1 /**************************************************************************
2 *
3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
4 * Copyright 2016 Intel Corporation
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 *
28 **************************************************************************/
29
30 /*
31 * Generic simple memory manager implementation. Intended to be used as a base
32 * class implementation for more advanced memory managers.
33 *
34 * Note that the algorithm used is quite simple and there might be substantial
35 * performance gains if a smarter free list is implemented. Currently it is
36 * just an unordered stack of free regions. This could easily be improved if
37 * an RB-tree is used instead. At least if we expect heavy fragmentation.
38 *
39 * Aligned allocations can also see improvement.
40 *
41 * Authors:
42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
43 */
44
45 #include <drm/drmP.h>
46 #include <drm/drm_mm.h>
47 #include <linux/slab.h>
48 #include <linux/seq_file.h>
49 #include <linux/export.h>
50 #include <linux/interval_tree_generic.h>
51
52 /**
53 * DOC: Overview
54 *
55 * drm_mm provides a simple range allocator. The drivers are free to use the
56 * resource allocator from the linux core if it suits them, the upside of drm_mm
57 * is that it's in the DRM core. Which means that it's easier to extend for
58 * some of the crazier special purpose needs of gpus.
59 *
60 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
61 * Drivers are free to embed either of them into their own suitable
62 * datastructures. drm_mm itself will not do any memory allocations of its own,
63 * so if drivers choose not to embed nodes they need to still allocate them
64 * themselves.
65 *
66 * The range allocator also supports reservation of preallocated blocks. This is
67 * useful for taking over initial mode setting configurations from the firmware,
68 * where an object needs to be created which exactly matches the firmware's
69 * scanout target. As long as the range is still free it can be inserted anytime
70 * after the allocator is initialized, which helps with avoiding looped
71 * dependencies in the driver load sequence.
72 *
73 * drm_mm maintains a stack of most recently freed holes, which of all
74 * simplistic datastructures seems to be a fairly decent approach to clustering
75 * allocations and avoiding too much fragmentation. This means free space
76 * searches are O(num_holes). Given that all the fancy features drm_mm supports
77 * something better would be fairly complex and since gfx thrashing is a fairly
78 * steep cliff not a real concern. Removing a node again is O(1).
79 *
80 * drm_mm supports a few features: Alignment and range restrictions can be
81 * supplied. Furthermore every &drm_mm_node has a color value (which is just an
82 * opaque unsigned long) which in conjunction with a driver callback can be used
83 * to implement sophisticated placement restrictions. The i915 DRM driver uses
84 * this to implement guard pages between incompatible caching domains in the
85 * graphics TT.
86 *
87 * Two behaviors are supported for searching and allocating: bottom-up and
88 * top-down. The default is bottom-up. Top-down allocation can be used if the
89 * memory area has different restrictions, or just to reduce fragmentation.
90 *
91 * Finally iteration helpers to walk all nodes and all holes are provided as are
92 * some basic allocator dumpers for debugging.
93 *
94 * Note that this range allocator is not thread-safe, drivers need to protect
95 * modifications with their own locking. The idea behind this is that for a full
96 * memory manager additional data needs to be protected anyway, hence internal
97 * locking would be fully redundant.
