1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 drbd.c
4
5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6
7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10
11 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
12 from Logicworks, Inc. for making SDP replication support possible.
13
14
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/module.h>
20 #include <linux/jiffies.h>
21 #include <linux/drbd.h>
22 #include <linux/uaccess.h>
23 #include <asm/types.h>
24 #include <net/sock.h>
25 #include <linux/ctype.h>
26 #include <linux/mutex.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/proc_fs.h>
30 #include <linux/init.h>
31 #include <linux/mm.h>
32 #include <linux/memcontrol.h>
33 #include <linux/mm_inline.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/reboot.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/workqueue.h>
40 #define __KERNEL_SYSCALLS__
41 #include <linux/unistd.h>
42 #include <linux/vmalloc.h>
43 #include <linux/sched/signal.h>
44
45 #include <linux/drbd_limits.h>
46 #include "drbd_int.h"
47 #include "drbd_protocol.h"
48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
49 #include "drbd_vli.h"
50 #include "drbd_debugfs.h"
51
52 static DEFINE_MUTEX(drbd_main_mutex);
53 static int drbd_open(struct block_device *bdev, fmode_t mode);
54 static void drbd_release(struct gendisk *gd, fmode_t mode);
55 static void md_sync_timer_fn(struct timer_list *t);
56 static int w_bitmap_io(struct drbd_work *w, int unused);
57
58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
59 "Lars Ellenberg <lars@linbit.com>");
60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
61 MODULE_VERSION(REL_VERSION);
62 MODULE_LICENSE("GPL");
63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
64 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
66
67 #include <linux/moduleparam.h>
68 /* thanks to these macros, if compiled into the kernel (not-module),
69 * these become boot parameters (e.g., drbd.minor_count) */
70
71 #ifdef CONFIG_DRBD_FAULT_INJECTION
72 int drbd_enable_faults;
73 int drbd_fault_rate;
74 static int drbd_fault_count;
75 static int drbd_fault_devs;
76 /* bitmap of enabled faults */
77 module_param_named(enable_faults, drbd_enable_faults, int, 0664);
78 /* fault rate % value - applies to all enabled faults */
79 module_param_named(fault_rate, drbd_fault_rate, int, 0664);
80 /* count of faults inserted */
81 module_param_named(fault_count, drbd_fault_count, int, 0664);
82 /* bitmap of devices to insert faults on */
83 module_param_named(fault_devs, drbd_fault_devs, int, 0644);
84 #endif
85
86 /* module parameters we can keep static */
87 static bool drbd_allow_oos; /* allow_open_on_secondary */
88 static bool drbd_disable_sendpage;
89 MODULE_PARM_DESC(allow_oos, "DONT USE!");
90 module_param_named(allow_oos, drbd_allow_oos, bool, 0);
91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
92
93 /* module parameters we share */
94 int drbd_proc_details; /* Detail level in proc drbd*/
95 module_param_named(proc_details, drbd_proc_details, int, 0644);
96 /* module parameters shared with defaults */
97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
98 /* Module parameter for setting the user mode helper program
99 * to run. Default is /sbin/drbdadm */
100 char drbd_usermode_helper[80] = "/sbin/drbdadm";
101 module_param_named(minor_count, drbd_minor_count, uint, 0444);
102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
103
104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
105 * as member "struct gendisk *vdisk;"
106 */
107 struct idr drbd_devices;
108 struct list_head drbd_resources;
109 struct mutex resources_mutex;
110
111 struct kmem_cache *drbd_request_cache;
112 struct kmem_cache *drbd_ee_cache; /* peer requests */
113 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */
114 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */
115 mempool_t drbd_request_mempool;
116 mempool_t drbd_ee_mempool;
117 mempool_t drbd_md_io_page_pool;
118 struct bio_set drbd_md_io_bio_set;
119 struct bio_set drbd_io_bio_set;
120
121 /* I do not use a standard mempool, because:
122 1) I want to hand out the pre-allocated objects first.
123 2) I want to be able to interrupt sleeping allocation with a signal.
124 Note: This is a single linked list, the next pointer is the private
125 member of struct page.
126 */
127 struct page *drbd_pp_pool;
128 spinlock_t drbd_pp_lock;
129 int drbd_pp_vacant;
130 wait_queue_head_t drbd_pp_wait;
131
132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
133
134 static const struct block_device_operations drbd_ops = {
135 .owner = THIS_MODULE,
136 .submit_bio = drbd_submit_bio,
137 .open = drbd_open,
138 .release = drbd_release,
139 };
140
bio_alloc_drbd(gfp_t gfp_mask)141 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
142 {
143 struct bio *bio;
144
145 if (!bioset_initialized(&drbd_md_io_bio_set))
146 return bio_alloc(gfp_mask, 1);
147
148 bio = bio_alloc_bioset(gfp_mask, 1, &drbd_md_io_bio_set);
149 if (!bio)
150 return NULL;
151 return bio;
152 }
153
154 #ifdef __CHECKER__
155 /* When checking with sparse, and this is an inline function, sparse will
156 give tons of false positives. When this is a real functions sparse works.
157 */
_get_ldev_if_state(struct drbd_device * device,enum drbd_disk_state mins)158 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
159 {
160 int io_allowed;
161
162 atomic_inc(&device->local_cnt);
163 io_allowed = (device->state.disk >= mins);
164 if (!io_allowed) {
165 if (atomic_dec_and_test(&device->local_cnt))
166 wake_up(&device->misc_wait);
167 }
168 return io_allowed;
169 }
170
171 #endif
172
173 /**
174 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
175 * @connection: DRBD connection.
176 * @barrier_nr: Expected identifier of the DRBD write barrier packet.
177 * @set_size: Expected number of requests before that barrier.
178 *
179 * In case the passed barrier_nr or set_size does not match the oldest
180 * epoch of not yet barrier-acked requests, this function will cause a
181 * termination of the connection.
182 */
tl_release(struct drbd_connection * connection,unsigned int barrier_nr,unsigned int set_size)183 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
184 unsigned int set_size)
185 {
186 struct drbd_request *r;
187 struct drbd_request *req = NULL;
188 int expect_epoch = 0;
189 int expect_size = 0;
190
191 spin_lock_irq(&connection->resource->req_lock);
192
193 /* find oldest not yet barrier-acked write request,
194 * count writes in its epoch. */
195 list_for_each_entry(r, &connection->transfer_log, tl_requests) {
196 const unsigned s = r->rq_state;
197 if (!req) {
198 if (!(s & RQ_WRITE))
199 continue;
200 if (!(s & RQ_NET_MASK))
201 continue;
202 if (s & RQ_NET_DONE)
203 continue;
204 req = r;
205 expect_epoch = req->epoch;
206 expect_size ++;
207 } else {
208 if (r->epoch != expect_epoch)
209 break;
210 if (!(s & RQ_WRITE))
211 continue;
212 /* if (s & RQ_DONE): not expected */
213 /* if (!(s & RQ_NET_MASK)): not expected */
214 expect_size++;
215 }
216 }
217
218 /* first some paranoia code */
219 if (req == NULL) {
220 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
221 barrier_nr);
222 goto bail;
223 }
224 if (expect_epoch != barrier_nr) {
225 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
226 barrier_nr, expect_epoch);
227 goto bail;
228 }
229
230 if (expect_size != set_size) {
231 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
232 barrier_nr, set_size, expect_size);
233 goto bail;
234 }
235
236 /* Clean up list of requests processed during current epoch. */
237 /* this extra list walk restart is paranoia,
238 * to catch requests being barrier-acked "unexpectedly".
239 * It usually should find the same req again, or some READ preceding it. */
240 list_for_each_entry(req, &connection->transfer_log, tl_requests)
241 if (req->epoch == expect_epoch)
242 break;
243 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
244 if (req->epoch != expect_epoch)
245 break;
246 _req_mod(req, BARRIER_ACKED);
247 }
248 spin_unlock_irq(&connection->resource->req_lock);
249
250 return;
251
252 bail:
253 spin_unlock_irq(&connection->resource->req_lock);
254 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
255 }
256
257
258 /**
259 * _tl_restart() - Walks the transfer log, and applies an action to all requests
260 * @connection: DRBD connection to operate on.
261 * @what: The action/event to perform with all request objects
262 *
263 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
264 * RESTART_FROZEN_DISK_IO.
265 */
266 /* must hold resource->req_lock */
_tl_restart(struct drbd_connection * connection,enum drbd_req_event what)267 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
268 {
269 struct drbd_request *req, *r;
270
271 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
272 _req_mod(req, what);
273 }
274
tl_restart(struct drbd_connection * connection,enum drbd_req_event what)275 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
276 {
277 spin_lock_irq(&connection->resource->req_lock);
278 _tl_restart(connection, what);
279 spin_unlock_irq(&connection->resource->req_lock);
280 }
281
282 /**
283 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
284 * @device: DRBD device.
285 *
286 * This is called after the connection to the peer was lost. The storage covered
287 * by the requests on the transfer gets marked as our of sync. Called from the
288 * receiver thread and the worker thread.
289 */
tl_clear(struct drbd_connection * connection)290 void tl_clear(struct drbd_connection *connection)
291 {
292 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
293 }
294
295 /**
296 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
297 * @device: DRBD device.
298 */
tl_abort_disk_io(struct drbd_device * device)299 void tl_abort_disk_io(struct drbd_device *device)
300 {
301 struct drbd_connection *connection = first_peer_device(device)->connection;
302 struct drbd_request *req, *r;
303
304 spin_lock_irq(&connection->resource->req_lock);
305 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
306 if (!(req->rq_state & RQ_LOCAL_PENDING))
307 continue;
308 if (req->device != device)
309 continue;
310 _req_mod(req, ABORT_DISK_IO);
311 }
312 spin_unlock_irq(&connection->resource->req_lock);
313 }
314
drbd_thread_setup(void * arg)315 static int drbd_thread_setup(void *arg)
316 {
317 struct drbd_thread *thi = (struct drbd_thread *) arg;
318 struct drbd_resource *resource = thi->resource;
319 unsigned long flags;
320 int retval;
321
322 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
323 thi->name[0],
324 resource->name);
325
326 allow_kernel_signal(DRBD_SIGKILL);
327 allow_kernel_signal(SIGXCPU);
328 restart:
329 retval = thi->function(thi);
330
331 spin_lock_irqsave(&thi->t_lock, flags);
332
333 /* if the receiver has been "EXITING", the last thing it did
334 * was set the conn state to "StandAlone",
335 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
336 * and receiver thread will be "started".
337 * drbd_thread_start needs to set "RESTARTING" in that case.
338 * t_state check and assignment needs to be within the same spinlock,
339 * so either thread_start sees EXITING, and can remap to RESTARTING,
340 * or thread_start see NONE, and can proceed as normal.
341 */
342
343 if (thi->t_state == RESTARTING) {
344 drbd_info(resource, "Restarting %s thread\n", thi->name);
345 thi->t_state = RUNNING;
346 spin_unlock_irqrestore(&thi->t_lock, flags);
347 goto restart;
348 }
349
350 thi->task = NULL;
351 thi->t_state = NONE;
352 smp_mb();
353 complete_all(&thi->stop);
354 spin_unlock_irqrestore(&thi->t_lock, flags);
355
356 drbd_info(resource, "Terminating %s\n", current->comm);
357
358 /* Release mod reference taken when thread was started */
359
360 if (thi->connection)
361 kref_put(&thi->connection->kref, drbd_destroy_connection);
362 kref_put(&resource->kref, drbd_destroy_resource);
363 module_put(THIS_MODULE);
364 return retval;
365 }
366
drbd_thread_init(struct drbd_resource * resource,struct drbd_thread * thi,int (* func)(struct drbd_thread *),const char * name)367 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
368 int (*func) (struct drbd_thread *), const char *name)
369 {
370 spin_lock_init(&thi->t_lock);
371 thi->task = NULL;
372 thi->t_state = NONE;
373 thi->function = func;
374 thi->resource = resource;
375 thi->connection = NULL;
376 thi->name = name;
377 }
378
drbd_thread_start(struct drbd_thread * thi)379 int drbd_thread_start(struct drbd_thread *thi)
380 {
381 struct drbd_resource *resource = thi->resource;
382 struct task_struct *nt;
383 unsigned long flags;
384
385 /* is used from state engine doing drbd_thread_stop_nowait,
386 * while holding the req lock irqsave */
387 spin_lock_irqsave(&thi->t_lock, flags);
388
389 switch (thi->t_state) {
390 case NONE:
391 drbd_info(resource, "Starting %s thread (from %s [%d])\n",
392 thi->name, current->comm, current->pid);
393
394 /* Get ref on module for thread - this is released when thread exits */
395 if (!try_module_get(THIS_MODULE)) {
396 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
397 spin_unlock_irqrestore(&thi->t_lock, flags);
398 return false;
399 }
400
401 kref_get(&resource->kref);
402 if (thi->connection)
403 kref_get(&thi->connection->kref);
404
405 init_completion(&thi->stop);
406 thi->reset_cpu_mask = 1;
407 thi->t_state = RUNNING;
408 spin_unlock_irqrestore(&thi->t_lock, flags);
409 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
410
411 nt = kthread_create(drbd_thread_setup, (void *) thi,
412 "drbd_%c_%s", thi->name[0], thi->resource->name);
413
414 if (IS_ERR(nt)) {
415 drbd_err(resource, "Couldn't start thread\n");
416
417 if (thi->connection)
418 kref_put(&thi->connection->kref, drbd_destroy_connection);
419 kref_put(&resource->kref, drbd_destroy_resource);
420 module_put(THIS_MODULE);
421 return false;
422 }
423 spin_lock_irqsave(&thi->t_lock, flags);
424 thi->task = nt;
425 thi->t_state = RUNNING;
426 spin_unlock_irqrestore(&thi->t_lock, flags);
427 wake_up_process(nt);
428 break;
429 case EXITING:
430 thi->t_state = RESTARTING;
431 drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
432 thi->name, current->comm, current->pid);
433 fallthrough;
434 case RUNNING:
435 case RESTARTING:
436 default:
437 spin_unlock_irqrestore(&thi->t_lock, flags);
438 break;
439 }
440
441 return true;
442 }
443
444
_drbd_thread_stop(struct drbd_thread * thi,int restart,int wait)445 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
446 {
447 unsigned long flags;
448
449 enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
450
451 /* may be called from state engine, holding the req lock irqsave */
452 spin_lock_irqsave(&thi->t_lock, flags);
453
454 if (thi->t_state == NONE) {
455 spin_unlock_irqrestore(&thi->t_lock, flags);
456 if (restart)
457 drbd_thread_start(thi);
458 return;
459 }
460
461 if (thi->t_state != ns) {
462 if (thi->task == NULL) {
463 spin_unlock_irqrestore(&thi->t_lock, flags);
464 return;
465 }
466
467 thi->t_state = ns;
468 smp_mb();
469 init_completion(&thi->stop);
470 if (thi->task != current)
471 send_sig(DRBD_SIGKILL, thi->task, 1);
472 }
473
474 spin_unlock_irqrestore(&thi->t_lock, flags);
475
476 if (wait)
477 wait_for_completion(&thi->stop);
478 }
479
conn_lowest_minor(struct drbd_connection * connection)480 int conn_lowest_minor(struct drbd_connection *connection)
481 {
482 struct drbd_peer_device *peer_device;
483 int vnr = 0, minor = -1;
484
485 rcu_read_lock();
486 peer_device = idr_get_next(&connection->peer_devices, &vnr);
487 if (peer_device)
488 minor = device_to_minor(peer_device->device);
489 rcu_read_unlock();
490
491 return minor;
492 }
493
494 #ifdef CONFIG_SMP
495 /**
496 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
497 *
498 * Forces all threads of a resource onto the same CPU. This is beneficial for
499 * DRBD's performance. May be overwritten by user's configuration.
