1 /*
2 * Copyright © 2009 Keith Packard
3 *
4 * Permission to use, copy, modify, distribute, and sell this software and its
5 * documentation for any purpose is hereby granted without fee, provided that
6 * the above copyright notice appear in all copies and that both that copyright
7 * notice and this permission notice appear in supporting documentation, and
8 * that the name of the copyright holders not be used in advertising or
9 * publicity pertaining to distribution of the software without specific,
10 * written prior permission. The copyright holders make no representations
11 * about the suitability of this software for any purpose. It is provided "as
12 * is" without express or implied warranty.
13 *
14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20 * OF THIS SOFTWARE.
21 */
22
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/i2c.h>
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/seq_file.h>
31
32 #include <drm/drm_dp_helper.h>
33 #include <drm/drm_print.h>
34 #include <drm/drm_vblank.h>
35 #include <drm/drm_dp_mst_helper.h>
36
37 #include "drm_crtc_helper_internal.h"
38
39 /**
40 * DOC: dp helpers
41 *
42 * These functions contain some common logic and helpers at various abstraction
43 * levels to deal with Display Port sink devices and related things like DP aux
44 * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
45 * blocks, ...
46 */
47
48 /* Helpers for DP link training */
dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE],int r)49 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
50 {
51 return link_status[r - DP_LANE0_1_STATUS];
52 }
53
dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)54 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
55 int lane)
56 {
57 int i = DP_LANE0_1_STATUS + (lane >> 1);
58 int s = (lane & 1) * 4;
59 u8 l = dp_link_status(link_status, i);
60
61 return (l >> s) & 0xf;
62 }
63
drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)64 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
65 int lane_count)
66 {
67 u8 lane_align;
68 u8 lane_status;
69 int lane;
70
71 lane_align = dp_link_status(link_status,
72 DP_LANE_ALIGN_STATUS_UPDATED);
73 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
74 return false;
75 for (lane = 0; lane < lane_count; lane++) {
76 lane_status = dp_get_lane_status(link_status, lane);
77 if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
78 return false;
79 }
80 return true;
81 }
82 EXPORT_SYMBOL(drm_dp_channel_eq_ok);
83
drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)84 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
85 int lane_count)
86 {
87 int lane;
88 u8 lane_status;
89
90 for (lane = 0; lane < lane_count; lane++) {
91 lane_status = dp_get_lane_status(link_status, lane);
92 if ((lane_status & DP_LANE_CR_DONE) == 0)
93 return false;
94 }
95 return true;
96 }
97 EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
98
drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)99 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
100 int lane)
101 {
102 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
103 int s = ((lane & 1) ?
104 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
105 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
106 u8 l = dp_link_status(link_status, i);
107
108 return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
109 }
110 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
111
drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)112 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
113 int lane)
114 {
115 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
116 int s = ((lane & 1) ?
117 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
118 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
119 u8 l = dp_link_status(link_status, i);
120
121 return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
122 }
123 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
124
drm_dp_get_adjust_request_post_cursor(const u8 link_status[DP_LINK_STATUS_SIZE],unsigned int lane)125 u8 drm_dp_get_adjust_request_post_cursor(const u8 link_status[DP_LINK_STATUS_SIZE],
126 unsigned int lane)
127 {
128 unsigned int offset = DP_ADJUST_REQUEST_POST_CURSOR2;
129 u8 value = dp_link_status(link_status, offset);
130
131 return (value >> (lane << 1)) & 0x3;
132 }
133 EXPORT_SYMBOL(drm_dp_get_adjust_request_post_cursor);
134
drm_dp_link_train_clock_recovery_delay(const u8 dpcd[DP_RECEIVER_CAP_SIZE])135 void drm_dp_link_train_clock_recovery_delay(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
136 {
137 unsigned long rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
138 DP_TRAINING_AUX_RD_MASK;
139
140 if (rd_interval > 4)
141 DRM_DEBUG_KMS("AUX interval %lu, out of range (max 4)\n",
142 rd_interval);
143
144 if (rd_interval == 0 || dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
145 rd_interval = 100;
146 else
147 rd_interval *= 4 * USEC_PER_MSEC;
148
149 usleep_range(rd_interval, rd_interval * 2);
150 }
151 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
152
drm_dp_link_train_channel_eq_delay(const u8 dpcd[DP_RECEIVER_CAP_SIZE])153 void drm_dp_link_train_channel_eq_delay(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
154 {
155 unsigned long rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
156 DP_TRAINING_AUX_RD_MASK;
157
158 if (rd_interval > 4)
159 DRM_DEBUG_KMS("AUX interval %lu, out of range (max 4)\n",
160 rd_interval);
161
162 if (rd_interval == 0)
163 rd_interval = 400;
164 else
165 rd_interval *= 4 * USEC_PER_MSEC;
166
167 usleep_range(rd_interval, rd_interval * 2);
168 }
169 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
170
drm_dp_link_rate_to_bw_code(int link_rate)171 u8 drm_dp_link_rate_to_bw_code(int link_rate)
172 {
173 /* Spec says link_bw = link_rate / 0.27Gbps */
174 return link_rate / 27000;
175 }
176 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
177
drm_dp_bw_code_to_link_rate(u8 link_bw)178 int drm_dp_bw_code_to_link_rate(u8 link_bw)
179 {
180 /* Spec says link_rate = link_bw * 0.27Gbps */
181 return link_bw * 27000;
182 }
183 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
184
185 #define AUX_RETRY_INTERVAL 500 /* us */
186
187 static inline void
drm_dp_dump_access(const struct drm_dp_aux * aux,u8 request,uint offset,void * buffer,int ret)188 drm_dp_dump_access(const struct drm_dp_aux *aux,
189 u8 request, uint offset, void *buffer, int ret)
190 {
191 const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
192
193 if (ret > 0)
194 DRM_DEBUG_DP("%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
195 aux->name, offset, arrow, ret, min(ret, 20), buffer);
196 else
197 DRM_DEBUG_DP("%s: 0x%05x AUX %s (ret=%3d)\n",
198 aux->name, offset, arrow, ret);
199 }
200
201 /**
202 * DOC: dp helpers
203 *
204 * The DisplayPort AUX channel is an abstraction to allow generic, driver-
205 * independent access to AUX functionality. Drivers can take advantage of
206 * this by filling in the fields of the drm_dp_aux structure.
207 *
208 * Transactions are described using a hardware-independent drm_dp_aux_msg
209 * structure, which is passed into a driver's .transfer() implementation.
210 * Both native and I2C-over-AUX transactions are supported.
211 */
212
drm_dp_dpcd_access(struct drm_dp_aux * aux,u8 request,unsigned int offset,void * buffer,size_t size)213 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
214 unsigned int offset, void *buffer, size_t size)
215 {
216 struct drm_dp_aux_msg msg;
217 unsigned int retry, native_reply;
218 int err = 0, ret = 0;
219
220 memset(&msg, 0, sizeof(msg));
221 msg.address = offset;
222 msg.request = request;
223 msg.buffer = buffer;
224 msg.size = size;
225
226 mutex_lock(&aux->hw_mutex);
227
228 /*
229 * The specification doesn't give any recommendation on how often to
230 * retry native transactions. We used to retry 7 times like for
231 * aux i2c transactions but real world devices this wasn't
232 * sufficient, bump to 32 which makes Dell 4k monitors happier.
233 */
234 for (retry = 0; retry < 32; retry++) {
235 if (ret != 0 && ret != -ETIMEDOUT) {
236 usleep_range(AUX_RETRY_INTERVAL,
237 AUX_RETRY_INTERVAL + 100);
238 }
239
240 ret = aux->transfer(aux, &msg);
241 if (ret >= 0) {
242 native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
243 if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
244 if (ret == size)
245 goto unlock;
246
247 ret = -EPROTO;
248 } else
249 ret = -EIO;
250 }
251
252 /*
253 * We want the error we return to be the error we received on
254 * the first transaction, since we may get a different error the
255 * next time we retry
256 */
257 if (!err)
258 err = ret;
259 }
260
261 DRM_DEBUG_KMS("%s: Too many retries, giving up. First error: %d\n",
262 aux->name, err);
263 ret = err;
264
265 unlock:
266 mutex_unlock(&aux->hw_mutex);
267 return ret;
268 }
269
270 /**
271 * drm_dp_dpcd_read() - read a series of bytes from the DPCD
272 * @aux: DisplayPort AUX channel (SST or MST)
273 * @offset: address of the (first) register to read
274 * @buffer: buffer to store the register values
275 * @size: number of bytes in @buffer
276 *
277 * Returns the number of bytes transferred on success, or a negative error
278 * code on failure. -EIO is returned if the request was NAKed by the sink or
279 * if the retry count was exceeded. If not all bytes were transferred, this
280 * function returns -EPROTO. Errors from the underlying AUX channel transfer
281 * function, with the exception of -EBUSY (which causes the transaction to
282 * be retried), are propagated to the caller.
283 */
drm_dp_dpcd_read(struct drm_dp_aux * aux,unsigned int offset,void * buffer,size_t size)284 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
285 void *buffer, size_t size)
286 {
287 int ret;
288
289 /*
290 * HP ZR24w corrupts the first DPCD access after entering power save
291 * mode. Eg. on a read, the entire buffer will be filled with the same
292 * byte. Do a throw away read to avoid corrupting anything we care
293 * about. Afterwards things will work correctly until the monitor
294 * gets woken up and subsequently re-enters power save mode.
295 *
296 * The user pressing any button on the monitor is enough to wake it
297 * up, so there is no particularly good place to do the workaround.
