);
1751 return DP_AUX_CH_CTL(AUX_CH_A);
1752 }
1753 }
1754
skl_aux_data_reg(struct intel_dp * intel_dp,int index)1755 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1756 {
1757 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1758 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1759 enum aux_ch aux_ch = dig_port->aux_ch;
1760
1761 switch (aux_ch) {
1762 case AUX_CH_A:
1763 case AUX_CH_B:
1764 case AUX_CH_C:
1765 case AUX_CH_D:
1766 case AUX_CH_E:
1767 case AUX_CH_F:
1768 case AUX_CH_G:
1769 return DP_AUX_CH_DATA(aux_ch, index);
1770 default:
1771 MISSING_CASE(aux_ch);
1772 return DP_AUX_CH_DATA(AUX_CH_A, index);
1773 }
1774 }
1775
1776 static void
intel_dp_aux_fini(struct intel_dp * intel_dp)1777 intel_dp_aux_fini(struct intel_dp *intel_dp)
1778 {
1779 kfree(intel_dp->aux.name);
1780 }
1781
1782 static void
intel_dp_aux_init(struct intel_dp * intel_dp)1783 intel_dp_aux_init(struct intel_dp *intel_dp)
1784 {
1785 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1786 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1787 struct intel_encoder *encoder = &dig_port->base;
1788
1789 if (INTEL_GEN(dev_priv) >= 9) {
1790 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1791 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1792 } else if (HAS_PCH_SPLIT(dev_priv)) {
1793 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1794 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1795 } else {
1796 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1797 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1798 }
1799
1800 if (INTEL_GEN(dev_priv) >= 9)
1801 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1802 else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1803 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1804 else if (HAS_PCH_SPLIT(dev_priv))
1805 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1806 else
1807 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1808
1809 if (INTEL_GEN(dev_priv) >= 9)
1810 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1811 else
1812 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1813
1814 drm_dp_aux_init(&intel_dp->aux);
1815
1816 /* Failure to allocate our preferred name is not critical */
1817 intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c",
1818 aux_ch_name(dig_port->aux_ch),
1819 port_name(encoder->port));
1820 intel_dp->aux.transfer = intel_dp_aux_transfer;
1821 }
1822
intel_dp_source_supports_hbr2(struct intel_dp * intel_dp)1823 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1824 {
1825 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1826
1827 return max_rate >= 540000;
1828 }
1829
intel_dp_source_supports_hbr3(struct intel_dp * intel_dp)1830 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1831 {
1832 int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1833
1834 return max_rate >= 810000;
1835 }
1836
1837 static void
intel_dp_set_clock(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config)1838 intel_dp_set_clock(struct intel_encoder *encoder,
1839 struct intel_crtc_state *pipe_config)
1840 {
1841 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1842 const struct dp_link_dpll *divisor = NULL;
1843 int i, count = 0;
1844
1845 if (IS_G4X(dev_priv)) {
1846 divisor = g4x_dpll;
1847 count = ARRAY_SIZE(g4x_dpll);
1848 } else if (HAS_PCH_SPLIT(dev_priv)) {
1849 divisor = pch_dpll;
1850 count = ARRAY_SIZE(pch_dpll);
1851 } else if (IS_CHERRYVIEW(dev_priv)) {
1852 divisor = chv_dpll;
1853 count = ARRAY_SIZE(chv_dpll);
1854 } else if (IS_VALLEYVIEW(dev_priv)) {
1855 divisor = vlv_dpll;
1856 count = ARRAY_SIZE(vlv_dpll);
1857 }
1858
1859 if (divisor && count) {
1860 for (i = 0; i < count; i++) {
1861 if (pipe_config->port_clock == divisor[i].clock) {
1862 pipe_config->dpll = divisor[i].dpll;
1863 pipe_config->clock_set = true;
1864 break;
1865 }
1866 }
1867 }
1868 }
1869
snprintf_int_array(char * str,size_t len,const int * array,int nelem)1870 static void snprintf_int_array(char *str, size_t len,
1871 const int *array, int nelem)
1872 {
1873 int i;
1874
1875 str[0] = '\0';
1876
1877 for (i = 0; i < nelem; i++) {
1878 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1879 if (r >= len)
1880 return;
1881 str += r;
1882 len -= r;
1883 }
1884 }
1885
intel_dp_print_rates(struct intel_dp * intel_dp)1886 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1887 {
1888 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1889 char str[128]; /* FIXME: too big for stack? */
1890
1891 if (!drm_debug_enabled(DRM_UT_KMS))
1892 return;
1893
1894 snprintf_int_array(str, sizeof(str),
1895 intel_dp->source_rates, intel_dp->num_source_rates);
1896 drm_dbg_kms(&i915->drm, "source rates: %s\n", str);
1897
1898 snprintf_int_array(str, sizeof(str),
1899 intel_dp->sink_rates, intel_dp->num_sink_rates);
1900 drm_dbg_kms(&i915->drm, "sink rates: %s\n", str);
1901
1902 snprintf_int_array(str, sizeof(str),
1903 intel_dp->common_rates, intel_dp->num_common_rates);
1904 drm_dbg_kms(&i915->drm, "common rates: %s\n", str);
1905 }
1906
1907 int
intel_dp_max_link_rate(struct intel_dp * intel_dp)1908 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1909 {
1910 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1911 int len;
1912
1913 len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1914 if (drm_WARN_ON(&i915->drm, len <= 0))
1915 return 162000;
1916
1917 return intel_dp->common_rates[len - 1];
1918 }
1919
intel_dp_rate_select(struct intel_dp * intel_dp,int rate)1920 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1921 {
1922 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1923 int i = intel_dp_rate_index(intel_dp->sink_rates,
1924 intel_dp->num_sink_rates, rate);
1925
1926 if (drm_WARN_ON(&i915->drm, i < 0))
1927 i = 0;
1928
1929 return i;
1930 }
1931
intel_dp_compute_rate(struct intel_dp * intel_dp,int port_clock,u8 * link_bw,u8 * rate_select)1932 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1933 u8 *link_bw, u8 *rate_select)
1934 {
1935 /* eDP 1.4 rate select method. */
1936 if (intel_dp->use_rate_select) {
1937 *link_bw = 0;
1938 *rate_select =
1939 intel_dp_rate_select(intel_dp, port_clock);
1940 } else {
1941 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1942 *rate_select = 0;
1943 }
1944 }
1945
intel_dp_source_supports_fec(struct intel_dp * intel_dp,const struct intel_crtc_state * pipe_config)1946 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1947 const struct intel_crtc_state *pipe_config)
1948 {
1949 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1950
1951 /* On TGL, FEC is supported on all Pipes */
1952 if (INTEL_GEN(dev_priv) >= 12)
1953 return true;
1954
1955 if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1956 return true;
1957
1958 return false;
1959 }
1960
intel_dp_supports_fec(struct intel_dp * intel_dp,const struct intel_crtc_state * pipe_config)1961 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1962 const struct intel_crtc_state *pipe_config)
1963 {
1964 return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1965 drm_dp_sink_supports_fec(intel_dp->fec_capable);
1966 }
1967
intel_dp_supports_dsc(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)1968 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1969 const struct intel_crtc_state *crtc_state)
1970 {
1971 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1972
1973 if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1974 return false;
1975
1976 return intel_dsc_source_support(encoder, crtc_state) &&
1977 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1978 }
1979
intel_dp_hdmi_ycbcr420(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)1980 static bool intel_dp_hdmi_ycbcr420(struct intel_dp *intel_dp,
1981 const struct intel_crtc_state *crtc_state)
1982 {
1983 return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
1984 (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 &&
1985 intel_dp->dfp.ycbcr_444_to_420);
1986 }
1987
intel_dp_hdmi_tmds_clock(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state,int bpc)1988 static int intel_dp_hdmi_tmds_clock(struct intel_dp *intel_dp,
1989 const struct intel_crtc_state *crtc_state, int bpc)
1990 {
1991 int clock = crtc_state->hw.adjusted_mode.crtc_clock * bpc / 8;
1992
1993 if (intel_dp_hdmi_ycbcr420(intel_dp, crtc_state))
1994 clock /= 2;
1995
1996 return clock;
1997 }
1998
intel_dp_hdmi_tmds_clock_valid(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state,int bpc)1999 static bool intel_dp_hdmi_tmds_clock_valid(struct intel_dp *intel_dp,
2000 const struct intel_crtc_state *crtc_state, int bpc)
2001 {
2002 int tmds_clock = intel_dp_hdmi_tmds_clock(intel_dp, crtc_state, bpc);
2003
2004 if (intel_dp->dfp.min_tmds_clock &&
2005 tmds_clock < intel_dp->dfp.min_tmds_clock)
2006 return false;
2007
2008 if (intel_dp->dfp.max_tmds_clock &&
2009 tmds_clock > intel_dp->dfp.max_tmds_clock)
2010 return false;
2011
2012 return true;
2013 }
2014
intel_dp_hdmi_deep_color_possible(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state,int bpc)2015 static bool intel_dp_hdmi_deep_color_possible(struct intel_dp *intel_dp,
2016 const struct intel_crtc_state *crtc_state,
2017 int bpc)
2018 {
2019
2020 return intel_hdmi_deep_color_possible(crtc_state, bpc,
2021 intel_dp->has_hdmi_sink,
2022 intel_dp_hdmi_ycbcr420(intel_dp, crtc_state)) &&
2023 intel_dp_hdmi_tmds_clock_valid(intel_dp, crtc_state, bpc);
2024 }
2025
intel_dp_max_bpp(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)2026 static int intel_dp_max_bpp(struct intel_dp *intel_dp,
2027 const struct intel_crtc_state *crtc_state)
2028 {
2029 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2030 struct intel_connector *intel_connector = intel_dp->attached_connector;
2031 int bpp, bpc;
2032
2033 bpc = crtc_state->pipe_bpp / 3;
2034
2035 if (intel_dp->dfp.max_bpc)
2036 bpc = min_t(int, bpc, intel_dp->dfp.max_bpc);
2037
2038 if (intel_dp->dfp.min_tmds_clock) {
2039 for (; bpc >= 10; bpc -= 2) {
2040 if (intel_dp_hdmi_deep_color_possible(intel_dp, crtc_state, bpc))
2041 break;
2042 }
2043 }
2044
2045 bpp = bpc * 3;
2046 if (intel_dp_is_edp(intel_dp)) {
2047 /* Get bpp from vbt only for panels that dont have bpp in edid */
2048 if (intel_connector->base.display_info.bpc == 0 &&
2049 dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
2050 drm_dbg_kms(&dev_priv->drm,
2051 "clamping bpp for eDP panel to BIOS-provided %i\n",
2052 dev_priv->vbt.edp.bpp);
2053 bpp = dev_priv->vbt.edp.bpp;
2054 }
2055 }
2056
2057 return bpp;
2058 }
2059
2060 /* Adjust link config limits based on compliance test requests. */
2061 void
intel_dp_adjust_compliance_config(struct intel_dp * intel_dp,struct intel_crtc_state * pipe_config,struct link_config_limits * limits)2062 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
2063 struct intel_crtc_state *pipe_config,
2064 struct link_config_limits *limits)
2065 {
2066 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2067
2068 /* For DP Compliance we override the computed bpp for the pipe */
2069 if (intel_dp->compliance.test_data.bpc != 0) {
2070 int bpp = 3 * intel_dp->compliance.test_data.bpc;
2071
2072 limits->min_bpp = limits->max_bpp = bpp;
2073 pipe_config->dither_force_disable = bpp == 6 * 3;
2074
2075 drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp);
2076 }
2077
2078 /* Use values requested by Compliance Test Request */
2079 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
2080 int index;
2081
2082 /* Validate the compliance test data since max values
2083 * might have changed due to link train fallback.
2084 */
2085 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
2086 intel_dp->compliance.test_lane_count)) {
2087 index = intel_dp_rate_index(intel_dp->common_rates,
2088 intel_dp->num_common_rates,
2089 intel_dp->compliance.test_link_rate);
2090 if (index >= 0)
2091 limits->min_clock = limits->max_clock = index;
2092 limits->min_lane_count = limits->max_lane_count =
2093 intel_dp->compliance.test_lane_count;
2094 }
2095 }
2096 }
2097
intel_dp_output_bpp(const struct intel_crtc_state * crtc_state,int bpp)2098 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
2099 {
2100 /*
2101 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
2102 * format of the number of bytes per pixel will be half the number
2103 * of bytes of RGB pixel.
2104 */
2105 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2106 bpp /= 2;
2107
2108 return bpp;
2109 }
2110
2111 /* Optimize link config in order: max bpp, min clock, min lanes */
2112 static int
intel_dp_compute_link_config_wide(struct intel_dp * intel_dp,struct intel_crtc_state * pipe_config,const struct link_config_limits * limits)2113 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
2114 struct intel_crtc_state *pipe_config,
2115 const struct link_config_limits *limits)
2116 {
2117 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2118 int bpp, clock, lane_count;
2119 int mode_rate, link_clock, link_avail;
2120
2121 for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2122 int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2123
2124 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2125 output_bpp);
2126
2127 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2128 for (lane_count = limits->min_lane_count;
2129 lane_count <= limits->max_lane_count;
2130 lane_count <<= 1) {
2131 link_clock = intel_dp->common_rates[clock];
2132 link_avail = intel_dp_max_data_rate(link_clock,
2133 lane_count);
2134
2135 if (mode_rate <= link_avail) {
2136 pipe_config->lane_count = lane_count;
2137 pipe_config->pipe_bpp = bpp;
2138 pipe_config->port_clock = link_clock;
2139
2140 return 0;
2141 }
2142 }
2143 }
2144 }
2145
2146 return -EINVAL;
2147 }
2148
intel_dp_dsc_compute_bpp(struct intel_dp * intel_dp,u8 dsc_max_bpc)2149 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2150 {
2151 int i, num_bpc;
2152 u8 dsc_bpc[3] = {0};
2153
2154 num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2155 dsc_bpc);
2156 for (i = 0; i < num_bpc; i++) {
2157 if (dsc_max_bpc >= dsc_bpc[i])
2158 return dsc_bpc[i] * 3;
2159 }
2160
2161 return 0;
2162 }
2163
2164 #define DSC_SUPPORTED_VERSION_MIN 1
2165
intel_dp_dsc_compute_params(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state)2166 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
2167 struct intel_crtc_state *crtc_state)
2168 {
2169 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2170 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2171 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2172 u8 line_buf_depth;
2173 int ret;
2174
2175 ret = intel_dsc_compute_params(encoder, crtc_state);
2176 if (ret)
2177 return ret;
2178
2179 /*
2180 * Slice Height of 8 works for all currently available panels. So start
2181 * with that if pic_height is an integral multiple of 8. Eventually add
2182 * logic to try multiple slice heights.
2183 */
2184 if (vdsc_cfg->pic_height % 8 == 0)
2185 vdsc_cfg->slice_height = 8;
2186 else if (vdsc_cfg->pic_height % 4 == 0)
2187 vdsc_cfg->slice_height = 4;
2188 else
2189 vdsc_cfg->slice_height = 2;
2190
2191 vdsc_cfg->dsc_version_major =
2192 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2193 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
2194 vdsc_cfg->dsc_version_minor =
2195 min(DSC_SUPPORTED_VERSION_MIN,
2196 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2197 DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
2198
2199 vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
2200 DP_DSC_RGB;
2201
2202 line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
2203 if (!line_buf_depth) {
2204 drm_dbg_kms(&i915->drm,
2205 "DSC Sink Line Buffer Depth invalid\n");
2206 return -EINVAL;
2207 }
2208
2209 if (vdsc_cfg->dsc_version_minor == 2)
2210 vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
2211 DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
2212 else
2213 vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
2214 DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
2215
2216 vdsc_cfg->block_pred_enable =
2217 intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
2218 DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
2219
2220 return drm_dsc_compute_rc_parameters(vdsc_cfg);
2221 }
2222
intel_dp_dsc_compute_config(struct intel_dp * intel_dp,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state,struct link_config_limits * limits)2223 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2224 struct intel_crtc_state *pipe_config,
2225 struct drm_connector_state *conn_state,
2226 struct link_config_limits *limits)
2227 {
2228 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2229 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2230 const struct drm_display_mode *adjusted_mode =
2231 &pipe_config->hw.adjusted_mode;
2232 u8 dsc_max_bpc;
2233 int pipe_bpp;
2234 int ret;
2235
2236 pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2237 intel_dp_supports_fec(intel_dp, pipe_config);
2238
2239 if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2240 return -EINVAL;
2241
2242 /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2243 if (INTEL_GEN(dev_priv) >= 12)
2244 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2245 else
2246 dsc_max_bpc = min_t(u8, 10,
2247 conn_state->max_requested_bpc);
2248
2249 pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2250
2251 /* Min Input BPC for ICL+ is 8 */
2252 if (pipe_bpp < 8 * 3) {
2253 drm_dbg_kms(&dev_priv->drm,
2254 "No DSC support for less than 8bpc\n");
2255 return -EINVAL;
2256 }
2257
2258 /*
2259 * For now enable DSC for max bpp, max link rate, max lane count.
2260 * Optimize this later for the minimum possible link rate/lane count
2261 * with DSC enabled for the requested mode.
2262 */
2263 pipe_config->pipe_bpp = pipe_bpp;
2264 pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2265 pipe_config->lane_count = limits->max_lane_count;
2266
2267 if (intel_dp_is_edp(intel_dp)) {
2268 pipe_config->dsc.compressed_bpp =
2269 min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2270 pipe_config->pipe_bpp);
2271 pipe_config->dsc.slice_count =
2272 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2273 true);
2274 } else {
2275 u16 dsc_max_output_bpp;
2276 u8 dsc_dp_slice_count;
2277
2278 dsc_max_output_bpp =
2279 intel_dp_dsc_get_output_bpp(dev_priv,
2280 pipe_config->port_clock,
2281 pipe_config->lane_count,
2282 adjusted_mode->crtc_clock,
2283 adjusted_mode->crtc_hdisplay);
2284 dsc_dp_slice_count =
2285 intel_dp_dsc_get_slice_count(intel_dp,
2286 adjusted_mode->crtc_clock,
2287 adjusted_mode->crtc_hdisplay);
2288 if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2289 drm_dbg_kms(&dev_priv->drm,
2290 "Compressed BPP/Slice Count not supported\n");
2291 return -EINVAL;
2292 }
2293 pipe_config->dsc.compressed_bpp = min_t(u16,
2294 dsc_max_output_bpp >> 4,
2295 pipe_config->pipe_bpp);
2296 pipe_config->dsc.slice_count = dsc_dp_slice_count;
2297 }
2298 /*
2299 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2300 * is greater than the maximum Cdclock and if slice count is even
2301 * then we need to use 2 VDSC instances.
2302 */
2303 if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2304 if (pipe_config->dsc.slice_count > 1) {
2305 pipe_config->dsc.dsc_split = true;
2306 } else {
2307 drm_dbg_kms(&dev_priv->drm,
2308 "Cannot split stream to use 2 VDSC instances\n");
2309 return -EINVAL;
2310 }
2311 }
2312
2313 ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2314 if (ret < 0) {
2315 drm_dbg_kms(&dev_priv->drm,
2316 "Cannot compute valid DSC parameters for Input Bpp = %d "
2317 "Compressed BPP = %d\n",
2318 pipe_config->pipe_bpp,
2319 pipe_config->dsc.compressed_bpp);
2320 return ret;
2321 }
2322
2323 pipe_config->dsc.compression_enable = true;
2324 drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
2325 "Compressed Bpp = %d Slice Count = %d\n",
2326 pipe_config->pipe_bpp,
2327 pipe_config->dsc.compressed_bpp,
2328 pipe_config->dsc.slice_count);
2329
2330 return 0;
2331 }
2332
intel_dp_min_bpp(const struct intel_crtc_state * crtc_state)2333 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2334 {
2335 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2336 return 6 * 3;
2337 else
2338 return 8 * 3;
2339 }
2340
2341 static int
intel_dp_compute_link_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)2342 intel_dp_compute_link_config(struct intel_encoder *encoder,
2343 struct intel_crtc_state *pipe_config,
2344 struct drm_connector_state *conn_state)
2345 {
2346 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2347 const struct drm_display_mode *adjusted_mode =
2348 &pipe_config->hw.adjusted_mode;
2349 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2350 struct link_config_limits limits;
2351 int common_len;
2352 int ret;
2353
2354 common_len = intel_dp_common_len_rate_limit(intel_dp,
2355 intel_dp->max_link_rate);
2356
2357 /* No common link rates between source and sink */
2358 drm_WARN_ON(encoder->base.dev, common_len <= 0);
2359
2360 limits.min_clock = 0;
2361 limits.max_clock = common_len - 1;
2362
2363 limits.min_lane_count = 1;
2364 limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2365
2366 limits.min_bpp = intel_dp_min_bpp(pipe_config);
2367 limits.max_bpp = intel_dp_max_bpp(intel_dp, pipe_config);
2368
2369 if (intel_dp_is_edp(intel_dp)) {
2370 /*
2371 * Use the maximum clock and number of lanes the eDP panel
2372 * advertizes being capable of. The panels are generally
2373 * designed to support only a single clock and lane
2374 * configuration, and typically these values correspond to the
2375 * native resolution of the panel.
2376 */
2377 limits.min_lane_count = limits.max_lane_count;
2378 limits.min_clock = limits.max_clock;
2379 }
2380
2381 intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2382
2383 drm_dbg_kms(&i915->drm, "DP link computation with max lane count %i "
2384 "max rate %d max bpp %d pixel clock %iKHz\n",
2385 limits.max_lane_count,
2386 intel_dp->common_rates[limits.max_clock],
2387 limits.max_bpp, adjusted_mode->crtc_clock);
2388
2389 /*
2390 * Optimize for slow and wide. This is the place to add alternative
2391 * optimization policy.
2392 */
2393 ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2394
2395 /* enable compression if the mode doesn't fit available BW */
2396 drm_dbg_kms(&i915->drm, "Force DSC en = %d\n", intel_dp->force_dsc_en);
2397 if (ret || intel_dp->force_dsc_en) {
2398 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2399 conn_state, &limits);
2400 if (ret < 0)
2401 return ret;
2402 }
2403
2404 if (pipe_config->dsc.compression_enable) {
2405 drm_dbg_kms(&i915->drm,
2406 "DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2407 pipe_config->lane_count, pipe_config->port_clock,
2408 pipe_config->pipe_bpp,
2409 pipe_config->dsc.compressed_bpp);
2410
2411 drm_dbg_kms(&i915->drm,
2412 "DP link rate required %i available %i\n",
2413 intel_dp_link_required(adjusted_mode->crtc_clock,
2414 pipe_config->dsc.compressed_bpp),
2415 intel_dp_max_data_rate(pipe_config->port_clock,
2416 pipe_config->lane_count));
2417 } else {
2418 drm_dbg_kms(&i915->drm, "DP lane count %d clock %d bpp %d\n",
2419 pipe_config->lane_count, pipe_config->port_clock,
2420 pipe_config->pipe_bpp);
2421
2422 drm_dbg_kms(&i915->drm,
2423 "DP link rate required %i available %i\n",
2424 intel_dp_link_required(adjusted_mode->crtc_clock,
2425 pipe_config->pipe_bpp),
2426 intel_dp_max_data_rate(pipe_config->port_clock,
2427 pipe_config->lane_count));
2428 }
2429 return 0;
2430 }
2431
2432 static int
intel_dp_ycbcr420_config(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2433 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2434 struct intel_crtc_state *crtc_state,
2435 const struct drm_connector_state *conn_state)
2436 {
2437 struct drm_connector *connector = conn_state->connector;
2438 const struct drm_display_info *info = &connector->display_info;
2439 const struct drm_display_mode *adjusted_mode =
2440 &crtc_state->hw.adjusted_mode;
2441
2442 if (!connector->ycbcr_420_allowed)
2443 return 0;
2444
2445 if (!drm_mode_is_420_only(info, adjusted_mode))
2446 return 0;
2447
2448 if (intel_dp->dfp.ycbcr_444_to_420) {
2449 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
2450 return 0;
2451 }
2452
2453 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2454
2455 return intel_pch_panel_fitting(crtc_state, conn_state);
2456 }
2457
intel_dp_limited_color_range(const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2458 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2459 const struct drm_connector_state *conn_state)
2460 {
2461 const struct intel_digital_connector_state *intel_conn_state =
2462 to_intel_digital_connector_state(conn_state);
2463 const struct drm_display_mode *adjusted_mode =
2464 &crtc_state->hw.adjusted_mode;
2465
2466 /*
2467 * Our YCbCr output is always limited range.
2468 * crtc_state->limited_color_range only applies to RGB,
2469 * and it must never be set for YCbCr or we risk setting
2470 * some conflicting bits in PIPECONF which will mess up
2471 * the colors on the monitor.
2472 */
2473 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2474 return false;
2475
2476 if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2477 /*
2478 * See:
2479 * CEA-861-E - 5.1 Default Encoding Parameters
2480 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2481 */
2482 return crtc_state->pipe_bpp != 18 &&
2483 drm_default_rgb_quant_range(adjusted_mode) ==
2484 HDMI_QUANTIZATION_RANGE_LIMITED;
2485 } else {
2486 return intel_conn_state->broadcast_rgb ==
2487 INTEL_BROADCAST_RGB_LIMITED;
2488 }
2489 }
2490
intel_dp_port_has_audio(struct drm_i915_private * dev_priv,enum port port)2491 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2492 enum port port)
2493 {
2494 if (IS_G4X(dev_priv))
2495 return false;
2496 if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2497 return false;
2498
2499 return true;
2500 }
2501
intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state,struct drm_dp_vsc_sdp * vsc)2502 static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state,
2503 const struct drm_connector_state *conn_state,
2504 struct drm_dp_vsc_sdp *vsc)
2505 {
2506 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2507 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2508
2509 /*
2510 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2511 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
2512 * Colorimetry Format indication.