500 */
drbd_calc_cpu_mask(cpumask_var_t * cpu_mask)501 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
502 {
503 unsigned int *resources_per_cpu, min_index = ~0;
504
505 resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu),
506 GFP_KERNEL);
507 if (resources_per_cpu) {
508 struct drbd_resource *resource;
509 unsigned int cpu, min = ~0;
510
511 rcu_read_lock();
512 for_each_resource_rcu(resource, &drbd_resources) {
513 for_each_cpu(cpu, resource->cpu_mask)
514 resources_per_cpu[cpu]++;
515 }
516 rcu_read_unlock();
517 for_each_online_cpu(cpu) {
518 if (resources_per_cpu[cpu] < min) {
519 min = resources_per_cpu[cpu];
520 min_index = cpu;
521 }
522 }
523 kfree(resources_per_cpu);
524 }
525 if (min_index == ~0) {
526 cpumask_setall(*cpu_mask);
527 return;
528 }
529 cpumask_set_cpu(min_index, *cpu_mask);
530 }
531
532 /**
533 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
534 * @device: DRBD device.
535 * @thi: drbd_thread object
536 *
537 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
538 * prematurely.
539 */
drbd_thread_current_set_cpu(struct drbd_thread * thi)540 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
541 {
542 struct drbd_resource *resource = thi->resource;
543 struct task_struct *p = current;
544
545 if (!thi->reset_cpu_mask)
546 return;
547 thi->reset_cpu_mask = 0;
548 set_cpus_allowed_ptr(p, resource->cpu_mask);
549 }
550 #else
551 #define drbd_calc_cpu_mask(A) ({})
552 #endif
553
554 /**
555 * drbd_header_size - size of a packet header
556 *
557 * The header size is a multiple of 8, so any payload following the header is
558 * word aligned on 64-bit architectures. (The bitmap send and receive code
559 * relies on this.)
560 */
drbd_header_size(struct drbd_connection * connection)561 unsigned int drbd_header_size(struct drbd_connection *connection)
562 {
563 if (connection->agreed_pro_version >= 100) {
564 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
565 return sizeof(struct p_header100);
566 } else {
567 BUILD_BUG_ON(sizeof(struct p_header80) !=
568 sizeof(struct p_header95));
569 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
570 return sizeof(struct p_header80);
571 }
572 }
573
prepare_header80(struct p_header80 * h,enum drbd_packet cmd,int size)574 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
575 {
576 h->magic = cpu_to_be32(DRBD_MAGIC);
577 h->command = cpu_to_be16(cmd);
578 h->length = cpu_to_be16(size);
579 return sizeof(struct p_header80);
580 }
581
prepare_header95(struct p_header95 * h,enum drbd_packet cmd,int size)582 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
583 {
584 h->magic = cpu_to_be16(DRBD_MAGIC_BIG);
585 h->command = cpu_to_be16(cmd);
586 h->length = cpu_to_be32(size);
587 return sizeof(struct p_header95);
588 }
589
prepare_header100(struct p_header100 * h,enum drbd_packet cmd,int size,int vnr)590 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
591 int size, int vnr)
592 {
593 h->magic = cpu_to_be32(DRBD_MAGIC_100);
594 h->volume = cpu_to_be16(vnr);
595 h->command = cpu_to_be16(cmd);
596 h->length = cpu_to_be32(size);
597 h->pad = 0;
598 return sizeof(struct p_header100);
599 }
600
prepare_header(struct drbd_connection * connection,int vnr,void * buffer,enum drbd_packet cmd,int size)601 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
602 void *buffer, enum drbd_packet cmd, int size)
603 {
604 if (connection->agreed_pro_version >= 100)
605 return prepare_header100(buffer, cmd, size, vnr);
606 else if (connection->agreed_pro_version >= 95 &&
607 size > DRBD_MAX_SIZE_H80_PACKET)
608 return prepare_header95(buffer, cmd, size);
609 else
610 return prepare_header80(buffer, cmd, size);
611 }
612
__conn_prepare_command(struct drbd_connection * connection,struct drbd_socket * sock)613 static void *__conn_prepare_command(struct drbd_connection *connection,
614 struct drbd_socket *sock)
615 {
616 if (!sock->socket)
617 return NULL;
618 return sock->sbuf + drbd_header_size(connection);
619 }
620
conn_prepare_command(struct drbd_connection * connection,struct drbd_socket * sock)621 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
622 {
623 void *p;
624
625 mutex_lock(&sock->mutex);
626 p = __conn_prepare_command(connection, sock);
627 if (!p)
628 mutex_unlock(&sock->mutex);
629
630 return p;
631 }
632
drbd_prepare_command(struct drbd_peer_device * peer_device,struct drbd_socket * sock)633 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
634 {
635 return conn_prepare_command(peer_device->connection, sock);
636 }
637
__send_command(struct drbd_connection * connection,int vnr,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)638 static int __send_command(struct drbd_connection *connection, int vnr,
639 struct drbd_socket *sock, enum drbd_packet cmd,
640 unsigned int header_size, void *data,
641 unsigned int size)
642 {
643 int msg_flags;
644 int err;
645
646 /*
647 * Called with @data == NULL and the size of the data blocks in @size
648 * for commands that send data blocks. For those commands, omit the
649 * MSG_MORE flag: this will increase the likelihood that data blocks
650 * which are page aligned on the sender will end up page aligned on the
651 * receiver.
652 */
653 msg_flags = data ? MSG_MORE : 0;
654
655 header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
656 header_size + size);
657 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
658 msg_flags);
659 if (data && !err)
660 err = drbd_send_all(connection, sock->socket, data, size, 0);
661 /* DRBD protocol "pings" are latency critical.
662 * This is supposed to trigger tcp_push_pending_frames() */
663 if (!err && (cmd == P_PING || cmd == P_PING_ACK))
664 tcp_sock_set_nodelay(sock->socket->sk);
665
666 return err;
667 }
668
__conn_send_command(struct drbd_connection * connection,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)669 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
670 enum drbd_packet cmd, unsigned int header_size,
671 void *data, unsigned int size)
672 {
673 return __send_command(connection, 0, sock, cmd, header_size, data, size);
674 }
675
conn_send_command(struct drbd_connection * connection,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)676 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
677 enum drbd_packet cmd, unsigned int header_size,
678 void *data, unsigned int size)
679 {
680 int err;
681
682 err = __conn_send_command(connection, sock, cmd, header_size, data, size);
683 mutex_unlock(&sock->mutex);
684 return err;
685 }
686
drbd_send_command(struct drbd_peer_device * peer_device,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)687 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
688 enum drbd_packet cmd, unsigned int header_size,
689 void *data, unsigned int size)
690 {
691 int err;
692
693 err = __send_command(peer_device->connection, peer_device->device->vnr,
694 sock, cmd, header_size, data, size);
695 mutex_unlock(&sock->mutex);
696 return err;
697 }
698
drbd_send_ping(struct drbd_connection * connection)699 int drbd_send_ping(struct drbd_connection *connection)
700 {
701 struct drbd_socket *sock;
702
703 sock = &connection->meta;
704 if (!conn_prepare_command(connection, sock))
705 return -EIO;
706 return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
707 }
708
drbd_send_ping_ack(struct drbd_connection * connection)709 int drbd_send_ping_ack(struct drbd_connection *connection)
710 {
711 struct drbd_socket *sock;
712
713 sock = &connection->meta;
714 if (!conn_prepare_command(connection, sock))
715 return -EIO;
716 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
717 }
718
drbd_send_sync_param(struct drbd_peer_device * peer_device)719 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
720 {
721 struct drbd_socket *sock;
722 struct p_rs_param_95 *p;
723 int size;
724 const int apv = peer_device->connection->agreed_pro_version;
725 enum drbd_packet cmd;
726 struct net_conf *nc;
727 struct disk_conf *dc;
728
729 sock = &peer_device->connection->data;
730 p = drbd_prepare_command(peer_device, sock);
731 if (!p)
732 return -EIO;
733
734 rcu_read_lock();
735 nc = rcu_dereference(peer_device->connection->net_conf);
736
737 size = apv <= 87 ? sizeof(struct p_rs_param)
738 : apv == 88 ? sizeof(struct p_rs_param)
739 + strlen(nc->verify_alg) + 1
740 : apv <= 94 ? sizeof(struct p_rs_param_89)
741 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
742
743 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
744
745 /* initialize verify_alg and csums_alg */
746 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
747
748 if (get_ldev(peer_device->device)) {
749 dc = rcu_dereference(peer_device->device->ldev->disk_conf);
750 p->resync_rate = cpu_to_be32(dc->resync_rate);
751 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
752 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
753 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
754 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
755 put_ldev(peer_device->device);
756 } else {
757 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
758 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
759 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
760 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
761 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
762 }
763
764 if (apv >= 88)
765 strcpy(p->verify_alg, nc->verify_alg);
766 if (apv >= 89)
767 strcpy(p->csums_alg, nc->csums_alg);
768 rcu_read_unlock();
769
770 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
771 }
772
__drbd_send_protocol(struct drbd_connection * connection,enum drbd_packet cmd)773 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
774 {
775 struct drbd_socket *sock;
776 struct p_protocol *p;
777 struct net_conf *nc;
778 int size, cf;
779
780 sock = &connection->data;
781 p = __conn_prepare_command(connection, sock);
782 if (!p)
783 return -EIO;
784
785 rcu_read_lock();
786 nc = rcu_dereference(connection->net_conf);
787
788 if (nc->tentative && connection->agreed_pro_version < 92) {
789 rcu_read_unlock();
790 drbd_err(connection, "--dry-run is not supported by peer");
791 return -EOPNOTSUPP;
792 }
793
794 size = sizeof(*p);
795 if (connection->agreed_pro_version >= 87)
796 size += strlen(nc->integrity_alg) + 1;
797
798 p->protocol = cpu_to_be32(nc->wire_protocol);
799 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p);
800 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p);
801 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p);
802 p->two_primaries = cpu_to_be32(nc->two_primaries);
803 cf = 0;
804 if (nc->discard_my_data)
805 cf |= CF_DISCARD_MY_DATA;
806 if (nc->tentative)
807 cf |= CF_DRY_RUN;
808 p->conn_flags = cpu_to_be32(cf);
809
810 if (connection->agreed_pro_version >= 87)
811 strcpy(p->integrity_alg, nc->integrity_alg);
812 rcu_read_unlock();
813
814 return __conn_send_command(connection, sock, cmd, size, NULL, 0);
815 }
816
drbd_send_protocol(struct drbd_connection * connection)817 int drbd_send_protocol(struct drbd_connection *connection)
818 {
819 int err;
820
821 mutex_lock(&connection->data.mutex);
822 err = __drbd_send_protocol(connection, P_PROTOCOL);
823 mutex_unlock(&connection->data.mutex);
824
825 return err;
826 }
827
_drbd_send_uuids(struct drbd_peer_device * peer_device,u64 uuid_flags)828 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
829 {
830 struct drbd_device *device = peer_device->device;
831 struct drbd_socket *sock;
832 struct p_uuids *p;
833 int i;
834
835 if (!get_ldev_if_state(device, D_NEGOTIATING))
836 return 0;
837
838 sock = &peer_device->connection->data;
839 p = drbd_prepare_command(peer_device, sock);
840 if (!p) {
841 put_ldev(device);
842 return -EIO;
843 }
844 spin_lock_irq(&device->ldev->md.uuid_lock);
845 for (i = UI_CURRENT; i < UI_SIZE; i++)
846 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
847 spin_unlock_irq(&device->ldev->md.uuid_lock);
848
849 device->comm_bm_set = drbd_bm_total_weight(device);
850 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
851 rcu_read_lock();
852 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
853 rcu_read_unlock();
854 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
855 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
856 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
857
858 put_ldev(device);
859 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
860 }
861
drbd_send_uuids(struct drbd_peer_device * peer_device)862 int drbd_send_uuids(struct drbd_peer_device *peer_device)
863 {
864 return _drbd_send_uuids(peer_device, 0);
865 }
866
drbd_send_uuids_skip_initial_sync(struct drbd_peer_device * peer_device)867 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
868 {
869 return _drbd_send_uuids(peer_device, 8);
870 }
871
drbd_print_uuids(struct drbd_device * device,const char * text)872 void drbd_print_uuids(struct drbd_device *device, const char *text)
873 {
874 if (get_ldev_if_state(device, D_NEGOTIATING)) {
875 u64 *uuid = device->ldev->md.uuid;
876 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
877 text,
878 (unsigned long long)uuid[UI_CURRENT],
879 (unsigned long long)uuid[UI_BITMAP],
880 (unsigned long long)uuid[UI_HISTORY_START],
881 (unsigned long long)uuid[UI_HISTORY_END]);
882 put_ldev(device);
883 } else {
884 drbd_info(device, "%s effective data uuid: %016llX\n",
885 text,
886 (unsigned long long)device->ed_uuid);
887 }
888 }
889
drbd_gen_and_send_sync_uuid(struct drbd_peer_device * peer_device)890 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
891 {
892 struct drbd_device *device = peer_device->device;
893 struct drbd_socket *sock;
894 struct p_rs_uuid *p;
895 u64 uuid;
896
897 D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
898
899 uuid = device->ldev->md.uuid[UI_BITMAP];
900 if (uuid && uuid != UUID_JUST_CREATED)
901 uuid = uuid + UUID_NEW_BM_OFFSET;
902 else
903 get_random_bytes(&uuid, sizeof(u64));
904 drbd_uuid_set(device, UI_BITMAP, uuid);
905 drbd_print_uuids(device, "updated sync UUID");
906 drbd_md_sync(device);
907
908 sock = &peer_device->connection->data;
909 p = drbd_prepare_command(peer_device, sock);
910 if (p) {
911 p->uuid = cpu_to_be64(uuid);
912 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
913 }
914 }
915
916 /* communicated if (agreed_features & DRBD_FF_WSAME) */
917 static void
assign_p_sizes_qlim(struct drbd_device * device,struct p_sizes * p,struct request_queue * q)918 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p,
919 struct request_queue *q)
920 {
921 if (q) {
922 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
923 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
924 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
925 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
926 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
927 p->qlim->discard_enabled = blk_queue_discard(q);
928 p->qlim->write_same_capable = !!q->limits.max_write_same_sectors;
929 } else {
930 q = device->rq_queue;
931 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
932 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
933 p->qlim->alignment_offset = 0;
934 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
935 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
936 p->qlim->discard_enabled = 0;
937 p->qlim->write_same_capable = 0;
938 }
939 }
940
drbd_send_sizes(struct drbd_peer_device * peer_device,int trigger_reply,enum dds_flags flags)941 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
942 {
943 struct drbd_device *device = peer_device->device;
944 struct drbd_socket *sock;
945 struct p_sizes *p;
946 sector_t d_size, u_size;
947 int q_order_type;
948 unsigned int max_bio_size;
949 unsigned int packet_size;
950
951 sock = &peer_device->connection->data;
952 p = drbd_prepare_command(peer_device, sock);
953 if (!p)
954 return -EIO;
955
956 packet_size = sizeof(*p);
957 if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
958 packet_size += sizeof(p->qlim[0]);
959
960 memset(p, 0, packet_size);
961 if (get_ldev_if_state(device, D_NEGOTIATING)) {
962 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
963 d_size = drbd_get_max_capacity(device->ldev);
964 rcu_read_lock();
965 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
966 rcu_read_unlock();
967 q_order_type = drbd_queue_order_type(device);
968 max_bio_size = queue_max_hw_sectors(q) << 9;
969 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
970 assign_p_sizes_qlim(device, p, q);
971 put_ldev(device);
972 } else {
973 d_size = 0;
974 u_size = 0;
975 q_order_type = QUEUE_ORDERED_NONE;
976 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
977 assign_p_sizes_qlim(device, p, NULL);
978 }
979
980 if (peer_device->connection->agreed_pro_version <= 94)
981 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
982 else if (peer_device->connection->agreed_pro_version < 100)
983 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
984
985 p->d_size = cpu_to_be64(d_size);
986 p->u_size = cpu_to_be64(u_size);
987 if (trigger_reply)
988 p->c_size = 0;
989 else
990 p->c_size = cpu_to_be64(get_capacity(device->vdisk));
991 p->max_bio_size = cpu_to_be32(max_bio_size);
992 p->queue_order_type = cpu_to_be16(q_order_type);
993 p->dds_flags = cpu_to_be16(flags);
994
995 return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
996 }
997
998 /**
999 * drbd_send_current_state() - Sends the drbd state to the peer
1000 * @peer_device: DRBD peer device.