298 * We just have to do it before any DPCD access and hope that the
299 * monitor doesn't power down exactly after the throw away read.
300 */
301 if (!aux->is_remote) {
302 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, DP_DPCD_REV,
303 buffer, 1);
304 if (ret != 1)
305 goto out;
306 }
307
308 if (aux->is_remote)
309 ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
310 else
311 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
312 buffer, size);
313
314 out:
315 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
316 return ret;
317 }
318 EXPORT_SYMBOL(drm_dp_dpcd_read);
319
320 /**
321 * drm_dp_dpcd_write() - write a series of bytes to the DPCD
322 * @aux: DisplayPort AUX channel (SST or MST)
323 * @offset: address of the (first) register to write
324 * @buffer: buffer containing the values to write
325 * @size: number of bytes in @buffer
326 *
327 * Returns the number of bytes transferred on success, or a negative error
328 * code on failure. -EIO is returned if the request was NAKed by the sink or
329 * if the retry count was exceeded. If not all bytes were transferred, this
330 * function returns -EPROTO. Errors from the underlying AUX channel transfer
331 * function, with the exception of -EBUSY (which causes the transaction to
332 * be retried), are propagated to the caller.
333 */
drm_dp_dpcd_write(struct drm_dp_aux * aux,unsigned int offset,void * buffer,size_t size)334 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
335 void *buffer, size_t size)
336 {
337 int ret;
338
339 if (aux->is_remote)
340 ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
341 else
342 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
343 buffer, size);
344
345 drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
346 return ret;
347 }
348 EXPORT_SYMBOL(drm_dp_dpcd_write);
349
350 /**
351 * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
352 * @aux: DisplayPort AUX channel
353 * @status: buffer to store the link status in (must be at least 6 bytes)
354 *
355 * Returns the number of bytes transferred on success or a negative error
356 * code on failure.
357 */
drm_dp_dpcd_read_link_status(struct drm_dp_aux * aux,u8 status[DP_LINK_STATUS_SIZE])358 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
359 u8 status[DP_LINK_STATUS_SIZE])
360 {
361 return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
362 DP_LINK_STATUS_SIZE);
363 }
364 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
365
is_edid_digital_input_dp(const struct edid * edid)366 static bool is_edid_digital_input_dp(const struct edid *edid)
367 {
368 return edid && edid->revision >= 4 &&
369 edid->input & DRM_EDID_INPUT_DIGITAL &&
370 (edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
371 }
372
373 /**
374 * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
375 * @dpcd: DisplayPort configuration data
376 * @port_cap: port capabilities
377 * @type: port type to be checked. Can be:
378 * %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
379 * %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
380 * %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
381 *
382 * Caveat: Only works with DPCD 1.1+ port caps.
383 *
384 * Returns: whether the downstream facing port matches the type.
385 */
drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],u8 type)386 bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
387 const u8 port_cap[4], u8 type)
388 {
389 return drm_dp_is_branch(dpcd) &&
390 dpcd[DP_DPCD_REV] >= 0x11 &&
391 (port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
392 }
393 EXPORT_SYMBOL(drm_dp_downstream_is_type);
394
395 /**
396 * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
397 * @dpcd: DisplayPort configuration data
398 * @port_cap: port capabilities
399 * @edid: EDID
400 *
401 * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
402 */
drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid)403 bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
404 const u8 port_cap[4],
405 const struct edid *edid)
406 {
407 if (dpcd[DP_DPCD_REV] < 0x11) {
408 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
409 case DP_DWN_STRM_PORT_TYPE_TMDS:
410 return true;
411 default:
412 return false;
413 }
414 }
415
416 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
417 case DP_DS_PORT_TYPE_DP_DUALMODE:
418 if (is_edid_digital_input_dp(edid))
419 return false;
420 fallthrough;
421 case DP_DS_PORT_TYPE_DVI:
422 case DP_DS_PORT_TYPE_HDMI:
423 return true;
424 default:
425 return false;
426 }
427 }
428 EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
429
430 /**
431 * drm_dp_send_real_edid_checksum() - send back real edid checksum value
432 * @aux: DisplayPort AUX channel
433 * @real_edid_checksum: real edid checksum for the last block
434 *
435 * Returns:
436 * True on success
437 */
drm_dp_send_real_edid_checksum(struct drm_dp_aux * aux,u8 real_edid_checksum)438 bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
439 u8 real_edid_checksum)
440 {
441 u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
442
443 if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
444 &auto_test_req, 1) < 1) {
445 DRM_ERROR("%s: DPCD failed read at register 0x%x\n",
446 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
447 return false;
448 }
449 auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
450
451 if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) {
452 DRM_ERROR("%s: DPCD failed read at register 0x%x\n",
453 aux->name, DP_TEST_REQUEST);
454 return false;
455 }
456 link_edid_read &= DP_TEST_LINK_EDID_READ;
457
458 if (!auto_test_req || !link_edid_read) {
459 DRM_DEBUG_KMS("%s: Source DUT does not support TEST_EDID_READ\n",
460 aux->name);
461 return false;
462 }
463
464 if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
465 &auto_test_req, 1) < 1) {
466 DRM_ERROR("%s: DPCD failed write at register 0x%x\n",
467 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
468 return false;
469 }
470
471 /* send back checksum for the last edid extension block data */
472 if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM,
473 &real_edid_checksum, 1) < 1) {
474 DRM_ERROR("%s: DPCD failed write at register 0x%x\n",
475 aux->name, DP_TEST_EDID_CHECKSUM);
476 return false;
477 }
478
479 test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
480 if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) {
481 DRM_ERROR("%s: DPCD failed write at register 0x%x\n",
482 aux->name, DP_TEST_RESPONSE);
483 return false;
484 }
485
486 return true;
487 }
488 EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
489
drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])490 static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
491 {
492 u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
493
494 if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
495 port_count = 4;
496
497 return port_count;
498 }
499
drm_dp_read_extended_dpcd_caps(struct drm_dp_aux * aux,u8 dpcd[DP_RECEIVER_CAP_SIZE])500 static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
501 u8 dpcd[DP_RECEIVER_CAP_SIZE])
502 {
503 u8 dpcd_ext[6];
504 int ret;
505
506 /*
507 * Prior to DP1.3 the bit represented by
508 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
509 * If it is set DP_DPCD_REV at 0000h could be at a value less than
510 * the true capability of the panel. The only way to check is to
511 * then compare 0000h and 2200h.
512 */
513 if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
514 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
515 return 0;
516
517 ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext,
518 sizeof(dpcd_ext));
519 if (ret < 0)
520 return ret;
521 if (ret != sizeof(dpcd_ext))
522 return -EIO;
523
524 if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
525 DRM_DEBUG_KMS("%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
526 aux->name, dpcd[DP_DPCD_REV],
527 dpcd_ext[DP_DPCD_REV]);
528 return 0;
529 }
530
531 if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
532 return 0;
533
534 DRM_DEBUG_KMS("%s: Base DPCD: %*ph\n",
535 aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
536
537 memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
538
539 return 0;
540 }
541
542 /**
543 * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
544 * available
545 * @aux: DisplayPort AUX channel
546 * @dpcd: Buffer to store the resulting DPCD in
547 *
548 * Attempts to read the base DPCD caps for @aux. Additionally, this function
549 * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
550 * present.
551 *
552 * Returns: %0 if the DPCD was read successfully, negative error code
553 * otherwise.
554 */
drm_dp_read_dpcd_caps(struct drm_dp_aux * aux,u8 dpcd[DP_RECEIVER_CAP_SIZE])555 int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
556 u8 dpcd[DP_RECEIVER_CAP_SIZE])
557 {
558 int ret;
559
560 ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
561 if (ret < 0)
562 return ret;
563 if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0)
564 return -EIO;
565
566 ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
567 if (ret < 0)
568 return ret;
569
570 DRM_DEBUG_KMS("%s: DPCD: %*ph\n",
571 aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
572
573 return ret;
574 }
575 EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
576
577 /**
578 * drm_dp_read_downstream_info() - read DPCD downstream port info if available
579 * @aux: DisplayPort AUX channel
580 * @dpcd: A cached copy of the port's DPCD
581 * @downstream_ports: buffer to store the downstream port info in
582 *
583 * See also:
584 * drm_dp_downstream_max_clock()
585 * drm_dp_downstream_max_bpc()
586 *
587 * Returns: 0 if either the downstream port info was read successfully or
588 * there was no downstream info to read, or a negative error code otherwise.