2513 */
2514 vsc->revision = 0x5;
2515 vsc->length = 0x13;
2516
2517 /* DP 1.4a spec, Table 2-120 */
2518 switch (crtc_state->output_format) {
2519 case INTEL_OUTPUT_FORMAT_YCBCR444:
2520 vsc->pixelformat = DP_PIXELFORMAT_YUV444;
2521 break;
2522 case INTEL_OUTPUT_FORMAT_YCBCR420:
2523 vsc->pixelformat = DP_PIXELFORMAT_YUV420;
2524 break;
2525 case INTEL_OUTPUT_FORMAT_RGB:
2526 default:
2527 vsc->pixelformat = DP_PIXELFORMAT_RGB;
2528 }
2529
2530 switch (conn_state->colorspace) {
2531 case DRM_MODE_COLORIMETRY_BT709_YCC:
2532 vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2533 break;
2534 case DRM_MODE_COLORIMETRY_XVYCC_601:
2535 vsc->colorimetry = DP_COLORIMETRY_XVYCC_601;
2536 break;
2537 case DRM_MODE_COLORIMETRY_XVYCC_709:
2538 vsc->colorimetry = DP_COLORIMETRY_XVYCC_709;
2539 break;
2540 case DRM_MODE_COLORIMETRY_SYCC_601:
2541 vsc->colorimetry = DP_COLORIMETRY_SYCC_601;
2542 break;
2543 case DRM_MODE_COLORIMETRY_OPYCC_601:
2544 vsc->colorimetry = DP_COLORIMETRY_OPYCC_601;
2545 break;
2546 case DRM_MODE_COLORIMETRY_BT2020_CYCC:
2547 vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC;
2548 break;
2549 case DRM_MODE_COLORIMETRY_BT2020_RGB:
2550 vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB;
2551 break;
2552 case DRM_MODE_COLORIMETRY_BT2020_YCC:
2553 vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC;
2554 break;
2555 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
2556 case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
2557 vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB;
2558 break;
2559 default:
2560 /*
2561 * RGB->YCBCR color conversion uses the BT.709
2562 * color space.
2563 */
2564 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2565 vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2566 else
2567 vsc->colorimetry = DP_COLORIMETRY_DEFAULT;
2568 break;
2569 }
2570
2571 vsc->bpc = crtc_state->pipe_bpp / 3;
2572
2573 /* only RGB pixelformat supports 6 bpc */
2574 drm_WARN_ON(&dev_priv->drm,
2575 vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB);
2576
2577 /* all YCbCr are always limited range */
2578 vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA;
2579 vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED;
2580 }
2581
intel_dp_compute_vsc_sdp(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2582 static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp,
2583 struct intel_crtc_state *crtc_state,
2584 const struct drm_connector_state *conn_state)
2585 {
2586 struct drm_dp_vsc_sdp *vsc = &crtc_state->infoframes.vsc;
2587
2588 /* When a crtc state has PSR, VSC SDP will be handled by PSR routine */
2589 if (crtc_state->has_psr)
2590 return;
2591
2592 if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
2593 return;
2594
2595 crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
2596 vsc->sdp_type = DP_SDP_VSC;
2597 intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2598 &crtc_state->infoframes.vsc);
2599 }
2600
intel_dp_compute_psr_vsc_sdp(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state,struct drm_dp_vsc_sdp * vsc)2601 void intel_dp_compute_psr_vsc_sdp(struct intel_dp *intel_dp,
2602 const struct intel_crtc_state *crtc_state,
2603 const struct drm_connector_state *conn_state,
2604 struct drm_dp_vsc_sdp *vsc)
2605 {
2606 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2607
2608 vsc->sdp_type = DP_SDP_VSC;
2609
2610 if (dev_priv->psr.psr2_enabled) {
2611 if (dev_priv->psr.colorimetry_support &&
2612 intel_dp_needs_vsc_sdp(crtc_state, conn_state)) {
2613 /* [PSR2, +Colorimetry] */
2614 intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2615 vsc);
2616 } else {
2617 /*
2618 * [PSR2, -Colorimetry]
2619 * Prepare VSC Header for SU as per eDP 1.4 spec, Table 6-11
2620 * 3D stereo + PSR/PSR2 + Y-coordinate.
2621 */
2622 vsc->revision = 0x4;
2623 vsc->length = 0xe;
2624 }
2625 } else {
2626 /*
2627 * [PSR1]
2628 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2629 * VSC SDP supporting 3D stereo + PSR (applies to eDP v1.3 or
2630 * higher).
2631 */
2632 vsc->revision = 0x2;
2633 vsc->length = 0x8;
2634 }
2635 }
2636
2637 static void
intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp * intel_dp,struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)2638 intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
2639 struct intel_crtc_state *crtc_state,
2640 const struct drm_connector_state *conn_state)
2641 {
2642 int ret;
2643 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2644 struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm;
2645
2646 if (!conn_state->hdr_output_metadata)
2647 return;
2648
2649 ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state);
2650
2651 if (ret) {
2652 drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n");
2653 return;
2654 }
2655
2656 crtc_state->infoframes.enable |=
2657 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA);
2658 }
2659
2660 static void
intel_dp_drrs_compute_config(struct intel_dp * intel_dp,struct intel_crtc_state * pipe_config,int output_bpp,bool constant_n)2661 intel_dp_drrs_compute_config(struct intel_dp *intel_dp,
2662 struct intel_crtc_state *pipe_config,
2663 int output_bpp, bool constant_n)
2664 {
2665 struct intel_connector *intel_connector = intel_dp->attached_connector;
2666 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2667
2668 /*
2669 * DRRS and PSR can't be enable together, so giving preference to PSR
2670 * as it allows more power-savings by complete shutting down display,
2671 * so to guarantee this, intel_dp_drrs_compute_config() must be called
2672 * after intel_psr_compute_config().
2673 */
2674 if (pipe_config->has_psr)
2675 return;
2676
2677 if (!intel_connector->panel.downclock_mode ||
2678 dev_priv->drrs.type != SEAMLESS_DRRS_SUPPORT)
2679 return;
2680
2681 pipe_config->has_drrs = true;
2682 intel_link_compute_m_n(output_bpp, pipe_config->lane_count,
2683 intel_connector->panel.downclock_mode->clock,
2684 pipe_config->port_clock, &pipe_config->dp_m2_n2,
2685 constant_n, pipe_config->fec_enable);
2686 }
2687
2688 int
intel_dp_compute_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config,struct drm_connector_state * conn_state)2689 intel_dp_compute_config(struct intel_encoder *encoder,
2690 struct intel_crtc_state *pipe_config,
2691 struct drm_connector_state *conn_state)
2692 {
2693 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2694 struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2695 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2696 struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2697 enum port port = encoder->port;
2698 struct intel_connector *intel_connector = intel_dp->attached_connector;
2699 struct intel_digital_connector_state *intel_conn_state =
2700 to_intel_digital_connector_state(conn_state);
2701 bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0,
2702 DP_DPCD_QUIRK_CONSTANT_N);
2703 int ret = 0, output_bpp;
2704
2705 if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2706 pipe_config->has_pch_encoder = true;
2707
2708 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2709
2710 if (lspcon->active)
2711 lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2712 else
2713 ret = intel_dp_ycbcr420_config(intel_dp, pipe_config,
2714 conn_state);
2715 if (ret)
2716 return ret;
2717
2718 if (!intel_dp_port_has_audio(dev_priv, port))
2719 pipe_config->has_audio = false;
2720 else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2721 pipe_config->has_audio = intel_dp->has_audio;
2722 else
2723 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2724
2725 if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2726 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2727 adjusted_mode);
2728
2729 if (HAS_GMCH(dev_priv))
2730 ret = intel_gmch_panel_fitting(pipe_config, conn_state);
2731 else
2732 ret = intel_pch_panel_fitting(pipe_config, conn_state);
2733 if (ret)
2734 return ret;
2735 }
2736
2737 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2738 return -EINVAL;
2739
2740 if (HAS_GMCH(dev_priv) &&
2741 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2742 return -EINVAL;
2743
2744 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2745 return -EINVAL;
2746
2747 if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2748 return -EINVAL;
2749
2750 ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2751 if (ret < 0)
2752 return ret;
2753
2754 pipe_config->limited_color_range =
2755 intel_dp_limited_color_range(pipe_config, conn_state);
2756
2757 if (pipe_config->dsc.compression_enable)
2758 output_bpp = pipe_config->dsc.compressed_bpp;
2759 else
2760 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2761
2762 intel_link_compute_m_n(output_bpp,
2763 pipe_config->lane_count,
2764 adjusted_mode->crtc_clock,
2765 pipe_config->port_clock,
2766 &pipe_config->dp_m_n,
2767 constant_n, pipe_config->fec_enable);
2768
2769 if (!HAS_DDI(dev_priv))
2770 intel_dp_set_clock(encoder, pipe_config);
2771
2772 intel_psr_compute_config(intel_dp, pipe_config);
2773 intel_dp_drrs_compute_config(intel_dp, pipe_config, output_bpp,
2774 constant_n);
2775 intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state);
2776 intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state);
2777
2778 return 0;
2779 }
2780
intel_dp_set_link_params(struct intel_dp * intel_dp,int link_rate,u8 lane_count,bool link_mst)2781 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2782 int link_rate, u8 lane_count,
2783 bool link_mst)
2784 {
2785 intel_dp->link_trained = false;
2786 intel_dp->link_rate = link_rate;
2787 intel_dp->lane_count = lane_count;
2788 intel_dp->link_mst = link_mst;
2789 }
2790
intel_dp_prepare(struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config)2791 static void intel_dp_prepare(struct intel_encoder *encoder,
2792 const struct intel_crtc_state *pipe_config)
2793 {
2794 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2795 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2796 enum port port = encoder->port;
2797 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2798 const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2799
2800 intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2801 pipe_config->lane_count,
2802 intel_crtc_has_type(pipe_config,
2803 INTEL_OUTPUT_DP_MST));
2804
2805 /*
2806 * There are four kinds of DP registers:
2807 *
2808 * IBX PCH
2809 * SNB CPU
2810 * IVB CPU
2811 * CPT PCH
2812 *
2813 * IBX PCH and CPU are the same for almost everything,
2814 * except that the CPU DP PLL is configured in this
2815 * register
2816 *
2817 * CPT PCH is quite different, having many bits moved
2818 * to the TRANS_DP_CTL register instead. That
2819 * configuration happens (oddly) in ilk_pch_enable
2820 */
2821
2822 /* Preserve the BIOS-computed detected bit. This is
2823 * supposed to be read-only.
2824 */
2825 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2826
2827 /* Handle DP bits in common between all three register formats */
2828 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2829 intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2830
2831 /* Split out the IBX/CPU vs CPT settings */
2832
2833 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2834 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2835 intel_dp->DP |= DP_SYNC_HS_HIGH;
2836 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2837 intel_dp->DP |= DP_SYNC_VS_HIGH;
2838 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2839
2840 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2841 intel_dp->DP |= DP_ENHANCED_FRAMING;
2842
2843 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2844 } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2845 u32 trans_dp;
2846
2847 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2848
2849 trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2850 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2851 trans_dp |= TRANS_DP_ENH_FRAMING;
2852 else
2853 trans_dp &= ~TRANS_DP_ENH_FRAMING;
2854 intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2855 } else {
2856 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2857 intel_dp->DP |= DP_COLOR_RANGE_16_235;
2858
2859 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2860 intel_dp->DP |= DP_SYNC_HS_HIGH;
2861 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2862 intel_dp->DP |= DP_SYNC_VS_HIGH;
2863 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2864
2865 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2866 intel_dp->DP |= DP_ENHANCED_FRAMING;
2867
2868 if (IS_CHERRYVIEW(dev_priv))
2869 intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2870 else
2871 intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2872 }
2873 }
2874
2875 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
2876 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
2877
2878 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
2879 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
2880
2881 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2882 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
2883
2884 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2885
wait_panel_status(struct intel_dp * intel_dp,u32 mask,u32 value)2886 static void wait_panel_status(struct intel_dp *intel_dp,
2887 u32 mask,
2888 u32 value)
2889 {
2890 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2891 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2892
2893 lockdep_assert_held(&dev_priv->pps_mutex);
2894
2895 intel_pps_verify_state(intel_dp);
2896
2897 pp_stat_reg = _pp_stat_reg(intel_dp);
2898 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2899
2900 drm_dbg_kms(&dev_priv->drm,
2901 "mask %08x value %08x status %08x control %08x\n",
2902 mask, value,
2903 intel_de_read(dev_priv, pp_stat_reg),
2904 intel_de_read(dev_priv, pp_ctrl_reg));
2905
2906 if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2907 mask, value, 5000))
2908 drm_err(&dev_priv->drm,
2909 "Panel status timeout: status %08x control %08x\n",
2910 intel_de_read(dev_priv, pp_stat_reg),
2911 intel_de_read(dev_priv, pp_ctrl_reg));
2912
2913 drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
2914 }
2915
wait_panel_on(struct intel_dp * intel_dp)2916 static void wait_panel_on(struct intel_dp *intel_dp)
2917 {
2918 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2919
2920 drm_dbg_kms(&i915->drm, "Wait for panel power on\n");
2921 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2922 }
2923
wait_panel_off(struct intel_dp * intel_dp)2924 static void wait_panel_off(struct intel_dp *intel_dp)
2925 {
2926 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2927
2928 drm_dbg_kms(&i915->drm, "Wait for panel power off time\n");
2929 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2930 }
2931
wait_panel_power_cycle(struct intel_dp * intel_dp)2932 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2933 {
2934 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2935 ktime_t panel_power_on_time;
2936 s64 panel_power_off_duration;
2937
2938 drm_dbg_kms(&i915->drm, "Wait for panel power cycle\n");
2939
2940 /* take the difference of currrent time and panel power off time
2941 * and then make panel wait for t11_t12 if needed. */
2942 panel_power_on_time = ktime_get_boottime();
2943 panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2944
2945 /* When we disable the VDD override bit last we have to do the manual
2946 * wait. */
2947 if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2948 wait_remaining_ms_from_jiffies(jiffies,
2949 intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2950
2951 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2952 }
2953
wait_backlight_on(struct intel_dp * intel_dp)2954 static void wait_backlight_on(struct intel_dp *intel_dp)
2955 {
2956 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2957 intel_dp->backlight_on_delay);
2958 }
2959
edp_wait_backlight_off(struct intel_dp * intel_dp)2960 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2961 {
2962 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2963 intel_dp->backlight_off_delay);
2964 }
2965
2966 /* Read the current pp_control value, unlocking the register if it
2967 * is locked
2968 */
2969
ilk_get_pp_control(struct intel_dp * intel_dp)2970 static u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2971 {
2972 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2973 u32 control;
2974
2975 lockdep_assert_held(&dev_priv->pps_mutex);
2976
2977 control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
2978 if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) &&
2979 (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2980 control &= ~PANEL_UNLOCK_MASK;
2981 control |= PANEL_UNLOCK_REGS;
2982 }
2983 return control;
2984 }
2985
2986 /*
2987 * Must be paired with edp_panel_vdd_off().
2988 * Must hold pps_mutex around the whole on/off sequence.
2989 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2990 */
edp_panel_vdd_on(struct intel_dp * intel_dp)2991 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2992 {
2993 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2994 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2995 u32 pp;
2996 i915_reg_t pp_stat_reg, pp_ctrl_reg;
2997 bool need_to_disable = !intel_dp->want_panel_vdd;
2998
2999 lockdep_assert_held(&dev_priv->pps_mutex);
3000
3001 if (!intel_dp_is_edp(intel_dp))
3002 return false;
3003
3004 cancel_delayed_work(&intel_dp->panel_vdd_work);
3005 intel_dp->want_panel_vdd = true;
3006
3007 if (edp_have_panel_vdd(intel_dp))
3008 return need_to_disable;
3009
3010 intel_display_power_get(dev_priv,
3011 intel_aux_power_domain(dig_port));
3012
3013 drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
3014 dig_port->base.base.base.id,
3015 dig_port->base.base.name);
3016
3017 if (!edp_have_panel_power(intel_dp))
3018 wait_panel_power_cycle(intel_dp);
3019
3020 pp = ilk_get_pp_control(intel_dp);
3021 pp |= EDP_FORCE_VDD;
3022
3023 pp_stat_reg = _pp_stat_reg(intel_dp);
3024 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3025
3026 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3027 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3028 drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
3029 intel_de_read(dev_priv, pp_stat_reg),
3030 intel_de_read(dev_priv, pp_ctrl_reg));
3031 /*
3032 * If the panel wasn't on, delay before accessing aux channel
3033 */
3034 if (!edp_have_panel_power(intel_dp)) {
3035 drm_dbg_kms(&dev_priv->drm,
3036 "[ENCODER:%d:%s] panel power wasn't enabled\n",
3037 dig_port->base.base.base.id,
3038 dig_port->base.base.name);
3039 msleep(intel_dp->panel_power_up_delay);
3040 }
3041
3042 return need_to_disable;
3043 }
3044
3045 /*
3046 * Must be paired with intel_edp_panel_vdd_off() or
3047 * intel_edp_panel_off().
3048 * Nested calls to these functions are not allowed since
3049 * we drop the lock. Caller must use some higher level
3050 * locking to prevent nested calls from other threads.
3051 */
intel_edp_panel_vdd_on(struct intel_dp * intel_dp)3052 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
3053 {
3054 intel_wakeref_t wakeref;
3055 bool vdd;
3056
3057 if (!intel_dp_is_edp(intel_dp))
3058 return;
3059
3060 vdd = false;
3061 with_pps_lock(intel_dp, wakeref)
3062 vdd = edp_panel_vdd_on(intel_dp);
3063 I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
3064 dp_to_dig_port(intel_dp)->base.base.base.id,
3065 dp_to_dig_port(intel_dp)->base.base.name);
3066 }
3067
edp_panel_vdd_off_sync(struct intel_dp * intel_dp)3068 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
3069 {
3070 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3071 struct intel_digital_port *dig_port =
3072 dp_to_dig_port(intel_dp);
3073 u32 pp;
3074 i915_reg_t pp_stat_reg, pp_ctrl_reg;
3075
3076 lockdep_assert_held(&dev_priv->pps_mutex);
3077
3078 drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd);
3079
3080 if (!edp_have_panel_vdd(intel_dp))
3081 return;
3082
3083 drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
3084 dig_port->base.base.base.id,
3085 dig_port->base.base.name);
3086
3087 pp = ilk_get_pp_control(intel_dp);
3088 pp &= ~EDP_FORCE_VDD;
3089
3090 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3091 pp_stat_reg = _pp_stat_reg(intel_dp);
3092
3093 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3094 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3095
3096 /* Make sure sequencer is idle before allowing subsequent activity */
3097 drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
3098 intel_de_read(dev_priv, pp_stat_reg),
3099 intel_de_read(dev_priv, pp_ctrl_reg));
3100
3101 if ((pp & PANEL_POWER_ON) == 0)
3102 intel_dp->panel_power_off_time = ktime_get_boottime();
3103
3104 intel_display_power_put_unchecked(dev_priv,
3105 intel_aux_power_domain(dig_port));
3106 }
3107
edp_panel_vdd_work(struct work_struct * __work)3108 static void edp_panel_vdd_work(struct work_struct *__work)
3109 {
3110 struct intel_dp *intel_dp =
3111 container_of(to_delayed_work(__work),
3112 struct intel_dp, panel_vdd_work);
3113 intel_wakeref_t wakeref;
3114
3115 with_pps_lock(intel_dp, wakeref) {
3116 if (!intel_dp->want_panel_vdd)
3117 edp_panel_vdd_off_sync(intel_dp);
3118 }
3119 }
3120
edp_panel_vdd_schedule_off(struct intel_dp * intel_dp)3121 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
3122 {
3123 unsigned long delay;
3124
3125 /*
3126 * Queue the timer to fire a long time from now (relative to the power
3127 * down delay) to keep the panel power up across a sequence of
3128 * operations.
3129 */
3130 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
3131 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
3132 }
3133
3134 /*
3135 * Must be paired with edp_panel_vdd_on().
3136 * Must hold pps_mutex around the whole on/off sequence.
3137 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
3138 */
edp_panel_vdd_off(struct intel_dp * intel_dp,bool sync)3139 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
3140 {
3141 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3142
3143 lockdep_assert_held(&dev_priv->pps_mutex);
3144
3145 if (!intel_dp_is_edp(intel_dp))
3146 return;
3147
3148 I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
3149 dp_to_dig_port(intel_dp)->base.base.base.id,
3150 dp_to_dig_port(intel_dp)->base.base.name);
3151
3152 intel_dp->want_panel_vdd = false;
3153
3154 if (sync)
3155 edp_panel_vdd_off_sync(intel_dp);
3156 else
3157 edp_panel_vdd_schedule_off(intel_dp);
3158 }
3159
edp_panel_on(struct intel_dp * intel_dp)3160 static void edp_panel_on(struct intel_dp *intel_dp)
3161 {
3162 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3163 u32 pp;
3164 i915_reg_t pp_ctrl_reg;
3165
3166 lockdep_assert_held(&dev_priv->pps_mutex);
3167
3168 if (!intel_dp_is_edp(intel_dp))
3169 return;
3170
3171 drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
3172 dp_to_dig_port(intel_dp)->base.base.base.id,
3173 dp_to_dig_port(intel_dp)->base.base.name);
3174
3175 if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp),
3176 "[ENCODER:%d:%s] panel power already on\n",
3177 dp_to_dig_port(intel_dp)->base.base.base.id,
3178 dp_to_dig_port(intel_dp)->base.base.name))
3179 return;
3180
3181 wait_panel_power_cycle(intel_dp);
3182
3183 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3184 pp = ilk_get_pp_control(intel_dp);
3185 if (IS_GEN(dev_priv, 5)) {
3186 /* ILK workaround: disable reset around power sequence */
3187 pp &= ~PANEL_POWER_RESET;
3188 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3189 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3190 }
3191
3192 pp |= PANEL_POWER_ON;
3193 if (!IS_GEN(dev_priv, 5))
3194 pp |= PANEL_POWER_RESET;
3195
3196 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3197 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3198
3199 wait_panel_on(intel_dp);
3200 intel_dp->last_power_on = jiffies;
3201
3202 if (IS_GEN(dev_priv, 5)) {
3203 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
3204 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3205 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3206 }
3207 }
3208
intel_edp_panel_on(struct intel_dp * intel_dp)3209 void intel_edp_panel_on(struct intel_dp *intel_dp)
3210 {
3211 intel_wakeref_t wakeref;
3212
3213 if (!intel_dp_is_edp(intel_dp))
3214 return;
3215
3216 with_pps_lock(intel_dp, wakeref)
3217 edp_panel_on(intel_dp);
3218 }
3219
3220
edp_panel_off(struct intel_dp * intel_dp)3221 static void edp_panel_off(struct intel_dp *intel_dp)
3222 {
3223 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3224 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3225 u32 pp;
3226 i915_reg_t pp_ctrl_reg;
3227
3228 lockdep_assert_held(&dev_priv->pps_mutex);
3229
3230 if (!intel_dp_is_edp(intel_dp))
3231 return;
3232
3233 drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
3234 dig_port->base.base.base.id, dig_port->base.base.name);
3235
3236 drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd,
3237 "Need [ENCODER:%d:%s] VDD to turn off panel\n",
3238 dig_port->base.base.base.id, dig_port->base.base.name);
3239
3240 pp = ilk_get_pp_control(intel_dp);
3241 /* We need to switch off panel power _and_ force vdd, for otherwise some
3242 * panels get very unhappy and cease to work. */
3243 pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
3244 EDP_BLC_ENABLE);
3245
3246 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3247
3248 intel_dp->want_panel_vdd = false;
3249
3250 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3251 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3252
3253 wait_panel_off(intel_dp);
3254 intel_dp->panel_power_off_time = ktime_get_boottime();
3255
3256 /* We got a reference when we enabled the VDD. */
3257 intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
3258 }
3259
intel_edp_panel_off(struct intel_dp * intel_dp)3260 void intel_edp_panel_off(struct intel_dp *intel_dp)
3261 {
3262 intel_wakeref_t wakeref;
3263
3264 if (!intel_dp_is_edp(intel_dp))
3265 return;
3266
3267 with_pps_lock(intel_dp, wakeref)
3268 edp_panel_off(intel_dp);
3269 }
3270
3271 /* Enable backlight in the panel power control. */
_intel_edp_backlight_on(struct intel_dp * intel_dp)3272 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
3273 {
3274 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3275 intel_wakeref_t wakeref;
3276
3277 /*
3278 * If we enable the backlight right away following a panel power
3279 * on, we may see slight flicker as the panel syncs with the eDP
3280 * link. So delay a bit to make sure the image is solid before
3281 * allowing it to appear.
3282 */
3283 wait_backlight_on(intel_dp);
3284
3285 with_pps_lock(intel_dp, wakeref) {
3286 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3287 u32 pp;
3288
3289 pp = ilk_get_pp_control(intel_dp);
3290 pp |= EDP_BLC_ENABLE;
3291
3292 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3293 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3294 }
3295 }
3296
3297 /* Enable backlight PWM and backlight PP control. */
intel_edp_backlight_on(const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)3298 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
3299 const struct drm_connector_state *conn_state)
3300 {
3301 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3302 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3303
3304 if (!intel_dp_is_edp(intel_dp))
3305 return;
3306
3307 drm_dbg_kms(&i915->drm, "\n");
3308
3309 intel_panel_enable_backlight(crtc_state, conn_state);
3310 _intel_edp_backlight_on(intel_dp);
3311 }
3312
3313 /* Disable backlight in the panel power control. */
_intel_edp_backlight_off(struct intel_dp * intel_dp)3314 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3315 {
3316 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3317 intel_wakeref_t wakeref;
3318
3319 if (!intel_dp_is_edp(intel_dp))
3320 return;
3321
3322 with_pps_lock(intel_dp, wakeref) {
3323 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3324 u32 pp;
3325
3326 pp = ilk_get_pp_control(intel_dp);
3327 pp &= ~EDP_BLC_ENABLE;
3328
3329 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3330 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3331 }
3332
3333 intel_dp->last_backlight_off = jiffies;
3334 edp_wait_backlight_off(intel_dp);
3335 }
3336
3337 /* Disable backlight PP control and backlight PWM. */
intel_edp_backlight_off(const struct drm_connector_state * old_conn_state)3338 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3339 {
3340 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3341 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3342
3343 if (!intel_dp_is_edp(intel_dp))
3344 return;
3345
3346 drm_dbg_kms(&i915->drm, "\n");
3347
3348 _intel_edp_backlight_off(intel_dp);
3349 intel_panel_disable_backlight(old_conn_state);
3350 }
3351
3352 /*
3353 * Hook for controlling the panel power control backlight through the bl_power
3354 * sysfs attribute. Take care to handle multiple calls.