1001 */
drbd_send_current_state(struct drbd_peer_device * peer_device)1002 int drbd_send_current_state(struct drbd_peer_device *peer_device)
1003 {
1004 struct drbd_socket *sock;
1005 struct p_state *p;
1006
1007 sock = &peer_device->connection->data;
1008 p = drbd_prepare_command(peer_device, sock);
1009 if (!p)
1010 return -EIO;
1011 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
1012 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1013 }
1014
1015 /**
1016 * drbd_send_state() - After a state change, sends the new state to the peer
1017 * @peer_device: DRBD peer device.
1018 * @state: the state to send, not necessarily the current state.
1019 *
1020 * Each state change queues an "after_state_ch" work, which will eventually
1021 * send the resulting new state to the peer. If more state changes happen
1022 * between queuing and processing of the after_state_ch work, we still
1023 * want to send each intermediary state in the order it occurred.
1024 */
drbd_send_state(struct drbd_peer_device * peer_device,union drbd_state state)1025 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1026 {
1027 struct drbd_socket *sock;
1028 struct p_state *p;
1029
1030 sock = &peer_device->connection->data;
1031 p = drbd_prepare_command(peer_device, sock);
1032 if (!p)
1033 return -EIO;
1034 p->state = cpu_to_be32(state.i); /* Within the send mutex */
1035 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1036 }
1037
drbd_send_state_req(struct drbd_peer_device * peer_device,union drbd_state mask,union drbd_state val)1038 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1039 {
1040 struct drbd_socket *sock;
1041 struct p_req_state *p;
1042
1043 sock = &peer_device->connection->data;
1044 p = drbd_prepare_command(peer_device, sock);
1045 if (!p)
1046 return -EIO;
1047 p->mask = cpu_to_be32(mask.i);
1048 p->val = cpu_to_be32(val.i);
1049 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1050 }
1051
conn_send_state_req(struct drbd_connection * connection,union drbd_state mask,union drbd_state val)1052 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1053 {
1054 enum drbd_packet cmd;
1055 struct drbd_socket *sock;
1056 struct p_req_state *p;
1057
1058 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1059 sock = &connection->data;
1060 p = conn_prepare_command(connection, sock);
1061 if (!p)
1062 return -EIO;
1063 p->mask = cpu_to_be32(mask.i);
1064 p->val = cpu_to_be32(val.i);
1065 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1066 }
1067
drbd_send_sr_reply(struct drbd_peer_device * peer_device,enum drbd_state_rv retcode)1068 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1069 {
1070 struct drbd_socket *sock;
1071 struct p_req_state_reply *p;
1072
1073 sock = &peer_device->connection->meta;
1074 p = drbd_prepare_command(peer_device, sock);
1075 if (p) {
1076 p->retcode = cpu_to_be32(retcode);
1077 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1078 }
1079 }
1080
conn_send_sr_reply(struct drbd_connection * connection,enum drbd_state_rv retcode)1081 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1082 {
1083 struct drbd_socket *sock;
1084 struct p_req_state_reply *p;
1085 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1086
1087 sock = &connection->meta;
1088 p = conn_prepare_command(connection, sock);
1089 if (p) {
1090 p->retcode = cpu_to_be32(retcode);
1091 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1092 }
1093 }
1094
dcbp_set_code(struct p_compressed_bm * p,enum drbd_bitmap_code code)1095 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1096 {
1097 BUG_ON(code & ~0xf);
1098 p->encoding = (p->encoding & ~0xf) | code;
1099 }
1100
dcbp_set_start(struct p_compressed_bm * p,int set)1101 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1102 {
1103 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1104 }
1105
dcbp_set_pad_bits(struct p_compressed_bm * p,int n)1106 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1107 {
1108 BUG_ON(n & ~0x7);
1109 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1110 }
1111
fill_bitmap_rle_bits(struct drbd_device * device,struct p_compressed_bm * p,unsigned int size,struct bm_xfer_ctx * c)1112 static int fill_bitmap_rle_bits(struct drbd_device *device,
1113 struct p_compressed_bm *p,
1114 unsigned int size,
1115 struct bm_xfer_ctx *c)
1116 {
1117 struct bitstream bs;
1118 unsigned long plain_bits;
1119 unsigned long tmp;
1120 unsigned long rl;
1121 unsigned len;
1122 unsigned toggle;
1123 int bits, use_rle;
1124
1125 /* may we use this feature? */
1126 rcu_read_lock();
1127 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1128 rcu_read_unlock();
1129 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1130 return 0;
1131
1132 if (c->bit_offset >= c->bm_bits)
1133 return 0; /* nothing to do. */
1134
1135 /* use at most thus many bytes */
1136 bitstream_init(&bs, p->code, size, 0);
1137 memset(p->code, 0, size);
1138 /* plain bits covered in this code string */
1139 plain_bits = 0;
1140
1141 /* p->encoding & 0x80 stores whether the first run length is set.
1142 * bit offset is implicit.
1143 * start with toggle == 2 to be able to tell the first iteration */
1144 toggle = 2;
1145
1146 /* see how much plain bits we can stuff into one packet
1147 * using RLE and VLI. */
1148 do {
1149 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1150 : _drbd_bm_find_next(device, c->bit_offset);
1151 if (tmp == -1UL)
1152 tmp = c->bm_bits;
1153 rl = tmp - c->bit_offset;
1154
1155 if (toggle == 2) { /* first iteration */
1156 if (rl == 0) {
1157 /* the first checked bit was set,
1158 * store start value, */
1159 dcbp_set_start(p, 1);
1160 /* but skip encoding of zero run length */
1161 toggle = !toggle;
1162 continue;
1163 }
1164 dcbp_set_start(p, 0);
1165 }
1166
1167 /* paranoia: catch zero runlength.
1168 * can only happen if bitmap is modified while we scan it. */
1169 if (rl == 0) {
1170 drbd_err(device, "unexpected zero runlength while encoding bitmap "
1171 "t:%u bo:%lu\n", toggle, c->bit_offset);
1172 return -1;
1173 }
1174
1175 bits = vli_encode_bits(&bs, rl);
1176 if (bits == -ENOBUFS) /* buffer full */
1177 break;
1178 if (bits <= 0) {
1179 drbd_err(device, "error while encoding bitmap: %d\n", bits);
1180 return 0;
1181 }
1182
1183 toggle = !toggle;
1184 plain_bits += rl;
1185 c->bit_offset = tmp;
1186 } while (c->bit_offset < c->bm_bits);
1187
1188 len = bs.cur.b - p->code + !!bs.cur.bit;
1189
1190 if (plain_bits < (len << 3)) {
1191 /* incompressible with this method.
1192 * we need to rewind both word and bit position. */
1193 c->bit_offset -= plain_bits;
1194 bm_xfer_ctx_bit_to_word_offset(c);
1195 c->bit_offset = c->word_offset * BITS_PER_LONG;
1196 return 0;
1197 }
1198
1199 /* RLE + VLI was able to compress it just fine.
1200 * update c->word_offset. */
1201 bm_xfer_ctx_bit_to_word_offset(c);
1202
1203 /* store pad_bits */
1204 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1205
1206 return len;
1207 }
1208
1209 /**
1210 * send_bitmap_rle_or_plain
1211 *
1212 * Return 0 when done, 1 when another iteration is needed, and a negative error
1213 * code upon failure.
1214 */
1215 static int
send_bitmap_rle_or_plain(struct drbd_device * device,struct bm_xfer_ctx * c)1216 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1217 {
1218 struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1219 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1220 struct p_compressed_bm *p = sock->sbuf + header_size;
1221 int len, err;
1222
1223 len = fill_bitmap_rle_bits(device, p,
1224 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1225 if (len < 0)
1226 return -EIO;
1227
1228 if (len) {
1229 dcbp_set_code(p, RLE_VLI_Bits);
1230 err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1231 P_COMPRESSED_BITMAP, sizeof(*p) + len,
1232 NULL, 0);
1233 c->packets[0]++;
1234 c->bytes[0] += header_size + sizeof(*p) + len;
1235
1236 if (c->bit_offset >= c->bm_bits)
1237 len = 0; /* DONE */
1238 } else {
1239 /* was not compressible.
1240 * send a buffer full of plain text bits instead. */
1241 unsigned int data_size;
1242 unsigned long num_words;
1243 unsigned long *p = sock->sbuf + header_size;
1244
1245 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1246 num_words = min_t(size_t, data_size / sizeof(*p),
1247 c->bm_words - c->word_offset);
1248 len = num_words * sizeof(*p);
1249 if (len)
1250 drbd_bm_get_lel(device, c->word_offset, num_words, p);
1251 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1252 c->word_offset += num_words;
1253 c->bit_offset = c->word_offset * BITS_PER_LONG;
1254
1255 c->packets[1]++;
1256 c->bytes[1] += header_size + len;
1257
1258 if (c->bit_offset > c->bm_bits)
1259 c->bit_offset = c->bm_bits;
1260 }
1261 if (!err) {
1262 if (len == 0) {
1263 INFO_bm_xfer_stats(device, "send", c);
1264 return 0;
1265 } else
1266 return 1;
1267 }
1268 return -EIO;
1269 }
1270
1271 /* See the comment at receive_bitmap() */
_drbd_send_bitmap(struct drbd_device * device)1272 static int _drbd_send_bitmap(struct drbd_device *device)
1273 {
1274 struct bm_xfer_ctx c;
1275 int err;
1276
1277 if (!expect(device->bitmap))
1278 return false;
1279
1280 if (get_ldev(device)) {
1281 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1282 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1283 drbd_bm_set_all(device);
1284 if (drbd_bm_write(device)) {
1285 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1286 * but otherwise process as per normal - need to tell other
1287 * side that a full resync is required! */
1288 drbd_err(device, "Failed to write bitmap to disk!\n");
1289 } else {
1290 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1291 drbd_md_sync(device);
1292 }
1293 }
1294 put_ldev(device);
1295 }
1296
1297 c = (struct bm_xfer_ctx) {
1298 .bm_bits = drbd_bm_bits(device),
1299 .bm_words = drbd_bm_words(device),
1300 };
1301
1302 do {
1303 err = send_bitmap_rle_or_plain(device, &c);
1304 } while (err > 0);
1305
1306 return err == 0;
1307 }
1308
drbd_send_bitmap(struct drbd_device * device)1309 int drbd_send_bitmap(struct drbd_device *device)
1310 {
1311 struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1312 int err = -1;
1313
1314 mutex_lock(&sock->mutex);
1315 if (sock->socket)
1316 err = !_drbd_send_bitmap(device);
1317 mutex_unlock(&sock->mutex);
1318 return err;
1319 }
1320
drbd_send_b_ack(struct drbd_connection * connection,u32 barrier_nr,u32 set_size)1321 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1322 {
1323 struct drbd_socket *sock;
1324 struct p_barrier_ack *p;
1325
1326 if (connection->cstate < C_WF_REPORT_PARAMS)
1327 return;
1328
1329 sock = &connection->meta;
1330 p = conn_prepare_command(connection, sock);
1331 if (!p)
1332 return;
1333 p->barrier = barrier_nr;
1334 p->set_size = cpu_to_be32(set_size);
1335 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1336 }
1337
1338 /**
1339 * _drbd_send_ack() - Sends an ack packet
1340 * @device: DRBD device.
1341 * @cmd: Packet command code.
1342 * @sector: sector, needs to be in big endian byte order
1343 * @blksize: size in byte, needs to be in big endian byte order
1344 * @block_id: Id, big endian byte order
1345 */
_drbd_send_ack(struct drbd_peer_device * peer_device,enum drbd_packet cmd,u64 sector,u32 blksize,u64 block_id)1346 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1347 u64 sector, u32 blksize, u64 block_id)
1348 {
1349 struct drbd_socket *sock;
1350 struct p_block_ack *p;
1351
1352 if (peer_device->device->state.conn < C_CONNECTED)
1353 return -EIO;
1354
1355 sock = &peer_device->connection->meta;
1356 p = drbd_prepare_command(peer_device, sock);
1357 if (!p)
1358 return -EIO;
1359 p->sector = sector;
1360 p->block_id = block_id;
1361 p->blksize = blksize;
1362 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1363 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1364 }
1365
1366 /* dp->sector and dp->block_id already/still in network byte order,
1367 * data_size is payload size according to dp->head,
1368 * and may need to be corrected for digest size. */
drbd_send_ack_dp(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct p_data * dp,int data_size)1369 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1370 struct p_data *dp, int data_size)
1371 {
1372 if (peer_device->connection->peer_integrity_tfm)
1373 data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1374 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1375 dp->block_id);
1376 }
1377
drbd_send_ack_rp(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct p_block_req * rp)1378 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1379 struct p_block_req *rp)
1380 {
1381 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1382 }
1383
1384 /**
1385 * drbd_send_ack() - Sends an ack packet
1386 * @device: DRBD device
1387 * @cmd: packet command code
1388 * @peer_req: peer request
1389 */
drbd_send_ack(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct drbd_peer_request * peer_req)1390 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1391 struct drbd_peer_request *peer_req)
1392 {
1393 return _drbd_send_ack(peer_device, cmd,
1394 cpu_to_be64(peer_req->i.sector),
1395 cpu_to_be32(peer_req->i.size),
1396 peer_req->block_id);
1397 }
1398
1399 /* This function misuses the block_id field to signal if the blocks
1400 * are is sync or not. */
drbd_send_ack_ex(struct drbd_peer_device * peer_device,enum drbd_packet cmd,sector_t sector,int blksize,u64 block_id)1401 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1402 sector_t sector, int blksize, u64 block_id)
1403 {
1404 return _drbd_send_ack(peer_device, cmd,
1405 cpu_to_be64(sector),
1406 cpu_to_be32(blksize),
1407 cpu_to_be64(block_id));
1408 }
1409
drbd_send_rs_deallocated(struct drbd_peer_device * peer_device,struct drbd_peer_request * peer_req)1410 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1411 struct drbd_peer_request *peer_req)
1412 {
1413 struct drbd_socket *sock;
1414 struct p_block_desc *p;
1415
1416 sock = &peer_device->connection->data;
1417 p = drbd_prepare_command(peer_device, sock);
1418 if (!p)
1419 return -EIO;
1420 p->sector = cpu_to_be64(peer_req->i.sector);
1421 p->blksize = cpu_to_be32(peer_req->i.size);
1422 p->pad = 0;
1423 return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1424 }
1425
drbd_send_drequest(struct drbd_peer_device * peer_device,int cmd,sector_t sector,int size,u64 block_id)1426 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1427 sector_t sector, int size, u64 block_id)
1428 {
1429 struct drbd_socket *sock;
1430 struct p_block_req *p;
1431
1432 sock = &peer_device->connection->data;
1433 p = drbd_prepare_command(peer_device, sock);
1434 if (!p)
1435 return -EIO;
1436 p->sector = cpu_to_be64(sector);
1437 p->block_id = block_id;
1438 p->blksize = cpu_to_be32(size);
1439 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1440 }
1441
drbd_send_drequest_csum(struct drbd_peer_device * peer_device,sector_t sector,int size,void * digest,int digest_size,enum drbd_packet cmd)1442 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1443 void *digest, int digest_size, enum drbd_packet cmd)
1444 {
1445 struct drbd_socket *sock;
1446 struct p_block_req *p;
1447
1448 /* FIXME: Put the digest into the preallocated socket buffer. */
1449
1450 sock = &peer_device->connection->data;
1451 p = drbd_prepare_command(peer_device, sock);
1452 if (!p)
1453 return -EIO;
1454 p->sector = cpu_to_be64(sector);
1455 p->block_id = ID_SYNCER /* unused */;
1456 p->blksize = cpu_to_be32(size);
1457 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1458 }
1459
drbd_send_ov_request(struct drbd_peer_device * peer_device,sector_t sector,int size)1460 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1461 {
1462 struct drbd_socket *sock;
1463 struct p_block_req *p;
1464
1465 sock = &peer_device->connection->data;
1466 p = drbd_prepare_command(peer_device, sock);
1467 if (!p)
1468 return -EIO;
1469 p->sector = cpu_to_be64(sector);
1470 p->block_id = ID_SYNCER /* unused */;
1471 p->blksize = cpu_to_be32(size);
1472 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1473 }
1474
1475 /* called on sndtimeo
1476 * returns false if we should retry,
1477 * true if we think connection is dead
1478 */
we_should_drop_the_connection(struct drbd_connection * connection,struct socket * sock)1479 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1480 {
1481 int drop_it;
1482 /* long elapsed = (long)(jiffies - device->last_received); */
1483
1484 drop_it = connection->meta.socket == sock
1485 || !connection->ack_receiver.task
1486 || get_t_state(&connection->ack_receiver) != RUNNING
1487 || connection->cstate < C_WF_REPORT_PARAMS;
1488
1489 if (drop_it)
1490 return true;
1491
1492 drop_it = !--connection->ko_count;
1493 if (!drop_it) {
1494 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1495 current->comm, current->pid, connection->ko_count);
1496 request_ping(connection);
1497 }
1498
1499 return drop_it; /* && (device->state == R_PRIMARY) */;
1500 }
1501
drbd_update_congested(struct drbd_connection * connection)1502 static void drbd_update_congested(struct drbd_connection *connection)
1503 {
1504 struct sock *sk = connection->data.socket->sk;
1505 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1506 set_bit(NET_CONGESTED, &connection->flags);
1507 }
1508
1509 /* The idea of sendpage seems to be to put some kind of reference
1510 * to the page into the skb, and to hand it over to the NIC. In
1511 * this process get_page() gets called.