589 */
drm_dp_read_downstream_info(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])590 int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
591 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
592 u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
593 {
594 int ret;
595 u8 len;
596
597 memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
598
599 /* No downstream info to read */
600 if (!drm_dp_is_branch(dpcd) ||
601 dpcd[DP_DPCD_REV] < DP_DPCD_REV_10 ||
602 !(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
603 return 0;
604
605 len = drm_dp_downstream_port_count(dpcd);
606 if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
607 len *= 4;
608
609 ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
610 if (ret < 0)
611 return ret;
612 if (ret != len)
613 return -EIO;
614
615 DRM_DEBUG_KMS("%s: DPCD DFP: %*ph\n",
616 aux->name, len, downstream_ports);
617
618 return 0;
619 }
620 EXPORT_SYMBOL(drm_dp_read_downstream_info);
621
622 /**
623 * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
624 * @dpcd: DisplayPort configuration data
625 * @port_cap: port capabilities
626 *
627 * Returns: Downstream facing port max dot clock in kHz on success,
628 * or 0 if max clock not defined
629 */
drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])630 int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
631 const u8 port_cap[4])
632 {
633 if (!drm_dp_is_branch(dpcd))
634 return 0;
635
636 if (dpcd[DP_DPCD_REV] < 0x11)
637 return 0;
638
639 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
640 case DP_DS_PORT_TYPE_VGA:
641 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
642 return 0;
643 return port_cap[1] * 8000;
644 default:
645 return 0;
646 }
647 }
648 EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
649
650 /**
651 * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
652 * @dpcd: DisplayPort configuration data
653 * @port_cap: port capabilities
654 * @edid: EDID
655 *
656 * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
657 * or 0 if max TMDS clock not defined
658 */
drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid)659 int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
660 const u8 port_cap[4],
661 const struct edid *edid)
662 {
663 if (!drm_dp_is_branch(dpcd))
664 return 0;
665
666 if (dpcd[DP_DPCD_REV] < 0x11) {
667 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
668 case DP_DWN_STRM_PORT_TYPE_TMDS:
669 return 165000;
670 default:
671 return 0;
672 }
673 }
674
675 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
676 case DP_DS_PORT_TYPE_DP_DUALMODE:
677 if (is_edid_digital_input_dp(edid))
678 return 0;
679 /*
680 * It's left up to the driver to check the
681 * DP dual mode adapter's max TMDS clock.
682 *
683 * Unfortunatley it looks like branch devices
684 * may not fordward that the DP dual mode i2c
685 * access so we just usually get i2c nak :(
686 */
687 fallthrough;
688 case DP_DS_PORT_TYPE_HDMI:
689 /*
690 * We should perhaps assume 165 MHz when detailed cap
691 * info is not available. But looks like many typical
692 * branch devices fall into that category and so we'd
693 * probably end up with users complaining that they can't
694 * get high resolution modes with their favorite dongle.
695 *
696 * So let's limit to 300 MHz instead since DPCD 1.4
697 * HDMI 2.0 DFPs are required to have the detailed cap
698 * info. So it's more likely we're dealing with a HDMI 1.4
699 * compatible* device here.
700 */
701 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
702 return 300000;
703 return port_cap[1] * 2500;
704 case DP_DS_PORT_TYPE_DVI:
705 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
706 return 165000;
707 /* FIXME what to do about DVI dual link? */
708 return port_cap[1] * 2500;
709 default:
710 return 0;
711 }
712 }
713 EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
714
715 /**
716 * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
717 * @dpcd: DisplayPort configuration data
718 * @port_cap: port capabilities
719 * @edid: EDID
720 *
721 * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
722 * or 0 if max TMDS clock not defined
723 */
drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid)724 int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
725 const u8 port_cap[4],
726 const struct edid *edid)
727 {
728 if (!drm_dp_is_branch(dpcd))
729 return 0;
730
731 if (dpcd[DP_DPCD_REV] < 0x11) {
732 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
733 case DP_DWN_STRM_PORT_TYPE_TMDS:
734 return 25000;
735 default:
736 return 0;
737 }
738 }
739
740 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
741 case DP_DS_PORT_TYPE_DP_DUALMODE:
742 if (is_edid_digital_input_dp(edid))
743 return 0;
744 fallthrough;
745 case DP_DS_PORT_TYPE_DVI:
746 case DP_DS_PORT_TYPE_HDMI:
747 /*
748 * Unclear whether the protocol converter could
749 * utilize pixel replication. Assume it won't.
750 */
751 return 25000;
752 default:
753 return 0;
754 }
755 }
756 EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
757
758 /**
759 * drm_dp_downstream_max_bpc() - extract downstream facing port max
760 * bits per component
761 * @dpcd: DisplayPort configuration data
762 * @port_cap: downstream facing port capabilities
763 * @edid: EDID
764 *
765 * Returns: Max bpc on success or 0 if max bpc not defined
766 */
drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid)767 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
768 const u8 port_cap[4],
769 const struct edid *edid)
770 {
771 if (!drm_dp_is_branch(dpcd))
772 return 0;
773
774 if (dpcd[DP_DPCD_REV] < 0x11) {
775 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
776 case DP_DWN_STRM_PORT_TYPE_DP:
777 return 0;
778 default:
779 return 8;
780 }
781 }
782
783 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
784 case DP_DS_PORT_TYPE_DP:
785 return 0;
786 case DP_DS_PORT_TYPE_DP_DUALMODE:
787 if (is_edid_digital_input_dp(edid))
788 return 0;
789 fallthrough;
790 case DP_DS_PORT_TYPE_HDMI:
791 case DP_DS_PORT_TYPE_DVI:
792 case DP_DS_PORT_TYPE_VGA:
793 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
794 return 8;
795
796 switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
797 case DP_DS_8BPC:
798 return 8;
799 case DP_DS_10BPC:
800 return 10;
801 case DP_DS_12BPC:
802 return 12;
803 case DP_DS_16BPC:
804 return 16;
805 default:
806 return 8;
807 }
808 break;
809 default:
810 return 8;
811 }
812 }
813 EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
814
815 /**
816 * drm_dp_downstream_420_passthrough() - determine downstream facing port
817 * YCbCr 4:2:0 pass-through capability
818 * @dpcd: DisplayPort configuration data
819 * @port_cap: downstream facing port capabilities
820 *
821 * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
822 */
drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])823 bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
824 const u8 port_cap[4])
825 {
826 if (!drm_dp_is_branch(dpcd))
827 return false;
828
829 if (dpcd[DP_DPCD_REV] < 0x13)
830 return false;
831
832 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
833 case DP_DS_PORT_TYPE_DP:
834 return true;
835 case DP_DS_PORT_TYPE_HDMI:
836 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
837 return false;
838
839 return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
840 default:
841 return false;
842 }
843 }
844 EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
845
846 /**
847 * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
848 * YCbCr 4:4:4->4:2:0 conversion capability
849 * @dpcd: DisplayPort configuration data
850 * @port_cap: downstream facing port capabilities
851 *
852 * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
853 */
drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])854 bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
855 const u8 port_cap[4])
856 {
857 if (!drm_dp_is_branch(dpcd))
858 return false;
859
860 if (dpcd[DP_DPCD_REV] < 0x13)
861 return false;
862
863 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
864 case DP_DS_PORT_TYPE_HDMI:
865 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
866 return false;
867
868 return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
869 default:
870 return false;
871 }
872 }
873 EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
874
875 /**
876 * drm_dp_downstream_mode() - return a mode for downstream facing port
877 * @dev: DRM device
878 * @dpcd: DisplayPort configuration data
879 * @port_cap: port capabilities
880 *
881 * Provides a suitable mode for downstream facing ports without EDID.
882 *
883 * Returns: A new drm_display_mode on success or NULL on failure
884 */
885 struct drm_display_mode *
drm_dp_downstream_mode(struct drm_device * dev,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])886 drm_dp_downstream_mode(struct drm_device *dev,
887 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
888 const u8 port_cap[4])
889
890 {
891 u8 vic;
892
893 if (!drm_dp_is_branch(dpcd))
894 return NULL;
895
896 if (dpcd[DP_DPCD_REV] < 0x11)
897 return NULL;
898
899 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
900 case DP_DS_PORT_TYPE_NON_EDID:
901 switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
902 case DP_DS_NON_EDID_720x480i_60:
903 vic = 6;
904 break;
905 case DP_DS_NON_EDID_720x480i_50:
906 vic = 21;
907 break;
908 case DP_DS_NON_EDID_1920x1080i_60:
909 vic = 5;
910 break;
911 case DP_DS_NON_EDID_1920x1080i_50:
912 vic = 20;
913 break;
914 case DP_DS_NON_EDID_1280x720_60:
915 vic = 4;
916 break;
917 case DP_DS_NON_EDID_1280x720_50:
918 vic = 19;
919 break;
920 default:
921 return NULL;
922 }
923 return drm_display_mode_from_cea_vic(dev, vic);
924 default:
925 return NULL;
926 }
927 }
928 EXPORT_SYMBOL(drm_dp_downstream_mode);
929
930 /**
931 * drm_dp_downstream_id() - identify branch device
932 * @aux: DisplayPort AUX channel
933 * @id: DisplayPort branch device id
934 *
935 * Returns branch device id on success or NULL on failure
936 */
drm_dp_downstream_id(struct drm_dp_aux * aux,char id[6])937 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
938 {
939 return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
940 }
941 EXPORT_SYMBOL(drm_dp_downstream_id);
942
943 /**
944 * drm_dp_downstream_debug() - debug DP branch devices
945 * @m: pointer for debugfs file
946 * @dpcd: DisplayPort configuration data
947 * @port_cap: port capabilities
948 * @edid: EDID
949 * @aux: DisplayPort AUX channel