3355 */
intel_edp_backlight_power(struct intel_connector * connector,bool enable)3356 static void intel_edp_backlight_power(struct intel_connector *connector,
3357 bool enable)
3358 {
3359 struct drm_i915_private *i915 = to_i915(connector->base.dev);
3360 struct intel_dp *intel_dp = intel_attached_dp(connector);
3361 intel_wakeref_t wakeref;
3362 bool is_enabled;
3363
3364 is_enabled = false;
3365 with_pps_lock(intel_dp, wakeref)
3366 is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3367 if (is_enabled == enable)
3368 return;
3369
3370 drm_dbg_kms(&i915->drm, "panel power control backlight %s\n",
3371 enable ? "enable" : "disable");
3372
3373 if (enable)
3374 _intel_edp_backlight_on(intel_dp);
3375 else
3376 _intel_edp_backlight_off(intel_dp);
3377 }
3378
assert_dp_port(struct intel_dp * intel_dp,bool state)3379 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3380 {
3381 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3382 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3383 bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3384
3385 I915_STATE_WARN(cur_state != state,
3386 "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3387 dig_port->base.base.base.id, dig_port->base.base.name,
3388 onoff(state), onoff(cur_state));
3389 }
3390 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3391
assert_edp_pll(struct drm_i915_private * dev_priv,bool state)3392 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3393 {
3394 bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3395
3396 I915_STATE_WARN(cur_state != state,
3397 "eDP PLL state assertion failure (expected %s, current %s)\n",
3398 onoff(state), onoff(cur_state));
3399 }
3400 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3401 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3402
ilk_edp_pll_on(struct intel_dp * intel_dp,const struct intel_crtc_state * pipe_config)3403 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
3404 const struct intel_crtc_state *pipe_config)
3405 {
3406 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3407 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3408
3409 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3410 assert_dp_port_disabled(intel_dp);
3411 assert_edp_pll_disabled(dev_priv);
3412
3413 drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
3414 pipe_config->port_clock);
3415
3416 intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3417
3418 if (pipe_config->port_clock == 162000)
3419 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3420 else
3421 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3422
3423 intel_de_write(dev_priv, DP_A, intel_dp->DP);
3424 intel_de_posting_read(dev_priv, DP_A);
3425 udelay(500);
3426
3427 /*
3428 * [DevILK] Work around required when enabling DP PLL
3429 * while a pipe is enabled going to FDI:
3430 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3431 * 2. Program DP PLL enable
3432 */
3433 if (IS_GEN(dev_priv, 5))
3434 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3435
3436 intel_dp->DP |= DP_PLL_ENABLE;
3437
3438 intel_de_write(dev_priv, DP_A, intel_dp->DP);
3439 intel_de_posting_read(dev_priv, DP_A);
3440 udelay(200);
3441 }
3442
ilk_edp_pll_off(struct intel_dp * intel_dp,const struct intel_crtc_state * old_crtc_state)3443 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
3444 const struct intel_crtc_state *old_crtc_state)
3445 {
3446 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3447 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3448
3449 assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3450 assert_dp_port_disabled(intel_dp);
3451 assert_edp_pll_enabled(dev_priv);
3452
3453 drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3454
3455 intel_dp->DP &= ~DP_PLL_ENABLE;
3456
3457 intel_de_write(dev_priv, DP_A, intel_dp->DP);
3458 intel_de_posting_read(dev_priv, DP_A);
3459 udelay(200);
3460 }
3461
downstream_hpd_needs_d0(struct intel_dp * intel_dp)3462 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3463 {
3464 /*
3465 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3466 * be capable of signalling downstream hpd with a long pulse.
3467 * Whether or not that means D3 is safe to use is not clear,
3468 * but let's assume so until proven otherwise.
3469 *
3470 * FIXME should really check all downstream ports...
3471 */
3472 return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3473 drm_dp_is_branch(intel_dp->dpcd) &&
3474 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3475 }
3476
intel_dp_sink_set_decompression_state(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state,bool enable)3477 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3478 const struct intel_crtc_state *crtc_state,
3479 bool enable)
3480 {
3481 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3482 int ret;
3483
3484 if (!crtc_state->dsc.compression_enable)
3485 return;
3486
3487 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3488 enable ? DP_DECOMPRESSION_EN : 0);
3489 if (ret < 0)
3490 drm_dbg_kms(&i915->drm,
3491 "Failed to %s sink decompression state\n",
3492 enable ? "enable" : "disable");
3493 }
3494
3495 /* If the sink supports it, try to set the power state appropriately */
intel_dp_sink_dpms(struct intel_dp * intel_dp,int mode)3496 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3497 {
3498 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3499 int ret, i;
3500
3501 /* Should have a valid DPCD by this point */
3502 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3503 return;
3504
3505 if (mode != DRM_MODE_DPMS_ON) {
3506 if (downstream_hpd_needs_d0(intel_dp))
3507 return;
3508
3509 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3510 DP_SET_POWER_D3);
3511 } else {
3512 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3513
3514 /*
3515 * When turning on, we need to retry for 1ms to give the sink
3516 * time to wake up.
3517 */
3518 for (i = 0; i < 3; i++) {
3519 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3520 DP_SET_POWER_D0);
3521 if (ret == 1)
3522 break;
3523 msleep(1);
3524 }
3525
3526 if (ret == 1 && lspcon->active)
3527 lspcon_wait_pcon_mode(lspcon);
3528 }
3529
3530 if (ret != 1)
3531 drm_dbg_kms(&i915->drm, "failed to %s sink power state\n",
3532 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3533 }
3534
cpt_dp_port_selected(struct drm_i915_private * dev_priv,enum port port,enum pipe * pipe)3535 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3536 enum port port, enum pipe *pipe)
3537 {
3538 enum pipe p;
3539
3540 for_each_pipe(dev_priv, p) {
3541 u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3542
3543 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3544 *pipe = p;
3545 return true;
3546 }
3547 }
3548
3549 drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
3550 port_name(port));
3551
3552 /* must initialize pipe to something for the asserts */
3553 *pipe = PIPE_A;
3554
3555 return false;
3556 }
3557
intel_dp_port_enabled(struct drm_i915_private * dev_priv,i915_reg_t dp_reg,enum port port,enum pipe * pipe)3558 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3559 i915_reg_t dp_reg, enum port port,
3560 enum pipe *pipe)
3561 {
3562 bool ret;
3563 u32 val;
3564
3565 val = intel_de_read(dev_priv, dp_reg);
3566
3567 ret = val & DP_PORT_EN;
3568
3569 /* asserts want to know the pipe even if the port is disabled */
3570 if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3571 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3572 else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3573 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3574 else if (IS_CHERRYVIEW(dev_priv))
3575 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3576 else
3577 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3578
3579 return ret;
3580 }
3581
intel_dp_get_hw_state(struct intel_encoder * encoder,enum pipe * pipe)3582 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3583 enum pipe *pipe)
3584 {
3585 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3586 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3587 intel_wakeref_t wakeref;
3588 bool ret;
3589
3590 wakeref = intel_display_power_get_if_enabled(dev_priv,
3591 encoder->power_domain);
3592 if (!wakeref)
3593 return false;
3594
3595 ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3596 encoder->port, pipe);
3597
3598 intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3599
3600 return ret;
3601 }
3602
intel_dp_get_config(struct intel_encoder * encoder,struct intel_crtc_state * pipe_config)3603 static void intel_dp_get_config(struct intel_encoder *encoder,
3604 struct intel_crtc_state *pipe_config)
3605 {
3606 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3607 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3608 u32 tmp, flags = 0;
3609 enum port port = encoder->port;
3610 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3611
3612 if (encoder->type == INTEL_OUTPUT_EDP)
3613 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3614 else
3615 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3616
3617 tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3618
3619 pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3620
3621 if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3622 u32 trans_dp = intel_de_read(dev_priv,
3623 TRANS_DP_CTL(crtc->pipe));
3624
3625 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3626 flags |= DRM_MODE_FLAG_PHSYNC;
3627 else
3628 flags |= DRM_MODE_FLAG_NHSYNC;
3629
3630 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3631 flags |= DRM_MODE_FLAG_PVSYNC;
3632 else
3633 flags |= DRM_MODE_FLAG_NVSYNC;
3634 } else {
3635 if (tmp & DP_SYNC_HS_HIGH)
3636 flags |= DRM_MODE_FLAG_PHSYNC;
3637 else
3638 flags |= DRM_MODE_FLAG_NHSYNC;
3639
3640 if (tmp & DP_SYNC_VS_HIGH)
3641 flags |= DRM_MODE_FLAG_PVSYNC;
3642 else
3643 flags |= DRM_MODE_FLAG_NVSYNC;
3644 }
3645
3646 pipe_config->hw.adjusted_mode.flags |= flags;
3647
3648 if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3649 pipe_config->limited_color_range = true;
3650
3651 pipe_config->lane_count =
3652 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3653
3654 intel_dp_get_m_n(crtc, pipe_config);
3655
3656 if (port == PORT_A) {
3657 if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3658 pipe_config->port_clock = 162000;
3659 else
3660 pipe_config->port_clock = 270000;
3661 }
3662
3663 pipe_config->hw.adjusted_mode.crtc_clock =
3664 intel_dotclock_calculate(pipe_config->port_clock,
3665 &pipe_config->dp_m_n);
3666
3667 if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3668 pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3669 /*
3670 * This is a big fat ugly hack.
3671 *
3672 * Some machines in UEFI boot mode provide us a VBT that has 18
3673 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3674 * unknown we fail to light up. Yet the same BIOS boots up with
3675 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3676 * max, not what it tells us to use.
3677 *
3678 * Note: This will still be broken if the eDP panel is not lit
3679 * up by the BIOS, and thus we can't get the mode at module
3680 * load.
3681 */
3682 drm_dbg_kms(&dev_priv->drm,
3683 "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3684 pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3685 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3686 }
3687 }
3688
intel_disable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3689 static void intel_disable_dp(struct intel_atomic_state *state,
3690 struct intel_encoder *encoder,
3691 const struct intel_crtc_state *old_crtc_state,
3692 const struct drm_connector_state *old_conn_state)
3693 {
3694 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3695
3696 intel_dp->link_trained = false;
3697
3698 if (old_crtc_state->has_audio)
3699 intel_audio_codec_disable(encoder,
3700 old_crtc_state, old_conn_state);
3701
3702 /* Make sure the panel is off before trying to change the mode. But also
3703 * ensure that we have vdd while we switch off the panel. */
3704 intel_edp_panel_vdd_on(intel_dp);
3705 intel_edp_backlight_off(old_conn_state);
3706 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3707 intel_edp_panel_off(intel_dp);
3708 }
3709
g4x_disable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3710 static void g4x_disable_dp(struct intel_atomic_state *state,
3711 struct intel_encoder *encoder,
3712 const struct intel_crtc_state *old_crtc_state,
3713 const struct drm_connector_state *old_conn_state)
3714 {
3715 intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3716 }
3717
vlv_disable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3718 static void vlv_disable_dp(struct intel_atomic_state *state,
3719 struct intel_encoder *encoder,
3720 const struct intel_crtc_state *old_crtc_state,
3721 const struct drm_connector_state *old_conn_state)
3722 {
3723 intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3724 }
3725
g4x_post_disable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3726 static void g4x_post_disable_dp(struct intel_atomic_state *state,
3727 struct intel_encoder *encoder,
3728 const struct intel_crtc_state *old_crtc_state,
3729 const struct drm_connector_state *old_conn_state)
3730 {
3731 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3732 enum port port = encoder->port;
3733
3734 /*
3735 * Bspec does not list a specific disable sequence for g4x DP.
3736 * Follow the ilk+ sequence (disable pipe before the port) for
3737 * g4x DP as it does not suffer from underruns like the normal
3738 * g4x modeset sequence (disable pipe after the port).
3739 */
3740 intel_dp_link_down(encoder, old_crtc_state);
3741
3742 /* Only ilk+ has port A */
3743 if (port == PORT_A)
3744 ilk_edp_pll_off(intel_dp, old_crtc_state);
3745 }
3746
vlv_post_disable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3747 static void vlv_post_disable_dp(struct intel_atomic_state *state,
3748 struct intel_encoder *encoder,
3749 const struct intel_crtc_state *old_crtc_state,
3750 const struct drm_connector_state *old_conn_state)
3751 {
3752 intel_dp_link_down(encoder, old_crtc_state);
3753 }
3754
chv_post_disable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)3755 static void chv_post_disable_dp(struct intel_atomic_state *state,
3756 struct intel_encoder *encoder,
3757 const struct intel_crtc_state *old_crtc_state,
3758 const struct drm_connector_state *old_conn_state)
3759 {
3760 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3761
3762 intel_dp_link_down(encoder, old_crtc_state);
3763
3764 vlv_dpio_get(dev_priv);
3765
3766 /* Assert data lane reset */
3767 chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3768
3769 vlv_dpio_put(dev_priv);
3770 }
3771
3772 static void
cpt_set_link_train(struct intel_dp * intel_dp,u8 dp_train_pat)3773 cpt_set_link_train(struct intel_dp *intel_dp,
3774 u8 dp_train_pat)
3775 {
3776 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3777 u32 *DP = &intel_dp->DP;
3778
3779 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
3780
3781 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3782 case DP_TRAINING_PATTERN_DISABLE:
3783 *DP |= DP_LINK_TRAIN_OFF_CPT;
3784 break;
3785 case DP_TRAINING_PATTERN_1:
3786 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3787 break;
3788 case DP_TRAINING_PATTERN_2:
3789 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3790 break;
3791 case DP_TRAINING_PATTERN_3:
3792 drm_dbg_kms(&dev_priv->drm,
3793 "TPS3 not supported, using TPS2 instead\n");
3794 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3795 break;
3796 }
3797
3798 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3799 intel_de_posting_read(dev_priv, intel_dp->output_reg);
3800 }
3801
3802 static void
g4x_set_link_train(struct intel_dp * intel_dp,u8 dp_train_pat)3803 g4x_set_link_train(struct intel_dp *intel_dp,
3804 u8 dp_train_pat)
3805 {
3806 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3807 u32 *DP = &intel_dp->DP;
3808
3809 *DP &= ~DP_LINK_TRAIN_MASK;
3810
3811 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3812 case DP_TRAINING_PATTERN_DISABLE:
3813 *DP |= DP_LINK_TRAIN_OFF;
3814 break;
3815 case DP_TRAINING_PATTERN_1:
3816 *DP |= DP_LINK_TRAIN_PAT_1;
3817 break;
3818 case DP_TRAINING_PATTERN_2:
3819 *DP |= DP_LINK_TRAIN_PAT_2;
3820 break;
3821 case DP_TRAINING_PATTERN_3:
3822 drm_dbg_kms(&dev_priv->drm,
3823 "TPS3 not supported, using TPS2 instead\n");
3824 *DP |= DP_LINK_TRAIN_PAT_2;
3825 break;
3826 }
3827
3828 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3829 intel_de_posting_read(dev_priv, intel_dp->output_reg);
3830 }
3831
intel_dp_enable_port(struct intel_dp * intel_dp,const struct intel_crtc_state * old_crtc_state)3832 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3833 const struct intel_crtc_state *old_crtc_state)
3834 {
3835 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3836
3837 /* enable with pattern 1 (as per spec) */
3838
3839 intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3840
3841 /*
3842 * Magic for VLV/CHV. We _must_ first set up the register
3843 * without actually enabling the port, and then do another
3844 * write to enable the port. Otherwise link training will
3845 * fail when the power sequencer is freshly used for this port.
3846 */
3847 intel_dp->DP |= DP_PORT_EN;
3848 if (old_crtc_state->has_audio)
3849 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3850
3851 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3852 intel_de_posting_read(dev_priv, intel_dp->output_reg);
3853 }
3854
intel_dp_configure_protocol_converter(struct intel_dp * intel_dp)3855 void intel_dp_configure_protocol_converter(struct intel_dp *intel_dp)
3856 {
3857 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3858 u8 tmp;
3859
3860 if (intel_dp->dpcd[DP_DPCD_REV] < 0x13)
3861 return;
3862
3863 if (!drm_dp_is_branch(intel_dp->dpcd))
3864 return;
3865
3866 tmp = intel_dp->has_hdmi_sink ?
3867 DP_HDMI_DVI_OUTPUT_CONFIG : 0;
3868
3869 if (drm_dp_dpcd_writeb(&intel_dp->aux,
3870 DP_PROTOCOL_CONVERTER_CONTROL_0, tmp) != 1)
3871 drm_dbg_kms(&i915->drm, "Failed to set protocol converter HDMI mode to %s\n",
3872 enableddisabled(intel_dp->has_hdmi_sink));
3873
3874 tmp = intel_dp->dfp.ycbcr_444_to_420 ?
3875 DP_CONVERSION_TO_YCBCR420_ENABLE : 0;
3876
3877 if (drm_dp_dpcd_writeb(&intel_dp->aux,
3878 DP_PROTOCOL_CONVERTER_CONTROL_1, tmp) != 1)
3879 drm_dbg_kms(&i915->drm,
3880 "Failed to set protocol converter YCbCr 4:2:0 conversion mode to %s\n",
3881 enableddisabled(intel_dp->dfp.ycbcr_444_to_420));
3882
3883 tmp = 0;
3884
3885 if (drm_dp_dpcd_writeb(&intel_dp->aux,
3886 DP_PROTOCOL_CONVERTER_CONTROL_2, tmp) <= 0)
3887 drm_dbg_kms(&i915->drm,
3888 "Failed to set protocol converter YCbCr 4:2:2 conversion mode to %s\n",
3889 enableddisabled(false));
3890 }
3891
intel_enable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3892 static void intel_enable_dp(struct intel_atomic_state *state,
3893 struct intel_encoder *encoder,
3894 const struct intel_crtc_state *pipe_config,
3895 const struct drm_connector_state *conn_state)
3896 {
3897 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3898 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3899 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3900 u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
3901 enum pipe pipe = crtc->pipe;
3902 intel_wakeref_t wakeref;
3903
3904 if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
3905 return;
3906
3907 with_pps_lock(intel_dp, wakeref) {
3908 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3909 vlv_init_panel_power_sequencer(encoder, pipe_config);
3910
3911 intel_dp_enable_port(intel_dp, pipe_config);
3912
3913 edp_panel_vdd_on(intel_dp);
3914 edp_panel_on(intel_dp);
3915 edp_panel_vdd_off(intel_dp, true);
3916 }
3917
3918 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3919 unsigned int lane_mask = 0x0;
3920
3921 if (IS_CHERRYVIEW(dev_priv))
3922 lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3923
3924 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3925 lane_mask);
3926 }
3927
3928 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3929 intel_dp_configure_protocol_converter(intel_dp);
3930 intel_dp_start_link_train(intel_dp);
3931 intel_dp_stop_link_train(intel_dp);
3932
3933 if (pipe_config->has_audio) {
3934 drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
3935 pipe_name(pipe));
3936 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3937 }
3938 }
3939
g4x_enable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3940 static void g4x_enable_dp(struct intel_atomic_state *state,
3941 struct intel_encoder *encoder,
3942 const struct intel_crtc_state *pipe_config,
3943 const struct drm_connector_state *conn_state)
3944 {
3945 intel_enable_dp(state, encoder, pipe_config, conn_state);
3946 intel_edp_backlight_on(pipe_config, conn_state);
3947 }
3948
vlv_enable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3949 static void vlv_enable_dp(struct intel_atomic_state *state,
3950 struct intel_encoder *encoder,
3951 const struct intel_crtc_state *pipe_config,
3952 const struct drm_connector_state *conn_state)
3953 {
3954 intel_edp_backlight_on(pipe_config, conn_state);
3955 }
3956
g4x_pre_enable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)3957 static void g4x_pre_enable_dp(struct intel_atomic_state *state,
3958 struct intel_encoder *encoder,
3959 const struct intel_crtc_state *pipe_config,
3960 const struct drm_connector_state *conn_state)
3961 {
3962 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3963 enum port port = encoder->port;
3964
3965 intel_dp_prepare(encoder, pipe_config);
3966
3967 /* Only ilk+ has port A */
3968 if (port == PORT_A)
3969 ilk_edp_pll_on(intel_dp, pipe_config);
3970 }
3971
vlv_detach_power_sequencer(struct intel_dp * intel_dp)3972 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3973 {
3974 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3975 struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3976 enum pipe pipe = intel_dp->pps_pipe;
3977 i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3978
3979 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3980
3981 if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B))
3982 return;
3983
3984 edp_panel_vdd_off_sync(intel_dp);
3985
3986 /*
3987 * VLV seems to get confused when multiple power sequencers
3988 * have the same port selected (even if only one has power/vdd
3989 * enabled). The failure manifests as vlv_wait_port_ready() failing
3990 * CHV on the other hand doesn't seem to mind having the same port
3991 * selected in multiple power sequencers, but let's clear the
3992 * port select always when logically disconnecting a power sequencer
3993 * from a port.
3994 */
3995 drm_dbg_kms(&dev_priv->drm,
3996 "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3997 pipe_name(pipe), dig_port->base.base.base.id,
3998 dig_port->base.base.name);
3999 intel_de_write(dev_priv, pp_on_reg, 0);
4000 intel_de_posting_read(dev_priv, pp_on_reg);
4001
4002 intel_dp->pps_pipe = INVALID_PIPE;
4003 }
4004
vlv_steal_power_sequencer(struct drm_i915_private * dev_priv,enum pipe pipe)4005 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
4006 enum pipe pipe)
4007 {
4008 struct intel_encoder *encoder;
4009
4010 lockdep_assert_held(&dev_priv->pps_mutex);
4011
4012 for_each_intel_dp(&dev_priv->drm, encoder) {
4013 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4014
4015 drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe,
4016 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
4017 pipe_name(pipe), encoder->base.base.id,
4018 encoder->base.name);
4019
4020 if (intel_dp->pps_pipe != pipe)
4021 continue;
4022
4023 drm_dbg_kms(&dev_priv->drm,
4024 "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
4025 pipe_name(pipe), encoder->base.base.id,
4026 encoder->base.name);
4027
4028 /* make sure vdd is off before we steal it */
4029 vlv_detach_power_sequencer(intel_dp);
4030 }
4031 }
4032
vlv_init_panel_power_sequencer(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)4033 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
4034 const struct intel_crtc_state *crtc_state)
4035 {
4036 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4037 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4038 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
4039
4040 lockdep_assert_held(&dev_priv->pps_mutex);
4041
4042 drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
4043
4044 if (intel_dp->pps_pipe != INVALID_PIPE &&
4045 intel_dp->pps_pipe != crtc->pipe) {
4046 /*
4047 * If another power sequencer was being used on this
4048 * port previously make sure to turn off vdd there while
4049 * we still have control of it.
4050 */
4051 vlv_detach_power_sequencer(intel_dp);
4052 }
4053
4054 /*
4055 * We may be stealing the power
4056 * sequencer from another port.