1512 *
1513 * As soon as the page was really sent over the network put_page()
1514 * gets called by some part of the network layer. [ NIC driver? ]
1515 *
1516 * [ get_page() / put_page() increment/decrement the count. If count
1517 * reaches 0 the page will be freed. ]
1518 *
1519 * This works nicely with pages from FSs.
1520 * But this means that in protocol A we might signal IO completion too early!
1521 *
1522 * In order not to corrupt data during a resync we must make sure
1523 * that we do not reuse our own buffer pages (EEs) to early, therefore
1524 * we have the net_ee list.
1525 *
1526 * XFS seems to have problems, still, it submits pages with page_count == 0!
1527 * As a workaround, we disable sendpage on pages
1528 * with page_count == 0 or PageSlab.
1529 */
_drbd_no_send_page(struct drbd_peer_device * peer_device,struct page * page,int offset,size_t size,unsigned msg_flags)1530 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1531 int offset, size_t size, unsigned msg_flags)
1532 {
1533 struct socket *socket;
1534 void *addr;
1535 int err;
1536
1537 socket = peer_device->connection->data.socket;
1538 addr = kmap(page) + offset;
1539 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1540 kunmap(page);
1541 if (!err)
1542 peer_device->device->send_cnt += size >> 9;
1543 return err;
1544 }
1545
_drbd_send_page(struct drbd_peer_device * peer_device,struct page * page,int offset,size_t size,unsigned msg_flags)1546 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1547 int offset, size_t size, unsigned msg_flags)
1548 {
1549 struct socket *socket = peer_device->connection->data.socket;
1550 int len = size;
1551 int err = -EIO;
1552
1553 /* e.g. XFS meta- & log-data is in slab pages, which have a
1554 * page_count of 0 and/or have PageSlab() set.
1555 * we cannot use send_page for those, as that does get_page();
1556 * put_page(); and would cause either a VM_BUG directly, or
1557 * __page_cache_release a page that would actually still be referenced
1558 * by someone, leading to some obscure delayed Oops somewhere else. */
1559 if (drbd_disable_sendpage || !sendpage_ok(page))
1560 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1561
1562 msg_flags |= MSG_NOSIGNAL;
1563 drbd_update_congested(peer_device->connection);
1564 do {
1565 int sent;
1566
1567 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1568 if (sent <= 0) {
1569 if (sent == -EAGAIN) {
1570 if (we_should_drop_the_connection(peer_device->connection, socket))
1571 break;
1572 continue;
1573 }
1574 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1575 __func__, (int)size, len, sent);
1576 if (sent < 0)
1577 err = sent;
1578 break;
1579 }
1580 len -= sent;
1581 offset += sent;
1582 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1583 clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1584
1585 if (len == 0) {
1586 err = 0;
1587 peer_device->device->send_cnt += size >> 9;
1588 }
1589 return err;
1590 }
1591
_drbd_send_bio(struct drbd_peer_device * peer_device,struct bio * bio)1592 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1593 {
1594 struct bio_vec bvec;
1595 struct bvec_iter iter;
1596
1597 /* hint all but last page with MSG_MORE */
1598 bio_for_each_segment(bvec, bio, iter) {
1599 int err;
1600
1601 err = _drbd_no_send_page(peer_device, bvec.bv_page,
1602 bvec.bv_offset, bvec.bv_len,
1603 bio_iter_last(bvec, iter)
1604 ? 0 : MSG_MORE);
1605 if (err)
1606 return err;
1607 /* REQ_OP_WRITE_SAME has only one segment */
1608 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1609 break;
1610 }
1611 return 0;
1612 }
1613
_drbd_send_zc_bio(struct drbd_peer_device * peer_device,struct bio * bio)1614 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1615 {
1616 struct bio_vec bvec;
1617 struct bvec_iter iter;
1618
1619 /* hint all but last page with MSG_MORE */
1620 bio_for_each_segment(bvec, bio, iter) {
1621 int err;
1622
1623 err = _drbd_send_page(peer_device, bvec.bv_page,
1624 bvec.bv_offset, bvec.bv_len,
1625 bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1626 if (err)
1627 return err;
1628 /* REQ_OP_WRITE_SAME has only one segment */
1629 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1630 break;
1631 }
1632 return 0;
1633 }
1634
_drbd_send_zc_ee(struct drbd_peer_device * peer_device,struct drbd_peer_request * peer_req)1635 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1636 struct drbd_peer_request *peer_req)
1637 {
1638 struct page *page = peer_req->pages;
1639 unsigned len = peer_req->i.size;
1640 int err;
1641
1642 /* hint all but last page with MSG_MORE */
1643 page_chain_for_each(page) {
1644 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1645
1646 err = _drbd_send_page(peer_device, page, 0, l,
1647 page_chain_next(page) ? MSG_MORE : 0);
1648 if (err)
1649 return err;
1650 len -= l;
1651 }
1652 return 0;
1653 }
1654
bio_flags_to_wire(struct drbd_connection * connection,struct bio * bio)1655 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1656 struct bio *bio)
1657 {
1658 if (connection->agreed_pro_version >= 95)
1659 return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1660 (bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1661 (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1662 (bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) |
1663 (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1664 (bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1665 ((connection->agreed_features & DRBD_FF_WZEROES) ?
1666 (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1667 : DP_DISCARD)
1668 : 0);
1669 else
1670 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1671 }
1672
1673 /* Used to send write or TRIM aka REQ_OP_DISCARD requests
1674 * R_PRIMARY -> Peer (P_DATA, P_TRIM)
1675 */
drbd_send_dblock(struct drbd_peer_device * peer_device,struct drbd_request * req)1676 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1677 {
1678 struct drbd_device *device = peer_device->device;
1679 struct drbd_socket *sock;
1680 struct p_data *p;
1681 struct p_wsame *wsame = NULL;
1682 void *digest_out;
1683 unsigned int dp_flags = 0;
1684 int digest_size;
1685 int err;
1686
1687 sock = &peer_device->connection->data;
1688 p = drbd_prepare_command(peer_device, sock);
1689 digest_size = peer_device->connection->integrity_tfm ?
1690 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1691
1692 if (!p)
1693 return -EIO;
1694 p->sector = cpu_to_be64(req->i.sector);
1695 p->block_id = (unsigned long)req;
1696 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1697 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1698 if (device->state.conn >= C_SYNC_SOURCE &&
1699 device->state.conn <= C_PAUSED_SYNC_T)
1700 dp_flags |= DP_MAY_SET_IN_SYNC;
1701 if (peer_device->connection->agreed_pro_version >= 100) {
1702 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1703 dp_flags |= DP_SEND_RECEIVE_ACK;
1704 /* During resync, request an explicit write ack,
1705 * even in protocol != C */
1706 if (req->rq_state & RQ_EXP_WRITE_ACK
1707 || (dp_flags & DP_MAY_SET_IN_SYNC))
1708 dp_flags |= DP_SEND_WRITE_ACK;
1709 }
1710 p->dp_flags = cpu_to_be32(dp_flags);
1711
1712 if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1713 enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1714 struct p_trim *t = (struct p_trim*)p;
1715 t->size = cpu_to_be32(req->i.size);
1716 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0);
1717 goto out;
1718 }
1719 if (dp_flags & DP_WSAME) {
1720 /* this will only work if DRBD_FF_WSAME is set AND the
1721 * handshake agreed that all nodes and backend devices are
1722 * WRITE_SAME capable and agree on logical_block_size */
1723 wsame = (struct p_wsame*)p;
1724 digest_out = wsame + 1;
1725 wsame->size = cpu_to_be32(req->i.size);
1726 } else
1727 digest_out = p + 1;
1728
1729 /* our digest is still only over the payload.
1730 * TRIM does not carry any payload. */
1731 if (digest_size)
1732 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1733 if (wsame) {
1734 err =
1735 __send_command(peer_device->connection, device->vnr, sock, P_WSAME,
1736 sizeof(*wsame) + digest_size, NULL,
1737 bio_iovec(req->master_bio).bv_len);
1738 } else
1739 err =
1740 __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1741 sizeof(*p) + digest_size, NULL, req->i.size);
1742 if (!err) {
1743 /* For protocol A, we have to memcpy the payload into
1744 * socket buffers, as we may complete right away
1745 * as soon as we handed it over to tcp, at which point the data
1746 * pages may become invalid.
1747 *
1748 * For data-integrity enabled, we copy it as well, so we can be
1749 * sure that even if the bio pages may still be modified, it
1750 * won't change the data on the wire, thus if the digest checks
1751 * out ok after sending on this side, but does not fit on the
1752 * receiving side, we sure have detected corruption elsewhere.
1753 */
1754 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1755 err = _drbd_send_bio(peer_device, req->master_bio);
1756 else
1757 err = _drbd_send_zc_bio(peer_device, req->master_bio);
1758
1759 /* double check digest, sometimes buffers have been modified in flight. */
1760 if (digest_size > 0 && digest_size <= 64) {
1761 /* 64 byte, 512 bit, is the largest digest size
1762 * currently supported in kernel crypto. */
1763 unsigned char digest[64];
1764 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1765 if (memcmp(p + 1, digest, digest_size)) {
1766 drbd_warn(device,
1767 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1768 (unsigned long long)req->i.sector, req->i.size);
1769 }
1770 } /* else if (digest_size > 64) {
1771 ... Be noisy about digest too large ...
1772 } */
1773 }
1774 out:
1775 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1776
1777 return err;
1778 }
1779
1780 /* answer packet, used to send data back for read requests:
1781 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY)
1782 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY)
1783 */
drbd_send_block(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct drbd_peer_request * peer_req)1784 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1785 struct drbd_peer_request *peer_req)
1786 {
1787 struct drbd_device *device = peer_device->device;
1788 struct drbd_socket *sock;
1789 struct p_data *p;
1790 int err;
1791 int digest_size;
1792
1793 sock = &peer_device->connection->data;
1794 p = drbd_prepare_command(peer_device, sock);
1795
1796 digest_size = peer_device->connection->integrity_tfm ?
1797 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1798
1799 if (!p)
1800 return -EIO;
1801 p->sector = cpu_to_be64(peer_req->i.sector);
1802 p->block_id = peer_req->block_id;
1803 p->seq_num = 0; /* unused */
1804 p->dp_flags = 0;
1805 if (digest_size)
1806 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1807 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1808 if (!err)
1809 err = _drbd_send_zc_ee(peer_device, peer_req);
1810 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1811
1812 return err;
1813 }
1814
drbd_send_out_of_sync(struct drbd_peer_device * peer_device,struct drbd_request * req)1815 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1816 {
1817 struct drbd_socket *sock;
1818 struct p_block_desc *p;
1819
1820 sock = &peer_device->connection->data;
1821 p = drbd_prepare_command(peer_device, sock);
1822 if (!p)
1823 return -EIO;
1824 p->sector = cpu_to_be64(req->i.sector);
1825 p->blksize = cpu_to_be32(req->i.size);
1826 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1827 }
1828
1829 /*
1830 drbd_send distinguishes two cases:
1831
1832 Packets sent via the data socket "sock"
1833 and packets sent via the meta data socket "msock"
1834
1835 sock msock
1836 -----------------+-------------------------+------------------------------
1837 timeout conf.timeout / 2 conf.timeout / 2
1838 timeout action send a ping via msock Abort communication
1839 and close all sockets
1840 */
1841
1842 /*
1843 * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1844 */
drbd_send(struct drbd_connection * connection,struct socket * sock,void * buf,size_t size,unsigned msg_flags)1845 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1846 void *buf, size_t size, unsigned msg_flags)
1847 {
1848 struct kvec iov = {.iov_base = buf, .iov_len = size};
1849 struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1850 int rv, sent = 0;
1851
1852 if (!sock)
1853 return -EBADR;
1854
1855 /* THINK if (signal_pending) return ... ? */
1856
1857 iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size);
1858
1859 if (sock == connection->data.socket) {
1860 rcu_read_lock();
1861 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1862 rcu_read_unlock();
1863 drbd_update_congested(connection);
1864 }
1865 do {
1866 rv = sock_sendmsg(sock, &msg);
1867 if (rv == -EAGAIN) {
1868 if (we_should_drop_the_connection(connection, sock))
1869 break;
1870 else
1871 continue;
1872 }
1873 if (rv == -EINTR) {
1874 flush_signals(current);
1875 rv = 0;
1876 }
1877 if (rv < 0)
1878 break;
1879 sent += rv;
1880 } while (sent < size);
1881
1882 if (sock == connection->data.socket)
1883 clear_bit(NET_CONGESTED, &connection->flags);
1884
1885 if (rv <= 0) {
1886 if (rv != -EAGAIN) {
1887 drbd_err(connection, "%s_sendmsg returned %d\n",
1888 sock == connection->meta.socket ? "msock" : "sock",
1889 rv);
1890 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1891 } else
1892 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1893 }
1894
1895 return sent;
1896 }
1897
1898 /**
1899 * drbd_send_all - Send an entire buffer
1900 *
1901 * Returns 0 upon success and a negative error value otherwise.
1902 */
drbd_send_all(struct drbd_connection * connection,struct socket * sock,void * buffer,size_t size,unsigned msg_flags)1903 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1904 size_t size, unsigned msg_flags)
1905 {
1906 int err;
1907
1908 err = drbd_send(connection, sock, buffer, size, msg_flags);
1909 if (err < 0)
1910 return err;
1911 if (err != size)
1912 return -EIO;
1913 return 0;
1914 }
1915
drbd_open(struct block_device * bdev,fmode_t mode)1916 static int drbd_open(struct block_device *bdev, fmode_t mode)
1917 {
1918 struct drbd_device *device = bdev->bd_disk->private_data;
1919 unsigned long flags;
1920 int rv = 0;
1921
1922 mutex_lock(&drbd_main_mutex);
1923 spin_lock_irqsave(&device->resource->req_lock, flags);
1924 /* to have a stable device->state.role
1925 * and no race with updating open_cnt */
1926
1927 if (device->state.role != R_PRIMARY) {
1928 if (mode & FMODE_WRITE)
1929 rv = -EROFS;
1930 else if (!drbd_allow_oos)
1931 rv = -EMEDIUMTYPE;
1932 }
1933
1934 if (!rv)
1935 device->open_cnt++;
1936 spin_unlock_irqrestore(&device->resource->req_lock, flags);
1937 mutex_unlock(&drbd_main_mutex);
1938
1939 return rv;
1940 }
1941
drbd_release(struct gendisk * gd,fmode_t mode)1942 static void drbd_release(struct gendisk *gd, fmode_t mode)
1943 {
1944 struct drbd_device *device = gd->private_data;
1945 mutex_lock(&drbd_main_mutex);
1946 device->open_cnt--;
1947 mutex_unlock(&drbd_main_mutex);
1948 }
1949
1950 /* need to hold resource->req_lock */
drbd_queue_unplug(struct drbd_device * device)1951 void drbd_queue_unplug(struct drbd_device *device)
1952 {
1953 if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1954 D_ASSERT(device, device->state.role == R_PRIMARY);
1955 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) {
1956 drbd_queue_work_if_unqueued(
1957 &first_peer_device(device)->connection->sender_work,
1958 &device->unplug_work);
1959 }
1960 }
1961 }
1962
drbd_set_defaults(struct drbd_device * device)1963 static void drbd_set_defaults(struct drbd_device *device)
1964 {
1965 /* Beware! The actual layout differs
1966 * between big endian and little endian */
1967 device->state = (union drbd_dev_state) {
1968 { .role = R_SECONDARY,
1969 .peer = R_UNKNOWN,
1970 .conn = C_STANDALONE,
1971 .disk = D_DISKLESS,
1972 .pdsk = D_UNKNOWN,
1973 } };
1974 }
1975
drbd_init_set_defaults(struct drbd_device * device)1976 void drbd_init_set_defaults(struct drbd_device *device)
1977 {
1978 /* the memset(,0,) did most of this.