950 *
951 */
drm_dp_downstream_debug(struct seq_file * m,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct edid * edid,struct drm_dp_aux * aux)952 void drm_dp_downstream_debug(struct seq_file *m,
953 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
954 const u8 port_cap[4],
955 const struct edid *edid,
956 struct drm_dp_aux *aux)
957 {
958 bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
959 DP_DETAILED_CAP_INFO_AVAILABLE;
960 int clk;
961 int bpc;
962 char id[7];
963 int len;
964 uint8_t rev[2];
965 int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
966 bool branch_device = drm_dp_is_branch(dpcd);
967
968 seq_printf(m, "\tDP branch device present: %s\n",
969 branch_device ? "yes" : "no");
970
971 if (!branch_device)
972 return;
973
974 switch (type) {
975 case DP_DS_PORT_TYPE_DP:
976 seq_puts(m, "\t\tType: DisplayPort\n");
977 break;
978 case DP_DS_PORT_TYPE_VGA:
979 seq_puts(m, "\t\tType: VGA\n");
980 break;
981 case DP_DS_PORT_TYPE_DVI:
982 seq_puts(m, "\t\tType: DVI\n");
983 break;
984 case DP_DS_PORT_TYPE_HDMI:
985 seq_puts(m, "\t\tType: HDMI\n");
986 break;
987 case DP_DS_PORT_TYPE_NON_EDID:
988 seq_puts(m, "\t\tType: others without EDID support\n");
989 break;
990 case DP_DS_PORT_TYPE_DP_DUALMODE:
991 seq_puts(m, "\t\tType: DP++\n");
992 break;
993 case DP_DS_PORT_TYPE_WIRELESS:
994 seq_puts(m, "\t\tType: Wireless\n");
995 break;
996 default:
997 seq_puts(m, "\t\tType: N/A\n");
998 }
999
1000 memset(id, 0, sizeof(id));
1001 drm_dp_downstream_id(aux, id);
1002 seq_printf(m, "\t\tID: %s\n", id);
1003
1004 len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1005 if (len > 0)
1006 seq_printf(m, "\t\tHW: %d.%d\n",
1007 (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1008
1009 len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2);
1010 if (len > 0)
1011 seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1012
1013 if (detailed_cap_info) {
1014 clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1015 if (clk > 0)
1016 seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1017
1018 clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, edid);
1019 if (clk > 0)
1020 seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1021
1022 clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, edid);
1023 if (clk > 0)
1024 seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1025
1026 bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, edid);
1027
1028 if (bpc > 0)
1029 seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1030 }
1031 }
1032 EXPORT_SYMBOL(drm_dp_downstream_debug);
1033
1034 /**
1035 * drm_dp_subconnector_type() - get DP branch device type
1036 * @dpcd: DisplayPort configuration data
1037 * @port_cap: port capabilities
1038 */
1039 enum drm_mode_subconnector
drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1040 drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1041 const u8 port_cap[4])
1042 {
1043 int type;
1044 if (!drm_dp_is_branch(dpcd))
1045 return DRM_MODE_SUBCONNECTOR_Native;
1046 /* DP 1.0 approach */
1047 if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1048 type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1049 DP_DWN_STRM_PORT_TYPE_MASK;
1050
1051 switch (type) {
1052 case DP_DWN_STRM_PORT_TYPE_TMDS:
1053 /* Can be HDMI or DVI-D, DVI-D is a safer option */
1054 return DRM_MODE_SUBCONNECTOR_DVID;
1055 case DP_DWN_STRM_PORT_TYPE_ANALOG:
1056 /* Can be VGA or DVI-A, VGA is more popular */
1057 return DRM_MODE_SUBCONNECTOR_VGA;
1058 case DP_DWN_STRM_PORT_TYPE_DP:
1059 return DRM_MODE_SUBCONNECTOR_DisplayPort;
1060 case DP_DWN_STRM_PORT_TYPE_OTHER:
1061 default:
1062 return DRM_MODE_SUBCONNECTOR_Unknown;
1063 }
1064 }
1065 type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1066
1067 switch (type) {
1068 case DP_DS_PORT_TYPE_DP:
1069 case DP_DS_PORT_TYPE_DP_DUALMODE:
1070 return DRM_MODE_SUBCONNECTOR_DisplayPort;
1071 case DP_DS_PORT_TYPE_VGA:
1072 return DRM_MODE_SUBCONNECTOR_VGA;
1073 case DP_DS_PORT_TYPE_DVI:
1074 return DRM_MODE_SUBCONNECTOR_DVID;
1075 case DP_DS_PORT_TYPE_HDMI:
1076 return DRM_MODE_SUBCONNECTOR_HDMIA;
1077 case DP_DS_PORT_TYPE_WIRELESS:
1078 return DRM_MODE_SUBCONNECTOR_Wireless;
1079 case DP_DS_PORT_TYPE_NON_EDID:
1080 default:
1081 return DRM_MODE_SUBCONNECTOR_Unknown;
1082 }
1083 }
1084 EXPORT_SYMBOL(drm_dp_subconnector_type);
1085
1086 /**
1087 * drm_mode_set_dp_subconnector_property - set subconnector for DP connector
1088 * @connector: connector to set property on
1089 * @status: connector status
1090 * @dpcd: DisplayPort configuration data
1091 * @port_cap: port capabilities
1092 *
1093 * Called by a driver on every detect event.
1094 */
drm_dp_set_subconnector_property(struct drm_connector * connector,enum drm_connector_status status,const u8 * dpcd,const u8 port_cap[4])1095 void drm_dp_set_subconnector_property(struct drm_connector *connector,
1096 enum drm_connector_status status,
1097 const u8 *dpcd,
1098 const u8 port_cap[4])
1099 {
1100 enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1101
1102 if (status == connector_status_connected)
1103 subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1104 drm_object_property_set_value(&connector->base,
1105 connector->dev->mode_config.dp_subconnector_property,
1106 subconnector);
1107 }
1108 EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1109
1110 /**
1111 * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1112 * count
1113 * @connector: The DRM connector to check
1114 * @dpcd: A cached copy of the connector's DPCD RX capabilities
1115 * @desc: A cached copy of the connector's DP descriptor
1116 *
1117 * See also: drm_dp_read_sink_count()
1118 *
1119 * Returns: %True if the (e)DP connector has a valid sink count that should
1120 * be probed, %false otherwise.
1121 */
drm_dp_read_sink_count_cap(struct drm_connector * connector,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const struct drm_dp_desc * desc)1122 bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1123 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1124 const struct drm_dp_desc *desc)
1125 {
1126 /* Some eDP panels don't set a valid value for the sink count */
1127 return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1128 dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1129 dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1130 !drm_dp_has_quirk(desc, 0, DP_DPCD_QUIRK_NO_SINK_COUNT);
1131 }
1132 EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1133
1134 /**
1135 * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1136 * @aux: The DP AUX channel to use
1137 *
1138 * See also: drm_dp_read_sink_count_cap()
1139 *
1140 * Returns: The current sink count reported by @aux, or a negative error code
1141 * otherwise.
1142 */
drm_dp_read_sink_count(struct drm_dp_aux * aux)1143 int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1144 {
1145 u8 count;
1146 int ret;
1147
1148 ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count);
1149 if (ret < 0)
1150 return ret;
1151 if (ret != 1)
1152 return -EIO;
1153
1154 return DP_GET_SINK_COUNT(count);
1155 }
1156 EXPORT_SYMBOL(drm_dp_read_sink_count);
1157
1158 /*
1159 * I2C-over-AUX implementation
1160 */
1161
drm_dp_i2c_functionality(struct i2c_adapter * adapter)1162 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1163 {
1164 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1165 I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1166 I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1167 I2C_FUNC_10BIT_ADDR;
1168 }
1169
drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg * msg)1170 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1171 {
1172 /*
1173 * In case of i2c defer or short i2c ack reply to a write,
1174 * we need to switch to WRITE_STATUS_UPDATE to drain the
1175 * rest of the message
1176 */
1177 if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1178 msg->request &= DP_AUX_I2C_MOT;
1179 msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1180 }
1181 }
1182
1183 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1184 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1185 #define AUX_STOP_LEN 4
1186 #define AUX_CMD_LEN 4
1187 #define AUX_ADDRESS_LEN 20
1188 #define AUX_REPLY_PAD_LEN 4
1189 #define AUX_LENGTH_LEN 8
1190
1191 /*
1192 * Calculate the duration of the AUX request/reply in usec. Gives the
1193 * "best" case estimate, ie. successful while as short as possible.
1194 */
drm_dp_aux_req_duration(const struct drm_dp_aux_msg * msg)1195 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1196 {
1197 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1198 AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1199
1200 if ((msg->request & DP_AUX_I2C_READ) == 0)
1201 len += msg->size * 8;
1202
1203 return len;
1204 }
1205
drm_dp_aux_reply_duration(const struct drm_dp_aux_msg * msg)1206 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1207 {
1208 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1209 AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1210
1211 /*
1212 * For read we expect what was asked. For writes there will
1213 * be 0 or 1 data bytes. Assume 0 for the "best" case.
1214 */
1215 if (msg->request & DP_AUX_I2C_READ)
1216 len += msg->size * 8;
1217
1218 return len;
1219 }
1220
1221 #define I2C_START_LEN 1
1222 #define I2C_STOP_LEN 1
1223 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1224 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1225
1226 /*
1227 * Calculate the length of the i2c transfer in usec, assuming
1228 * the i2c bus speed is as specified. Gives the the "worst"
1229 * case estimate, ie. successful while as long as possible.
1230 * Doesn't account the the "MOT" bit, and instead assumes each
1231 * message includes a START, ADDRESS and STOP. Neither does it
1232 * account for additional random variables such as clock stretching.
1233 */
drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg * msg,int i2c_speed_khz)1234 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1235 int i2c_speed_khz)
1236 {
1237 /* AUX bitrate is 1MHz, i2c bitrate as specified */
1238 return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1239 msg->size * I2C_DATA_LEN +
1240 I2C_STOP_LEN) * 1000, i2c_speed_khz);
1241 }
1242
1243 /*
1244 * Deterine how many retries should be attempted to successfully transfer
1245 * the specified message, based on the estimated durations of the
1246 * i2c and AUX transfers.