4057 */
4058 vlv_steal_power_sequencer(dev_priv, crtc->pipe);
4059
4060 intel_dp->active_pipe = crtc->pipe;
4061
4062 if (!intel_dp_is_edp(intel_dp))
4063 return;
4064
4065 /* now it's all ours */
4066 intel_dp->pps_pipe = crtc->pipe;
4067
4068 drm_dbg_kms(&dev_priv->drm,
4069 "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
4070 pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
4071 encoder->base.name);
4072
4073 /* init power sequencer on this pipe and port */
4074 intel_dp_init_panel_power_sequencer(intel_dp);
4075 intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
4076 }
4077
vlv_pre_enable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)4078 static void vlv_pre_enable_dp(struct intel_atomic_state *state,
4079 struct intel_encoder *encoder,
4080 const struct intel_crtc_state *pipe_config,
4081 const struct drm_connector_state *conn_state)
4082 {
4083 vlv_phy_pre_encoder_enable(encoder, pipe_config);
4084
4085 intel_enable_dp(state, encoder, pipe_config, conn_state);
4086 }
4087
vlv_dp_pre_pll_enable(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)4088 static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state,
4089 struct intel_encoder *encoder,
4090 const struct intel_crtc_state *pipe_config,
4091 const struct drm_connector_state *conn_state)
4092 {
4093 intel_dp_prepare(encoder, pipe_config);
4094
4095 vlv_phy_pre_pll_enable(encoder, pipe_config);
4096 }
4097
chv_pre_enable_dp(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)4098 static void chv_pre_enable_dp(struct intel_atomic_state *state,
4099 struct intel_encoder *encoder,
4100 const struct intel_crtc_state *pipe_config,
4101 const struct drm_connector_state *conn_state)
4102 {
4103 chv_phy_pre_encoder_enable(encoder, pipe_config);
4104
4105 intel_enable_dp(state, encoder, pipe_config, conn_state);
4106
4107 /* Second common lane will stay alive on its own now */
4108 chv_phy_release_cl2_override(encoder);
4109 }
4110
chv_dp_pre_pll_enable(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * pipe_config,const struct drm_connector_state * conn_state)4111 static void chv_dp_pre_pll_enable(struct intel_atomic_state *state,
4112 struct intel_encoder *encoder,
4113 const struct intel_crtc_state *pipe_config,
4114 const struct drm_connector_state *conn_state)
4115 {
4116 intel_dp_prepare(encoder, pipe_config);
4117
4118 chv_phy_pre_pll_enable(encoder, pipe_config);
4119 }
4120
chv_dp_post_pll_disable(struct intel_atomic_state * state,struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state,const struct drm_connector_state * old_conn_state)4121 static void chv_dp_post_pll_disable(struct intel_atomic_state *state,
4122 struct intel_encoder *encoder,
4123 const struct intel_crtc_state *old_crtc_state,
4124 const struct drm_connector_state *old_conn_state)
4125 {
4126 chv_phy_post_pll_disable(encoder, old_crtc_state);
4127 }
4128
4129 /*
4130 * Fetch AUX CH registers 0x202 - 0x207 which contain
4131 * link status information
4132 */
4133 bool
intel_dp_get_link_status(struct intel_dp * intel_dp,u8 link_status[DP_LINK_STATUS_SIZE])4134 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
4135 {
4136 return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
4137 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
4138 }
4139
intel_dp_voltage_max_2(struct intel_dp * intel_dp)4140 static u8 intel_dp_voltage_max_2(struct intel_dp *intel_dp)
4141 {
4142 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
4143 }
4144
intel_dp_voltage_max_3(struct intel_dp * intel_dp)4145 static u8 intel_dp_voltage_max_3(struct intel_dp *intel_dp)
4146 {
4147 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
4148 }
4149
intel_dp_pre_empemph_max_2(struct intel_dp * intel_dp)4150 static u8 intel_dp_pre_empemph_max_2(struct intel_dp *intel_dp)
4151 {
4152 return DP_TRAIN_PRE_EMPH_LEVEL_2;
4153 }
4154
intel_dp_pre_empemph_max_3(struct intel_dp * intel_dp)4155 static u8 intel_dp_pre_empemph_max_3(struct intel_dp *intel_dp)
4156 {
4157 return DP_TRAIN_PRE_EMPH_LEVEL_3;
4158 }
4159
vlv_set_signal_levels(struct intel_dp * intel_dp)4160 static void vlv_set_signal_levels(struct intel_dp *intel_dp)
4161 {
4162 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4163 unsigned long demph_reg_value, preemph_reg_value,
4164 uniqtranscale_reg_value;
4165 u8 train_set = intel_dp->train_set[0];
4166
4167 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4168 case DP_TRAIN_PRE_EMPH_LEVEL_0:
4169 preemph_reg_value = 0x0004000;
4170 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4171 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4172 demph_reg_value = 0x2B405555;
4173 uniqtranscale_reg_value = 0x552AB83A;
4174 break;
4175 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4176 demph_reg_value = 0x2B404040;
4177 uniqtranscale_reg_value = 0x5548B83A;
4178 break;
4179 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4180 demph_reg_value = 0x2B245555;
4181 uniqtranscale_reg_value = 0x5560B83A;
4182 break;
4183 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4184 demph_reg_value = 0x2B405555;
4185 uniqtranscale_reg_value = 0x5598DA3A;
4186 break;
4187 default:
4188 return;
4189 }
4190 break;
4191 case DP_TRAIN_PRE_EMPH_LEVEL_1:
4192 preemph_reg_value = 0x0002000;
4193 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4194 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4195 demph_reg_value = 0x2B404040;
4196 uniqtranscale_reg_value = 0x5552B83A;
4197 break;
4198 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4199 demph_reg_value = 0x2B404848;
4200 uniqtranscale_reg_value = 0x5580B83A;
4201 break;
4202 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4203 demph_reg_value = 0x2B404040;
4204 uniqtranscale_reg_value = 0x55ADDA3A;
4205 break;
4206 default:
4207 return;
4208 }
4209 break;
4210 case DP_TRAIN_PRE_EMPH_LEVEL_2:
4211 preemph_reg_value = 0x0000000;
4212 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4213 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4214 demph_reg_value = 0x2B305555;
4215 uniqtranscale_reg_value = 0x5570B83A;
4216 break;
4217 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4218 demph_reg_value = 0x2B2B4040;
4219 uniqtranscale_reg_value = 0x55ADDA3A;
4220 break;
4221 default:
4222 return;
4223 }
4224 break;
4225 case DP_TRAIN_PRE_EMPH_LEVEL_3:
4226 preemph_reg_value = 0x0006000;
4227 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4228 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4229 demph_reg_value = 0x1B405555;
4230 uniqtranscale_reg_value = 0x55ADDA3A;
4231 break;
4232 default:
4233 return;
4234 }
4235 break;
4236 default:
4237 return;
4238 }
4239
4240 vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
4241 uniqtranscale_reg_value, 0);
4242 }
4243
chv_set_signal_levels(struct intel_dp * intel_dp)4244 static void chv_set_signal_levels(struct intel_dp *intel_dp)
4245 {
4246 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4247 u32 deemph_reg_value, margin_reg_value;
4248 bool uniq_trans_scale = false;
4249 u8 train_set = intel_dp->train_set[0];
4250
4251 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4252 case DP_TRAIN_PRE_EMPH_LEVEL_0:
4253 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4254 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4255 deemph_reg_value = 128;
4256 margin_reg_value = 52;
4257 break;
4258 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4259 deemph_reg_value = 128;
4260 margin_reg_value = 77;
4261 break;
4262 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4263 deemph_reg_value = 128;
4264 margin_reg_value = 102;
4265 break;
4266 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4267 deemph_reg_value = 128;
4268 margin_reg_value = 154;
4269 uniq_trans_scale = true;
4270 break;
4271 default:
4272 return;
4273 }
4274 break;
4275 case DP_TRAIN_PRE_EMPH_LEVEL_1:
4276 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4277 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4278 deemph_reg_value = 85;
4279 margin_reg_value = 78;
4280 break;
4281 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4282 deemph_reg_value = 85;
4283 margin_reg_value = 116;
4284 break;
4285 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4286 deemph_reg_value = 85;
4287 margin_reg_value = 154;
4288 break;
4289 default:
4290 return;
4291 }
4292 break;
4293 case DP_TRAIN_PRE_EMPH_LEVEL_2:
4294 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4295 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4296 deemph_reg_value = 64;
4297 margin_reg_value = 104;
4298 break;
4299 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4300 deemph_reg_value = 64;
4301 margin_reg_value = 154;
4302 break;
4303 default:
4304 return;
4305 }
4306 break;
4307 case DP_TRAIN_PRE_EMPH_LEVEL_3:
4308 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4309 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4310 deemph_reg_value = 43;
4311 margin_reg_value = 154;
4312 break;
4313 default:
4314 return;
4315 }
4316 break;
4317 default:
4318 return;
4319 }
4320
4321 chv_set_phy_signal_level(encoder, deemph_reg_value,
4322 margin_reg_value, uniq_trans_scale);
4323 }
4324
g4x_signal_levels(u8 train_set)4325 static u32 g4x_signal_levels(u8 train_set)
4326 {
4327 u32 signal_levels = 0;
4328
4329 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4330 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4331 default:
4332 signal_levels |= DP_VOLTAGE_0_4;
4333 break;
4334 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4335 signal_levels |= DP_VOLTAGE_0_6;
4336 break;
4337 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4338 signal_levels |= DP_VOLTAGE_0_8;
4339 break;
4340 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4341 signal_levels |= DP_VOLTAGE_1_2;
4342 break;
4343 }
4344 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4345 case DP_TRAIN_PRE_EMPH_LEVEL_0:
4346 default:
4347 signal_levels |= DP_PRE_EMPHASIS_0;
4348 break;
4349 case DP_TRAIN_PRE_EMPH_LEVEL_1:
4350 signal_levels |= DP_PRE_EMPHASIS_3_5;
4351 break;
4352 case DP_TRAIN_PRE_EMPH_LEVEL_2:
4353 signal_levels |= DP_PRE_EMPHASIS_6;
4354 break;
4355 case DP_TRAIN_PRE_EMPH_LEVEL_3:
4356 signal_levels |= DP_PRE_EMPHASIS_9_5;
4357 break;
4358 }
4359 return signal_levels;
4360 }
4361
4362 static void
g4x_set_signal_levels(struct intel_dp * intel_dp)4363 g4x_set_signal_levels(struct intel_dp *intel_dp)
4364 {
4365 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4366 u8 train_set = intel_dp->train_set[0];
4367 u32 signal_levels;
4368
4369 signal_levels = g4x_signal_levels(train_set);
4370
4371 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4372 signal_levels);
4373
4374 intel_dp->DP &= ~(DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK);
4375 intel_dp->DP |= signal_levels;
4376
4377 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4378 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4379 }
4380
4381 /* SNB CPU eDP voltage swing and pre-emphasis control */
snb_cpu_edp_signal_levels(u8 train_set)4382 static u32 snb_cpu_edp_signal_levels(u8 train_set)
4383 {
4384 u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4385 DP_TRAIN_PRE_EMPHASIS_MASK);
4386
4387 switch (signal_levels) {
4388 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4389 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4390 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4391 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4392 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4393 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4394 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4395 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4396 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4397 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4398 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4399 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4400 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4401 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4402 default:
4403 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4404 "0x%x\n", signal_levels);
4405 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4406 }
4407 }
4408
4409 static void
snb_cpu_edp_set_signal_levels(struct intel_dp * intel_dp)4410 snb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4411 {
4412 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4413 u8 train_set = intel_dp->train_set[0];
4414 u32 signal_levels;
4415
4416 signal_levels = snb_cpu_edp_signal_levels(train_set);
4417
4418 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4419 signal_levels);
4420
4421 intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4422 intel_dp->DP |= signal_levels;
4423
4424 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4425 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4426 }
4427
4428 /* IVB CPU eDP voltage swing and pre-emphasis control */
ivb_cpu_edp_signal_levels(u8 train_set)4429 static u32 ivb_cpu_edp_signal_levels(u8 train_set)
4430 {
4431 u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4432 DP_TRAIN_PRE_EMPHASIS_MASK);
4433
4434 switch (signal_levels) {
4435 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4436 return EDP_LINK_TRAIN_400MV_0DB_IVB;
4437 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4438 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4439 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4440 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4441 return EDP_LINK_TRAIN_400MV_6DB_IVB;
4442
4443 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4444 return EDP_LINK_TRAIN_600MV_0DB_IVB;
4445 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4446 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4447
4448 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4449 return EDP_LINK_TRAIN_800MV_0DB_IVB;
4450 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4451 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4452
4453 default:
4454 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4455 "0x%x\n", signal_levels);
4456 return EDP_LINK_TRAIN_500MV_0DB_IVB;
4457 }
4458 }
4459
4460 static void
ivb_cpu_edp_set_signal_levels(struct intel_dp * intel_dp)4461 ivb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4462 {
4463 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4464 u8 train_set = intel_dp->train_set[0];
4465 u32 signal_levels;
4466
4467 signal_levels = ivb_cpu_edp_signal_levels(train_set);
4468
4469 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4470 signal_levels);
4471
4472 intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4473 intel_dp->DP |= signal_levels;
4474
4475 intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4476 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4477 }
4478
intel_dp_set_signal_levels(struct intel_dp * intel_dp)4479 void intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4480 {
4481 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4482 u8 train_set = intel_dp->train_set[0];
4483
4484 drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
4485 train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
4486 train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
4487 drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
4488 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4489 DP_TRAIN_PRE_EMPHASIS_SHIFT,
4490 train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
4491 " (max)" : "");
4492
4493 intel_dp->set_signal_levels(intel_dp);
4494 }
4495
4496 void
intel_dp_program_link_training_pattern(struct intel_dp * intel_dp,u8 dp_train_pat)4497 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4498 u8 dp_train_pat)
4499 {
4500 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4501 u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
4502
4503 if (dp_train_pat & train_pat_mask)
4504 drm_dbg_kms(&dev_priv->drm,
4505 "Using DP training pattern TPS%d\n",
4506 dp_train_pat & train_pat_mask);
4507
4508 intel_dp->set_link_train(intel_dp, dp_train_pat);
4509 }
4510
intel_dp_set_idle_link_train(struct intel_dp * intel_dp)4511 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4512 {
4513 if (intel_dp->set_idle_link_train)
4514 intel_dp->set_idle_link_train(intel_dp);
4515 }
4516
4517 static void
intel_dp_link_down(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state)4518 intel_dp_link_down(struct intel_encoder *encoder,
4519 const struct intel_crtc_state *old_crtc_state)
4520 {
4521 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4522 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4523 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4524 enum port port = encoder->port;
4525 u32 DP = intel_dp->DP;
4526
4527 if (drm_WARN_ON(&dev_priv->drm,
4528 (intel_de_read(dev_priv, intel_dp->output_reg) &
4529 DP_PORT_EN) == 0))
4530 return;
4531
4532 drm_dbg_kms(&dev_priv->drm, "\n");
4533
4534 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4535 (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4536 DP &= ~DP_LINK_TRAIN_MASK_CPT;
4537 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4538 } else {
4539 DP &= ~DP_LINK_TRAIN_MASK;
4540 DP |= DP_LINK_TRAIN_PAT_IDLE;
4541 }
4542 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4543 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4544
4545 DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4546 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4547 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4548
4549 /*
4550 * HW workaround for IBX, we need to move the port
4551 * to transcoder A after disabling it to allow the
4552 * matching HDMI port to be enabled on transcoder A.
4553 */
4554 if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4555 /*
4556 * We get CPU/PCH FIFO underruns on the other pipe when
4557 * doing the workaround. Sweep them under the rug.
4558 */
4559 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4560 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4561
4562 /* always enable with pattern 1 (as per spec) */
4563 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4564 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4565 DP_LINK_TRAIN_PAT_1;
4566 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4567 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4568
4569 DP &= ~DP_PORT_EN;
4570 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4571 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4572
4573 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4574 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4575 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4576 }
4577
4578 msleep(intel_dp->panel_power_down_delay);
4579
4580 intel_dp->DP = DP;
4581
4582 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4583 intel_wakeref_t wakeref;
4584
4585 with_pps_lock(intel_dp, wakeref)
4586 intel_dp->active_pipe = INVALID_PIPE;
4587 }
4588 }
4589
intel_dp_get_colorimetry_status(struct intel_dp * intel_dp)4590 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4591 {
4592 u8 dprx = 0;
4593
4594 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4595 &dprx) != 1)
4596 return false;
4597 return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4598 }
4599
intel_dp_get_dsc_sink_cap(struct intel_dp * intel_dp)4600 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4601 {
4602 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4603
4604 /*
4605 * Clear the cached register set to avoid using stale values
4606 * for the sinks that do not support DSC.
4607 */
4608 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4609
4610 /* Clear fec_capable to avoid using stale values */
4611 intel_dp->fec_capable = 0;
4612
4613 /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4614 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4615 intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4616 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4617 intel_dp->dsc_dpcd,
4618 sizeof(intel_dp->dsc_dpcd)) < 0)
4619 drm_err(&i915->drm,
4620 "Failed to read DPCD register 0x%x\n",
4621 DP_DSC_SUPPORT);
4622
4623 drm_dbg_kms(&i915->drm, "DSC DPCD: %*ph\n",
4624 (int)sizeof(intel_dp->dsc_dpcd),
4625 intel_dp->dsc_dpcd);
4626
4627 /* FEC is supported only on DP 1.4 */
4628 if (!intel_dp_is_edp(intel_dp) &&
4629 drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4630 &intel_dp->fec_capable) < 0)
4631 drm_err(&i915->drm,
4632 "Failed to read FEC DPCD register\n");
4633
4634 drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n",
4635 intel_dp->fec_capable);
4636 }
4637 }
4638
4639 static bool
intel_edp_init_dpcd(struct intel_dp * intel_dp)4640 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4641 {
4642 struct drm_i915_private *dev_priv =
4643 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4644
4645 /* this function is meant to be called only once */
4646 drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
4647
4648 if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd) != 0)
4649 return false;
4650
4651 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4652 drm_dp_is_branch(intel_dp->dpcd));
4653
4654 /*
4655 * Read the eDP display control registers.
4656 *
4657 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4658 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4659 * set, but require eDP 1.4+ detection (e.g. for supported link rates
4660 * method). The display control registers should read zero if they're
4661 * not supported anyway.
4662 */
4663 if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4664 intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4665 sizeof(intel_dp->edp_dpcd))
4666 drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
4667 (int)sizeof(intel_dp->edp_dpcd),
4668 intel_dp->edp_dpcd);
4669
4670 /*
4671 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4672 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4673 */
4674 intel_psr_init_dpcd(intel_dp);
4675
4676 /* Read the eDP 1.4+ supported link rates. */
4677 if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4678 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4679 int i;
4680
4681 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4682 sink_rates, sizeof(sink_rates));
4683
4684 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4685 int val = le16_to_cpu(sink_rates[i]);
4686
4687 if (val == 0)
4688 break;
4689
4690 /* Value read multiplied by 200kHz gives the per-lane
4691 * link rate in kHz. The source rates are, however,
4692 * stored in terms of LS_Clk kHz. The full conversion
4693 * back to symbols is
4694 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4695 */
4696 intel_dp->sink_rates[i] = (val * 200) / 10;
4697 }
4698 intel_dp->num_sink_rates = i;
4699 }
4700
4701 /*
4702 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4703 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4704 */
4705 if (intel_dp->num_sink_rates)
4706 intel_dp->use_rate_select = true;
4707 else
4708 intel_dp_set_sink_rates(intel_dp);
4709
4710 intel_dp_set_common_rates(intel_dp);
4711
4712 /* Read the eDP DSC DPCD registers */
4713 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4714 intel_dp_get_dsc_sink_cap(intel_dp);
4715
4716 return true;
4717 }
4718
4719 static bool
intel_dp_has_sink_count(struct intel_dp * intel_dp)4720 intel_dp_has_sink_count(struct intel_dp *intel_dp)
4721 {
4722 if (!intel_dp->attached_connector)
4723 return false;
4724
4725 return drm_dp_read_sink_count_cap(&intel_dp->attached_connector->base,
4726 intel_dp->dpcd,
4727 &intel_dp->desc);
4728 }
4729
4730 static bool
intel_dp_get_dpcd(struct intel_dp * intel_dp)4731 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4732 {
4733 int ret;
4734
4735 if (drm_dp_read_dpcd_caps(&intel_dp->aux, intel_dp->dpcd))
4736 return false;
4737
4738 /*
4739 * Don't clobber cached eDP rates. Also skip re-reading
4740 * the OUI/ID since we know it won't change.
4741 */
4742 if (!intel_dp_is_edp(intel_dp)) {
4743 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4744 drm_dp_is_branch(intel_dp->dpcd));
4745
4746 intel_dp_set_sink_rates(intel_dp);
4747 intel_dp_set_common_rates(intel_dp);
4748 }
4749
4750 if (intel_dp_has_sink_count(intel_dp)) {
4751 ret = drm_dp_read_sink_count(&intel_dp->aux);
4752 if (ret < 0)
4753 return false;
4754
4755 /*
4756 * Sink count can change between short pulse hpd hence
4757 * a member variable in intel_dp will track any changes
4758 * between short pulse interrupts.
4759 */
4760 intel_dp->sink_count = ret;
4761
4762 /*
4763 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4764 * a dongle is present but no display. Unless we require to know
4765 * if a dongle is present or not, we don't need to update
4766 * downstream port information. So, an early return here saves
4767 * time from performing other operations which are not required.
4768 */
4769 if (!intel_dp->sink_count)
4770 return false;
4771 }
4772
4773 return drm_dp_read_downstream_info(&intel_dp->aux, intel_dp->dpcd,
4774 intel_dp->downstream_ports) == 0;
4775 }
4776
4777 static bool
intel_dp_can_mst(struct intel_dp * intel_dp)4778 intel_dp_can_mst(struct intel_dp *intel_dp)
4779 {
4780 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4781
4782 return i915->params.enable_dp_mst &&
4783 intel_dp->can_mst &&
4784 drm_dp_read_mst_cap(&intel_dp->aux, intel_dp->dpcd);
4785 }
4786
4787 static void
intel_dp_configure_mst(struct intel_dp * intel_dp)4788 intel_dp_configure_mst(struct intel_dp *intel_dp)
4789 {
4790 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4791 struct intel_encoder *encoder =
4792 &dp_to_dig_port(intel_dp)->base;
4793 bool sink_can_mst = drm_dp_read_mst_cap(&intel_dp->aux, intel_dp->dpcd);
4794
4795 drm_dbg_kms(&i915->drm,
4796 "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4797 encoder->base.base.id, encoder->base.name,
4798 yesno(intel_dp->can_mst), yesno(sink_can_mst),
4799 yesno(i915->params.enable_dp_mst));
4800
4801 if (!intel_dp->can_mst)
4802 return;
4803
4804 intel_dp->is_mst = sink_can_mst &&
4805 i915->params.enable_dp_mst;
4806
4807 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4808 intel_dp->is_mst);
4809 }
4810
4811 static bool
intel_dp_get_sink_irq_esi(struct intel_dp * intel_dp,u8 * sink_irq_vector)4812 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4813 {
4814 return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4815 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4816 DP_DPRX_ESI_LEN;
4817 }
4818
4819 bool
intel_dp_needs_vsc_sdp(const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)4820 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4821 const struct drm_connector_state *conn_state)
4822 {
4823 /*
4824 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4825 * of Color Encoding Format and Content Color Gamut], in order to
4826 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4827 */
4828 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4829 return true;
4830
4831 switch (conn_state->colorspace) {
4832 case DRM_MODE_COLORIMETRY_SYCC_601:
4833 case DRM_MODE_COLORIMETRY_OPYCC_601:
4834 case DRM_MODE_COLORIMETRY_BT2020_YCC:
4835 case DRM_MODE_COLORIMETRY_BT2020_RGB:
4836 case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4837 return true;
4838 default:
4839 break;
4840 }
4841
4842 return false;
4843 }
4844
intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp * vsc,struct dp_sdp * sdp,size_t size)4845 static ssize_t intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
4846 struct dp_sdp *sdp, size_t size)
4847 {
4848 size_t length = sizeof(struct dp_sdp);
4849
4850 if (size < length)
4851 return -ENOSPC;
4852
4853 memset(sdp, 0, size);
4854
4855 /*
4856 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
4857 * VSC SDP Header Bytes
4858 */
4859 sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
4860 sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
4861 sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
4862 sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
4863
4864 /*
4865 * Only revision 0x5 supports Pixel Encoding/Colorimetry Format as
4866 * per DP 1.4a spec.
4867 */
4868 if (vsc->revision != 0x5)
4869 goto out;
4870
4871 /* VSC SDP Payload for DB16 through DB18 */
4872 /* Pixel Encoding and Colorimetry Formats */
4873 sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
4874 sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
4875
4876 switch (vsc->bpc) {
4877 case 6:
4878 /* 6bpc: 0x0 */
4879 break;
4880 case 8:
4881 sdp->db[17] = 0x1; /* DB17[3:0] */
4882 break;
4883 case 10:
4884 sdp->db[17] = 0x2;
4885 break;
4886 case 12:
4887 sdp->db[17] = 0x3;
4888 break;
4889 case 16:
4890 sdp->db[17] = 0x4;
4891 break;
4892 default:
4893 MISSING_CASE(vsc->bpc);
4894 break;
4895 }
4896 /* Dynamic Range and Component Bit Depth */
4897 if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
4898 sdp->db[17] |= 0x80; /* DB17[7] */
4899
4900 /* Content Type */
4901 sdp->db[18] = vsc->content_type & 0x7;
4902
4903 out:
4904 return length;
4905 }
4906
4907 static ssize_t
intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe * drm_infoframe,struct dp_sdp * sdp,size_t size)4908 intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe *drm_infoframe,
4909 struct dp_sdp *sdp,
4910 size_t size)
4911 {
4912 size_t length = sizeof(struct dp_sdp);
4913 const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4914 unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4915 ssize_t len;
4916
4917 if (size < length)
4918 return -ENOSPC;
4919
4920 memset(sdp, 0, size);
4921
4922 len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf));
4923 if (len < 0) {
4924 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4925 return -ENOSPC;
4926 }
4927
4928 if (len != infoframe_size) {
4929 DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4930 return -ENOSPC;
4931 }
4932
4933 /*
4934 * Set up the infoframe sdp packet for HDR static metadata.
4935 * Prepare VSC Header for SU as per DP 1.4a spec,
4936 * Table 2-100 and Table 2-101
4937 */
4938
4939 /* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */
4940 sdp->sdp_header.HB0 = 0;
4941 /*
4942 * Packet Type 80h + Non-audio INFOFRAME Type value
4943 * HDMI_INFOFRAME_TYPE_DRM: 0x87
4944 * - 80h + Non-audio INFOFRAME Type value
4945 * - InfoFrame Type: 0x07
4946 * [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame]
4947 */
4948 sdp->sdp_header.HB1 = drm_infoframe->type;
4949 /*
4950 * Least Significant Eight Bits of (Data Byte Count – 1)
4951 * infoframe_size - 1
4952 */
4953 sdp->sdp_header.HB2 = 0x1D;
4954 /* INFOFRAME SDP Version Number */
4955 sdp->sdp_header.HB3 = (0x13 << 2);
4956 /* CTA Header Byte 2 (INFOFRAME Version Number) */
4957 sdp->db[0] = drm_infoframe->version;
4958 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4959 sdp->db[1] = drm_infoframe->length;
4960 /*
4961 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4962 * HDMI_INFOFRAME_HEADER_SIZE
4963 */
4964 BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4965 memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4966 HDMI_DRM_INFOFRAME_SIZE);
4967
4968 /*
4969 * Size of DP infoframe sdp packet for HDR static metadata consists of
4970 * - DP SDP Header(struct dp_sdp_header): 4 bytes
4971 * - Two Data Blocks: 2 bytes
4972 * CTA Header Byte2 (INFOFRAME Version Number)
4973 * CTA Header Byte3 (Length of INFOFRAME)
4974 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4975 *
4976 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4977 * infoframe size. But GEN11+ has larger than that size, write_infoframe
4978 * will pad rest of the size.