1979 * note: only assignments, no allocation in here */
1980
1981 drbd_set_defaults(device);
1982
1983 atomic_set(&device->ap_bio_cnt, 0);
1984 atomic_set(&device->ap_actlog_cnt, 0);
1985 atomic_set(&device->ap_pending_cnt, 0);
1986 atomic_set(&device->rs_pending_cnt, 0);
1987 atomic_set(&device->unacked_cnt, 0);
1988 atomic_set(&device->local_cnt, 0);
1989 atomic_set(&device->pp_in_use_by_net, 0);
1990 atomic_set(&device->rs_sect_in, 0);
1991 atomic_set(&device->rs_sect_ev, 0);
1992 atomic_set(&device->ap_in_flight, 0);
1993 atomic_set(&device->md_io.in_use, 0);
1994
1995 mutex_init(&device->own_state_mutex);
1996 device->state_mutex = &device->own_state_mutex;
1997
1998 spin_lock_init(&device->al_lock);
1999 spin_lock_init(&device->peer_seq_lock);
2000
2001 INIT_LIST_HEAD(&device->active_ee);
2002 INIT_LIST_HEAD(&device->sync_ee);
2003 INIT_LIST_HEAD(&device->done_ee);
2004 INIT_LIST_HEAD(&device->read_ee);
2005 INIT_LIST_HEAD(&device->net_ee);
2006 INIT_LIST_HEAD(&device->resync_reads);
2007 INIT_LIST_HEAD(&device->resync_work.list);
2008 INIT_LIST_HEAD(&device->unplug_work.list);
2009 INIT_LIST_HEAD(&device->bm_io_work.w.list);
2010 INIT_LIST_HEAD(&device->pending_master_completion[0]);
2011 INIT_LIST_HEAD(&device->pending_master_completion[1]);
2012 INIT_LIST_HEAD(&device->pending_completion[0]);
2013 INIT_LIST_HEAD(&device->pending_completion[1]);
2014
2015 device->resync_work.cb = w_resync_timer;
2016 device->unplug_work.cb = w_send_write_hint;
2017 device->bm_io_work.w.cb = w_bitmap_io;
2018
2019 timer_setup(&device->resync_timer, resync_timer_fn, 0);
2020 timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
2021 timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
2022 timer_setup(&device->request_timer, request_timer_fn, 0);
2023
2024 init_waitqueue_head(&device->misc_wait);
2025 init_waitqueue_head(&device->state_wait);
2026 init_waitqueue_head(&device->ee_wait);
2027 init_waitqueue_head(&device->al_wait);
2028 init_waitqueue_head(&device->seq_wait);
2029
2030 device->resync_wenr = LC_FREE;
2031 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2032 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2033 }
2034
drbd_set_my_capacity(struct drbd_device * device,sector_t size)2035 void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
2036 {
2037 char ppb[10];
2038
2039 set_capacity(device->vdisk, size);
2040 revalidate_disk_size(device->vdisk, false);
2041
2042 drbd_info(device, "size = %s (%llu KB)\n",
2043 ppsize(ppb, size>>1), (unsigned long long)size>>1);
2044 }
2045
drbd_device_cleanup(struct drbd_device * device)2046 void drbd_device_cleanup(struct drbd_device *device)
2047 {
2048 int i;
2049 if (first_peer_device(device)->connection->receiver.t_state != NONE)
2050 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2051 first_peer_device(device)->connection->receiver.t_state);
2052
2053 device->al_writ_cnt =
2054 device->bm_writ_cnt =
2055 device->read_cnt =
2056 device->recv_cnt =
2057 device->send_cnt =
2058 device->writ_cnt =
2059 device->p_size =
2060 device->rs_start =
2061 device->rs_total =
2062 device->rs_failed = 0;
2063 device->rs_last_events = 0;
2064 device->rs_last_sect_ev = 0;
2065 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2066 device->rs_mark_left[i] = 0;
2067 device->rs_mark_time[i] = 0;
2068 }
2069 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2070
2071 set_capacity(device->vdisk, 0);
2072 revalidate_disk_size(device->vdisk, false);
2073 if (device->bitmap) {
2074 /* maybe never allocated. */
2075 drbd_bm_resize(device, 0, 1);
2076 drbd_bm_cleanup(device);
2077 }
2078
2079 drbd_backing_dev_free(device, device->ldev);
2080 device->ldev = NULL;
2081
2082 clear_bit(AL_SUSPENDED, &device->flags);
2083
2084 D_ASSERT(device, list_empty(&device->active_ee));
2085 D_ASSERT(device, list_empty(&device->sync_ee));
2086 D_ASSERT(device, list_empty(&device->done_ee));
2087 D_ASSERT(device, list_empty(&device->read_ee));
2088 D_ASSERT(device, list_empty(&device->net_ee));
2089 D_ASSERT(device, list_empty(&device->resync_reads));
2090 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2091 D_ASSERT(device, list_empty(&device->resync_work.list));
2092 D_ASSERT(device, list_empty(&device->unplug_work.list));
2093
2094 drbd_set_defaults(device);
2095 }
2096
2097
drbd_destroy_mempools(void)2098 static void drbd_destroy_mempools(void)
2099 {
2100 struct page *page;
2101
2102 while (drbd_pp_pool) {
2103 page = drbd_pp_pool;
2104 drbd_pp_pool = (struct page *)page_private(page);
2105 __free_page(page);
2106 drbd_pp_vacant--;
2107 }
2108
2109 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2110
2111 bioset_exit(&drbd_io_bio_set);
2112 bioset_exit(&drbd_md_io_bio_set);
2113 mempool_exit(&drbd_md_io_page_pool);
2114 mempool_exit(&drbd_ee_mempool);
2115 mempool_exit(&drbd_request_mempool);
2116 kmem_cache_destroy(drbd_ee_cache);
2117 kmem_cache_destroy(drbd_request_cache);
2118 kmem_cache_destroy(drbd_bm_ext_cache);
2119 kmem_cache_destroy(drbd_al_ext_cache);
2120
2121 drbd_ee_cache = NULL;
2122 drbd_request_cache = NULL;
2123 drbd_bm_ext_cache = NULL;
2124 drbd_al_ext_cache = NULL;
2125
2126 return;
2127 }
2128
drbd_create_mempools(void)2129 static int drbd_create_mempools(void)
2130 {
2131 struct page *page;
2132 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2133 int i, ret;
2134
2135 /* caches */
2136 drbd_request_cache = kmem_cache_create(
2137 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2138 if (drbd_request_cache == NULL)
2139 goto Enomem;
2140
2141 drbd_ee_cache = kmem_cache_create(
2142 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2143 if (drbd_ee_cache == NULL)
2144 goto Enomem;
2145
2146 drbd_bm_ext_cache = kmem_cache_create(
2147 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2148 if (drbd_bm_ext_cache == NULL)
2149 goto Enomem;
2150
2151 drbd_al_ext_cache = kmem_cache_create(
2152 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2153 if (drbd_al_ext_cache == NULL)
2154 goto Enomem;
2155
2156 /* mempools */
2157 ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0);
2158 if (ret)
2159 goto Enomem;
2160
2161 ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2162 BIOSET_NEED_BVECS);
2163 if (ret)
2164 goto Enomem;
2165
2166 ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0);
2167 if (ret)
2168 goto Enomem;
2169
2170 ret = mempool_init_slab_pool(&drbd_request_mempool, number,
2171 drbd_request_cache);
2172 if (ret)
2173 goto Enomem;
2174
2175 ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache);
2176 if (ret)
2177 goto Enomem;
2178
2179 /* drbd's page pool */
2180 spin_lock_init(&drbd_pp_lock);
2181
2182 for (i = 0; i < number; i++) {
2183 page = alloc_page(GFP_HIGHUSER);
2184 if (!page)
2185 goto Enomem;
2186 set_page_private(page, (unsigned long)drbd_pp_pool);
2187 drbd_pp_pool = page;
2188 }
2189 drbd_pp_vacant = number;
2190
2191 return 0;
2192
2193 Enomem:
2194 drbd_destroy_mempools(); /* in case we allocated some */
2195 return -ENOMEM;
2196 }
2197
drbd_release_all_peer_reqs(struct drbd_device * device)2198 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2199 {
2200 int rr;
2201
2202 rr = drbd_free_peer_reqs(device, &device->active_ee);
2203 if (rr)
2204 drbd_err(device, "%d EEs in active list found!\n", rr);
2205
2206 rr = drbd_free_peer_reqs(device, &device->sync_ee);
2207 if (rr)
2208 drbd_err(device, "%d EEs in sync list found!\n", rr);
2209
2210 rr = drbd_free_peer_reqs(device, &device->read_ee);
2211 if (rr)
2212 drbd_err(device, "%d EEs in read list found!\n", rr);
2213
2214 rr = drbd_free_peer_reqs(device, &device->done_ee);
2215 if (rr)
2216 drbd_err(device, "%d EEs in done list found!\n", rr);
2217
2218 rr = drbd_free_peer_reqs(device, &device->net_ee);
2219 if (rr)
2220 drbd_err(device, "%d EEs in net list found!\n", rr);
2221 }
2222
2223 /* caution. no locking. */
drbd_destroy_device(struct kref * kref)2224 void drbd_destroy_device(struct kref *kref)
2225 {
2226 struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2227 struct drbd_resource *resource = device->resource;
2228 struct drbd_peer_device *peer_device, *tmp_peer_device;
2229
2230 del_timer_sync(&device->request_timer);
2231
2232 /* paranoia asserts */
2233 D_ASSERT(device, device->open_cnt == 0);
2234 /* end paranoia asserts */
2235
2236 /* cleanup stuff that may have been allocated during
2237 * device (re-)configuration or state changes */
2238
2239 drbd_backing_dev_free(device, device->ldev);
2240 device->ldev = NULL;
2241
2242 drbd_release_all_peer_reqs(device);
2243
2244 lc_destroy(device->act_log);
2245 lc_destroy(device->resync);
2246
2247 kfree(device->p_uuid);
2248 /* device->p_uuid = NULL; */
2249
2250 if (device->bitmap) /* should no longer be there. */
2251 drbd_bm_cleanup(device);
2252 __free_page(device->md_io.page);
2253 put_disk(device->vdisk);
2254 blk_cleanup_queue(device->rq_queue);
2255 kfree(device->rs_plan_s);
2256
2257 /* not for_each_connection(connection, resource):
2258 * those may have been cleaned up and disassociated already.
2259 */
2260 for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2261 kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2262 kfree(peer_device);
2263 }
2264 memset(device, 0xfd, sizeof(*device));
2265 kfree(device);
2266 kref_put(&resource->kref, drbd_destroy_resource);
2267 }
2268
2269 /* One global retry thread, if we need to push back some bio and have it
2270 * reinserted through our make request function.
2271 */
2272 static struct retry_worker {
2273 struct workqueue_struct *wq;
2274 struct work_struct worker;
2275
2276 spinlock_t lock;
2277 struct list_head writes;
2278 } retry;
2279
do_retry(struct work_struct * ws)2280 static void do_retry(struct work_struct *ws)
2281 {
2282 struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2283 LIST_HEAD(writes);
2284 struct drbd_request *req, *tmp;
2285
2286 spin_lock_irq(&retry->lock);
2287 list_splice_init(&retry->writes, &writes);
2288 spin_unlock_irq(&retry->lock);
2289
2290 list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2291 struct drbd_device *device = req->device;
2292 struct bio *bio = req->master_bio;
2293 unsigned long start_jif = req->start_jif;
2294 bool expected;
2295
2296 expected =
2297 expect(atomic_read(&req->completion_ref) == 0) &&
2298 expect(req->rq_state & RQ_POSTPONED) &&
2299 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2300 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2301
2302 if (!expected)
2303 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2304 req, atomic_read(&req->completion_ref),
2305 req->rq_state);
2306
2307 /* We still need to put one kref associated with the
2308 * "completion_ref" going zero in the code path that queued it
2309 * here. The request object may still be referenced by a
2310 * frozen local req->private_bio, in case we force-detached.
2311 */
2312 kref_put(&req->kref, drbd_req_destroy);
2313
2314 /* A single suspended or otherwise blocking device may stall
2315 * all others as well. Fortunately, this code path is to
2316 * recover from a situation that "should not happen":
2317 * concurrent writes in multi-primary setup.
2318 * In a "normal" lifecycle, this workqueue is supposed to be
2319 * destroyed without ever doing anything.
2320 * If it turns out to be an issue anyways, we can do per
2321 * resource (replication group) or per device (minor) retry
2322 * workqueues instead.
2323 */
2324
2325 /* We are not just doing submit_bio_noacct(),
2326 * as we want to keep the start_time information. */
2327 inc_ap_bio(device);
2328 __drbd_make_request(device, bio, start_jif);
2329 }
2330 }
2331
2332 /* called via drbd_req_put_completion_ref(),
2333 * holds resource->req_lock */
drbd_restart_request(struct drbd_request * req)2334 void drbd_restart_request(struct drbd_request *req)
2335 {
2336 unsigned long flags;
2337 spin_lock_irqsave(&retry.lock, flags);
2338 list_move_tail(&req->tl_requests, &retry.writes);
2339 spin_unlock_irqrestore(&retry.lock, flags);
2340
2341 /* Drop the extra reference that would otherwise
2342 * have been dropped by complete_master_bio.
2343 * do_retry() needs to grab a new one. */
2344 dec_ap_bio(req->device);
2345
2346 queue_work(retry.wq, &retry.worker);
2347 }
2348
drbd_destroy_resource(struct kref * kref)2349 void drbd_destroy_resource(struct kref *kref)
2350 {
2351 struct drbd_resource *resource =
2352 container_of(kref, struct drbd_resource, kref);
2353
2354 idr_destroy(&resource->devices);
2355 free_cpumask_var(resource->cpu_mask);
2356 kfree(resource->name);
2357 memset(resource, 0xf2, sizeof(*resource));
2358 kfree(resource);
2359 }
2360
drbd_free_resource(struct drbd_resource * resource)2361 void drbd_free_resource(struct drbd_resource *resource)
2362 {
2363 struct drbd_connection *connection, *tmp;
2364
2365 for_each_connection_safe(connection, tmp, resource) {
2366 list_del(&connection->connections);
2367 drbd_debugfs_connection_cleanup(connection);
2368 kref_put(&connection->kref, drbd_destroy_connection);
2369 }
2370 drbd_debugfs_resource_cleanup(resource);
2371 kref_put(&resource->kref, drbd_destroy_resource);
2372 }
2373
drbd_cleanup(void)2374 static void drbd_cleanup(void)
2375 {
2376 unsigned int i;
2377 struct drbd_device *device;
2378 struct drbd_resource *resource, *tmp;
2379
2380 /* first remove proc,
2381 * drbdsetup uses it's presence to detect
2382 * whether DRBD is loaded.
2383 * If we would get stuck in proc removal,
2384 * but have netlink already deregistered,
2385 * some drbdsetup commands may wait forever
2386 * for an answer.
