1 /*
2 * Copyright (C) 2016 Samsung Electronics Co.Ltd
3 * Authors:
4 * Marek Szyprowski <m.szyprowski@samsung.com>
5 *
6 * DRM core plane blending related functions
7 *
8 * Permission to use, copy, modify, distribute, and sell this software and its
9 * documentation for any purpose is hereby granted without fee, provided that
10 * the above copyright notice appear in all copies and that both that copyright
11 * notice and this permission notice appear in supporting documentation, and
12 * that the name of the copyright holders not be used in advertising or
13 * publicity pertaining to distribution of the software without specific,
14 * written prior permission. The copyright holders make no representations
15 * about the suitability of this software for any purpose. It is provided "as
16 * is" without express or implied warranty.
17 *
18 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
20 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
21 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
22 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
23 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
24 * OF THIS SOFTWARE.
25 */
26 #include <drm/drmP.h>
27 #include <drm/drm_atomic.h>
28 #include <drm/drm_blend.h>
29 #include <linux/export.h>
30 #include <linux/slab.h>
31 #include <linux/sort.h>
32
33 #include "drm_crtc_internal.h"
34
35 /**
36 * DOC: overview
37 *
38 * The basic plane composition model supported by standard plane properties only
39 * has a source rectangle (in logical pixels within the &drm_framebuffer), with
40 * sub-pixel accuracy, which is scaled up to a pixel-aligned destination
41 * rectangle in the visible area of a &drm_crtc. The visible area of a CRTC is
42 * defined by the horizontal and vertical visible pixels (stored in @hdisplay
43 * and @vdisplay) of the requested mode (stored in &drm_crtc_state.mode). These
44 * two rectangles are both stored in the &drm_plane_state.
45 *
46 * For the atomic ioctl the following standard (atomic) properties on the plane object
47 * encode the basic plane composition model:
48 *
49 * SRC_X:
50 * X coordinate offset for the source rectangle within the
51 * &drm_framebuffer, in 16.16 fixed point. Must be positive.
52 * SRC_Y:
53 * Y coordinate offset for the source rectangle within the
54 * &drm_framebuffer, in 16.16 fixed point. Must be positive.
55 * SRC_W:
56 * Width for the source rectangle within the &drm_framebuffer, in 16.16
57 * fixed point. SRC_X plus SRC_W must be within the width of the source
58 * framebuffer. Must be positive.
59 * SRC_H:
60 * Height for the source rectangle within the &drm_framebuffer, in 16.16
61 * fixed point. SRC_Y plus SRC_H must be within the height of the source
62 * framebuffer. Must be positive.
63 * CRTC_X:
64 * X coordinate offset for the destination rectangle. Can be negative.
65 * CRTC_Y:
66 * Y coordinate offset for the destination rectangle. Can be negative.
67 * CRTC_W:
68 * Width for the destination rectangle. CRTC_X plus CRTC_W can extend past
69 * the currently visible horizontal area of the &drm_crtc.
70 * CRTC_H:
71 * Height for the destination rectangle. CRTC_Y plus CRTC_H can extend past
72 * the currently visible vertical area of the &drm_crtc.
73 * FB_ID:
74 * Mode object ID of the &drm_framebuffer this plane should scan out.
75 * CRTC_ID:
76 * Mode object ID of the &drm_crtc this plane should be connected to.
77 *
78 * Note that the source rectangle must fully lie within the bounds of the
79 * &drm_framebuffer. The destination rectangle can lie outside of the visible
80 * area of the current mode of the CRTC. It must be apprpriately clipped by the
81 * driver, which can be done by calling drm_plane_helper_check_update(). Drivers
82 * are also allowed to round the subpixel sampling positions appropriately, but
83 * only to the next full pixel. No pixel outside of the source rectangle may
84 * ever be sampled, which is important when applying more sophisticated
85 * filtering than just a bilinear one when scaling. The filtering mode when
86 * scaling is unspecified.
87 *
88 * On top of this basic transformation additional properties can be exposed by
89 * the driver:
90 *
91 * alpha:
92 * Alpha is setup with drm_plane_create_alpha_property(). It controls the
93 * plane-wide opacity, from transparent (0) to opaque (0xffff). It can be
94 * combined with pixel alpha.
95 * The pixel values in the framebuffers are expected to not be
96 * pre-multiplied by the global alpha associated to the plane.
97 *
98 * rotation:
99 * Rotation is set up with drm_plane_create_rotation_property(). It adds a
100 * rotation and reflection step between the source and destination rectangles.
101 * Without this property the rectangle is only scaled, but not rotated or
102 * reflected.