98 */
99
100 #ifdef CONFIG_DRM_DEBUG_MM
101 #include <linux/stackdepot.h>
102
103 #define STACKDEPTH 32
104 #define BUFSZ 4096
105
save_stack(struct drm_mm_node * node)106 static noinline void save_stack(struct drm_mm_node *node)
107 {
108 unsigned long entries[STACKDEPTH];
109 struct stack_trace trace = {
110 .entries = entries,
111 .max_entries = STACKDEPTH,
112 .skip = 1
113 };
114
115 save_stack_trace(&trace);
116 if (trace.nr_entries != 0 &&
117 trace.entries[trace.nr_entries-1] == ULONG_MAX)
118 trace.nr_entries--;
119
120 /* May be called under spinlock, so avoid sleeping */
121 node->stack = depot_save_stack(&trace, GFP_NOWAIT);
122 }
123
show_leaks(struct drm_mm * mm)124 static void show_leaks(struct drm_mm *mm)
125 {
126 struct drm_mm_node *node;
127 unsigned long entries[STACKDEPTH];
128 char *buf;
129
130 buf = kmalloc(BUFSZ, GFP_KERNEL);
131 if (!buf)
132 return;
133
134 list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
135 struct stack_trace trace = {
136 .entries = entries,
137 .max_entries = STACKDEPTH
138 };
139
140 if (!node->stack) {
141 DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
142 node->start, node->size);
143 continue;
144 }
145
146 depot_fetch_stack(node->stack, &trace);
147 snprint_stack_trace(buf, BUFSZ, &trace, 0);
148 DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
149 node->start, node->size, buf);
150 }
151
152 kfree(buf);
153 }
154
155 #undef STACKDEPTH
156 #undef BUFSZ
157 #else
save_stack(struct drm_mm_node * node)158 static void save_stack(struct drm_mm_node *node) { }
show_leaks(struct drm_mm * mm)159 static void show_leaks(struct drm_mm *mm) { }
160 #endif
161
162 #define START(node) ((node)->start)
163 #define LAST(node) ((node)->start + (node)->size - 1)
164
INTERVAL_TREE_DEFINE(struct drm_mm_node,rb,u64,__subtree_last,START,LAST,static inline,drm_mm_interval_tree)165 INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
166 u64, __subtree_last,
167 START, LAST, static inline, drm_mm_interval_tree)
168
169 struct drm_mm_node *
170 __drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last)
171 {
172 return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree,
173 start, last) ?: (struct drm_mm_node *)&mm->head_node;
174 }
175 EXPORT_SYMBOL(__drm_mm_interval_first);
176
drm_mm_interval_tree_add_node(struct drm_mm_node * hole_node,struct drm_mm_node * node)177 static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
178 struct drm_mm_node *node)
179 {
180 struct drm_mm *mm = hole_node->mm;
181 struct rb_node **link, *rb;
182 struct drm_mm_node *parent;
183 bool leftmost;
184
185 node->__subtree_last = LAST(node);
186
187 if (hole_node->allocated) {
188 rb = &hole_node->rb;
189 while (rb) {
190 parent = rb_entry(rb, struct drm_mm_node, rb);
191 if (parent->__subtree_last >= node->__subtree_last)
192 break;
193
194 parent->__subtree_last = node->__subtree_last;
195 rb = rb_parent(rb);
196 }
197
198 rb = &hole_node->rb;
199 link = &hole_node->rb.rb_right;
200 leftmost = false;
201 } else {
202 rb = NULL;
203 link = &mm->interval_tree.rb_root.rb_node;
204 leftmost = true;
205 }
206
207 while (*link) {
208 rb = *link;
209 parent = rb_entry(rb, struct drm_mm_node, rb);
210 if (parent->__subtree_last < node->__subtree_last)
211 parent->__subtree_last = node->__subtree_last;
212 if (node->start < parent->start) {
213 link = &parent->rb.rb_left;
214 } else {
215 link = &parent->rb.rb_right;
216 leftmost = false;
217 }
218 }
219
220 rb_link_node(&node->rb, rb, link);
221 rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost,
222 &drm_mm_interval_tree_augment);
223 }
224
225 #define RB_INSERT(root, member, expr) do { \
226 struct rb_node **link = &root.rb_node, *rb = NULL; \
227 u64 x = expr(node); \
228 while (*link) { \
229 rb = *link; \
230 if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \
231 link = &rb->rb_left; \
232 else \
233 link = &rb->rb_right; \
234 } \
235 rb_link_node(&node->member, rb, link); \
236 rb_insert_color(&node->member, &root); \
237 } while (0)
238
239 #define HOLE_SIZE(NODE) ((NODE)->hole_size)
240 #define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
241
rb_to_hole_size(struct rb_node * rb)242 static u64 rb_to_hole_size(struct rb_node *rb)
243 {
244 return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
245 }
246
insert_hole_size(struct rb_root_cached * root,struct drm_mm_node * node)247 static void insert_hole_size(struct rb_root_cached *root,
248 struct drm_mm_node *node)
249 {
250 struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