1247 */
drm_dp_i2c_retry_count(const struct drm_dp_aux_msg * msg,int i2c_speed_khz)1248 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1249 int i2c_speed_khz)
1250 {
1251 int aux_time_us = drm_dp_aux_req_duration(msg) +
1252 drm_dp_aux_reply_duration(msg);
1253 int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1254
1255 return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1256 }
1257
1258 /*
1259 * FIXME currently assumes 10 kHz as some real world devices seem
1260 * to require it. We should query/set the speed via DPCD if supported.
1261 */
1262 static int dp_aux_i2c_speed_khz __read_mostly = 10;
1263 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1264 MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1265 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1266
1267 /*
1268 * Transfer a single I2C-over-AUX message and handle various error conditions,
1269 * retrying the transaction as appropriate. It is assumed that the
1270 * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1271 * reply field.
1272 *
1273 * Returns bytes transferred on success, or a negative error code on failure.
1274 */
drm_dp_i2c_do_msg(struct drm_dp_aux * aux,struct drm_dp_aux_msg * msg)1275 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1276 {
1277 unsigned int retry, defer_i2c;
1278 int ret;
1279 /*
1280 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1281 * is required to retry at least seven times upon receiving AUX_DEFER
1282 * before giving up the AUX transaction.
1283 *
1284 * We also try to account for the i2c bus speed.
1285 */
1286 int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1287
1288 for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1289 ret = aux->transfer(aux, msg);
1290 if (ret < 0) {
1291 if (ret == -EBUSY)
1292 continue;
1293
1294 /*
1295 * While timeouts can be errors, they're usually normal
1296 * behavior (for instance, when a driver tries to
1297 * communicate with a non-existant DisplayPort device).
1298 * Avoid spamming the kernel log with timeout errors.
1299 */
1300 if (ret == -ETIMEDOUT)
1301 DRM_DEBUG_KMS_RATELIMITED("%s: transaction timed out\n",
1302 aux->name);
1303 else
1304 DRM_DEBUG_KMS("%s: transaction failed: %d\n",
1305 aux->name, ret);
1306 return ret;
1307 }
1308
1309
1310 switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
1311 case DP_AUX_NATIVE_REPLY_ACK:
1312 /*
1313 * For I2C-over-AUX transactions this isn't enough, we
1314 * need to check for the I2C ACK reply.
1315 */
1316 break;
1317
1318 case DP_AUX_NATIVE_REPLY_NACK:
1319 DRM_DEBUG_KMS("%s: native nack (result=%d, size=%zu)\n",
1320 aux->name, ret, msg->size);
1321 return -EREMOTEIO;
1322
1323 case DP_AUX_NATIVE_REPLY_DEFER:
1324 DRM_DEBUG_KMS("%s: native defer\n", aux->name);
1325 /*
1326 * We could check for I2C bit rate capabilities and if
1327 * available adjust this interval. We could also be
1328 * more careful with DP-to-legacy adapters where a
1329 * long legacy cable may force very low I2C bit rates.
1330 *
1331 * For now just defer for long enough to hopefully be
1332 * safe for all use-cases.
1333 */
1334 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1335 continue;
1336
1337 default:
1338 DRM_ERROR("%s: invalid native reply %#04x\n",
1339 aux->name, msg->reply);
1340 return -EREMOTEIO;
1341 }
1342
1343 switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
1344 case DP_AUX_I2C_REPLY_ACK:
1345 /*
1346 * Both native ACK and I2C ACK replies received. We
1347 * can assume the transfer was successful.
1348 */
1349 if (ret != msg->size)
1350 drm_dp_i2c_msg_write_status_update(msg);
1351 return ret;
1352
1353 case DP_AUX_I2C_REPLY_NACK:
1354 DRM_DEBUG_KMS("%s: I2C nack (result=%d, size=%zu)\n",
1355 aux->name, ret, msg->size);
1356 aux->i2c_nack_count++;
1357 return -EREMOTEIO;
1358
1359 case DP_AUX_I2C_REPLY_DEFER:
1360 DRM_DEBUG_KMS("%s: I2C defer\n", aux->name);
1361 /* DP Compliance Test 4.2.2.5 Requirement:
1362 * Must have at least 7 retries for I2C defers on the
1363 * transaction to pass this test
1364 */
1365 aux->i2c_defer_count++;
1366 if (defer_i2c < 7)
1367 defer_i2c++;
1368 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1369 drm_dp_i2c_msg_write_status_update(msg);
1370
1371 continue;
1372
1373 default:
1374 DRM_ERROR("%s: invalid I2C reply %#04x\n",
1375 aux->name, msg->reply);
1376 return -EREMOTEIO;
1377 }
1378 }
1379
1380 DRM_DEBUG_KMS("%s: Too many retries, giving up\n", aux->name);
1381 return -EREMOTEIO;
1382 }
1383
drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg * msg,const struct i2c_msg * i2c_msg)1384 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
1385 const struct i2c_msg *i2c_msg)
1386 {
1387 msg->request = (i2c_msg->flags & I2C_M_RD) ?
1388 DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
1389 if (!(i2c_msg->flags & I2C_M_STOP))
1390 msg->request |= DP_AUX_I2C_MOT;
1391 }
1392
1393 /*
1394 * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
1395 *
1396 * Returns an error code on failure, or a recommended transfer size on success.
1397 */
drm_dp_i2c_drain_msg(struct drm_dp_aux * aux,struct drm_dp_aux_msg * orig_msg)1398 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
1399 {
1400 int err, ret = orig_msg->size;
1401 struct drm_dp_aux_msg msg = *orig_msg;
1402
1403 while (msg.size > 0) {
1404 err = drm_dp_i2c_do_msg(aux, &msg);
1405 if (err <= 0)
1406 return err == 0 ? -EPROTO : err;
1407
1408 if (err < msg.size && err < ret) {
1409 DRM_DEBUG_KMS("%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
1410 aux->name, msg.size, err);
1411 ret = err;
1412 }
1413
1414 msg.size -= err;
1415 msg.buffer += err;
1416 }
1417
1418 return ret;
1419 }
1420
1421 /*
1422 * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
1423 * packets to be as large as possible. If not, the I2C transactions never
1424 * succeed. Hence the default is maximum.
1425 */
1426 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
1427 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
1428 MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
1429 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
1430
drm_dp_i2c_xfer(struct i2c_adapter * adapter,struct i2c_msg * msgs,int num)1431 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
1432 int num)
1433 {
1434 struct drm_dp_aux *aux = adapter->algo_data;
1435 unsigned int i, j;
1436 unsigned transfer_size;
1437 struct drm_dp_aux_msg msg;
1438 int err = 0;
1439
1440 dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
1441
1442 memset(&msg, 0, sizeof(msg));
1443
1444 for (i = 0; i < num; i++) {
1445 msg.address = msgs[i].addr;
1446 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1447 /* Send a bare address packet to start the transaction.
1448 * Zero sized messages specify an address only (bare
1449 * address) transaction.
1450 */
1451 msg.buffer = NULL;
1452 msg.size = 0;
1453 err = drm_dp_i2c_do_msg(aux, &msg);
1454
1455 /*
1456 * Reset msg.request in case in case it got
1457 * changed into a WRITE_STATUS_UPDATE.
1458 */
1459 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1460
1461 if (err < 0)
1462 break;
1463 /* We want each transaction to be as large as possible, but
1464 * we'll go to smaller sizes if the hardware gives us a
1465 * short reply.
1466 */
1467 transfer_size = dp_aux_i2c_transfer_size;
1468 for (j = 0; j < msgs[i].len; j += msg.size) {
1469 msg.buffer = msgs[i].buf + j;
1470 msg.size = min(transfer_size, msgs[i].len - j);
1471
1472 err = drm_dp_i2c_drain_msg(aux, &msg);
1473
1474 /*
1475 * Reset msg.request in case in case it got
1476 * changed into a WRITE_STATUS_UPDATE.
1477 */
1478 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1479
1480 if (err < 0)
1481 break;
1482 transfer_size = err;
1483 }
1484 if (err < 0)
1485 break;
1486 }
1487 if (err >= 0)
1488 err = num;
1489 /* Send a bare address packet to close out the transaction.
1490 * Zero sized messages specify an address only (bare
1491 * address) transaction.
1492 */
1493 msg.request &= ~DP_AUX_I2C_MOT;
1494 msg.buffer = NULL;
1495 msg.size = 0;
1496 (void)drm_dp_i2c_do_msg(aux, &msg);
1497
1498 return err;
1499 }
1500
1501 static const struct i2c_algorithm drm_dp_i2c_algo = {
1502 .functionality = drm_dp_i2c_functionality,
1503 .master_xfer = drm_dp_i2c_xfer,
1504 };
1505
i2c_to_aux(struct i2c_adapter * i2c)1506 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
1507 {
1508 return container_of(i2c, struct drm_dp_aux, ddc);
1509 }
1510
lock_bus(struct i2c_adapter * i2c,unsigned int flags)1511 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
1512 {
1513 mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
1514 }
1515
trylock_bus(struct i2c_adapter * i2c,unsigned int flags)1516 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
1517 {
1518 return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
1519 }
1520
unlock_bus(struct i2c_adapter * i2c,unsigned int flags)1521 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
1522 {
1523 mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
1524 }
1525
1526 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
1527 .lock_bus = lock_bus,
1528 .trylock_bus = trylock_bus,
1529 .unlock_bus = unlock_bus,
1530 };
1531
drm_dp_aux_get_crc(struct drm_dp_aux * aux,u8 * crc)1532 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
1533 {
1534 u8 buf, count;
1535 int ret;
1536
1537 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1538 if (ret < 0)
1539 return ret;
1540
1541 WARN_ON(!(buf & DP_TEST_SINK_START));
1542
1543 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf);
1544 if (ret < 0)
1545 return ret;
1546
1547 count = buf & DP_TEST_COUNT_MASK;
1548 if (count == aux->crc_count)
1549 return -EAGAIN; /* No CRC yet */
1550
1551 aux->crc_count = count;
1552
1553 /*
1554 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
1555 * per component (RGB or CrYCb).