103 *
104 * zpos:
105 * Z position is set up with drm_plane_create_zpos_immutable_property() and
106 * drm_plane_create_zpos_property(). It controls the visibility of overlapping
107 * planes. Without this property the primary plane is always below the cursor
108 * plane, and ordering between all other planes is undefined.
109 *
110 * Note that all the property extensions described here apply either to the
111 * plane or the CRTC (e.g. for the background color, which currently is not
112 * exposed and assumed to be black).
113 */
114
115 /**
116 * drm_plane_create_alpha_property - create a new alpha property
117 * @plane: drm plane
118 *
119 * This function creates a generic, mutable, alpha property and enables support
120 * for it in the DRM core. It is attached to @plane.
121 *
122 * The alpha property will be allowed to be within the bounds of 0
123 * (transparent) to 0xffff (opaque).
124 *
125 * Returns:
126 * 0 on success, negative error code on failure.
127 */
drm_plane_create_alpha_property(struct drm_plane * plane)128 int drm_plane_create_alpha_property(struct drm_plane *plane)
129 {
130 struct drm_property *prop;
131
132 prop = drm_property_create_range(plane->dev, 0, "alpha",
133 0, DRM_BLEND_ALPHA_OPAQUE);
134 if (!prop)
135 return -ENOMEM;
136
137 drm_object_attach_property(&plane->base, prop, DRM_BLEND_ALPHA_OPAQUE);
138 plane->alpha_property = prop;
139
140 if (plane->state)
141 plane->state->alpha = DRM_BLEND_ALPHA_OPAQUE;
142
143 return 0;
144 }
145 EXPORT_SYMBOL(drm_plane_create_alpha_property);
146
147 /**
148 * drm_plane_create_rotation_property - create a new rotation property
149 * @plane: drm plane
150 * @rotation: initial value of the rotation property
151 * @supported_rotations: bitmask of supported rotations and reflections
152 *
153 * This creates a new property with the selected support for transformations.
154 *
155 * Since a rotation by 180° degress is the same as reflecting both along the x
156 * and the y axis the rotation property is somewhat redundant. Drivers can use
157 * drm_rotation_simplify() to normalize values of this property.
158 *
159 * The property exposed to userspace is a bitmask property (see
160 * drm_property_create_bitmask()) called "rotation" and has the following
161 * bitmask enumaration values:
162 *
163 * DRM_MODE_ROTATE_0:
164 * "rotate-0"
165 * DRM_MODE_ROTATE_90:
166 * "rotate-90"
167 * DRM_MODE_ROTATE_180:
168 * "rotate-180"
169 * DRM_MODE_ROTATE_270:
170 * "rotate-270"
171 * DRM_MODE_REFLECT_X:
172 * "reflect-x"
173 * DRM_MODE_REFLECT_Y:
174 * "reflect-y"
175 *
176 * Rotation is the specified amount in degrees in counter clockwise direction,
177 * the X and Y axis are within the source rectangle, i.e. the X/Y axis before
178 * rotation. After reflection, the rotation is applied to the image sampled from
179 * the source rectangle, before scaling it to fit the destination rectangle.
180 */
drm_plane_create_rotation_property(struct drm_plane * plane,unsigned int rotation,unsigned int supported_rotations)181 int drm_plane_create_rotation_property(struct drm_plane *plane,
182 unsigned int rotation,
183 unsigned int supported_rotations)
184 {
185 static const struct drm_prop_enum_list props[] = {
186 { __builtin_ffs(DRM_MODE_ROTATE_0) - 1, "rotate-0" },
187 { __builtin_ffs(DRM_MODE_ROTATE_90) - 1, "rotate-90" },
188 { __builtin_ffs(DRM_MODE_ROTATE_180) - 1, "rotate-180" },
189 { __builtin_ffs(DRM_MODE_ROTATE_270) - 1, "rotate-270" },
190 { __builtin_ffs(DRM_MODE_REFLECT_X) - 1, "reflect-x" },
191 { __builtin_ffs(DRM_MODE_REFLECT_Y) - 1, "reflect-y" },
192 };
193 struct drm_property *prop;
194
195 WARN_ON((supported_rotations & DRM_MODE_ROTATE_MASK) == 0);
196 WARN_ON(!is_power_of_2(rotation & DRM_MODE_ROTATE_MASK));
197 WARN_ON(rotation & ~supported_rotations);
198
199 prop = drm_property_create_bitmask(plane->dev, 0, "rotation",
200 props, ARRAY_SIZE(props),
201 supported_rotations);
202 if (!prop)
203 return -ENOMEM;
204
205 drm_object_attach_property(&plane->base, prop, rotation);
206
207 if (plane->state)
208 plane->state->rotation = rotation;
209
210 plane->rotation_property = prop;
211
212 return 0;
213 }
214 EXPORT_SYMBOL(drm_plane_create_rotation_property);
215
216 /**
217 * drm_rotation_simplify() - Try to simplify the rotation
218 * @rotation: Rotation to be simplified
219 * @supported_rotations: Supported rotations
220 *
221 * Attempt to simplify the rotation to a form that is supported.