4979 */
4980 return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE;
4981 }
4982
intel_write_dp_sdp(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,unsigned int type)4983 static void intel_write_dp_sdp(struct intel_encoder *encoder,
4984 const struct intel_crtc_state *crtc_state,
4985 unsigned int type)
4986 {
4987 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
4988 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4989 struct dp_sdp sdp = {};
4990 ssize_t len;
4991
4992 if ((crtc_state->infoframes.enable &
4993 intel_hdmi_infoframe_enable(type)) == 0)
4994 return;
4995
4996 switch (type) {
4997 case DP_SDP_VSC:
4998 len = intel_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp,
4999 sizeof(sdp));
5000 break;
5001 case HDMI_PACKET_TYPE_GAMUT_METADATA:
5002 len = intel_dp_hdr_metadata_infoframe_sdp_pack(&crtc_state->infoframes.drm.drm,
5003 &sdp, sizeof(sdp));
5004 break;
5005 default:
5006 MISSING_CASE(type);
5007 return;
5008 }
5009
5010 if (drm_WARN_ON(&dev_priv->drm, len < 0))
5011 return;
5012
5013 dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len);
5014 }
5015
intel_write_dp_vsc_sdp(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,struct drm_dp_vsc_sdp * vsc)5016 void intel_write_dp_vsc_sdp(struct intel_encoder *encoder,
5017 const struct intel_crtc_state *crtc_state,
5018 struct drm_dp_vsc_sdp *vsc)
5019 {
5020 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5021 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5022 struct dp_sdp sdp = {};
5023 ssize_t len;
5024
5025 len = intel_dp_vsc_sdp_pack(vsc, &sdp, sizeof(sdp));
5026
5027 if (drm_WARN_ON(&dev_priv->drm, len < 0))
5028 return;
5029
5030 dig_port->write_infoframe(encoder, crtc_state, DP_SDP_VSC,
5031 &sdp, len);
5032 }
5033
intel_dp_set_infoframes(struct intel_encoder * encoder,bool enable,const struct intel_crtc_state * crtc_state,const struct drm_connector_state * conn_state)5034 void intel_dp_set_infoframes(struct intel_encoder *encoder,
5035 bool enable,
5036 const struct intel_crtc_state *crtc_state,
5037 const struct drm_connector_state *conn_state)
5038 {
5039 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5040 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5041 i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
5042 u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
5043 VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW |
5044 VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK;
5045 u32 val = intel_de_read(dev_priv, reg);
5046
5047 /* TODO: Add DSC case (DIP_ENABLE_PPS) */
5048 /* When PSR is enabled, this routine doesn't disable VSC DIP */
5049 if (intel_psr_enabled(intel_dp))
5050 val &= ~dip_enable;
5051 else
5052 val &= ~(dip_enable | VIDEO_DIP_ENABLE_VSC_HSW);
5053
5054 if (!enable) {
5055 intel_de_write(dev_priv, reg, val);
5056 intel_de_posting_read(dev_priv, reg);
5057 return;
5058 }
5059
5060 intel_de_write(dev_priv, reg, val);
5061 intel_de_posting_read(dev_priv, reg);
5062
5063 /* When PSR is enabled, VSC SDP is handled by PSR routine */
5064 if (!intel_psr_enabled(intel_dp))
5065 intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC);
5066
5067 intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA);
5068 }
5069
intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp * vsc,const void * buffer,size_t size)5070 static int intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp *vsc,
5071 const void *buffer, size_t size)
5072 {
5073 const struct dp_sdp *sdp = buffer;
5074
5075 if (size < sizeof(struct dp_sdp))
5076 return -EINVAL;
5077
5078 memset(vsc, 0, size);
5079
5080 if (sdp->sdp_header.HB0 != 0)
5081 return -EINVAL;
5082
5083 if (sdp->sdp_header.HB1 != DP_SDP_VSC)
5084 return -EINVAL;
5085
5086 vsc->sdp_type = sdp->sdp_header.HB1;
5087 vsc->revision = sdp->sdp_header.HB2;
5088 vsc->length = sdp->sdp_header.HB3;
5089
5090 if ((sdp->sdp_header.HB2 == 0x2 && sdp->sdp_header.HB3 == 0x8) ||
5091 (sdp->sdp_header.HB2 == 0x4 && sdp->sdp_header.HB3 == 0xe)) {
5092 /*
5093 * - HB2 = 0x2, HB3 = 0x8
5094 * VSC SDP supporting 3D stereo + PSR
5095 * - HB2 = 0x4, HB3 = 0xe
5096 * VSC SDP supporting 3D stereo + PSR2 with Y-coordinate of
5097 * first scan line of the SU region (applies to eDP v1.4b
5098 * and higher).
5099 */
5100 return 0;
5101 } else if (sdp->sdp_header.HB2 == 0x5 && sdp->sdp_header.HB3 == 0x13) {
5102 /*
5103 * - HB2 = 0x5, HB3 = 0x13
5104 * VSC SDP supporting 3D stereo + PSR2 + Pixel Encoding/Colorimetry
5105 * Format.
5106 */
5107 vsc->pixelformat = (sdp->db[16] >> 4) & 0xf;
5108 vsc->colorimetry = sdp->db[16] & 0xf;
5109 vsc->dynamic_range = (sdp->db[17] >> 7) & 0x1;
5110
5111 switch (sdp->db[17] & 0x7) {
5112 case 0x0:
5113 vsc->bpc = 6;
5114 break;
5115 case 0x1:
5116 vsc->bpc = 8;
5117 break;
5118 case 0x2:
5119 vsc->bpc = 10;
5120 break;
5121 case 0x3:
5122 vsc->bpc = 12;
5123 break;
5124 case 0x4:
5125 vsc->bpc = 16;
5126 break;
5127 default:
5128 MISSING_CASE(sdp->db[17] & 0x7);
5129 return -EINVAL;
5130 }
5131
5132 vsc->content_type = sdp->db[18] & 0x7;
5133 } else {
5134 return -EINVAL;
5135 }
5136
5137 return 0;
5138 }
5139
5140 static int
intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe * drm_infoframe,const void * buffer,size_t size)5141 intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe *drm_infoframe,
5142 const void *buffer, size_t size)
5143 {
5144 int ret;
5145
5146 const struct dp_sdp *sdp = buffer;
5147
5148 if (size < sizeof(struct dp_sdp))
5149 return -EINVAL;
5150
5151 if (sdp->sdp_header.HB0 != 0)
5152 return -EINVAL;
5153
5154 if (sdp->sdp_header.HB1 != HDMI_INFOFRAME_TYPE_DRM)
5155 return -EINVAL;
5156
5157 /*
5158 * Least Significant Eight Bits of (Data Byte Count – 1)
5159 * 1Dh (i.e., Data Byte Count = 30 bytes).
5160 */
5161 if (sdp->sdp_header.HB2 != 0x1D)
5162 return -EINVAL;
5163
5164 /* Most Significant Two Bits of (Data Byte Count – 1), Clear to 00b. */
5165 if ((sdp->sdp_header.HB3 & 0x3) != 0)
5166 return -EINVAL;
5167
5168 /* INFOFRAME SDP Version Number */
5169 if (((sdp->sdp_header.HB3 >> 2) & 0x3f) != 0x13)
5170 return -EINVAL;
5171
5172 /* CTA Header Byte 2 (INFOFRAME Version Number) */
5173 if (sdp->db[0] != 1)
5174 return -EINVAL;
5175
5176 /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
5177 if (sdp->db[1] != HDMI_DRM_INFOFRAME_SIZE)
5178 return -EINVAL;
5179
5180 ret = hdmi_drm_infoframe_unpack_only(drm_infoframe, &sdp->db[2],
5181 HDMI_DRM_INFOFRAME_SIZE);
5182
5183 return ret;
5184 }
5185
intel_read_dp_vsc_sdp(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct drm_dp_vsc_sdp * vsc)5186 static void intel_read_dp_vsc_sdp(struct intel_encoder *encoder,
5187 struct intel_crtc_state *crtc_state,
5188 struct drm_dp_vsc_sdp *vsc)
5189 {
5190 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5191 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5192 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5193 unsigned int type = DP_SDP_VSC;
5194 struct dp_sdp sdp = {};
5195 int ret;
5196
5197 /* When PSR is enabled, VSC SDP is handled by PSR routine */
5198 if (intel_psr_enabled(intel_dp))
5199 return;
5200
5201 if ((crtc_state->infoframes.enable &
5202 intel_hdmi_infoframe_enable(type)) == 0)
5203 return;
5204
5205 dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp));
5206
5207 ret = intel_dp_vsc_sdp_unpack(vsc, &sdp, sizeof(sdp));
5208
5209 if (ret)
5210 drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP VSC SDP\n");
5211 }
5212
intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,struct hdmi_drm_infoframe * drm_infoframe)5213 static void intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder *encoder,
5214 struct intel_crtc_state *crtc_state,
5215 struct hdmi_drm_infoframe *drm_infoframe)
5216 {
5217 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5218 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5219 unsigned int type = HDMI_PACKET_TYPE_GAMUT_METADATA;
5220 struct dp_sdp sdp = {};
5221 int ret;
5222
5223 if ((crtc_state->infoframes.enable &
5224 intel_hdmi_infoframe_enable(type)) == 0)
5225 return;
5226
5227 dig_port->read_infoframe(encoder, crtc_state, type, &sdp,
5228 sizeof(sdp));
5229
5230 ret = intel_dp_hdr_metadata_infoframe_sdp_unpack(drm_infoframe, &sdp,
5231 sizeof(sdp));
5232
5233 if (ret)
5234 drm_dbg_kms(&dev_priv->drm,
5235 "Failed to unpack DP HDR Metadata Infoframe SDP\n");
5236 }
5237
intel_read_dp_sdp(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,unsigned int type)5238 void intel_read_dp_sdp(struct intel_encoder *encoder,
5239 struct intel_crtc_state *crtc_state,
5240 unsigned int type)
5241 {
5242 if (encoder->type != INTEL_OUTPUT_DDI)
5243 return;
5244
5245 switch (type) {
5246 case DP_SDP_VSC:
5247 intel_read_dp_vsc_sdp(encoder, crtc_state,
5248 &crtc_state->infoframes.vsc);
5249 break;
5250 case HDMI_PACKET_TYPE_GAMUT_METADATA:
5251 intel_read_dp_hdr_metadata_infoframe_sdp(encoder, crtc_state,
5252 &crtc_state->infoframes.drm.drm);
5253 break;
5254 default:
5255 MISSING_CASE(type);
5256 break;
5257 }
5258 }
5259
intel_dp_autotest_link_training(struct intel_dp * intel_dp)5260 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
5261 {
5262 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5263 int status = 0;
5264 int test_link_rate;
5265 u8 test_lane_count, test_link_bw;
5266 /* (DP CTS 1.2)
5267 * 4.3.1.11
5268 */
5269 /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
5270 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
5271 &test_lane_count);
5272
5273 if (status <= 0) {
5274 drm_dbg_kms(&i915->drm, "Lane count read failed\n");
5275 return DP_TEST_NAK;
5276 }
5277 test_lane_count &= DP_MAX_LANE_COUNT_MASK;
5278
5279 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
5280 &test_link_bw);
5281 if (status <= 0) {
5282 drm_dbg_kms(&i915->drm, "Link Rate read failed\n");
5283 return DP_TEST_NAK;
5284 }
5285 test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
5286
5287 /* Validate the requested link rate and lane count */
5288 if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
5289 test_lane_count))
5290 return DP_TEST_NAK;
5291
5292 intel_dp->compliance.test_lane_count = test_lane_count;
5293 intel_dp->compliance.test_link_rate = test_link_rate;
5294
5295 return DP_TEST_ACK;
5296 }
5297
intel_dp_autotest_video_pattern(struct intel_dp * intel_dp)5298 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
5299 {
5300 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5301 u8 test_pattern;
5302 u8 test_misc;
5303 __be16 h_width, v_height;
5304 int status = 0;
5305
5306 /* Read the TEST_PATTERN (DP CTS 3.1.5) */
5307 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
5308 &test_pattern);
5309 if (status <= 0) {
5310 drm_dbg_kms(&i915->drm, "Test pattern read failed\n");
5311 return DP_TEST_NAK;
5312 }
5313 if (test_pattern != DP_COLOR_RAMP)
5314 return DP_TEST_NAK;
5315
5316 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
5317 &h_width, 2);
5318 if (status <= 0) {
5319 drm_dbg_kms(&i915->drm, "H Width read failed\n");
5320 return DP_TEST_NAK;
5321 }
5322
5323 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
5324 &v_height, 2);
5325 if (status <= 0) {
5326 drm_dbg_kms(&i915->drm, "V Height read failed\n");
5327 return DP_TEST_NAK;
5328 }
5329
5330 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
5331 &test_misc);
5332 if (status <= 0) {
5333 drm_dbg_kms(&i915->drm, "TEST MISC read failed\n");
5334 return DP_TEST_NAK;
5335 }
5336 if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
5337 return DP_TEST_NAK;
5338 if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
5339 return DP_TEST_NAK;
5340 switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
5341 case DP_TEST_BIT_DEPTH_6:
5342 intel_dp->compliance.test_data.bpc = 6;
5343 break;
5344 case DP_TEST_BIT_DEPTH_8:
5345 intel_dp->compliance.test_data.bpc = 8;
5346 break;
5347 default:
5348 return DP_TEST_NAK;
5349 }
5350
5351 intel_dp->compliance.test_data.video_pattern = test_pattern;
5352 intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
5353 intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
5354 /* Set test active flag here so userspace doesn't interrupt things */
5355 intel_dp->compliance.test_active = true;
5356
5357 return DP_TEST_ACK;
5358 }
5359
intel_dp_autotest_edid(struct intel_dp * intel_dp)5360 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
5361 {
5362 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5363 u8 test_result = DP_TEST_ACK;
5364 struct intel_connector *intel_connector = intel_dp->attached_connector;
5365 struct drm_connector *connector = &intel_connector->base;
5366
5367 if (intel_connector->detect_edid == NULL ||
5368 connector->edid_corrupt ||
5369 intel_dp->aux.i2c_defer_count > 6) {
5370 /* Check EDID read for NACKs, DEFERs and corruption
5371 * (DP CTS 1.2 Core r1.1)
5372 * 4.2.2.4 : Failed EDID read, I2C_NAK
5373 * 4.2.2.5 : Failed EDID read, I2C_DEFER
5374 * 4.2.2.6 : EDID corruption detected
5375 * Use failsafe mode for all cases
5376 */
5377 if (intel_dp->aux.i2c_nack_count > 0 ||
5378 intel_dp->aux.i2c_defer_count > 0)
5379 drm_dbg_kms(&i915->drm,
5380 "EDID read had %d NACKs, %d DEFERs\n",
5381 intel_dp->aux.i2c_nack_count,
5382 intel_dp->aux.i2c_defer_count);
5383 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
5384 } else {
5385 struct edid *block = intel_connector->detect_edid;
5386
5387 /* We have to write the checksum
5388 * of the last block read
5389 */
5390 block += intel_connector->detect_edid->extensions;
5391
5392 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
5393 block->checksum) <= 0)
5394 drm_dbg_kms(&i915->drm,
5395 "Failed to write EDID checksum\n");
5396
5397 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
5398 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
5399 }
5400
5401 /* Set test active flag here so userspace doesn't interrupt things */
5402 intel_dp->compliance.test_active = true;
5403
5404 return test_result;
5405 }
5406
intel_dp_prepare_phytest(struct intel_dp * intel_dp)5407 static u8 intel_dp_prepare_phytest(struct intel_dp *intel_dp)
5408 {
5409 struct drm_dp_phy_test_params *data =
5410 &intel_dp->compliance.test_data.phytest;
5411
5412 if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) {
5413 DRM_DEBUG_KMS("DP Phy Test pattern AUX read failure\n");
5414 return DP_TEST_NAK;
5415 }
5416
5417 /*
5418 * link_mst is set to false to avoid executing mst related code
5419 * during compliance testing.
5420 */
5421 intel_dp->link_mst = false;
5422
5423 return DP_TEST_ACK;
5424 }
5425
intel_dp_phy_pattern_update(struct intel_dp * intel_dp)5426 static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp)
5427 {
5428 struct drm_i915_private *dev_priv =
5429 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
5430 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5431 struct drm_dp_phy_test_params *data =
5432 &intel_dp->compliance.test_data.phytest;
5433 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
5434 enum pipe pipe = crtc->pipe;
5435 u32 pattern_val;
5436
5437 switch (data->phy_pattern) {
5438 case DP_PHY_TEST_PATTERN_NONE:
5439 DRM_DEBUG_KMS("Disable Phy Test Pattern\n");
5440 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0);
5441 break;
5442 case DP_PHY_TEST_PATTERN_D10_2:
5443 DRM_DEBUG_KMS("Set D10.2 Phy Test Pattern\n");
5444 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5445 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2);
5446 break;
5447 case DP_PHY_TEST_PATTERN_ERROR_COUNT:
5448 DRM_DEBUG_KMS("Set Error Count Phy Test Pattern\n");
5449 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5450 DDI_DP_COMP_CTL_ENABLE |
5451 DDI_DP_COMP_CTL_SCRAMBLED_0);
5452 break;
5453 case DP_PHY_TEST_PATTERN_PRBS7:
5454 DRM_DEBUG_KMS("Set PRBS7 Phy Test Pattern\n");
5455 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5456 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7);
5457 break;
5458 case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
5459 /*
5460 * FIXME: Ideally pattern should come from DPCD 0x250. As
5461 * current firmware of DPR-100 could not set it, so hardcoding
5462 * now for complaince test.
5463 */
5464 DRM_DEBUG_KMS("Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n");
5465 pattern_val = 0x3e0f83e0;
5466 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val);
5467 pattern_val = 0x0f83e0f8;
5468 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val);
5469 pattern_val = 0x0000f83e;
5470 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val);
5471 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5472 DDI_DP_COMP_CTL_ENABLE |
5473 DDI_DP_COMP_CTL_CUSTOM80);
5474 break;
5475 case DP_PHY_TEST_PATTERN_CP2520:
5476 /*
5477 * FIXME: Ideally pattern should come from DPCD 0x24A. As
5478 * current firmware of DPR-100 could not set it, so hardcoding
5479 * now for complaince test.
5480 */
5481 DRM_DEBUG_KMS("Set HBR2 compliance Phy Test Pattern\n");
5482 pattern_val = 0xFB;
5483 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5484 DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 |
5485 pattern_val);
5486 break;
5487 default:
5488 WARN(1, "Invalid Phy Test Pattern\n");
5489 }
5490 }
5491
5492 static void
intel_dp_autotest_phy_ddi_disable(struct intel_dp * intel_dp)5493 intel_dp_autotest_phy_ddi_disable(struct intel_dp *intel_dp)
5494 {
5495 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5496 struct drm_device *dev = dig_port->base.base.dev;
5497 struct drm_i915_private *dev_priv = to_i915(dev);
5498 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
5499 enum pipe pipe = crtc->pipe;
5500 u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5501
5502 trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5503 TRANS_DDI_FUNC_CTL(pipe));
5504 trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5505 dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5506
5507 trans_ddi_func_ctl_value &= ~(TRANS_DDI_FUNC_ENABLE |
5508 TGL_TRANS_DDI_PORT_MASK);
5509 trans_conf_value &= ~PIPECONF_ENABLE;
5510 dp_tp_ctl_value &= ~DP_TP_CTL_ENABLE;
5511
5512 intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5513 intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5514 trans_ddi_func_ctl_value);
5515 intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5516 }
5517
5518 static void
intel_dp_autotest_phy_ddi_enable(struct intel_dp * intel_dp,uint8_t lane_cnt)5519 intel_dp_autotest_phy_ddi_enable(struct intel_dp *intel_dp, uint8_t lane_cnt)
5520 {
5521 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5522 struct drm_device *dev = dig_port->base.base.dev;
5523 struct drm_i915_private *dev_priv = to_i915(dev);
5524 enum port port = dig_port->base.port;
5525 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
5526 enum pipe pipe = crtc->pipe;
5527 u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5528
5529 trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5530 TRANS_DDI_FUNC_CTL(pipe));
5531 trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5532 dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5533
5534 trans_ddi_func_ctl_value |= TRANS_DDI_FUNC_ENABLE |
5535 TGL_TRANS_DDI_SELECT_PORT(port);
5536 trans_conf_value |= PIPECONF_ENABLE;
5537 dp_tp_ctl_value |= DP_TP_CTL_ENABLE;
5538
5539 intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5540 intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5541 intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5542 trans_ddi_func_ctl_value);
5543 }
5544
intel_dp_process_phy_request(struct intel_dp * intel_dp)5545 void intel_dp_process_phy_request(struct intel_dp *intel_dp)
5546 {
5547 struct drm_dp_phy_test_params *data =
5548 &intel_dp->compliance.test_data.phytest;
5549 u8 link_status[DP_LINK_STATUS_SIZE];
5550
5551 if (!intel_dp_get_link_status(intel_dp, link_status)) {
5552 DRM_DEBUG_KMS("failed to get link status\n");
5553 return;
5554 }
5555
5556 /* retrieve vswing & pre-emphasis setting */
5557 intel_dp_get_adjust_train(intel_dp, link_status);
5558
5559 intel_dp_autotest_phy_ddi_disable(intel_dp);
5560
5561 intel_dp_set_signal_levels(intel_dp);
5562
5563 intel_dp_phy_pattern_update(intel_dp);
5564
5565 intel_dp_autotest_phy_ddi_enable(intel_dp, data->num_lanes);
5566
5567 drm_dp_set_phy_test_pattern(&intel_dp->aux, data,
5568 link_status[DP_DPCD_REV]);
5569 }
5570
intel_dp_autotest_phy_pattern(struct intel_dp * intel_dp)5571 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
5572 {
5573 u8 test_result;
5574
5575 test_result = intel_dp_prepare_phytest(intel_dp);
5576 if (test_result != DP_TEST_ACK)
5577 DRM_ERROR("Phy test preparation failed\n");
5578
5579 intel_dp_process_phy_request(intel_dp);
5580
5581 return test_result;
5582 }
5583
intel_dp_handle_test_request(struct intel_dp * intel_dp)5584 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
5585 {
5586 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5587 u8 response = DP_TEST_NAK;
5588 u8 request = 0;
5589 int status;
5590
5591 status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5592 if (status <= 0) {
5593 drm_dbg_kms(&i915->drm,
5594 "Could not read test request from sink\n");
5595 goto update_status;
5596 }
5597
5598 switch (request) {
5599 case DP_TEST_LINK_TRAINING:
5600 drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n");
5601 response = intel_dp_autotest_link_training(intel_dp);
5602 break;
5603 case DP_TEST_LINK_VIDEO_PATTERN:
5604 drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n");
5605 response = intel_dp_autotest_video_pattern(intel_dp);
5606 break;
5607 case DP_TEST_LINK_EDID_READ:
5608 drm_dbg_kms(&i915->drm, "EDID test requested\n");
5609 response = intel_dp_autotest_edid(intel_dp);
5610 break;
5611 case DP_TEST_LINK_PHY_TEST_PATTERN:
5612 drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n");
5613 response = intel_dp_autotest_phy_pattern(intel_dp);
5614 break;
5615 default:
5616 drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n",
5617 request);
5618 break;
5619 }
5620
5621 if (response & DP_TEST_ACK)
5622 intel_dp->compliance.test_type = request;
5623
5624 update_status:
5625 status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5626 if (status <= 0)
5627 drm_dbg_kms(&i915->drm,
5628 "Could not write test response to sink\n");
5629 }
5630
5631 /**
5632 * intel_dp_check_mst_status - service any pending MST interrupts, check link status
5633 * @intel_dp: Intel DP struct
5634 *
5635 * Read any pending MST interrupts, call MST core to handle these and ack the
5636 * interrupts. Check if the main and AUX link state is ok.
5637 *
5638 * Returns:
5639 * - %true if pending interrupts were serviced (or no interrupts were
5640 * pending) w/o detecting an error condition.
5641 * - %false if an error condition - like AUX failure or a loss of link - is
5642 * detected, which needs servicing from the hotplug work.
5643 */
5644 static bool
intel_dp_check_mst_status(struct intel_dp * intel_dp)5645 intel_dp_check_mst_status(struct intel_dp *intel_dp)
5646 {
5647 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5648 bool link_ok = true;
5649
5650 drm_WARN_ON_ONCE(&i915->drm, intel_dp->active_mst_links < 0);
5651
5652 for (;;) {
5653 u8 esi[DP_DPRX_ESI_LEN] = {};
5654 bool handled;
5655 int retry;
5656
5657 if (!intel_dp_get_sink_irq_esi(intel_dp, esi)) {
5658 drm_dbg_kms(&i915->drm,
5659 "failed to get ESI - device may have failed\n");
5660 link_ok = false;
5661
5662 break;
5663 }
5664
5665 /* check link status - esi[10] = 0x200c */
5666 if (intel_dp->active_mst_links > 0 && link_ok &&
5667 !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5668 drm_dbg_kms(&i915->drm,
5669 "channel EQ not ok, retraining\n");
5670 link_ok = false;
5671 }
5672
5673 drm_dbg_kms(&i915->drm, "got esi %3ph\n", esi);
5674
5675 drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
5676 if (!handled)
5677 break;
5678
5679 for (retry = 0; retry < 3; retry++) {
5680 int wret;
5681
5682 wret = drm_dp_dpcd_write(&intel_dp->aux,
5683 DP_SINK_COUNT_ESI+1,
5684 &esi[1], 3);
5685 if (wret == 3)
5686 break;
5687 }
5688 }
5689
5690 return link_ok;
5691 }
5692
5693 static bool
intel_dp_needs_link_retrain(struct intel_dp * intel_dp)5694 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5695 {
5696 u8 link_status[DP_LINK_STATUS_SIZE];
5697
5698 if (!intel_dp->link_trained)
5699 return false;
5700
5701 /*
5702 * While PSR source HW is enabled, it will control main-link sending
5703 * frames, enabling and disabling it so trying to do a retrain will fail
5704 * as the link would or not be on or it could mix training patterns
5705 * and frame data at the same time causing retrain to fail.
5706 * Also when exiting PSR, HW will retrain the link anyways fixing
5707 * any link status error.
5708 */
5709 if (intel_psr_enabled(intel_dp))
5710 return false;
5711
5712 if (!intel_dp_get_link_status(intel_dp, link_status))
5713 return false;
5714
5715 /*
5716 * Validate the cached values of intel_dp->link_rate and
5717 * intel_dp->lane_count before attempting to retrain.