1556 */
1557 ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6);
1558 if (ret < 0)
1559 return ret;
1560
1561 return 0;
1562 }
1563
drm_dp_aux_crc_work(struct work_struct * work)1564 static void drm_dp_aux_crc_work(struct work_struct *work)
1565 {
1566 struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
1567 crc_work);
1568 struct drm_crtc *crtc;
1569 u8 crc_bytes[6];
1570 uint32_t crcs[3];
1571 int ret;
1572
1573 if (WARN_ON(!aux->crtc))
1574 return;
1575
1576 crtc = aux->crtc;
1577 while (crtc->crc.opened) {
1578 drm_crtc_wait_one_vblank(crtc);
1579 if (!crtc->crc.opened)
1580 break;
1581
1582 ret = drm_dp_aux_get_crc(aux, crc_bytes);
1583 if (ret == -EAGAIN) {
1584 usleep_range(1000, 2000);
1585 ret = drm_dp_aux_get_crc(aux, crc_bytes);
1586 }
1587
1588 if (ret == -EAGAIN) {
1589 DRM_DEBUG_KMS("%s: Get CRC failed after retrying: %d\n",
1590 aux->name, ret);
1591 continue;
1592 } else if (ret) {
1593 DRM_DEBUG_KMS("%s: Failed to get a CRC: %d\n",
1594 aux->name, ret);
1595 continue;
1596 }
1597
1598 crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
1599 crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
1600 crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
1601 drm_crtc_add_crc_entry(crtc, false, 0, crcs);
1602 }
1603 }
1604
1605 /**
1606 * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
1607 * @aux: DisplayPort AUX channel
1608 *
1609 * Used for remote aux channel in general. Merely initialize the crc work
1610 * struct.
1611 */
drm_dp_remote_aux_init(struct drm_dp_aux * aux)1612 void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
1613 {
1614 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
1615 }
1616 EXPORT_SYMBOL(drm_dp_remote_aux_init);
1617
1618 /**
1619 * drm_dp_aux_init() - minimally initialise an aux channel
1620 * @aux: DisplayPort AUX channel
1621 *
1622 * If you need to use the drm_dp_aux's i2c adapter prior to registering it
1623 * with the outside world, call drm_dp_aux_init() first. You must still
1624 * call drm_dp_aux_register() once the connector has been registered to
1625 * allow userspace access to the auxiliary DP channel.
1626 */
drm_dp_aux_init(struct drm_dp_aux * aux)1627 void drm_dp_aux_init(struct drm_dp_aux *aux)
1628 {
1629 mutex_init(&aux->hw_mutex);
1630 mutex_init(&aux->cec.lock);
1631 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
1632
1633 aux->ddc.algo = &drm_dp_i2c_algo;
1634 aux->ddc.algo_data = aux;
1635 aux->ddc.retries = 3;
1636
1637 aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
1638 }
1639 EXPORT_SYMBOL(drm_dp_aux_init);
1640
1641 /**
1642 * drm_dp_aux_register() - initialise and register aux channel
1643 * @aux: DisplayPort AUX channel
1644 *
1645 * Automatically calls drm_dp_aux_init() if this hasn't been done yet.
1646 * This should only be called when the underlying &struct drm_connector is
1647 * initialiazed already. Therefore the best place to call this is from
1648 * &drm_connector_funcs.late_register. Not that drivers which don't follow this
1649 * will Oops when CONFIG_DRM_DP_AUX_CHARDEV is enabled.
1650 *
1651 * Drivers which need to use the aux channel before that point (e.g. at driver
1652 * load time, before drm_dev_register() has been called) need to call
1653 * drm_dp_aux_init().
1654 *
1655 * Returns 0 on success or a negative error code on failure.
1656 */
drm_dp_aux_register(struct drm_dp_aux * aux)1657 int drm_dp_aux_register(struct drm_dp_aux *aux)
1658 {
1659 int ret;
1660
1661 if (!aux->ddc.algo)
1662 drm_dp_aux_init(aux);
1663
1664 aux->ddc.class = I2C_CLASS_DDC;
1665 aux->ddc.owner = THIS_MODULE;
1666 aux->ddc.dev.parent = aux->dev;
1667
1668 strlcpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
1669 sizeof(aux->ddc.name));
1670
1671 ret = drm_dp_aux_register_devnode(aux);
1672 if (ret)
1673 return ret;
1674
1675 ret = i2c_add_adapter(&aux->ddc);
1676 if (ret) {
1677 drm_dp_aux_unregister_devnode(aux);
1678 return ret;
1679 }
1680
1681 return 0;
1682 }
1683 EXPORT_SYMBOL(drm_dp_aux_register);
1684
1685 /**
1686 * drm_dp_aux_unregister() - unregister an AUX adapter
1687 * @aux: DisplayPort AUX channel
1688 */
drm_dp_aux_unregister(struct drm_dp_aux * aux)1689 void drm_dp_aux_unregister(struct drm_dp_aux *aux)
1690 {
1691 drm_dp_aux_unregister_devnode(aux);
1692 i2c_del_adapter(&aux->ddc);
1693 }
1694 EXPORT_SYMBOL(drm_dp_aux_unregister);
1695
1696 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
1697
1698 /**
1699 * drm_dp_psr_setup_time() - PSR setup in time usec
1700 * @psr_cap: PSR capabilities from DPCD
1701 *
1702 * Returns:
1703 * PSR setup time for the panel in microseconds, negative
1704 * error code on failure.
1705 */
drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])1706 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
1707 {
1708 static const u16 psr_setup_time_us[] = {
1709 PSR_SETUP_TIME(330),
1710 PSR_SETUP_TIME(275),
1711 PSR_SETUP_TIME(220),
1712 PSR_SETUP_TIME(165),
1713 PSR_SETUP_TIME(110),
1714 PSR_SETUP_TIME(55),
1715 PSR_SETUP_TIME(0),
1716 };
1717 int i;
1718
1719 i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
1720 if (i >= ARRAY_SIZE(psr_setup_time_us))
1721 return -EINVAL;
1722
1723 return psr_setup_time_us[i];
1724 }
1725 EXPORT_SYMBOL(drm_dp_psr_setup_time);
1726
1727 #undef PSR_SETUP_TIME
1728
1729 /**
1730 * drm_dp_start_crc() - start capture of frame CRCs
1731 * @aux: DisplayPort AUX channel
1732 * @crtc: CRTC displaying the frames whose CRCs are to be captured
1733 *
1734 * Returns 0 on success or a negative error code on failure.
1735 */
drm_dp_start_crc(struct drm_dp_aux * aux,struct drm_crtc * crtc)1736 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
1737 {
1738 u8 buf;
1739 int ret;
1740
1741 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1742 if (ret < 0)
1743 return ret;
1744
1745 ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
1746 if (ret < 0)
1747 return ret;
1748
1749 aux->crc_count = 0;
1750 aux->crtc = crtc;
1751 schedule_work(&aux->crc_work);
1752
1753 return 0;
1754 }
1755 EXPORT_SYMBOL(drm_dp_start_crc);
1756
1757 /**
1758 * drm_dp_stop_crc() - stop capture of frame CRCs
1759 * @aux: DisplayPort AUX channel
1760 *
1761 * Returns 0 on success or a negative error code on failure.
1762 */
drm_dp_stop_crc(struct drm_dp_aux * aux)1763 int drm_dp_stop_crc(struct drm_dp_aux *aux)
1764 {
1765 u8 buf;
1766 int ret;
1767
1768 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1769 if (ret < 0)
1770 return ret;
1771
1772 ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
1773 if (ret < 0)
1774 return ret;
1775
1776 flush_work(&aux->crc_work);
1777 aux->crtc = NULL;
1778
1779 return 0;
1780 }
1781 EXPORT_SYMBOL(drm_dp_stop_crc);
1782
1783 struct dpcd_quirk {
1784 u8 oui[3];
1785 u8 device_id[6];
1786 bool is_branch;
1787 u32 quirks;
1788 };
1789
1790 #define OUI(first, second, third) { (first), (second), (third) }
1791 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
1792 { (first), (second), (third), (fourth), (fifth), (sixth) }
1793
1794 #define DEVICE_ID_ANY DEVICE_ID(0, 0, 0, 0, 0, 0)
1795
1796 static const struct dpcd_quirk dpcd_quirk_list[] = {
1797 /* Analogix 7737 needs reduced M and N at HBR2 link rates */
1798 { OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
1799 /* LG LP140WF6-SPM1 eDP panel */
1800 { OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
1801 /* Apple panels need some additional handling to support PSR */
1802 { OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
1803 /* CH7511 seems to leave SINK_COUNT zeroed */
1804 { OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
1805 /* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
1806 { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
1807 /* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
1808 { OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
1809 };
1810
1811 #undef OUI
1812
1813 /*
1814 * Get a bit mask of DPCD quirks for the sink/branch device identified by
1815 * ident. The quirk data is shared but it's up to the drivers to act on the
1816 * data.
1817 *
1818 * For now, only the OUI (first three bytes) is used, but this may be extended
1819 * to device identification string and hardware/firmware revisions later.