251 u64 x = node->hole_size;
252 bool first = true;
253
254 while (*link) {
255 rb = *link;
256 if (x > rb_to_hole_size(rb)) {
257 link = &rb->rb_left;
258 } else {
259 link = &rb->rb_right;
260 first = false;
261 }
262 }
263
264 rb_link_node(&node->rb_hole_size, rb, link);
265 rb_insert_color_cached(&node->rb_hole_size, root, first);
266 }
267
add_hole(struct drm_mm_node * node)268 static void add_hole(struct drm_mm_node *node)
269 {
270 struct drm_mm *mm = node->mm;
271
272 node->hole_size =
273 __drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
274 DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
275
276 insert_hole_size(&mm->holes_size, node);
277 RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR);
278
279 list_add(&node->hole_stack, &mm->hole_stack);
280 }
281
rm_hole(struct drm_mm_node * node)282 static void rm_hole(struct drm_mm_node *node)
283 {
284 DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
285
286 list_del(&node->hole_stack);
287 rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size);
288 rb_erase(&node->rb_hole_addr, &node->mm->holes_addr);
289 node->hole_size = 0;
290
291 DRM_MM_BUG_ON(drm_mm_hole_follows(node));
292 }
293
rb_hole_size_to_node(struct rb_node * rb)294 static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
295 {
296 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
297 }
298
rb_hole_addr_to_node(struct rb_node * rb)299 static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
300 {
301 return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
302 }
303
rb_hole_size(struct rb_node * rb)304 static inline u64 rb_hole_size(struct rb_node *rb)
305 {
306 return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
307 }
308
best_hole(struct drm_mm * mm,u64 size)309 static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
310 {
311 struct rb_node *rb = mm->holes_size.rb_root.rb_node;
312 struct drm_mm_node *best = NULL;
313
314 do {
315 struct drm_mm_node *node =
316 rb_entry(rb, struct drm_mm_node, rb_hole_size);
317
318 if (size <= node->hole_size) {
319 best = node;
320 rb = rb->rb_right;
321 } else {
322 rb = rb->rb_left;
323 }
324 } while (rb);
325
326 return best;
327 }
328
find_hole(struct drm_mm * mm,u64 addr)329 static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr)
330 {
331 struct rb_node *rb = mm->holes_addr.rb_node;
332 struct drm_mm_node *node = NULL;
333
334 while (rb) {
335 u64 hole_start;
336
337 node = rb_hole_addr_to_node(rb);
338 hole_start = __drm_mm_hole_node_start(node);
339
340 if (addr < hole_start)
341 rb = node->rb_hole_addr.rb_left;
342 else if (addr > hole_start + node->hole_size)
343 rb = node->rb_hole_addr.rb_right;
344 else
345 break;
346 }
347
348 return node;
349 }
350
351 static struct drm_mm_node *
first_hole(struct drm_mm * mm,u64 start,u64 end,u64 size,enum drm_mm_insert_mode mode)352 first_hole(struct drm_mm *mm,
353 u64 start, u64 end, u64 size,
354 enum drm_mm_insert_mode mode)
355 {
356 switch (mode) {
357 default:
358 case DRM_MM_INSERT_BEST:
359 return best_hole(mm, size);
360
361 case DRM_MM_INSERT_LOW:
362 return find_hole(mm, start);
363
364 case DRM_MM_INSERT_HIGH:
365 return find_hole(mm, end);
366
367 case DRM_MM_INSERT_EVICT:
368 return list_first_entry_or_null(&mm->hole_stack,
369 struct drm_mm_node,
370 hole_stack);
371 }
372 }
373
374 static struct drm_mm_node *
next_hole(struct drm_mm * mm,struct drm_mm_node * node,enum drm_mm_insert_mode mode)375 next_hole(struct drm_mm *mm,
376 struct drm_mm_node *node,
377 enum drm_mm_insert_mode mode)
378 {
379 switch (mode) {
380 default:
381 case DRM_MM_INSERT_BEST:
382 return rb_hole_size_to_node(rb_prev(&node->rb_hole_size));
383
384 case DRM_MM_INSERT_LOW:
385 return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr));
386
387 case DRM_MM_INSERT_HIGH:
388 return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr));
389
390 case DRM_MM_INSERT_EVICT:
391 node = list_next_entry(node, hole_stack);
392 return &node->hole_stack == &mm->hole_stack ? NULL : node;
393 }
394 }
395
396 /**
397 * drm_mm_reserve_node - insert an pre-initialized node
398 * @mm: drm_mm allocator to insert @node into
399 * @node: drm_mm_node to insert
400 *
401 * This functions inserts an already set-up &drm_mm_node into the allocator,
402 * meaning that start, size and color must be set by the caller. All other
403 * fields must be cleared to 0. This is useful to initialize the allocator with
404 * preallocated objects which must be set-up before the range allocator can be
405 * set-up, e.g. when taking over a firmware framebuffer.