5718 */
5719 if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5720 intel_dp->lane_count))
5721 return false;
5722
5723 /* Retrain if Channel EQ or CR not ok */
5724 return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5725 }
5726
intel_dp_has_connector(struct intel_dp * intel_dp,const struct drm_connector_state * conn_state)5727 static bool intel_dp_has_connector(struct intel_dp *intel_dp,
5728 const struct drm_connector_state *conn_state)
5729 {
5730 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5731 struct intel_encoder *encoder;
5732 enum pipe pipe;
5733
5734 if (!conn_state->best_encoder)
5735 return false;
5736
5737 /* SST */
5738 encoder = &dp_to_dig_port(intel_dp)->base;
5739 if (conn_state->best_encoder == &encoder->base)
5740 return true;
5741
5742 /* MST */
5743 for_each_pipe(i915, pipe) {
5744 encoder = &intel_dp->mst_encoders[pipe]->base;
5745 if (conn_state->best_encoder == &encoder->base)
5746 return true;
5747 }
5748
5749 return false;
5750 }
5751
intel_dp_prep_link_retrain(struct intel_dp * intel_dp,struct drm_modeset_acquire_ctx * ctx,u32 * crtc_mask)5752 static int intel_dp_prep_link_retrain(struct intel_dp *intel_dp,
5753 struct drm_modeset_acquire_ctx *ctx,
5754 u32 *crtc_mask)
5755 {
5756 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5757 struct drm_connector_list_iter conn_iter;
5758 struct intel_connector *connector;
5759 int ret = 0;
5760
5761 *crtc_mask = 0;
5762
5763 if (!intel_dp_needs_link_retrain(intel_dp))
5764 return 0;
5765
5766 drm_connector_list_iter_begin(&i915->drm, &conn_iter);
5767 for_each_intel_connector_iter(connector, &conn_iter) {
5768 struct drm_connector_state *conn_state =
5769 connector->base.state;
5770 struct intel_crtc_state *crtc_state;
5771 struct intel_crtc *crtc;
5772
5773 if (!intel_dp_has_connector(intel_dp, conn_state))
5774 continue;
5775
5776 crtc = to_intel_crtc(conn_state->crtc);
5777 if (!crtc)
5778 continue;
5779
5780 ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5781 if (ret)
5782 break;
5783
5784 crtc_state = to_intel_crtc_state(crtc->base.state);
5785
5786 drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state));
5787
5788 if (!crtc_state->hw.active)
5789 continue;
5790
5791 if (conn_state->commit &&
5792 !try_wait_for_completion(&conn_state->commit->hw_done))
5793 continue;
5794
5795 *crtc_mask |= drm_crtc_mask(&crtc->base);
5796 }
5797 drm_connector_list_iter_end(&conn_iter);
5798
5799 if (!intel_dp_needs_link_retrain(intel_dp))
5800 *crtc_mask = 0;
5801
5802 return ret;
5803 }
5804
intel_dp_is_connected(struct intel_dp * intel_dp)5805 static bool intel_dp_is_connected(struct intel_dp *intel_dp)
5806 {
5807 struct intel_connector *connector = intel_dp->attached_connector;
5808
5809 return connector->base.status == connector_status_connected ||
5810 intel_dp->is_mst;
5811 }
5812
intel_dp_retrain_link(struct intel_encoder * encoder,struct drm_modeset_acquire_ctx * ctx)5813 int intel_dp_retrain_link(struct intel_encoder *encoder,
5814 struct drm_modeset_acquire_ctx *ctx)
5815 {
5816 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5817 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5818 struct intel_crtc *crtc;
5819 u32 crtc_mask;
5820 int ret;
5821
5822 if (!intel_dp_is_connected(intel_dp))
5823 return 0;
5824
5825 ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5826 ctx);
5827 if (ret)
5828 return ret;
5829
5830 ret = intel_dp_prep_link_retrain(intel_dp, ctx, &crtc_mask);
5831 if (ret)
5832 return ret;
5833
5834 if (crtc_mask == 0)
5835 return 0;
5836
5837 drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] retraining link\n",
5838 encoder->base.base.id, encoder->base.name);
5839
5840 for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5841 const struct intel_crtc_state *crtc_state =
5842 to_intel_crtc_state(crtc->base.state);
5843
5844 /* Suppress underruns caused by re-training */
5845 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5846 if (crtc_state->has_pch_encoder)
5847 intel_set_pch_fifo_underrun_reporting(dev_priv,
5848 intel_crtc_pch_transcoder(crtc), false);
5849 }
5850
5851 intel_dp_start_link_train(intel_dp);
5852 intel_dp_stop_link_train(intel_dp);
5853
5854 for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5855 const struct intel_crtc_state *crtc_state =
5856 to_intel_crtc_state(crtc->base.state);
5857
5858 /* Keep underrun reporting disabled until things are stable */
5859 intel_wait_for_vblank(dev_priv, crtc->pipe);
5860
5861 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5862 if (crtc_state->has_pch_encoder)
5863 intel_set_pch_fifo_underrun_reporting(dev_priv,
5864 intel_crtc_pch_transcoder(crtc), true);
5865 }
5866
5867 return 0;
5868 }
5869
5870 /*
5871 * If display is now connected check links status,
5872 * there has been known issues of link loss triggering
5873 * long pulse.
5874 *
5875 * Some sinks (eg. ASUS PB287Q) seem to perform some
5876 * weird HPD ping pong during modesets. So we can apparently
5877 * end up with HPD going low during a modeset, and then
5878 * going back up soon after. And once that happens we must
5879 * retrain the link to get a picture. That's in case no
5880 * userspace component reacted to intermittent HPD dip.
5881 */
5882 static enum intel_hotplug_state
intel_dp_hotplug(struct intel_encoder * encoder,struct intel_connector * connector)5883 intel_dp_hotplug(struct intel_encoder *encoder,
5884 struct intel_connector *connector)
5885 {
5886 struct drm_modeset_acquire_ctx ctx;
5887 enum intel_hotplug_state state;
5888 int ret;
5889
5890 state = intel_encoder_hotplug(encoder, connector);
5891
5892 drm_modeset_acquire_init(&ctx, 0);
5893
5894 for (;;) {
5895 ret = intel_dp_retrain_link(encoder, &ctx);
5896
5897 if (ret == -EDEADLK) {
5898 drm_modeset_backoff(&ctx);
5899 continue;
5900 }
5901
5902 break;
5903 }
5904
5905 drm_modeset_drop_locks(&ctx);
5906 drm_modeset_acquire_fini(&ctx);
5907 drm_WARN(encoder->base.dev, ret,
5908 "Acquiring modeset locks failed with %i\n", ret);
5909
5910 /*
5911 * Keeping it consistent with intel_ddi_hotplug() and
5912 * intel_hdmi_hotplug().
5913 */
5914 if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries)
5915 state = INTEL_HOTPLUG_RETRY;
5916
5917 return state;
5918 }
5919
intel_dp_check_service_irq(struct intel_dp * intel_dp)5920 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5921 {
5922 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5923 u8 val;
5924
5925 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5926 return;
5927
5928 if (drm_dp_dpcd_readb(&intel_dp->aux,
5929 DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5930 return;
5931
5932 drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5933
5934 if (val & DP_AUTOMATED_TEST_REQUEST)
5935 intel_dp_handle_test_request(intel_dp);
5936
5937 if (val & DP_CP_IRQ)
5938 intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5939
5940 if (val & DP_SINK_SPECIFIC_IRQ)
5941 drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n");
5942 }
5943
5944 /*
5945 * According to DP spec
5946 * 5.1.2:
5947 * 1. Read DPCD
5948 * 2. Configure link according to Receiver Capabilities
5949 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
5950 * 4. Check link status on receipt of hot-plug interrupt
5951 *
5952 * intel_dp_short_pulse - handles short pulse interrupts
5953 * when full detection is not required.
5954 * Returns %true if short pulse is handled and full detection
5955 * is NOT required and %false otherwise.
5956 */
5957 static bool
intel_dp_short_pulse(struct intel_dp * intel_dp)5958 intel_dp_short_pulse(struct intel_dp *intel_dp)
5959 {
5960 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5961 u8 old_sink_count = intel_dp->sink_count;
5962 bool ret;
5963
5964 /*
5965 * Clearing compliance test variables to allow capturing
5966 * of values for next automated test request.
5967 */
5968 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5969
5970 /*
5971 * Now read the DPCD to see if it's actually running
5972 * If the current value of sink count doesn't match with
5973 * the value that was stored earlier or dpcd read failed
5974 * we need to do full detection
5975 */
5976 ret = intel_dp_get_dpcd(intel_dp);
5977
5978 if ((old_sink_count != intel_dp->sink_count) || !ret) {
5979 /* No need to proceed if we are going to do full detect */
5980 return false;
5981 }
5982
5983 intel_dp_check_service_irq(intel_dp);
5984
5985 /* Handle CEC interrupts, if any */
5986 drm_dp_cec_irq(&intel_dp->aux);
5987
5988 /* defer to the hotplug work for link retraining if needed */
5989 if (intel_dp_needs_link_retrain(intel_dp))
5990 return false;
5991
5992 intel_psr_short_pulse(intel_dp);
5993
5994 if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5995 drm_dbg_kms(&dev_priv->drm,
5996 "Link Training Compliance Test requested\n");
5997 /* Send a Hotplug Uevent to userspace to start modeset */
5998 drm_kms_helper_hotplug_event(&dev_priv->drm);
5999 }
6000
6001 return true;
6002 }
6003
6004 /* XXX this is probably wrong for multiple downstream ports */
6005 static enum drm_connector_status
intel_dp_detect_dpcd(struct intel_dp * intel_dp)6006 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
6007 {
6008 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
6009 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6010 u8 *dpcd = intel_dp->dpcd;
6011 u8 type;
6012
6013 if (drm_WARN_ON(&i915->drm, intel_dp_is_edp(intel_dp)))
6014 return connector_status_connected;
6015
6016 if (lspcon->active)
6017 lspcon_resume(lspcon);
6018
6019 if (!intel_dp_get_dpcd(intel_dp))
6020 return connector_status_disconnected;
6021
6022 /* if there's no downstream port, we're done */
6023 if (!drm_dp_is_branch(dpcd))
6024 return connector_status_connected;
6025
6026 /* If we're HPD-aware, SINK_COUNT changes dynamically */
6027 if (intel_dp_has_sink_count(intel_dp) &&
6028 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
6029 return intel_dp->sink_count ?
6030 connector_status_connected : connector_status_disconnected;
6031 }
6032
6033 if (intel_dp_can_mst(intel_dp))
6034 return connector_status_connected;
6035
6036 /* If no HPD, poke DDC gently */
6037 if (drm_probe_ddc(&intel_dp->aux.ddc))
6038 return connector_status_connected;
6039
6040 /* Well we tried, say unknown for unreliable port types */
6041 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
6042 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
6043 if (type == DP_DS_PORT_TYPE_VGA ||
6044 type == DP_DS_PORT_TYPE_NON_EDID)
6045 return connector_status_unknown;
6046 } else {
6047 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
6048 DP_DWN_STRM_PORT_TYPE_MASK;
6049 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
6050 type == DP_DWN_STRM_PORT_TYPE_OTHER)
6051 return connector_status_unknown;
6052 }
6053
6054 /* Anything else is out of spec, warn and ignore */
6055 drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n");
6056 return connector_status_disconnected;
6057 }
6058
6059 static enum drm_connector_status
edp_detect(struct intel_dp * intel_dp)6060 edp_detect(struct intel_dp *intel_dp)
6061 {
6062 return connector_status_connected;
6063 }
6064
ibx_digital_port_connected(struct intel_encoder * encoder)6065 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
6066 {
6067 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6068 u32 bit = dev_priv->hotplug.pch_hpd[encoder->hpd_pin];
6069
6070 return intel_de_read(dev_priv, SDEISR) & bit;
6071 }
6072
g4x_digital_port_connected(struct intel_encoder * encoder)6073 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
6074 {
6075 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6076 u32 bit;
6077
6078 switch (encoder->hpd_pin) {
6079 case HPD_PORT_B:
6080 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
6081 break;
6082 case HPD_PORT_C:
6083 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
6084 break;
6085 case HPD_PORT_D:
6086 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
6087 break;
6088 default:
6089 MISSING_CASE(encoder->hpd_pin);
6090 return false;
6091 }
6092
6093 return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6094 }
6095
gm45_digital_port_connected(struct intel_encoder * encoder)6096 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
6097 {
6098 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6099 u32 bit;
6100
6101 switch (encoder->hpd_pin) {
6102 case HPD_PORT_B:
6103 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
6104 break;
6105 case HPD_PORT_C:
6106 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
6107 break;
6108 case HPD_PORT_D:
6109 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
6110 break;
6111 default:
6112 MISSING_CASE(encoder->hpd_pin);
6113 return false;
6114 }
6115
6116 return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6117 }
6118
ilk_digital_port_connected(struct intel_encoder * encoder)6119 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
6120 {
6121 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6122 u32 bit = dev_priv->hotplug.hpd[encoder->hpd_pin];
6123
6124 return intel_de_read(dev_priv, DEISR) & bit;
6125 }
6126
6127 /*
6128 * intel_digital_port_connected - is the specified port connected?
6129 * @encoder: intel_encoder
6130 *
6131 * In cases where there's a connector physically connected but it can't be used
6132 * by our hardware we also return false, since the rest of the driver should
6133 * pretty much treat the port as disconnected. This is relevant for type-C
6134 * (starting on ICL) where there's ownership involved.
6135 *
6136 * Return %true if port is connected, %false otherwise.
6137 */
intel_digital_port_connected(struct intel_encoder * encoder)6138 bool intel_digital_port_connected(struct intel_encoder *encoder)
6139 {
6140 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6141 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
6142 bool is_connected = false;
6143 intel_wakeref_t wakeref;
6144
6145 with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
6146 is_connected = dig_port->connected(encoder);
6147
6148 return is_connected;
6149 }
6150
6151 static struct edid *
intel_dp_get_edid(struct intel_dp * intel_dp)6152 intel_dp_get_edid(struct intel_dp *intel_dp)
6153 {
6154 struct intel_connector *intel_connector = intel_dp->attached_connector;
6155
6156 /* use cached edid if we have one */
6157 if (intel_connector->edid) {
6158 /* invalid edid */
6159 if (IS_ERR(intel_connector->edid))
6160 return NULL;
6161
6162 return drm_edid_duplicate(intel_connector->edid);
6163 } else
6164 return drm_get_edid(&intel_connector->base,
6165 &intel_dp->aux.ddc);
6166 }
6167
6168 static void
intel_dp_update_dfp(struct intel_dp * intel_dp,const struct edid * edid)6169 intel_dp_update_dfp(struct intel_dp *intel_dp,
6170 const struct edid *edid)
6171 {
6172 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
6173 struct intel_connector *connector = intel_dp->attached_connector;
6174
6175 intel_dp->dfp.max_bpc =
6176 drm_dp_downstream_max_bpc(intel_dp->dpcd,
6177 intel_dp->downstream_ports, edid);
6178
6179 intel_dp->dfp.max_dotclock =
6180 drm_dp_downstream_max_dotclock(intel_dp->dpcd,
6181 intel_dp->downstream_ports);
6182
6183 intel_dp->dfp.min_tmds_clock =
6184 drm_dp_downstream_min_tmds_clock(intel_dp->dpcd,
6185 intel_dp->downstream_ports,
6186 edid);
6187 intel_dp->dfp.max_tmds_clock =
6188 drm_dp_downstream_max_tmds_clock(intel_dp->dpcd,
6189 intel_dp->downstream_ports,
6190 edid);
6191
6192 drm_dbg_kms(&i915->drm,
6193 "[CONNECTOR:%d:%s] DFP max bpc %d, max dotclock %d, TMDS clock %d-%d\n",
6194 connector->base.base.id, connector->base.name,
6195 intel_dp->dfp.max_bpc,
6196 intel_dp->dfp.max_dotclock,
6197 intel_dp->dfp.min_tmds_clock,
6198 intel_dp->dfp.max_tmds_clock);
6199 }
6200
6201 static void
intel_dp_update_420(struct intel_dp * intel_dp)6202 intel_dp_update_420(struct intel_dp *intel_dp)
6203 {
6204 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
6205 struct intel_connector *connector = intel_dp->attached_connector;
6206 bool is_branch, ycbcr_420_passthrough, ycbcr_444_to_420;
6207
6208 /* No YCbCr output support on gmch platforms */
6209 if (HAS_GMCH(i915))
6210 return;
6211
6212 /*
6213 * ILK doesn't seem capable of DP YCbCr output. The
6214 * displayed image is severly corrupted. SNB+ is fine.
6215 */
6216 if (IS_GEN(i915, 5))
6217 return;
6218
6219 is_branch = drm_dp_is_branch(intel_dp->dpcd);
6220 ycbcr_420_passthrough =
6221 drm_dp_downstream_420_passthrough(intel_dp->dpcd,
6222 intel_dp->downstream_ports);
6223 ycbcr_444_to_420 =
6224 drm_dp_downstream_444_to_420_conversion(intel_dp->dpcd,
6225 intel_dp->downstream_ports);
6226
6227 if (INTEL_GEN(i915) >= 11) {
6228 /* Prefer 4:2:0 passthrough over 4:4:4->4:2:0 conversion */
6229 intel_dp->dfp.ycbcr_444_to_420 =
6230 ycbcr_444_to_420 && !ycbcr_420_passthrough;
6231
6232 connector->base.ycbcr_420_allowed =
6233 !is_branch || ycbcr_444_to_420 || ycbcr_420_passthrough;
6234 } else {
6235 /* 4:4:4->4:2:0 conversion is the only way */
6236 intel_dp->dfp.ycbcr_444_to_420 = ycbcr_444_to_420;
6237
6238 connector->base.ycbcr_420_allowed = ycbcr_444_to_420;
6239 }
6240
6241 drm_dbg_kms(&i915->drm,
6242 "[CONNECTOR:%d:%s] YCbCr 4:2:0 allowed? %s, YCbCr 4:4:4->4:2:0 conversion? %s\n",
6243 connector->base.base.id, connector->base.name,
6244 yesno(connector->base.ycbcr_420_allowed),
6245 yesno(intel_dp->dfp.ycbcr_444_to_420));
6246 }
6247
6248 static void
intel_dp_set_edid(struct intel_dp * intel_dp)6249 intel_dp_set_edid(struct intel_dp *intel_dp)
6250 {
6251 struct intel_connector *connector = intel_dp->attached_connector;
6252 struct edid *edid;
6253
6254 intel_dp_unset_edid(intel_dp);
6255 edid = intel_dp_get_edid(intel_dp);
6256 connector->detect_edid = edid;
6257
6258 intel_dp_update_dfp(intel_dp, edid);
6259 intel_dp_update_420(intel_dp);
6260
6261 if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
6262 intel_dp->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
6263 intel_dp->has_audio = drm_detect_monitor_audio(edid);
6264 }
6265
6266 drm_dp_cec_set_edid(&intel_dp->aux, edid);
6267 intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
6268 }
6269
6270 static void
intel_dp_unset_edid(struct intel_dp * intel_dp)6271 intel_dp_unset_edid(struct intel_dp *intel_dp)
6272 {
6273 struct intel_connector *connector = intel_dp->attached_connector;
6274
6275 drm_dp_cec_unset_edid(&intel_dp->aux);
6276 kfree(connector->detect_edid);
6277 connector->detect_edid = NULL;
6278
6279 intel_dp->has_hdmi_sink = false;
6280 intel_dp->has_audio = false;
6281 intel_dp->edid_quirks = 0;
6282
6283 intel_dp->dfp.max_bpc = 0;
6284 intel_dp->dfp.max_dotclock = 0;
6285 intel_dp->dfp.min_tmds_clock = 0;
6286 intel_dp->dfp.max_tmds_clock = 0;
6287
6288 intel_dp->dfp.ycbcr_444_to_420 = false;
6289 connector->base.ycbcr_420_allowed = false;
6290 }
6291
6292 static int
intel_dp_detect(struct drm_connector * connector,struct drm_modeset_acquire_ctx * ctx,bool force)6293 intel_dp_detect(struct drm_connector *connector,
6294 struct drm_modeset_acquire_ctx *ctx,
6295 bool force)
6296 {
6297 struct drm_i915_private *dev_priv = to_i915(connector->dev);
6298 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6299 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6300 struct intel_encoder *encoder = &dig_port->base;
6301 enum drm_connector_status status;
6302
6303 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6304 connector->base.id, connector->name);
6305 drm_WARN_ON(&dev_priv->drm,
6306 !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
6307
6308 if (!INTEL_DISPLAY_ENABLED(dev_priv))
6309 return connector_status_disconnected;
6310
6311 /* Can't disconnect eDP */
6312 if (intel_dp_is_edp(intel_dp))
6313 status = edp_detect(intel_dp);
6314 else if (intel_digital_port_connected(encoder))
6315 status = intel_dp_detect_dpcd(intel_dp);
6316 else
6317 status = connector_status_disconnected;
6318
6319 if (status == connector_status_disconnected) {
6320 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
6321 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
6322
6323 if (intel_dp->is_mst) {
6324 drm_dbg_kms(&dev_priv->drm,
6325 "MST device may have disappeared %d vs %d\n",
6326 intel_dp->is_mst,
6327 intel_dp->mst_mgr.mst_state);
6328 intel_dp->is_mst = false;
6329 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6330 intel_dp->is_mst);
6331 }
6332
6333 goto out;
6334 }
6335
6336 /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
6337 if (INTEL_GEN(dev_priv) >= 11)
6338 intel_dp_get_dsc_sink_cap(intel_dp);
6339
6340 intel_dp_configure_mst(intel_dp);
6341
6342 /*
6343 * TODO: Reset link params when switching to MST mode, until MST
6344 * supports link training fallback params.
6345 */
6346 if (intel_dp->reset_link_params || intel_dp->is_mst) {
6347 /* Initial max link lane count */
6348 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
6349
6350 /* Initial max link rate */
6351 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
6352
6353 intel_dp->reset_link_params = false;
6354 }
6355
6356 intel_dp_print_rates(intel_dp);
6357
6358 if (intel_dp->is_mst) {
6359 /*
6360 * If we are in MST mode then this connector
6361 * won't appear connected or have anything
6362 * with EDID on it
6363 */
6364 status = connector_status_disconnected;
6365 goto out;
6366 }
6367
6368 /*
6369 * Some external monitors do not signal loss of link synchronization
6370 * with an IRQ_HPD, so force a link status check.
6371 */
6372 if (!intel_dp_is_edp(intel_dp)) {
6373 int ret;
6374
6375 ret = intel_dp_retrain_link(encoder, ctx);
6376 if (ret)
6377 return ret;
6378 }
6379
6380 /*
6381 * Clearing NACK and defer counts to get their exact values
6382 * while reading EDID which are required by Compliance tests
6383 * 4.2.2.4 and 4.2.2.5
6384 */
6385 intel_dp->aux.i2c_nack_count = 0;
6386 intel_dp->aux.i2c_defer_count = 0;
6387
6388 intel_dp_set_edid(intel_dp);
6389 if (intel_dp_is_edp(intel_dp) ||
6390 to_intel_connector(connector)->detect_edid)
6391 status = connector_status_connected;
6392
6393 intel_dp_check_service_irq(intel_dp);
6394
6395 out:
6396 if (status != connector_status_connected && !intel_dp->is_mst)
6397 intel_dp_unset_edid(intel_dp);
6398
6399 /*
6400 * Make sure the refs for power wells enabled during detect are
6401 * dropped to avoid a new detect cycle triggered by HPD polling.
6402 */
6403 intel_display_power_flush_work(dev_priv);
6404
6405 if (!intel_dp_is_edp(intel_dp))
6406 drm_dp_set_subconnector_property(connector,
6407 status,
6408 intel_dp->dpcd,
6409 intel_dp->downstream_ports);
6410 return status;
6411 }
6412
6413 static void
intel_dp_force(struct drm_connector * connector)6414 intel_dp_force(struct drm_connector *connector)
6415 {
6416 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6417 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6418 struct intel_encoder *intel_encoder = &dig_port->base;
6419 struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
6420 enum intel_display_power_domain aux_domain =
6421 intel_aux_power_domain(dig_port);
6422 intel_wakeref_t wakeref;
6423
6424 drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6425 connector->base.id, connector->name);
6426 intel_dp_unset_edid(intel_dp);
6427
6428 if (connector->status != connector_status_connected)
6429 return;
6430
6431 wakeref = intel_display_power_get(dev_priv, aux_domain);
6432
6433 intel_dp_set_edid(intel_dp);
6434
6435 intel_display_power_put(dev_priv, aux_domain, wakeref);
6436 }
6437
intel_dp_get_modes(struct drm_connector * connector)6438 static int intel_dp_get_modes(struct drm_connector *connector)
6439 {
6440 struct intel_connector *intel_connector = to_intel_connector(connector);
6441 struct edid *edid;
6442
6443 edid = intel_connector->detect_edid;
6444 if (edid) {
6445 int ret = intel_connector_update_modes(connector, edid);
6446 if (ret)
6447 return ret;
6448 }
6449
6450 /* if eDP has no EDID, fall back to fixed mode */
6451 if (intel_dp_is_edp(intel_attached_dp(intel_connector)) &&
6452 intel_connector->panel.fixed_mode) {
6453 struct drm_display_mode *mode;
6454
6455 mode = drm_mode_duplicate(connector->dev,
6456 intel_connector->panel.fixed_mode);
6457 if (mode) {
6458 drm_mode_probed_add(connector, mode);
6459 return 1;
6460 }
6461 }
6462
6463 if (!edid) {
6464 struct intel_dp *intel_dp = intel_attached_dp(intel_connector);
6465 struct drm_display_mode *mode;
6466
6467 mode = drm_dp_downstream_mode(connector->dev,
6468 intel_dp->dpcd,
6469 intel_dp->downstream_ports);
6470 if (mode) {
6471 drm_mode_probed_add(connector, mode);
6472 return 1;
6473 }
6474 }
6475
6476 return 0;
6477 }
6478
6479 static int
intel_dp_connector_register(struct drm_connector * connector)6480 intel_dp_connector_register(struct drm_connector *connector)
6481 {
6482 struct drm_i915_private *i915 = to_i915(connector->dev);
6483 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6484 int ret;
6485
6486 ret = intel_connector_register(connector);
6487 if (ret)
6488 return ret;
6489
6490 drm_dbg_kms(&i915->drm, "registering %s bus for %s\n",
6491 intel_dp->aux.name, connector->kdev->kobj.name);
6492
6493 intel_dp->aux.dev = connector->kdev;
6494 ret = drm_dp_aux_register(&intel_dp->aux);
6495 if (!ret)
6496 drm_dp_cec_register_connector(&intel_dp->aux, connector);
6497 return ret;
6498 }
6499
6500 static void
intel_dp_connector_unregister(struct drm_connector * connector)6501 intel_dp_connector_unregister(struct drm_connector *connector)
6502 {
6503 struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6504
6505 drm_dp_cec_unregister_connector(&intel_dp->aux);
6506 drm_dp_aux_unregister(&intel_dp->aux);
6507 intel_connector_unregister(connector);
6508 }
6509
intel_dp_encoder_flush_work(struct drm_encoder * encoder)6510 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
6511 {
6512 struct intel_digital_port *dig_port = enc_to_dig_port(to_intel_encoder(encoder));
6513 struct intel_dp *intel_dp = &dig_port->dp;
6514
6515 intel_dp_mst_encoder_cleanup(dig_port);
6516 if (intel_dp_is_edp(intel_dp)) {
6517 intel_wakeref_t wakeref;
6518
6519 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6520 /*
6521 * vdd might still be enabled do to the delayed vdd off.