1820 */
1821 static u32
drm_dp_get_quirks(const struct drm_dp_dpcd_ident * ident,bool is_branch)1822 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
1823 {
1824 const struct dpcd_quirk *quirk;
1825 u32 quirks = 0;
1826 int i;
1827 u8 any_device[] = DEVICE_ID_ANY;
1828
1829 for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
1830 quirk = &dpcd_quirk_list[i];
1831
1832 if (quirk->is_branch != is_branch)
1833 continue;
1834
1835 if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
1836 continue;
1837
1838 if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
1839 memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
1840 continue;
1841
1842 quirks |= quirk->quirks;
1843 }
1844
1845 return quirks;
1846 }
1847
1848 #undef DEVICE_ID_ANY
1849 #undef DEVICE_ID
1850
1851 struct edid_quirk {
1852 u8 mfg_id[2];
1853 u8 prod_id[2];
1854 u32 quirks;
1855 };
1856
1857 #define MFG(first, second) { (first), (second) }
1858 #define PROD_ID(first, second) { (first), (second) }
1859
1860 /*
1861 * Some devices have unreliable OUIDs where they don't set the device ID
1862 * correctly, and as a result we need to use the EDID for finding additional
1863 * DP quirks in such cases.
1864 */
1865 static const struct edid_quirk edid_quirk_list[] = {
1866 /* Optional 4K AMOLED panel in the ThinkPad X1 Extreme 2nd Generation
1867 * only supports DPCD backlight controls
1868 */
1869 { MFG(0x4c, 0x83), PROD_ID(0x41, 0x41), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) },
1870 /*
1871 * Some Dell CML 2020 systems have panels support both AUX and PWM
1872 * backlight control, and some only support AUX backlight control. All
1873 * said panels start up in AUX mode by default, and we don't have any
1874 * support for disabling HDR mode on these panels which would be
1875 * required to switch to PWM backlight control mode (plus, I'm not
1876 * even sure we want PWM backlight controls over DPCD backlight
1877 * controls anyway...). Until we have a better way of detecting these,
1878 * force DPCD backlight mode on all of them.
1879 */
1880 { MFG(0x06, 0xaf), PROD_ID(0x9b, 0x32), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) },
1881 { MFG(0x06, 0xaf), PROD_ID(0xeb, 0x41), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) },
1882 { MFG(0x4d, 0x10), PROD_ID(0xc7, 0x14), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) },
1883 { MFG(0x4d, 0x10), PROD_ID(0xe6, 0x14), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) },
1884 { MFG(0x4c, 0x83), PROD_ID(0x47, 0x41), BIT(DP_QUIRK_FORCE_DPCD_BACKLIGHT) },
1885 };
1886
1887 #undef MFG
1888 #undef PROD_ID
1889
1890 /**
1891 * drm_dp_get_edid_quirks() - Check the EDID of a DP device to find additional
1892 * DP-specific quirks
1893 * @edid: The EDID to check
1894 *
1895 * While OUIDs are meant to be used to recognize a DisplayPort device, a lot
1896 * of manufacturers don't seem to like following standards and neglect to fill
1897 * the dev-ID in, making it impossible to only use OUIDs for determining
1898 * quirks in some cases. This function can be used to check the EDID and look
1899 * up any additional DP quirks. The bits returned by this function correspond
1900 * to the quirk bits in &drm_dp_quirk.
1901 *
1902 * Returns: a bitmask of quirks, if any. The driver can check this using
1903 * drm_dp_has_quirk().
1904 */
drm_dp_get_edid_quirks(const struct edid * edid)1905 u32 drm_dp_get_edid_quirks(const struct edid *edid)
1906 {
1907 const struct edid_quirk *quirk;
1908 u32 quirks = 0;
1909 int i;
1910
1911 if (!edid)
1912 return 0;
1913
1914 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1915 quirk = &edid_quirk_list[i];
1916 if (memcmp(quirk->mfg_id, edid->mfg_id,
1917 sizeof(edid->mfg_id)) == 0 &&
1918 memcmp(quirk->prod_id, edid->prod_code,
1919 sizeof(edid->prod_code)) == 0)
1920 quirks |= quirk->quirks;
1921 }
1922
1923 DRM_DEBUG_KMS("DP sink: EDID mfg %*phD prod-ID %*phD quirks: 0x%04x\n",
1924 (int)sizeof(edid->mfg_id), edid->mfg_id,
1925 (int)sizeof(edid->prod_code), edid->prod_code, quirks);
1926
1927 return quirks;
1928 }
1929 EXPORT_SYMBOL(drm_dp_get_edid_quirks);
1930
1931 /**
1932 * drm_dp_read_desc - read sink/branch descriptor from DPCD
1933 * @aux: DisplayPort AUX channel
1934 * @desc: Device descriptor to fill from DPCD
1935 * @is_branch: true for branch devices, false for sink devices
1936 *
1937 * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
1938 * identification.
1939 *
1940 * Returns 0 on success or a negative error code on failure.
1941 */
drm_dp_read_desc(struct drm_dp_aux * aux,struct drm_dp_desc * desc,bool is_branch)1942 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
1943 bool is_branch)
1944 {
1945 struct drm_dp_dpcd_ident *ident = &desc->ident;
1946 unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
1947 int ret, dev_id_len;
1948
1949 ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
1950 if (ret < 0)
1951 return ret;
1952
1953 desc->quirks = drm_dp_get_quirks(ident, is_branch);
1954
1955 dev_id_len = strnlen(ident->device_id, sizeof(ident->device_id));
1956
1957 DRM_DEBUG_KMS("%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
1958 aux->name, is_branch ? "branch" : "sink",
1959 (int)sizeof(ident->oui), ident->oui,
1960 dev_id_len, ident->device_id,
1961 ident->hw_rev >> 4, ident->hw_rev & 0xf,
1962 ident->sw_major_rev, ident->sw_minor_rev,
1963 desc->quirks);
1964
1965 return 0;
1966 }
1967 EXPORT_SYMBOL(drm_dp_read_desc);
1968
1969 /**
1970 * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
1971 * supported by the DSC sink.
1972 * @dsc_dpcd: DSC capabilities from DPCD
1973 * @is_edp: true if its eDP, false for DP
1974 *
1975 * Read the slice capabilities DPCD register from DSC sink to get
1976 * the maximum slice count supported. This is used to populate
1977 * the DSC parameters in the &struct drm_dsc_config by the driver.
1978 * Driver creates an infoframe using these parameters to populate
1979 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
1980 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
1981 *
1982 * Returns:
1983 * Maximum slice count supported by DSC sink or 0 its invalid
1984 */
drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],bool is_edp)1985 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
1986 bool is_edp)
1987 {
1988 u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
1989
1990 if (is_edp) {
1991 /* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
1992 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
1993 return 4;
1994 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
1995 return 2;
1996 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
1997 return 1;
1998 } else {
1999 /* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2000 u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2001
2002 if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2003 return 24;
2004 if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2005 return 20;
2006 if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2007 return 16;
2008 if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2009 return 12;
2010 if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2011 return 10;
2012 if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2013 return 8;
2014 if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2015 return 6;
2016 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2017 return 4;
2018 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2019 return 2;
2020 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2021 return 1;
2022 }
2023
2024 return 0;
2025 }
2026 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2027
2028 /**
2029 * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2030 * @dsc_dpcd: DSC capabilities from DPCD
2031 *
2032 * Read the DSC DPCD register to parse the line buffer depth in bits which is
2033 * number of bits of precision within the decoder line buffer supported by
2034 * the DSC sink. This is used to populate the DSC parameters in the
2035 * &struct drm_dsc_config by the driver.
2036 * Driver creates an infoframe using these parameters to populate
2037 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2038 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2039 *
2040 * Returns:
2041 * Line buffer depth supported by DSC panel or 0 its invalid
2042 */
drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])2043 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2044 {
2045 u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2046
2047 switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2048 case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2049 return 9;
2050 case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2051 return 10;
2052 case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2053 return 11;
2054 case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2055 return 12;
2056 case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2057 return 13;
2058 case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2059 return 14;
2060 case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2061 return 15;
2062 case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2063 return 16;
2064 case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2065 return 8;
2066 }
2067
2068 return 0;
2069 }
2070 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2071
2072 /**
2073 * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2074 * values supported by the DSC sink.
2075 * @dsc_dpcd: DSC capabilities from DPCD
2076 * @dsc_bpc: An array to be filled by this helper with supported
2077 * input bpcs.
2078 *
2079 * Read the DSC DPCD from the sink device to parse the supported bits per
2080 * component values. This is used to populate the DSC parameters
2081 * in the &struct drm_dsc_config by the driver.
2082 * Driver creates an infoframe using these parameters to populate
2083 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2084 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2085 *
2086 * Returns:
2087 * Number of input BPC values parsed from the DPCD
2088 */
drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],u8 dsc_bpc[3])2089 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2090 u8 dsc_bpc[3])
2091 {
2092 int num_bpc = 0;
2093 u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2094
2095 if (color_depth & DP_DSC_12_BPC)
2096 dsc_bpc[num_bpc++] = 12;
2097 if (color_depth & DP_DSC_10_BPC)
2098 dsc_bpc[num_bpc++] = 10;
2099 if (color_depth & DP_DSC_8_BPC)
2100 dsc_bpc[num_bpc++] = 8;
2101
2102 return num_bpc;
2103 }
2104 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2105
2106 /**
2107 * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
2108 * @aux: DisplayPort AUX channel
2109 * @data: DP phy compliance test parameters.