406 *
407 * Returns:
408 * 0 on success, -ENOSPC if there's no hole where @node is.
409 */
drm_mm_reserve_node(struct drm_mm * mm,struct drm_mm_node * node)410 int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
411 {
412 u64 end = node->start + node->size;
413 struct drm_mm_node *hole;
414 u64 hole_start, hole_end;
415 u64 adj_start, adj_end;
416
417 end = node->start + node->size;
418 if (unlikely(end <= node->start))
419 return -ENOSPC;
420
421 /* Find the relevant hole to add our node to */
422 hole = find_hole(mm, node->start);
423 if (!hole)
424 return -ENOSPC;
425
426 adj_start = hole_start = __drm_mm_hole_node_start(hole);
427 adj_end = hole_end = hole_start + hole->hole_size;
428
429 if (mm->color_adjust)
430 mm->color_adjust(hole, node->color, &adj_start, &adj_end);
431
432 if (adj_start > node->start || adj_end < end)
433 return -ENOSPC;
434
435 node->mm = mm;
436
437 list_add(&node->node_list, &hole->node_list);
438 drm_mm_interval_tree_add_node(hole, node);
439 node->allocated = true;
440 node->hole_size = 0;
441
442 rm_hole(hole);
443 if (node->start > hole_start)
444 add_hole(hole);
445 if (end < hole_end)
446 add_hole(node);
447
448 save_stack(node);
449 return 0;
450 }
451 EXPORT_SYMBOL(drm_mm_reserve_node);
452
rb_to_hole_size_or_zero(struct rb_node * rb)453 static u64 rb_to_hole_size_or_zero(struct rb_node *rb)
454 {
455 return rb ? rb_to_hole_size(rb) : 0;
456 }
457
458 /**
459 * drm_mm_insert_node_in_range - ranged search for space and insert @node
460 * @mm: drm_mm to allocate from
461 * @node: preallocate node to insert
462 * @size: size of the allocation
463 * @alignment: alignment of the allocation
464 * @color: opaque tag value to use for this node
465 * @range_start: start of the allowed range for this node
466 * @range_end: end of the allowed range for this node
467 * @mode: fine-tune the allocation search and placement
468 *
469 * The preallocated @node must be cleared to 0.
470 *
471 * Returns:
472 * 0 on success, -ENOSPC if there's no suitable hole.
473 */
drm_mm_insert_node_in_range(struct drm_mm * const mm,struct drm_mm_node * const node,u64 size,u64 alignment,unsigned long color,u64 range_start,u64 range_end,enum drm_mm_insert_mode mode)474 int drm_mm_insert_node_in_range(struct drm_mm * const mm,
475 struct drm_mm_node * const node,
476 u64 size, u64 alignment,
477 unsigned long color,
478 u64 range_start, u64 range_end,
479 enum drm_mm_insert_mode mode)
480 {
481 struct drm_mm_node *hole;
482 u64 remainder_mask;
483 bool once;
484
485 DRM_MM_BUG_ON(range_start >= range_end);
486
487 if (unlikely(size == 0 || range_end - range_start < size))
488 return -ENOSPC;
489
490 if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size)
491 return -ENOSPC;
492
493 if (alignment <= 1)
494 alignment = 0;
495
496 once = mode & DRM_MM_INSERT_ONCE;
497 mode &= ~DRM_MM_INSERT_ONCE;
498
499 remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
500 for (hole = first_hole(mm, range_start, range_end, size, mode);
501 hole;
502 hole = once ? NULL : next_hole(mm, hole, mode)) {
503 u64 hole_start = __drm_mm_hole_node_start(hole);
504 u64 hole_end = hole_start + hole->hole_size;
505 u64 adj_start, adj_end;
506 u64 col_start, col_end;
507
508 if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
509 break;
510
511 if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
512 break;
513
514 col_start = hole_start;
515 col_end = hole_end;
516 if (mm->color_adjust)
517 mm->color_adjust(hole, color, &col_start, &col_end);
518
519 adj_start = max(col_start, range_start);
520 adj_end = min(col_end, range_end);
521
522 if (adj_end <= adj_start || adj_end - adj_start < size)
523 continue;
524
525 if (mode == DRM_MM_INSERT_HIGH)