6522 * Make sure vdd is actually turned off here.
6523 */
6524 with_pps_lock(intel_dp, wakeref)
6525 edp_panel_vdd_off_sync(intel_dp);
6526
6527 if (intel_dp->edp_notifier.notifier_call) {
6528 unregister_reboot_notifier(&intel_dp->edp_notifier);
6529 intel_dp->edp_notifier.notifier_call = NULL;
6530 }
6531 }
6532
6533 intel_dp_aux_fini(intel_dp);
6534 }
6535
intel_dp_encoder_destroy(struct drm_encoder * encoder)6536 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
6537 {
6538 intel_dp_encoder_flush_work(encoder);
6539
6540 drm_encoder_cleanup(encoder);
6541 kfree(enc_to_dig_port(to_intel_encoder(encoder)));
6542 }
6543
intel_dp_encoder_suspend(struct intel_encoder * intel_encoder)6544 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
6545 {
6546 struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
6547 intel_wakeref_t wakeref;
6548
6549 if (!intel_dp_is_edp(intel_dp))
6550 return;
6551
6552 /*
6553 * vdd might still be enabled do to the delayed vdd off.
6554 * Make sure vdd is actually turned off here.
6555 */
6556 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6557 with_pps_lock(intel_dp, wakeref)
6558 edp_panel_vdd_off_sync(intel_dp);
6559 }
6560
intel_edp_panel_vdd_sanitize(struct intel_dp * intel_dp)6561 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6562 {
6563 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6564 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6565
6566 lockdep_assert_held(&dev_priv->pps_mutex);
6567
6568 if (!edp_have_panel_vdd(intel_dp))
6569 return;
6570
6571 /*
6572 * The VDD bit needs a power domain reference, so if the bit is
6573 * already enabled when we boot or resume, grab this reference and
6574 * schedule a vdd off, so we don't hold on to the reference
6575 * indefinitely.
6576 */
6577 drm_dbg_kms(&dev_priv->drm,
6578 "VDD left on by BIOS, adjusting state tracking\n");
6579 intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6580
6581 edp_panel_vdd_schedule_off(intel_dp);
6582 }
6583
vlv_active_pipe(struct intel_dp * intel_dp)6584 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6585 {
6586 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6587 struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6588 enum pipe pipe;
6589
6590 if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6591 encoder->port, &pipe))
6592 return pipe;
6593
6594 return INVALID_PIPE;
6595 }
6596
intel_dp_encoder_reset(struct drm_encoder * encoder)6597 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6598 {
6599 struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6600 struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
6601 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6602 intel_wakeref_t wakeref;
6603
6604 if (!HAS_DDI(dev_priv))
6605 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
6606
6607 if (lspcon->active)
6608 lspcon_resume(lspcon);
6609
6610 intel_dp->reset_link_params = true;
6611
6612 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6613 !intel_dp_is_edp(intel_dp))
6614 return;
6615
6616 with_pps_lock(intel_dp, wakeref) {
6617 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6618 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6619
6620 if (intel_dp_is_edp(intel_dp)) {
6621 /*
6622 * Reinit the power sequencer, in case BIOS did
6623 * something nasty with it.
6624 */
6625 intel_dp_pps_init(intel_dp);
6626 intel_edp_panel_vdd_sanitize(intel_dp);
6627 }
6628 }
6629 }
6630
intel_modeset_tile_group(struct intel_atomic_state * state,int tile_group_id)6631 static int intel_modeset_tile_group(struct intel_atomic_state *state,
6632 int tile_group_id)
6633 {
6634 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6635 struct drm_connector_list_iter conn_iter;
6636 struct drm_connector *connector;
6637 int ret = 0;
6638
6639 drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
6640 drm_for_each_connector_iter(connector, &conn_iter) {
6641 struct drm_connector_state *conn_state;
6642 struct intel_crtc_state *crtc_state;
6643 struct intel_crtc *crtc;
6644
6645 if (!connector->has_tile ||
6646 connector->tile_group->id != tile_group_id)
6647 continue;
6648
6649 conn_state = drm_atomic_get_connector_state(&state->base,
6650 connector);
6651 if (IS_ERR(conn_state)) {
6652 ret = PTR_ERR(conn_state);
6653 break;
6654 }
6655
6656 crtc = to_intel_crtc(conn_state->crtc);
6657
6658 if (!crtc)
6659 continue;
6660
6661 crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
6662 crtc_state->uapi.mode_changed = true;
6663
6664 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
6665 if (ret)
6666 break;
6667 }
6668 drm_connector_list_iter_end(&conn_iter);
6669
6670 return ret;
6671 }
6672
intel_modeset_affected_transcoders(struct intel_atomic_state * state,u8 transcoders)6673 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
6674 {
6675 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6676 struct intel_crtc *crtc;
6677
6678 if (transcoders == 0)
6679 return 0;
6680
6681 for_each_intel_crtc(&dev_priv->drm, crtc) {
6682 struct intel_crtc_state *crtc_state;
6683 int ret;
6684
6685 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
6686 if (IS_ERR(crtc_state))
6687 return PTR_ERR(crtc_state);
6688
6689 if (!crtc_state->hw.enable)
6690 continue;
6691
6692 if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
6693 continue;
6694
6695 crtc_state->uapi.mode_changed = true;
6696
6697 ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
6698 if (ret)
6699 return ret;
6700
6701 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
6702 if (ret)
6703 return ret;
6704
6705 transcoders &= ~BIT(crtc_state->cpu_transcoder);
6706 }
6707
6708 drm_WARN_ON(&dev_priv->drm, transcoders != 0);
6709
6710 return 0;
6711 }
6712
intel_modeset_synced_crtcs(struct intel_atomic_state * state,struct drm_connector * connector)6713 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
6714 struct drm_connector *connector)
6715 {
6716 const struct drm_connector_state *old_conn_state =
6717 drm_atomic_get_old_connector_state(&state->base, connector);
6718 const struct intel_crtc_state *old_crtc_state;
6719 struct intel_crtc *crtc;
6720 u8 transcoders;
6721
6722 crtc = to_intel_crtc(old_conn_state->crtc);
6723 if (!crtc)
6724 return 0;
6725
6726 old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
6727
6728 if (!old_crtc_state->hw.active)
6729 return 0;
6730
6731 transcoders = old_crtc_state->sync_mode_slaves_mask;
6732 if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
6733 transcoders |= BIT(old_crtc_state->master_transcoder);
6734
6735 return intel_modeset_affected_transcoders(state,
6736 transcoders);
6737 }
6738
intel_dp_connector_atomic_check(struct drm_connector * conn,struct drm_atomic_state * _state)6739 static int intel_dp_connector_atomic_check(struct drm_connector *conn,
6740 struct drm_atomic_state *_state)
6741 {
6742 struct drm_i915_private *dev_priv = to_i915(conn->dev);
6743 struct intel_atomic_state *state = to_intel_atomic_state(_state);
6744 int ret;
6745
6746 ret = intel_digital_connector_atomic_check(conn, &state->base);
6747 if (ret)
6748 return ret;
6749
6750 /*
6751 * We don't enable port sync on BDW due to missing w/as and
6752 * due to not having adjusted the modeset sequence appropriately.
6753 */
6754 if (INTEL_GEN(dev_priv) < 9)
6755 return 0;
6756
6757 if (!intel_connector_needs_modeset(state, conn))
6758 return 0;
6759
6760 if (conn->has_tile) {
6761 ret = intel_modeset_tile_group(state, conn->tile_group->id);
6762 if (ret)
6763 return ret;
6764 }
6765
6766 return intel_modeset_synced_crtcs(state, conn);
6767 }
6768
6769 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6770 .force = intel_dp_force,
6771 .fill_modes = drm_helper_probe_single_connector_modes,
6772 .atomic_get_property = intel_digital_connector_atomic_get_property,
6773 .atomic_set_property = intel_digital_connector_atomic_set_property,
6774 .late_register = intel_dp_connector_register,
6775 .early_unregister = intel_dp_connector_unregister,
6776 .destroy = intel_connector_destroy,
6777 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6778 .atomic_duplicate_state = intel_digital_connector_duplicate_state,
6779 };
6780
6781 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6782 .detect_ctx = intel_dp_detect,
6783 .get_modes = intel_dp_get_modes,
6784 .mode_valid = intel_dp_mode_valid,
6785 .atomic_check = intel_dp_connector_atomic_check,
6786 };
6787
6788 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6789 .reset = intel_dp_encoder_reset,
6790 .destroy = intel_dp_encoder_destroy,
6791 };
6792
intel_edp_have_power(struct intel_dp * intel_dp)6793 static bool intel_edp_have_power(struct intel_dp *intel_dp)
6794 {
6795 intel_wakeref_t wakeref;
6796 bool have_power = false;
6797
6798 with_pps_lock(intel_dp, wakeref) {
6799 have_power = edp_have_panel_power(intel_dp) &&
6800 edp_have_panel_vdd(intel_dp);
6801 }
6802
6803 return have_power;
6804 }
6805
6806 enum irqreturn
intel_dp_hpd_pulse(struct intel_digital_port * dig_port,bool long_hpd)6807 intel_dp_hpd_pulse(struct intel_digital_port *dig_port, bool long_hpd)
6808 {
6809 struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
6810 struct intel_dp *intel_dp = &dig_port->dp;
6811
6812 if (dig_port->base.type == INTEL_OUTPUT_EDP &&
6813 (long_hpd || !intel_edp_have_power(intel_dp))) {
6814 /*
6815 * vdd off can generate a long/short pulse on eDP which
6816 * would require vdd on to handle it, and thus we
6817 * would end up in an endless cycle of
6818 * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..."
6819 */
6820 drm_dbg_kms(&i915->drm,
6821 "ignoring %s hpd on eDP [ENCODER:%d:%s]\n",
6822 long_hpd ? "long" : "short",
6823 dig_port->base.base.base.id,
6824 dig_port->base.base.name);
6825 return IRQ_HANDLED;
6826 }
6827
6828 drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n",
6829 dig_port->base.base.base.id,
6830 dig_port->base.base.name,
6831 long_hpd ? "long" : "short");
6832
6833 if (long_hpd) {
6834 intel_dp->reset_link_params = true;
6835 return IRQ_NONE;
6836 }
6837
6838 if (intel_dp->is_mst) {
6839 if (!intel_dp_check_mst_status(intel_dp))
6840 return IRQ_NONE;
6841 } else if (!intel_dp_short_pulse(intel_dp)) {
6842 return IRQ_NONE;
6843 }
6844
6845 return IRQ_HANDLED;
6846 }
6847
6848 /* check the VBT to see whether the eDP is on another port */
intel_dp_is_port_edp(struct drm_i915_private * dev_priv,enum port port)6849 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6850 {
6851 /*
6852 * eDP not supported on g4x. so bail out early just
6853 * for a bit extra safety in case the VBT is bonkers.
6854 */
6855 if (INTEL_GEN(dev_priv) < 5)
6856 return false;
6857
6858 if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6859 return true;
6860
6861 return intel_bios_is_port_edp(dev_priv, port);
6862 }
6863
6864 static void
intel_dp_add_properties(struct intel_dp * intel_dp,struct drm_connector * connector)6865 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6866 {
6867 struct drm_i915_private *dev_priv = to_i915(connector->dev);
6868 enum port port = dp_to_dig_port(intel_dp)->base.port;
6869
6870 if (!intel_dp_is_edp(intel_dp))
6871 drm_connector_attach_dp_subconnector_property(connector);
6872
6873 if (!IS_G4X(dev_priv) && port != PORT_A)
6874 intel_attach_force_audio_property(connector);
6875
6876 intel_attach_broadcast_rgb_property(connector);
6877 if (HAS_GMCH(dev_priv))
6878 drm_connector_attach_max_bpc_property(connector, 6, 10);
6879 else if (INTEL_GEN(dev_priv) >= 5)
6880 drm_connector_attach_max_bpc_property(connector, 6, 12);
6881
6882 intel_attach_colorspace_property(connector);
6883
6884 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
6885 drm_object_attach_property(&connector->base,
6886 connector->dev->mode_config.hdr_output_metadata_property,
6887 0);
6888
6889 if (intel_dp_is_edp(intel_dp)) {
6890 u32 allowed_scalers;
6891
6892 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6893 if (!HAS_GMCH(dev_priv))
6894 allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6895
6896 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6897
6898 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6899
6900 }
6901 }
6902
intel_dp_init_panel_power_timestamps(struct intel_dp * intel_dp)6903 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6904 {
6905 intel_dp->panel_power_off_time = ktime_get_boottime();
6906 intel_dp->last_power_on = jiffies;
6907 intel_dp->last_backlight_off = jiffies;
6908 }
6909
6910 static void
intel_pps_readout_hw_state(struct intel_dp * intel_dp,struct edp_power_seq * seq)6911 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6912 {
6913 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6914 u32 pp_on, pp_off, pp_ctl;
6915 struct pps_registers regs;
6916
6917 intel_pps_get_registers(intel_dp, ®s);
6918
6919 pp_ctl = ilk_get_pp_control(intel_dp);
6920
6921 /* Ensure PPS is unlocked */
6922 if (!HAS_DDI(dev_priv))
6923 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
6924
6925 pp_on = intel_de_read(dev_priv, regs.pp_on);
6926 pp_off = intel_de_read(dev_priv, regs.pp_off);
6927
6928 /* Pull timing values out of registers */
6929 seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6930 seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6931 seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6932 seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6933
6934 if (i915_mmio_reg_valid(regs.pp_div)) {
6935 u32 pp_div;
6936
6937 pp_div = intel_de_read(dev_priv, regs.pp_div);
6938
6939 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6940 } else {
6941 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6942 }
6943 }
6944
6945 static void
intel_pps_dump_state(const char * state_name,const struct edp_power_seq * seq)6946 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6947 {
6948 DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6949 state_name,
6950 seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6951 }
6952
6953 static void
intel_pps_verify_state(struct intel_dp * intel_dp)6954 intel_pps_verify_state(struct intel_dp *intel_dp)
6955 {
6956 struct edp_power_seq hw;
6957 struct edp_power_seq *sw = &intel_dp->pps_delays;
6958
6959 intel_pps_readout_hw_state(intel_dp, &hw);
6960
6961 if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6962 hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6963 DRM_ERROR("PPS state mismatch\n");
6964 intel_pps_dump_state("sw", sw);
6965 intel_pps_dump_state("hw", &hw);
6966 }
6967 }
6968
6969 static void
intel_dp_init_panel_power_sequencer(struct intel_dp * intel_dp)6970 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6971 {
6972 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6973 struct edp_power_seq cur, vbt, spec,
6974 *final = &intel_dp->pps_delays;
6975
6976 lockdep_assert_held(&dev_priv->pps_mutex);
6977
6978 /* already initialized? */
6979 if (final->t11_t12 != 0)
6980 return;
6981
6982 intel_pps_readout_hw_state(intel_dp, &cur);
6983
6984 intel_pps_dump_state("cur", &cur);
6985
6986 vbt = dev_priv->vbt.edp.pps;
6987 /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6988 * of 500ms appears to be too short. Ocassionally the panel
6989 * just fails to power back on. Increasing the delay to 800ms
6990 * seems sufficient to avoid this problem.
6991 */
6992 if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6993 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6994 drm_dbg_kms(&dev_priv->drm,
6995 "Increasing T12 panel delay as per the quirk to %d\n",
6996 vbt.t11_t12);
6997 }
6998 /* T11_T12 delay is special and actually in units of 100ms, but zero
6999 * based in the hw (so we need to add 100 ms). But the sw vbt
7000 * table multiplies it with 1000 to make it in units of 100usec,
7001 * too. */
7002 vbt.t11_t12 += 100 * 10;
7003
7004 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
7005 * our hw here, which are all in 100usec. */
7006 spec.t1_t3 = 210 * 10;
7007 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
7008 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
7009 spec.t10 = 500 * 10;
7010 /* This one is special and actually in units of 100ms, but zero
7011 * based in the hw (so we need to add 100 ms). But the sw vbt
7012 * table multiplies it with 1000 to make it in units of 100usec,
7013 * too. */
7014 spec.t11_t12 = (510 + 100) * 10;
7015
7016 intel_pps_dump_state("vbt", &vbt);
7017
7018 /* Use the max of the register settings and vbt. If both are
7019 * unset, fall back to the spec limits. */
7020 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
7021 spec.field : \
7022 max(cur.field, vbt.field))
7023 assign_final(t1_t3);
7024 assign_final(t8);
7025 assign_final(t9);
7026 assign_final(t10);
7027 assign_final(t11_t12);
7028 #undef assign_final
7029
7030 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
7031 intel_dp->panel_power_up_delay = get_delay(t1_t3);
7032 intel_dp->backlight_on_delay = get_delay(t8);
7033 intel_dp->backlight_off_delay = get_delay(t9);
7034 intel_dp->panel_power_down_delay = get_delay(t10);
7035 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
7036 #undef get_delay
7037
7038 drm_dbg_kms(&dev_priv->drm,
7039 "panel power up delay %d, power down delay %d, power cycle delay %d\n",
7040 intel_dp->panel_power_up_delay,
7041 intel_dp->panel_power_down_delay,
7042 intel_dp->panel_power_cycle_delay);
7043
7044 drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
7045 intel_dp->backlight_on_delay,
7046 intel_dp->backlight_off_delay);
7047
7048 /*
7049 * We override the HW backlight delays to 1 because we do manual waits
7050 * on them. For T8, even BSpec recommends doing it. For T9, if we
7051 * don't do this, we'll end up waiting for the backlight off delay
7052 * twice: once when we do the manual sleep, and once when we disable
7053 * the panel and wait for the PP_STATUS bit to become zero.
7054 */
7055 final->t8 = 1;
7056 final->t9 = 1;
7057
7058 /*
7059 * HW has only a 100msec granularity for t11_t12 so round it up
7060 * accordingly.
7061 */
7062 final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7063 }
7064
7065 static void
intel_dp_init_panel_power_sequencer_registers(struct intel_dp * intel_dp,bool force_disable_vdd)7066 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7067 bool force_disable_vdd)
7068 {
7069 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7070 u32 pp_on, pp_off, port_sel = 0;
7071 int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7072 struct pps_registers regs;
7073 enum port port = dp_to_dig_port(intel_dp)->base.port;
7074 const struct edp_power_seq *seq = &intel_dp->pps_delays;
7075
7076 lockdep_assert_held(&dev_priv->pps_mutex);
7077
7078 intel_pps_get_registers(intel_dp, ®s);
7079
7080 /*
7081 * On some VLV machines the BIOS can leave the VDD
7082 * enabled even on power sequencers which aren't
7083 * hooked up to any port. This would mess up the
7084 * power domain tracking the first time we pick
7085 * one of these power sequencers for use since
7086 * edp_panel_vdd_on() would notice that the VDD was
7087 * already on and therefore wouldn't grab the power
7088 * domain reference. Disable VDD first to avoid this.
7089 * This also avoids spuriously turning the VDD on as
7090 * soon as the new power sequencer gets initialized.
7091 */
7092 if (force_disable_vdd) {
7093 u32 pp = ilk_get_pp_control(intel_dp);
7094
7095 drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON,
7096 "Panel power already on\n");
7097
7098 if (pp & EDP_FORCE_VDD)
7099 drm_dbg_kms(&dev_priv->drm,
7100 "VDD already on, disabling first\n");
7101
7102 pp &= ~EDP_FORCE_VDD;
7103
7104 intel_de_write(dev_priv, regs.pp_ctrl, pp);
7105 }
7106
7107 pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
7108 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
7109 pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
7110 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7111
7112 /* Haswell doesn't have any port selection bits for the panel
7113 * power sequencer any more. */
7114 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7115 port_sel = PANEL_PORT_SELECT_VLV(port);
7116 } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7117 switch (port) {
7118 case PORT_A:
7119 port_sel = PANEL_PORT_SELECT_DPA;
7120 break;
7121 case PORT_C:
7122 port_sel = PANEL_PORT_SELECT_DPC;
7123 break;
7124 case PORT_D:
7125 port_sel = PANEL_PORT_SELECT_DPD;
7126 break;
7127 default:
7128 MISSING_CASE(port);
7129 break;
7130 }
7131 }
7132
7133 pp_on |= port_sel;
7134
7135 intel_de_write(dev_priv, regs.pp_on, pp_on);
7136 intel_de_write(dev_priv, regs.pp_off, pp_off);
7137
7138 /*
7139 * Compute the divisor for the pp clock, simply match the Bspec formula.
7140 */
7141 if (i915_mmio_reg_valid(regs.pp_div)) {
7142 intel_de_write(dev_priv, regs.pp_div,
7143 REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7144 } else {
7145 u32 pp_ctl;
7146
7147 pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7148 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7149 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7150 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7151 }
7152
7153 drm_dbg_kms(&dev_priv->drm,
7154 "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7155 intel_de_read(dev_priv, regs.pp_on),
7156 intel_de_read(dev_priv, regs.pp_off),
7157 i915_mmio_reg_valid(regs.pp_div) ?
7158 intel_de_read(dev_priv, regs.pp_div) :
7159 (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7160 }
7161
intel_dp_pps_init(struct intel_dp * intel_dp)7162 static void intel_dp_pps_init(struct intel_dp *intel_dp)
7163 {
7164 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7165
7166 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7167 vlv_initial_power_sequencer_setup(intel_dp);
7168 } else {
7169 intel_dp_init_panel_power_sequencer(intel_dp);
7170 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7171 }
7172 }
7173
7174 /**
7175 * intel_dp_set_drrs_state - program registers for RR switch to take effect
7176 * @dev_priv: i915 device
7177 * @crtc_state: a pointer to the active intel_crtc_state
7178 * @refresh_rate: RR to be programmed
7179 *
7180 * This function gets called when refresh rate (RR) has to be changed from
7181 * one frequency to another. Switches can be between high and low RR
7182 * supported by the panel or to any other RR based on media playback (in
7183 * this case, RR value needs to be passed from user space).
7184 *
7185 * The caller of this function needs to take a lock on dev_priv->drrs.
7186 */
intel_dp_set_drrs_state(struct drm_i915_private * dev_priv,const struct intel_crtc_state * crtc_state,int refresh_rate)7187 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7188 const struct intel_crtc_state *crtc_state,
7189 int refresh_rate)
7190 {
7191 struct intel_dp *intel_dp = dev_priv->drrs.dp;
7192 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7193 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7194
7195 if (refresh_rate <= 0) {
7196 drm_dbg_kms(&dev_priv->drm,
7197 "Refresh rate should be positive non-zero.\n");
7198 return;
7199 }
7200
7201 if (intel_dp == NULL) {
7202 drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7203 return;
7204 }
7205
7206 if (!intel_crtc) {
7207 drm_dbg_kms(&dev_priv->drm,
7208 "DRRS: intel_crtc not initialized\n");
7209 return;
7210 }
7211
7212 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7213 drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7214 return;
7215 }
7216
7217 if (drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode) ==
7218 refresh_rate)
7219 index = DRRS_LOW_RR;
7220
7221 if (index == dev_priv->drrs.refresh_rate_type) {
7222 drm_dbg_kms(&dev_priv->drm,
7223 "DRRS requested for previously set RR...ignoring\n");
7224 return;
7225 }
7226
7227 if (!crtc_state->hw.active) {
7228 drm_dbg_kms(&dev_priv->drm,
7229 "eDP encoder disabled. CRTC not Active\n");
7230 return;
7231 }
7232
7233 if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7234 switch (index) {
7235 case DRRS_HIGH_RR:
7236 intel_dp_set_m_n(crtc_state, M1_N1);
7237 break;
7238 case DRRS_LOW_RR:
7239 intel_dp_set_m_n(crtc_state, M2_N2);
7240 break;
7241 case DRRS_MAX_RR:
7242 default:
7243 drm_err(&dev_priv->drm,
7244 "Unsupported refreshrate type\n");
7245 }
7246 } else if (INTEL_GEN(dev_priv) > 6) {
7247 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7248 u32 val;
7249
7250 val = intel_de_read(dev_priv, reg);
7251 if (index > DRRS_HIGH_RR) {
7252 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7253 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7254 else
7255 val |= PIPECONF_EDP_RR_MODE_SWITCH;
7256 } else {
7257 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7258 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7259 else
7260 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7261 }
7262 intel_de_write(dev_priv, reg, val);
7263 }
7264
7265 dev_priv->drrs.refresh_rate_type = index;
7266
7267 drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
7268 refresh_rate);
7269 }
7270
7271 static void
intel_edp_drrs_enable_locked(struct intel_dp * intel_dp)7272 intel_edp_drrs_enable_locked(struct intel_dp *intel_dp)
7273 {
7274 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7275
7276 dev_priv->drrs.busy_frontbuffer_bits = 0;
7277 dev_priv->drrs.dp = intel_dp;
7278 }
7279
7280 /**
7281 * intel_edp_drrs_enable - init drrs struct if supported
7282 * @intel_dp: DP struct
7283 * @crtc_state: A pointer to the active crtc state.