2387 */
2388 if (drbd_proc)
2389 remove_proc_entry("drbd", NULL);
2390
2391 if (retry.wq)
2392 destroy_workqueue(retry.wq);
2393
2394 drbd_genl_unregister();
2395
2396 idr_for_each_entry(&drbd_devices, device, i)
2397 drbd_delete_device(device);
2398
2399 /* not _rcu since, no other updater anymore. Genl already unregistered */
2400 for_each_resource_safe(resource, tmp, &drbd_resources) {
2401 list_del(&resource->resources);
2402 drbd_free_resource(resource);
2403 }
2404
2405 drbd_debugfs_cleanup();
2406
2407 drbd_destroy_mempools();
2408 unregister_blkdev(DRBD_MAJOR, "drbd");
2409
2410 idr_destroy(&drbd_devices);
2411
2412 pr_info("module cleanup done.\n");
2413 }
2414
drbd_init_workqueue(struct drbd_work_queue * wq)2415 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2416 {
2417 spin_lock_init(&wq->q_lock);
2418 INIT_LIST_HEAD(&wq->q);
2419 init_waitqueue_head(&wq->q_wait);
2420 }
2421
2422 struct completion_work {
2423 struct drbd_work w;
2424 struct completion done;
2425 };
2426
w_complete(struct drbd_work * w,int cancel)2427 static int w_complete(struct drbd_work *w, int cancel)
2428 {
2429 struct completion_work *completion_work =
2430 container_of(w, struct completion_work, w);
2431
2432 complete(&completion_work->done);
2433 return 0;
2434 }
2435
drbd_flush_workqueue(struct drbd_work_queue * work_queue)2436 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2437 {
2438 struct completion_work completion_work;
2439
2440 completion_work.w.cb = w_complete;
2441 init_completion(&completion_work.done);
2442 drbd_queue_work(work_queue, &completion_work.w);
2443 wait_for_completion(&completion_work.done);
2444 }
2445
drbd_find_resource(const char * name)2446 struct drbd_resource *drbd_find_resource(const char *name)
2447 {
2448 struct drbd_resource *resource;
2449
2450 if (!name || !name[0])
2451 return NULL;
2452
2453 rcu_read_lock();
2454 for_each_resource_rcu(resource, &drbd_resources) {
2455 if (!strcmp(resource->name, name)) {
2456 kref_get(&resource->kref);
2457 goto found;
2458 }
2459 }
2460 resource = NULL;
2461 found:
2462 rcu_read_unlock();
2463 return resource;
2464 }
2465
conn_get_by_addrs(void * my_addr,int my_addr_len,void * peer_addr,int peer_addr_len)2466 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2467 void *peer_addr, int peer_addr_len)
2468 {
2469 struct drbd_resource *resource;
2470 struct drbd_connection *connection;
2471
2472 rcu_read_lock();
2473 for_each_resource_rcu(resource, &drbd_resources) {
2474 for_each_connection_rcu(connection, resource) {
2475 if (connection->my_addr_len == my_addr_len &&
2476 connection->peer_addr_len == peer_addr_len &&
2477 !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2478 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2479 kref_get(&connection->kref);
2480 goto found;
2481 }
2482 }
2483 }
2484 connection = NULL;
2485 found:
2486 rcu_read_unlock();
2487 return connection;
2488 }
2489
drbd_alloc_socket(struct drbd_socket * socket)2490 static int drbd_alloc_socket(struct drbd_socket *socket)
2491 {
2492 socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2493 if (!socket->rbuf)
2494 return -ENOMEM;
2495 socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2496 if (!socket->sbuf)
2497 return -ENOMEM;
2498 return 0;
2499 }
2500
drbd_free_socket(struct drbd_socket * socket)2501 static void drbd_free_socket(struct drbd_socket *socket)
2502 {
2503 free_page((unsigned long) socket->sbuf);
2504 free_page((unsigned long) socket->rbuf);
2505 }
2506
conn_free_crypto(struct drbd_connection * connection)2507 void conn_free_crypto(struct drbd_connection *connection)
2508 {
2509 drbd_free_sock(connection);
2510
2511 crypto_free_shash(connection->csums_tfm);
2512 crypto_free_shash(connection->verify_tfm);
2513 crypto_free_shash(connection->cram_hmac_tfm);
2514 crypto_free_shash(connection->integrity_tfm);
2515 crypto_free_shash(connection->peer_integrity_tfm);
2516 kfree(connection->int_dig_in);
2517 kfree(connection->int_dig_vv);
2518
2519 connection->csums_tfm = NULL;
2520 connection->verify_tfm = NULL;
2521 connection->cram_hmac_tfm = NULL;
2522 connection->integrity_tfm = NULL;
2523 connection->peer_integrity_tfm = NULL;
2524 connection->int_dig_in = NULL;
2525 connection->int_dig_vv = NULL;
2526 }
2527
set_resource_options(struct drbd_resource * resource,struct res_opts * res_opts)2528 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2529 {
2530 struct drbd_connection *connection;
2531 cpumask_var_t new_cpu_mask;
2532 int err;
2533
2534 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2535 return -ENOMEM;
2536
2537 /* silently ignore cpu mask on UP kernel */
2538 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2539 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2540 cpumask_bits(new_cpu_mask), nr_cpu_ids);
2541 if (err == -EOVERFLOW) {
2542 /* So what. mask it out. */
2543 cpumask_var_t tmp_cpu_mask;
2544 if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2545 cpumask_setall(tmp_cpu_mask);
2546 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2547 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2548 res_opts->cpu_mask,
2549 strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2550 nr_cpu_ids);
2551 free_cpumask_var(tmp_cpu_mask);
2552 err = 0;
2553 }
2554 }
2555 if (err) {
2556 drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2557 /* retcode = ERR_CPU_MASK_PARSE; */
2558 goto fail;
2559 }
2560 }
2561 resource->res_opts = *res_opts;
2562 if (cpumask_empty(new_cpu_mask))
2563 drbd_calc_cpu_mask(&new_cpu_mask);
2564 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2565 cpumask_copy(resource->cpu_mask, new_cpu_mask);
2566 for_each_connection_rcu(connection, resource) {
2567 connection->receiver.reset_cpu_mask = 1;
2568 connection->ack_receiver.reset_cpu_mask = 1;
2569 connection->worker.reset_cpu_mask = 1;
2570 }
2571 }
2572 err = 0;
2573
2574 fail:
2575 free_cpumask_var(new_cpu_mask);
2576 return err;
2577
2578 }
2579
drbd_create_resource(const char * name)2580 struct drbd_resource *drbd_create_resource(const char *name)
2581 {
2582 struct drbd_resource *resource;
2583
2584 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2585 if (!resource)
2586 goto fail;
2587 resource->name = kstrdup(name, GFP_KERNEL);
2588 if (!resource->name)
2589 goto fail_free_resource;
2590 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2591 goto fail_free_name;
2592 kref_init(&resource->kref);
2593 idr_init(&resource->devices);
2594 INIT_LIST_HEAD(&resource->connections);
2595 resource->write_ordering = WO_BDEV_FLUSH;
2596 list_add_tail_rcu(&resource->resources, &drbd_resources);
2597 mutex_init(&resource->conf_update);
2598 mutex_init(&resource->adm_mutex);
2599 spin_lock_init(&resource->req_lock);
2600 drbd_debugfs_resource_add(resource);
2601 return resource;
2602
2603 fail_free_name:
2604 kfree(resource->name);
2605 fail_free_resource:
2606 kfree(resource);
2607 fail:
2608 return NULL;
2609 }
2610
2611 /* caller must be under adm_mutex */
conn_create(const char * name,struct res_opts * res_opts)2612 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2613 {
2614 struct drbd_resource *resource;
2615 struct drbd_connection *connection;
2616
2617 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2618 if (!connection)
2619 return NULL;
2620
2621 if (drbd_alloc_socket(&connection->data))
2622 goto fail;
2623 if (drbd_alloc_socket(&connection->meta))
2624 goto fail;
2625
2626 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2627 if (!connection->current_epoch)
2628 goto fail;
2629
2630 INIT_LIST_HEAD(&connection->transfer_log);
2631
2632 INIT_LIST_HEAD(&connection->current_epoch->list);
2633 connection->epochs = 1;
2634 spin_lock_init(&connection->epoch_lock);
2635
2636 connection->send.seen_any_write_yet = false;
2637 connection->send.current_epoch_nr = 0;
2638 connection->send.current_epoch_writes = 0;
2639
2640 resource = drbd_create_resource(name);
2641 if (!resource)
2642 goto fail;
2643
2644 connection->cstate = C_STANDALONE;
2645 mutex_init(&connection->cstate_mutex);
2646 init_waitqueue_head(&connection->ping_wait);
2647 idr_init(&connection->peer_devices);
2648
2649 drbd_init_workqueue(&connection->sender_work);
2650 mutex_init(&connection->data.mutex);
2651 mutex_init(&connection->meta.mutex);
2652
2653 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2654 connection->receiver.connection = connection;
2655 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2656 connection->worker.connection = connection;
2657 drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2658 connection->ack_receiver.connection = connection;
2659
2660 kref_init(&connection->kref);
2661
2662 connection->resource = resource;
2663
2664 if (set_resource_options(resource, res_opts))
2665 goto fail_resource;
2666
2667 kref_get(&resource->kref);
2668 list_add_tail_rcu(&connection->connections, &resource->connections);
2669 drbd_debugfs_connection_add(connection);
2670 return connection;
2671
2672 fail_resource:
2673 list_del(&resource->resources);
2674 drbd_free_resource(resource);
2675 fail:
2676 kfree(connection->current_epoch);
2677 drbd_free_socket(&connection->meta);
2678 drbd_free_socket(&connection->data);
2679 kfree(connection);
2680 return NULL;
2681 }
2682
drbd_destroy_connection(struct kref * kref)2683 void drbd_destroy_connection(struct kref *kref)
2684 {
2685 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2686 struct drbd_resource *resource = connection->resource;
2687
2688 if (atomic_read(&connection->current_epoch->epoch_size) != 0)
2689 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2690 kfree(connection->current_epoch);
2691
2692 idr_destroy(&connection->peer_devices);
2693
2694 drbd_free_socket(&connection->meta);
2695 drbd_free_socket(&connection->data);
2696 kfree(connection->int_dig_in);
2697 kfree(connection->int_dig_vv);
2698 memset(connection, 0xfc, sizeof(*connection));
2699 kfree(connection);
2700 kref_put(&resource->kref, drbd_destroy_resource);
2701 }
2702
init_submitter(struct drbd_device * device)2703 static int init_submitter(struct drbd_device *device)
2704 {
2705 /* opencoded create_singlethread_workqueue(),
2706 * to be able to say "drbd%d", ..., minor */
2707 device->submit.wq =
2708 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2709 if (!device->submit.wq)
2710 return -ENOMEM;
2711
2712 INIT_WORK(&device->submit.worker, do_submit);
2713 INIT_LIST_HEAD(&device->submit.writes);
2714 return 0;
2715 }
2716
drbd_create_device(struct drbd_config_context * adm_ctx,unsigned int minor)2717 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2718 {
2719 struct drbd_resource *resource = adm_ctx->resource;
2720 struct drbd_connection *connection;
2721 struct drbd_device *device;
2722 struct drbd_peer_device *peer_device, *tmp_peer_device;
2723 struct gendisk *disk;
2724 struct request_queue *q;
2725 int id;
2726 int vnr = adm_ctx->volume;
2727 enum drbd_ret_code err = ERR_NOMEM;
2728
2729 device = minor_to_device(minor);
2730 if (device)
2731 return ERR_MINOR_OR_VOLUME_EXISTS;
2732
2733 /* GFP_KERNEL, we are outside of all write-out paths */
2734 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2735 if (!device)
2736 return ERR_NOMEM;
2737 kref_init(&device->kref);
2738
2739 kref_get(&resource->kref);
2740 device->resource = resource;
2741 device->minor = minor;
2742 device->vnr = vnr;
2743
2744 drbd_init_set_defaults(device);
2745
2746 q = blk_alloc_queue(NUMA_NO_NODE);
2747 if (!q)
2748 goto out_no_q;
2749 device->rq_queue = q;
2750
2751 disk = alloc_disk(1);
2752 if (!disk)
2753 goto out_no_disk;
2754 device->vdisk = disk;
2755
2756 set_disk_ro(disk, true);
2757
2758 disk->queue = q;
2759 disk->major = DRBD_MAJOR;
2760 disk->first_minor = minor;
2761 disk->fops = &drbd_ops;
2762 sprintf(disk->disk_name, "drbd%d", minor);
2763 disk->private_data = device;
2764
2765 blk_queue_write_cache(q, true, true);
2766 /* Setting the max_hw_sectors to an odd value of 8kibyte here
2767 This triggers a max_bio_size message upon first attach or connect */
2768 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2769
2770 device->md_io.page = alloc_page(GFP_KERNEL);
2771 if (!device->md_io.page)
2772 goto out_no_io_page;
2773
2774 if (drbd_bm_init(device))
2775 goto out_no_bitmap;
2776 device->read_requests = RB_ROOT;
2777 device->write_requests = RB_ROOT;
2778
2779 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2780 if (id < 0) {
2781 if (id == -ENOSPC)
2782 err = ERR_MINOR_OR_VOLUME_EXISTS;
2783 goto out_no_minor_idr;
2784 }
2785 kref_get(&device->kref);
2786
2787 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2788 if (id < 0) {
2789 if (id == -ENOSPC)
2790 err = ERR_MINOR_OR_VOLUME_EXISTS;
2791 goto out_idr_remove_minor;
2792 }
2793 kref_get(&device->kref);
2794
2795 INIT_LIST_HEAD(&device->peer_devices);
2796 INIT_LIST_HEAD(&device->pending_bitmap_io);
2797 for_each_connection(connection, resource) {
2798 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2799 if (!peer_device)
2800 goto out_idr_remove_from_resource;
2801 peer_device->connection = connection;
2802 peer_device->device = device;
2803
2804 list_add(&peer_device->peer_devices, &device->peer_devices);
2805 kref_get(&device->kref);
2806
2807 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2808 if (id < 0) {
2809 if (id == -ENOSPC)
2810 err = ERR_INVALID_REQUEST;
2811 goto out_idr_remove_from_resource;
2812 }
2813 kref_get(&connection->kref);
2814 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2815 }
2816
2817 if (init_submitter(device)) {
2818 err = ERR_NOMEM;
2819 goto out_idr_remove_vol;
2820 }
2821
2822 add_disk(disk);
2823
2824 /* inherit the connection state */
2825 device->state.conn = first_connection(resource)->cstate;
2826 if (device->state.conn == C_WF_REPORT_PARAMS) {
2827 for_each_peer_device(peer_device, device)
2828 drbd_connected(peer_device);
2829 }
2830 /* move to create_peer_device() */
2831 for_each_peer_device(peer_device, device)
2832 drbd_debugfs_peer_device_add(peer_device);
2833 drbd_debugfs_device_add(device);
2834 return NO_ERROR;
2835
2836 out_idr_remove_vol:
2837 idr_remove(&connection->peer_devices, vnr);
2838 out_idr_remove_from_resource:
2839 for_each_connection(connection, resource) {
2840 peer_device = idr_remove(&connection->peer_devices, vnr);
2841 if (peer_device)
2842 kref_put(&connection->kref, drbd_destroy_connection);
2843 }
2844 for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2845 list_del(&peer_device->peer_devices);
2846 kfree(peer_device);
2847 }
2848 idr_remove(&resource->devices, vnr);
2849 out_idr_remove_minor:
2850 idr_remove(&drbd_devices, minor);
2851 synchronize_rcu();
2852 out_no_minor_idr:
2853 drbd_bm_cleanup(device);
2854 out_no_bitmap:
2855 __free_page(device->md_io.page);
2856 out_no_io_page:
2857 put_disk(disk);
2858 out_no_disk:
2859 blk_cleanup_queue(q);
2860 out_no_q:
2861 kref_put(&resource->kref, drbd_destroy_resource);
2862 kfree(device);
2863 return err;
2864 }
2865
drbd_delete_device(struct drbd_device * device)2866 void drbd_delete_device(struct drbd_device *device)
2867 {
2868 struct drbd_resource *resource = device->resource;
2869 struct drbd_connection *connection;
2870 struct drbd_peer_device *peer_device;
2871
2872 /* move to free_peer_device() */
2873 for_each_peer_device(peer_device, device)
2874 drbd_debugfs_peer_device_cleanup(peer_device);
2875 drbd_debugfs_device_cleanup(device);
2876 for_each_connection(connection, resource) {
2877 idr_remove(&connection->peer_devices, device->vnr);
2878 kref_put(&device->kref, drbd_destroy_device);
2879 }
2880 idr_remove(&resource->devices, device->vnr);
2881 kref_put(&device->kref, drbd_destroy_device);
2882 idr_remove(&drbd_devices, device_to_minor(device));
2883 kref_put(&device->kref, drbd_destroy_device);
2884 del_gendisk(device->vdisk);
2885 synchronize_rcu();
2886 kref_put(&device->kref, drbd_destroy_device);
2887 }
2888
drbd_init(void)2889 static int __init drbd_init(void)
2890 {
2891 int err;
2892
2893 if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2894 pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2895 #ifdef MODULE
2896 return -EINVAL;
2897 #else
2898 drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2899 #endif
2900 }
2901
2902 err = register_blkdev(DRBD_MAJOR, "drbd");
2903 if (err) {
2904 pr_err("unable to register block device major %d\n",
2905 DRBD_MAJOR);
2906 return err;
2907 }
2908
2909 /*
2910 * allocate all necessary structs
2911 */