2110 *
2111 * Returns 0 on success or a negative error code on failure.
2112 */
drm_dp_get_phy_test_pattern(struct drm_dp_aux * aux,struct drm_dp_phy_test_params * data)2113 int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
2114 struct drm_dp_phy_test_params *data)
2115 {
2116 int err;
2117 u8 rate, lanes;
2118
2119 err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate);
2120 if (err < 0)
2121 return err;
2122 data->link_rate = drm_dp_bw_code_to_link_rate(rate);
2123
2124 err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes);
2125 if (err < 0)
2126 return err;
2127 data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
2128
2129 if (lanes & DP_ENHANCED_FRAME_CAP)
2130 data->enhanced_frame_cap = true;
2131
2132 err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
2133 if (err < 0)
2134 return err;
2135
2136 switch (data->phy_pattern) {
2137 case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
2138 err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
2139 &data->custom80, sizeof(data->custom80));
2140 if (err < 0)
2141 return err;
2142
2143 break;
2144 case DP_PHY_TEST_PATTERN_CP2520:
2145 err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
2146 &data->hbr2_reset,
2147 sizeof(data->hbr2_reset));
2148 if (err < 0)
2149 return err;
2150 }
2151
2152 return 0;
2153 }
2154 EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
2155
2156 /**
2157 * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
2158 * @aux: DisplayPort AUX channel
2159 * @data: DP phy compliance test parameters.
2160 * @dp_rev: DP revision to use for compliance testing
2161 *
2162 * Returns 0 on success or a negative error code on failure.
2163 */
drm_dp_set_phy_test_pattern(struct drm_dp_aux * aux,struct drm_dp_phy_test_params * data,u8 dp_rev)2164 int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
2165 struct drm_dp_phy_test_params *data, u8 dp_rev)
2166 {
2167 int err, i;
2168 u8 link_config[2];
2169 u8 test_pattern;
2170
2171 link_config[0] = drm_dp_link_rate_to_bw_code(data->link_rate);
2172 link_config[1] = data->num_lanes;
2173 if (data->enhanced_frame_cap)
2174 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2175 err = drm_dp_dpcd_write(aux, DP_LINK_BW_SET, link_config, 2);
2176 if (err < 0)
2177 return err;
2178
2179 test_pattern = data->phy_pattern;
2180 if (dp_rev < 0x12) {
2181 test_pattern = (test_pattern << 2) &
2182 DP_LINK_QUAL_PATTERN_11_MASK;
2183 err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET,
2184 test_pattern);
2185 if (err < 0)
2186 return err;
2187 } else {
2188 for (i = 0; i < data->num_lanes; i++) {
2189 err = drm_dp_dpcd_writeb(aux,
2190 DP_LINK_QUAL_LANE0_SET + i,
2191 test_pattern);
2192 if (err < 0)
2193 return err;
2194 }
2195 }
2196
2197 return 0;
2198 }
2199 EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
2200
dp_pixelformat_get_name(enum dp_pixelformat pixelformat)2201 static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
2202 {
2203 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2204 return "Invalid";
2205
2206 switch (pixelformat) {
2207 case DP_PIXELFORMAT_RGB:
2208 return "RGB";
2209 case DP_PIXELFORMAT_YUV444:
2210 return "YUV444";
2211 case DP_PIXELFORMAT_YUV422:
2212 return "YUV422";
2213 case DP_PIXELFORMAT_YUV420:
2214 return "YUV420";
2215 case DP_PIXELFORMAT_Y_ONLY:
2216 return "Y_ONLY";
2217 case DP_PIXELFORMAT_RAW:
2218 return "RAW";
2219 default:
2220 return "Reserved";
2221 }
2222 }
2223
dp_colorimetry_get_name(enum dp_pixelformat pixelformat,enum dp_colorimetry colorimetry)2224 static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
2225 enum dp_colorimetry colorimetry)
2226 {
2227 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2228 return "Invalid";
2229
2230 switch (colorimetry) {
2231 case DP_COLORIMETRY_DEFAULT:
2232 switch (pixelformat) {
2233 case DP_PIXELFORMAT_RGB:
2234 return "sRGB";
2235 case DP_PIXELFORMAT_YUV444:
2236 case DP_PIXELFORMAT_YUV422:
2237 case DP_PIXELFORMAT_YUV420:
2238 return "BT.601";
2239 case DP_PIXELFORMAT_Y_ONLY:
2240 return "DICOM PS3.14";
2241 case DP_PIXELFORMAT_RAW:
2242 return "Custom Color Profile";
2243 default:
2244 return "Reserved";
2245 }
2246 case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
2247 switch (pixelformat) {
2248 case DP_PIXELFORMAT_RGB:
2249 return "Wide Fixed";
2250 case DP_PIXELFORMAT_YUV444:
2251 case DP_PIXELFORMAT_YUV422:
2252 case DP_PIXELFORMAT_YUV420:
2253 return "BT.709";
2254 default:
2255 return "Reserved";
2256 }
2257 case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
2258 switch (pixelformat) {
2259 case DP_PIXELFORMAT_RGB:
2260 return "Wide Float";
2261 case DP_PIXELFORMAT_YUV444:
2262 case DP_PIXELFORMAT_YUV422:
2263 case DP_PIXELFORMAT_YUV420:
2264 return "xvYCC 601";
2265 default:
2266 return "Reserved";
2267 }
2268 case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
2269 switch (pixelformat) {
2270 case DP_PIXELFORMAT_RGB:
2271 return "OpRGB";
2272 case DP_PIXELFORMAT_YUV444:
2273 case DP_PIXELFORMAT_YUV422:
2274 case DP_PIXELFORMAT_YUV420:
2275 return "xvYCC 709";
2276 default:
2277 return "Reserved";
2278 }
2279 case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
2280 switch (pixelformat) {
2281 case DP_PIXELFORMAT_RGB:
2282 return "DCI-P3";
2283 case DP_PIXELFORMAT_YUV444:
2284 case DP_PIXELFORMAT_YUV422:
2285 case DP_PIXELFORMAT_YUV420:
2286 return "sYCC 601";
2287 default:
2288 return "Reserved";
2289 }
2290 case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
2291 switch (pixelformat) {
2292 case DP_PIXELFORMAT_RGB:
2293 return "Custom Profile";
2294 case DP_PIXELFORMAT_YUV444:
2295 case DP_PIXELFORMAT_YUV422:
2296 case DP_PIXELFORMAT_YUV420:
2297 return "OpYCC 601";
2298 default:
2299 return "Reserved";
2300 }
2301 case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
2302 switch (pixelformat) {
2303 case DP_PIXELFORMAT_RGB:
2304 return "BT.2020 RGB";
2305 case DP_PIXELFORMAT_YUV444:
2306 case DP_PIXELFORMAT_YUV422:
2307 case DP_PIXELFORMAT_YUV420:
2308 return "BT.2020 CYCC";
2309 default:
2310 return "Reserved";
2311 }
2312 case DP_COLORIMETRY_BT2020_YCC:
2313 switch (pixelformat) {
2314 case DP_PIXELFORMAT_YUV444:
2315 case DP_PIXELFORMAT_YUV422:
2316 case DP_PIXELFORMAT_YUV420:
2317 return "BT.2020 YCC";
2318 default:
2319 return "Reserved";
2320 }
2321 default:
2322 return "Invalid";
2323 }
2324 }
2325
dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)2326 static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
2327 {
2328 switch (dynamic_range) {
2329 case DP_DYNAMIC_RANGE_VESA:
2330 return "VESA range";
2331 case DP_DYNAMIC_RANGE_CTA:
2332 return "CTA range";
2333 default:
2334 return "Invalid";
2335 }
2336 }
2337
dp_content_type_get_name(enum dp_content_type content_type)2338 static const char *dp_content_type_get_name(enum dp_content_type content_type)
2339 {
2340 switch (content_type) {
2341 case DP_CONTENT_TYPE_NOT_DEFINED:
2342 return "Not defined";
2343 case DP_CONTENT_TYPE_GRAPHICS:
2344 return "Graphics";
2345 case DP_CONTENT_TYPE_PHOTO:
2346 return "Photo";
2347 case DP_CONTENT_TYPE_VIDEO:
2348 return "Video";
2349 case DP_CONTENT_TYPE_GAME:
2350 return "Game";
2351 default:
2352 return "Reserved";
2353 }
2354 }
2355
drm_dp_vsc_sdp_log(const char * level,struct device * dev,const struct drm_dp_vsc_sdp * vsc)2356 void drm_dp_vsc_sdp_log(const char *level, struct device *dev,
2357 const struct drm_dp_vsc_sdp *vsc)
2358 {
2359 #define DP_SDP_LOG(fmt, ...) dev_printk(level, dev, fmt, ##__VA_ARGS__)
2360 DP_SDP_LOG("DP SDP: %s, revision %u, length %u\n", "VSC",
2361 vsc->revision, vsc->length);
2362 DP_SDP_LOG(" pixelformat: %s\n",
2363 dp_pixelformat_get_name(vsc->pixelformat));
2364 DP_SDP_LOG(" colorimetry: %s\n",
2365 dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
2366 DP_SDP_LOG(" bpc: %u\n", vsc->bpc);
2367 DP_SDP_LOG(" dynamic range: %s\n",
2368 dp_dynamic_range_get_name(vsc->dynamic_range));
2369 DP_SDP_LOG(" content type: %s\n",
2370 dp_content_type_get_name(vsc->content_type));
2371 #undef DP_SDP_LOG
2372 }
2373 EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
2374