7284 *
7285 * Initializes frontbuffer_bits and drrs.dp
7286 */
intel_edp_drrs_enable(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)7287 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7288 const struct intel_crtc_state *crtc_state)
7289 {
7290 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7291
7292 if (!crtc_state->has_drrs)
7293 return;
7294
7295 drm_dbg_kms(&dev_priv->drm, "Enabling DRRS\n");
7296
7297 mutex_lock(&dev_priv->drrs.mutex);
7298
7299 if (dev_priv->drrs.dp) {
7300 drm_warn(&dev_priv->drm, "DRRS already enabled\n");
7301 goto unlock;
7302 }
7303
7304 intel_edp_drrs_enable_locked(intel_dp);
7305
7306 unlock:
7307 mutex_unlock(&dev_priv->drrs.mutex);
7308 }
7309
7310 static void
intel_edp_drrs_disable_locked(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)7311 intel_edp_drrs_disable_locked(struct intel_dp *intel_dp,
7312 const struct intel_crtc_state *crtc_state)
7313 {
7314 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7315
7316 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) {
7317 int refresh;
7318
7319 refresh = drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode);
7320 intel_dp_set_drrs_state(dev_priv, crtc_state, refresh);
7321 }
7322
7323 dev_priv->drrs.dp = NULL;
7324 }
7325
7326 /**
7327 * intel_edp_drrs_disable - Disable DRRS
7328 * @intel_dp: DP struct
7329 * @old_crtc_state: Pointer to old crtc_state.
7330 *
7331 */
intel_edp_drrs_disable(struct intel_dp * intel_dp,const struct intel_crtc_state * old_crtc_state)7332 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7333 const struct intel_crtc_state *old_crtc_state)
7334 {
7335 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7336
7337 if (!old_crtc_state->has_drrs)
7338 return;
7339
7340 mutex_lock(&dev_priv->drrs.mutex);
7341 if (!dev_priv->drrs.dp) {
7342 mutex_unlock(&dev_priv->drrs.mutex);
7343 return;
7344 }
7345
7346 intel_edp_drrs_disable_locked(intel_dp, old_crtc_state);
7347 mutex_unlock(&dev_priv->drrs.mutex);
7348
7349 cancel_delayed_work_sync(&dev_priv->drrs.work);
7350 }
7351
7352 /**
7353 * intel_edp_drrs_update - Update DRRS state
7354 * @intel_dp: Intel DP
7355 * @crtc_state: new CRTC state
7356 *
7357 * This function will update DRRS states, disabling or enabling DRRS when
7358 * executing fastsets. For full modeset, intel_edp_drrs_disable() and
7359 * intel_edp_drrs_enable() should be called instead.
7360 */
7361 void
intel_edp_drrs_update(struct intel_dp * intel_dp,const struct intel_crtc_state * crtc_state)7362 intel_edp_drrs_update(struct intel_dp *intel_dp,
7363 const struct intel_crtc_state *crtc_state)
7364 {
7365 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7366
7367 if (dev_priv->drrs.type != SEAMLESS_DRRS_SUPPORT)
7368 return;
7369
7370 mutex_lock(&dev_priv->drrs.mutex);
7371
7372 /* New state matches current one? */
7373 if (crtc_state->has_drrs == !!dev_priv->drrs.dp)
7374 goto unlock;
7375
7376 if (crtc_state->has_drrs)
7377 intel_edp_drrs_enable_locked(intel_dp);
7378 else
7379 intel_edp_drrs_disable_locked(intel_dp, crtc_state);
7380
7381 unlock:
7382 mutex_unlock(&dev_priv->drrs.mutex);
7383 }
7384
intel_edp_drrs_downclock_work(struct work_struct * work)7385 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7386 {
7387 struct drm_i915_private *dev_priv =
7388 container_of(work, typeof(*dev_priv), drrs.work.work);
7389 struct intel_dp *intel_dp;
7390
7391 mutex_lock(&dev_priv->drrs.mutex);
7392
7393 intel_dp = dev_priv->drrs.dp;
7394
7395 if (!intel_dp)
7396 goto unlock;
7397
7398 /*
7399 * The delayed work can race with an invalidate hence we need to
7400 * recheck.
7401 */
7402
7403 if (dev_priv->drrs.busy_frontbuffer_bits)
7404 goto unlock;
7405
7406 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7407 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7408
7409 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7410 drm_mode_vrefresh(intel_dp->attached_connector->panel.downclock_mode));
7411 }
7412
7413 unlock:
7414 mutex_unlock(&dev_priv->drrs.mutex);
7415 }
7416
7417 /**
7418 * intel_edp_drrs_invalidate - Disable Idleness DRRS
7419 * @dev_priv: i915 device
7420 * @frontbuffer_bits: frontbuffer plane tracking bits
7421 *
7422 * This function gets called everytime rendering on the given planes start.
7423 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7424 *
7425 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7426 */
intel_edp_drrs_invalidate(struct drm_i915_private * dev_priv,unsigned int frontbuffer_bits)7427 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7428 unsigned int frontbuffer_bits)
7429 {
7430 struct intel_dp *intel_dp;
7431 struct drm_crtc *crtc;
7432 enum pipe pipe;
7433
7434 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7435 return;
7436
7437 cancel_delayed_work(&dev_priv->drrs.work);
7438
7439 mutex_lock(&dev_priv->drrs.mutex);
7440
7441 intel_dp = dev_priv->drrs.dp;
7442 if (!intel_dp) {
7443 mutex_unlock(&dev_priv->drrs.mutex);
7444 return;
7445 }
7446
7447 crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7448 pipe = to_intel_crtc(crtc)->pipe;
7449
7450 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7451 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7452
7453 /* invalidate means busy screen hence upclock */
7454 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7455 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7456 drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode));
7457
7458 mutex_unlock(&dev_priv->drrs.mutex);
7459 }
7460
7461 /**
7462 * intel_edp_drrs_flush - Restart Idleness DRRS
7463 * @dev_priv: i915 device
7464 * @frontbuffer_bits: frontbuffer plane tracking bits
7465 *
7466 * This function gets called every time rendering on the given planes has
7467 * completed or flip on a crtc is completed. So DRRS should be upclocked
7468 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7469 * if no other planes are dirty.
7470 *
7471 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7472 */
intel_edp_drrs_flush(struct drm_i915_private * dev_priv,unsigned int frontbuffer_bits)7473 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7474 unsigned int frontbuffer_bits)
7475 {
7476 struct intel_dp *intel_dp;
7477 struct drm_crtc *crtc;
7478 enum pipe pipe;
7479
7480 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7481 return;
7482
7483 cancel_delayed_work(&dev_priv->drrs.work);
7484
7485 mutex_lock(&dev_priv->drrs.mutex);
7486
7487 intel_dp = dev_priv->drrs.dp;
7488 if (!intel_dp) {
7489 mutex_unlock(&dev_priv->drrs.mutex);
7490 return;
7491 }
7492
7493 crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7494 pipe = to_intel_crtc(crtc)->pipe;
7495
7496 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7497 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7498
7499 /* flush means busy screen hence upclock */
7500 if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7501 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7502 drm_mode_vrefresh(intel_dp->attached_connector->panel.fixed_mode));
7503
7504 /*
7505 * flush also means no more activity hence schedule downclock, if all
7506 * other fbs are quiescent too
7507 */
7508 if (!dev_priv->drrs.busy_frontbuffer_bits)
7509 schedule_delayed_work(&dev_priv->drrs.work,
7510 msecs_to_jiffies(1000));
7511 mutex_unlock(&dev_priv->drrs.mutex);
7512 }
7513
7514 /**
7515 * DOC: Display Refresh Rate Switching (DRRS)
7516 *
7517 * Display Refresh Rate Switching (DRRS) is a power conservation feature
7518 * which enables swtching between low and high refresh rates,
7519 * dynamically, based on the usage scenario. This feature is applicable
7520 * for internal panels.
7521 *
7522 * Indication that the panel supports DRRS is given by the panel EDID, which
7523 * would list multiple refresh rates for one resolution.
7524 *
7525 * DRRS is of 2 types - static and seamless.
7526 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7527 * (may appear as a blink on screen) and is used in dock-undock scenario.
7528 * Seamless DRRS involves changing RR without any visual effect to the user
7529 * and can be used during normal system usage. This is done by programming
7530 * certain registers.
7531 *
7532 * Support for static/seamless DRRS may be indicated in the VBT based on
7533 * inputs from the panel spec.
7534 *
7535 * DRRS saves power by switching to low RR based on usage scenarios.
7536 *
7537 * The implementation is based on frontbuffer tracking implementation. When
7538 * there is a disturbance on the screen triggered by user activity or a periodic
7539 * system activity, DRRS is disabled (RR is changed to high RR). When there is
7540 * no movement on screen, after a timeout of 1 second, a switch to low RR is
7541 * made.
7542 *
7543 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7544 * and intel_edp_drrs_flush() are called.
7545 *
7546 * DRRS can be further extended to support other internal panels and also
7547 * the scenario of video playback wherein RR is set based on the rate
7548 * requested by userspace.
7549 */
7550
7551 /**
7552 * intel_dp_drrs_init - Init basic DRRS work and mutex.
7553 * @connector: eDP connector
7554 * @fixed_mode: preferred mode of panel
7555 *
7556 * This function is called only once at driver load to initialize basic
7557 * DRRS stuff.
7558 *
7559 * Returns:
7560 * Downclock mode if panel supports it, else return NULL.
7561 * DRRS support is determined by the presence of downclock mode (apart
7562 * from VBT setting).
7563 */
7564 static struct drm_display_mode *
intel_dp_drrs_init(struct intel_connector * connector,struct drm_display_mode * fixed_mode)7565 intel_dp_drrs_init(struct intel_connector *connector,
7566 struct drm_display_mode *fixed_mode)
7567 {
7568 struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7569 struct drm_display_mode *downclock_mode = NULL;
7570
7571 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7572 mutex_init(&dev_priv->drrs.mutex);
7573
7574 if (INTEL_GEN(dev_priv) <= 6) {
7575 drm_dbg_kms(&dev_priv->drm,
7576 "DRRS supported for Gen7 and above\n");
7577 return NULL;
7578 }
7579
7580 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7581 drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
7582 return NULL;
7583 }
7584
7585 downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7586 if (!downclock_mode) {
7587 drm_dbg_kms(&dev_priv->drm,
7588 "Downclock mode is not found. DRRS not supported\n");
7589 return NULL;
7590 }
7591
7592 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7593
7594 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7595 drm_dbg_kms(&dev_priv->drm,
7596 "seamless DRRS supported for eDP panel.\n");
7597 return downclock_mode;
7598 }
7599
intel_edp_init_connector(struct intel_dp * intel_dp,struct intel_connector * intel_connector)7600 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7601 struct intel_connector *intel_connector)
7602 {
7603 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7604 struct drm_device *dev = &dev_priv->drm;
7605 struct drm_connector *connector = &intel_connector->base;
7606 struct drm_display_mode *fixed_mode = NULL;
7607 struct drm_display_mode *downclock_mode = NULL;
7608 bool has_dpcd;
7609 enum pipe pipe = INVALID_PIPE;
7610 intel_wakeref_t wakeref;
7611 struct edid *edid;
7612
7613 if (!intel_dp_is_edp(intel_dp))
7614 return true;
7615
7616 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7617
7618 /*
7619 * On IBX/CPT we may get here with LVDS already registered. Since the
7620 * driver uses the only internal power sequencer available for both
7621 * eDP and LVDS bail out early in this case to prevent interfering
7622 * with an already powered-on LVDS power sequencer.
7623 */
7624 if (intel_get_lvds_encoder(dev_priv)) {
7625 drm_WARN_ON(dev,
7626 !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7627 drm_info(&dev_priv->drm,
7628 "LVDS was detected, not registering eDP\n");
7629
7630 return false;
7631 }
7632
7633 with_pps_lock(intel_dp, wakeref) {
7634 intel_dp_init_panel_power_timestamps(intel_dp);
7635 intel_dp_pps_init(intel_dp);
7636 intel_edp_panel_vdd_sanitize(intel_dp);
7637 }
7638
7639 /* Cache DPCD and EDID for edp. */
7640 has_dpcd = intel_edp_init_dpcd(intel_dp);
7641
7642 if (!has_dpcd) {
7643 /* if this fails, presume the device is a ghost */
7644 drm_info(&dev_priv->drm,
7645 "failed to retrieve link info, disabling eDP\n");
7646 goto out_vdd_off;
7647 }
7648
7649 mutex_lock(&dev->mode_config.mutex);
7650 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7651 if (edid) {
7652 if (drm_add_edid_modes(connector, edid)) {
7653 drm_connector_update_edid_property(connector, edid);
7654 intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
7655 } else {
7656 kfree(edid);
7657 edid = ERR_PTR(-EINVAL);
7658 }
7659 } else {
7660 edid = ERR_PTR(-ENOENT);
7661 }
7662 intel_connector->edid = edid;
7663
7664 fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7665 if (fixed_mode)
7666 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7667
7668 /* fallback to VBT if available for eDP */
7669 if (!fixed_mode)
7670 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7671 mutex_unlock(&dev->mode_config.mutex);
7672
7673 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7674 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7675 register_reboot_notifier(&intel_dp->edp_notifier);
7676
7677 /*
7678 * Figure out the current pipe for the initial backlight setup.
7679 * If the current pipe isn't valid, try the PPS pipe, and if that
7680 * fails just assume pipe A.
7681 */
7682 pipe = vlv_active_pipe(intel_dp);
7683
7684 if (pipe != PIPE_A && pipe != PIPE_B)
7685 pipe = intel_dp->pps_pipe;
7686
7687 if (pipe != PIPE_A && pipe != PIPE_B)
7688 pipe = PIPE_A;
7689
7690 drm_dbg_kms(&dev_priv->drm,
7691 "using pipe %c for initial backlight setup\n",
7692 pipe_name(pipe));
7693 }
7694
7695 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7696 intel_connector->panel.backlight.power = intel_edp_backlight_power;
7697 intel_panel_setup_backlight(connector, pipe);
7698
7699 if (fixed_mode) {
7700 drm_connector_set_panel_orientation_with_quirk(connector,
7701 dev_priv->vbt.orientation,
7702 fixed_mode->hdisplay, fixed_mode->vdisplay);
7703 }
7704
7705 return true;
7706
7707 out_vdd_off:
7708 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7709 /*
7710 * vdd might still be enabled do to the delayed vdd off.
7711 * Make sure vdd is actually turned off here.
7712 */
7713 with_pps_lock(intel_dp, wakeref)
7714 edp_panel_vdd_off_sync(intel_dp);
7715
7716 return false;
7717 }
7718
intel_dp_modeset_retry_work_fn(struct work_struct * work)7719 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7720 {
7721 struct intel_connector *intel_connector;
7722 struct drm_connector *connector;
7723
7724 intel_connector = container_of(work, typeof(*intel_connector),
7725 modeset_retry_work);
7726 connector = &intel_connector->base;
7727 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7728 connector->name);
7729
7730 /* Grab the locks before changing connector property*/
7731 mutex_lock(&connector->dev->mode_config.mutex);
7732 /* Set connector link status to BAD and send a Uevent to notify
7733 * userspace to do a modeset.
7734 */
7735 drm_connector_set_link_status_property(connector,
7736 DRM_MODE_LINK_STATUS_BAD);
7737 mutex_unlock(&connector->dev->mode_config.mutex);
7738 /* Send Hotplug uevent so userspace can reprobe */
7739 drm_kms_helper_hotplug_event(connector->dev);
7740 }
7741
7742 bool
intel_dp_init_connector(struct intel_digital_port * dig_port,struct intel_connector * intel_connector)7743 intel_dp_init_connector(struct intel_digital_port *dig_port,
7744 struct intel_connector *intel_connector)
7745 {
7746 struct drm_connector *connector = &intel_connector->base;
7747 struct intel_dp *intel_dp = &dig_port->dp;
7748 struct intel_encoder *intel_encoder = &dig_port->base;
7749 struct drm_device *dev = intel_encoder->base.dev;
7750 struct drm_i915_private *dev_priv = to_i915(dev);
7751 enum port port = intel_encoder->port;
7752 enum phy phy = intel_port_to_phy(dev_priv, port);
7753 int type;
7754
7755 /* Initialize the work for modeset in case of link train failure */
7756 INIT_WORK(&intel_connector->modeset_retry_work,
7757 intel_dp_modeset_retry_work_fn);
7758
7759 if (drm_WARN(dev, dig_port->max_lanes < 1,
7760 "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
7761 dig_port->max_lanes, intel_encoder->base.base.id,
7762 intel_encoder->base.name))
7763 return false;
7764
7765 intel_dp_set_source_rates(intel_dp);
7766
7767 intel_dp->reset_link_params = true;
7768 intel_dp->pps_pipe = INVALID_PIPE;
7769 intel_dp->active_pipe = INVALID_PIPE;
7770
7771 /* Preserve the current hw state. */
7772 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
7773 intel_dp->attached_connector = intel_connector;
7774
7775 if (intel_dp_is_port_edp(dev_priv, port)) {
7776 /*
7777 * Currently we don't support eDP on TypeC ports, although in
7778 * theory it could work on TypeC legacy ports.
7779 */
7780 drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy));
7781 type = DRM_MODE_CONNECTOR_eDP;
7782 } else {
7783 type = DRM_MODE_CONNECTOR_DisplayPort;
7784 }
7785
7786 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7787 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7788
7789 /*
7790 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7791 * for DP the encoder type can be set by the caller to
7792 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7793 */
7794 if (type == DRM_MODE_CONNECTOR_eDP)
7795 intel_encoder->type = INTEL_OUTPUT_EDP;
7796
7797 /* eDP only on port B and/or C on vlv/chv */
7798 if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
7799 IS_CHERRYVIEW(dev_priv)) &&
7800 intel_dp_is_edp(intel_dp) &&
7801 port != PORT_B && port != PORT_C))
7802 return false;
7803
7804 drm_dbg_kms(&dev_priv->drm,
7805 "Adding %s connector on [ENCODER:%d:%s]\n",
7806 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7807 intel_encoder->base.base.id, intel_encoder->base.name);
7808
7809 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7810 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7811
7812 if (!HAS_GMCH(dev_priv))
7813 connector->interlace_allowed = true;
7814 connector->doublescan_allowed = 0;
7815
7816 intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
7817
7818 intel_dp_aux_init(intel_dp);
7819
7820 intel_connector_attach_encoder(intel_connector, intel_encoder);
7821
7822 if (HAS_DDI(dev_priv))
7823 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7824 else
7825 intel_connector->get_hw_state = intel_connector_get_hw_state;
7826
7827 /* init MST on ports that can support it */
7828 intel_dp_mst_encoder_init(dig_port,
7829 intel_connector->base.base.id);
7830
7831 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7832 intel_dp_aux_fini(intel_dp);
7833 intel_dp_mst_encoder_cleanup(dig_port);
7834 goto fail;
7835 }
7836
7837 intel_dp_add_properties(intel_dp, connector);
7838
7839 if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7840 int ret = intel_dp_init_hdcp(dig_port, intel_connector);
7841 if (ret)
7842 drm_dbg_kms(&dev_priv->drm,
7843 "HDCP init failed, skipping.\n");
7844 }
7845
7846 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7847 * 0xd. Failure to do so will result in spurious interrupts being
7848 * generated on the port when a cable is not attached.
7849 */
7850 if (IS_G45(dev_priv)) {
7851 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
7852 intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
7853 (temp & ~0xf) | 0xd);
7854 }
7855
7856 return true;
7857
7858 fail:
7859 drm_connector_cleanup(connector);
7860
7861 return false;
7862 }
7863
intel_dp_init(struct drm_i915_private * dev_priv,i915_reg_t output_reg,enum port port)7864 bool intel_dp_init(struct drm_i915_private *dev_priv,
7865 i915_reg_t output_reg,
7866 enum port port)
7867 {
7868 struct intel_digital_port *dig_port;
7869 struct intel_encoder *intel_encoder;
7870 struct drm_encoder *encoder;
7871 struct intel_connector *intel_connector;
7872
7873 dig_port = kzalloc(sizeof(*dig_port), GFP_KERNEL);
7874 if (!dig_port)
7875 return false;
7876
7877 intel_connector = intel_connector_alloc();
7878 if (!intel_connector)
7879 goto err_connector_alloc;
7880
7881 intel_encoder = &dig_port->base;
7882 encoder = &intel_encoder->base;
7883
7884 mutex_init(&dig_port->hdcp_mutex);
7885
7886 if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7887 &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7888 "DP %c", port_name(port)))
7889 goto err_encoder_init;
7890
7891 intel_encoder->hotplug = intel_dp_hotplug;
7892 intel_encoder->compute_config = intel_dp_compute_config;
7893 intel_encoder->get_hw_state = intel_dp_get_hw_state;
7894 intel_encoder->get_config = intel_dp_get_config;
7895 intel_encoder->update_pipe = intel_panel_update_backlight;
7896 intel_encoder->suspend = intel_dp_encoder_suspend;
7897 if (IS_CHERRYVIEW(dev_priv)) {
7898 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7899 intel_encoder->pre_enable = chv_pre_enable_dp;
7900 intel_encoder->enable = vlv_enable_dp;
7901 intel_encoder->disable = vlv_disable_dp;
7902 intel_encoder->post_disable = chv_post_disable_dp;
7903 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7904 } else if (IS_VALLEYVIEW(dev_priv)) {
7905 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7906 intel_encoder->pre_enable = vlv_pre_enable_dp;
7907 intel_encoder->enable = vlv_enable_dp;
7908 intel_encoder->disable = vlv_disable_dp;
7909 intel_encoder->post_disable = vlv_post_disable_dp;
7910 } else {
7911 intel_encoder->pre_enable = g4x_pre_enable_dp;
7912 intel_encoder->enable = g4x_enable_dp;
7913 intel_encoder->disable = g4x_disable_dp;
7914 intel_encoder->post_disable = g4x_post_disable_dp;
7915 }
7916
7917 if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
7918 (HAS_PCH_CPT(dev_priv) && port != PORT_A))
7919 dig_port->dp.set_link_train = cpt_set_link_train;
7920 else
7921 dig_port->dp.set_link_train = g4x_set_link_train;
7922
7923 if (IS_CHERRYVIEW(dev_priv))
7924 dig_port->dp.set_signal_levels = chv_set_signal_levels;
7925 else if (IS_VALLEYVIEW(dev_priv))
7926 dig_port->dp.set_signal_levels = vlv_set_signal_levels;
7927 else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
7928 dig_port->dp.set_signal_levels = ivb_cpu_edp_set_signal_levels;
7929 else if (IS_GEN(dev_priv, 6) && port == PORT_A)
7930 dig_port->dp.set_signal_levels = snb_cpu_edp_set_signal_levels;
7931 else
7932 dig_port->dp.set_signal_levels = g4x_set_signal_levels;
7933
7934 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv) ||
7935 (HAS_PCH_SPLIT(dev_priv) && port != PORT_A)) {
7936 dig_port->dp.preemph_max = intel_dp_pre_empemph_max_3;
7937 dig_port->dp.voltage_max = intel_dp_voltage_max_3;
7938 } else {
7939 dig_port->dp.preemph_max = intel_dp_pre_empemph_max_2;
7940 dig_port->dp.voltage_max = intel_dp_voltage_max_2;
7941 }
7942
7943 dig_port->dp.output_reg = output_reg;
7944 dig_port->max_lanes = 4;
7945 dig_port->dp.regs.dp_tp_ctl = DP_TP_CTL(port);
7946 dig_port->dp.regs.dp_tp_status = DP_TP_STATUS(port);
7947
7948 intel_encoder->type = INTEL_OUTPUT_DP;
7949 intel_encoder->power_domain = intel_port_to_power_domain(port);
7950 if (IS_CHERRYVIEW(dev_priv)) {
7951 if (port == PORT_D)
7952 intel_encoder->pipe_mask = BIT(PIPE_C);
7953 else
7954 intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
7955 } else {
7956 intel_encoder->pipe_mask = ~0;
7957 }
7958 intel_encoder->cloneable = 0;
7959 intel_encoder->port = port;
7960 intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7961
7962 dig_port->hpd_pulse = intel_dp_hpd_pulse;
7963
7964 if (HAS_GMCH(dev_priv)) {
7965 if (IS_GM45(dev_priv))
7966 dig_port->connected = gm45_digital_port_connected;
7967 else
7968 dig_port->connected = g4x_digital_port_connected;
7969 } else {
7970 if (port == PORT_A)
7971 dig_port->connected = ilk_digital_port_connected;
7972 else
7973 dig_port->connected = ibx_digital_port_connected;
7974 }
7975
7976 if (port != PORT_A)
7977 intel_infoframe_init(dig_port);
7978
7979 dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
7980 if (!intel_dp_init_connector(dig_port, intel_connector))
7981 goto err_init_connector;
7982
7983 return true;
7984
7985 err_init_connector:
7986 drm_encoder_cleanup(encoder);
7987 err_encoder_init:
7988 kfree(intel_connector);
7989 err_connector_alloc:
7990 kfree(dig_port);
7991 return false;
7992 }
7993
intel_dp_mst_suspend(struct drm_i915_private * dev_priv)7994 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7995 {
7996 struct intel_encoder *encoder;
7997
7998 for_each_intel_encoder(&dev_priv->drm, encoder) {
7999 struct intel_dp *intel_dp;
8000
8001 if (encoder->type != INTEL_OUTPUT_DDI)
8002 continue;
8003
8004 intel_dp = enc_to_intel_dp(encoder);
8005
8006 if (!intel_dp->can_mst)
8007 continue;
8008
8009 if (intel_dp->is_mst)
8010 drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
8011 }
8012 }
8013
intel_dp_mst_resume(struct drm_i915_private * dev_priv)8014 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
8015 {
8016 struct intel_encoder *encoder;
8017
8018 for_each_intel_encoder(&dev_priv->drm, encoder) {
8019 struct intel_dp *intel_dp;
8020 int ret;
8021
8022 if (encoder->type != INTEL_OUTPUT_DDI)
8023 continue;
8024
8025 intel_dp = enc_to_intel_dp(encoder);
8026
8027 if (!intel_dp->can_mst)
8028 continue;
8029
8030 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
8031 true);
8032 if (ret) {
8033 intel_dp->is_mst = false;
8034 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
8035 false);
8036 }
8037 }
8038 }
8039