2912 init_waitqueue_head(&drbd_pp_wait);
2913
2914 drbd_proc = NULL; /* play safe for drbd_cleanup */
2915 idr_init(&drbd_devices);
2916
2917 mutex_init(&resources_mutex);
2918 INIT_LIST_HEAD(&drbd_resources);
2919
2920 err = drbd_genl_register();
2921 if (err) {
2922 pr_err("unable to register generic netlink family\n");
2923 goto fail;
2924 }
2925
2926 err = drbd_create_mempools();
2927 if (err)
2928 goto fail;
2929
2930 err = -ENOMEM;
2931 drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2932 if (!drbd_proc) {
2933 pr_err("unable to register proc file\n");
2934 goto fail;
2935 }
2936
2937 retry.wq = create_singlethread_workqueue("drbd-reissue");
2938 if (!retry.wq) {
2939 pr_err("unable to create retry workqueue\n");
2940 goto fail;
2941 }
2942 INIT_WORK(&retry.worker, do_retry);
2943 spin_lock_init(&retry.lock);
2944 INIT_LIST_HEAD(&retry.writes);
2945
2946 drbd_debugfs_init();
2947
2948 pr_info("initialized. "
2949 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2950 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2951 pr_info("%s\n", drbd_buildtag());
2952 pr_info("registered as block device major %d\n", DRBD_MAJOR);
2953 return 0; /* Success! */
2954
2955 fail:
2956 drbd_cleanup();
2957 if (err == -ENOMEM)
2958 pr_err("ran out of memory\n");
2959 else
2960 pr_err("initialization failure\n");
2961 return err;
2962 }
2963
drbd_free_one_sock(struct drbd_socket * ds)2964 static void drbd_free_one_sock(struct drbd_socket *ds)
2965 {
2966 struct socket *s;
2967 mutex_lock(&ds->mutex);
2968 s = ds->socket;
2969 ds->socket = NULL;
2970 mutex_unlock(&ds->mutex);
2971 if (s) {
2972 /* so debugfs does not need to mutex_lock() */
2973 synchronize_rcu();
2974 kernel_sock_shutdown(s, SHUT_RDWR);
2975 sock_release(s);
2976 }
2977 }
2978
drbd_free_sock(struct drbd_connection * connection)2979 void drbd_free_sock(struct drbd_connection *connection)
2980 {
2981 if (connection->data.socket)
2982 drbd_free_one_sock(&connection->data);
2983 if (connection->meta.socket)
2984 drbd_free_one_sock(&connection->meta);
2985 }
2986
2987 /* meta data management */
2988
conn_md_sync(struct drbd_connection * connection)2989 void conn_md_sync(struct drbd_connection *connection)
2990 {
2991 struct drbd_peer_device *peer_device;
2992 int vnr;
2993
2994 rcu_read_lock();
2995 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2996 struct drbd_device *device = peer_device->device;
2997
2998 kref_get(&device->kref);
2999 rcu_read_unlock();
3000 drbd_md_sync(device);
3001 kref_put(&device->kref, drbd_destroy_device);
3002 rcu_read_lock();
3003 }
3004 rcu_read_unlock();
3005 }
3006
3007 /* aligned 4kByte */
3008 struct meta_data_on_disk {
3009 u64 la_size_sect; /* last agreed size. */
3010 u64 uuid[UI_SIZE]; /* UUIDs. */
3011 u64 device_uuid;
3012 u64 reserved_u64_1;
3013 u32 flags; /* MDF */
3014 u32 magic;
3015 u32 md_size_sect;
3016 u32 al_offset; /* offset to this block */
3017 u32 al_nr_extents; /* important for restoring the AL (userspace) */
3018 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3019 u32 bm_offset; /* offset to the bitmap, from here */
3020 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */
3021 u32 la_peer_max_bio_size; /* last peer max_bio_size */
3022
3023 /* see al_tr_number_to_on_disk_sector() */
3024 u32 al_stripes;
3025 u32 al_stripe_size_4k;
3026
3027 u8 reserved_u8[4096 - (7*8 + 10*4)];
3028 } __packed;
3029
3030
3031
drbd_md_write(struct drbd_device * device,void * b)3032 void drbd_md_write(struct drbd_device *device, void *b)
3033 {
3034 struct meta_data_on_disk *buffer = b;
3035 sector_t sector;
3036 int i;
3037
3038 memset(buffer, 0, sizeof(*buffer));
3039
3040 buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk));
3041 for (i = UI_CURRENT; i < UI_SIZE; i++)
3042 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3043 buffer->flags = cpu_to_be32(device->ldev->md.flags);
3044 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3045
3046 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect);
3047 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset);
3048 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3049 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3050 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3051
3052 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3053 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3054
3055 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3056 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3057
3058 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3059 sector = device->ldev->md.md_offset;
3060
3061 if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3062 /* this was a try anyways ... */
3063 drbd_err(device, "meta data update failed!\n");
3064 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3065 }
3066 }
3067
3068 /**
3069 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3070 * @device: DRBD device.
3071 */
drbd_md_sync(struct drbd_device * device)3072 void drbd_md_sync(struct drbd_device *device)
3073 {
3074 struct meta_data_on_disk *buffer;
3075
3076 /* Don't accidentally change the DRBD meta data layout. */
3077 BUILD_BUG_ON(UI_SIZE != 4);
3078 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3079
3080 del_timer(&device->md_sync_timer);
3081 /* timer may be rearmed by drbd_md_mark_dirty() now. */
3082 if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3083 return;
3084
3085 /* We use here D_FAILED and not D_ATTACHING because we try to write
3086 * metadata even if we detach due to a disk failure! */
3087 if (!get_ldev_if_state(device, D_FAILED))
3088 return;
3089
3090 buffer = drbd_md_get_buffer(device, __func__);
3091 if (!buffer)
3092 goto out;
3093
3094 drbd_md_write(device, buffer);
3095
3096 /* Update device->ldev->md.la_size_sect,
3097 * since we updated it on metadata. */
3098 device->ldev->md.la_size_sect = get_capacity(device->vdisk);
3099
3100 drbd_md_put_buffer(device);
3101 out:
3102 put_ldev(device);
3103 }
3104
check_activity_log_stripe_size(struct drbd_device * device,struct meta_data_on_disk * on_disk,struct drbd_md * in_core)3105 static int check_activity_log_stripe_size(struct drbd_device *device,
3106 struct meta_data_on_disk *on_disk,
3107 struct drbd_md *in_core)
3108 {
3109 u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3110 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3111 u64 al_size_4k;
3112
3113 /* both not set: default to old fixed size activity log */
3114 if (al_stripes == 0 && al_stripe_size_4k == 0) {
3115 al_stripes = 1;
3116 al_stripe_size_4k = MD_32kB_SECT/8;
3117 }
3118
3119 /* some paranoia plausibility checks */
3120
3121 /* we need both values to be set */
3122 if (al_stripes == 0 || al_stripe_size_4k == 0)
3123 goto err;
3124
3125 al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3126
3127 /* Upper limit of activity log area, to avoid potential overflow
3128 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3129 * than 72 * 4k blocks total only increases the amount of history,
3130 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */
3131 if (al_size_4k > (16 * 1024 * 1024/4))
3132 goto err;
3133
3134 /* Lower limit: we need at least 8 transaction slots (32kB)
3135 * to not break existing setups */
3136 if (al_size_4k < MD_32kB_SECT/8)
3137 goto err;
3138
3139 in_core->al_stripe_size_4k = al_stripe_size_4k;
3140 in_core->al_stripes = al_stripes;
3141 in_core->al_size_4k = al_size_4k;
3142
3143 return 0;
3144 err:
3145 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3146 al_stripes, al_stripe_size_4k);
3147 return -EINVAL;
3148 }
3149
check_offsets_and_sizes(struct drbd_device * device,struct drbd_backing_dev * bdev)3150 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3151 {
3152 sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3153 struct drbd_md *in_core = &bdev->md;
3154 s32 on_disk_al_sect;
3155 s32 on_disk_bm_sect;
3156
3157 /* The on-disk size of the activity log, calculated from offsets, and
3158 * the size of the activity log calculated from the stripe settings,
3159 * should match.
3160 * Though we could relax this a bit: it is ok, if the striped activity log
3161 * fits in the available on-disk activity log size.
3162 * Right now, that would break how resize is implemented.
3163 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3164 * of possible unused padding space in the on disk layout. */
3165 if (in_core->al_offset < 0) {
3166 if (in_core->bm_offset > in_core->al_offset)
3167 goto err;
3168 on_disk_al_sect = -in_core->al_offset;
3169 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3170 } else {
3171 if (in_core->al_offset != MD_4kB_SECT)
3172 goto err;
3173 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3174 goto err;
3175
3176 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3177 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3178 }
3179
3180 /* old fixed size meta data is exactly that: fixed. */
3181 if (in_core->meta_dev_idx >= 0) {
3182 if (in_core->md_size_sect != MD_128MB_SECT
3183 || in_core->al_offset != MD_4kB_SECT
3184 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3185 || in_core->al_stripes != 1
3186 || in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3187 goto err;
3188 }
3189
3190 if (capacity < in_core->md_size_sect)
3191 goto err;
3192 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3193 goto err;
3194
3195 /* should be aligned, and at least 32k */
3196 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3197 goto err;
3198
3199 /* should fit (for now: exactly) into the available on-disk space;
3200 * overflow prevention is in check_activity_log_stripe_size() above. */
3201 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3202 goto err;
3203
3204 /* again, should be aligned */
3205 if (in_core->bm_offset & 7)
3206 goto err;
3207
3208 /* FIXME check for device grow with flex external meta data? */
3209
3210 /* can the available bitmap space cover the last agreed device size? */
3211 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3212 goto err;
3213
3214 return 0;
3215
3216 err:
3217 drbd_err(device, "meta data offsets don't make sense: idx=%d "
3218 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3219 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3220 in_core->meta_dev_idx,
3221 in_core->al_stripes, in_core->al_stripe_size_4k,
3222 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3223 (unsigned long long)in_core->la_size_sect,
3224 (unsigned long long)capacity);
3225
3226 return -EINVAL;
3227 }
3228
3229
3230 /**
3231 * drbd_md_read() - Reads in the meta data super block
3232 * @device: DRBD device.
3233 * @bdev: Device from which the meta data should be read in.
3234 *
3235 * Return NO_ERROR on success, and an enum drbd_ret_code in case
3236 * something goes wrong.
3237 *
3238 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3239 * even before @bdev is assigned to @device->ldev.
3240 */
drbd_md_read(struct drbd_device * device,struct drbd_backing_dev * bdev)3241 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3242 {
3243 struct meta_data_on_disk *buffer;
3244 u32 magic, flags;
3245 int i, rv = NO_ERROR;
3246
3247 if (device->state.disk != D_DISKLESS)
3248 return ERR_DISK_CONFIGURED;
3249
3250 buffer = drbd_md_get_buffer(device, __func__);
3251 if (!buffer)
3252 return ERR_NOMEM;
3253
3254 /* First, figure out where our meta data superblock is located,
3255 * and read it. */
3256 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3257 bdev->md.md_offset = drbd_md_ss(bdev);
3258 /* Even for (flexible or indexed) external meta data,
3259 * initially restrict us to the 4k superblock for now.
3260 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3261 bdev->md.md_size_sect = 8;
3262
3263 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3264 REQ_OP_READ)) {
3265 /* NOTE: can't do normal error processing here as this is
3266 called BEFORE disk is attached */
3267 drbd_err(device, "Error while reading metadata.\n");
3268 rv = ERR_IO_MD_DISK;
3269 goto err;
3270 }
3271
3272 magic = be32_to_cpu(buffer->magic);
3273 flags = be32_to_cpu(buffer->flags);
3274 if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3275 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3276 /* btw: that's Activity Log clean, not "all" clean. */
3277 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3278 rv = ERR_MD_UNCLEAN;
3279 goto err;
3280 }
3281
3282 rv = ERR_MD_INVALID;
3283 if (magic != DRBD_MD_MAGIC_08) {
3284 if (magic == DRBD_MD_MAGIC_07)
3285 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3286 else
3287 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3288 goto err;
3289 }
3290
3291 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3292 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3293 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3294 goto err;
3295 }
3296
3297
3298 /* convert to in_core endian */
3299 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3300 for (i = UI_CURRENT; i < UI_SIZE; i++)
3301 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3302 bdev->md.flags = be32_to_cpu(buffer->flags);
3303 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3304
3305 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3306 bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3307 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3308
3309 if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3310 goto err;
3311 if (check_offsets_and_sizes(device, bdev))
3312 goto err;
3313
3314 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3315 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3316 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3317 goto err;
3318 }
3319 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3320 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3321 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3322 goto err;
3323 }
3324
3325 rv = NO_ERROR;
3326
3327 spin_lock_irq(&device->resource->req_lock);
3328 if (device->state.conn < C_CONNECTED) {
3329 unsigned int peer;
3330 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3331 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3332 device->peer_max_bio_size = peer;
3333 }
3334 spin_unlock_irq(&device->resource->req_lock);
3335
3336 err:
3337 drbd_md_put_buffer(device);
3338
3339 return rv;
3340 }
3341
3342 /**
3343 * drbd_md_mark_dirty() - Mark meta data super block as dirty
3344 * @device: DRBD device.
3345 *
3346 * Call this function if you change anything that should be written to
3347 * the meta-data super block. This function sets MD_DIRTY, and starts a
3348 * timer that ensures that within five seconds you have to call drbd_md_sync().
3349 */
drbd_md_mark_dirty(struct drbd_device * device)3350 void drbd_md_mark_dirty(struct drbd_device *device)
3351 {
3352 if (!test_and_set_bit(MD_DIRTY, &device->flags))
3353 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3354 }
3355
drbd_uuid_move_history(struct drbd_device * device)3356 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3357 {
3358 int i;
3359
3360 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3361 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3362 }
3363
__drbd_uuid_set(struct drbd_device * device,int idx,u64 val)3364 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3365 {
3366 if (idx == UI_CURRENT) {
3367 if (device->state.role == R_PRIMARY)
3368 val |= 1;
3369 else
3370 val &= ~((u64)1);
3371
3372 drbd_set_ed_uuid(device, val);
3373 }
3374
3375 device->ldev->md.uuid[idx] = val;
3376 drbd_md_mark_dirty(device);
3377 }
3378
_drbd_uuid_set(struct drbd_device * device,int idx,u64 val)3379 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3380 {
3381 unsigned long flags;
3382 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3383 __drbd_uuid_set(device, idx, val);
3384 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3385 }
3386
drbd_uuid_set(struct drbd_device * device,int idx,u64 val)3387 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3388 {
3389 unsigned long flags;
3390 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3391 if (device->ldev->md.uuid[idx]) {
3392 drbd_uuid_move_history(device);
3393 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3394 }
3395 __drbd_uuid_set(device, idx, val);
3396 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3397 }
3398
3399 /**
3400 * drbd_uuid_new_current() - Creates a new current UUID
3401 * @device: DRBD device.