526 adj_start = adj_end - size;
527
528 if (alignment) {
529 u64 rem;
530
531 if (likely(remainder_mask))
532 rem = adj_start & remainder_mask;
533 else
534 div64_u64_rem(adj_start, alignment, &rem);
535 if (rem) {
536 adj_start -= rem;
537 if (mode != DRM_MM_INSERT_HIGH)
538 adj_start += alignment;
539
540 if (adj_start < max(col_start, range_start) ||
541 min(col_end, range_end) - adj_start < size)
542 continue;
543
544 if (adj_end <= adj_start ||
545 adj_end - adj_start < size)
546 continue;
547 }
548 }
549
550 node->mm = mm;
551 node->size = size;
552 node->start = adj_start;
553 node->color = color;
554 node->hole_size = 0;
555
556 list_add(&node->node_list, &hole->node_list);
557 drm_mm_interval_tree_add_node(hole, node);
558 node->allocated = true;
559
560 rm_hole(hole);
561 if (adj_start > hole_start)
562 add_hole(hole);
563 if (adj_start + size < hole_end)
564 add_hole(node);
565
566 save_stack(node);
567 return 0;
568 }
569
570 return -ENOSPC;
571 }
572 EXPORT_SYMBOL(drm_mm_insert_node_in_range);
573
574 /**
575 * drm_mm_remove_node - Remove a memory node from the allocator.
576 * @node: drm_mm_node to remove
577 *
578 * This just removes a node from its drm_mm allocator. The node does not need to
579 * be cleared again before it can be re-inserted into this or any other drm_mm
580 * allocator. It is a bug to call this function on a unallocated node.
581 */
drm_mm_remove_node(struct drm_mm_node * node)582 void drm_mm_remove_node(struct drm_mm_node *node)
583 {
584 struct drm_mm *mm = node->mm;
585 struct drm_mm_node *prev_node;
586
587 DRM_MM_BUG_ON(!node->allocated);
588 DRM_MM_BUG_ON(node->scanned_block);
589
590 prev_node = list_prev_entry(node, node_list);
591
592 if (drm_mm_hole_follows(node))
593 rm_hole(node);
594
595 drm_mm_interval_tree_remove(node, &mm->interval_tree);
596 list_del(&node->node_list);
597 node->allocated = false;
598
599 if (drm_mm_hole_follows(prev_node))
600 rm_hole(prev_node);
601 add_hole(prev_node);
602 }
603 EXPORT_SYMBOL(drm_mm_remove_node);
604
605 /**
606 * drm_mm_replace_node - move an allocation from @old to @new
607 * @old: drm_mm_node to remove from the allocator
608 * @new: drm_mm_node which should inherit @old's allocation
609 *
610 * This is useful for when drivers embed the drm_mm_node structure and hence
611 * can't move allocations by reassigning pointers. It's a combination of remove
612 * and insert with the guarantee that the allocation start will match.
613 */
drm_mm_replace_node(struct drm_mm_node * old,struct drm_mm_node * new)614 void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
615 {
616 struct drm_mm *mm = old->mm;
617
618 DRM_MM_BUG_ON(!old->allocated);
619
620 *new = *old;
621
622 list_replace(&old->node_list, &new->node_list);
623 rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree);
624
625 if (drm_mm_hole_follows(old)) {
626 list_replace(&old->hole_stack, &new->hole_stack);
627 rb_replace_node_cached(&old->rb_hole_size,
628 &new->rb_hole_size,
629 &mm->holes_size);
630 rb_replace_node(&old->rb_hole_addr,
631 &new->rb_hole_addr,
632 &mm->holes_addr);
633 }
634
635 old->allocated = false;
636 new->allocated = true;
637 }
638 EXPORT_SYMBOL(drm_mm_replace_node);
639
640 /**
641 * DOC: lru scan roster
642 *
643 * Very often GPUs need to have continuous allocations for a given object. When
644 * evicting objects to make space for a new one it is therefore not most
645 * efficient when we simply start to select all objects from the tail of an LRU
646 * until there's a suitable hole: Especially for big objects or nodes that
647 * otherwise have special allocation constraints there's a good chance we evict
648 * lots of (smaller) objects unnecessarily.