222 * Eg. if the hardware supports everything except DRM_MODE_REFLECT_X
223 * one could call this function like this:
224 *
225 * drm_rotation_simplify(rotation, DRM_MODE_ROTATE_0 |
226 * DRM_MODE_ROTATE_90 | DRM_MODE_ROTATE_180 |
227 * DRM_MODE_ROTATE_270 | DRM_MODE_REFLECT_Y);
228 *
229 * to eliminate the DRM_MODE_ROTATE_X flag. Depending on what kind of
230 * transforms the hardware supports, this function may not
231 * be able to produce a supported transform, so the caller should
232 * check the result afterwards.
233 */
drm_rotation_simplify(unsigned int rotation,unsigned int supported_rotations)234 unsigned int drm_rotation_simplify(unsigned int rotation,
235 unsigned int supported_rotations)
236 {
237 if (rotation & ~supported_rotations) {
238 rotation ^= DRM_MODE_REFLECT_X | DRM_MODE_REFLECT_Y;
239 rotation = (rotation & DRM_MODE_REFLECT_MASK) |
240 BIT((ffs(rotation & DRM_MODE_ROTATE_MASK) + 1)
241 % 4);
242 }
243
244 return rotation;
245 }
246 EXPORT_SYMBOL(drm_rotation_simplify);
247
248 /**
249 * drm_plane_create_zpos_property - create mutable zpos property
250 * @plane: drm plane
251 * @zpos: initial value of zpos property
252 * @min: minimal possible value of zpos property
253 * @max: maximal possible value of zpos property
254 *
255 * This function initializes generic mutable zpos property and enables support
256 * for it in drm core. Drivers can then attach this property to planes to enable
257 * support for configurable planes arrangement during blending operation.
258 * Drivers that attach a mutable zpos property to any plane should call the
259 * drm_atomic_normalize_zpos() helper during their implementation of
260 * &drm_mode_config_funcs.atomic_check(), which will update the normalized zpos
261 * values and store them in &drm_plane_state.normalized_zpos. Usually min
262 * should be set to 0 and max to maximal number of planes for given crtc - 1.
263 *
264 * If zpos of some planes cannot be changed (like fixed background or
265 * cursor/topmost planes), driver should adjust min/max values and assign those
266 * planes immutable zpos property with lower or higher values (for more
267 * information, see drm_plane_create_zpos_immutable_property() function). In such
268 * case driver should also assign proper initial zpos values for all planes in
269 * its plane_reset() callback, so the planes will be always sorted properly.
270 *
271 * See also drm_atomic_normalize_zpos().
272 *
273 * The property exposed to userspace is called "zpos".
274 *
275 * Returns:
276 * Zero on success, negative errno on failure.
277 */
drm_plane_create_zpos_property(struct drm_plane * plane,unsigned int zpos,unsigned int min,unsigned int max)278 int drm_plane_create_zpos_property(struct drm_plane *plane,
279 unsigned int zpos,
280 unsigned int min, unsigned int max)
281 {
282 struct drm_property *prop;
283
284 prop = drm_property_create_range(plane->dev, 0, "zpos", min, max);
285 if (!prop)
286 return -ENOMEM;
287
288 drm_object_attach_property(&plane->base, prop, zpos);
289
290 plane->zpos_property = prop;
291
292 if (plane->state) {
293 plane->state->zpos = zpos;
294 plane->state->normalized_zpos = zpos;
295 }
296
297 return 0;
298 }
299 EXPORT_SYMBOL(drm_plane_create_zpos_property);
300
301 /**
302 * drm_plane_create_zpos_immutable_property - create immuttable zpos property
303 * @plane: drm plane
304 * @zpos: value of zpos property
305 *
306 * This function initializes generic immutable zpos property and enables
307 * support for it in drm core. Using this property driver lets userspace
308 * to get the arrangement of the planes for blending operation and notifies
309 * it that the hardware (or driver) doesn't support changing of the planes'
310 * order. For mutable zpos see drm_plane_create_zpos_property().
311 *
312 * The property exposed to userspace is called "zpos".
313 *
314 * Returns:
315 * Zero on success, negative errno on failure.