3402 *
3403 * Creates a new current UUID, and rotates the old current UUID into
3404 * the bitmap slot. Causes an incremental resync upon next connect.
3405 */
drbd_uuid_new_current(struct drbd_device * device)3406 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3407 {
3408 u64 val;
3409 unsigned long long bm_uuid;
3410
3411 get_random_bytes(&val, sizeof(u64));
3412
3413 spin_lock_irq(&device->ldev->md.uuid_lock);
3414 bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3415
3416 if (bm_uuid)
3417 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3418
3419 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3420 __drbd_uuid_set(device, UI_CURRENT, val);
3421 spin_unlock_irq(&device->ldev->md.uuid_lock);
3422
3423 drbd_print_uuids(device, "new current UUID");
3424 /* get it to stable storage _now_ */
3425 drbd_md_sync(device);
3426 }
3427
drbd_uuid_set_bm(struct drbd_device * device,u64 val)3428 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3429 {
3430 unsigned long flags;
3431 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3432 return;
3433
3434 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3435 if (val == 0) {
3436 drbd_uuid_move_history(device);
3437 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3438 device->ldev->md.uuid[UI_BITMAP] = 0;
3439 } else {
3440 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3441 if (bm_uuid)
3442 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3443
3444 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3445 }
3446 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3447
3448 drbd_md_mark_dirty(device);
3449 }
3450
3451 /**
3452 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3453 * @device: DRBD device.
3454 *
3455 * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3456 */
drbd_bmio_set_n_write(struct drbd_device * device)3457 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3458 {
3459 int rv = -EIO;
3460
3461 drbd_md_set_flag(device, MDF_FULL_SYNC);
3462 drbd_md_sync(device);
3463 drbd_bm_set_all(device);
3464
3465 rv = drbd_bm_write(device);
3466
3467 if (!rv) {
3468 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3469 drbd_md_sync(device);
3470 }
3471
3472 return rv;
3473 }
3474
3475 /**
3476 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3477 * @device: DRBD device.
3478 *
3479 * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3480 */
drbd_bmio_clear_n_write(struct drbd_device * device)3481 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3482 {
3483 drbd_resume_al(device);
3484 drbd_bm_clear_all(device);
3485 return drbd_bm_write(device);
3486 }
3487
w_bitmap_io(struct drbd_work * w,int unused)3488 static int w_bitmap_io(struct drbd_work *w, int unused)
3489 {
3490 struct drbd_device *device =
3491 container_of(w, struct drbd_device, bm_io_work.w);
3492 struct bm_io_work *work = &device->bm_io_work;
3493 int rv = -EIO;
3494
3495 if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3496 int cnt = atomic_read(&device->ap_bio_cnt);
3497 if (cnt)
3498 drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3499 cnt, work->why);
3500 }
3501
3502 if (get_ldev(device)) {
3503 drbd_bm_lock(device, work->why, work->flags);
3504 rv = work->io_fn(device);
3505 drbd_bm_unlock(device);
3506 put_ldev(device);
3507 }
3508
3509 clear_bit_unlock(BITMAP_IO, &device->flags);
3510 wake_up(&device->misc_wait);
3511
3512 if (work->done)
3513 work->done(device, rv);
3514
3515 clear_bit(BITMAP_IO_QUEUED, &device->flags);
3516 work->why = NULL;
3517 work->flags = 0;
3518
3519 return 0;
3520 }
3521
3522 /**
3523 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3524 * @device: DRBD device.
3525 * @io_fn: IO callback to be called when bitmap IO is possible
3526 * @done: callback to be called after the bitmap IO was performed
3527 * @why: Descriptive text of the reason for doing the IO
3528 *
3529 * While IO on the bitmap happens we freeze application IO thus we ensure
3530 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3531 * called from worker context. It MUST NOT be used while a previous such
3532 * work is still pending!
3533 *
3534 * Its worker function encloses the call of io_fn() by get_ldev() and
3535 * put_ldev().
3536 */
drbd_queue_bitmap_io(struct drbd_device * device,int (* io_fn)(struct drbd_device *),void (* done)(struct drbd_device *,int),char * why,enum bm_flag flags)3537 void drbd_queue_bitmap_io(struct drbd_device *device,
3538 int (*io_fn)(struct drbd_device *),
3539 void (*done)(struct drbd_device *, int),
3540 char *why, enum bm_flag flags)
3541 {
3542 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3543
3544 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3545 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3546 D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3547 if (device->bm_io_work.why)
3548 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3549 why, device->bm_io_work.why);
3550
3551 device->bm_io_work.io_fn = io_fn;
3552 device->bm_io_work.done = done;
3553 device->bm_io_work.why = why;
3554 device->bm_io_work.flags = flags;
3555
3556 spin_lock_irq(&device->resource->req_lock);
3557 set_bit(BITMAP_IO, &device->flags);
3558 /* don't wait for pending application IO if the caller indicates that
3559 * application IO does not conflict anyways. */
3560 if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3561 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3562 drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3563 &device->bm_io_work.w);
3564 }
3565 spin_unlock_irq(&device->resource->req_lock);
3566 }
3567
3568 /**
3569 * drbd_bitmap_io() - Does an IO operation on the whole bitmap
3570 * @device: DRBD device.
3571 * @io_fn: IO callback to be called when bitmap IO is possible
3572 * @why: Descriptive text of the reason for doing the IO
3573 *
3574 * freezes application IO while that the actual IO operations runs. This
3575 * functions MAY NOT be called from worker context.
3576 */
drbd_bitmap_io(struct drbd_device * device,int (* io_fn)(struct drbd_device *),char * why,enum bm_flag flags)3577 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3578 char *why, enum bm_flag flags)
3579 {
3580 /* Only suspend io, if some operation is supposed to be locked out */
3581 const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3582 int rv;
3583
3584 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3585
3586 if (do_suspend_io)
3587 drbd_suspend_io(device);
3588
3589 drbd_bm_lock(device, why, flags);
3590 rv = io_fn(device);
3591 drbd_bm_unlock(device);
3592
3593 if (do_suspend_io)
3594 drbd_resume_io(device);
3595
3596 return rv;
3597 }
3598
drbd_md_set_flag(struct drbd_device * device,int flag)3599 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3600 {
3601 if ((device->ldev->md.flags & flag) != flag) {
3602 drbd_md_mark_dirty(device);
3603 device->ldev->md.flags |= flag;
3604 }
3605 }
3606
drbd_md_clear_flag(struct drbd_device * device,int flag)3607 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3608 {
3609 if ((device->ldev->md.flags & flag) != 0) {
3610 drbd_md_mark_dirty(device);
3611 device->ldev->md.flags &= ~flag;
3612 }
3613 }
drbd_md_test_flag(struct drbd_backing_dev * bdev,int flag)3614 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3615 {
3616 return (bdev->md.flags & flag) != 0;
3617 }
3618
md_sync_timer_fn(struct timer_list * t)3619 static void md_sync_timer_fn(struct timer_list *t)
3620 {
3621 struct drbd_device *device = from_timer(device, t, md_sync_timer);
3622 drbd_device_post_work(device, MD_SYNC);
3623 }
3624
cmdname(enum drbd_packet cmd)3625 const char *cmdname(enum drbd_packet cmd)
3626 {
3627 /* THINK may need to become several global tables
3628 * when we want to support more than
3629 * one PRO_VERSION */
3630 static const char *cmdnames[] = {
3631 [P_DATA] = "Data",
3632 [P_WSAME] = "WriteSame",
3633 [P_TRIM] = "Trim",
3634 [P_DATA_REPLY] = "DataReply",
3635 [P_RS_DATA_REPLY] = "RSDataReply",
3636 [P_BARRIER] = "Barrier",
3637 [P_BITMAP] = "ReportBitMap",
3638 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget",
3639 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource",
3640 [P_UNPLUG_REMOTE] = "UnplugRemote",
3641 [P_DATA_REQUEST] = "DataRequest",
3642 [P_RS_DATA_REQUEST] = "RSDataRequest",
3643 [P_SYNC_PARAM] = "SyncParam",
3644 [P_SYNC_PARAM89] = "SyncParam89",
3645 [P_PROTOCOL] = "ReportProtocol",
3646 [P_UUIDS] = "ReportUUIDs",
3647 [P_SIZES] = "ReportSizes",
3648 [P_STATE] = "ReportState",
3649 [P_SYNC_UUID] = "ReportSyncUUID",
3650 [P_AUTH_CHALLENGE] = "AuthChallenge",
3651 [P_AUTH_RESPONSE] = "AuthResponse",
3652 [P_PING] = "Ping",
3653 [P_PING_ACK] = "PingAck",
3654 [P_RECV_ACK] = "RecvAck",
3655 [P_WRITE_ACK] = "WriteAck",
3656 [P_RS_WRITE_ACK] = "RSWriteAck",
3657 [P_SUPERSEDED] = "Superseded",
3658 [P_NEG_ACK] = "NegAck",
3659 [P_NEG_DREPLY] = "NegDReply",
3660 [P_NEG_RS_DREPLY] = "NegRSDReply",
3661 [P_BARRIER_ACK] = "BarrierAck",
3662 [P_STATE_CHG_REQ] = "StateChgRequest",
3663 [P_STATE_CHG_REPLY] = "StateChgReply",
3664 [P_OV_REQUEST] = "OVRequest",
3665 [P_OV_REPLY] = "OVReply",
3666 [P_OV_RESULT] = "OVResult",
3667 [P_CSUM_RS_REQUEST] = "CsumRSRequest",
3668 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync",
3669 [P_COMPRESSED_BITMAP] = "CBitmap",
3670 [P_DELAY_PROBE] = "DelayProbe",
3671 [P_OUT_OF_SYNC] = "OutOfSync",
3672 [P_RETRY_WRITE] = "RetryWrite",
3673 [P_RS_CANCEL] = "RSCancel",
3674 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req",
3675 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply",
3676 [P_RETRY_WRITE] = "retry_write",
3677 [P_PROTOCOL_UPDATE] = "protocol_update",
3678 [P_RS_THIN_REQ] = "rs_thin_req",
3679 [P_RS_DEALLOCATED] = "rs_deallocated",
3680
3681 /* enum drbd_packet, but not commands - obsoleted flags:
3682 * P_MAY_IGNORE
3683 * P_MAX_OPT_CMD
3684 */
3685 };
3686
3687 /* too big for the array: 0xfffX */
3688 if (cmd == P_INITIAL_META)
3689 return "InitialMeta";
3690 if (cmd == P_INITIAL_DATA)
3691 return "InitialData";
3692 if (cmd == P_CONNECTION_FEATURES)
3693 return "ConnectionFeatures";
3694 if (cmd >= ARRAY_SIZE(cmdnames))
3695 return "Unknown";
3696 return cmdnames[cmd];
3697 }
3698
3699 /**
3700 * drbd_wait_misc - wait for a request to make progress
3701 * @device: device associated with the request
3702 * @i: the struct drbd_interval embedded in struct drbd_request or
3703 * struct drbd_peer_request
3704 */
drbd_wait_misc(struct drbd_device * device,struct drbd_interval * i)3705 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3706 {
3707 struct net_conf *nc;
3708 DEFINE_WAIT(wait);
3709 long timeout;
3710
3711 rcu_read_lock();
3712 nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3713 if (!nc) {
3714 rcu_read_unlock();
3715 return -ETIMEDOUT;
3716 }
3717 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3718 rcu_read_unlock();
3719
3720 /* Indicate to wake up device->misc_wait on progress. */
3721 i->waiting = true;
3722 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3723 spin_unlock_irq(&device->resource->req_lock);
3724 timeout = schedule_timeout(timeout);
3725 finish_wait(&device->misc_wait, &wait);
3726 spin_lock_irq(&device->resource->req_lock);
3727 if (!timeout || device->state.conn < C_CONNECTED)
3728 return -ETIMEDOUT;
3729 if (signal_pending(current))
3730 return -ERESTARTSYS;
3731 return 0;
3732 }
3733
lock_all_resources(void)3734 void lock_all_resources(void)
3735 {
3736 struct drbd_resource *resource;
3737 int __maybe_unused i = 0;
3738
3739 mutex_lock(&resources_mutex);
3740 local_irq_disable();
3741 for_each_resource(resource, &drbd_resources)
3742 spin_lock_nested(&resource->req_lock, i++);
3743 }
3744
unlock_all_resources(void)3745 void unlock_all_resources(void)
3746 {
3747 struct drbd_resource *resource;
3748
3749 for_each_resource(resource, &drbd_resources)
3750 spin_unlock(&resource->req_lock);
3751 local_irq_enable();
3752 mutex_unlock(&resources_mutex);
3753 }
3754
3755 #ifdef CONFIG_DRBD_FAULT_INJECTION
3756 /* Fault insertion support including random number generator shamelessly
3757 * stolen from kernel/rcutorture.c */
3758 struct fault_random_state {
3759 unsigned long state;
3760 unsigned long count;
3761 };
3762
3763 #define FAULT_RANDOM_MULT 39916801 /* prime */
3764 #define FAULT_RANDOM_ADD 479001701 /* prime */
3765 #define FAULT_RANDOM_REFRESH 10000
3766
3767 /*
3768 * Crude but fast random-number generator. Uses a linear congruential
3769 * generator, with occasional help from get_random_bytes().
3770 */
3771 static unsigned long
_drbd_fault_random(struct fault_random_state * rsp)3772 _drbd_fault_random(struct fault_random_state *rsp)
3773 {
3774 long refresh;
3775
3776 if (!rsp->count--) {
3777 get_random_bytes(&refresh, sizeof(refresh));
3778 rsp->state += refresh;
3779 rsp->count = FAULT_RANDOM_REFRESH;
3780 }
3781 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3782 return swahw32(rsp->state);
3783 }
3784
3785 static char *
_drbd_fault_str(unsigned int type)3786 _drbd_fault_str(unsigned int type) {
3787 static char *_faults[] = {
3788 [DRBD_FAULT_MD_WR] = "Meta-data write",
3789 [DRBD_FAULT_MD_RD] = "Meta-data read",
3790 [DRBD_FAULT_RS_WR] = "Resync write",
3791 [DRBD_FAULT_RS_RD] = "Resync read",
3792 [DRBD_FAULT_DT_WR] = "Data write",
3793 [DRBD_FAULT_DT_RD] = "Data read",
3794 [DRBD_FAULT_DT_RA] = "Data read ahead",
3795 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3796 [DRBD_FAULT_AL_EE] = "EE allocation",
3797 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3798 };
3799
3800 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3801 }
3802
3803 unsigned int
_drbd_insert_fault(struct drbd_device * device,unsigned int type)3804 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3805 {
3806 static struct fault_random_state rrs = {0, 0};
3807
3808 unsigned int ret = (
3809 (drbd_fault_devs == 0 ||
3810 ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3811 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate));
3812
3813 if (ret) {
3814 drbd_fault_count++;
3815
3816 if (__ratelimit(&drbd_ratelimit_state))
3817 drbd_warn(device, "***Simulating %s failure\n",
3818 _drbd_fault_str(type));
3819 }
3820
3821 return ret;
3822 }
3823 #endif
3824
drbd_buildtag(void)3825 const char *drbd_buildtag(void)
3826 {
3827 /* DRBD built from external sources has here a reference to the
3828 git hash of the source code. */
3829
3830 static char buildtag[38] = "\0uilt-in";
3831
3832 if (buildtag[0] == 0) {
3833 #ifdef MODULE
3834 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3835 #else
3836 buildtag[0] = 'b';
3837 #endif
3838 }
3839
3840 return buildtag;
3841 }
3842
3843 module_init(drbd_init)
3844 module_exit(drbd_cleanup)
3845
3846 EXPORT_SYMBOL(drbd_conn_str);
3847 EXPORT_SYMBOL(drbd_role_str);
3848 EXPORT_SYMBOL(drbd_disk_str);
3849 EXPORT_SYMBOL(drbd_set_st_err_str);
3850