649 *
650 * The DRM range allocator supports this use-case through the scanning
651 * interfaces. First a scan operation needs to be initialized with
652 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
653 * objects to the roster, probably by walking an LRU list, but this can be
654 * freely implemented. Eviction candiates are added using
655 * drm_mm_scan_add_block() until a suitable hole is found or there are no
656 * further evictable objects. Eviction roster metadata is tracked in &struct
657 * drm_mm_scan.
658 *
659 * The driver must walk through all objects again in exactly the reverse
660 * order to restore the allocator state. Note that while the allocator is used
661 * in the scan mode no other operation is allowed.
662 *
663 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
664 * reported true) in the scan, and any overlapping nodes after color adjustment
665 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
666 * since freeing a node is also O(1) the overall complexity is
667 * O(scanned_objects). So like the free stack which needs to be walked before a
668 * scan operation even begins this is linear in the number of objects. It
669 * doesn't seem to hurt too badly.
670 */
671
672 /**
673 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
674 * @scan: scan state
675 * @mm: drm_mm to scan
676 * @size: size of the allocation
677 * @alignment: alignment of the allocation
678 * @color: opaque tag value to use for the allocation
679 * @start: start of the allowed range for the allocation
680 * @end: end of the allowed range for the allocation
681 * @mode: fine-tune the allocation search and placement
682 *
683 * This simply sets up the scanning routines with the parameters for the desired
684 * hole.
685 *
686 * Warning:
687 * As long as the scan list is non-empty, no other operations than
688 * adding/removing nodes to/from the scan list are allowed.
689 */
drm_mm_scan_init_with_range(struct drm_mm_scan * scan,struct drm_mm * mm,u64 size,u64 alignment,unsigned long color,u64 start,u64 end,enum drm_mm_insert_mode mode)690 void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
691 struct drm_mm *mm,
692 u64 size,
693 u64 alignment,
694 unsigned long color,
695 u64 start,
696 u64 end,
697 enum drm_mm_insert_mode mode)
698 {
699 DRM_MM_BUG_ON(start >= end);
700 DRM_MM_BUG_ON(!size || size > end - start);
701 DRM_MM_BUG_ON(mm->scan_active);
702
703 scan->mm = mm;
704
705 if (alignment <= 1)
706 alignment = 0;
707
708 scan->color = color;
709 scan->alignment = alignment;
710 scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
711 scan->size = size;
712 scan->mode = mode;
713
714 DRM_MM_BUG_ON(end <= start);
715 scan->range_start = start;
716 scan->range_end = end;
717
718 scan->hit_start = U64_MAX;
719 scan->hit_end = 0;
720 }
721 EXPORT_SYMBOL(drm_mm_scan_init_with_range);
722
723 /**
724 * drm_mm_scan_add_block - add a node to the scan list
725 * @scan: the active drm_mm scanner
726 * @node: drm_mm_node to add
727 *
728 * Add a node to the scan list that might be freed to make space for the desired
729 * hole.
730 *
731 * Returns:
732 * True if a hole has been found, false otherwise.
733 */
drm_mm_scan_add_block(struct drm_mm_scan * scan,struct drm_mm_node * node)734 bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
735 struct drm_mm_node *node)
736 {
737 struct drm_mm *mm = scan->mm;
738 struct drm_mm_node *hole;
739 u64 hole_start, hole_end;
740 u64 col_start, col_end;
741 u64 adj_start, adj_end;
742
743 DRM_MM_BUG_ON(node->mm != mm);
744 DRM_MM_BUG_ON(!node->allocated);
745 DRM_MM_BUG_ON(node->scanned_block);
746 node->scanned_block = true;
747 mm->scan_active++;
748
749 /* Remove this block from the node_list so that we enlarge the hole
750 * (distance between the end of our previous node and the start of
751 * or next), without poisoning the link so that we can restore it
752 * later in drm_mm_scan_remove_block().