316 */
drm_plane_create_zpos_immutable_property(struct drm_plane * plane,unsigned int zpos)317 int drm_plane_create_zpos_immutable_property(struct drm_plane *plane,
318 unsigned int zpos)
319 {
320 struct drm_property *prop;
321
322 prop = drm_property_create_range(plane->dev, DRM_MODE_PROP_IMMUTABLE,
323 "zpos", zpos, zpos);
324 if (!prop)
325 return -ENOMEM;
326
327 drm_object_attach_property(&plane->base, prop, zpos);
328
329 plane->zpos_property = prop;
330
331 if (plane->state) {
332 plane->state->zpos = zpos;
333 plane->state->normalized_zpos = zpos;
334 }
335
336 return 0;
337 }
338 EXPORT_SYMBOL(drm_plane_create_zpos_immutable_property);
339
drm_atomic_state_zpos_cmp(const void * a,const void * b)340 static int drm_atomic_state_zpos_cmp(const void *a, const void *b)
341 {
342 const struct drm_plane_state *sa = *(struct drm_plane_state **)a;
343 const struct drm_plane_state *sb = *(struct drm_plane_state **)b;
344
345 if (sa->zpos != sb->zpos)
346 return sa->zpos - sb->zpos;
347 else
348 return sa->plane->base.id - sb->plane->base.id;
349 }
350
drm_atomic_helper_crtc_normalize_zpos(struct drm_crtc * crtc,struct drm_crtc_state * crtc_state)351 static int drm_atomic_helper_crtc_normalize_zpos(struct drm_crtc *crtc,
352 struct drm_crtc_state *crtc_state)
353 {
354 struct drm_atomic_state *state = crtc_state->state;
355 struct drm_device *dev = crtc->dev;
356 int total_planes = dev->mode_config.num_total_plane;
357 struct drm_plane_state **states;
358 struct drm_plane *plane;
359 int i, n = 0;
360 int ret = 0;
361
362 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] calculating normalized zpos values\n",
363 crtc->base.id, crtc->name);
364
365 states = kmalloc_array(total_planes, sizeof(*states), GFP_KERNEL);
366 if (!states)
367 return -ENOMEM;
368
369 /*
370 * Normalization process might create new states for planes which
371 * normalized_zpos has to be recalculated.
372 */
373 drm_for_each_plane_mask(plane, dev, crtc_state->plane_mask) {
374 struct drm_plane_state *plane_state =
375 drm_atomic_get_plane_state(state, plane);
376 if (IS_ERR(plane_state)) {
377 ret = PTR_ERR(plane_state);
378 goto done;
379 }
380 states[n++] = plane_state;
381 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] processing zpos value %d\n",
382 plane->base.id, plane->name,
383 plane_state->zpos);
384 }
385
386 sort(states, n, sizeof(*states), drm_atomic_state_zpos_cmp, NULL);
387
388 for (i = 0; i < n; i++) {
389 plane = states[i]->plane;
390
391 states[i]->normalized_zpos = i;
392 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] normalized zpos value %d\n",
393 plane->base.id, plane->name, i);
394 }
395 crtc_state->zpos_changed = true;
396
397 done:
398 kfree(states);
399 return ret;
400 }
401
402 /**
403 * drm_atomic_normalize_zpos - calculate normalized zpos values for all crtcs
404 * @dev: DRM device
405 * @state: atomic state of DRM device
406 *
407 * This function calculates normalized zpos value for all modified planes in
408 * the provided atomic state of DRM device.
409 *
410 * For every CRTC this function checks new states of all planes assigned to
411 * it and calculates normalized zpos value for these planes. Planes are compared
412 * first by their zpos values, then by plane id (if zpos is equal). The plane
413 * with lowest zpos value is at the bottom. The &drm_plane_state.normalized_zpos
414 * is then filled with unique values from 0 to number of active planes in crtc
415 * minus one.
416 *
417 * RETURNS
418 * Zero for success or -errno
419 */
drm_atomic_normalize_zpos(struct drm_device * dev,struct drm_atomic_state * state)420 int drm_atomic_normalize_zpos(struct drm_device *dev,
421 struct drm_atomic_state *state)
422 {
423 struct drm_crtc *crtc;
424 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
425 struct drm_plane *plane;
426 struct drm_plane_state *old_plane_state, *new_plane_state;
427 int i, ret = 0;
428
429 for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i) {
430 crtc = new_plane_state->crtc;
431 if (!crtc)
432 continue;
433 if (old_plane_state->zpos != new_plane_state->zpos) {
434 new_crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
435 new_crtc_state->zpos_changed = true;
436 }
437 }
438
439 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
440 if (old_crtc_state->plane_mask != new_crtc_state->plane_mask ||
441 new_crtc_state->zpos_changed) {
442 ret = drm_atomic_helper_crtc_normalize_zpos(crtc,
443 new_crtc_state);
444 if (ret)
445 return ret;
446 }
447 }
448 return 0;
449 }
450 EXPORT_SYMBOL(drm_atomic_normalize_zpos);
451