753 */
754 hole = list_prev_entry(node, node_list);
755 DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
756 __list_del_entry(&node->node_list);
757
758 hole_start = __drm_mm_hole_node_start(hole);
759 hole_end = __drm_mm_hole_node_end(hole);
760
761 col_start = hole_start;
762 col_end = hole_end;
763 if (mm->color_adjust)
764 mm->color_adjust(hole, scan->color, &col_start, &col_end);
765
766 adj_start = max(col_start, scan->range_start);
767 adj_end = min(col_end, scan->range_end);
768 if (adj_end <= adj_start || adj_end - adj_start < scan->size)
769 return false;
770
771 if (scan->mode == DRM_MM_INSERT_HIGH)
772 adj_start = adj_end - scan->size;
773
774 if (scan->alignment) {
775 u64 rem;
776
777 if (likely(scan->remainder_mask))
778 rem = adj_start & scan->remainder_mask;
779 else
780 div64_u64_rem(adj_start, scan->alignment, &rem);
781 if (rem) {
782 adj_start -= rem;
783 if (scan->mode != DRM_MM_INSERT_HIGH)
784 adj_start += scan->alignment;
785 if (adj_start < max(col_start, scan->range_start) ||
786 min(col_end, scan->range_end) - adj_start < scan->size)
787 return false;
788
789 if (adj_end <= adj_start ||
790 adj_end - adj_start < scan->size)
791 return false;
792 }
793 }
794
795 scan->hit_start = adj_start;
796 scan->hit_end = adj_start + scan->size;
797
798 DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
799 DRM_MM_BUG_ON(scan->hit_start < hole_start);
800 DRM_MM_BUG_ON(scan->hit_end > hole_end);
801
802 return true;
803 }
804 EXPORT_SYMBOL(drm_mm_scan_add_block);
805
806 /**
807 * drm_mm_scan_remove_block - remove a node from the scan list
808 * @scan: the active drm_mm scanner
809 * @node: drm_mm_node to remove
810 *
811 * Nodes **must** be removed in exactly the reverse order from the scan list as
812 * they have been added (e.g. using list_add() as they are added and then
813 * list_for_each() over that eviction list to remove), otherwise the internal
814 * state of the memory manager will be corrupted.
815 *
816 * When the scan list is empty, the selected memory nodes can be freed. An
817 * immediately following drm_mm_insert_node_in_range_generic() or one of the
818 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
819 * the just freed block (because its at the top of the free_stack list).
820 *
821 * Returns:
822 * True if this block should be evicted, false otherwise. Will always
823 * return false when no hole has been found.
824 */
drm_mm_scan_remove_block(struct drm_mm_scan * scan,struct drm_mm_node * node)825 bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
826 struct drm_mm_node *node)
827 {
828 struct drm_mm_node *prev_node;
829
830 DRM_MM_BUG_ON(node->mm != scan->mm);
831 DRM_MM_BUG_ON(!node->scanned_block);
832 node->scanned_block = false;
833
834 DRM_MM_BUG_ON(!node->mm->scan_active);
835 node->mm->scan_active--;
836
837 /* During drm_mm_scan_add_block() we decoupled this node leaving
838 * its pointers intact. Now that the caller is walking back along
839 * the eviction list we can restore this block into its rightful
840 * place on the full node_list. To confirm that the caller is walking
841 * backwards correctly we check that prev_node->next == node->next,
842 * i.e. both believe the same node should be on the other side of the
843 * hole.
844 */
845 prev_node = list_prev_entry(node, node_list);
846 DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
847 list_next_entry(node, node_list));
848 list_add(&node->node_list, &prev_node->node_list);
849
850 return (node->start + node->size > scan->hit_start &&
851 node->start < scan->hit_end);
852 }
853 EXPORT_SYMBOL(drm_mm_scan_remove_block);
854
855 /**
856 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
857 * @scan: drm_mm scan with target hole
858 *
859 * After completing an eviction scan and removing the selected nodes, we may
860 * need to remove a few more nodes from either side of the target hole if
861 * mm.color_adjust is being used.
862 *
863 * Returns:
864 * A node to evict, or NULL if there are no overlapping nodes.
865 */
drm_mm_scan_color_evict(struct drm_mm_scan * scan)866 struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
867 {
868 struct drm_mm *mm = scan->mm;
869 struct drm_mm_node *hole;
870 u64 hole_start, hole_end;
871
872 DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
873
874 if (!mm->color_adjust)
875 return NULL;
876
877 /*
878 * The hole found during scanning should ideally be the first element
879 * in the hole_stack list, but due to side-effects in the driver it
880 * may not be.
881 */
882 list_for_each_entry(hole, &mm->hole_stack, hole_stack) {
883 hole_start = __drm_mm_hole_node_start(hole);
884 hole_end = hole_start + hole->hole_size;
885
886 if (hole_start <= scan->hit_start &&
887 hole_end >= scan->hit_end)
888 break;
889 }
890
891 /* We should only be called after we found the hole previously */
892 DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack);
893 if (unlikely(&hole->hole_stack == &mm->hole_stack))
894 return NULL;
895
896 DRM_MM_BUG_ON(hole_start > scan->hit_start);
897 DRM_MM_BUG_ON(hole_end < scan->hit_end);
898
899 mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
900 if (hole_start > scan->hit_start)
901 return hole;
902 if (hole_end < scan->hit_end)
903 return list_next_entry(hole, node_list);
904
905 return NULL;
906 }
907 EXPORT_SYMBOL(drm_mm_scan_color_evict);
908
909 /**
910 * drm_mm_init - initialize a drm-mm allocator
911 * @mm: the drm_mm structure to initialize
912 * @start: start of the range managed by @mm
913 * @size: end of the range managed by @mm
914 *
915 * Note that @mm must be cleared to 0 before calling this function.
916 */
drm_mm_init(struct drm_mm * mm,u64 start,u64 size)917 void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
918 {
919 DRM_MM_BUG_ON(start + size <= start);
920
921 mm->color_adjust = NULL;
922
923 INIT_LIST_HEAD(&mm->hole_stack);
924 mm->interval_tree = RB_ROOT_CACHED;
925 mm->holes_size = RB_ROOT_CACHED;
926 mm->holes_addr = RB_ROOT;
927
928 /* Clever trick to avoid a special case in the free hole tracking. */
929 INIT_LIST_HEAD(&mm->head_node.node_list);
930 mm->head_node.allocated = false;
931 mm->head_node.mm = mm;
932 mm->head_node.start = start + size;
933 mm->head_node.size = -size;
934 add_hole(&mm->head_node);
935
936 mm->scan_active = 0;
937 }
938 EXPORT_SYMBOL(drm_mm_init);
939
940 /**
941 * drm_mm_takedown - clean up a drm_mm allocator
942 * @mm: drm_mm allocator to clean up
943 *
944 * Note that it is a bug to call this function on an allocator which is not
945 * clean.
946 */
drm_mm_takedown(struct drm_mm * mm)947 void drm_mm_takedown(struct drm_mm *mm)
948 {
949 if (WARN(!drm_mm_clean(mm),
950 "Memory manager not clean during takedown.\n"))
951 show_leaks(mm);
952 }
953 EXPORT_SYMBOL(drm_mm_takedown);
954
drm_mm_dump_hole(struct drm_printer * p,const struct drm_mm_node * entry)955 static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
956 {
957 u64 start, size;
958
959 size = entry->hole_size;
960 if (size) {
961 start = drm_mm_hole_node_start(entry);
962 drm_printf(p, "%#018llx-%#018llx: %llu: free\n",
963 start, start + size, size);
964 }
965
966 return size;
967 }
968 /**
969 * drm_mm_print - print allocator state
970 * @mm: drm_mm allocator to print
971 * @p: DRM printer to use
972 */
drm_mm_print(const struct drm_mm * mm,struct drm_printer * p)973 void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
974 {
975 const struct drm_mm_node *entry;
976 u64 total_used = 0, total_free = 0, total = 0;
977
978 total_free += drm_mm_dump_hole(p, &mm->head_node);
979
980 drm_mm_for_each_node(entry, mm) {
981 drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start,
982 entry->start + entry->size, entry->size);
983 total_used += entry->size;
984 total_free += drm_mm_dump_hole(p, entry);
985 }
986 total = total_free + total_used;
987
988 drm_printf(p, "total: %llu, used %llu free %llu\n", total,
989 total_used, total_free);
990 }
991 EXPORT_SYMBOL(drm_mm_print);
992